xhci.c 143 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/pci.h>
  23. #include <linux/irq.h>
  24. #include <linux/log2.h>
  25. #include <linux/module.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/slab.h>
  28. #include <linux/dmi.h>
  29. #include "xhci.h"
  30. #define DRIVER_AUTHOR "Sarah Sharp"
  31. #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  32. /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33. static int link_quirk;
  34. module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35. MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36. /* TODO: copied from ehci-hcd.c - can this be refactored? */
  37. /*
  38. * xhci_handshake - spin reading hc until handshake completes or fails
  39. * @ptr: address of hc register to be read
  40. * @mask: bits to look at in result of read
  41. * @done: value of those bits when handshake succeeds
  42. * @usec: timeout in microseconds
  43. *
  44. * Returns negative errno, or zero on success
  45. *
  46. * Success happens when the "mask" bits have the specified value (hardware
  47. * handshake done). There are two failure modes: "usec" have passed (major
  48. * hardware flakeout), or the register reads as all-ones (hardware removed).
  49. */
  50. int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  51. u32 mask, u32 done, int usec)
  52. {
  53. u32 result;
  54. do {
  55. result = xhci_readl(xhci, ptr);
  56. if (result == ~(u32)0) /* card removed */
  57. return -ENODEV;
  58. result &= mask;
  59. if (result == done)
  60. return 0;
  61. udelay(1);
  62. usec--;
  63. } while (usec > 0);
  64. return -ETIMEDOUT;
  65. }
  66. /*
  67. * Disable interrupts and begin the xHCI halting process.
  68. */
  69. void xhci_quiesce(struct xhci_hcd *xhci)
  70. {
  71. u32 halted;
  72. u32 cmd;
  73. u32 mask;
  74. mask = ~(XHCI_IRQS);
  75. halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  76. if (!halted)
  77. mask &= ~CMD_RUN;
  78. cmd = xhci_readl(xhci, &xhci->op_regs->command);
  79. cmd &= mask;
  80. xhci_writel(xhci, cmd, &xhci->op_regs->command);
  81. }
  82. /*
  83. * Force HC into halt state.
  84. *
  85. * Disable any IRQs and clear the run/stop bit.
  86. * HC will complete any current and actively pipelined transactions, and
  87. * should halt within 16 ms of the run/stop bit being cleared.
  88. * Read HC Halted bit in the status register to see when the HC is finished.
  89. */
  90. int xhci_halt(struct xhci_hcd *xhci)
  91. {
  92. int ret;
  93. xhci_dbg(xhci, "// Halt the HC\n");
  94. xhci_quiesce(xhci);
  95. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  96. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
  97. if (!ret) {
  98. xhci->xhc_state |= XHCI_STATE_HALTED;
  99. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  100. } else
  101. xhci_warn(xhci, "Host not halted after %u microseconds.\n",
  102. XHCI_MAX_HALT_USEC);
  103. return ret;
  104. }
  105. /*
  106. * Set the run bit and wait for the host to be running.
  107. */
  108. static int xhci_start(struct xhci_hcd *xhci)
  109. {
  110. u32 temp;
  111. int ret;
  112. temp = xhci_readl(xhci, &xhci->op_regs->command);
  113. temp |= (CMD_RUN);
  114. xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
  115. temp);
  116. xhci_writel(xhci, temp, &xhci->op_regs->command);
  117. /*
  118. * Wait for the HCHalted Status bit to be 0 to indicate the host is
  119. * running.
  120. */
  121. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  122. STS_HALT, 0, XHCI_MAX_HALT_USEC);
  123. if (ret == -ETIMEDOUT)
  124. xhci_err(xhci, "Host took too long to start, "
  125. "waited %u microseconds.\n",
  126. XHCI_MAX_HALT_USEC);
  127. if (!ret)
  128. xhci->xhc_state &= ~XHCI_STATE_HALTED;
  129. return ret;
  130. }
  131. /*
  132. * Reset a halted HC.
  133. *
  134. * This resets pipelines, timers, counters, state machines, etc.
  135. * Transactions will be terminated immediately, and operational registers
  136. * will be set to their defaults.
  137. */
  138. int xhci_reset(struct xhci_hcd *xhci)
  139. {
  140. u32 command;
  141. u32 state;
  142. int ret, i;
  143. state = xhci_readl(xhci, &xhci->op_regs->status);
  144. if ((state & STS_HALT) == 0) {
  145. xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
  146. return 0;
  147. }
  148. xhci_dbg(xhci, "// Reset the HC\n");
  149. command = xhci_readl(xhci, &xhci->op_regs->command);
  150. command |= CMD_RESET;
  151. xhci_writel(xhci, command, &xhci->op_regs->command);
  152. ret = xhci_handshake(xhci, &xhci->op_regs->command,
  153. CMD_RESET, 0, 10 * 1000 * 1000);
  154. if (ret)
  155. return ret;
  156. xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
  157. /*
  158. * xHCI cannot write to any doorbells or operational registers other
  159. * than status until the "Controller Not Ready" flag is cleared.
  160. */
  161. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  162. STS_CNR, 0, 10 * 1000 * 1000);
  163. for (i = 0; i < 2; ++i) {
  164. xhci->bus_state[i].port_c_suspend = 0;
  165. xhci->bus_state[i].suspended_ports = 0;
  166. xhci->bus_state[i].resuming_ports = 0;
  167. }
  168. return ret;
  169. }
  170. #ifdef CONFIG_PCI
  171. static int xhci_free_msi(struct xhci_hcd *xhci)
  172. {
  173. int i;
  174. if (!xhci->msix_entries)
  175. return -EINVAL;
  176. for (i = 0; i < xhci->msix_count; i++)
  177. if (xhci->msix_entries[i].vector)
  178. free_irq(xhci->msix_entries[i].vector,
  179. xhci_to_hcd(xhci));
  180. return 0;
  181. }
  182. /*
  183. * Set up MSI
  184. */
  185. static int xhci_setup_msi(struct xhci_hcd *xhci)
  186. {
  187. int ret;
  188. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  189. ret = pci_enable_msi(pdev);
  190. if (ret) {
  191. xhci_dbg(xhci, "failed to allocate MSI entry\n");
  192. return ret;
  193. }
  194. ret = request_irq(pdev->irq, xhci_msi_irq,
  195. 0, "xhci_hcd", xhci_to_hcd(xhci));
  196. if (ret) {
  197. xhci_dbg(xhci, "disable MSI interrupt\n");
  198. pci_disable_msi(pdev);
  199. }
  200. return ret;
  201. }
  202. /*
  203. * Free IRQs
  204. * free all IRQs request
  205. */
  206. static void xhci_free_irq(struct xhci_hcd *xhci)
  207. {
  208. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  209. int ret;
  210. /* return if using legacy interrupt */
  211. if (xhci_to_hcd(xhci)->irq > 0)
  212. return;
  213. ret = xhci_free_msi(xhci);
  214. if (!ret)
  215. return;
  216. if (pdev->irq > 0)
  217. free_irq(pdev->irq, xhci_to_hcd(xhci));
  218. return;
  219. }
  220. /*
  221. * Set up MSI-X
  222. */
  223. static int xhci_setup_msix(struct xhci_hcd *xhci)
  224. {
  225. int i, ret = 0;
  226. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  227. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  228. /*
  229. * calculate number of msi-x vectors supported.
  230. * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
  231. * with max number of interrupters based on the xhci HCSPARAMS1.
  232. * - num_online_cpus: maximum msi-x vectors per CPUs core.
  233. * Add additional 1 vector to ensure always available interrupt.
  234. */
  235. xhci->msix_count = min(num_online_cpus() + 1,
  236. HCS_MAX_INTRS(xhci->hcs_params1));
  237. xhci->msix_entries =
  238. kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
  239. GFP_KERNEL);
  240. if (!xhci->msix_entries) {
  241. xhci_err(xhci, "Failed to allocate MSI-X entries\n");
  242. return -ENOMEM;
  243. }
  244. for (i = 0; i < xhci->msix_count; i++) {
  245. xhci->msix_entries[i].entry = i;
  246. xhci->msix_entries[i].vector = 0;
  247. }
  248. ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
  249. if (ret) {
  250. xhci_dbg(xhci, "Failed to enable MSI-X\n");
  251. goto free_entries;
  252. }
  253. for (i = 0; i < xhci->msix_count; i++) {
  254. ret = request_irq(xhci->msix_entries[i].vector,
  255. xhci_msi_irq,
  256. 0, "xhci_hcd", xhci_to_hcd(xhci));
  257. if (ret)
  258. goto disable_msix;
  259. }
  260. hcd->msix_enabled = 1;
  261. return ret;
  262. disable_msix:
  263. xhci_dbg(xhci, "disable MSI-X interrupt\n");
  264. xhci_free_irq(xhci);
  265. pci_disable_msix(pdev);
  266. free_entries:
  267. kfree(xhci->msix_entries);
  268. xhci->msix_entries = NULL;
  269. return ret;
  270. }
  271. /* Free any IRQs and disable MSI-X */
  272. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  273. {
  274. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  275. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  276. xhci_free_irq(xhci);
  277. if (xhci->msix_entries) {
  278. pci_disable_msix(pdev);
  279. kfree(xhci->msix_entries);
  280. xhci->msix_entries = NULL;
  281. } else {
  282. pci_disable_msi(pdev);
  283. }
  284. hcd->msix_enabled = 0;
  285. return;
  286. }
  287. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  288. {
  289. int i;
  290. if (xhci->msix_entries) {
  291. for (i = 0; i < xhci->msix_count; i++)
  292. synchronize_irq(xhci->msix_entries[i].vector);
  293. }
  294. }
  295. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  296. {
  297. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  298. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  299. int ret;
  300. /*
  301. * Some Fresco Logic host controllers advertise MSI, but fail to
  302. * generate interrupts. Don't even try to enable MSI.
  303. */
  304. if (xhci->quirks & XHCI_BROKEN_MSI)
  305. goto legacy_irq;
  306. /* unregister the legacy interrupt */
  307. if (hcd->irq)
  308. free_irq(hcd->irq, hcd);
  309. hcd->irq = 0;
  310. ret = xhci_setup_msix(xhci);
  311. if (ret)
  312. /* fall back to msi*/
  313. ret = xhci_setup_msi(xhci);
  314. if (!ret)
  315. /* hcd->irq is 0, we have MSI */
  316. return 0;
  317. if (!pdev->irq) {
  318. xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
  319. return -EINVAL;
  320. }
  321. legacy_irq:
  322. /* fall back to legacy interrupt*/
  323. ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
  324. hcd->irq_descr, hcd);
  325. if (ret) {
  326. xhci_err(xhci, "request interrupt %d failed\n",
  327. pdev->irq);
  328. return ret;
  329. }
  330. hcd->irq = pdev->irq;
  331. return 0;
  332. }
  333. #else
  334. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  335. {
  336. return 0;
  337. }
  338. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  339. {
  340. }
  341. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  342. {
  343. }
  344. #endif
  345. static void compliance_mode_recovery(unsigned long arg)
  346. {
  347. struct xhci_hcd *xhci;
  348. struct usb_hcd *hcd;
  349. u32 temp;
  350. int i;
  351. xhci = (struct xhci_hcd *)arg;
  352. for (i = 0; i < xhci->num_usb3_ports; i++) {
  353. temp = xhci_readl(xhci, xhci->usb3_ports[i]);
  354. if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
  355. /*
  356. * Compliance Mode Detected. Letting USB Core
  357. * handle the Warm Reset
  358. */
  359. xhci_dbg(xhci, "Compliance mode detected->port %d\n",
  360. i + 1);
  361. xhci_dbg(xhci, "Attempting compliance mode recovery\n");
  362. hcd = xhci->shared_hcd;
  363. if (hcd->state == HC_STATE_SUSPENDED)
  364. usb_hcd_resume_root_hub(hcd);
  365. usb_hcd_poll_rh_status(hcd);
  366. }
  367. }
  368. if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
  369. mod_timer(&xhci->comp_mode_recovery_timer,
  370. jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  371. }
  372. /*
  373. * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
  374. * that causes ports behind that hardware to enter compliance mode sometimes.
  375. * The quirk creates a timer that polls every 2 seconds the link state of
  376. * each host controller's port and recovers it by issuing a Warm reset
  377. * if Compliance mode is detected, otherwise the port will become "dead" (no
  378. * device connections or disconnections will be detected anymore). Becasue no
  379. * status event is generated when entering compliance mode (per xhci spec),
  380. * this quirk is needed on systems that have the failing hardware installed.
  381. */
  382. static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
  383. {
  384. xhci->port_status_u0 = 0;
  385. init_timer(&xhci->comp_mode_recovery_timer);
  386. xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
  387. xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
  388. xhci->comp_mode_recovery_timer.expires = jiffies +
  389. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
  390. set_timer_slack(&xhci->comp_mode_recovery_timer,
  391. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  392. add_timer(&xhci->comp_mode_recovery_timer);
  393. xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
  394. }
  395. /*
  396. * This function identifies the systems that have installed the SN65LVPE502CP
  397. * USB3.0 re-driver and that need the Compliance Mode Quirk.
  398. * Systems:
  399. * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
  400. */
  401. static bool compliance_mode_recovery_timer_quirk_check(void)
  402. {
  403. const char *dmi_product_name, *dmi_sys_vendor;
  404. dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
  405. dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  406. if (!dmi_product_name || !dmi_sys_vendor)
  407. return false;
  408. if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
  409. return false;
  410. if (strstr(dmi_product_name, "Z420") ||
  411. strstr(dmi_product_name, "Z620") ||
  412. strstr(dmi_product_name, "Z820") ||
  413. strstr(dmi_product_name, "Z1 Workstation"))
  414. return true;
  415. return false;
  416. }
  417. static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
  418. {
  419. return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
  420. }
  421. /*
  422. * Initialize memory for HCD and xHC (one-time init).
  423. *
  424. * Program the PAGESIZE register, initialize the device context array, create
  425. * device contexts (?), set up a command ring segment (or two?), create event
  426. * ring (one for now).
  427. */
  428. int xhci_init(struct usb_hcd *hcd)
  429. {
  430. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  431. int retval = 0;
  432. xhci_dbg(xhci, "xhci_init\n");
  433. spin_lock_init(&xhci->lock);
  434. if (xhci->hci_version == 0x95 && link_quirk) {
  435. xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
  436. xhci->quirks |= XHCI_LINK_TRB_QUIRK;
  437. } else {
  438. xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
  439. }
  440. retval = xhci_mem_init(xhci, GFP_KERNEL);
  441. xhci_dbg(xhci, "Finished xhci_init\n");
  442. /* Initializing Compliance Mode Recovery Data If Needed */
  443. if (compliance_mode_recovery_timer_quirk_check()) {
  444. xhci->quirks |= XHCI_COMP_MODE_QUIRK;
  445. compliance_mode_recovery_timer_init(xhci);
  446. }
  447. return retval;
  448. }
  449. /*-------------------------------------------------------------------------*/
  450. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  451. static void xhci_event_ring_work(unsigned long arg)
  452. {
  453. unsigned long flags;
  454. int temp;
  455. u64 temp_64;
  456. struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
  457. int i, j;
  458. xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
  459. spin_lock_irqsave(&xhci->lock, flags);
  460. temp = xhci_readl(xhci, &xhci->op_regs->status);
  461. xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
  462. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  463. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  464. xhci_dbg(xhci, "HW died, polling stopped.\n");
  465. spin_unlock_irqrestore(&xhci->lock, flags);
  466. return;
  467. }
  468. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  469. xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
  470. xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
  471. xhci->error_bitmask = 0;
  472. xhci_dbg(xhci, "Event ring:\n");
  473. xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
  474. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  475. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  476. temp_64 &= ~ERST_PTR_MASK;
  477. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  478. xhci_dbg(xhci, "Command ring:\n");
  479. xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
  480. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  481. xhci_dbg_cmd_ptrs(xhci);
  482. for (i = 0; i < MAX_HC_SLOTS; ++i) {
  483. if (!xhci->devs[i])
  484. continue;
  485. for (j = 0; j < 31; ++j) {
  486. xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
  487. }
  488. }
  489. spin_unlock_irqrestore(&xhci->lock, flags);
  490. if (!xhci->zombie)
  491. mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
  492. else
  493. xhci_dbg(xhci, "Quit polling the event ring.\n");
  494. }
  495. #endif
  496. static int xhci_run_finished(struct xhci_hcd *xhci)
  497. {
  498. if (xhci_start(xhci)) {
  499. xhci_halt(xhci);
  500. return -ENODEV;
  501. }
  502. xhci->shared_hcd->state = HC_STATE_RUNNING;
  503. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  504. if (xhci->quirks & XHCI_NEC_HOST)
  505. xhci_ring_cmd_db(xhci);
  506. xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
  507. return 0;
  508. }
  509. /*
  510. * Start the HC after it was halted.
  511. *
  512. * This function is called by the USB core when the HC driver is added.
  513. * Its opposite is xhci_stop().
  514. *
  515. * xhci_init() must be called once before this function can be called.
  516. * Reset the HC, enable device slot contexts, program DCBAAP, and
  517. * set command ring pointer and event ring pointer.
  518. *
  519. * Setup MSI-X vectors and enable interrupts.
  520. */
  521. int xhci_run(struct usb_hcd *hcd)
  522. {
  523. u32 temp;
  524. u64 temp_64;
  525. int ret;
  526. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  527. /* Start the xHCI host controller running only after the USB 2.0 roothub
  528. * is setup.
  529. */
  530. hcd->uses_new_polling = 1;
  531. if (!usb_hcd_is_primary_hcd(hcd))
  532. return xhci_run_finished(xhci);
  533. xhci_dbg(xhci, "xhci_run\n");
  534. ret = xhci_try_enable_msi(hcd);
  535. if (ret)
  536. return ret;
  537. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  538. init_timer(&xhci->event_ring_timer);
  539. xhci->event_ring_timer.data = (unsigned long) xhci;
  540. xhci->event_ring_timer.function = xhci_event_ring_work;
  541. /* Poll the event ring */
  542. xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
  543. xhci->zombie = 0;
  544. xhci_dbg(xhci, "Setting event ring polling timer\n");
  545. add_timer(&xhci->event_ring_timer);
  546. #endif
  547. xhci_dbg(xhci, "Command ring memory map follows:\n");
  548. xhci_debug_ring(xhci, xhci->cmd_ring);
  549. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  550. xhci_dbg_cmd_ptrs(xhci);
  551. xhci_dbg(xhci, "ERST memory map follows:\n");
  552. xhci_dbg_erst(xhci, &xhci->erst);
  553. xhci_dbg(xhci, "Event ring:\n");
  554. xhci_debug_ring(xhci, xhci->event_ring);
  555. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  556. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  557. temp_64 &= ~ERST_PTR_MASK;
  558. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  559. xhci_dbg(xhci, "// Set the interrupt modulation register\n");
  560. temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
  561. temp &= ~ER_IRQ_INTERVAL_MASK;
  562. temp |= (u32) 160;
  563. xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
  564. /* Set the HCD state before we enable the irqs */
  565. temp = xhci_readl(xhci, &xhci->op_regs->command);
  566. temp |= (CMD_EIE);
  567. xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
  568. temp);
  569. xhci_writel(xhci, temp, &xhci->op_regs->command);
  570. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  571. xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
  572. xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
  573. xhci_writel(xhci, ER_IRQ_ENABLE(temp),
  574. &xhci->ir_set->irq_pending);
  575. xhci_print_ir_set(xhci, 0);
  576. if (xhci->quirks & XHCI_NEC_HOST)
  577. xhci_queue_vendor_command(xhci, 0, 0, 0,
  578. TRB_TYPE(TRB_NEC_GET_FW));
  579. xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
  580. return 0;
  581. }
  582. static void xhci_only_stop_hcd(struct usb_hcd *hcd)
  583. {
  584. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  585. spin_lock_irq(&xhci->lock);
  586. xhci_halt(xhci);
  587. /* The shared_hcd is going to be deallocated shortly (the USB core only
  588. * calls this function when allocation fails in usb_add_hcd(), or
  589. * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
  590. */
  591. xhci->shared_hcd = NULL;
  592. spin_unlock_irq(&xhci->lock);
  593. }
  594. /*
  595. * Stop xHCI driver.
  596. *
  597. * This function is called by the USB core when the HC driver is removed.
  598. * Its opposite is xhci_run().
  599. *
  600. * Disable device contexts, disable IRQs, and quiesce the HC.
  601. * Reset the HC, finish any completed transactions, and cleanup memory.
  602. */
  603. void xhci_stop(struct usb_hcd *hcd)
  604. {
  605. u32 temp;
  606. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  607. if (!usb_hcd_is_primary_hcd(hcd)) {
  608. xhci_only_stop_hcd(xhci->shared_hcd);
  609. return;
  610. }
  611. spin_lock_irq(&xhci->lock);
  612. /* Make sure the xHC is halted for a USB3 roothub
  613. * (xhci_stop() could be called as part of failed init).
  614. */
  615. xhci_halt(xhci);
  616. xhci_reset(xhci);
  617. spin_unlock_irq(&xhci->lock);
  618. xhci_cleanup_msix(xhci);
  619. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  620. /* Tell the event ring poll function not to reschedule */
  621. xhci->zombie = 1;
  622. del_timer_sync(&xhci->event_ring_timer);
  623. #endif
  624. /* Deleting Compliance Mode Recovery Timer */
  625. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  626. (!(xhci_all_ports_seen_u0(xhci)))) {
  627. del_timer_sync(&xhci->comp_mode_recovery_timer);
  628. xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
  629. __func__);
  630. }
  631. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  632. usb_amd_dev_put();
  633. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  634. temp = xhci_readl(xhci, &xhci->op_regs->status);
  635. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  636. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  637. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  638. &xhci->ir_set->irq_pending);
  639. xhci_print_ir_set(xhci, 0);
  640. xhci_dbg(xhci, "cleaning up memory\n");
  641. xhci_mem_cleanup(xhci);
  642. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  643. xhci_readl(xhci, &xhci->op_regs->status));
  644. }
  645. /*
  646. * Shutdown HC (not bus-specific)
  647. *
  648. * This is called when the machine is rebooting or halting. We assume that the
  649. * machine will be powered off, and the HC's internal state will be reset.
  650. * Don't bother to free memory.
  651. *
  652. * This will only ever be called with the main usb_hcd (the USB3 roothub).
  653. */
  654. void xhci_shutdown(struct usb_hcd *hcd)
  655. {
  656. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  657. if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
  658. usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
  659. spin_lock_irq(&xhci->lock);
  660. xhci_halt(xhci);
  661. spin_unlock_irq(&xhci->lock);
  662. xhci_cleanup_msix(xhci);
  663. xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
  664. xhci_readl(xhci, &xhci->op_regs->status));
  665. }
  666. #ifdef CONFIG_PM
  667. static void xhci_save_registers(struct xhci_hcd *xhci)
  668. {
  669. xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
  670. xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
  671. xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  672. xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
  673. xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
  674. xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  675. xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  676. xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  677. xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
  678. }
  679. static void xhci_restore_registers(struct xhci_hcd *xhci)
  680. {
  681. xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
  682. xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
  683. xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
  684. xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
  685. xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
  686. xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
  687. xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
  688. xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
  689. xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
  690. }
  691. static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
  692. {
  693. u64 val_64;
  694. /* step 2: initialize command ring buffer */
  695. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  696. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  697. (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  698. xhci->cmd_ring->dequeue) &
  699. (u64) ~CMD_RING_RSVD_BITS) |
  700. xhci->cmd_ring->cycle_state;
  701. xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
  702. (long unsigned long) val_64);
  703. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  704. }
  705. /*
  706. * The whole command ring must be cleared to zero when we suspend the host.
  707. *
  708. * The host doesn't save the command ring pointer in the suspend well, so we
  709. * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
  710. * aligned, because of the reserved bits in the command ring dequeue pointer
  711. * register. Therefore, we can't just set the dequeue pointer back in the
  712. * middle of the ring (TRBs are 16-byte aligned).
  713. */
  714. static void xhci_clear_command_ring(struct xhci_hcd *xhci)
  715. {
  716. struct xhci_ring *ring;
  717. struct xhci_segment *seg;
  718. ring = xhci->cmd_ring;
  719. seg = ring->deq_seg;
  720. do {
  721. memset(seg->trbs, 0,
  722. sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
  723. seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
  724. cpu_to_le32(~TRB_CYCLE);
  725. seg = seg->next;
  726. } while (seg != ring->deq_seg);
  727. /* Reset the software enqueue and dequeue pointers */
  728. ring->deq_seg = ring->first_seg;
  729. ring->dequeue = ring->first_seg->trbs;
  730. ring->enq_seg = ring->deq_seg;
  731. ring->enqueue = ring->dequeue;
  732. ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
  733. /*
  734. * Ring is now zeroed, so the HW should look for change of ownership
  735. * when the cycle bit is set to 1.
  736. */
  737. ring->cycle_state = 1;
  738. /*
  739. * Reset the hardware dequeue pointer.
  740. * Yes, this will need to be re-written after resume, but we're paranoid
  741. * and want to make sure the hardware doesn't access bogus memory
  742. * because, say, the BIOS or an SMI started the host without changing
  743. * the command ring pointers.
  744. */
  745. xhci_set_cmd_ring_deq(xhci);
  746. }
  747. /*
  748. * Stop HC (not bus-specific)
  749. *
  750. * This is called when the machine transition into S3/S4 mode.
  751. *
  752. */
  753. int xhci_suspend(struct xhci_hcd *xhci)
  754. {
  755. int rc = 0;
  756. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  757. u32 command;
  758. if (hcd->state != HC_STATE_SUSPENDED ||
  759. xhci->shared_hcd->state != HC_STATE_SUSPENDED)
  760. return -EINVAL;
  761. /* Don't poll the roothubs on bus suspend. */
  762. xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
  763. clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  764. del_timer_sync(&hcd->rh_timer);
  765. spin_lock_irq(&xhci->lock);
  766. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  767. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  768. /* step 1: stop endpoint */
  769. /* skipped assuming that port suspend has done */
  770. /* step 2: clear Run/Stop bit */
  771. command = xhci_readl(xhci, &xhci->op_regs->command);
  772. command &= ~CMD_RUN;
  773. xhci_writel(xhci, command, &xhci->op_regs->command);
  774. if (xhci_handshake(xhci, &xhci->op_regs->status,
  775. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
  776. xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
  777. spin_unlock_irq(&xhci->lock);
  778. return -ETIMEDOUT;
  779. }
  780. xhci_clear_command_ring(xhci);
  781. /* step 3: save registers */
  782. xhci_save_registers(xhci);
  783. /* step 4: set CSS flag */
  784. command = xhci_readl(xhci, &xhci->op_regs->command);
  785. command |= CMD_CSS;
  786. xhci_writel(xhci, command, &xhci->op_regs->command);
  787. if (xhci_handshake(xhci, &xhci->op_regs->status,
  788. STS_SAVE, 0, 10 * 1000)) {
  789. xhci_warn(xhci, "WARN: xHC save state timeout\n");
  790. spin_unlock_irq(&xhci->lock);
  791. return -ETIMEDOUT;
  792. }
  793. spin_unlock_irq(&xhci->lock);
  794. /*
  795. * Deleting Compliance Mode Recovery Timer because the xHCI Host
  796. * is about to be suspended.
  797. */
  798. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  799. (!(xhci_all_ports_seen_u0(xhci)))) {
  800. del_timer_sync(&xhci->comp_mode_recovery_timer);
  801. xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
  802. __func__);
  803. }
  804. /* step 5: remove core well power */
  805. /* synchronize irq when using MSI-X */
  806. xhci_msix_sync_irqs(xhci);
  807. return rc;
  808. }
  809. /*
  810. * start xHC (not bus-specific)
  811. *
  812. * This is called when the machine transition from S3/S4 mode.
  813. *
  814. */
  815. int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
  816. {
  817. u32 command, temp = 0;
  818. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  819. struct usb_hcd *secondary_hcd;
  820. int retval = 0;
  821. /* Wait a bit if either of the roothubs need to settle from the
  822. * transition into bus suspend.
  823. */
  824. if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
  825. time_before(jiffies,
  826. xhci->bus_state[1].next_statechange))
  827. msleep(100);
  828. set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  829. set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  830. spin_lock_irq(&xhci->lock);
  831. if (xhci->quirks & XHCI_RESET_ON_RESUME)
  832. hibernated = true;
  833. if (!hibernated) {
  834. /* step 1: restore register */
  835. xhci_restore_registers(xhci);
  836. /* step 2: initialize command ring buffer */
  837. xhci_set_cmd_ring_deq(xhci);
  838. /* step 3: restore state and start state*/
  839. /* step 3: set CRS flag */
  840. command = xhci_readl(xhci, &xhci->op_regs->command);
  841. command |= CMD_CRS;
  842. xhci_writel(xhci, command, &xhci->op_regs->command);
  843. if (xhci_handshake(xhci, &xhci->op_regs->status,
  844. STS_RESTORE, 0, 10 * 1000)) {
  845. xhci_warn(xhci, "WARN: xHC restore state timeout\n");
  846. spin_unlock_irq(&xhci->lock);
  847. return -ETIMEDOUT;
  848. }
  849. temp = xhci_readl(xhci, &xhci->op_regs->status);
  850. }
  851. /* If restore operation fails, re-initialize the HC during resume */
  852. if ((temp & STS_SRE) || hibernated) {
  853. /* Let the USB core know _both_ roothubs lost power. */
  854. usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
  855. usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
  856. xhci_dbg(xhci, "Stop HCD\n");
  857. xhci_halt(xhci);
  858. xhci_reset(xhci);
  859. spin_unlock_irq(&xhci->lock);
  860. xhci_cleanup_msix(xhci);
  861. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  862. /* Tell the event ring poll function not to reschedule */
  863. xhci->zombie = 1;
  864. del_timer_sync(&xhci->event_ring_timer);
  865. #endif
  866. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  867. temp = xhci_readl(xhci, &xhci->op_regs->status);
  868. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  869. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  870. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  871. &xhci->ir_set->irq_pending);
  872. xhci_print_ir_set(xhci, 0);
  873. xhci_dbg(xhci, "cleaning up memory\n");
  874. xhci_mem_cleanup(xhci);
  875. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  876. xhci_readl(xhci, &xhci->op_regs->status));
  877. /* USB core calls the PCI reinit and start functions twice:
  878. * first with the primary HCD, and then with the secondary HCD.
  879. * If we don't do the same, the host will never be started.
  880. */
  881. if (!usb_hcd_is_primary_hcd(hcd))
  882. secondary_hcd = hcd;
  883. else
  884. secondary_hcd = xhci->shared_hcd;
  885. xhci_dbg(xhci, "Initialize the xhci_hcd\n");
  886. retval = xhci_init(hcd->primary_hcd);
  887. if (retval)
  888. return retval;
  889. xhci_dbg(xhci, "Start the primary HCD\n");
  890. retval = xhci_run(hcd->primary_hcd);
  891. if (!retval) {
  892. xhci_dbg(xhci, "Start the secondary HCD\n");
  893. retval = xhci_run(secondary_hcd);
  894. }
  895. hcd->state = HC_STATE_SUSPENDED;
  896. xhci->shared_hcd->state = HC_STATE_SUSPENDED;
  897. goto done;
  898. }
  899. /* step 4: set Run/Stop bit */
  900. command = xhci_readl(xhci, &xhci->op_regs->command);
  901. command |= CMD_RUN;
  902. xhci_writel(xhci, command, &xhci->op_regs->command);
  903. xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
  904. 0, 250 * 1000);
  905. /* step 5: walk topology and initialize portsc,
  906. * portpmsc and portli
  907. */
  908. /* this is done in bus_resume */
  909. /* step 6: restart each of the previously
  910. * Running endpoints by ringing their doorbells
  911. */
  912. spin_unlock_irq(&xhci->lock);
  913. done:
  914. if (retval == 0) {
  915. usb_hcd_resume_root_hub(hcd);
  916. usb_hcd_resume_root_hub(xhci->shared_hcd);
  917. }
  918. /*
  919. * If system is subject to the Quirk, Compliance Mode Timer needs to
  920. * be re-initialized Always after a system resume. Ports are subject
  921. * to suffer the Compliance Mode issue again. It doesn't matter if
  922. * ports have entered previously to U0 before system's suspension.
  923. */
  924. if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
  925. compliance_mode_recovery_timer_init(xhci);
  926. /* Re-enable port polling. */
  927. xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
  928. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  929. usb_hcd_poll_rh_status(hcd);
  930. return retval;
  931. }
  932. #endif /* CONFIG_PM */
  933. /*-------------------------------------------------------------------------*/
  934. /**
  935. * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
  936. * HCDs. Find the index for an endpoint given its descriptor. Use the return
  937. * value to right shift 1 for the bitmask.
  938. *
  939. * Index = (epnum * 2) + direction - 1,
  940. * where direction = 0 for OUT, 1 for IN.
  941. * For control endpoints, the IN index is used (OUT index is unused), so
  942. * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
  943. */
  944. unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
  945. {
  946. unsigned int index;
  947. if (usb_endpoint_xfer_control(desc))
  948. index = (unsigned int) (usb_endpoint_num(desc)*2);
  949. else
  950. index = (unsigned int) (usb_endpoint_num(desc)*2) +
  951. (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
  952. return index;
  953. }
  954. /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
  955. * address from the XHCI endpoint index.
  956. */
  957. unsigned int xhci_get_endpoint_address(unsigned int ep_index)
  958. {
  959. unsigned int number = DIV_ROUND_UP(ep_index, 2);
  960. unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
  961. return direction | number;
  962. }
  963. /* Find the flag for this endpoint (for use in the control context). Use the
  964. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  965. * bit 1, etc.
  966. */
  967. unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
  968. {
  969. return 1 << (xhci_get_endpoint_index(desc) + 1);
  970. }
  971. /* Find the flag for this endpoint (for use in the control context). Use the
  972. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  973. * bit 1, etc.
  974. */
  975. unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
  976. {
  977. return 1 << (ep_index + 1);
  978. }
  979. /* Compute the last valid endpoint context index. Basically, this is the
  980. * endpoint index plus one. For slot contexts with more than valid endpoint,
  981. * we find the most significant bit set in the added contexts flags.
  982. * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
  983. * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
  984. */
  985. unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
  986. {
  987. return fls(added_ctxs) - 1;
  988. }
  989. /* Returns 1 if the arguments are OK;
  990. * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
  991. */
  992. static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
  993. struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
  994. const char *func) {
  995. struct xhci_hcd *xhci;
  996. struct xhci_virt_device *virt_dev;
  997. if (!hcd || (check_ep && !ep) || !udev) {
  998. printk(KERN_DEBUG "xHCI %s called with invalid args\n",
  999. func);
  1000. return -EINVAL;
  1001. }
  1002. if (!udev->parent) {
  1003. printk(KERN_DEBUG "xHCI %s called for root hub\n",
  1004. func);
  1005. return 0;
  1006. }
  1007. xhci = hcd_to_xhci(hcd);
  1008. if (xhci->xhc_state & XHCI_STATE_HALTED)
  1009. return -ENODEV;
  1010. if (check_virt_dev) {
  1011. if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
  1012. printk(KERN_DEBUG "xHCI %s called with unaddressed "
  1013. "device\n", func);
  1014. return -EINVAL;
  1015. }
  1016. virt_dev = xhci->devs[udev->slot_id];
  1017. if (virt_dev->udev != udev) {
  1018. printk(KERN_DEBUG "xHCI %s called with udev and "
  1019. "virt_dev does not match\n", func);
  1020. return -EINVAL;
  1021. }
  1022. }
  1023. return 1;
  1024. }
  1025. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  1026. struct usb_device *udev, struct xhci_command *command,
  1027. bool ctx_change, bool must_succeed);
  1028. /*
  1029. * Full speed devices may have a max packet size greater than 8 bytes, but the
  1030. * USB core doesn't know that until it reads the first 8 bytes of the
  1031. * descriptor. If the usb_device's max packet size changes after that point,
  1032. * we need to issue an evaluate context command and wait on it.
  1033. */
  1034. static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
  1035. unsigned int ep_index, struct urb *urb)
  1036. {
  1037. struct xhci_container_ctx *in_ctx;
  1038. struct xhci_container_ctx *out_ctx;
  1039. struct xhci_input_control_ctx *ctrl_ctx;
  1040. struct xhci_ep_ctx *ep_ctx;
  1041. int max_packet_size;
  1042. int hw_max_packet_size;
  1043. int ret = 0;
  1044. out_ctx = xhci->devs[slot_id]->out_ctx;
  1045. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1046. hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
  1047. max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
  1048. if (hw_max_packet_size != max_packet_size) {
  1049. xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
  1050. xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
  1051. max_packet_size);
  1052. xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
  1053. hw_max_packet_size);
  1054. xhci_dbg(xhci, "Issuing evaluate context command.\n");
  1055. /* Set up the modified control endpoint 0 */
  1056. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  1057. xhci->devs[slot_id]->out_ctx, ep_index);
  1058. in_ctx = xhci->devs[slot_id]->in_ctx;
  1059. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1060. ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
  1061. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
  1062. /* Set up the input context flags for the command */
  1063. /* FIXME: This won't work if a non-default control endpoint
  1064. * changes max packet sizes.
  1065. */
  1066. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1067. ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
  1068. ctrl_ctx->drop_flags = 0;
  1069. xhci_dbg(xhci, "Slot %d input context\n", slot_id);
  1070. xhci_dbg_ctx(xhci, in_ctx, ep_index);
  1071. xhci_dbg(xhci, "Slot %d output context\n", slot_id);
  1072. xhci_dbg_ctx(xhci, out_ctx, ep_index);
  1073. ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
  1074. true, false);
  1075. /* Clean up the input context for later use by bandwidth
  1076. * functions.
  1077. */
  1078. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
  1079. }
  1080. return ret;
  1081. }
  1082. /*
  1083. * non-error returns are a promise to giveback() the urb later
  1084. * we drop ownership so next owner (or urb unlink) can get it
  1085. */
  1086. int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
  1087. {
  1088. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  1089. struct xhci_td *buffer;
  1090. unsigned long flags;
  1091. int ret = 0;
  1092. unsigned int slot_id, ep_index;
  1093. struct urb_priv *urb_priv;
  1094. int size, i;
  1095. if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
  1096. true, true, __func__) <= 0)
  1097. return -EINVAL;
  1098. slot_id = urb->dev->slot_id;
  1099. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1100. if (!HCD_HW_ACCESSIBLE(hcd)) {
  1101. if (!in_interrupt())
  1102. xhci_dbg(xhci, "urb submitted during PCI suspend\n");
  1103. ret = -ESHUTDOWN;
  1104. goto exit;
  1105. }
  1106. if (usb_endpoint_xfer_isoc(&urb->ep->desc))
  1107. size = urb->number_of_packets;
  1108. else
  1109. size = 1;
  1110. urb_priv = kzalloc(sizeof(struct urb_priv) +
  1111. size * sizeof(struct xhci_td *), mem_flags);
  1112. if (!urb_priv)
  1113. return -ENOMEM;
  1114. buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
  1115. if (!buffer) {
  1116. kfree(urb_priv);
  1117. return -ENOMEM;
  1118. }
  1119. for (i = 0; i < size; i++) {
  1120. urb_priv->td[i] = buffer;
  1121. buffer++;
  1122. }
  1123. urb_priv->length = size;
  1124. urb_priv->td_cnt = 0;
  1125. urb->hcpriv = urb_priv;
  1126. if (usb_endpoint_xfer_control(&urb->ep->desc)) {
  1127. /* Check to see if the max packet size for the default control
  1128. * endpoint changed during FS device enumeration
  1129. */
  1130. if (urb->dev->speed == USB_SPEED_FULL) {
  1131. ret = xhci_check_maxpacket(xhci, slot_id,
  1132. ep_index, urb);
  1133. if (ret < 0) {
  1134. xhci_urb_free_priv(xhci, urb_priv);
  1135. urb->hcpriv = NULL;
  1136. return ret;
  1137. }
  1138. }
  1139. /* We have a spinlock and interrupts disabled, so we must pass
  1140. * atomic context to this function, which may allocate memory.
  1141. */
  1142. spin_lock_irqsave(&xhci->lock, flags);
  1143. if (xhci->xhc_state & XHCI_STATE_DYING)
  1144. goto dying;
  1145. ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
  1146. slot_id, ep_index);
  1147. if (ret)
  1148. goto free_priv;
  1149. spin_unlock_irqrestore(&xhci->lock, flags);
  1150. } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
  1151. spin_lock_irqsave(&xhci->lock, flags);
  1152. if (xhci->xhc_state & XHCI_STATE_DYING)
  1153. goto dying;
  1154. if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1155. EP_GETTING_STREAMS) {
  1156. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1157. "is transitioning to using streams.\n");
  1158. ret = -EINVAL;
  1159. } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1160. EP_GETTING_NO_STREAMS) {
  1161. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1162. "is transitioning to "
  1163. "not having streams.\n");
  1164. ret = -EINVAL;
  1165. } else {
  1166. ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
  1167. slot_id, ep_index);
  1168. }
  1169. if (ret)
  1170. goto free_priv;
  1171. spin_unlock_irqrestore(&xhci->lock, flags);
  1172. } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
  1173. spin_lock_irqsave(&xhci->lock, flags);
  1174. if (xhci->xhc_state & XHCI_STATE_DYING)
  1175. goto dying;
  1176. ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
  1177. slot_id, ep_index);
  1178. if (ret)
  1179. goto free_priv;
  1180. spin_unlock_irqrestore(&xhci->lock, flags);
  1181. } else {
  1182. spin_lock_irqsave(&xhci->lock, flags);
  1183. if (xhci->xhc_state & XHCI_STATE_DYING)
  1184. goto dying;
  1185. ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
  1186. slot_id, ep_index);
  1187. if (ret)
  1188. goto free_priv;
  1189. spin_unlock_irqrestore(&xhci->lock, flags);
  1190. }
  1191. exit:
  1192. return ret;
  1193. dying:
  1194. xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
  1195. "non-responsive xHCI host.\n",
  1196. urb->ep->desc.bEndpointAddress, urb);
  1197. ret = -ESHUTDOWN;
  1198. free_priv:
  1199. xhci_urb_free_priv(xhci, urb_priv);
  1200. urb->hcpriv = NULL;
  1201. spin_unlock_irqrestore(&xhci->lock, flags);
  1202. return ret;
  1203. }
  1204. /* Get the right ring for the given URB.
  1205. * If the endpoint supports streams, boundary check the URB's stream ID.
  1206. * If the endpoint doesn't support streams, return the singular endpoint ring.
  1207. */
  1208. static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
  1209. struct urb *urb)
  1210. {
  1211. unsigned int slot_id;
  1212. unsigned int ep_index;
  1213. unsigned int stream_id;
  1214. struct xhci_virt_ep *ep;
  1215. slot_id = urb->dev->slot_id;
  1216. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1217. stream_id = urb->stream_id;
  1218. ep = &xhci->devs[slot_id]->eps[ep_index];
  1219. /* Common case: no streams */
  1220. if (!(ep->ep_state & EP_HAS_STREAMS))
  1221. return ep->ring;
  1222. if (stream_id == 0) {
  1223. xhci_warn(xhci,
  1224. "WARN: Slot ID %u, ep index %u has streams, "
  1225. "but URB has no stream ID.\n",
  1226. slot_id, ep_index);
  1227. return NULL;
  1228. }
  1229. if (stream_id < ep->stream_info->num_streams)
  1230. return ep->stream_info->stream_rings[stream_id];
  1231. xhci_warn(xhci,
  1232. "WARN: Slot ID %u, ep index %u has "
  1233. "stream IDs 1 to %u allocated, "
  1234. "but stream ID %u is requested.\n",
  1235. slot_id, ep_index,
  1236. ep->stream_info->num_streams - 1,
  1237. stream_id);
  1238. return NULL;
  1239. }
  1240. /*
  1241. * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
  1242. * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
  1243. * should pick up where it left off in the TD, unless a Set Transfer Ring
  1244. * Dequeue Pointer is issued.
  1245. *
  1246. * The TRBs that make up the buffers for the canceled URB will be "removed" from
  1247. * the ring. Since the ring is a contiguous structure, they can't be physically
  1248. * removed. Instead, there are two options:
  1249. *
  1250. * 1) If the HC is in the middle of processing the URB to be canceled, we
  1251. * simply move the ring's dequeue pointer past those TRBs using the Set
  1252. * Transfer Ring Dequeue Pointer command. This will be the common case,
  1253. * when drivers timeout on the last submitted URB and attempt to cancel.
  1254. *
  1255. * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
  1256. * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
  1257. * HC will need to invalidate the any TRBs it has cached after the stop
  1258. * endpoint command, as noted in the xHCI 0.95 errata.
  1259. *
  1260. * 3) The TD may have completed by the time the Stop Endpoint Command
  1261. * completes, so software needs to handle that case too.
  1262. *
  1263. * This function should protect against the TD enqueueing code ringing the
  1264. * doorbell while this code is waiting for a Stop Endpoint command to complete.
  1265. * It also needs to account for multiple cancellations on happening at the same
  1266. * time for the same endpoint.
  1267. *
  1268. * Note that this function can be called in any context, or so says
  1269. * usb_hcd_unlink_urb()
  1270. */
  1271. int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
  1272. {
  1273. unsigned long flags;
  1274. int ret, i;
  1275. u32 temp;
  1276. struct xhci_hcd *xhci;
  1277. struct urb_priv *urb_priv;
  1278. struct xhci_td *td;
  1279. unsigned int ep_index;
  1280. struct xhci_ring *ep_ring;
  1281. struct xhci_virt_ep *ep;
  1282. xhci = hcd_to_xhci(hcd);
  1283. spin_lock_irqsave(&xhci->lock, flags);
  1284. /* Make sure the URB hasn't completed or been unlinked already */
  1285. ret = usb_hcd_check_unlink_urb(hcd, urb, status);
  1286. if (ret || !urb->hcpriv)
  1287. goto done;
  1288. temp = xhci_readl(xhci, &xhci->op_regs->status);
  1289. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1290. xhci_dbg(xhci, "HW died, freeing TD.\n");
  1291. urb_priv = urb->hcpriv;
  1292. for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
  1293. td = urb_priv->td[i];
  1294. if (!list_empty(&td->td_list))
  1295. list_del_init(&td->td_list);
  1296. if (!list_empty(&td->cancelled_td_list))
  1297. list_del_init(&td->cancelled_td_list);
  1298. }
  1299. usb_hcd_unlink_urb_from_ep(hcd, urb);
  1300. spin_unlock_irqrestore(&xhci->lock, flags);
  1301. usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
  1302. xhci_urb_free_priv(xhci, urb_priv);
  1303. return ret;
  1304. }
  1305. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  1306. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1307. xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
  1308. "non-responsive xHCI host.\n",
  1309. urb->ep->desc.bEndpointAddress, urb);
  1310. /* Let the stop endpoint command watchdog timer (which set this
  1311. * state) finish cleaning up the endpoint TD lists. We must
  1312. * have caught it in the middle of dropping a lock and giving
  1313. * back an URB.
  1314. */
  1315. goto done;
  1316. }
  1317. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1318. ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
  1319. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  1320. if (!ep_ring) {
  1321. ret = -EINVAL;
  1322. goto done;
  1323. }
  1324. urb_priv = urb->hcpriv;
  1325. i = urb_priv->td_cnt;
  1326. if (i < urb_priv->length)
  1327. xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
  1328. "starting at offset 0x%llx\n",
  1329. urb, urb->dev->devpath,
  1330. urb->ep->desc.bEndpointAddress,
  1331. (unsigned long long) xhci_trb_virt_to_dma(
  1332. urb_priv->td[i]->start_seg,
  1333. urb_priv->td[i]->first_trb));
  1334. for (; i < urb_priv->length; i++) {
  1335. td = urb_priv->td[i];
  1336. list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
  1337. }
  1338. /* Queue a stop endpoint command, but only if this is
  1339. * the first cancellation to be handled.
  1340. */
  1341. if (!(ep->ep_state & EP_HALT_PENDING)) {
  1342. ep->ep_state |= EP_HALT_PENDING;
  1343. ep->stop_cmds_pending++;
  1344. ep->stop_cmd_timer.expires = jiffies +
  1345. XHCI_STOP_EP_CMD_TIMEOUT * HZ;
  1346. add_timer(&ep->stop_cmd_timer);
  1347. xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
  1348. xhci_ring_cmd_db(xhci);
  1349. }
  1350. done:
  1351. spin_unlock_irqrestore(&xhci->lock, flags);
  1352. return ret;
  1353. }
  1354. /* Drop an endpoint from a new bandwidth configuration for this device.
  1355. * Only one call to this function is allowed per endpoint before
  1356. * check_bandwidth() or reset_bandwidth() must be called.
  1357. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1358. * add the endpoint to the schedule with possibly new parameters denoted by a
  1359. * different endpoint descriptor in usb_host_endpoint.
  1360. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1361. * not allowed.
  1362. *
  1363. * The USB core will not allow URBs to be queued to an endpoint that is being
  1364. * disabled, so there's no need for mutual exclusion to protect
  1365. * the xhci->devs[slot_id] structure.
  1366. */
  1367. int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1368. struct usb_host_endpoint *ep)
  1369. {
  1370. struct xhci_hcd *xhci;
  1371. struct xhci_container_ctx *in_ctx, *out_ctx;
  1372. struct xhci_input_control_ctx *ctrl_ctx;
  1373. struct xhci_slot_ctx *slot_ctx;
  1374. unsigned int last_ctx;
  1375. unsigned int ep_index;
  1376. struct xhci_ep_ctx *ep_ctx;
  1377. u32 drop_flag;
  1378. u32 new_add_flags, new_drop_flags, new_slot_info;
  1379. int ret;
  1380. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1381. if (ret <= 0)
  1382. return ret;
  1383. xhci = hcd_to_xhci(hcd);
  1384. if (xhci->xhc_state & XHCI_STATE_DYING)
  1385. return -ENODEV;
  1386. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  1387. drop_flag = xhci_get_endpoint_flag(&ep->desc);
  1388. if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
  1389. xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
  1390. __func__, drop_flag);
  1391. return 0;
  1392. }
  1393. in_ctx = xhci->devs[udev->slot_id]->in_ctx;
  1394. out_ctx = xhci->devs[udev->slot_id]->out_ctx;
  1395. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1396. ep_index = xhci_get_endpoint_index(&ep->desc);
  1397. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1398. /* If the HC already knows the endpoint is disabled,
  1399. * or the HCD has noted it is disabled, ignore this request
  1400. */
  1401. if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
  1402. cpu_to_le32(EP_STATE_DISABLED)) ||
  1403. le32_to_cpu(ctrl_ctx->drop_flags) &
  1404. xhci_get_endpoint_flag(&ep->desc)) {
  1405. xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
  1406. __func__, ep);
  1407. return 0;
  1408. }
  1409. ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
  1410. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1411. ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
  1412. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1413. last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
  1414. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1415. /* Update the last valid endpoint context, if we deleted the last one */
  1416. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
  1417. LAST_CTX(last_ctx)) {
  1418. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1419. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1420. }
  1421. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1422. xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
  1423. xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1424. (unsigned int) ep->desc.bEndpointAddress,
  1425. udev->slot_id,
  1426. (unsigned int) new_drop_flags,
  1427. (unsigned int) new_add_flags,
  1428. (unsigned int) new_slot_info);
  1429. return 0;
  1430. }
  1431. /* Add an endpoint to a new possible bandwidth configuration for this device.
  1432. * Only one call to this function is allowed per endpoint before
  1433. * check_bandwidth() or reset_bandwidth() must be called.
  1434. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1435. * add the endpoint to the schedule with possibly new parameters denoted by a
  1436. * different endpoint descriptor in usb_host_endpoint.
  1437. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1438. * not allowed.
  1439. *
  1440. * The USB core will not allow URBs to be queued to an endpoint until the
  1441. * configuration or alt setting is installed in the device, so there's no need
  1442. * for mutual exclusion to protect the xhci->devs[slot_id] structure.
  1443. */
  1444. int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1445. struct usb_host_endpoint *ep)
  1446. {
  1447. struct xhci_hcd *xhci;
  1448. struct xhci_container_ctx *in_ctx, *out_ctx;
  1449. unsigned int ep_index;
  1450. struct xhci_slot_ctx *slot_ctx;
  1451. struct xhci_input_control_ctx *ctrl_ctx;
  1452. u32 added_ctxs;
  1453. unsigned int last_ctx;
  1454. u32 new_add_flags, new_drop_flags, new_slot_info;
  1455. struct xhci_virt_device *virt_dev;
  1456. int ret = 0;
  1457. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1458. if (ret <= 0) {
  1459. /* So we won't queue a reset ep command for a root hub */
  1460. ep->hcpriv = NULL;
  1461. return ret;
  1462. }
  1463. xhci = hcd_to_xhci(hcd);
  1464. if (xhci->xhc_state & XHCI_STATE_DYING)
  1465. return -ENODEV;
  1466. added_ctxs = xhci_get_endpoint_flag(&ep->desc);
  1467. last_ctx = xhci_last_valid_endpoint(added_ctxs);
  1468. if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
  1469. /* FIXME when we have to issue an evaluate endpoint command to
  1470. * deal with ep0 max packet size changing once we get the
  1471. * descriptors
  1472. */
  1473. xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
  1474. __func__, added_ctxs);
  1475. return 0;
  1476. }
  1477. virt_dev = xhci->devs[udev->slot_id];
  1478. in_ctx = virt_dev->in_ctx;
  1479. out_ctx = virt_dev->out_ctx;
  1480. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1481. ep_index = xhci_get_endpoint_index(&ep->desc);
  1482. /* If this endpoint is already in use, and the upper layers are trying
  1483. * to add it again without dropping it, reject the addition.
  1484. */
  1485. if (virt_dev->eps[ep_index].ring &&
  1486. !(le32_to_cpu(ctrl_ctx->drop_flags) &
  1487. xhci_get_endpoint_flag(&ep->desc))) {
  1488. xhci_warn(xhci, "Trying to add endpoint 0x%x "
  1489. "without dropping it.\n",
  1490. (unsigned int) ep->desc.bEndpointAddress);
  1491. return -EINVAL;
  1492. }
  1493. /* If the HCD has already noted the endpoint is enabled,
  1494. * ignore this request.
  1495. */
  1496. if (le32_to_cpu(ctrl_ctx->add_flags) &
  1497. xhci_get_endpoint_flag(&ep->desc)) {
  1498. xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
  1499. __func__, ep);
  1500. return 0;
  1501. }
  1502. /*
  1503. * Configuration and alternate setting changes must be done in
  1504. * process context, not interrupt context (or so documenation
  1505. * for usb_set_interface() and usb_set_configuration() claim).
  1506. */
  1507. if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
  1508. dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
  1509. __func__, ep->desc.bEndpointAddress);
  1510. return -ENOMEM;
  1511. }
  1512. ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
  1513. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1514. /* If xhci_endpoint_disable() was called for this endpoint, but the
  1515. * xHC hasn't been notified yet through the check_bandwidth() call,
  1516. * this re-adds a new state for the endpoint from the new endpoint
  1517. * descriptors. We must drop and re-add this endpoint, so we leave the
  1518. * drop flags alone.
  1519. */
  1520. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1521. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1522. /* Update the last valid endpoint context, if we just added one past */
  1523. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
  1524. LAST_CTX(last_ctx)) {
  1525. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1526. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1527. }
  1528. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1529. /* Store the usb_device pointer for later use */
  1530. ep->hcpriv = udev;
  1531. xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1532. (unsigned int) ep->desc.bEndpointAddress,
  1533. udev->slot_id,
  1534. (unsigned int) new_drop_flags,
  1535. (unsigned int) new_add_flags,
  1536. (unsigned int) new_slot_info);
  1537. return 0;
  1538. }
  1539. static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
  1540. {
  1541. struct xhci_input_control_ctx *ctrl_ctx;
  1542. struct xhci_ep_ctx *ep_ctx;
  1543. struct xhci_slot_ctx *slot_ctx;
  1544. int i;
  1545. /* When a device's add flag and drop flag are zero, any subsequent
  1546. * configure endpoint command will leave that endpoint's state
  1547. * untouched. Make sure we don't leave any old state in the input
  1548. * endpoint contexts.
  1549. */
  1550. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  1551. ctrl_ctx->drop_flags = 0;
  1552. ctrl_ctx->add_flags = 0;
  1553. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  1554. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1555. /* Endpoint 0 is always valid */
  1556. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
  1557. for (i = 1; i < 31; ++i) {
  1558. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
  1559. ep_ctx->ep_info = 0;
  1560. ep_ctx->ep_info2 = 0;
  1561. ep_ctx->deq = 0;
  1562. ep_ctx->tx_info = 0;
  1563. }
  1564. }
  1565. static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
  1566. struct usb_device *udev, u32 *cmd_status)
  1567. {
  1568. int ret;
  1569. switch (*cmd_status) {
  1570. case COMP_ENOMEM:
  1571. dev_warn(&udev->dev, "Not enough host controller resources "
  1572. "for new device state.\n");
  1573. ret = -ENOMEM;
  1574. /* FIXME: can we allocate more resources for the HC? */
  1575. break;
  1576. case COMP_BW_ERR:
  1577. case COMP_2ND_BW_ERR:
  1578. dev_warn(&udev->dev, "Not enough bandwidth "
  1579. "for new device state.\n");
  1580. ret = -ENOSPC;
  1581. /* FIXME: can we go back to the old state? */
  1582. break;
  1583. case COMP_TRB_ERR:
  1584. /* the HCD set up something wrong */
  1585. dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
  1586. "add flag = 1, "
  1587. "and endpoint is not disabled.\n");
  1588. ret = -EINVAL;
  1589. break;
  1590. case COMP_DEV_ERR:
  1591. dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
  1592. "configure command.\n");
  1593. ret = -ENODEV;
  1594. break;
  1595. case COMP_SUCCESS:
  1596. dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
  1597. ret = 0;
  1598. break;
  1599. default:
  1600. xhci_err(xhci, "ERROR: unexpected command completion "
  1601. "code 0x%x.\n", *cmd_status);
  1602. ret = -EINVAL;
  1603. break;
  1604. }
  1605. return ret;
  1606. }
  1607. static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
  1608. struct usb_device *udev, u32 *cmd_status)
  1609. {
  1610. int ret;
  1611. struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
  1612. switch (*cmd_status) {
  1613. case COMP_EINVAL:
  1614. dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
  1615. "context command.\n");
  1616. ret = -EINVAL;
  1617. break;
  1618. case COMP_EBADSLT:
  1619. dev_warn(&udev->dev, "WARN: slot not enabled for"
  1620. "evaluate context command.\n");
  1621. ret = -EINVAL;
  1622. break;
  1623. case COMP_CTX_STATE:
  1624. dev_warn(&udev->dev, "WARN: invalid context state for "
  1625. "evaluate context command.\n");
  1626. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
  1627. ret = -EINVAL;
  1628. break;
  1629. case COMP_DEV_ERR:
  1630. dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
  1631. "context command.\n");
  1632. ret = -ENODEV;
  1633. break;
  1634. case COMP_MEL_ERR:
  1635. /* Max Exit Latency too large error */
  1636. dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
  1637. ret = -EINVAL;
  1638. break;
  1639. case COMP_SUCCESS:
  1640. dev_dbg(&udev->dev, "Successful evaluate context command\n");
  1641. ret = 0;
  1642. break;
  1643. default:
  1644. xhci_err(xhci, "ERROR: unexpected command completion "
  1645. "code 0x%x.\n", *cmd_status);
  1646. ret = -EINVAL;
  1647. break;
  1648. }
  1649. return ret;
  1650. }
  1651. static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
  1652. struct xhci_container_ctx *in_ctx)
  1653. {
  1654. struct xhci_input_control_ctx *ctrl_ctx;
  1655. u32 valid_add_flags;
  1656. u32 valid_drop_flags;
  1657. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1658. /* Ignore the slot flag (bit 0), and the default control endpoint flag
  1659. * (bit 1). The default control endpoint is added during the Address
  1660. * Device command and is never removed until the slot is disabled.
  1661. */
  1662. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1663. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1664. /* Use hweight32 to count the number of ones in the add flags, or
  1665. * number of endpoints added. Don't count endpoints that are changed
  1666. * (both added and dropped).
  1667. */
  1668. return hweight32(valid_add_flags) -
  1669. hweight32(valid_add_flags & valid_drop_flags);
  1670. }
  1671. static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
  1672. struct xhci_container_ctx *in_ctx)
  1673. {
  1674. struct xhci_input_control_ctx *ctrl_ctx;
  1675. u32 valid_add_flags;
  1676. u32 valid_drop_flags;
  1677. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1678. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1679. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1680. return hweight32(valid_drop_flags) -
  1681. hweight32(valid_add_flags & valid_drop_flags);
  1682. }
  1683. /*
  1684. * We need to reserve the new number of endpoints before the configure endpoint
  1685. * command completes. We can't subtract the dropped endpoints from the number
  1686. * of active endpoints until the command completes because we can oversubscribe
  1687. * the host in this case:
  1688. *
  1689. * - the first configure endpoint command drops more endpoints than it adds
  1690. * - a second configure endpoint command that adds more endpoints is queued
  1691. * - the first configure endpoint command fails, so the config is unchanged
  1692. * - the second command may succeed, even though there isn't enough resources
  1693. *
  1694. * Must be called with xhci->lock held.
  1695. */
  1696. static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
  1697. struct xhci_container_ctx *in_ctx)
  1698. {
  1699. u32 added_eps;
  1700. added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1701. if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
  1702. xhci_dbg(xhci, "Not enough ep ctxs: "
  1703. "%u active, need to add %u, limit is %u.\n",
  1704. xhci->num_active_eps, added_eps,
  1705. xhci->limit_active_eps);
  1706. return -ENOMEM;
  1707. }
  1708. xhci->num_active_eps += added_eps;
  1709. xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
  1710. xhci->num_active_eps);
  1711. return 0;
  1712. }
  1713. /*
  1714. * The configure endpoint was failed by the xHC for some other reason, so we
  1715. * need to revert the resources that failed configuration would have used.
  1716. *
  1717. * Must be called with xhci->lock held.
  1718. */
  1719. static void xhci_free_host_resources(struct xhci_hcd *xhci,
  1720. struct xhci_container_ctx *in_ctx)
  1721. {
  1722. u32 num_failed_eps;
  1723. num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1724. xhci->num_active_eps -= num_failed_eps;
  1725. xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
  1726. num_failed_eps,
  1727. xhci->num_active_eps);
  1728. }
  1729. /*
  1730. * Now that the command has completed, clean up the active endpoint count by
  1731. * subtracting out the endpoints that were dropped (but not changed).
  1732. *
  1733. * Must be called with xhci->lock held.
  1734. */
  1735. static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
  1736. struct xhci_container_ctx *in_ctx)
  1737. {
  1738. u32 num_dropped_eps;
  1739. num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
  1740. xhci->num_active_eps -= num_dropped_eps;
  1741. if (num_dropped_eps)
  1742. xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
  1743. num_dropped_eps,
  1744. xhci->num_active_eps);
  1745. }
  1746. static unsigned int xhci_get_block_size(struct usb_device *udev)
  1747. {
  1748. switch (udev->speed) {
  1749. case USB_SPEED_LOW:
  1750. case USB_SPEED_FULL:
  1751. return FS_BLOCK;
  1752. case USB_SPEED_HIGH:
  1753. return HS_BLOCK;
  1754. case USB_SPEED_SUPER:
  1755. return SS_BLOCK;
  1756. case USB_SPEED_UNKNOWN:
  1757. case USB_SPEED_WIRELESS:
  1758. default:
  1759. /* Should never happen */
  1760. return 1;
  1761. }
  1762. }
  1763. static unsigned int
  1764. xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
  1765. {
  1766. if (interval_bw->overhead[LS_OVERHEAD_TYPE])
  1767. return LS_OVERHEAD;
  1768. if (interval_bw->overhead[FS_OVERHEAD_TYPE])
  1769. return FS_OVERHEAD;
  1770. return HS_OVERHEAD;
  1771. }
  1772. /* If we are changing a LS/FS device under a HS hub,
  1773. * make sure (if we are activating a new TT) that the HS bus has enough
  1774. * bandwidth for this new TT.
  1775. */
  1776. static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
  1777. struct xhci_virt_device *virt_dev,
  1778. int old_active_eps)
  1779. {
  1780. struct xhci_interval_bw_table *bw_table;
  1781. struct xhci_tt_bw_info *tt_info;
  1782. /* Find the bandwidth table for the root port this TT is attached to. */
  1783. bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
  1784. tt_info = virt_dev->tt_info;
  1785. /* If this TT already had active endpoints, the bandwidth for this TT
  1786. * has already been added. Removing all periodic endpoints (and thus
  1787. * making the TT enactive) will only decrease the bandwidth used.
  1788. */
  1789. if (old_active_eps)
  1790. return 0;
  1791. if (old_active_eps == 0 && tt_info->active_eps != 0) {
  1792. if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
  1793. return -ENOMEM;
  1794. return 0;
  1795. }
  1796. /* Not sure why we would have no new active endpoints...
  1797. *
  1798. * Maybe because of an Evaluate Context change for a hub update or a
  1799. * control endpoint 0 max packet size change?
  1800. * FIXME: skip the bandwidth calculation in that case.
  1801. */
  1802. return 0;
  1803. }
  1804. static int xhci_check_ss_bw(struct xhci_hcd *xhci,
  1805. struct xhci_virt_device *virt_dev)
  1806. {
  1807. unsigned int bw_reserved;
  1808. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
  1809. if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
  1810. return -ENOMEM;
  1811. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
  1812. if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
  1813. return -ENOMEM;
  1814. return 0;
  1815. }
  1816. /*
  1817. * This algorithm is a very conservative estimate of the worst-case scheduling
  1818. * scenario for any one interval. The hardware dynamically schedules the
  1819. * packets, so we can't tell which microframe could be the limiting factor in
  1820. * the bandwidth scheduling. This only takes into account periodic endpoints.
  1821. *
  1822. * Obviously, we can't solve an NP complete problem to find the minimum worst
  1823. * case scenario. Instead, we come up with an estimate that is no less than
  1824. * the worst case bandwidth used for any one microframe, but may be an
  1825. * over-estimate.
  1826. *
  1827. * We walk the requirements for each endpoint by interval, starting with the
  1828. * smallest interval, and place packets in the schedule where there is only one
  1829. * possible way to schedule packets for that interval. In order to simplify
  1830. * this algorithm, we record the largest max packet size for each interval, and
  1831. * assume all packets will be that size.
  1832. *
  1833. * For interval 0, we obviously must schedule all packets for each interval.
  1834. * The bandwidth for interval 0 is just the amount of data to be transmitted
  1835. * (the sum of all max ESIT payload sizes, plus any overhead per packet times
  1836. * the number of packets).
  1837. *
  1838. * For interval 1, we have two possible microframes to schedule those packets
  1839. * in. For this algorithm, if we can schedule the same number of packets for
  1840. * each possible scheduling opportunity (each microframe), we will do so. The
  1841. * remaining number of packets will be saved to be transmitted in the gaps in
  1842. * the next interval's scheduling sequence.
  1843. *
  1844. * As we move those remaining packets to be scheduled with interval 2 packets,
  1845. * we have to double the number of remaining packets to transmit. This is
  1846. * because the intervals are actually powers of 2, and we would be transmitting
  1847. * the previous interval's packets twice in this interval. We also have to be
  1848. * sure that when we look at the largest max packet size for this interval, we
  1849. * also look at the largest max packet size for the remaining packets and take
  1850. * the greater of the two.
  1851. *
  1852. * The algorithm continues to evenly distribute packets in each scheduling
  1853. * opportunity, and push the remaining packets out, until we get to the last
  1854. * interval. Then those packets and their associated overhead are just added
  1855. * to the bandwidth used.
  1856. */
  1857. static int xhci_check_bw_table(struct xhci_hcd *xhci,
  1858. struct xhci_virt_device *virt_dev,
  1859. int old_active_eps)
  1860. {
  1861. unsigned int bw_reserved;
  1862. unsigned int max_bandwidth;
  1863. unsigned int bw_used;
  1864. unsigned int block_size;
  1865. struct xhci_interval_bw_table *bw_table;
  1866. unsigned int packet_size = 0;
  1867. unsigned int overhead = 0;
  1868. unsigned int packets_transmitted = 0;
  1869. unsigned int packets_remaining = 0;
  1870. unsigned int i;
  1871. if (virt_dev->udev->speed == USB_SPEED_SUPER)
  1872. return xhci_check_ss_bw(xhci, virt_dev);
  1873. if (virt_dev->udev->speed == USB_SPEED_HIGH) {
  1874. max_bandwidth = HS_BW_LIMIT;
  1875. /* Convert percent of bus BW reserved to blocks reserved */
  1876. bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
  1877. } else {
  1878. max_bandwidth = FS_BW_LIMIT;
  1879. bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
  1880. }
  1881. bw_table = virt_dev->bw_table;
  1882. /* We need to translate the max packet size and max ESIT payloads into
  1883. * the units the hardware uses.
  1884. */
  1885. block_size = xhci_get_block_size(virt_dev->udev);
  1886. /* If we are manipulating a LS/FS device under a HS hub, double check
  1887. * that the HS bus has enough bandwidth if we are activing a new TT.
  1888. */
  1889. if (virt_dev->tt_info) {
  1890. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1891. virt_dev->real_port);
  1892. if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
  1893. xhci_warn(xhci, "Not enough bandwidth on HS bus for "
  1894. "newly activated TT.\n");
  1895. return -ENOMEM;
  1896. }
  1897. xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
  1898. virt_dev->tt_info->slot_id,
  1899. virt_dev->tt_info->ttport);
  1900. } else {
  1901. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1902. virt_dev->real_port);
  1903. }
  1904. /* Add in how much bandwidth will be used for interval zero, or the
  1905. * rounded max ESIT payload + number of packets * largest overhead.
  1906. */
  1907. bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
  1908. bw_table->interval_bw[0].num_packets *
  1909. xhci_get_largest_overhead(&bw_table->interval_bw[0]);
  1910. for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
  1911. unsigned int bw_added;
  1912. unsigned int largest_mps;
  1913. unsigned int interval_overhead;
  1914. /*
  1915. * How many packets could we transmit in this interval?
  1916. * If packets didn't fit in the previous interval, we will need
  1917. * to transmit that many packets twice within this interval.
  1918. */
  1919. packets_remaining = 2 * packets_remaining +
  1920. bw_table->interval_bw[i].num_packets;
  1921. /* Find the largest max packet size of this or the previous
  1922. * interval.
  1923. */
  1924. if (list_empty(&bw_table->interval_bw[i].endpoints))
  1925. largest_mps = 0;
  1926. else {
  1927. struct xhci_virt_ep *virt_ep;
  1928. struct list_head *ep_entry;
  1929. ep_entry = bw_table->interval_bw[i].endpoints.next;
  1930. virt_ep = list_entry(ep_entry,
  1931. struct xhci_virt_ep, bw_endpoint_list);
  1932. /* Convert to blocks, rounding up */
  1933. largest_mps = DIV_ROUND_UP(
  1934. virt_ep->bw_info.max_packet_size,
  1935. block_size);
  1936. }
  1937. if (largest_mps > packet_size)
  1938. packet_size = largest_mps;
  1939. /* Use the larger overhead of this or the previous interval. */
  1940. interval_overhead = xhci_get_largest_overhead(
  1941. &bw_table->interval_bw[i]);
  1942. if (interval_overhead > overhead)
  1943. overhead = interval_overhead;
  1944. /* How many packets can we evenly distribute across
  1945. * (1 << (i + 1)) possible scheduling opportunities?
  1946. */
  1947. packets_transmitted = packets_remaining >> (i + 1);
  1948. /* Add in the bandwidth used for those scheduled packets */
  1949. bw_added = packets_transmitted * (overhead + packet_size);
  1950. /* How many packets do we have remaining to transmit? */
  1951. packets_remaining = packets_remaining % (1 << (i + 1));
  1952. /* What largest max packet size should those packets have? */
  1953. /* If we've transmitted all packets, don't carry over the
  1954. * largest packet size.
  1955. */
  1956. if (packets_remaining == 0) {
  1957. packet_size = 0;
  1958. overhead = 0;
  1959. } else if (packets_transmitted > 0) {
  1960. /* Otherwise if we do have remaining packets, and we've
  1961. * scheduled some packets in this interval, take the
  1962. * largest max packet size from endpoints with this
  1963. * interval.
  1964. */
  1965. packet_size = largest_mps;
  1966. overhead = interval_overhead;
  1967. }
  1968. /* Otherwise carry over packet_size and overhead from the last
  1969. * time we had a remainder.
  1970. */
  1971. bw_used += bw_added;
  1972. if (bw_used > max_bandwidth) {
  1973. xhci_warn(xhci, "Not enough bandwidth. "
  1974. "Proposed: %u, Max: %u\n",
  1975. bw_used, max_bandwidth);
  1976. return -ENOMEM;
  1977. }
  1978. }
  1979. /*
  1980. * Ok, we know we have some packets left over after even-handedly
  1981. * scheduling interval 15. We don't know which microframes they will
  1982. * fit into, so we over-schedule and say they will be scheduled every
  1983. * microframe.
  1984. */
  1985. if (packets_remaining > 0)
  1986. bw_used += overhead + packet_size;
  1987. if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
  1988. unsigned int port_index = virt_dev->real_port - 1;
  1989. /* OK, we're manipulating a HS device attached to a
  1990. * root port bandwidth domain. Include the number of active TTs
  1991. * in the bandwidth used.
  1992. */
  1993. bw_used += TT_HS_OVERHEAD *
  1994. xhci->rh_bw[port_index].num_active_tts;
  1995. }
  1996. xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
  1997. "Available: %u " "percent\n",
  1998. bw_used, max_bandwidth, bw_reserved,
  1999. (max_bandwidth - bw_used - bw_reserved) * 100 /
  2000. max_bandwidth);
  2001. bw_used += bw_reserved;
  2002. if (bw_used > max_bandwidth) {
  2003. xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
  2004. bw_used, max_bandwidth);
  2005. return -ENOMEM;
  2006. }
  2007. bw_table->bw_used = bw_used;
  2008. return 0;
  2009. }
  2010. static bool xhci_is_async_ep(unsigned int ep_type)
  2011. {
  2012. return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  2013. ep_type != ISOC_IN_EP &&
  2014. ep_type != INT_IN_EP);
  2015. }
  2016. static bool xhci_is_sync_in_ep(unsigned int ep_type)
  2017. {
  2018. return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
  2019. }
  2020. static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
  2021. {
  2022. unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
  2023. if (ep_bw->ep_interval == 0)
  2024. return SS_OVERHEAD_BURST +
  2025. (ep_bw->mult * ep_bw->num_packets *
  2026. (SS_OVERHEAD + mps));
  2027. return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
  2028. (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
  2029. 1 << ep_bw->ep_interval);
  2030. }
  2031. void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
  2032. struct xhci_bw_info *ep_bw,
  2033. struct xhci_interval_bw_table *bw_table,
  2034. struct usb_device *udev,
  2035. struct xhci_virt_ep *virt_ep,
  2036. struct xhci_tt_bw_info *tt_info)
  2037. {
  2038. struct xhci_interval_bw *interval_bw;
  2039. int normalized_interval;
  2040. if (xhci_is_async_ep(ep_bw->type))
  2041. return;
  2042. if (udev->speed == USB_SPEED_SUPER) {
  2043. if (xhci_is_sync_in_ep(ep_bw->type))
  2044. xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
  2045. xhci_get_ss_bw_consumed(ep_bw);
  2046. else
  2047. xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
  2048. xhci_get_ss_bw_consumed(ep_bw);
  2049. return;
  2050. }
  2051. /* SuperSpeed endpoints never get added to intervals in the table, so
  2052. * this check is only valid for HS/FS/LS devices.
  2053. */
  2054. if (list_empty(&virt_ep->bw_endpoint_list))
  2055. return;
  2056. /* For LS/FS devices, we need to translate the interval expressed in
  2057. * microframes to frames.
  2058. */
  2059. if (udev->speed == USB_SPEED_HIGH)
  2060. normalized_interval = ep_bw->ep_interval;
  2061. else
  2062. normalized_interval = ep_bw->ep_interval - 3;
  2063. if (normalized_interval == 0)
  2064. bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
  2065. interval_bw = &bw_table->interval_bw[normalized_interval];
  2066. interval_bw->num_packets -= ep_bw->num_packets;
  2067. switch (udev->speed) {
  2068. case USB_SPEED_LOW:
  2069. interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
  2070. break;
  2071. case USB_SPEED_FULL:
  2072. interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
  2073. break;
  2074. case USB_SPEED_HIGH:
  2075. interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
  2076. break;
  2077. case USB_SPEED_SUPER:
  2078. case USB_SPEED_UNKNOWN:
  2079. case USB_SPEED_WIRELESS:
  2080. /* Should never happen because only LS/FS/HS endpoints will get
  2081. * added to the endpoint list.
  2082. */
  2083. return;
  2084. }
  2085. if (tt_info)
  2086. tt_info->active_eps -= 1;
  2087. list_del_init(&virt_ep->bw_endpoint_list);
  2088. }
  2089. static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
  2090. struct xhci_bw_info *ep_bw,
  2091. struct xhci_interval_bw_table *bw_table,
  2092. struct usb_device *udev,
  2093. struct xhci_virt_ep *virt_ep,
  2094. struct xhci_tt_bw_info *tt_info)
  2095. {
  2096. struct xhci_interval_bw *interval_bw;
  2097. struct xhci_virt_ep *smaller_ep;
  2098. int normalized_interval;
  2099. if (xhci_is_async_ep(ep_bw->type))
  2100. return;
  2101. if (udev->speed == USB_SPEED_SUPER) {
  2102. if (xhci_is_sync_in_ep(ep_bw->type))
  2103. xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
  2104. xhci_get_ss_bw_consumed(ep_bw);
  2105. else
  2106. xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
  2107. xhci_get_ss_bw_consumed(ep_bw);
  2108. return;
  2109. }
  2110. /* For LS/FS devices, we need to translate the interval expressed in
  2111. * microframes to frames.
  2112. */
  2113. if (udev->speed == USB_SPEED_HIGH)
  2114. normalized_interval = ep_bw->ep_interval;
  2115. else
  2116. normalized_interval = ep_bw->ep_interval - 3;
  2117. if (normalized_interval == 0)
  2118. bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
  2119. interval_bw = &bw_table->interval_bw[normalized_interval];
  2120. interval_bw->num_packets += ep_bw->num_packets;
  2121. switch (udev->speed) {
  2122. case USB_SPEED_LOW:
  2123. interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
  2124. break;
  2125. case USB_SPEED_FULL:
  2126. interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
  2127. break;
  2128. case USB_SPEED_HIGH:
  2129. interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
  2130. break;
  2131. case USB_SPEED_SUPER:
  2132. case USB_SPEED_UNKNOWN:
  2133. case USB_SPEED_WIRELESS:
  2134. /* Should never happen because only LS/FS/HS endpoints will get
  2135. * added to the endpoint list.
  2136. */
  2137. return;
  2138. }
  2139. if (tt_info)
  2140. tt_info->active_eps += 1;
  2141. /* Insert the endpoint into the list, largest max packet size first. */
  2142. list_for_each_entry(smaller_ep, &interval_bw->endpoints,
  2143. bw_endpoint_list) {
  2144. if (ep_bw->max_packet_size >=
  2145. smaller_ep->bw_info.max_packet_size) {
  2146. /* Add the new ep before the smaller endpoint */
  2147. list_add_tail(&virt_ep->bw_endpoint_list,
  2148. &smaller_ep->bw_endpoint_list);
  2149. return;
  2150. }
  2151. }
  2152. /* Add the new endpoint at the end of the list. */
  2153. list_add_tail(&virt_ep->bw_endpoint_list,
  2154. &interval_bw->endpoints);
  2155. }
  2156. void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
  2157. struct xhci_virt_device *virt_dev,
  2158. int old_active_eps)
  2159. {
  2160. struct xhci_root_port_bw_info *rh_bw_info;
  2161. if (!virt_dev->tt_info)
  2162. return;
  2163. rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
  2164. if (old_active_eps == 0 &&
  2165. virt_dev->tt_info->active_eps != 0) {
  2166. rh_bw_info->num_active_tts += 1;
  2167. rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
  2168. } else if (old_active_eps != 0 &&
  2169. virt_dev->tt_info->active_eps == 0) {
  2170. rh_bw_info->num_active_tts -= 1;
  2171. rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
  2172. }
  2173. }
  2174. static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
  2175. struct xhci_virt_device *virt_dev,
  2176. struct xhci_container_ctx *in_ctx)
  2177. {
  2178. struct xhci_bw_info ep_bw_info[31];
  2179. int i;
  2180. struct xhci_input_control_ctx *ctrl_ctx;
  2181. int old_active_eps = 0;
  2182. if (virt_dev->tt_info)
  2183. old_active_eps = virt_dev->tt_info->active_eps;
  2184. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2185. for (i = 0; i < 31; i++) {
  2186. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2187. continue;
  2188. /* Make a copy of the BW info in case we need to revert this */
  2189. memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
  2190. sizeof(ep_bw_info[i]));
  2191. /* Drop the endpoint from the interval table if the endpoint is
  2192. * being dropped or changed.
  2193. */
  2194. if (EP_IS_DROPPED(ctrl_ctx, i))
  2195. xhci_drop_ep_from_interval_table(xhci,
  2196. &virt_dev->eps[i].bw_info,
  2197. virt_dev->bw_table,
  2198. virt_dev->udev,
  2199. &virt_dev->eps[i],
  2200. virt_dev->tt_info);
  2201. }
  2202. /* Overwrite the information stored in the endpoints' bw_info */
  2203. xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
  2204. for (i = 0; i < 31; i++) {
  2205. /* Add any changed or added endpoints to the interval table */
  2206. if (EP_IS_ADDED(ctrl_ctx, i))
  2207. xhci_add_ep_to_interval_table(xhci,
  2208. &virt_dev->eps[i].bw_info,
  2209. virt_dev->bw_table,
  2210. virt_dev->udev,
  2211. &virt_dev->eps[i],
  2212. virt_dev->tt_info);
  2213. }
  2214. if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
  2215. /* Ok, this fits in the bandwidth we have.
  2216. * Update the number of active TTs.
  2217. */
  2218. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  2219. return 0;
  2220. }
  2221. /* We don't have enough bandwidth for this, revert the stored info. */
  2222. for (i = 0; i < 31; i++) {
  2223. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2224. continue;
  2225. /* Drop the new copies of any added or changed endpoints from
  2226. * the interval table.
  2227. */
  2228. if (EP_IS_ADDED(ctrl_ctx, i)) {
  2229. xhci_drop_ep_from_interval_table(xhci,
  2230. &virt_dev->eps[i].bw_info,
  2231. virt_dev->bw_table,
  2232. virt_dev->udev,
  2233. &virt_dev->eps[i],
  2234. virt_dev->tt_info);
  2235. }
  2236. /* Revert the endpoint back to its old information */
  2237. memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
  2238. sizeof(ep_bw_info[i]));
  2239. /* Add any changed or dropped endpoints back into the table */
  2240. if (EP_IS_DROPPED(ctrl_ctx, i))
  2241. xhci_add_ep_to_interval_table(xhci,
  2242. &virt_dev->eps[i].bw_info,
  2243. virt_dev->bw_table,
  2244. virt_dev->udev,
  2245. &virt_dev->eps[i],
  2246. virt_dev->tt_info);
  2247. }
  2248. return -ENOMEM;
  2249. }
  2250. /* Issue a configure endpoint command or evaluate context command
  2251. * and wait for it to finish.
  2252. */
  2253. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  2254. struct usb_device *udev,
  2255. struct xhci_command *command,
  2256. bool ctx_change, bool must_succeed)
  2257. {
  2258. int ret;
  2259. int timeleft;
  2260. unsigned long flags;
  2261. struct xhci_container_ctx *in_ctx;
  2262. struct completion *cmd_completion;
  2263. u32 *cmd_status;
  2264. struct xhci_virt_device *virt_dev;
  2265. union xhci_trb *cmd_trb;
  2266. spin_lock_irqsave(&xhci->lock, flags);
  2267. virt_dev = xhci->devs[udev->slot_id];
  2268. if (command)
  2269. in_ctx = command->in_ctx;
  2270. else
  2271. in_ctx = virt_dev->in_ctx;
  2272. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
  2273. xhci_reserve_host_resources(xhci, in_ctx)) {
  2274. spin_unlock_irqrestore(&xhci->lock, flags);
  2275. xhci_warn(xhci, "Not enough host resources, "
  2276. "active endpoint contexts = %u\n",
  2277. xhci->num_active_eps);
  2278. return -ENOMEM;
  2279. }
  2280. if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
  2281. xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
  2282. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2283. xhci_free_host_resources(xhci, in_ctx);
  2284. spin_unlock_irqrestore(&xhci->lock, flags);
  2285. xhci_warn(xhci, "Not enough bandwidth\n");
  2286. return -ENOMEM;
  2287. }
  2288. if (command) {
  2289. cmd_completion = command->completion;
  2290. cmd_status = &command->status;
  2291. command->command_trb = xhci->cmd_ring->enqueue;
  2292. /* Enqueue pointer can be left pointing to the link TRB,
  2293. * we must handle that
  2294. */
  2295. if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
  2296. command->command_trb =
  2297. xhci->cmd_ring->enq_seg->next->trbs;
  2298. list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
  2299. } else {
  2300. cmd_completion = &virt_dev->cmd_completion;
  2301. cmd_status = &virt_dev->cmd_status;
  2302. }
  2303. init_completion(cmd_completion);
  2304. cmd_trb = xhci->cmd_ring->dequeue;
  2305. if (!ctx_change)
  2306. ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
  2307. udev->slot_id, must_succeed);
  2308. else
  2309. ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
  2310. udev->slot_id, must_succeed);
  2311. if (ret < 0) {
  2312. if (command)
  2313. list_del(&command->cmd_list);
  2314. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2315. xhci_free_host_resources(xhci, in_ctx);
  2316. spin_unlock_irqrestore(&xhci->lock, flags);
  2317. xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
  2318. return -ENOMEM;
  2319. }
  2320. xhci_ring_cmd_db(xhci);
  2321. spin_unlock_irqrestore(&xhci->lock, flags);
  2322. /* Wait for the configure endpoint command to complete */
  2323. timeleft = wait_for_completion_interruptible_timeout(
  2324. cmd_completion,
  2325. XHCI_CMD_DEFAULT_TIMEOUT);
  2326. if (timeleft <= 0) {
  2327. xhci_warn(xhci, "%s while waiting for %s command\n",
  2328. timeleft == 0 ? "Timeout" : "Signal",
  2329. ctx_change == 0 ?
  2330. "configure endpoint" :
  2331. "evaluate context");
  2332. /* cancel the configure endpoint command */
  2333. ret = xhci_cancel_cmd(xhci, command, cmd_trb);
  2334. if (ret < 0)
  2335. return ret;
  2336. return -ETIME;
  2337. }
  2338. if (!ctx_change)
  2339. ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
  2340. else
  2341. ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
  2342. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  2343. spin_lock_irqsave(&xhci->lock, flags);
  2344. /* If the command failed, remove the reserved resources.
  2345. * Otherwise, clean up the estimate to include dropped eps.
  2346. */
  2347. if (ret)
  2348. xhci_free_host_resources(xhci, in_ctx);
  2349. else
  2350. xhci_finish_resource_reservation(xhci, in_ctx);
  2351. spin_unlock_irqrestore(&xhci->lock, flags);
  2352. }
  2353. return ret;
  2354. }
  2355. /* Called after one or more calls to xhci_add_endpoint() or
  2356. * xhci_drop_endpoint(). If this call fails, the USB core is expected
  2357. * to call xhci_reset_bandwidth().
  2358. *
  2359. * Since we are in the middle of changing either configuration or
  2360. * installing a new alt setting, the USB core won't allow URBs to be
  2361. * enqueued for any endpoint on the old config or interface. Nothing
  2362. * else should be touching the xhci->devs[slot_id] structure, so we
  2363. * don't need to take the xhci->lock for manipulating that.
  2364. */
  2365. int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2366. {
  2367. int i;
  2368. int ret = 0;
  2369. struct xhci_hcd *xhci;
  2370. struct xhci_virt_device *virt_dev;
  2371. struct xhci_input_control_ctx *ctrl_ctx;
  2372. struct xhci_slot_ctx *slot_ctx;
  2373. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2374. if (ret <= 0)
  2375. return ret;
  2376. xhci = hcd_to_xhci(hcd);
  2377. if (xhci->xhc_state & XHCI_STATE_DYING)
  2378. return -ENODEV;
  2379. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2380. virt_dev = xhci->devs[udev->slot_id];
  2381. /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
  2382. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  2383. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2384. ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
  2385. ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
  2386. /* Don't issue the command if there's no endpoints to update. */
  2387. if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
  2388. ctrl_ctx->drop_flags == 0)
  2389. return 0;
  2390. xhci_dbg(xhci, "New Input Control Context:\n");
  2391. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  2392. xhci_dbg_ctx(xhci, virt_dev->in_ctx,
  2393. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2394. ret = xhci_configure_endpoint(xhci, udev, NULL,
  2395. false, false);
  2396. if (ret) {
  2397. /* Callee should call reset_bandwidth() */
  2398. return ret;
  2399. }
  2400. xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
  2401. xhci_dbg_ctx(xhci, virt_dev->out_ctx,
  2402. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2403. /* Free any rings that were dropped, but not changed. */
  2404. for (i = 1; i < 31; ++i) {
  2405. if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
  2406. !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
  2407. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2408. }
  2409. xhci_zero_in_ctx(xhci, virt_dev);
  2410. /*
  2411. * Install any rings for completely new endpoints or changed endpoints,
  2412. * and free or cache any old rings from changed endpoints.
  2413. */
  2414. for (i = 1; i < 31; ++i) {
  2415. if (!virt_dev->eps[i].new_ring)
  2416. continue;
  2417. /* Only cache or free the old ring if it exists.
  2418. * It may not if this is the first add of an endpoint.
  2419. */
  2420. if (virt_dev->eps[i].ring) {
  2421. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2422. }
  2423. virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
  2424. virt_dev->eps[i].new_ring = NULL;
  2425. }
  2426. return ret;
  2427. }
  2428. void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2429. {
  2430. struct xhci_hcd *xhci;
  2431. struct xhci_virt_device *virt_dev;
  2432. int i, ret;
  2433. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2434. if (ret <= 0)
  2435. return;
  2436. xhci = hcd_to_xhci(hcd);
  2437. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2438. virt_dev = xhci->devs[udev->slot_id];
  2439. /* Free any rings allocated for added endpoints */
  2440. for (i = 0; i < 31; ++i) {
  2441. if (virt_dev->eps[i].new_ring) {
  2442. xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
  2443. virt_dev->eps[i].new_ring = NULL;
  2444. }
  2445. }
  2446. xhci_zero_in_ctx(xhci, virt_dev);
  2447. }
  2448. static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
  2449. struct xhci_container_ctx *in_ctx,
  2450. struct xhci_container_ctx *out_ctx,
  2451. u32 add_flags, u32 drop_flags)
  2452. {
  2453. struct xhci_input_control_ctx *ctrl_ctx;
  2454. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2455. ctrl_ctx->add_flags = cpu_to_le32(add_flags);
  2456. ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
  2457. xhci_slot_copy(xhci, in_ctx, out_ctx);
  2458. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2459. xhci_dbg(xhci, "Input Context:\n");
  2460. xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
  2461. }
  2462. static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
  2463. unsigned int slot_id, unsigned int ep_index,
  2464. struct xhci_dequeue_state *deq_state)
  2465. {
  2466. struct xhci_container_ctx *in_ctx;
  2467. struct xhci_ep_ctx *ep_ctx;
  2468. u32 added_ctxs;
  2469. dma_addr_t addr;
  2470. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  2471. xhci->devs[slot_id]->out_ctx, ep_index);
  2472. in_ctx = xhci->devs[slot_id]->in_ctx;
  2473. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  2474. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  2475. deq_state->new_deq_ptr);
  2476. if (addr == 0) {
  2477. xhci_warn(xhci, "WARN Cannot submit config ep after "
  2478. "reset ep command\n");
  2479. xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
  2480. deq_state->new_deq_seg,
  2481. deq_state->new_deq_ptr);
  2482. return;
  2483. }
  2484. ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
  2485. added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
  2486. xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
  2487. xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
  2488. }
  2489. void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
  2490. struct usb_device *udev, unsigned int ep_index)
  2491. {
  2492. struct xhci_dequeue_state deq_state;
  2493. struct xhci_virt_ep *ep;
  2494. xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
  2495. ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2496. /* We need to move the HW's dequeue pointer past this TD,
  2497. * or it will attempt to resend it on the next doorbell ring.
  2498. */
  2499. xhci_find_new_dequeue_state(xhci, udev->slot_id,
  2500. ep_index, ep->stopped_stream, ep->stopped_td,
  2501. &deq_state);
  2502. /* HW with the reset endpoint quirk will use the saved dequeue state to
  2503. * issue a configure endpoint command later.
  2504. */
  2505. if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
  2506. xhci_dbg(xhci, "Queueing new dequeue state\n");
  2507. xhci_queue_new_dequeue_state(xhci, udev->slot_id,
  2508. ep_index, ep->stopped_stream, &deq_state);
  2509. } else {
  2510. /* Better hope no one uses the input context between now and the
  2511. * reset endpoint completion!
  2512. * XXX: No idea how this hardware will react when stream rings
  2513. * are enabled.
  2514. */
  2515. xhci_dbg(xhci, "Setting up input context for "
  2516. "configure endpoint command\n");
  2517. xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
  2518. ep_index, &deq_state);
  2519. }
  2520. }
  2521. /* Deal with stalled endpoints. The core should have sent the control message
  2522. * to clear the halt condition. However, we need to make the xHCI hardware
  2523. * reset its sequence number, since a device will expect a sequence number of
  2524. * zero after the halt condition is cleared.
  2525. * Context: in_interrupt
  2526. */
  2527. void xhci_endpoint_reset(struct usb_hcd *hcd,
  2528. struct usb_host_endpoint *ep)
  2529. {
  2530. struct xhci_hcd *xhci;
  2531. struct usb_device *udev;
  2532. unsigned int ep_index;
  2533. unsigned long flags;
  2534. int ret;
  2535. struct xhci_virt_ep *virt_ep;
  2536. xhci = hcd_to_xhci(hcd);
  2537. udev = (struct usb_device *) ep->hcpriv;
  2538. /* Called with a root hub endpoint (or an endpoint that wasn't added
  2539. * with xhci_add_endpoint()
  2540. */
  2541. if (!ep->hcpriv)
  2542. return;
  2543. ep_index = xhci_get_endpoint_index(&ep->desc);
  2544. virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2545. if (!virt_ep->stopped_td) {
  2546. xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
  2547. ep->desc.bEndpointAddress);
  2548. return;
  2549. }
  2550. if (usb_endpoint_xfer_control(&ep->desc)) {
  2551. xhci_dbg(xhci, "Control endpoint stall already handled.\n");
  2552. return;
  2553. }
  2554. xhci_dbg(xhci, "Queueing reset endpoint command\n");
  2555. spin_lock_irqsave(&xhci->lock, flags);
  2556. ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
  2557. /*
  2558. * Can't change the ring dequeue pointer until it's transitioned to the
  2559. * stopped state, which is only upon a successful reset endpoint
  2560. * command. Better hope that last command worked!
  2561. */
  2562. if (!ret) {
  2563. xhci_cleanup_stalled_ring(xhci, udev, ep_index);
  2564. kfree(virt_ep->stopped_td);
  2565. xhci_ring_cmd_db(xhci);
  2566. }
  2567. virt_ep->stopped_td = NULL;
  2568. virt_ep->stopped_trb = NULL;
  2569. virt_ep->stopped_stream = 0;
  2570. spin_unlock_irqrestore(&xhci->lock, flags);
  2571. if (ret)
  2572. xhci_warn(xhci, "FIXME allocate a new ring segment\n");
  2573. }
  2574. static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
  2575. struct usb_device *udev, struct usb_host_endpoint *ep,
  2576. unsigned int slot_id)
  2577. {
  2578. int ret;
  2579. unsigned int ep_index;
  2580. unsigned int ep_state;
  2581. if (!ep)
  2582. return -EINVAL;
  2583. ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
  2584. if (ret <= 0)
  2585. return -EINVAL;
  2586. if (ep->ss_ep_comp.bmAttributes == 0) {
  2587. xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
  2588. " descriptor for ep 0x%x does not support streams\n",
  2589. ep->desc.bEndpointAddress);
  2590. return -EINVAL;
  2591. }
  2592. ep_index = xhci_get_endpoint_index(&ep->desc);
  2593. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2594. if (ep_state & EP_HAS_STREAMS ||
  2595. ep_state & EP_GETTING_STREAMS) {
  2596. xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
  2597. "already has streams set up.\n",
  2598. ep->desc.bEndpointAddress);
  2599. xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
  2600. "dynamic stream context array reallocation.\n");
  2601. return -EINVAL;
  2602. }
  2603. if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
  2604. xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
  2605. "endpoint 0x%x; URBs are pending.\n",
  2606. ep->desc.bEndpointAddress);
  2607. return -EINVAL;
  2608. }
  2609. return 0;
  2610. }
  2611. static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
  2612. unsigned int *num_streams, unsigned int *num_stream_ctxs)
  2613. {
  2614. unsigned int max_streams;
  2615. /* The stream context array size must be a power of two */
  2616. *num_stream_ctxs = roundup_pow_of_two(*num_streams);
  2617. /*
  2618. * Find out how many primary stream array entries the host controller
  2619. * supports. Later we may use secondary stream arrays (similar to 2nd
  2620. * level page entries), but that's an optional feature for xHCI host
  2621. * controllers. xHCs must support at least 4 stream IDs.
  2622. */
  2623. max_streams = HCC_MAX_PSA(xhci->hcc_params);
  2624. if (*num_stream_ctxs > max_streams) {
  2625. xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
  2626. max_streams);
  2627. *num_stream_ctxs = max_streams;
  2628. *num_streams = max_streams;
  2629. }
  2630. }
  2631. /* Returns an error code if one of the endpoint already has streams.
  2632. * This does not change any data structures, it only checks and gathers
  2633. * information.
  2634. */
  2635. static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
  2636. struct usb_device *udev,
  2637. struct usb_host_endpoint **eps, unsigned int num_eps,
  2638. unsigned int *num_streams, u32 *changed_ep_bitmask)
  2639. {
  2640. unsigned int max_streams;
  2641. unsigned int endpoint_flag;
  2642. int i;
  2643. int ret;
  2644. for (i = 0; i < num_eps; i++) {
  2645. ret = xhci_check_streams_endpoint(xhci, udev,
  2646. eps[i], udev->slot_id);
  2647. if (ret < 0)
  2648. return ret;
  2649. max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
  2650. if (max_streams < (*num_streams - 1)) {
  2651. xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
  2652. eps[i]->desc.bEndpointAddress,
  2653. max_streams);
  2654. *num_streams = max_streams+1;
  2655. }
  2656. endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
  2657. if (*changed_ep_bitmask & endpoint_flag)
  2658. return -EINVAL;
  2659. *changed_ep_bitmask |= endpoint_flag;
  2660. }
  2661. return 0;
  2662. }
  2663. static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
  2664. struct usb_device *udev,
  2665. struct usb_host_endpoint **eps, unsigned int num_eps)
  2666. {
  2667. u32 changed_ep_bitmask = 0;
  2668. unsigned int slot_id;
  2669. unsigned int ep_index;
  2670. unsigned int ep_state;
  2671. int i;
  2672. slot_id = udev->slot_id;
  2673. if (!xhci->devs[slot_id])
  2674. return 0;
  2675. for (i = 0; i < num_eps; i++) {
  2676. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2677. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2678. /* Are streams already being freed for the endpoint? */
  2679. if (ep_state & EP_GETTING_NO_STREAMS) {
  2680. xhci_warn(xhci, "WARN Can't disable streams for "
  2681. "endpoint 0x%x\n, "
  2682. "streams are being disabled already.",
  2683. eps[i]->desc.bEndpointAddress);
  2684. return 0;
  2685. }
  2686. /* Are there actually any streams to free? */
  2687. if (!(ep_state & EP_HAS_STREAMS) &&
  2688. !(ep_state & EP_GETTING_STREAMS)) {
  2689. xhci_warn(xhci, "WARN Can't disable streams for "
  2690. "endpoint 0x%x\n, "
  2691. "streams are already disabled!",
  2692. eps[i]->desc.bEndpointAddress);
  2693. xhci_warn(xhci, "WARN xhci_free_streams() called "
  2694. "with non-streams endpoint\n");
  2695. return 0;
  2696. }
  2697. changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
  2698. }
  2699. return changed_ep_bitmask;
  2700. }
  2701. /*
  2702. * The USB device drivers use this function (though the HCD interface in USB
  2703. * core) to prepare a set of bulk endpoints to use streams. Streams are used to
  2704. * coordinate mass storage command queueing across multiple endpoints (basically
  2705. * a stream ID == a task ID).
  2706. *
  2707. * Setting up streams involves allocating the same size stream context array
  2708. * for each endpoint and issuing a configure endpoint command for all endpoints.
  2709. *
  2710. * Don't allow the call to succeed if one endpoint only supports one stream
  2711. * (which means it doesn't support streams at all).
  2712. *
  2713. * Drivers may get less stream IDs than they asked for, if the host controller
  2714. * hardware or endpoints claim they can't support the number of requested
  2715. * stream IDs.
  2716. */
  2717. int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2718. struct usb_host_endpoint **eps, unsigned int num_eps,
  2719. unsigned int num_streams, gfp_t mem_flags)
  2720. {
  2721. int i, ret;
  2722. struct xhci_hcd *xhci;
  2723. struct xhci_virt_device *vdev;
  2724. struct xhci_command *config_cmd;
  2725. unsigned int ep_index;
  2726. unsigned int num_stream_ctxs;
  2727. unsigned long flags;
  2728. u32 changed_ep_bitmask = 0;
  2729. if (!eps)
  2730. return -EINVAL;
  2731. /* Add one to the number of streams requested to account for
  2732. * stream 0 that is reserved for xHCI usage.
  2733. */
  2734. num_streams += 1;
  2735. xhci = hcd_to_xhci(hcd);
  2736. xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
  2737. num_streams);
  2738. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  2739. if (!config_cmd) {
  2740. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  2741. return -ENOMEM;
  2742. }
  2743. /* Check to make sure all endpoints are not already configured for
  2744. * streams. While we're at it, find the maximum number of streams that
  2745. * all the endpoints will support and check for duplicate endpoints.
  2746. */
  2747. spin_lock_irqsave(&xhci->lock, flags);
  2748. ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
  2749. num_eps, &num_streams, &changed_ep_bitmask);
  2750. if (ret < 0) {
  2751. xhci_free_command(xhci, config_cmd);
  2752. spin_unlock_irqrestore(&xhci->lock, flags);
  2753. return ret;
  2754. }
  2755. if (num_streams <= 1) {
  2756. xhci_warn(xhci, "WARN: endpoints can't handle "
  2757. "more than one stream.\n");
  2758. xhci_free_command(xhci, config_cmd);
  2759. spin_unlock_irqrestore(&xhci->lock, flags);
  2760. return -EINVAL;
  2761. }
  2762. vdev = xhci->devs[udev->slot_id];
  2763. /* Mark each endpoint as being in transition, so
  2764. * xhci_urb_enqueue() will reject all URBs.
  2765. */
  2766. for (i = 0; i < num_eps; i++) {
  2767. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2768. vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
  2769. }
  2770. spin_unlock_irqrestore(&xhci->lock, flags);
  2771. /* Setup internal data structures and allocate HW data structures for
  2772. * streams (but don't install the HW structures in the input context
  2773. * until we're sure all memory allocation succeeded).
  2774. */
  2775. xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
  2776. xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
  2777. num_stream_ctxs, num_streams);
  2778. for (i = 0; i < num_eps; i++) {
  2779. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2780. vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
  2781. num_stream_ctxs,
  2782. num_streams, mem_flags);
  2783. if (!vdev->eps[ep_index].stream_info)
  2784. goto cleanup;
  2785. /* Set maxPstreams in endpoint context and update deq ptr to
  2786. * point to stream context array. FIXME
  2787. */
  2788. }
  2789. /* Set up the input context for a configure endpoint command. */
  2790. for (i = 0; i < num_eps; i++) {
  2791. struct xhci_ep_ctx *ep_ctx;
  2792. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2793. ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
  2794. xhci_endpoint_copy(xhci, config_cmd->in_ctx,
  2795. vdev->out_ctx, ep_index);
  2796. xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
  2797. vdev->eps[ep_index].stream_info);
  2798. }
  2799. /* Tell the HW to drop its old copy of the endpoint context info
  2800. * and add the updated copy from the input context.
  2801. */
  2802. xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
  2803. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2804. /* Issue and wait for the configure endpoint command */
  2805. ret = xhci_configure_endpoint(xhci, udev, config_cmd,
  2806. false, false);
  2807. /* xHC rejected the configure endpoint command for some reason, so we
  2808. * leave the old ring intact and free our internal streams data
  2809. * structure.
  2810. */
  2811. if (ret < 0)
  2812. goto cleanup;
  2813. spin_lock_irqsave(&xhci->lock, flags);
  2814. for (i = 0; i < num_eps; i++) {
  2815. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2816. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2817. xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
  2818. udev->slot_id, ep_index);
  2819. vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
  2820. }
  2821. xhci_free_command(xhci, config_cmd);
  2822. spin_unlock_irqrestore(&xhci->lock, flags);
  2823. /* Subtract 1 for stream 0, which drivers can't use */
  2824. return num_streams - 1;
  2825. cleanup:
  2826. /* If it didn't work, free the streams! */
  2827. for (i = 0; i < num_eps; i++) {
  2828. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2829. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2830. vdev->eps[ep_index].stream_info = NULL;
  2831. /* FIXME Unset maxPstreams in endpoint context and
  2832. * update deq ptr to point to normal string ring.
  2833. */
  2834. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2835. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2836. xhci_endpoint_zero(xhci, vdev, eps[i]);
  2837. }
  2838. xhci_free_command(xhci, config_cmd);
  2839. return -ENOMEM;
  2840. }
  2841. /* Transition the endpoint from using streams to being a "normal" endpoint
  2842. * without streams.
  2843. *
  2844. * Modify the endpoint context state, submit a configure endpoint command,
  2845. * and free all endpoint rings for streams if that completes successfully.
  2846. */
  2847. int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2848. struct usb_host_endpoint **eps, unsigned int num_eps,
  2849. gfp_t mem_flags)
  2850. {
  2851. int i, ret;
  2852. struct xhci_hcd *xhci;
  2853. struct xhci_virt_device *vdev;
  2854. struct xhci_command *command;
  2855. unsigned int ep_index;
  2856. unsigned long flags;
  2857. u32 changed_ep_bitmask;
  2858. xhci = hcd_to_xhci(hcd);
  2859. vdev = xhci->devs[udev->slot_id];
  2860. /* Set up a configure endpoint command to remove the streams rings */
  2861. spin_lock_irqsave(&xhci->lock, flags);
  2862. changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
  2863. udev, eps, num_eps);
  2864. if (changed_ep_bitmask == 0) {
  2865. spin_unlock_irqrestore(&xhci->lock, flags);
  2866. return -EINVAL;
  2867. }
  2868. /* Use the xhci_command structure from the first endpoint. We may have
  2869. * allocated too many, but the driver may call xhci_free_streams() for
  2870. * each endpoint it grouped into one call to xhci_alloc_streams().
  2871. */
  2872. ep_index = xhci_get_endpoint_index(&eps[0]->desc);
  2873. command = vdev->eps[ep_index].stream_info->free_streams_command;
  2874. for (i = 0; i < num_eps; i++) {
  2875. struct xhci_ep_ctx *ep_ctx;
  2876. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2877. ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
  2878. xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
  2879. EP_GETTING_NO_STREAMS;
  2880. xhci_endpoint_copy(xhci, command->in_ctx,
  2881. vdev->out_ctx, ep_index);
  2882. xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
  2883. &vdev->eps[ep_index]);
  2884. }
  2885. xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
  2886. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2887. spin_unlock_irqrestore(&xhci->lock, flags);
  2888. /* Issue and wait for the configure endpoint command,
  2889. * which must succeed.
  2890. */
  2891. ret = xhci_configure_endpoint(xhci, udev, command,
  2892. false, true);
  2893. /* xHC rejected the configure endpoint command for some reason, so we
  2894. * leave the streams rings intact.
  2895. */
  2896. if (ret < 0)
  2897. return ret;
  2898. spin_lock_irqsave(&xhci->lock, flags);
  2899. for (i = 0; i < num_eps; i++) {
  2900. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2901. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2902. vdev->eps[ep_index].stream_info = NULL;
  2903. /* FIXME Unset maxPstreams in endpoint context and
  2904. * update deq ptr to point to normal string ring.
  2905. */
  2906. vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
  2907. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2908. }
  2909. spin_unlock_irqrestore(&xhci->lock, flags);
  2910. return 0;
  2911. }
  2912. /*
  2913. * Deletes endpoint resources for endpoints that were active before a Reset
  2914. * Device command, or a Disable Slot command. The Reset Device command leaves
  2915. * the control endpoint intact, whereas the Disable Slot command deletes it.
  2916. *
  2917. * Must be called with xhci->lock held.
  2918. */
  2919. void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
  2920. struct xhci_virt_device *virt_dev, bool drop_control_ep)
  2921. {
  2922. int i;
  2923. unsigned int num_dropped_eps = 0;
  2924. unsigned int drop_flags = 0;
  2925. for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
  2926. if (virt_dev->eps[i].ring) {
  2927. drop_flags |= 1 << i;
  2928. num_dropped_eps++;
  2929. }
  2930. }
  2931. xhci->num_active_eps -= num_dropped_eps;
  2932. if (num_dropped_eps)
  2933. xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
  2934. "%u now active.\n",
  2935. num_dropped_eps, drop_flags,
  2936. xhci->num_active_eps);
  2937. }
  2938. /*
  2939. * This submits a Reset Device Command, which will set the device state to 0,
  2940. * set the device address to 0, and disable all the endpoints except the default
  2941. * control endpoint. The USB core should come back and call
  2942. * xhci_address_device(), and then re-set up the configuration. If this is
  2943. * called because of a usb_reset_and_verify_device(), then the old alternate
  2944. * settings will be re-installed through the normal bandwidth allocation
  2945. * functions.
  2946. *
  2947. * Wait for the Reset Device command to finish. Remove all structures
  2948. * associated with the endpoints that were disabled. Clear the input device
  2949. * structure? Cache the rings? Reset the control endpoint 0 max packet size?
  2950. *
  2951. * If the virt_dev to be reset does not exist or does not match the udev,
  2952. * it means the device is lost, possibly due to the xHC restore error and
  2953. * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
  2954. * re-allocate the device.
  2955. */
  2956. int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
  2957. {
  2958. int ret, i;
  2959. unsigned long flags;
  2960. struct xhci_hcd *xhci;
  2961. unsigned int slot_id;
  2962. struct xhci_virt_device *virt_dev;
  2963. struct xhci_command *reset_device_cmd;
  2964. int timeleft;
  2965. int last_freed_endpoint;
  2966. struct xhci_slot_ctx *slot_ctx;
  2967. int old_active_eps = 0;
  2968. ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
  2969. if (ret <= 0)
  2970. return ret;
  2971. xhci = hcd_to_xhci(hcd);
  2972. slot_id = udev->slot_id;
  2973. virt_dev = xhci->devs[slot_id];
  2974. if (!virt_dev) {
  2975. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2976. "not exist. Re-allocate the device\n", slot_id);
  2977. ret = xhci_alloc_dev(hcd, udev);
  2978. if (ret == 1)
  2979. return 0;
  2980. else
  2981. return -EINVAL;
  2982. }
  2983. if (virt_dev->udev != udev) {
  2984. /* If the virt_dev and the udev does not match, this virt_dev
  2985. * may belong to another udev.
  2986. * Re-allocate the device.
  2987. */
  2988. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2989. "not match the udev. Re-allocate the device\n",
  2990. slot_id);
  2991. ret = xhci_alloc_dev(hcd, udev);
  2992. if (ret == 1)
  2993. return 0;
  2994. else
  2995. return -EINVAL;
  2996. }
  2997. /* If device is not setup, there is no point in resetting it */
  2998. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  2999. if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
  3000. SLOT_STATE_DISABLED)
  3001. return 0;
  3002. xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
  3003. /* Allocate the command structure that holds the struct completion.
  3004. * Assume we're in process context, since the normal device reset
  3005. * process has to wait for the device anyway. Storage devices are
  3006. * reset as part of error handling, so use GFP_NOIO instead of
  3007. * GFP_KERNEL.
  3008. */
  3009. reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
  3010. if (!reset_device_cmd) {
  3011. xhci_dbg(xhci, "Couldn't allocate command structure.\n");
  3012. return -ENOMEM;
  3013. }
  3014. /* Attempt to submit the Reset Device command to the command ring */
  3015. spin_lock_irqsave(&xhci->lock, flags);
  3016. reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
  3017. /* Enqueue pointer can be left pointing to the link TRB,
  3018. * we must handle that
  3019. */
  3020. if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
  3021. reset_device_cmd->command_trb =
  3022. xhci->cmd_ring->enq_seg->next->trbs;
  3023. list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
  3024. ret = xhci_queue_reset_device(xhci, slot_id);
  3025. if (ret) {
  3026. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3027. list_del(&reset_device_cmd->cmd_list);
  3028. spin_unlock_irqrestore(&xhci->lock, flags);
  3029. goto command_cleanup;
  3030. }
  3031. xhci_ring_cmd_db(xhci);
  3032. spin_unlock_irqrestore(&xhci->lock, flags);
  3033. /* Wait for the Reset Device command to finish */
  3034. timeleft = wait_for_completion_interruptible_timeout(
  3035. reset_device_cmd->completion,
  3036. USB_CTRL_SET_TIMEOUT);
  3037. if (timeleft <= 0) {
  3038. xhci_warn(xhci, "%s while waiting for reset device command\n",
  3039. timeleft == 0 ? "Timeout" : "Signal");
  3040. spin_lock_irqsave(&xhci->lock, flags);
  3041. /* The timeout might have raced with the event ring handler, so
  3042. * only delete from the list if the item isn't poisoned.
  3043. */
  3044. if (reset_device_cmd->cmd_list.next != LIST_POISON1)
  3045. list_del(&reset_device_cmd->cmd_list);
  3046. spin_unlock_irqrestore(&xhci->lock, flags);
  3047. ret = -ETIME;
  3048. goto command_cleanup;
  3049. }
  3050. /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
  3051. * unless we tried to reset a slot ID that wasn't enabled,
  3052. * or the device wasn't in the addressed or configured state.
  3053. */
  3054. ret = reset_device_cmd->status;
  3055. switch (ret) {
  3056. case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
  3057. case COMP_CTX_STATE: /* 0.96 completion code for same thing */
  3058. xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
  3059. slot_id,
  3060. xhci_get_slot_state(xhci, virt_dev->out_ctx));
  3061. xhci_info(xhci, "Not freeing device rings.\n");
  3062. /* Don't treat this as an error. May change my mind later. */
  3063. ret = 0;
  3064. goto command_cleanup;
  3065. case COMP_SUCCESS:
  3066. xhci_dbg(xhci, "Successful reset device command.\n");
  3067. break;
  3068. default:
  3069. if (xhci_is_vendor_info_code(xhci, ret))
  3070. break;
  3071. xhci_warn(xhci, "Unknown completion code %u for "
  3072. "reset device command.\n", ret);
  3073. ret = -EINVAL;
  3074. goto command_cleanup;
  3075. }
  3076. /* Free up host controller endpoint resources */
  3077. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3078. spin_lock_irqsave(&xhci->lock, flags);
  3079. /* Don't delete the default control endpoint resources */
  3080. xhci_free_device_endpoint_resources(xhci, virt_dev, false);
  3081. spin_unlock_irqrestore(&xhci->lock, flags);
  3082. }
  3083. /* Everything but endpoint 0 is disabled, so free or cache the rings. */
  3084. last_freed_endpoint = 1;
  3085. for (i = 1; i < 31; ++i) {
  3086. struct xhci_virt_ep *ep = &virt_dev->eps[i];
  3087. if (ep->ep_state & EP_HAS_STREAMS) {
  3088. xhci_free_stream_info(xhci, ep->stream_info);
  3089. ep->stream_info = NULL;
  3090. ep->ep_state &= ~EP_HAS_STREAMS;
  3091. }
  3092. if (ep->ring) {
  3093. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  3094. last_freed_endpoint = i;
  3095. }
  3096. if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
  3097. xhci_drop_ep_from_interval_table(xhci,
  3098. &virt_dev->eps[i].bw_info,
  3099. virt_dev->bw_table,
  3100. udev,
  3101. &virt_dev->eps[i],
  3102. virt_dev->tt_info);
  3103. xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
  3104. }
  3105. /* If necessary, update the number of active TTs on this root port */
  3106. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  3107. xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
  3108. xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
  3109. ret = 0;
  3110. command_cleanup:
  3111. xhci_free_command(xhci, reset_device_cmd);
  3112. return ret;
  3113. }
  3114. /*
  3115. * At this point, the struct usb_device is about to go away, the device has
  3116. * disconnected, and all traffic has been stopped and the endpoints have been
  3117. * disabled. Free any HC data structures associated with that device.
  3118. */
  3119. void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3120. {
  3121. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3122. struct xhci_virt_device *virt_dev;
  3123. unsigned long flags;
  3124. u32 state;
  3125. int i, ret;
  3126. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  3127. /* If the host is halted due to driver unload, we still need to free the
  3128. * device.
  3129. */
  3130. if (ret <= 0 && ret != -ENODEV)
  3131. return;
  3132. virt_dev = xhci->devs[udev->slot_id];
  3133. /* Stop any wayward timer functions (which may grab the lock) */
  3134. for (i = 0; i < 31; ++i) {
  3135. virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
  3136. del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
  3137. }
  3138. if (udev->usb2_hw_lpm_enabled) {
  3139. xhci_set_usb2_hardware_lpm(hcd, udev, 0);
  3140. udev->usb2_hw_lpm_enabled = 0;
  3141. }
  3142. spin_lock_irqsave(&xhci->lock, flags);
  3143. /* Don't disable the slot if the host controller is dead. */
  3144. state = xhci_readl(xhci, &xhci->op_regs->status);
  3145. if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  3146. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3147. xhci_free_virt_device(xhci, udev->slot_id);
  3148. spin_unlock_irqrestore(&xhci->lock, flags);
  3149. return;
  3150. }
  3151. if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
  3152. spin_unlock_irqrestore(&xhci->lock, flags);
  3153. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3154. return;
  3155. }
  3156. xhci_ring_cmd_db(xhci);
  3157. spin_unlock_irqrestore(&xhci->lock, flags);
  3158. /*
  3159. * Event command completion handler will free any data structures
  3160. * associated with the slot. XXX Can free sleep?
  3161. */
  3162. }
  3163. /*
  3164. * Checks if we have enough host controller resources for the default control
  3165. * endpoint.
  3166. *
  3167. * Must be called with xhci->lock held.
  3168. */
  3169. static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
  3170. {
  3171. if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
  3172. xhci_dbg(xhci, "Not enough ep ctxs: "
  3173. "%u active, need to add 1, limit is %u.\n",
  3174. xhci->num_active_eps, xhci->limit_active_eps);
  3175. return -ENOMEM;
  3176. }
  3177. xhci->num_active_eps += 1;
  3178. xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
  3179. xhci->num_active_eps);
  3180. return 0;
  3181. }
  3182. /*
  3183. * Returns 0 if the xHC ran out of device slots, the Enable Slot command
  3184. * timed out, or allocating memory failed. Returns 1 on success.
  3185. */
  3186. int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3187. {
  3188. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3189. unsigned long flags;
  3190. int timeleft;
  3191. int ret;
  3192. union xhci_trb *cmd_trb;
  3193. spin_lock_irqsave(&xhci->lock, flags);
  3194. cmd_trb = xhci->cmd_ring->dequeue;
  3195. ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
  3196. if (ret) {
  3197. spin_unlock_irqrestore(&xhci->lock, flags);
  3198. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3199. return 0;
  3200. }
  3201. xhci_ring_cmd_db(xhci);
  3202. spin_unlock_irqrestore(&xhci->lock, flags);
  3203. /* XXX: how much time for xHC slot assignment? */
  3204. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3205. XHCI_CMD_DEFAULT_TIMEOUT);
  3206. if (timeleft <= 0) {
  3207. xhci_warn(xhci, "%s while waiting for a slot\n",
  3208. timeleft == 0 ? "Timeout" : "Signal");
  3209. /* cancel the enable slot request */
  3210. return xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3211. }
  3212. if (!xhci->slot_id) {
  3213. xhci_err(xhci, "Error while assigning device slot ID\n");
  3214. return 0;
  3215. }
  3216. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3217. spin_lock_irqsave(&xhci->lock, flags);
  3218. ret = xhci_reserve_host_control_ep_resources(xhci);
  3219. if (ret) {
  3220. spin_unlock_irqrestore(&xhci->lock, flags);
  3221. xhci_warn(xhci, "Not enough host resources, "
  3222. "active endpoint contexts = %u\n",
  3223. xhci->num_active_eps);
  3224. goto disable_slot;
  3225. }
  3226. spin_unlock_irqrestore(&xhci->lock, flags);
  3227. }
  3228. /* Use GFP_NOIO, since this function can be called from
  3229. * xhci_discover_or_reset_device(), which may be called as part of
  3230. * mass storage driver error handling.
  3231. */
  3232. if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
  3233. xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
  3234. goto disable_slot;
  3235. }
  3236. udev->slot_id = xhci->slot_id;
  3237. /* Is this a LS or FS device under a HS hub? */
  3238. /* Hub or peripherial? */
  3239. return 1;
  3240. disable_slot:
  3241. /* Disable slot, if we can do it without mem alloc */
  3242. spin_lock_irqsave(&xhci->lock, flags);
  3243. if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
  3244. xhci_ring_cmd_db(xhci);
  3245. spin_unlock_irqrestore(&xhci->lock, flags);
  3246. return 0;
  3247. }
  3248. /*
  3249. * Issue an Address Device command (which will issue a SetAddress request to
  3250. * the device).
  3251. * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
  3252. * we should only issue and wait on one address command at the same time.
  3253. *
  3254. * We add one to the device address issued by the hardware because the USB core
  3255. * uses address 1 for the root hubs (even though they're not really devices).
  3256. */
  3257. int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
  3258. {
  3259. unsigned long flags;
  3260. int timeleft;
  3261. struct xhci_virt_device *virt_dev;
  3262. int ret = 0;
  3263. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3264. struct xhci_slot_ctx *slot_ctx;
  3265. struct xhci_input_control_ctx *ctrl_ctx;
  3266. u64 temp_64;
  3267. union xhci_trb *cmd_trb;
  3268. if (!udev->slot_id) {
  3269. xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
  3270. return -EINVAL;
  3271. }
  3272. virt_dev = xhci->devs[udev->slot_id];
  3273. if (WARN_ON(!virt_dev)) {
  3274. /*
  3275. * In plug/unplug torture test with an NEC controller,
  3276. * a zero-dereference was observed once due to virt_dev = 0.
  3277. * Print useful debug rather than crash if it is observed again!
  3278. */
  3279. xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
  3280. udev->slot_id);
  3281. return -EINVAL;
  3282. }
  3283. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  3284. /*
  3285. * If this is the first Set Address since device plug-in or
  3286. * virt_device realloaction after a resume with an xHCI power loss,
  3287. * then set up the slot context.
  3288. */
  3289. if (!slot_ctx->dev_info)
  3290. xhci_setup_addressable_virt_dev(xhci, udev);
  3291. /* Otherwise, update the control endpoint ring enqueue pointer. */
  3292. else
  3293. xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
  3294. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  3295. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
  3296. ctrl_ctx->drop_flags = 0;
  3297. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3298. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3299. spin_lock_irqsave(&xhci->lock, flags);
  3300. cmd_trb = xhci->cmd_ring->dequeue;
  3301. ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
  3302. udev->slot_id);
  3303. if (ret) {
  3304. spin_unlock_irqrestore(&xhci->lock, flags);
  3305. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3306. return ret;
  3307. }
  3308. xhci_ring_cmd_db(xhci);
  3309. spin_unlock_irqrestore(&xhci->lock, flags);
  3310. /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
  3311. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3312. XHCI_CMD_DEFAULT_TIMEOUT);
  3313. /* FIXME: From section 4.3.4: "Software shall be responsible for timing
  3314. * the SetAddress() "recovery interval" required by USB and aborting the
  3315. * command on a timeout.
  3316. */
  3317. if (timeleft <= 0) {
  3318. xhci_warn(xhci, "%s while waiting for address device command\n",
  3319. timeleft == 0 ? "Timeout" : "Signal");
  3320. /* cancel the address device command */
  3321. ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3322. if (ret < 0)
  3323. return ret;
  3324. return -ETIME;
  3325. }
  3326. switch (virt_dev->cmd_status) {
  3327. case COMP_CTX_STATE:
  3328. case COMP_EBADSLT:
  3329. xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
  3330. udev->slot_id);
  3331. ret = -EINVAL;
  3332. break;
  3333. case COMP_TX_ERR:
  3334. dev_warn(&udev->dev, "Device not responding to set address.\n");
  3335. ret = -EPROTO;
  3336. break;
  3337. case COMP_DEV_ERR:
  3338. dev_warn(&udev->dev, "ERROR: Incompatible device for address "
  3339. "device command.\n");
  3340. ret = -ENODEV;
  3341. break;
  3342. case COMP_SUCCESS:
  3343. xhci_dbg(xhci, "Successful Address Device command\n");
  3344. break;
  3345. default:
  3346. xhci_err(xhci, "ERROR: unexpected command completion "
  3347. "code 0x%x.\n", virt_dev->cmd_status);
  3348. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3349. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3350. ret = -EINVAL;
  3351. break;
  3352. }
  3353. if (ret) {
  3354. return ret;
  3355. }
  3356. temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  3357. xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
  3358. xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
  3359. udev->slot_id,
  3360. &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
  3361. (unsigned long long)
  3362. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
  3363. xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
  3364. (unsigned long long)virt_dev->out_ctx->dma);
  3365. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3366. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3367. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3368. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3369. /*
  3370. * USB core uses address 1 for the roothubs, so we add one to the
  3371. * address given back to us by the HC.
  3372. */
  3373. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  3374. /* Use kernel assigned address for devices; store xHC assigned
  3375. * address locally. */
  3376. virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
  3377. + 1;
  3378. /* Zero the input context control for later use */
  3379. ctrl_ctx->add_flags = 0;
  3380. ctrl_ctx->drop_flags = 0;
  3381. xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
  3382. return 0;
  3383. }
  3384. /*
  3385. * Transfer the port index into real index in the HW port status
  3386. * registers. Caculate offset between the port's PORTSC register
  3387. * and port status base. Divide the number of per port register
  3388. * to get the real index. The raw port number bases 1.
  3389. */
  3390. int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
  3391. {
  3392. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3393. __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
  3394. __le32 __iomem *addr;
  3395. int raw_port;
  3396. if (hcd->speed != HCD_USB3)
  3397. addr = xhci->usb2_ports[port1 - 1];
  3398. else
  3399. addr = xhci->usb3_ports[port1 - 1];
  3400. raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
  3401. return raw_port;
  3402. }
  3403. #ifdef CONFIG_PM_RUNTIME
  3404. /* BESL to HIRD Encoding array for USB2 LPM */
  3405. static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
  3406. 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
  3407. /* Calculate HIRD/BESL for USB2 PORTPMSC*/
  3408. static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
  3409. struct usb_device *udev)
  3410. {
  3411. int u2del, besl, besl_host;
  3412. int besl_device = 0;
  3413. u32 field;
  3414. u2del = HCS_U2_LATENCY(xhci->hcs_params3);
  3415. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3416. if (field & USB_BESL_SUPPORT) {
  3417. for (besl_host = 0; besl_host < 16; besl_host++) {
  3418. if (xhci_besl_encoding[besl_host] >= u2del)
  3419. break;
  3420. }
  3421. /* Use baseline BESL value as default */
  3422. if (field & USB_BESL_BASELINE_VALID)
  3423. besl_device = USB_GET_BESL_BASELINE(field);
  3424. else if (field & USB_BESL_DEEP_VALID)
  3425. besl_device = USB_GET_BESL_DEEP(field);
  3426. } else {
  3427. if (u2del <= 50)
  3428. besl_host = 0;
  3429. else
  3430. besl_host = (u2del - 51) / 75 + 1;
  3431. }
  3432. besl = besl_host + besl_device;
  3433. if (besl > 15)
  3434. besl = 15;
  3435. return besl;
  3436. }
  3437. static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
  3438. struct usb_device *udev)
  3439. {
  3440. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3441. struct dev_info *dev_info;
  3442. __le32 __iomem **port_array;
  3443. __le32 __iomem *addr, *pm_addr;
  3444. u32 temp, dev_id;
  3445. unsigned int port_num;
  3446. unsigned long flags;
  3447. int hird;
  3448. int ret;
  3449. if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
  3450. !udev->lpm_capable)
  3451. return -EINVAL;
  3452. /* we only support lpm for non-hub device connected to root hub yet */
  3453. if (!udev->parent || udev->parent->parent ||
  3454. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3455. return -EINVAL;
  3456. spin_lock_irqsave(&xhci->lock, flags);
  3457. /* Look for devices in lpm_failed_devs list */
  3458. dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
  3459. le16_to_cpu(udev->descriptor.idProduct);
  3460. list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
  3461. if (dev_info->dev_id == dev_id) {
  3462. ret = -EINVAL;
  3463. goto finish;
  3464. }
  3465. }
  3466. port_array = xhci->usb2_ports;
  3467. port_num = udev->portnum - 1;
  3468. if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
  3469. xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
  3470. ret = -EINVAL;
  3471. goto finish;
  3472. }
  3473. /*
  3474. * Test USB 2.0 software LPM.
  3475. * FIXME: some xHCI 1.0 hosts may implement a new register to set up
  3476. * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
  3477. * in the June 2011 errata release.
  3478. */
  3479. xhci_dbg(xhci, "test port %d software LPM\n", port_num);
  3480. /*
  3481. * Set L1 Device Slot and HIRD/BESL.
  3482. * Check device's USB 2.0 extension descriptor to determine whether
  3483. * HIRD or BESL shoule be used. See USB2.0 LPM errata.
  3484. */
  3485. pm_addr = port_array[port_num] + 1;
  3486. hird = xhci_calculate_hird_besl(xhci, udev);
  3487. temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
  3488. xhci_writel(xhci, temp, pm_addr);
  3489. /* Set port link state to U2(L1) */
  3490. addr = port_array[port_num];
  3491. xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
  3492. /* wait for ACK */
  3493. spin_unlock_irqrestore(&xhci->lock, flags);
  3494. msleep(10);
  3495. spin_lock_irqsave(&xhci->lock, flags);
  3496. /* Check L1 Status */
  3497. ret = xhci_handshake(xhci, pm_addr,
  3498. PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
  3499. if (ret != -ETIMEDOUT) {
  3500. /* enter L1 successfully */
  3501. temp = xhci_readl(xhci, addr);
  3502. xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
  3503. port_num, temp);
  3504. ret = 0;
  3505. } else {
  3506. temp = xhci_readl(xhci, pm_addr);
  3507. xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
  3508. port_num, temp & PORT_L1S_MASK);
  3509. ret = -EINVAL;
  3510. }
  3511. /* Resume the port */
  3512. xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
  3513. spin_unlock_irqrestore(&xhci->lock, flags);
  3514. msleep(10);
  3515. spin_lock_irqsave(&xhci->lock, flags);
  3516. /* Clear PLC */
  3517. xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
  3518. /* Check PORTSC to make sure the device is in the right state */
  3519. if (!ret) {
  3520. temp = xhci_readl(xhci, addr);
  3521. xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
  3522. if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
  3523. (temp & PORT_PLS_MASK) != XDEV_U0) {
  3524. xhci_dbg(xhci, "port L1 resume fail\n");
  3525. ret = -EINVAL;
  3526. }
  3527. }
  3528. if (ret) {
  3529. /* Insert dev to lpm_failed_devs list */
  3530. xhci_warn(xhci, "device LPM test failed, may disconnect and "
  3531. "re-enumerate\n");
  3532. dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
  3533. if (!dev_info) {
  3534. ret = -ENOMEM;
  3535. goto finish;
  3536. }
  3537. dev_info->dev_id = dev_id;
  3538. INIT_LIST_HEAD(&dev_info->list);
  3539. list_add(&dev_info->list, &xhci->lpm_failed_devs);
  3540. } else {
  3541. xhci_ring_device(xhci, udev->slot_id);
  3542. }
  3543. finish:
  3544. spin_unlock_irqrestore(&xhci->lock, flags);
  3545. return ret;
  3546. }
  3547. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3548. struct usb_device *udev, int enable)
  3549. {
  3550. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3551. __le32 __iomem **port_array;
  3552. __le32 __iomem *pm_addr;
  3553. u32 temp;
  3554. unsigned int port_num;
  3555. unsigned long flags;
  3556. int hird;
  3557. if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
  3558. !udev->lpm_capable)
  3559. return -EPERM;
  3560. if (!udev->parent || udev->parent->parent ||
  3561. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3562. return -EPERM;
  3563. if (udev->usb2_hw_lpm_capable != 1)
  3564. return -EPERM;
  3565. spin_lock_irqsave(&xhci->lock, flags);
  3566. port_array = xhci->usb2_ports;
  3567. port_num = udev->portnum - 1;
  3568. pm_addr = port_array[port_num] + 1;
  3569. temp = xhci_readl(xhci, pm_addr);
  3570. xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
  3571. enable ? "enable" : "disable", port_num);
  3572. hird = xhci_calculate_hird_besl(xhci, udev);
  3573. if (enable) {
  3574. temp &= ~PORT_HIRD_MASK;
  3575. temp |= PORT_HIRD(hird) | PORT_RWE;
  3576. xhci_writel(xhci, temp, pm_addr);
  3577. temp = xhci_readl(xhci, pm_addr);
  3578. temp |= PORT_HLE;
  3579. xhci_writel(xhci, temp, pm_addr);
  3580. } else {
  3581. temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
  3582. xhci_writel(xhci, temp, pm_addr);
  3583. }
  3584. spin_unlock_irqrestore(&xhci->lock, flags);
  3585. return 0;
  3586. }
  3587. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3588. {
  3589. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3590. int ret;
  3591. ret = xhci_usb2_software_lpm_test(hcd, udev);
  3592. if (!ret) {
  3593. xhci_dbg(xhci, "software LPM test succeed\n");
  3594. if (xhci->hw_lpm_support == 1) {
  3595. udev->usb2_hw_lpm_capable = 1;
  3596. ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
  3597. if (!ret)
  3598. udev->usb2_hw_lpm_enabled = 1;
  3599. }
  3600. }
  3601. return 0;
  3602. }
  3603. #else
  3604. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3605. struct usb_device *udev, int enable)
  3606. {
  3607. return 0;
  3608. }
  3609. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3610. {
  3611. return 0;
  3612. }
  3613. #endif /* CONFIG_PM_RUNTIME */
  3614. /*---------------------- USB 3.0 Link PM functions ------------------------*/
  3615. #ifdef CONFIG_PM
  3616. /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
  3617. static unsigned long long xhci_service_interval_to_ns(
  3618. struct usb_endpoint_descriptor *desc)
  3619. {
  3620. return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
  3621. }
  3622. static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
  3623. enum usb3_link_state state)
  3624. {
  3625. unsigned long long sel;
  3626. unsigned long long pel;
  3627. unsigned int max_sel_pel;
  3628. char *state_name;
  3629. switch (state) {
  3630. case USB3_LPM_U1:
  3631. /* Convert SEL and PEL stored in nanoseconds to microseconds */
  3632. sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
  3633. pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
  3634. max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
  3635. state_name = "U1";
  3636. break;
  3637. case USB3_LPM_U2:
  3638. sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
  3639. pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
  3640. max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
  3641. state_name = "U2";
  3642. break;
  3643. default:
  3644. dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
  3645. __func__);
  3646. return USB3_LPM_DISABLED;
  3647. }
  3648. if (sel <= max_sel_pel && pel <= max_sel_pel)
  3649. return USB3_LPM_DEVICE_INITIATED;
  3650. if (sel > max_sel_pel)
  3651. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3652. "due to long SEL %llu ms\n",
  3653. state_name, sel);
  3654. else
  3655. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3656. "due to long PEL %llu\n ms",
  3657. state_name, pel);
  3658. return USB3_LPM_DISABLED;
  3659. }
  3660. /* Returns the hub-encoded U1 timeout value.
  3661. * The U1 timeout should be the maximum of the following values:
  3662. * - For control endpoints, U1 system exit latency (SEL) * 3
  3663. * - For bulk endpoints, U1 SEL * 5
  3664. * - For interrupt endpoints:
  3665. * - Notification EPs, U1 SEL * 3
  3666. * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
  3667. * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
  3668. */
  3669. static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
  3670. struct usb_endpoint_descriptor *desc)
  3671. {
  3672. unsigned long long timeout_ns;
  3673. int ep_type;
  3674. int intr_type;
  3675. ep_type = usb_endpoint_type(desc);
  3676. switch (ep_type) {
  3677. case USB_ENDPOINT_XFER_CONTROL:
  3678. timeout_ns = udev->u1_params.sel * 3;
  3679. break;
  3680. case USB_ENDPOINT_XFER_BULK:
  3681. timeout_ns = udev->u1_params.sel * 5;
  3682. break;
  3683. case USB_ENDPOINT_XFER_INT:
  3684. intr_type = usb_endpoint_interrupt_type(desc);
  3685. if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
  3686. timeout_ns = udev->u1_params.sel * 3;
  3687. break;
  3688. }
  3689. /* Otherwise the calculation is the same as isoc eps */
  3690. case USB_ENDPOINT_XFER_ISOC:
  3691. timeout_ns = xhci_service_interval_to_ns(desc);
  3692. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
  3693. if (timeout_ns < udev->u1_params.sel * 2)
  3694. timeout_ns = udev->u1_params.sel * 2;
  3695. break;
  3696. default:
  3697. return 0;
  3698. }
  3699. /* The U1 timeout is encoded in 1us intervals. */
  3700. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
  3701. /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
  3702. if (timeout_ns == USB3_LPM_DISABLED)
  3703. timeout_ns++;
  3704. /* If the necessary timeout value is bigger than what we can set in the
  3705. * USB 3.0 hub, we have to disable hub-initiated U1.
  3706. */
  3707. if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
  3708. return timeout_ns;
  3709. dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
  3710. "due to long timeout %llu ms\n", timeout_ns);
  3711. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
  3712. }
  3713. /* Returns the hub-encoded U2 timeout value.
  3714. * The U2 timeout should be the maximum of:
  3715. * - 10 ms (to avoid the bandwidth impact on the scheduler)
  3716. * - largest bInterval of any active periodic endpoint (to avoid going
  3717. * into lower power link states between intervals).
  3718. * - the U2 Exit Latency of the device
  3719. */
  3720. static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
  3721. struct usb_endpoint_descriptor *desc)
  3722. {
  3723. unsigned long long timeout_ns;
  3724. unsigned long long u2_del_ns;
  3725. timeout_ns = 10 * 1000 * 1000;
  3726. if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
  3727. (xhci_service_interval_to_ns(desc) > timeout_ns))
  3728. timeout_ns = xhci_service_interval_to_ns(desc);
  3729. u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
  3730. if (u2_del_ns > timeout_ns)
  3731. timeout_ns = u2_del_ns;
  3732. /* The U2 timeout is encoded in 256us intervals */
  3733. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
  3734. /* If the necessary timeout value is bigger than what we can set in the
  3735. * USB 3.0 hub, we have to disable hub-initiated U2.
  3736. */
  3737. if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
  3738. return timeout_ns;
  3739. dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
  3740. "due to long timeout %llu ms\n", timeout_ns);
  3741. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
  3742. }
  3743. static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3744. struct usb_device *udev,
  3745. struct usb_endpoint_descriptor *desc,
  3746. enum usb3_link_state state,
  3747. u16 *timeout)
  3748. {
  3749. if (state == USB3_LPM_U1) {
  3750. if (xhci->quirks & XHCI_INTEL_HOST)
  3751. return xhci_calculate_intel_u1_timeout(udev, desc);
  3752. } else {
  3753. if (xhci->quirks & XHCI_INTEL_HOST)
  3754. return xhci_calculate_intel_u2_timeout(udev, desc);
  3755. }
  3756. return USB3_LPM_DISABLED;
  3757. }
  3758. static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3759. struct usb_device *udev,
  3760. struct usb_endpoint_descriptor *desc,
  3761. enum usb3_link_state state,
  3762. u16 *timeout)
  3763. {
  3764. u16 alt_timeout;
  3765. alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
  3766. desc, state, timeout);
  3767. /* If we found we can't enable hub-initiated LPM, or
  3768. * the U1 or U2 exit latency was too high to allow
  3769. * device-initiated LPM as well, just stop searching.
  3770. */
  3771. if (alt_timeout == USB3_LPM_DISABLED ||
  3772. alt_timeout == USB3_LPM_DEVICE_INITIATED) {
  3773. *timeout = alt_timeout;
  3774. return -E2BIG;
  3775. }
  3776. if (alt_timeout > *timeout)
  3777. *timeout = alt_timeout;
  3778. return 0;
  3779. }
  3780. static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
  3781. struct usb_device *udev,
  3782. struct usb_host_interface *alt,
  3783. enum usb3_link_state state,
  3784. u16 *timeout)
  3785. {
  3786. int j;
  3787. for (j = 0; j < alt->desc.bNumEndpoints; j++) {
  3788. if (xhci_update_timeout_for_endpoint(xhci, udev,
  3789. &alt->endpoint[j].desc, state, timeout))
  3790. return -E2BIG;
  3791. continue;
  3792. }
  3793. return 0;
  3794. }
  3795. static int xhci_check_intel_tier_policy(struct usb_device *udev,
  3796. enum usb3_link_state state)
  3797. {
  3798. struct usb_device *parent;
  3799. unsigned int num_hubs;
  3800. if (state == USB3_LPM_U2)
  3801. return 0;
  3802. /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
  3803. for (parent = udev->parent, num_hubs = 0; parent->parent;
  3804. parent = parent->parent)
  3805. num_hubs++;
  3806. if (num_hubs < 2)
  3807. return 0;
  3808. dev_dbg(&udev->dev, "Disabling U1 link state for device"
  3809. " below second-tier hub.\n");
  3810. dev_dbg(&udev->dev, "Plug device into first-tier hub "
  3811. "to decrease power consumption.\n");
  3812. return -E2BIG;
  3813. }
  3814. static int xhci_check_tier_policy(struct xhci_hcd *xhci,
  3815. struct usb_device *udev,
  3816. enum usb3_link_state state)
  3817. {
  3818. if (xhci->quirks & XHCI_INTEL_HOST)
  3819. return xhci_check_intel_tier_policy(udev, state);
  3820. return -EINVAL;
  3821. }
  3822. /* Returns the U1 or U2 timeout that should be enabled.
  3823. * If the tier check or timeout setting functions return with a non-zero exit
  3824. * code, that means the timeout value has been finalized and we shouldn't look
  3825. * at any more endpoints.
  3826. */
  3827. static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
  3828. struct usb_device *udev, enum usb3_link_state state)
  3829. {
  3830. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3831. struct usb_host_config *config;
  3832. char *state_name;
  3833. int i;
  3834. u16 timeout = USB3_LPM_DISABLED;
  3835. if (state == USB3_LPM_U1)
  3836. state_name = "U1";
  3837. else if (state == USB3_LPM_U2)
  3838. state_name = "U2";
  3839. else {
  3840. dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
  3841. state);
  3842. return timeout;
  3843. }
  3844. if (xhci_check_tier_policy(xhci, udev, state) < 0)
  3845. return timeout;
  3846. /* Gather some information about the currently installed configuration
  3847. * and alternate interface settings.
  3848. */
  3849. if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
  3850. state, &timeout))
  3851. return timeout;
  3852. config = udev->actconfig;
  3853. if (!config)
  3854. return timeout;
  3855. for (i = 0; i < USB_MAXINTERFACES; i++) {
  3856. struct usb_driver *driver;
  3857. struct usb_interface *intf = config->interface[i];
  3858. if (!intf)
  3859. continue;
  3860. /* Check if any currently bound drivers want hub-initiated LPM
  3861. * disabled.
  3862. */
  3863. if (intf->dev.driver) {
  3864. driver = to_usb_driver(intf->dev.driver);
  3865. if (driver && driver->disable_hub_initiated_lpm) {
  3866. dev_dbg(&udev->dev, "Hub-initiated %s disabled "
  3867. "at request of driver %s\n",
  3868. state_name, driver->name);
  3869. return xhci_get_timeout_no_hub_lpm(udev, state);
  3870. }
  3871. }
  3872. /* Not sure how this could happen... */
  3873. if (!intf->cur_altsetting)
  3874. continue;
  3875. if (xhci_update_timeout_for_interface(xhci, udev,
  3876. intf->cur_altsetting,
  3877. state, &timeout))
  3878. return timeout;
  3879. }
  3880. return timeout;
  3881. }
  3882. /*
  3883. * Issue an Evaluate Context command to change the Maximum Exit Latency in the
  3884. * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
  3885. */
  3886. static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
  3887. struct usb_device *udev, u16 max_exit_latency)
  3888. {
  3889. struct xhci_virt_device *virt_dev;
  3890. struct xhci_command *command;
  3891. struct xhci_input_control_ctx *ctrl_ctx;
  3892. struct xhci_slot_ctx *slot_ctx;
  3893. unsigned long flags;
  3894. int ret;
  3895. spin_lock_irqsave(&xhci->lock, flags);
  3896. if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
  3897. spin_unlock_irqrestore(&xhci->lock, flags);
  3898. return 0;
  3899. }
  3900. /* Attempt to issue an Evaluate Context command to change the MEL. */
  3901. virt_dev = xhci->devs[udev->slot_id];
  3902. command = xhci->lpm_command;
  3903. xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
  3904. spin_unlock_irqrestore(&xhci->lock, flags);
  3905. ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
  3906. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  3907. slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
  3908. slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
  3909. slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
  3910. xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
  3911. xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
  3912. xhci_dbg_ctx(xhci, command->in_ctx, 0);
  3913. /* Issue and wait for the evaluate context command. */
  3914. ret = xhci_configure_endpoint(xhci, udev, command,
  3915. true, true);
  3916. xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
  3917. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
  3918. if (!ret) {
  3919. spin_lock_irqsave(&xhci->lock, flags);
  3920. virt_dev->current_mel = max_exit_latency;
  3921. spin_unlock_irqrestore(&xhci->lock, flags);
  3922. }
  3923. return ret;
  3924. }
  3925. static int calculate_max_exit_latency(struct usb_device *udev,
  3926. enum usb3_link_state state_changed,
  3927. u16 hub_encoded_timeout)
  3928. {
  3929. unsigned long long u1_mel_us = 0;
  3930. unsigned long long u2_mel_us = 0;
  3931. unsigned long long mel_us = 0;
  3932. bool disabling_u1;
  3933. bool disabling_u2;
  3934. bool enabling_u1;
  3935. bool enabling_u2;
  3936. disabling_u1 = (state_changed == USB3_LPM_U1 &&
  3937. hub_encoded_timeout == USB3_LPM_DISABLED);
  3938. disabling_u2 = (state_changed == USB3_LPM_U2 &&
  3939. hub_encoded_timeout == USB3_LPM_DISABLED);
  3940. enabling_u1 = (state_changed == USB3_LPM_U1 &&
  3941. hub_encoded_timeout != USB3_LPM_DISABLED);
  3942. enabling_u2 = (state_changed == USB3_LPM_U2 &&
  3943. hub_encoded_timeout != USB3_LPM_DISABLED);
  3944. /* If U1 was already enabled and we're not disabling it,
  3945. * or we're going to enable U1, account for the U1 max exit latency.
  3946. */
  3947. if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
  3948. enabling_u1)
  3949. u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
  3950. if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
  3951. enabling_u2)
  3952. u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
  3953. if (u1_mel_us > u2_mel_us)
  3954. mel_us = u1_mel_us;
  3955. else
  3956. mel_us = u2_mel_us;
  3957. /* xHCI host controller max exit latency field is only 16 bits wide. */
  3958. if (mel_us > MAX_EXIT) {
  3959. dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
  3960. "is too big.\n", mel_us);
  3961. return -E2BIG;
  3962. }
  3963. return mel_us;
  3964. }
  3965. /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
  3966. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3967. struct usb_device *udev, enum usb3_link_state state)
  3968. {
  3969. struct xhci_hcd *xhci;
  3970. u16 hub_encoded_timeout;
  3971. int mel;
  3972. int ret;
  3973. xhci = hcd_to_xhci(hcd);
  3974. /* The LPM timeout values are pretty host-controller specific, so don't
  3975. * enable hub-initiated timeouts unless the vendor has provided
  3976. * information about their timeout algorithm.
  3977. */
  3978. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  3979. !xhci->devs[udev->slot_id])
  3980. return USB3_LPM_DISABLED;
  3981. hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
  3982. mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
  3983. if (mel < 0) {
  3984. /* Max Exit Latency is too big, disable LPM. */
  3985. hub_encoded_timeout = USB3_LPM_DISABLED;
  3986. mel = 0;
  3987. }
  3988. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  3989. if (ret)
  3990. return ret;
  3991. return hub_encoded_timeout;
  3992. }
  3993. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3994. struct usb_device *udev, enum usb3_link_state state)
  3995. {
  3996. struct xhci_hcd *xhci;
  3997. u16 mel;
  3998. int ret;
  3999. xhci = hcd_to_xhci(hcd);
  4000. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  4001. !xhci->devs[udev->slot_id])
  4002. return 0;
  4003. mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
  4004. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  4005. if (ret)
  4006. return ret;
  4007. return 0;
  4008. }
  4009. #else /* CONFIG_PM */
  4010. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4011. struct usb_device *udev, enum usb3_link_state state)
  4012. {
  4013. return USB3_LPM_DISABLED;
  4014. }
  4015. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4016. struct usb_device *udev, enum usb3_link_state state)
  4017. {
  4018. return 0;
  4019. }
  4020. #endif /* CONFIG_PM */
  4021. /*-------------------------------------------------------------------------*/
  4022. /* Once a hub descriptor is fetched for a device, we need to update the xHC's
  4023. * internal data structures for the device.
  4024. */
  4025. int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
  4026. struct usb_tt *tt, gfp_t mem_flags)
  4027. {
  4028. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4029. struct xhci_virt_device *vdev;
  4030. struct xhci_command *config_cmd;
  4031. struct xhci_input_control_ctx *ctrl_ctx;
  4032. struct xhci_slot_ctx *slot_ctx;
  4033. unsigned long flags;
  4034. unsigned think_time;
  4035. int ret;
  4036. /* Ignore root hubs */
  4037. if (!hdev->parent)
  4038. return 0;
  4039. vdev = xhci->devs[hdev->slot_id];
  4040. if (!vdev) {
  4041. xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
  4042. return -EINVAL;
  4043. }
  4044. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  4045. if (!config_cmd) {
  4046. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  4047. return -ENOMEM;
  4048. }
  4049. spin_lock_irqsave(&xhci->lock, flags);
  4050. if (hdev->speed == USB_SPEED_HIGH &&
  4051. xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
  4052. xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
  4053. xhci_free_command(xhci, config_cmd);
  4054. spin_unlock_irqrestore(&xhci->lock, flags);
  4055. return -ENOMEM;
  4056. }
  4057. xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
  4058. ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
  4059. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  4060. slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
  4061. slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
  4062. if (tt->multi)
  4063. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  4064. if (xhci->hci_version > 0x95) {
  4065. xhci_dbg(xhci, "xHCI version %x needs hub "
  4066. "TT think time and number of ports\n",
  4067. (unsigned int) xhci->hci_version);
  4068. slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
  4069. /* Set TT think time - convert from ns to FS bit times.
  4070. * 0 = 8 FS bit times, 1 = 16 FS bit times,
  4071. * 2 = 24 FS bit times, 3 = 32 FS bit times.
  4072. *
  4073. * xHCI 1.0: this field shall be 0 if the device is not a
  4074. * High-spped hub.
  4075. */
  4076. think_time = tt->think_time;
  4077. if (think_time != 0)
  4078. think_time = (think_time / 666) - 1;
  4079. if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
  4080. slot_ctx->tt_info |=
  4081. cpu_to_le32(TT_THINK_TIME(think_time));
  4082. } else {
  4083. xhci_dbg(xhci, "xHCI version %x doesn't need hub "
  4084. "TT think time or number of ports\n",
  4085. (unsigned int) xhci->hci_version);
  4086. }
  4087. slot_ctx->dev_state = 0;
  4088. spin_unlock_irqrestore(&xhci->lock, flags);
  4089. xhci_dbg(xhci, "Set up %s for hub device.\n",
  4090. (xhci->hci_version > 0x95) ?
  4091. "configure endpoint" : "evaluate context");
  4092. xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
  4093. xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
  4094. /* Issue and wait for the configure endpoint or
  4095. * evaluate context command.
  4096. */
  4097. if (xhci->hci_version > 0x95)
  4098. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4099. false, false);
  4100. else
  4101. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4102. true, false);
  4103. xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
  4104. xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
  4105. xhci_free_command(xhci, config_cmd);
  4106. return ret;
  4107. }
  4108. int xhci_get_frame(struct usb_hcd *hcd)
  4109. {
  4110. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4111. /* EHCI mods by the periodic size. Why? */
  4112. return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
  4113. }
  4114. int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
  4115. {
  4116. struct xhci_hcd *xhci;
  4117. struct device *dev = hcd->self.controller;
  4118. int retval;
  4119. u32 temp;
  4120. /* Accept arbitrarily long scatter-gather lists */
  4121. hcd->self.sg_tablesize = ~0;
  4122. /* XHCI controllers don't stop the ep queue on short packets :| */
  4123. hcd->self.no_stop_on_short = 1;
  4124. if (usb_hcd_is_primary_hcd(hcd)) {
  4125. xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
  4126. if (!xhci)
  4127. return -ENOMEM;
  4128. *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
  4129. xhci->main_hcd = hcd;
  4130. /* Mark the first roothub as being USB 2.0.
  4131. * The xHCI driver will register the USB 3.0 roothub.
  4132. */
  4133. hcd->speed = HCD_USB2;
  4134. hcd->self.root_hub->speed = USB_SPEED_HIGH;
  4135. /*
  4136. * USB 2.0 roothub under xHCI has an integrated TT,
  4137. * (rate matching hub) as opposed to having an OHCI/UHCI
  4138. * companion controller.
  4139. */
  4140. hcd->has_tt = 1;
  4141. } else {
  4142. /* xHCI private pointer was set in xhci_pci_probe for the second
  4143. * registered roothub.
  4144. */
  4145. xhci = hcd_to_xhci(hcd);
  4146. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4147. if (HCC_64BIT_ADDR(temp)) {
  4148. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4149. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4150. } else {
  4151. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4152. }
  4153. return 0;
  4154. }
  4155. xhci->cap_regs = hcd->regs;
  4156. xhci->op_regs = hcd->regs +
  4157. HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
  4158. xhci->run_regs = hcd->regs +
  4159. (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
  4160. /* Cache read-only capability registers */
  4161. xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
  4162. xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
  4163. xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
  4164. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
  4165. xhci->hci_version = HC_VERSION(xhci->hcc_params);
  4166. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4167. xhci_print_registers(xhci);
  4168. get_quirks(dev, xhci);
  4169. /* Make sure the HC is halted. */
  4170. retval = xhci_halt(xhci);
  4171. if (retval)
  4172. goto error;
  4173. xhci_dbg(xhci, "Resetting HCD\n");
  4174. /* Reset the internal HC memory state and registers. */
  4175. retval = xhci_reset(xhci);
  4176. if (retval)
  4177. goto error;
  4178. xhci_dbg(xhci, "Reset complete\n");
  4179. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4180. if (HCC_64BIT_ADDR(temp)) {
  4181. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4182. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4183. } else {
  4184. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4185. }
  4186. xhci_dbg(xhci, "Calling HCD init\n");
  4187. /* Initialize HCD and host controller data structures. */
  4188. retval = xhci_init(hcd);
  4189. if (retval)
  4190. goto error;
  4191. xhci_dbg(xhci, "Called HCD init\n");
  4192. return 0;
  4193. error:
  4194. kfree(xhci);
  4195. return retval;
  4196. }
  4197. MODULE_DESCRIPTION(DRIVER_DESC);
  4198. MODULE_AUTHOR(DRIVER_AUTHOR);
  4199. MODULE_LICENSE("GPL");
  4200. static int __init xhci_hcd_init(void)
  4201. {
  4202. int retval;
  4203. retval = xhci_register_pci();
  4204. if (retval < 0) {
  4205. printk(KERN_DEBUG "Problem registering PCI driver.");
  4206. return retval;
  4207. }
  4208. retval = xhci_register_plat();
  4209. if (retval < 0) {
  4210. printk(KERN_DEBUG "Problem registering platform driver.");
  4211. goto unreg_pci;
  4212. }
  4213. /*
  4214. * Check the compiler generated sizes of structures that must be laid
  4215. * out in specific ways for hardware access.
  4216. */
  4217. BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
  4218. BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
  4219. BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
  4220. /* xhci_device_control has eight fields, and also
  4221. * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
  4222. */
  4223. BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
  4224. BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
  4225. BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
  4226. BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
  4227. BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
  4228. /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
  4229. BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
  4230. return 0;
  4231. unreg_pci:
  4232. xhci_unregister_pci();
  4233. return retval;
  4234. }
  4235. module_init(xhci_hcd_init);
  4236. static void __exit xhci_hcd_cleanup(void)
  4237. {
  4238. xhci_unregister_pci();
  4239. xhci_unregister_plat();
  4240. }
  4241. module_exit(xhci_hcd_cleanup);