vmx.c 244 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include <asm/kexec.h>
  43. #include "trace.h"
  44. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  45. #define __ex_clear(x, reg) \
  46. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. static const struct x86_cpu_id vmx_cpu_id[] = {
  50. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  51. {}
  52. };
  53. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  54. static bool __read_mostly enable_vpid = 1;
  55. module_param_named(vpid, enable_vpid, bool, 0444);
  56. static bool __read_mostly flexpriority_enabled = 1;
  57. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  58. static bool __read_mostly enable_ept = 1;
  59. module_param_named(ept, enable_ept, bool, S_IRUGO);
  60. static bool __read_mostly enable_unrestricted_guest = 1;
  61. module_param_named(unrestricted_guest,
  62. enable_unrestricted_guest, bool, S_IRUGO);
  63. static bool __read_mostly enable_ept_ad_bits = 1;
  64. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  65. static bool __read_mostly emulate_invalid_guest_state = true;
  66. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  67. static bool __read_mostly vmm_exclusive = 1;
  68. module_param(vmm_exclusive, bool, S_IRUGO);
  69. static bool __read_mostly fasteoi = 1;
  70. module_param(fasteoi, bool, S_IRUGO);
  71. static bool __read_mostly enable_apicv = 1;
  72. module_param(enable_apicv, bool, S_IRUGO);
  73. static bool __read_mostly enable_shadow_vmcs = 1;
  74. module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  75. /*
  76. * If nested=1, nested virtualization is supported, i.e., guests may use
  77. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  78. * use VMX instructions.
  79. */
  80. static bool __read_mostly nested = 0;
  81. module_param(nested, bool, S_IRUGO);
  82. #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
  83. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
  84. #define KVM_VM_CR0_ALWAYS_ON \
  85. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  86. #define KVM_CR4_GUEST_OWNED_BITS \
  87. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  88. | X86_CR4_OSXMMEXCPT)
  89. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  90. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  91. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  92. /*
  93. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  94. * ple_gap: upper bound on the amount of time between two successive
  95. * executions of PAUSE in a loop. Also indicate if ple enabled.
  96. * According to test, this time is usually smaller than 128 cycles.
  97. * ple_window: upper bound on the amount of time a guest is allowed to execute
  98. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  99. * less than 2^12 cycles
  100. * Time is measured based on a counter that runs at the same rate as the TSC,
  101. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  102. */
  103. #define KVM_VMX_DEFAULT_PLE_GAP 128
  104. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  105. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  106. module_param(ple_gap, int, S_IRUGO);
  107. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  108. module_param(ple_window, int, S_IRUGO);
  109. extern const ulong vmx_return;
  110. #define NR_AUTOLOAD_MSRS 8
  111. #define VMCS02_POOL_SIZE 1
  112. struct vmcs {
  113. u32 revision_id;
  114. u32 abort;
  115. char data[0];
  116. };
  117. /*
  118. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  119. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  120. * loaded on this CPU (so we can clear them if the CPU goes down).
  121. */
  122. struct loaded_vmcs {
  123. struct vmcs *vmcs;
  124. int cpu;
  125. int launched;
  126. struct list_head loaded_vmcss_on_cpu_link;
  127. };
  128. struct shared_msr_entry {
  129. unsigned index;
  130. u64 data;
  131. u64 mask;
  132. };
  133. /*
  134. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  135. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  136. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  137. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  138. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  139. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  140. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  141. * underlying hardware which will be used to run L2.
  142. * This structure is packed to ensure that its layout is identical across
  143. * machines (necessary for live migration).
  144. * If there are changes in this struct, VMCS12_REVISION must be changed.
  145. */
  146. typedef u64 natural_width;
  147. struct __packed vmcs12 {
  148. /* According to the Intel spec, a VMCS region must start with the
  149. * following two fields. Then follow implementation-specific data.
  150. */
  151. u32 revision_id;
  152. u32 abort;
  153. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  154. u32 padding[7]; /* room for future expansion */
  155. u64 io_bitmap_a;
  156. u64 io_bitmap_b;
  157. u64 msr_bitmap;
  158. u64 vm_exit_msr_store_addr;
  159. u64 vm_exit_msr_load_addr;
  160. u64 vm_entry_msr_load_addr;
  161. u64 tsc_offset;
  162. u64 virtual_apic_page_addr;
  163. u64 apic_access_addr;
  164. u64 ept_pointer;
  165. u64 guest_physical_address;
  166. u64 vmcs_link_pointer;
  167. u64 guest_ia32_debugctl;
  168. u64 guest_ia32_pat;
  169. u64 guest_ia32_efer;
  170. u64 guest_ia32_perf_global_ctrl;
  171. u64 guest_pdptr0;
  172. u64 guest_pdptr1;
  173. u64 guest_pdptr2;
  174. u64 guest_pdptr3;
  175. u64 host_ia32_pat;
  176. u64 host_ia32_efer;
  177. u64 host_ia32_perf_global_ctrl;
  178. u64 padding64[8]; /* room for future expansion */
  179. /*
  180. * To allow migration of L1 (complete with its L2 guests) between
  181. * machines of different natural widths (32 or 64 bit), we cannot have
  182. * unsigned long fields with no explict size. We use u64 (aliased
  183. * natural_width) instead. Luckily, x86 is little-endian.
  184. */
  185. natural_width cr0_guest_host_mask;
  186. natural_width cr4_guest_host_mask;
  187. natural_width cr0_read_shadow;
  188. natural_width cr4_read_shadow;
  189. natural_width cr3_target_value0;
  190. natural_width cr3_target_value1;
  191. natural_width cr3_target_value2;
  192. natural_width cr3_target_value3;
  193. natural_width exit_qualification;
  194. natural_width guest_linear_address;
  195. natural_width guest_cr0;
  196. natural_width guest_cr3;
  197. natural_width guest_cr4;
  198. natural_width guest_es_base;
  199. natural_width guest_cs_base;
  200. natural_width guest_ss_base;
  201. natural_width guest_ds_base;
  202. natural_width guest_fs_base;
  203. natural_width guest_gs_base;
  204. natural_width guest_ldtr_base;
  205. natural_width guest_tr_base;
  206. natural_width guest_gdtr_base;
  207. natural_width guest_idtr_base;
  208. natural_width guest_dr7;
  209. natural_width guest_rsp;
  210. natural_width guest_rip;
  211. natural_width guest_rflags;
  212. natural_width guest_pending_dbg_exceptions;
  213. natural_width guest_sysenter_esp;
  214. natural_width guest_sysenter_eip;
  215. natural_width host_cr0;
  216. natural_width host_cr3;
  217. natural_width host_cr4;
  218. natural_width host_fs_base;
  219. natural_width host_gs_base;
  220. natural_width host_tr_base;
  221. natural_width host_gdtr_base;
  222. natural_width host_idtr_base;
  223. natural_width host_ia32_sysenter_esp;
  224. natural_width host_ia32_sysenter_eip;
  225. natural_width host_rsp;
  226. natural_width host_rip;
  227. natural_width paddingl[8]; /* room for future expansion */
  228. u32 pin_based_vm_exec_control;
  229. u32 cpu_based_vm_exec_control;
  230. u32 exception_bitmap;
  231. u32 page_fault_error_code_mask;
  232. u32 page_fault_error_code_match;
  233. u32 cr3_target_count;
  234. u32 vm_exit_controls;
  235. u32 vm_exit_msr_store_count;
  236. u32 vm_exit_msr_load_count;
  237. u32 vm_entry_controls;
  238. u32 vm_entry_msr_load_count;
  239. u32 vm_entry_intr_info_field;
  240. u32 vm_entry_exception_error_code;
  241. u32 vm_entry_instruction_len;
  242. u32 tpr_threshold;
  243. u32 secondary_vm_exec_control;
  244. u32 vm_instruction_error;
  245. u32 vm_exit_reason;
  246. u32 vm_exit_intr_info;
  247. u32 vm_exit_intr_error_code;
  248. u32 idt_vectoring_info_field;
  249. u32 idt_vectoring_error_code;
  250. u32 vm_exit_instruction_len;
  251. u32 vmx_instruction_info;
  252. u32 guest_es_limit;
  253. u32 guest_cs_limit;
  254. u32 guest_ss_limit;
  255. u32 guest_ds_limit;
  256. u32 guest_fs_limit;
  257. u32 guest_gs_limit;
  258. u32 guest_ldtr_limit;
  259. u32 guest_tr_limit;
  260. u32 guest_gdtr_limit;
  261. u32 guest_idtr_limit;
  262. u32 guest_es_ar_bytes;
  263. u32 guest_cs_ar_bytes;
  264. u32 guest_ss_ar_bytes;
  265. u32 guest_ds_ar_bytes;
  266. u32 guest_fs_ar_bytes;
  267. u32 guest_gs_ar_bytes;
  268. u32 guest_ldtr_ar_bytes;
  269. u32 guest_tr_ar_bytes;
  270. u32 guest_interruptibility_info;
  271. u32 guest_activity_state;
  272. u32 guest_sysenter_cs;
  273. u32 host_ia32_sysenter_cs;
  274. u32 vmx_preemption_timer_value;
  275. u32 padding32[7]; /* room for future expansion */
  276. u16 virtual_processor_id;
  277. u16 guest_es_selector;
  278. u16 guest_cs_selector;
  279. u16 guest_ss_selector;
  280. u16 guest_ds_selector;
  281. u16 guest_fs_selector;
  282. u16 guest_gs_selector;
  283. u16 guest_ldtr_selector;
  284. u16 guest_tr_selector;
  285. u16 host_es_selector;
  286. u16 host_cs_selector;
  287. u16 host_ss_selector;
  288. u16 host_ds_selector;
  289. u16 host_fs_selector;
  290. u16 host_gs_selector;
  291. u16 host_tr_selector;
  292. };
  293. /*
  294. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  295. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  296. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  297. */
  298. #define VMCS12_REVISION 0x11e57ed0
  299. /*
  300. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  301. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  302. * current implementation, 4K are reserved to avoid future complications.
  303. */
  304. #define VMCS12_SIZE 0x1000
  305. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  306. struct vmcs02_list {
  307. struct list_head list;
  308. gpa_t vmptr;
  309. struct loaded_vmcs vmcs02;
  310. };
  311. /*
  312. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  313. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  314. */
  315. struct nested_vmx {
  316. /* Has the level1 guest done vmxon? */
  317. bool vmxon;
  318. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  319. gpa_t current_vmptr;
  320. /* The host-usable pointer to the above */
  321. struct page *current_vmcs12_page;
  322. struct vmcs12 *current_vmcs12;
  323. struct vmcs *current_shadow_vmcs;
  324. /*
  325. * Indicates if the shadow vmcs must be updated with the
  326. * data hold by vmcs12
  327. */
  328. bool sync_shadow_vmcs;
  329. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  330. struct list_head vmcs02_pool;
  331. int vmcs02_num;
  332. u64 vmcs01_tsc_offset;
  333. /* L2 must run next, and mustn't decide to exit to L1. */
  334. bool nested_run_pending;
  335. /*
  336. * Guest pages referred to in vmcs02 with host-physical pointers, so
  337. * we must keep them pinned while L2 runs.
  338. */
  339. struct page *apic_access_page;
  340. u64 msr_ia32_feature_control;
  341. };
  342. #define POSTED_INTR_ON 0
  343. /* Posted-Interrupt Descriptor */
  344. struct pi_desc {
  345. u32 pir[8]; /* Posted interrupt requested */
  346. u32 control; /* bit 0 of control is outstanding notification bit */
  347. u32 rsvd[7];
  348. } __aligned(64);
  349. static bool pi_test_and_set_on(struct pi_desc *pi_desc)
  350. {
  351. return test_and_set_bit(POSTED_INTR_ON,
  352. (unsigned long *)&pi_desc->control);
  353. }
  354. static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
  355. {
  356. return test_and_clear_bit(POSTED_INTR_ON,
  357. (unsigned long *)&pi_desc->control);
  358. }
  359. static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
  360. {
  361. return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
  362. }
  363. struct vcpu_vmx {
  364. struct kvm_vcpu vcpu;
  365. unsigned long host_rsp;
  366. u8 fail;
  367. u8 cpl;
  368. bool nmi_known_unmasked;
  369. u32 exit_intr_info;
  370. u32 idt_vectoring_info;
  371. ulong rflags;
  372. struct shared_msr_entry *guest_msrs;
  373. int nmsrs;
  374. int save_nmsrs;
  375. unsigned long host_idt_base;
  376. #ifdef CONFIG_X86_64
  377. u64 msr_host_kernel_gs_base;
  378. u64 msr_guest_kernel_gs_base;
  379. #endif
  380. /*
  381. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  382. * non-nested (L1) guest, it always points to vmcs01. For a nested
  383. * guest (L2), it points to a different VMCS.
  384. */
  385. struct loaded_vmcs vmcs01;
  386. struct loaded_vmcs *loaded_vmcs;
  387. bool __launched; /* temporary, used in vmx_vcpu_run */
  388. struct msr_autoload {
  389. unsigned nr;
  390. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  391. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  392. } msr_autoload;
  393. struct {
  394. int loaded;
  395. u16 fs_sel, gs_sel, ldt_sel;
  396. #ifdef CONFIG_X86_64
  397. u16 ds_sel, es_sel;
  398. #endif
  399. int gs_ldt_reload_needed;
  400. int fs_reload_needed;
  401. } host_state;
  402. struct {
  403. int vm86_active;
  404. ulong save_rflags;
  405. struct kvm_segment segs[8];
  406. } rmode;
  407. struct {
  408. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  409. struct kvm_save_segment {
  410. u16 selector;
  411. unsigned long base;
  412. u32 limit;
  413. u32 ar;
  414. } seg[8];
  415. } segment_cache;
  416. int vpid;
  417. bool emulation_required;
  418. /* Support for vnmi-less CPUs */
  419. int soft_vnmi_blocked;
  420. ktime_t entry_time;
  421. s64 vnmi_blocked_time;
  422. u32 exit_reason;
  423. bool rdtscp_enabled;
  424. /* Posted interrupt descriptor */
  425. struct pi_desc pi_desc;
  426. /* Support for a guest hypervisor (nested VMX) */
  427. struct nested_vmx nested;
  428. };
  429. enum segment_cache_field {
  430. SEG_FIELD_SEL = 0,
  431. SEG_FIELD_BASE = 1,
  432. SEG_FIELD_LIMIT = 2,
  433. SEG_FIELD_AR = 3,
  434. SEG_FIELD_NR = 4
  435. };
  436. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  437. {
  438. return container_of(vcpu, struct vcpu_vmx, vcpu);
  439. }
  440. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  441. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  442. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  443. [number##_HIGH] = VMCS12_OFFSET(name)+4
  444. static const unsigned long shadow_read_only_fields[] = {
  445. /*
  446. * We do NOT shadow fields that are modified when L0
  447. * traps and emulates any vmx instruction (e.g. VMPTRLD,
  448. * VMXON...) executed by L1.
  449. * For example, VM_INSTRUCTION_ERROR is read
  450. * by L1 if a vmx instruction fails (part of the error path).
  451. * Note the code assumes this logic. If for some reason
  452. * we start shadowing these fields then we need to
  453. * force a shadow sync when L0 emulates vmx instructions
  454. * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
  455. * by nested_vmx_failValid)
  456. */
  457. VM_EXIT_REASON,
  458. VM_EXIT_INTR_INFO,
  459. VM_EXIT_INSTRUCTION_LEN,
  460. IDT_VECTORING_INFO_FIELD,
  461. IDT_VECTORING_ERROR_CODE,
  462. VM_EXIT_INTR_ERROR_CODE,
  463. EXIT_QUALIFICATION,
  464. GUEST_LINEAR_ADDRESS,
  465. GUEST_PHYSICAL_ADDRESS
  466. };
  467. static const int max_shadow_read_only_fields =
  468. ARRAY_SIZE(shadow_read_only_fields);
  469. static const unsigned long shadow_read_write_fields[] = {
  470. GUEST_RIP,
  471. GUEST_RSP,
  472. GUEST_CR0,
  473. GUEST_CR3,
  474. GUEST_CR4,
  475. GUEST_INTERRUPTIBILITY_INFO,
  476. GUEST_RFLAGS,
  477. GUEST_CS_SELECTOR,
  478. GUEST_CS_AR_BYTES,
  479. GUEST_CS_LIMIT,
  480. GUEST_CS_BASE,
  481. GUEST_ES_BASE,
  482. CR0_GUEST_HOST_MASK,
  483. CR0_READ_SHADOW,
  484. CR4_READ_SHADOW,
  485. TSC_OFFSET,
  486. EXCEPTION_BITMAP,
  487. CPU_BASED_VM_EXEC_CONTROL,
  488. VM_ENTRY_EXCEPTION_ERROR_CODE,
  489. VM_ENTRY_INTR_INFO_FIELD,
  490. VM_ENTRY_INSTRUCTION_LEN,
  491. VM_ENTRY_EXCEPTION_ERROR_CODE,
  492. HOST_FS_BASE,
  493. HOST_GS_BASE,
  494. HOST_FS_SELECTOR,
  495. HOST_GS_SELECTOR
  496. };
  497. static const int max_shadow_read_write_fields =
  498. ARRAY_SIZE(shadow_read_write_fields);
  499. static const unsigned short vmcs_field_to_offset_table[] = {
  500. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  501. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  502. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  503. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  504. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  505. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  506. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  507. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  508. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  509. FIELD(HOST_ES_SELECTOR, host_es_selector),
  510. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  511. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  512. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  513. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  514. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  515. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  516. FIELD64(IO_BITMAP_A, io_bitmap_a),
  517. FIELD64(IO_BITMAP_B, io_bitmap_b),
  518. FIELD64(MSR_BITMAP, msr_bitmap),
  519. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  520. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  521. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  522. FIELD64(TSC_OFFSET, tsc_offset),
  523. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  524. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  525. FIELD64(EPT_POINTER, ept_pointer),
  526. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  527. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  528. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  529. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  530. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  531. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  532. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  533. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  534. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  535. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  536. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  537. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  538. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  539. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  540. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  541. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  542. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  543. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  544. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  545. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  546. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  547. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  548. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  549. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  550. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  551. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  552. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  553. FIELD(TPR_THRESHOLD, tpr_threshold),
  554. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  555. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  556. FIELD(VM_EXIT_REASON, vm_exit_reason),
  557. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  558. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  559. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  560. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  561. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  562. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  563. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  564. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  565. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  566. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  567. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  568. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  569. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  570. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  571. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  572. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  573. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  574. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  575. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  576. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  577. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  578. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  579. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  580. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  581. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  582. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  583. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  584. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  585. FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
  586. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  587. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  588. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  589. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  590. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  591. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  592. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  593. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  594. FIELD(EXIT_QUALIFICATION, exit_qualification),
  595. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  596. FIELD(GUEST_CR0, guest_cr0),
  597. FIELD(GUEST_CR3, guest_cr3),
  598. FIELD(GUEST_CR4, guest_cr4),
  599. FIELD(GUEST_ES_BASE, guest_es_base),
  600. FIELD(GUEST_CS_BASE, guest_cs_base),
  601. FIELD(GUEST_SS_BASE, guest_ss_base),
  602. FIELD(GUEST_DS_BASE, guest_ds_base),
  603. FIELD(GUEST_FS_BASE, guest_fs_base),
  604. FIELD(GUEST_GS_BASE, guest_gs_base),
  605. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  606. FIELD(GUEST_TR_BASE, guest_tr_base),
  607. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  608. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  609. FIELD(GUEST_DR7, guest_dr7),
  610. FIELD(GUEST_RSP, guest_rsp),
  611. FIELD(GUEST_RIP, guest_rip),
  612. FIELD(GUEST_RFLAGS, guest_rflags),
  613. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  614. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  615. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  616. FIELD(HOST_CR0, host_cr0),
  617. FIELD(HOST_CR3, host_cr3),
  618. FIELD(HOST_CR4, host_cr4),
  619. FIELD(HOST_FS_BASE, host_fs_base),
  620. FIELD(HOST_GS_BASE, host_gs_base),
  621. FIELD(HOST_TR_BASE, host_tr_base),
  622. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  623. FIELD(HOST_IDTR_BASE, host_idtr_base),
  624. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  625. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  626. FIELD(HOST_RSP, host_rsp),
  627. FIELD(HOST_RIP, host_rip),
  628. };
  629. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  630. static inline short vmcs_field_to_offset(unsigned long field)
  631. {
  632. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  633. return -1;
  634. return vmcs_field_to_offset_table[field];
  635. }
  636. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  637. {
  638. return to_vmx(vcpu)->nested.current_vmcs12;
  639. }
  640. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  641. {
  642. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  643. if (is_error_page(page))
  644. return NULL;
  645. return page;
  646. }
  647. static void nested_release_page(struct page *page)
  648. {
  649. kvm_release_page_dirty(page);
  650. }
  651. static void nested_release_page_clean(struct page *page)
  652. {
  653. kvm_release_page_clean(page);
  654. }
  655. static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
  656. static u64 construct_eptp(unsigned long root_hpa);
  657. static void kvm_cpu_vmxon(u64 addr);
  658. static void kvm_cpu_vmxoff(void);
  659. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  660. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  661. struct kvm_segment *var, int seg);
  662. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  663. struct kvm_segment *var, int seg);
  664. static bool guest_state_valid(struct kvm_vcpu *vcpu);
  665. static u32 vmx_segment_access_rights(struct kvm_segment *var);
  666. static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
  667. static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
  668. static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
  669. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  670. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  671. /*
  672. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  673. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  674. */
  675. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  676. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  677. static unsigned long *vmx_io_bitmap_a;
  678. static unsigned long *vmx_io_bitmap_b;
  679. static unsigned long *vmx_msr_bitmap_legacy;
  680. static unsigned long *vmx_msr_bitmap_longmode;
  681. static unsigned long *vmx_msr_bitmap_legacy_x2apic;
  682. static unsigned long *vmx_msr_bitmap_longmode_x2apic;
  683. static unsigned long *vmx_vmread_bitmap;
  684. static unsigned long *vmx_vmwrite_bitmap;
  685. static bool cpu_has_load_ia32_efer;
  686. static bool cpu_has_load_perf_global_ctrl;
  687. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  688. static DEFINE_SPINLOCK(vmx_vpid_lock);
  689. static struct vmcs_config {
  690. int size;
  691. int order;
  692. u32 revision_id;
  693. u32 pin_based_exec_ctrl;
  694. u32 cpu_based_exec_ctrl;
  695. u32 cpu_based_2nd_exec_ctrl;
  696. u32 vmexit_ctrl;
  697. u32 vmentry_ctrl;
  698. } vmcs_config;
  699. static struct vmx_capability {
  700. u32 ept;
  701. u32 vpid;
  702. } vmx_capability;
  703. #define VMX_SEGMENT_FIELD(seg) \
  704. [VCPU_SREG_##seg] = { \
  705. .selector = GUEST_##seg##_SELECTOR, \
  706. .base = GUEST_##seg##_BASE, \
  707. .limit = GUEST_##seg##_LIMIT, \
  708. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  709. }
  710. static const struct kvm_vmx_segment_field {
  711. unsigned selector;
  712. unsigned base;
  713. unsigned limit;
  714. unsigned ar_bytes;
  715. } kvm_vmx_segment_fields[] = {
  716. VMX_SEGMENT_FIELD(CS),
  717. VMX_SEGMENT_FIELD(DS),
  718. VMX_SEGMENT_FIELD(ES),
  719. VMX_SEGMENT_FIELD(FS),
  720. VMX_SEGMENT_FIELD(GS),
  721. VMX_SEGMENT_FIELD(SS),
  722. VMX_SEGMENT_FIELD(TR),
  723. VMX_SEGMENT_FIELD(LDTR),
  724. };
  725. static u64 host_efer;
  726. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  727. /*
  728. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  729. * away by decrementing the array size.
  730. */
  731. static const u32 vmx_msr_index[] = {
  732. #ifdef CONFIG_X86_64
  733. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  734. #endif
  735. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  736. };
  737. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  738. static inline bool is_page_fault(u32 intr_info)
  739. {
  740. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  741. INTR_INFO_VALID_MASK)) ==
  742. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  743. }
  744. static inline bool is_no_device(u32 intr_info)
  745. {
  746. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  747. INTR_INFO_VALID_MASK)) ==
  748. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  749. }
  750. static inline bool is_invalid_opcode(u32 intr_info)
  751. {
  752. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  753. INTR_INFO_VALID_MASK)) ==
  754. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  755. }
  756. static inline bool is_external_interrupt(u32 intr_info)
  757. {
  758. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  759. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  760. }
  761. static inline bool is_machine_check(u32 intr_info)
  762. {
  763. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  764. INTR_INFO_VALID_MASK)) ==
  765. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  766. }
  767. static inline bool cpu_has_vmx_msr_bitmap(void)
  768. {
  769. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  770. }
  771. static inline bool cpu_has_vmx_tpr_shadow(void)
  772. {
  773. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  774. }
  775. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  776. {
  777. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  778. }
  779. static inline bool cpu_has_secondary_exec_ctrls(void)
  780. {
  781. return vmcs_config.cpu_based_exec_ctrl &
  782. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  783. }
  784. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  785. {
  786. return vmcs_config.cpu_based_2nd_exec_ctrl &
  787. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  788. }
  789. static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
  790. {
  791. return vmcs_config.cpu_based_2nd_exec_ctrl &
  792. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  793. }
  794. static inline bool cpu_has_vmx_apic_register_virt(void)
  795. {
  796. return vmcs_config.cpu_based_2nd_exec_ctrl &
  797. SECONDARY_EXEC_APIC_REGISTER_VIRT;
  798. }
  799. static inline bool cpu_has_vmx_virtual_intr_delivery(void)
  800. {
  801. return vmcs_config.cpu_based_2nd_exec_ctrl &
  802. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  803. }
  804. static inline bool cpu_has_vmx_posted_intr(void)
  805. {
  806. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
  807. }
  808. static inline bool cpu_has_vmx_apicv(void)
  809. {
  810. return cpu_has_vmx_apic_register_virt() &&
  811. cpu_has_vmx_virtual_intr_delivery() &&
  812. cpu_has_vmx_posted_intr();
  813. }
  814. static inline bool cpu_has_vmx_flexpriority(void)
  815. {
  816. return cpu_has_vmx_tpr_shadow() &&
  817. cpu_has_vmx_virtualize_apic_accesses();
  818. }
  819. static inline bool cpu_has_vmx_ept_execute_only(void)
  820. {
  821. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  822. }
  823. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  824. {
  825. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  826. }
  827. static inline bool cpu_has_vmx_eptp_writeback(void)
  828. {
  829. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  830. }
  831. static inline bool cpu_has_vmx_ept_2m_page(void)
  832. {
  833. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  834. }
  835. static inline bool cpu_has_vmx_ept_1g_page(void)
  836. {
  837. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  838. }
  839. static inline bool cpu_has_vmx_ept_4levels(void)
  840. {
  841. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  842. }
  843. static inline bool cpu_has_vmx_ept_ad_bits(void)
  844. {
  845. return vmx_capability.ept & VMX_EPT_AD_BIT;
  846. }
  847. static inline bool cpu_has_vmx_invept_context(void)
  848. {
  849. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  850. }
  851. static inline bool cpu_has_vmx_invept_global(void)
  852. {
  853. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  854. }
  855. static inline bool cpu_has_vmx_invvpid_single(void)
  856. {
  857. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  858. }
  859. static inline bool cpu_has_vmx_invvpid_global(void)
  860. {
  861. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  862. }
  863. static inline bool cpu_has_vmx_ept(void)
  864. {
  865. return vmcs_config.cpu_based_2nd_exec_ctrl &
  866. SECONDARY_EXEC_ENABLE_EPT;
  867. }
  868. static inline bool cpu_has_vmx_unrestricted_guest(void)
  869. {
  870. return vmcs_config.cpu_based_2nd_exec_ctrl &
  871. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  872. }
  873. static inline bool cpu_has_vmx_ple(void)
  874. {
  875. return vmcs_config.cpu_based_2nd_exec_ctrl &
  876. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  877. }
  878. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  879. {
  880. return flexpriority_enabled && irqchip_in_kernel(kvm);
  881. }
  882. static inline bool cpu_has_vmx_vpid(void)
  883. {
  884. return vmcs_config.cpu_based_2nd_exec_ctrl &
  885. SECONDARY_EXEC_ENABLE_VPID;
  886. }
  887. static inline bool cpu_has_vmx_rdtscp(void)
  888. {
  889. return vmcs_config.cpu_based_2nd_exec_ctrl &
  890. SECONDARY_EXEC_RDTSCP;
  891. }
  892. static inline bool cpu_has_vmx_invpcid(void)
  893. {
  894. return vmcs_config.cpu_based_2nd_exec_ctrl &
  895. SECONDARY_EXEC_ENABLE_INVPCID;
  896. }
  897. static inline bool cpu_has_virtual_nmis(void)
  898. {
  899. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  900. }
  901. static inline bool cpu_has_vmx_wbinvd_exit(void)
  902. {
  903. return vmcs_config.cpu_based_2nd_exec_ctrl &
  904. SECONDARY_EXEC_WBINVD_EXITING;
  905. }
  906. static inline bool cpu_has_vmx_shadow_vmcs(void)
  907. {
  908. u64 vmx_msr;
  909. rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
  910. /* check if the cpu supports writing r/o exit information fields */
  911. if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
  912. return false;
  913. return vmcs_config.cpu_based_2nd_exec_ctrl &
  914. SECONDARY_EXEC_SHADOW_VMCS;
  915. }
  916. static inline bool report_flexpriority(void)
  917. {
  918. return flexpriority_enabled;
  919. }
  920. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  921. {
  922. return vmcs12->cpu_based_vm_exec_control & bit;
  923. }
  924. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  925. {
  926. return (vmcs12->cpu_based_vm_exec_control &
  927. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  928. (vmcs12->secondary_vm_exec_control & bit);
  929. }
  930. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
  931. {
  932. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  933. }
  934. static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
  935. {
  936. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
  937. }
  938. static inline bool is_exception(u32 intr_info)
  939. {
  940. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  941. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  942. }
  943. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  944. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  945. struct vmcs12 *vmcs12,
  946. u32 reason, unsigned long qualification);
  947. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  948. {
  949. int i;
  950. for (i = 0; i < vmx->nmsrs; ++i)
  951. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  952. return i;
  953. return -1;
  954. }
  955. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  956. {
  957. struct {
  958. u64 vpid : 16;
  959. u64 rsvd : 48;
  960. u64 gva;
  961. } operand = { vpid, 0, gva };
  962. asm volatile (__ex(ASM_VMX_INVVPID)
  963. /* CF==1 or ZF==1 --> rc = -1 */
  964. "; ja 1f ; ud2 ; 1:"
  965. : : "a"(&operand), "c"(ext) : "cc", "memory");
  966. }
  967. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  968. {
  969. struct {
  970. u64 eptp, gpa;
  971. } operand = {eptp, gpa};
  972. asm volatile (__ex(ASM_VMX_INVEPT)
  973. /* CF==1 or ZF==1 --> rc = -1 */
  974. "; ja 1f ; ud2 ; 1:\n"
  975. : : "a" (&operand), "c" (ext) : "cc", "memory");
  976. }
  977. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  978. {
  979. int i;
  980. i = __find_msr_index(vmx, msr);
  981. if (i >= 0)
  982. return &vmx->guest_msrs[i];
  983. return NULL;
  984. }
  985. static void vmcs_clear(struct vmcs *vmcs)
  986. {
  987. u64 phys_addr = __pa(vmcs);
  988. u8 error;
  989. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  990. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  991. : "cc", "memory");
  992. if (error)
  993. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  994. vmcs, phys_addr);
  995. }
  996. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  997. {
  998. vmcs_clear(loaded_vmcs->vmcs);
  999. loaded_vmcs->cpu = -1;
  1000. loaded_vmcs->launched = 0;
  1001. }
  1002. static void vmcs_load(struct vmcs *vmcs)
  1003. {
  1004. u64 phys_addr = __pa(vmcs);
  1005. u8 error;
  1006. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  1007. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  1008. : "cc", "memory");
  1009. if (error)
  1010. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  1011. vmcs, phys_addr);
  1012. }
  1013. #ifdef CONFIG_KEXEC
  1014. /*
  1015. * This bitmap is used to indicate whether the vmclear
  1016. * operation is enabled on all cpus. All disabled by
  1017. * default.
  1018. */
  1019. static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
  1020. static inline void crash_enable_local_vmclear(int cpu)
  1021. {
  1022. cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
  1023. }
  1024. static inline void crash_disable_local_vmclear(int cpu)
  1025. {
  1026. cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
  1027. }
  1028. static inline int crash_local_vmclear_enabled(int cpu)
  1029. {
  1030. return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
  1031. }
  1032. static void crash_vmclear_local_loaded_vmcss(void)
  1033. {
  1034. int cpu = raw_smp_processor_id();
  1035. struct loaded_vmcs *v;
  1036. if (!crash_local_vmclear_enabled(cpu))
  1037. return;
  1038. list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
  1039. loaded_vmcss_on_cpu_link)
  1040. vmcs_clear(v->vmcs);
  1041. }
  1042. #else
  1043. static inline void crash_enable_local_vmclear(int cpu) { }
  1044. static inline void crash_disable_local_vmclear(int cpu) { }
  1045. #endif /* CONFIG_KEXEC */
  1046. static void __loaded_vmcs_clear(void *arg)
  1047. {
  1048. struct loaded_vmcs *loaded_vmcs = arg;
  1049. int cpu = raw_smp_processor_id();
  1050. if (loaded_vmcs->cpu != cpu)
  1051. return; /* vcpu migration can race with cpu offline */
  1052. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  1053. per_cpu(current_vmcs, cpu) = NULL;
  1054. crash_disable_local_vmclear(cpu);
  1055. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  1056. /*
  1057. * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
  1058. * is before setting loaded_vmcs->vcpu to -1 which is done in
  1059. * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
  1060. * then adds the vmcs into percpu list before it is deleted.
  1061. */
  1062. smp_wmb();
  1063. loaded_vmcs_init(loaded_vmcs);
  1064. crash_enable_local_vmclear(cpu);
  1065. }
  1066. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  1067. {
  1068. int cpu = loaded_vmcs->cpu;
  1069. if (cpu != -1)
  1070. smp_call_function_single(cpu,
  1071. __loaded_vmcs_clear, loaded_vmcs, 1);
  1072. }
  1073. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  1074. {
  1075. if (vmx->vpid == 0)
  1076. return;
  1077. if (cpu_has_vmx_invvpid_single())
  1078. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  1079. }
  1080. static inline void vpid_sync_vcpu_global(void)
  1081. {
  1082. if (cpu_has_vmx_invvpid_global())
  1083. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  1084. }
  1085. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  1086. {
  1087. if (cpu_has_vmx_invvpid_single())
  1088. vpid_sync_vcpu_single(vmx);
  1089. else
  1090. vpid_sync_vcpu_global();
  1091. }
  1092. static inline void ept_sync_global(void)
  1093. {
  1094. if (cpu_has_vmx_invept_global())
  1095. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  1096. }
  1097. static inline void ept_sync_context(u64 eptp)
  1098. {
  1099. if (enable_ept) {
  1100. if (cpu_has_vmx_invept_context())
  1101. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  1102. else
  1103. ept_sync_global();
  1104. }
  1105. }
  1106. static __always_inline unsigned long vmcs_readl(unsigned long field)
  1107. {
  1108. unsigned long value;
  1109. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  1110. : "=a"(value) : "d"(field) : "cc");
  1111. return value;
  1112. }
  1113. static __always_inline u16 vmcs_read16(unsigned long field)
  1114. {
  1115. return vmcs_readl(field);
  1116. }
  1117. static __always_inline u32 vmcs_read32(unsigned long field)
  1118. {
  1119. return vmcs_readl(field);
  1120. }
  1121. static __always_inline u64 vmcs_read64(unsigned long field)
  1122. {
  1123. #ifdef CONFIG_X86_64
  1124. return vmcs_readl(field);
  1125. #else
  1126. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  1127. #endif
  1128. }
  1129. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  1130. {
  1131. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  1132. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  1133. dump_stack();
  1134. }
  1135. static void vmcs_writel(unsigned long field, unsigned long value)
  1136. {
  1137. u8 error;
  1138. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  1139. : "=q"(error) : "a"(value), "d"(field) : "cc");
  1140. if (unlikely(error))
  1141. vmwrite_error(field, value);
  1142. }
  1143. static void vmcs_write16(unsigned long field, u16 value)
  1144. {
  1145. vmcs_writel(field, value);
  1146. }
  1147. static void vmcs_write32(unsigned long field, u32 value)
  1148. {
  1149. vmcs_writel(field, value);
  1150. }
  1151. static void vmcs_write64(unsigned long field, u64 value)
  1152. {
  1153. vmcs_writel(field, value);
  1154. #ifndef CONFIG_X86_64
  1155. asm volatile ("");
  1156. vmcs_writel(field+1, value >> 32);
  1157. #endif
  1158. }
  1159. static void vmcs_clear_bits(unsigned long field, u32 mask)
  1160. {
  1161. vmcs_writel(field, vmcs_readl(field) & ~mask);
  1162. }
  1163. static void vmcs_set_bits(unsigned long field, u32 mask)
  1164. {
  1165. vmcs_writel(field, vmcs_readl(field) | mask);
  1166. }
  1167. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  1168. {
  1169. vmx->segment_cache.bitmask = 0;
  1170. }
  1171. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1172. unsigned field)
  1173. {
  1174. bool ret;
  1175. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1176. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1177. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1178. vmx->segment_cache.bitmask = 0;
  1179. }
  1180. ret = vmx->segment_cache.bitmask & mask;
  1181. vmx->segment_cache.bitmask |= mask;
  1182. return ret;
  1183. }
  1184. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1185. {
  1186. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1187. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1188. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1189. return *p;
  1190. }
  1191. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1192. {
  1193. ulong *p = &vmx->segment_cache.seg[seg].base;
  1194. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1195. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1196. return *p;
  1197. }
  1198. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1199. {
  1200. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1201. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1202. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1203. return *p;
  1204. }
  1205. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1206. {
  1207. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1208. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1209. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1210. return *p;
  1211. }
  1212. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1213. {
  1214. u32 eb;
  1215. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1216. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1217. if ((vcpu->guest_debug &
  1218. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1219. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1220. eb |= 1u << BP_VECTOR;
  1221. if (to_vmx(vcpu)->rmode.vm86_active)
  1222. eb = ~0;
  1223. if (enable_ept)
  1224. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1225. if (vcpu->fpu_active)
  1226. eb &= ~(1u << NM_VECTOR);
  1227. /* When we are running a nested L2 guest and L1 specified for it a
  1228. * certain exception bitmap, we must trap the same exceptions and pass
  1229. * them to L1. When running L2, we will only handle the exceptions
  1230. * specified above if L1 did not want them.
  1231. */
  1232. if (is_guest_mode(vcpu))
  1233. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1234. vmcs_write32(EXCEPTION_BITMAP, eb);
  1235. }
  1236. static void clear_atomic_switch_msr_special(unsigned long entry,
  1237. unsigned long exit)
  1238. {
  1239. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1240. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1241. }
  1242. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1243. {
  1244. unsigned i;
  1245. struct msr_autoload *m = &vmx->msr_autoload;
  1246. switch (msr) {
  1247. case MSR_EFER:
  1248. if (cpu_has_load_ia32_efer) {
  1249. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1250. VM_EXIT_LOAD_IA32_EFER);
  1251. return;
  1252. }
  1253. break;
  1254. case MSR_CORE_PERF_GLOBAL_CTRL:
  1255. if (cpu_has_load_perf_global_ctrl) {
  1256. clear_atomic_switch_msr_special(
  1257. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1258. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1259. return;
  1260. }
  1261. break;
  1262. }
  1263. for (i = 0; i < m->nr; ++i)
  1264. if (m->guest[i].index == msr)
  1265. break;
  1266. if (i == m->nr)
  1267. return;
  1268. --m->nr;
  1269. m->guest[i] = m->guest[m->nr];
  1270. m->host[i] = m->host[m->nr];
  1271. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1272. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1273. }
  1274. static void add_atomic_switch_msr_special(unsigned long entry,
  1275. unsigned long exit, unsigned long guest_val_vmcs,
  1276. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1277. {
  1278. vmcs_write64(guest_val_vmcs, guest_val);
  1279. vmcs_write64(host_val_vmcs, host_val);
  1280. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1281. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1282. }
  1283. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1284. u64 guest_val, u64 host_val)
  1285. {
  1286. unsigned i;
  1287. struct msr_autoload *m = &vmx->msr_autoload;
  1288. switch (msr) {
  1289. case MSR_EFER:
  1290. if (cpu_has_load_ia32_efer) {
  1291. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1292. VM_EXIT_LOAD_IA32_EFER,
  1293. GUEST_IA32_EFER,
  1294. HOST_IA32_EFER,
  1295. guest_val, host_val);
  1296. return;
  1297. }
  1298. break;
  1299. case MSR_CORE_PERF_GLOBAL_CTRL:
  1300. if (cpu_has_load_perf_global_ctrl) {
  1301. add_atomic_switch_msr_special(
  1302. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1303. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1304. GUEST_IA32_PERF_GLOBAL_CTRL,
  1305. HOST_IA32_PERF_GLOBAL_CTRL,
  1306. guest_val, host_val);
  1307. return;
  1308. }
  1309. break;
  1310. }
  1311. for (i = 0; i < m->nr; ++i)
  1312. if (m->guest[i].index == msr)
  1313. break;
  1314. if (i == NR_AUTOLOAD_MSRS) {
  1315. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1316. "Can't add msr %x\n", msr);
  1317. return;
  1318. } else if (i == m->nr) {
  1319. ++m->nr;
  1320. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1321. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1322. }
  1323. m->guest[i].index = msr;
  1324. m->guest[i].value = guest_val;
  1325. m->host[i].index = msr;
  1326. m->host[i].value = host_val;
  1327. }
  1328. static void reload_tss(void)
  1329. {
  1330. /*
  1331. * VT restores TR but not its size. Useless.
  1332. */
  1333. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1334. struct desc_struct *descs;
  1335. descs = (void *)gdt->address;
  1336. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1337. load_TR_desc();
  1338. }
  1339. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1340. {
  1341. u64 guest_efer;
  1342. u64 ignore_bits;
  1343. guest_efer = vmx->vcpu.arch.efer;
  1344. /*
  1345. * NX is emulated; LMA and LME handled by hardware; SCE meaningless
  1346. * outside long mode
  1347. */
  1348. ignore_bits = EFER_NX | EFER_SCE;
  1349. #ifdef CONFIG_X86_64
  1350. ignore_bits |= EFER_LMA | EFER_LME;
  1351. /* SCE is meaningful only in long mode on Intel */
  1352. if (guest_efer & EFER_LMA)
  1353. ignore_bits &= ~(u64)EFER_SCE;
  1354. #endif
  1355. guest_efer &= ~ignore_bits;
  1356. guest_efer |= host_efer & ignore_bits;
  1357. vmx->guest_msrs[efer_offset].data = guest_efer;
  1358. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1359. clear_atomic_switch_msr(vmx, MSR_EFER);
  1360. /* On ept, can't emulate nx, and must switch nx atomically */
  1361. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1362. guest_efer = vmx->vcpu.arch.efer;
  1363. if (!(guest_efer & EFER_LMA))
  1364. guest_efer &= ~EFER_LME;
  1365. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1366. return false;
  1367. }
  1368. return true;
  1369. }
  1370. static unsigned long segment_base(u16 selector)
  1371. {
  1372. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1373. struct desc_struct *d;
  1374. unsigned long table_base;
  1375. unsigned long v;
  1376. if (!(selector & ~3))
  1377. return 0;
  1378. table_base = gdt->address;
  1379. if (selector & 4) { /* from ldt */
  1380. u16 ldt_selector = kvm_read_ldt();
  1381. if (!(ldt_selector & ~3))
  1382. return 0;
  1383. table_base = segment_base(ldt_selector);
  1384. }
  1385. d = (struct desc_struct *)(table_base + (selector & ~7));
  1386. v = get_desc_base(d);
  1387. #ifdef CONFIG_X86_64
  1388. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1389. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1390. #endif
  1391. return v;
  1392. }
  1393. static inline unsigned long kvm_read_tr_base(void)
  1394. {
  1395. u16 tr;
  1396. asm("str %0" : "=g"(tr));
  1397. return segment_base(tr);
  1398. }
  1399. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1400. {
  1401. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1402. int i;
  1403. if (vmx->host_state.loaded)
  1404. return;
  1405. vmx->host_state.loaded = 1;
  1406. /*
  1407. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1408. * allow segment selectors with cpl > 0 or ti == 1.
  1409. */
  1410. vmx->host_state.ldt_sel = kvm_read_ldt();
  1411. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1412. savesegment(fs, vmx->host_state.fs_sel);
  1413. if (!(vmx->host_state.fs_sel & 7)) {
  1414. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1415. vmx->host_state.fs_reload_needed = 0;
  1416. } else {
  1417. vmcs_write16(HOST_FS_SELECTOR, 0);
  1418. vmx->host_state.fs_reload_needed = 1;
  1419. }
  1420. savesegment(gs, vmx->host_state.gs_sel);
  1421. if (!(vmx->host_state.gs_sel & 7))
  1422. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1423. else {
  1424. vmcs_write16(HOST_GS_SELECTOR, 0);
  1425. vmx->host_state.gs_ldt_reload_needed = 1;
  1426. }
  1427. #ifdef CONFIG_X86_64
  1428. savesegment(ds, vmx->host_state.ds_sel);
  1429. savesegment(es, vmx->host_state.es_sel);
  1430. #endif
  1431. #ifdef CONFIG_X86_64
  1432. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1433. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1434. #else
  1435. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1436. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1437. #endif
  1438. #ifdef CONFIG_X86_64
  1439. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1440. if (is_long_mode(&vmx->vcpu))
  1441. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1442. #endif
  1443. for (i = 0; i < vmx->save_nmsrs; ++i)
  1444. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1445. vmx->guest_msrs[i].data,
  1446. vmx->guest_msrs[i].mask);
  1447. }
  1448. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1449. {
  1450. if (!vmx->host_state.loaded)
  1451. return;
  1452. ++vmx->vcpu.stat.host_state_reload;
  1453. vmx->host_state.loaded = 0;
  1454. #ifdef CONFIG_X86_64
  1455. if (is_long_mode(&vmx->vcpu))
  1456. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1457. #endif
  1458. if (vmx->host_state.gs_ldt_reload_needed) {
  1459. kvm_load_ldt(vmx->host_state.ldt_sel);
  1460. #ifdef CONFIG_X86_64
  1461. load_gs_index(vmx->host_state.gs_sel);
  1462. #else
  1463. loadsegment(gs, vmx->host_state.gs_sel);
  1464. #endif
  1465. }
  1466. if (vmx->host_state.fs_reload_needed)
  1467. loadsegment(fs, vmx->host_state.fs_sel);
  1468. #ifdef CONFIG_X86_64
  1469. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1470. loadsegment(ds, vmx->host_state.ds_sel);
  1471. loadsegment(es, vmx->host_state.es_sel);
  1472. }
  1473. #endif
  1474. reload_tss();
  1475. #ifdef CONFIG_X86_64
  1476. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1477. #endif
  1478. /*
  1479. * If the FPU is not active (through the host task or
  1480. * the guest vcpu), then restore the cr0.TS bit.
  1481. */
  1482. if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
  1483. stts();
  1484. load_gdt(&__get_cpu_var(host_gdt));
  1485. }
  1486. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1487. {
  1488. preempt_disable();
  1489. __vmx_load_host_state(vmx);
  1490. preempt_enable();
  1491. }
  1492. /*
  1493. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1494. * vcpu mutex is already taken.
  1495. */
  1496. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1497. {
  1498. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1499. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1500. if (!vmm_exclusive)
  1501. kvm_cpu_vmxon(phys_addr);
  1502. else if (vmx->loaded_vmcs->cpu != cpu)
  1503. loaded_vmcs_clear(vmx->loaded_vmcs);
  1504. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1505. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1506. vmcs_load(vmx->loaded_vmcs->vmcs);
  1507. }
  1508. if (vmx->loaded_vmcs->cpu != cpu) {
  1509. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1510. unsigned long sysenter_esp;
  1511. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1512. local_irq_disable();
  1513. crash_disable_local_vmclear(cpu);
  1514. /*
  1515. * Read loaded_vmcs->cpu should be before fetching
  1516. * loaded_vmcs->loaded_vmcss_on_cpu_link.
  1517. * See the comments in __loaded_vmcs_clear().
  1518. */
  1519. smp_rmb();
  1520. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1521. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1522. crash_enable_local_vmclear(cpu);
  1523. local_irq_enable();
  1524. /*
  1525. * Linux uses per-cpu TSS and GDT, so set these when switching
  1526. * processors.
  1527. */
  1528. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1529. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1530. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1531. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1532. vmx->loaded_vmcs->cpu = cpu;
  1533. }
  1534. }
  1535. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1536. {
  1537. __vmx_load_host_state(to_vmx(vcpu));
  1538. if (!vmm_exclusive) {
  1539. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1540. vcpu->cpu = -1;
  1541. kvm_cpu_vmxoff();
  1542. }
  1543. }
  1544. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1545. {
  1546. ulong cr0;
  1547. if (vcpu->fpu_active)
  1548. return;
  1549. vcpu->fpu_active = 1;
  1550. cr0 = vmcs_readl(GUEST_CR0);
  1551. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1552. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1553. vmcs_writel(GUEST_CR0, cr0);
  1554. update_exception_bitmap(vcpu);
  1555. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1556. if (is_guest_mode(vcpu))
  1557. vcpu->arch.cr0_guest_owned_bits &=
  1558. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1559. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1560. }
  1561. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1562. /*
  1563. * Return the cr0 value that a nested guest would read. This is a combination
  1564. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1565. * its hypervisor (cr0_read_shadow).
  1566. */
  1567. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1568. {
  1569. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1570. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1571. }
  1572. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1573. {
  1574. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1575. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1576. }
  1577. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1578. {
  1579. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1580. * set this *before* calling this function.
  1581. */
  1582. vmx_decache_cr0_guest_bits(vcpu);
  1583. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1584. update_exception_bitmap(vcpu);
  1585. vcpu->arch.cr0_guest_owned_bits = 0;
  1586. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1587. if (is_guest_mode(vcpu)) {
  1588. /*
  1589. * L1's specified read shadow might not contain the TS bit,
  1590. * so now that we turned on shadowing of this bit, we need to
  1591. * set this bit of the shadow. Like in nested_vmx_run we need
  1592. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1593. * up-to-date here because we just decached cr0.TS (and we'll
  1594. * only update vmcs12->guest_cr0 on nested exit).
  1595. */
  1596. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1597. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1598. (vcpu->arch.cr0 & X86_CR0_TS);
  1599. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1600. } else
  1601. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1602. }
  1603. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1604. {
  1605. unsigned long rflags, save_rflags;
  1606. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1607. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1608. rflags = vmcs_readl(GUEST_RFLAGS);
  1609. if (to_vmx(vcpu)->rmode.vm86_active) {
  1610. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1611. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1612. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1613. }
  1614. to_vmx(vcpu)->rflags = rflags;
  1615. }
  1616. return to_vmx(vcpu)->rflags;
  1617. }
  1618. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1619. {
  1620. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1621. to_vmx(vcpu)->rflags = rflags;
  1622. if (to_vmx(vcpu)->rmode.vm86_active) {
  1623. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1624. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1625. }
  1626. vmcs_writel(GUEST_RFLAGS, rflags);
  1627. }
  1628. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1629. {
  1630. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1631. int ret = 0;
  1632. if (interruptibility & GUEST_INTR_STATE_STI)
  1633. ret |= KVM_X86_SHADOW_INT_STI;
  1634. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1635. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1636. return ret & mask;
  1637. }
  1638. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1639. {
  1640. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1641. u32 interruptibility = interruptibility_old;
  1642. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1643. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1644. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1645. else if (mask & KVM_X86_SHADOW_INT_STI)
  1646. interruptibility |= GUEST_INTR_STATE_STI;
  1647. if ((interruptibility != interruptibility_old))
  1648. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1649. }
  1650. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1651. {
  1652. unsigned long rip;
  1653. rip = kvm_rip_read(vcpu);
  1654. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1655. kvm_rip_write(vcpu, rip);
  1656. /* skipping an emulated instruction also counts */
  1657. vmx_set_interrupt_shadow(vcpu, 0);
  1658. }
  1659. /*
  1660. * KVM wants to inject page-faults which it got to the guest. This function
  1661. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1662. * This function assumes it is called with the exit reason in vmcs02 being
  1663. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1664. * is running).
  1665. */
  1666. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1667. {
  1668. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1669. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1670. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1671. return 0;
  1672. nested_vmx_vmexit(vcpu);
  1673. return 1;
  1674. }
  1675. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1676. bool has_error_code, u32 error_code,
  1677. bool reinject)
  1678. {
  1679. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1680. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1681. if (!reinject && nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1682. !vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
  1683. return;
  1684. if (has_error_code) {
  1685. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1686. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1687. }
  1688. if (vmx->rmode.vm86_active) {
  1689. int inc_eip = 0;
  1690. if (kvm_exception_is_soft(nr))
  1691. inc_eip = vcpu->arch.event_exit_inst_len;
  1692. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1693. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1694. return;
  1695. }
  1696. if (kvm_exception_is_soft(nr)) {
  1697. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1698. vmx->vcpu.arch.event_exit_inst_len);
  1699. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1700. } else
  1701. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1702. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1703. }
  1704. static bool vmx_rdtscp_supported(void)
  1705. {
  1706. return cpu_has_vmx_rdtscp();
  1707. }
  1708. static bool vmx_invpcid_supported(void)
  1709. {
  1710. return cpu_has_vmx_invpcid() && enable_ept;
  1711. }
  1712. /*
  1713. * Swap MSR entry in host/guest MSR entry array.
  1714. */
  1715. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1716. {
  1717. struct shared_msr_entry tmp;
  1718. tmp = vmx->guest_msrs[to];
  1719. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1720. vmx->guest_msrs[from] = tmp;
  1721. }
  1722. static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
  1723. {
  1724. unsigned long *msr_bitmap;
  1725. if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
  1726. if (is_long_mode(vcpu))
  1727. msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
  1728. else
  1729. msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
  1730. } else {
  1731. if (is_long_mode(vcpu))
  1732. msr_bitmap = vmx_msr_bitmap_longmode;
  1733. else
  1734. msr_bitmap = vmx_msr_bitmap_legacy;
  1735. }
  1736. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1737. }
  1738. /*
  1739. * Set up the vmcs to automatically save and restore system
  1740. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1741. * mode, as fiddling with msrs is very expensive.
  1742. */
  1743. static void setup_msrs(struct vcpu_vmx *vmx)
  1744. {
  1745. int save_nmsrs, index;
  1746. save_nmsrs = 0;
  1747. #ifdef CONFIG_X86_64
  1748. if (is_long_mode(&vmx->vcpu)) {
  1749. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1750. if (index >= 0)
  1751. move_msr_up(vmx, index, save_nmsrs++);
  1752. index = __find_msr_index(vmx, MSR_LSTAR);
  1753. if (index >= 0)
  1754. move_msr_up(vmx, index, save_nmsrs++);
  1755. index = __find_msr_index(vmx, MSR_CSTAR);
  1756. if (index >= 0)
  1757. move_msr_up(vmx, index, save_nmsrs++);
  1758. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1759. if (index >= 0 && vmx->rdtscp_enabled)
  1760. move_msr_up(vmx, index, save_nmsrs++);
  1761. /*
  1762. * MSR_STAR is only needed on long mode guests, and only
  1763. * if efer.sce is enabled.
  1764. */
  1765. index = __find_msr_index(vmx, MSR_STAR);
  1766. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1767. move_msr_up(vmx, index, save_nmsrs++);
  1768. }
  1769. #endif
  1770. index = __find_msr_index(vmx, MSR_EFER);
  1771. if (index >= 0 && update_transition_efer(vmx, index))
  1772. move_msr_up(vmx, index, save_nmsrs++);
  1773. vmx->save_nmsrs = save_nmsrs;
  1774. if (cpu_has_vmx_msr_bitmap())
  1775. vmx_set_msr_bitmap(&vmx->vcpu);
  1776. }
  1777. /*
  1778. * reads and returns guest's timestamp counter "register"
  1779. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1780. */
  1781. static u64 guest_read_tsc(void)
  1782. {
  1783. u64 host_tsc, tsc_offset;
  1784. rdtscll(host_tsc);
  1785. tsc_offset = vmcs_read64(TSC_OFFSET);
  1786. return host_tsc + tsc_offset;
  1787. }
  1788. /*
  1789. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1790. * counter, even if a nested guest (L2) is currently running.
  1791. */
  1792. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
  1793. {
  1794. u64 tsc_offset;
  1795. tsc_offset = is_guest_mode(vcpu) ?
  1796. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1797. vmcs_read64(TSC_OFFSET);
  1798. return host_tsc + tsc_offset;
  1799. }
  1800. /*
  1801. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1802. * software catchup for faster rates on slower CPUs.
  1803. */
  1804. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1805. {
  1806. if (!scale)
  1807. return;
  1808. if (user_tsc_khz > tsc_khz) {
  1809. vcpu->arch.tsc_catchup = 1;
  1810. vcpu->arch.tsc_always_catchup = 1;
  1811. } else
  1812. WARN(1, "user requested TSC rate below hardware speed\n");
  1813. }
  1814. static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
  1815. {
  1816. return vmcs_read64(TSC_OFFSET);
  1817. }
  1818. /*
  1819. * writes 'offset' into guest's timestamp counter offset register
  1820. */
  1821. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1822. {
  1823. if (is_guest_mode(vcpu)) {
  1824. /*
  1825. * We're here if L1 chose not to trap WRMSR to TSC. According
  1826. * to the spec, this should set L1's TSC; The offset that L1
  1827. * set for L2 remains unchanged, and still needs to be added
  1828. * to the newly set TSC to get L2's TSC.
  1829. */
  1830. struct vmcs12 *vmcs12;
  1831. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1832. /* recalculate vmcs02.TSC_OFFSET: */
  1833. vmcs12 = get_vmcs12(vcpu);
  1834. vmcs_write64(TSC_OFFSET, offset +
  1835. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1836. vmcs12->tsc_offset : 0));
  1837. } else {
  1838. trace_kvm_write_tsc_offset(vcpu->vcpu_id,
  1839. vmcs_read64(TSC_OFFSET), offset);
  1840. vmcs_write64(TSC_OFFSET, offset);
  1841. }
  1842. }
  1843. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1844. {
  1845. u64 offset = vmcs_read64(TSC_OFFSET);
  1846. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1847. if (is_guest_mode(vcpu)) {
  1848. /* Even when running L2, the adjustment needs to apply to L1 */
  1849. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1850. } else
  1851. trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
  1852. offset + adjustment);
  1853. }
  1854. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1855. {
  1856. return target_tsc - native_read_tsc();
  1857. }
  1858. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1859. {
  1860. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1861. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1862. }
  1863. /*
  1864. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1865. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1866. * all guests if the "nested" module option is off, and can also be disabled
  1867. * for a single guest by disabling its VMX cpuid bit.
  1868. */
  1869. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1870. {
  1871. return nested && guest_cpuid_has_vmx(vcpu);
  1872. }
  1873. /*
  1874. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1875. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1876. * The same values should also be used to verify that vmcs12 control fields are
  1877. * valid during nested entry from L1 to L2.
  1878. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1879. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1880. * bit in the high half is on if the corresponding bit in the control field
  1881. * may be on. See also vmx_control_verify().
  1882. * TODO: allow these variables to be modified (downgraded) by module options
  1883. * or other means.
  1884. */
  1885. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1886. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1887. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1888. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1889. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1890. static u32 nested_vmx_misc_low, nested_vmx_misc_high;
  1891. static u32 nested_vmx_ept_caps;
  1892. static __init void nested_vmx_setup_ctls_msrs(void)
  1893. {
  1894. /*
  1895. * Note that as a general rule, the high half of the MSRs (bits in
  1896. * the control fields which may be 1) should be initialized by the
  1897. * intersection of the underlying hardware's MSR (i.e., features which
  1898. * can be supported) and the list of features we want to expose -
  1899. * because they are known to be properly supported in our code.
  1900. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1901. * be set to 0, meaning that L1 may turn off any of these bits. The
  1902. * reason is that if one of these bits is necessary, it will appear
  1903. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1904. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1905. * nested_vmx_exit_handled() will not pass related exits to L1.
  1906. * These rules have exceptions below.
  1907. */
  1908. /* pin-based controls */
  1909. rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
  1910. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
  1911. /*
  1912. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1913. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1914. */
  1915. nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
  1916. nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
  1917. PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
  1918. PIN_BASED_VMX_PREEMPTION_TIMER;
  1919. nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
  1920. /*
  1921. * Exit controls
  1922. * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
  1923. * 17 must be 1.
  1924. */
  1925. rdmsr(MSR_IA32_VMX_EXIT_CTLS,
  1926. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
  1927. nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
  1928. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1929. nested_vmx_exit_ctls_high &=
  1930. #ifdef CONFIG_X86_64
  1931. VM_EXIT_HOST_ADDR_SPACE_SIZE |
  1932. #endif
  1933. VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
  1934. nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
  1935. VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER);
  1936. /* entry controls */
  1937. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1938. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1939. /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
  1940. nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
  1941. nested_vmx_entry_ctls_high &=
  1942. #ifdef CONFIG_X86_64
  1943. VM_ENTRY_IA32E_MODE |
  1944. #endif
  1945. VM_ENTRY_LOAD_IA32_PAT;
  1946. nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
  1947. VM_ENTRY_LOAD_IA32_EFER);
  1948. /* cpu-based controls */
  1949. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1950. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1951. nested_vmx_procbased_ctls_low = 0;
  1952. nested_vmx_procbased_ctls_high &=
  1953. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1954. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1955. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1956. CPU_BASED_CR3_STORE_EXITING |
  1957. #ifdef CONFIG_X86_64
  1958. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1959. #endif
  1960. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1961. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1962. CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
  1963. CPU_BASED_PAUSE_EXITING |
  1964. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1965. /*
  1966. * We can allow some features even when not supported by the
  1967. * hardware. For example, L1 can specify an MSR bitmap - and we
  1968. * can use it to avoid exits to L1 - even when L0 runs L2
  1969. * without MSR bitmaps.
  1970. */
  1971. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1972. /* secondary cpu-based controls */
  1973. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1974. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1975. nested_vmx_secondary_ctls_low = 0;
  1976. nested_vmx_secondary_ctls_high &=
  1977. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1978. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1979. SECONDARY_EXEC_WBINVD_EXITING;
  1980. if (enable_ept) {
  1981. /* nested EPT: emulate EPT also to L1 */
  1982. nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
  1983. nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
  1984. VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
  1985. nested_vmx_ept_caps &= vmx_capability.ept;
  1986. /*
  1987. * Since invept is completely emulated we support both global
  1988. * and context invalidation independent of what host cpu
  1989. * supports
  1990. */
  1991. nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
  1992. VMX_EPT_EXTENT_CONTEXT_BIT;
  1993. } else
  1994. nested_vmx_ept_caps = 0;
  1995. /* miscellaneous data */
  1996. rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
  1997. nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
  1998. VMX_MISC_SAVE_EFER_LMA;
  1999. nested_vmx_misc_high = 0;
  2000. }
  2001. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  2002. {
  2003. /*
  2004. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  2005. */
  2006. return ((control & high) | low) == control;
  2007. }
  2008. static inline u64 vmx_control_msr(u32 low, u32 high)
  2009. {
  2010. return low | ((u64)high << 32);
  2011. }
  2012. /*
  2013. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  2014. * also let it use VMX-specific MSRs.
  2015. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  2016. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  2017. * like all other MSRs).
  2018. */
  2019. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  2020. {
  2021. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  2022. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  2023. /*
  2024. * According to the spec, processors which do not support VMX
  2025. * should throw a #GP(0) when VMX capability MSRs are read.
  2026. */
  2027. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  2028. return 1;
  2029. }
  2030. switch (msr_index) {
  2031. case MSR_IA32_FEATURE_CONTROL:
  2032. if (nested_vmx_allowed(vcpu)) {
  2033. *pdata = to_vmx(vcpu)->nested.msr_ia32_feature_control;
  2034. break;
  2035. }
  2036. return 0;
  2037. case MSR_IA32_VMX_BASIC:
  2038. /*
  2039. * This MSR reports some information about VMX support. We
  2040. * should return information about the VMX we emulate for the
  2041. * guest, and the VMCS structure we give it - not about the
  2042. * VMX support of the underlying hardware.
  2043. */
  2044. *pdata = VMCS12_REVISION |
  2045. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  2046. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  2047. break;
  2048. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  2049. case MSR_IA32_VMX_PINBASED_CTLS:
  2050. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  2051. nested_vmx_pinbased_ctls_high);
  2052. break;
  2053. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  2054. case MSR_IA32_VMX_PROCBASED_CTLS:
  2055. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  2056. nested_vmx_procbased_ctls_high);
  2057. break;
  2058. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  2059. case MSR_IA32_VMX_EXIT_CTLS:
  2060. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  2061. nested_vmx_exit_ctls_high);
  2062. break;
  2063. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  2064. case MSR_IA32_VMX_ENTRY_CTLS:
  2065. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  2066. nested_vmx_entry_ctls_high);
  2067. break;
  2068. case MSR_IA32_VMX_MISC:
  2069. *pdata = vmx_control_msr(nested_vmx_misc_low,
  2070. nested_vmx_misc_high);
  2071. break;
  2072. /*
  2073. * These MSRs specify bits which the guest must keep fixed (on or off)
  2074. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  2075. * We picked the standard core2 setting.
  2076. */
  2077. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  2078. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  2079. case MSR_IA32_VMX_CR0_FIXED0:
  2080. *pdata = VMXON_CR0_ALWAYSON;
  2081. break;
  2082. case MSR_IA32_VMX_CR0_FIXED1:
  2083. *pdata = -1ULL;
  2084. break;
  2085. case MSR_IA32_VMX_CR4_FIXED0:
  2086. *pdata = VMXON_CR4_ALWAYSON;
  2087. break;
  2088. case MSR_IA32_VMX_CR4_FIXED1:
  2089. *pdata = -1ULL;
  2090. break;
  2091. case MSR_IA32_VMX_VMCS_ENUM:
  2092. *pdata = 0x1f;
  2093. break;
  2094. case MSR_IA32_VMX_PROCBASED_CTLS2:
  2095. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  2096. nested_vmx_secondary_ctls_high);
  2097. break;
  2098. case MSR_IA32_VMX_EPT_VPID_CAP:
  2099. /* Currently, no nested vpid support */
  2100. *pdata = nested_vmx_ept_caps;
  2101. break;
  2102. default:
  2103. return 0;
  2104. }
  2105. return 1;
  2106. }
  2107. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  2108. {
  2109. u32 msr_index = msr_info->index;
  2110. u64 data = msr_info->data;
  2111. bool host_initialized = msr_info->host_initiated;
  2112. if (!nested_vmx_allowed(vcpu))
  2113. return 0;
  2114. if (msr_index == MSR_IA32_FEATURE_CONTROL) {
  2115. if (!host_initialized &&
  2116. to_vmx(vcpu)->nested.msr_ia32_feature_control
  2117. & FEATURE_CONTROL_LOCKED)
  2118. return 0;
  2119. to_vmx(vcpu)->nested.msr_ia32_feature_control = data;
  2120. return 1;
  2121. }
  2122. /*
  2123. * No need to treat VMX capability MSRs specially: If we don't handle
  2124. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  2125. */
  2126. return 0;
  2127. }
  2128. /*
  2129. * Reads an msr value (of 'msr_index') into 'pdata'.
  2130. * Returns 0 on success, non-0 otherwise.
  2131. * Assumes vcpu_load() was already called.
  2132. */
  2133. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  2134. {
  2135. u64 data;
  2136. struct shared_msr_entry *msr;
  2137. if (!pdata) {
  2138. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  2139. return -EINVAL;
  2140. }
  2141. switch (msr_index) {
  2142. #ifdef CONFIG_X86_64
  2143. case MSR_FS_BASE:
  2144. data = vmcs_readl(GUEST_FS_BASE);
  2145. break;
  2146. case MSR_GS_BASE:
  2147. data = vmcs_readl(GUEST_GS_BASE);
  2148. break;
  2149. case MSR_KERNEL_GS_BASE:
  2150. vmx_load_host_state(to_vmx(vcpu));
  2151. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  2152. break;
  2153. #endif
  2154. case MSR_EFER:
  2155. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2156. case MSR_IA32_TSC:
  2157. data = guest_read_tsc();
  2158. break;
  2159. case MSR_IA32_SYSENTER_CS:
  2160. data = vmcs_read32(GUEST_SYSENTER_CS);
  2161. break;
  2162. case MSR_IA32_SYSENTER_EIP:
  2163. data = vmcs_readl(GUEST_SYSENTER_EIP);
  2164. break;
  2165. case MSR_IA32_SYSENTER_ESP:
  2166. data = vmcs_readl(GUEST_SYSENTER_ESP);
  2167. break;
  2168. case MSR_TSC_AUX:
  2169. if (!to_vmx(vcpu)->rdtscp_enabled)
  2170. return 1;
  2171. /* Otherwise falls through */
  2172. default:
  2173. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  2174. return 0;
  2175. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  2176. if (msr) {
  2177. data = msr->data;
  2178. break;
  2179. }
  2180. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2181. }
  2182. *pdata = data;
  2183. return 0;
  2184. }
  2185. /*
  2186. * Writes msr value into into the appropriate "register".
  2187. * Returns 0 on success, non-0 otherwise.
  2188. * Assumes vcpu_load() was already called.
  2189. */
  2190. static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  2191. {
  2192. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2193. struct shared_msr_entry *msr;
  2194. int ret = 0;
  2195. u32 msr_index = msr_info->index;
  2196. u64 data = msr_info->data;
  2197. switch (msr_index) {
  2198. case MSR_EFER:
  2199. ret = kvm_set_msr_common(vcpu, msr_info);
  2200. break;
  2201. #ifdef CONFIG_X86_64
  2202. case MSR_FS_BASE:
  2203. vmx_segment_cache_clear(vmx);
  2204. vmcs_writel(GUEST_FS_BASE, data);
  2205. break;
  2206. case MSR_GS_BASE:
  2207. vmx_segment_cache_clear(vmx);
  2208. vmcs_writel(GUEST_GS_BASE, data);
  2209. break;
  2210. case MSR_KERNEL_GS_BASE:
  2211. vmx_load_host_state(vmx);
  2212. vmx->msr_guest_kernel_gs_base = data;
  2213. break;
  2214. #endif
  2215. case MSR_IA32_SYSENTER_CS:
  2216. vmcs_write32(GUEST_SYSENTER_CS, data);
  2217. break;
  2218. case MSR_IA32_SYSENTER_EIP:
  2219. vmcs_writel(GUEST_SYSENTER_EIP, data);
  2220. break;
  2221. case MSR_IA32_SYSENTER_ESP:
  2222. vmcs_writel(GUEST_SYSENTER_ESP, data);
  2223. break;
  2224. case MSR_IA32_TSC:
  2225. kvm_write_tsc(vcpu, msr_info);
  2226. break;
  2227. case MSR_IA32_CR_PAT:
  2228. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2229. vmcs_write64(GUEST_IA32_PAT, data);
  2230. vcpu->arch.pat = data;
  2231. break;
  2232. }
  2233. ret = kvm_set_msr_common(vcpu, msr_info);
  2234. break;
  2235. case MSR_IA32_TSC_ADJUST:
  2236. ret = kvm_set_msr_common(vcpu, msr_info);
  2237. break;
  2238. case MSR_TSC_AUX:
  2239. if (!vmx->rdtscp_enabled)
  2240. return 1;
  2241. /* Check reserved bit, higher 32 bits should be zero */
  2242. if ((data >> 32) != 0)
  2243. return 1;
  2244. /* Otherwise falls through */
  2245. default:
  2246. if (vmx_set_vmx_msr(vcpu, msr_info))
  2247. break;
  2248. msr = find_msr_entry(vmx, msr_index);
  2249. if (msr) {
  2250. msr->data = data;
  2251. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  2252. preempt_disable();
  2253. kvm_set_shared_msr(msr->index, msr->data,
  2254. msr->mask);
  2255. preempt_enable();
  2256. }
  2257. break;
  2258. }
  2259. ret = kvm_set_msr_common(vcpu, msr_info);
  2260. }
  2261. return ret;
  2262. }
  2263. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2264. {
  2265. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2266. switch (reg) {
  2267. case VCPU_REGS_RSP:
  2268. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2269. break;
  2270. case VCPU_REGS_RIP:
  2271. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2272. break;
  2273. case VCPU_EXREG_PDPTR:
  2274. if (enable_ept)
  2275. ept_save_pdptrs(vcpu);
  2276. break;
  2277. default:
  2278. break;
  2279. }
  2280. }
  2281. static __init int cpu_has_kvm_support(void)
  2282. {
  2283. return cpu_has_vmx();
  2284. }
  2285. static __init int vmx_disabled_by_bios(void)
  2286. {
  2287. u64 msr;
  2288. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2289. if (msr & FEATURE_CONTROL_LOCKED) {
  2290. /* launched w/ TXT and VMX disabled */
  2291. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2292. && tboot_enabled())
  2293. return 1;
  2294. /* launched w/o TXT and VMX only enabled w/ TXT */
  2295. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2296. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2297. && !tboot_enabled()) {
  2298. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2299. "activate TXT before enabling KVM\n");
  2300. return 1;
  2301. }
  2302. /* launched w/o TXT and VMX disabled */
  2303. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2304. && !tboot_enabled())
  2305. return 1;
  2306. }
  2307. return 0;
  2308. }
  2309. static void kvm_cpu_vmxon(u64 addr)
  2310. {
  2311. asm volatile (ASM_VMX_VMXON_RAX
  2312. : : "a"(&addr), "m"(addr)
  2313. : "memory", "cc");
  2314. }
  2315. static int hardware_enable(void *garbage)
  2316. {
  2317. int cpu = raw_smp_processor_id();
  2318. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2319. u64 old, test_bits;
  2320. if (read_cr4() & X86_CR4_VMXE)
  2321. return -EBUSY;
  2322. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2323. /*
  2324. * Now we can enable the vmclear operation in kdump
  2325. * since the loaded_vmcss_on_cpu list on this cpu
  2326. * has been initialized.
  2327. *
  2328. * Though the cpu is not in VMX operation now, there
  2329. * is no problem to enable the vmclear operation
  2330. * for the loaded_vmcss_on_cpu list is empty!
  2331. */
  2332. crash_enable_local_vmclear(cpu);
  2333. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2334. test_bits = FEATURE_CONTROL_LOCKED;
  2335. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2336. if (tboot_enabled())
  2337. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2338. if ((old & test_bits) != test_bits) {
  2339. /* enable and lock */
  2340. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2341. }
  2342. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2343. if (vmm_exclusive) {
  2344. kvm_cpu_vmxon(phys_addr);
  2345. ept_sync_global();
  2346. }
  2347. native_store_gdt(&__get_cpu_var(host_gdt));
  2348. return 0;
  2349. }
  2350. static void vmclear_local_loaded_vmcss(void)
  2351. {
  2352. int cpu = raw_smp_processor_id();
  2353. struct loaded_vmcs *v, *n;
  2354. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2355. loaded_vmcss_on_cpu_link)
  2356. __loaded_vmcs_clear(v);
  2357. }
  2358. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2359. * tricks.
  2360. */
  2361. static void kvm_cpu_vmxoff(void)
  2362. {
  2363. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2364. }
  2365. static void hardware_disable(void *garbage)
  2366. {
  2367. if (vmm_exclusive) {
  2368. vmclear_local_loaded_vmcss();
  2369. kvm_cpu_vmxoff();
  2370. }
  2371. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2372. }
  2373. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2374. u32 msr, u32 *result)
  2375. {
  2376. u32 vmx_msr_low, vmx_msr_high;
  2377. u32 ctl = ctl_min | ctl_opt;
  2378. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2379. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2380. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2381. /* Ensure minimum (required) set of control bits are supported. */
  2382. if (ctl_min & ~ctl)
  2383. return -EIO;
  2384. *result = ctl;
  2385. return 0;
  2386. }
  2387. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2388. {
  2389. u32 vmx_msr_low, vmx_msr_high;
  2390. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2391. return vmx_msr_high & ctl;
  2392. }
  2393. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2394. {
  2395. u32 vmx_msr_low, vmx_msr_high;
  2396. u32 min, opt, min2, opt2;
  2397. u32 _pin_based_exec_control = 0;
  2398. u32 _cpu_based_exec_control = 0;
  2399. u32 _cpu_based_2nd_exec_control = 0;
  2400. u32 _vmexit_control = 0;
  2401. u32 _vmentry_control = 0;
  2402. min = CPU_BASED_HLT_EXITING |
  2403. #ifdef CONFIG_X86_64
  2404. CPU_BASED_CR8_LOAD_EXITING |
  2405. CPU_BASED_CR8_STORE_EXITING |
  2406. #endif
  2407. CPU_BASED_CR3_LOAD_EXITING |
  2408. CPU_BASED_CR3_STORE_EXITING |
  2409. CPU_BASED_USE_IO_BITMAPS |
  2410. CPU_BASED_MOV_DR_EXITING |
  2411. CPU_BASED_USE_TSC_OFFSETING |
  2412. CPU_BASED_MWAIT_EXITING |
  2413. CPU_BASED_MONITOR_EXITING |
  2414. CPU_BASED_INVLPG_EXITING |
  2415. CPU_BASED_RDPMC_EXITING;
  2416. opt = CPU_BASED_TPR_SHADOW |
  2417. CPU_BASED_USE_MSR_BITMAPS |
  2418. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2419. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2420. &_cpu_based_exec_control) < 0)
  2421. return -EIO;
  2422. #ifdef CONFIG_X86_64
  2423. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2424. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2425. ~CPU_BASED_CR8_STORE_EXITING;
  2426. #endif
  2427. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2428. min2 = 0;
  2429. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2430. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2431. SECONDARY_EXEC_WBINVD_EXITING |
  2432. SECONDARY_EXEC_ENABLE_VPID |
  2433. SECONDARY_EXEC_ENABLE_EPT |
  2434. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2435. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2436. SECONDARY_EXEC_RDTSCP |
  2437. SECONDARY_EXEC_ENABLE_INVPCID |
  2438. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2439. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
  2440. SECONDARY_EXEC_SHADOW_VMCS;
  2441. if (adjust_vmx_controls(min2, opt2,
  2442. MSR_IA32_VMX_PROCBASED_CTLS2,
  2443. &_cpu_based_2nd_exec_control) < 0)
  2444. return -EIO;
  2445. }
  2446. #ifndef CONFIG_X86_64
  2447. if (!(_cpu_based_2nd_exec_control &
  2448. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2449. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2450. #endif
  2451. if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2452. _cpu_based_2nd_exec_control &= ~(
  2453. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2454. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2455. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  2456. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2457. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2458. enabled */
  2459. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2460. CPU_BASED_CR3_STORE_EXITING |
  2461. CPU_BASED_INVLPG_EXITING);
  2462. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2463. vmx_capability.ept, vmx_capability.vpid);
  2464. }
  2465. min = 0;
  2466. #ifdef CONFIG_X86_64
  2467. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2468. #endif
  2469. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
  2470. VM_EXIT_ACK_INTR_ON_EXIT;
  2471. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2472. &_vmexit_control) < 0)
  2473. return -EIO;
  2474. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2475. opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
  2476. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2477. &_pin_based_exec_control) < 0)
  2478. return -EIO;
  2479. if (!(_cpu_based_2nd_exec_control &
  2480. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
  2481. !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
  2482. _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
  2483. min = 0;
  2484. opt = VM_ENTRY_LOAD_IA32_PAT;
  2485. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2486. &_vmentry_control) < 0)
  2487. return -EIO;
  2488. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2489. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2490. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2491. return -EIO;
  2492. #ifdef CONFIG_X86_64
  2493. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2494. if (vmx_msr_high & (1u<<16))
  2495. return -EIO;
  2496. #endif
  2497. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2498. if (((vmx_msr_high >> 18) & 15) != 6)
  2499. return -EIO;
  2500. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2501. vmcs_conf->order = get_order(vmcs_config.size);
  2502. vmcs_conf->revision_id = vmx_msr_low;
  2503. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2504. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2505. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2506. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2507. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2508. cpu_has_load_ia32_efer =
  2509. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2510. VM_ENTRY_LOAD_IA32_EFER)
  2511. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2512. VM_EXIT_LOAD_IA32_EFER);
  2513. cpu_has_load_perf_global_ctrl =
  2514. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2515. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2516. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2517. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2518. /*
  2519. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2520. * but due to arrata below it can't be used. Workaround is to use
  2521. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2522. *
  2523. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2524. *
  2525. * AAK155 (model 26)
  2526. * AAP115 (model 30)
  2527. * AAT100 (model 37)
  2528. * BC86,AAY89,BD102 (model 44)
  2529. * BA97 (model 46)
  2530. *
  2531. */
  2532. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2533. switch (boot_cpu_data.x86_model) {
  2534. case 26:
  2535. case 30:
  2536. case 37:
  2537. case 44:
  2538. case 46:
  2539. cpu_has_load_perf_global_ctrl = false;
  2540. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2541. "does not work properly. Using workaround\n");
  2542. break;
  2543. default:
  2544. break;
  2545. }
  2546. }
  2547. return 0;
  2548. }
  2549. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2550. {
  2551. int node = cpu_to_node(cpu);
  2552. struct page *pages;
  2553. struct vmcs *vmcs;
  2554. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2555. if (!pages)
  2556. return NULL;
  2557. vmcs = page_address(pages);
  2558. memset(vmcs, 0, vmcs_config.size);
  2559. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2560. return vmcs;
  2561. }
  2562. static struct vmcs *alloc_vmcs(void)
  2563. {
  2564. return alloc_vmcs_cpu(raw_smp_processor_id());
  2565. }
  2566. static void free_vmcs(struct vmcs *vmcs)
  2567. {
  2568. free_pages((unsigned long)vmcs, vmcs_config.order);
  2569. }
  2570. /*
  2571. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2572. */
  2573. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2574. {
  2575. if (!loaded_vmcs->vmcs)
  2576. return;
  2577. loaded_vmcs_clear(loaded_vmcs);
  2578. free_vmcs(loaded_vmcs->vmcs);
  2579. loaded_vmcs->vmcs = NULL;
  2580. }
  2581. static void free_kvm_area(void)
  2582. {
  2583. int cpu;
  2584. for_each_possible_cpu(cpu) {
  2585. free_vmcs(per_cpu(vmxarea, cpu));
  2586. per_cpu(vmxarea, cpu) = NULL;
  2587. }
  2588. }
  2589. static __init int alloc_kvm_area(void)
  2590. {
  2591. int cpu;
  2592. for_each_possible_cpu(cpu) {
  2593. struct vmcs *vmcs;
  2594. vmcs = alloc_vmcs_cpu(cpu);
  2595. if (!vmcs) {
  2596. free_kvm_area();
  2597. return -ENOMEM;
  2598. }
  2599. per_cpu(vmxarea, cpu) = vmcs;
  2600. }
  2601. return 0;
  2602. }
  2603. static __init int hardware_setup(void)
  2604. {
  2605. if (setup_vmcs_config(&vmcs_config) < 0)
  2606. return -EIO;
  2607. if (boot_cpu_has(X86_FEATURE_NX))
  2608. kvm_enable_efer_bits(EFER_NX);
  2609. if (!cpu_has_vmx_vpid())
  2610. enable_vpid = 0;
  2611. if (!cpu_has_vmx_shadow_vmcs())
  2612. enable_shadow_vmcs = 0;
  2613. if (!cpu_has_vmx_ept() ||
  2614. !cpu_has_vmx_ept_4levels()) {
  2615. enable_ept = 0;
  2616. enable_unrestricted_guest = 0;
  2617. enable_ept_ad_bits = 0;
  2618. }
  2619. if (!cpu_has_vmx_ept_ad_bits())
  2620. enable_ept_ad_bits = 0;
  2621. if (!cpu_has_vmx_unrestricted_guest())
  2622. enable_unrestricted_guest = 0;
  2623. if (!cpu_has_vmx_flexpriority())
  2624. flexpriority_enabled = 0;
  2625. if (!cpu_has_vmx_tpr_shadow())
  2626. kvm_x86_ops->update_cr8_intercept = NULL;
  2627. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2628. kvm_disable_largepages();
  2629. if (!cpu_has_vmx_ple())
  2630. ple_gap = 0;
  2631. if (!cpu_has_vmx_apicv())
  2632. enable_apicv = 0;
  2633. if (enable_apicv)
  2634. kvm_x86_ops->update_cr8_intercept = NULL;
  2635. else {
  2636. kvm_x86_ops->hwapic_irr_update = NULL;
  2637. kvm_x86_ops->deliver_posted_interrupt = NULL;
  2638. kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
  2639. }
  2640. if (nested)
  2641. nested_vmx_setup_ctls_msrs();
  2642. return alloc_kvm_area();
  2643. }
  2644. static __exit void hardware_unsetup(void)
  2645. {
  2646. free_kvm_area();
  2647. }
  2648. static bool emulation_required(struct kvm_vcpu *vcpu)
  2649. {
  2650. return emulate_invalid_guest_state && !guest_state_valid(vcpu);
  2651. }
  2652. static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
  2653. struct kvm_segment *save)
  2654. {
  2655. if (!emulate_invalid_guest_state) {
  2656. /*
  2657. * CS and SS RPL should be equal during guest entry according
  2658. * to VMX spec, but in reality it is not always so. Since vcpu
  2659. * is in the middle of the transition from real mode to
  2660. * protected mode it is safe to assume that RPL 0 is a good
  2661. * default value.
  2662. */
  2663. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  2664. save->selector &= ~SELECTOR_RPL_MASK;
  2665. save->dpl = save->selector & SELECTOR_RPL_MASK;
  2666. save->s = 1;
  2667. }
  2668. vmx_set_segment(vcpu, save, seg);
  2669. }
  2670. static void enter_pmode(struct kvm_vcpu *vcpu)
  2671. {
  2672. unsigned long flags;
  2673. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2674. /*
  2675. * Update real mode segment cache. It may be not up-to-date if sement
  2676. * register was written while vcpu was in a guest mode.
  2677. */
  2678. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2679. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2680. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2681. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2682. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2683. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2684. vmx->rmode.vm86_active = 0;
  2685. vmx_segment_cache_clear(vmx);
  2686. vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2687. flags = vmcs_readl(GUEST_RFLAGS);
  2688. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2689. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2690. vmcs_writel(GUEST_RFLAGS, flags);
  2691. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2692. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2693. update_exception_bitmap(vcpu);
  2694. fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2695. fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2696. fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2697. fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2698. fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2699. fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2700. /* CPL is always 0 when CPU enters protected mode */
  2701. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2702. vmx->cpl = 0;
  2703. }
  2704. static void fix_rmode_seg(int seg, struct kvm_segment *save)
  2705. {
  2706. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2707. struct kvm_segment var = *save;
  2708. var.dpl = 0x3;
  2709. if (seg == VCPU_SREG_CS)
  2710. var.type = 0x3;
  2711. if (!emulate_invalid_guest_state) {
  2712. var.selector = var.base >> 4;
  2713. var.base = var.base & 0xffff0;
  2714. var.limit = 0xffff;
  2715. var.g = 0;
  2716. var.db = 0;
  2717. var.present = 1;
  2718. var.s = 1;
  2719. var.l = 0;
  2720. var.unusable = 0;
  2721. var.type = 0x3;
  2722. var.avl = 0;
  2723. if (save->base & 0xf)
  2724. printk_once(KERN_WARNING "kvm: segment base is not "
  2725. "paragraph aligned when entering "
  2726. "protected mode (seg=%d)", seg);
  2727. }
  2728. vmcs_write16(sf->selector, var.selector);
  2729. vmcs_write32(sf->base, var.base);
  2730. vmcs_write32(sf->limit, var.limit);
  2731. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
  2732. }
  2733. static void enter_rmode(struct kvm_vcpu *vcpu)
  2734. {
  2735. unsigned long flags;
  2736. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2737. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2738. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2739. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2740. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2741. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2742. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2743. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2744. vmx->rmode.vm86_active = 1;
  2745. /*
  2746. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2747. * vcpu. Warn the user that an update is overdue.
  2748. */
  2749. if (!vcpu->kvm->arch.tss_addr)
  2750. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2751. "called before entering vcpu\n");
  2752. vmx_segment_cache_clear(vmx);
  2753. vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
  2754. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2755. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2756. flags = vmcs_readl(GUEST_RFLAGS);
  2757. vmx->rmode.save_rflags = flags;
  2758. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2759. vmcs_writel(GUEST_RFLAGS, flags);
  2760. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2761. update_exception_bitmap(vcpu);
  2762. fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2763. fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2764. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2765. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2766. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2767. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2768. kvm_mmu_reset_context(vcpu);
  2769. }
  2770. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2771. {
  2772. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2773. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2774. if (!msr)
  2775. return;
  2776. /*
  2777. * Force kernel_gs_base reloading before EFER changes, as control
  2778. * of this msr depends on is_long_mode().
  2779. */
  2780. vmx_load_host_state(to_vmx(vcpu));
  2781. vcpu->arch.efer = efer;
  2782. if (efer & EFER_LMA) {
  2783. vmcs_write32(VM_ENTRY_CONTROLS,
  2784. vmcs_read32(VM_ENTRY_CONTROLS) |
  2785. VM_ENTRY_IA32E_MODE);
  2786. msr->data = efer;
  2787. } else {
  2788. vmcs_write32(VM_ENTRY_CONTROLS,
  2789. vmcs_read32(VM_ENTRY_CONTROLS) &
  2790. ~VM_ENTRY_IA32E_MODE);
  2791. msr->data = efer & ~EFER_LME;
  2792. }
  2793. setup_msrs(vmx);
  2794. }
  2795. #ifdef CONFIG_X86_64
  2796. static void enter_lmode(struct kvm_vcpu *vcpu)
  2797. {
  2798. u32 guest_tr_ar;
  2799. vmx_segment_cache_clear(to_vmx(vcpu));
  2800. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2801. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2802. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2803. __func__);
  2804. vmcs_write32(GUEST_TR_AR_BYTES,
  2805. (guest_tr_ar & ~AR_TYPE_MASK)
  2806. | AR_TYPE_BUSY_64_TSS);
  2807. }
  2808. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2809. }
  2810. static void exit_lmode(struct kvm_vcpu *vcpu)
  2811. {
  2812. vmcs_write32(VM_ENTRY_CONTROLS,
  2813. vmcs_read32(VM_ENTRY_CONTROLS)
  2814. & ~VM_ENTRY_IA32E_MODE);
  2815. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2816. }
  2817. #endif
  2818. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2819. {
  2820. vpid_sync_context(to_vmx(vcpu));
  2821. if (enable_ept) {
  2822. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2823. return;
  2824. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2825. }
  2826. }
  2827. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2828. {
  2829. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2830. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2831. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2832. }
  2833. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2834. {
  2835. if (enable_ept && is_paging(vcpu))
  2836. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2837. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2838. }
  2839. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2840. {
  2841. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2842. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2843. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2844. }
  2845. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2846. {
  2847. if (!test_bit(VCPU_EXREG_PDPTR,
  2848. (unsigned long *)&vcpu->arch.regs_dirty))
  2849. return;
  2850. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2851. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2852. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2853. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2854. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2855. }
  2856. }
  2857. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2858. {
  2859. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2860. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2861. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2862. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2863. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2864. }
  2865. __set_bit(VCPU_EXREG_PDPTR,
  2866. (unsigned long *)&vcpu->arch.regs_avail);
  2867. __set_bit(VCPU_EXREG_PDPTR,
  2868. (unsigned long *)&vcpu->arch.regs_dirty);
  2869. }
  2870. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2871. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2872. unsigned long cr0,
  2873. struct kvm_vcpu *vcpu)
  2874. {
  2875. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2876. vmx_decache_cr3(vcpu);
  2877. if (!(cr0 & X86_CR0_PG)) {
  2878. /* From paging/starting to nonpaging */
  2879. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2880. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2881. (CPU_BASED_CR3_LOAD_EXITING |
  2882. CPU_BASED_CR3_STORE_EXITING));
  2883. vcpu->arch.cr0 = cr0;
  2884. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2885. } else if (!is_paging(vcpu)) {
  2886. /* From nonpaging to paging */
  2887. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2888. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2889. ~(CPU_BASED_CR3_LOAD_EXITING |
  2890. CPU_BASED_CR3_STORE_EXITING));
  2891. vcpu->arch.cr0 = cr0;
  2892. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2893. }
  2894. if (!(cr0 & X86_CR0_WP))
  2895. *hw_cr0 &= ~X86_CR0_WP;
  2896. }
  2897. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2898. {
  2899. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2900. unsigned long hw_cr0;
  2901. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
  2902. if (enable_unrestricted_guest)
  2903. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2904. else {
  2905. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
  2906. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2907. enter_pmode(vcpu);
  2908. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2909. enter_rmode(vcpu);
  2910. }
  2911. #ifdef CONFIG_X86_64
  2912. if (vcpu->arch.efer & EFER_LME) {
  2913. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2914. enter_lmode(vcpu);
  2915. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2916. exit_lmode(vcpu);
  2917. }
  2918. #endif
  2919. if (enable_ept)
  2920. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2921. if (!vcpu->fpu_active)
  2922. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2923. vmcs_writel(CR0_READ_SHADOW, cr0);
  2924. vmcs_writel(GUEST_CR0, hw_cr0);
  2925. vcpu->arch.cr0 = cr0;
  2926. /* depends on vcpu->arch.cr0 to be set to a new value */
  2927. vmx->emulation_required = emulation_required(vcpu);
  2928. }
  2929. static u64 construct_eptp(unsigned long root_hpa)
  2930. {
  2931. u64 eptp;
  2932. /* TODO write the value reading from MSR */
  2933. eptp = VMX_EPT_DEFAULT_MT |
  2934. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2935. if (enable_ept_ad_bits)
  2936. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2937. eptp |= (root_hpa & PAGE_MASK);
  2938. return eptp;
  2939. }
  2940. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2941. {
  2942. unsigned long guest_cr3;
  2943. u64 eptp;
  2944. guest_cr3 = cr3;
  2945. if (enable_ept) {
  2946. eptp = construct_eptp(cr3);
  2947. vmcs_write64(EPT_POINTER, eptp);
  2948. if (is_paging(vcpu) || is_guest_mode(vcpu))
  2949. guest_cr3 = kvm_read_cr3(vcpu);
  2950. else
  2951. guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
  2952. ept_load_pdptrs(vcpu);
  2953. }
  2954. vmx_flush_tlb(vcpu);
  2955. vmcs_writel(GUEST_CR3, guest_cr3);
  2956. }
  2957. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2958. {
  2959. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2960. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2961. if (cr4 & X86_CR4_VMXE) {
  2962. /*
  2963. * To use VMXON (and later other VMX instructions), a guest
  2964. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2965. * So basically the check on whether to allow nested VMX
  2966. * is here.
  2967. */
  2968. if (!nested_vmx_allowed(vcpu))
  2969. return 1;
  2970. }
  2971. if (to_vmx(vcpu)->nested.vmxon &&
  2972. ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
  2973. return 1;
  2974. vcpu->arch.cr4 = cr4;
  2975. if (enable_ept) {
  2976. if (!is_paging(vcpu)) {
  2977. hw_cr4 &= ~X86_CR4_PAE;
  2978. hw_cr4 |= X86_CR4_PSE;
  2979. /*
  2980. * SMEP is disabled if CPU is in non-paging mode in
  2981. * hardware. However KVM always uses paging mode to
  2982. * emulate guest non-paging mode with TDP.
  2983. * To emulate this behavior, SMEP needs to be manually
  2984. * disabled when guest switches to non-paging mode.
  2985. */
  2986. hw_cr4 &= ~X86_CR4_SMEP;
  2987. } else if (!(cr4 & X86_CR4_PAE)) {
  2988. hw_cr4 &= ~X86_CR4_PAE;
  2989. }
  2990. }
  2991. vmcs_writel(CR4_READ_SHADOW, cr4);
  2992. vmcs_writel(GUEST_CR4, hw_cr4);
  2993. return 0;
  2994. }
  2995. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2996. struct kvm_segment *var, int seg)
  2997. {
  2998. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2999. u32 ar;
  3000. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  3001. *var = vmx->rmode.segs[seg];
  3002. if (seg == VCPU_SREG_TR
  3003. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  3004. return;
  3005. var->base = vmx_read_guest_seg_base(vmx, seg);
  3006. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  3007. return;
  3008. }
  3009. var->base = vmx_read_guest_seg_base(vmx, seg);
  3010. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  3011. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  3012. ar = vmx_read_guest_seg_ar(vmx, seg);
  3013. var->unusable = (ar >> 16) & 1;
  3014. var->type = ar & 15;
  3015. var->s = (ar >> 4) & 1;
  3016. var->dpl = (ar >> 5) & 3;
  3017. /*
  3018. * Some userspaces do not preserve unusable property. Since usable
  3019. * segment has to be present according to VMX spec we can use present
  3020. * property to amend userspace bug by making unusable segment always
  3021. * nonpresent. vmx_segment_access_rights() already marks nonpresent
  3022. * segment as unusable.
  3023. */
  3024. var->present = !var->unusable;
  3025. var->avl = (ar >> 12) & 1;
  3026. var->l = (ar >> 13) & 1;
  3027. var->db = (ar >> 14) & 1;
  3028. var->g = (ar >> 15) & 1;
  3029. }
  3030. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3031. {
  3032. struct kvm_segment s;
  3033. if (to_vmx(vcpu)->rmode.vm86_active) {
  3034. vmx_get_segment(vcpu, &s, seg);
  3035. return s.base;
  3036. }
  3037. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  3038. }
  3039. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  3040. {
  3041. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3042. if (!is_protmode(vcpu))
  3043. return 0;
  3044. if (!is_long_mode(vcpu)
  3045. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  3046. return 3;
  3047. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  3048. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  3049. vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
  3050. }
  3051. return vmx->cpl;
  3052. }
  3053. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  3054. {
  3055. u32 ar;
  3056. if (var->unusable || !var->present)
  3057. ar = 1 << 16;
  3058. else {
  3059. ar = var->type & 15;
  3060. ar |= (var->s & 1) << 4;
  3061. ar |= (var->dpl & 3) << 5;
  3062. ar |= (var->present & 1) << 7;
  3063. ar |= (var->avl & 1) << 12;
  3064. ar |= (var->l & 1) << 13;
  3065. ar |= (var->db & 1) << 14;
  3066. ar |= (var->g & 1) << 15;
  3067. }
  3068. return ar;
  3069. }
  3070. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  3071. struct kvm_segment *var, int seg)
  3072. {
  3073. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3074. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3075. vmx_segment_cache_clear(vmx);
  3076. if (seg == VCPU_SREG_CS)
  3077. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  3078. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  3079. vmx->rmode.segs[seg] = *var;
  3080. if (seg == VCPU_SREG_TR)
  3081. vmcs_write16(sf->selector, var->selector);
  3082. else if (var->s)
  3083. fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
  3084. goto out;
  3085. }
  3086. vmcs_writel(sf->base, var->base);
  3087. vmcs_write32(sf->limit, var->limit);
  3088. vmcs_write16(sf->selector, var->selector);
  3089. /*
  3090. * Fix the "Accessed" bit in AR field of segment registers for older
  3091. * qemu binaries.
  3092. * IA32 arch specifies that at the time of processor reset the
  3093. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  3094. * is setting it to 0 in the userland code. This causes invalid guest
  3095. * state vmexit when "unrestricted guest" mode is turned on.
  3096. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  3097. * tree. Newer qemu binaries with that qemu fix would not need this
  3098. * kvm hack.
  3099. */
  3100. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  3101. var->type |= 0x1; /* Accessed */
  3102. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
  3103. out:
  3104. vmx->emulation_required |= emulation_required(vcpu);
  3105. }
  3106. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3107. {
  3108. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  3109. *db = (ar >> 14) & 1;
  3110. *l = (ar >> 13) & 1;
  3111. }
  3112. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3113. {
  3114. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  3115. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  3116. }
  3117. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3118. {
  3119. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  3120. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  3121. }
  3122. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3123. {
  3124. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  3125. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  3126. }
  3127. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3128. {
  3129. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  3130. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  3131. }
  3132. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3133. {
  3134. struct kvm_segment var;
  3135. u32 ar;
  3136. vmx_get_segment(vcpu, &var, seg);
  3137. var.dpl = 0x3;
  3138. if (seg == VCPU_SREG_CS)
  3139. var.type = 0x3;
  3140. ar = vmx_segment_access_rights(&var);
  3141. if (var.base != (var.selector << 4))
  3142. return false;
  3143. if (var.limit != 0xffff)
  3144. return false;
  3145. if (ar != 0xf3)
  3146. return false;
  3147. return true;
  3148. }
  3149. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  3150. {
  3151. struct kvm_segment cs;
  3152. unsigned int cs_rpl;
  3153. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3154. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  3155. if (cs.unusable)
  3156. return false;
  3157. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  3158. return false;
  3159. if (!cs.s)
  3160. return false;
  3161. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  3162. if (cs.dpl > cs_rpl)
  3163. return false;
  3164. } else {
  3165. if (cs.dpl != cs_rpl)
  3166. return false;
  3167. }
  3168. if (!cs.present)
  3169. return false;
  3170. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  3171. return true;
  3172. }
  3173. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  3174. {
  3175. struct kvm_segment ss;
  3176. unsigned int ss_rpl;
  3177. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3178. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  3179. if (ss.unusable)
  3180. return true;
  3181. if (ss.type != 3 && ss.type != 7)
  3182. return false;
  3183. if (!ss.s)
  3184. return false;
  3185. if (ss.dpl != ss_rpl) /* DPL != RPL */
  3186. return false;
  3187. if (!ss.present)
  3188. return false;
  3189. return true;
  3190. }
  3191. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3192. {
  3193. struct kvm_segment var;
  3194. unsigned int rpl;
  3195. vmx_get_segment(vcpu, &var, seg);
  3196. rpl = var.selector & SELECTOR_RPL_MASK;
  3197. if (var.unusable)
  3198. return true;
  3199. if (!var.s)
  3200. return false;
  3201. if (!var.present)
  3202. return false;
  3203. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  3204. if (var.dpl < rpl) /* DPL < RPL */
  3205. return false;
  3206. }
  3207. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  3208. * rights flags
  3209. */
  3210. return true;
  3211. }
  3212. static bool tr_valid(struct kvm_vcpu *vcpu)
  3213. {
  3214. struct kvm_segment tr;
  3215. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  3216. if (tr.unusable)
  3217. return false;
  3218. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3219. return false;
  3220. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  3221. return false;
  3222. if (!tr.present)
  3223. return false;
  3224. return true;
  3225. }
  3226. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  3227. {
  3228. struct kvm_segment ldtr;
  3229. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  3230. if (ldtr.unusable)
  3231. return true;
  3232. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3233. return false;
  3234. if (ldtr.type != 2)
  3235. return false;
  3236. if (!ldtr.present)
  3237. return false;
  3238. return true;
  3239. }
  3240. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3241. {
  3242. struct kvm_segment cs, ss;
  3243. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3244. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3245. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3246. (ss.selector & SELECTOR_RPL_MASK));
  3247. }
  3248. /*
  3249. * Check if guest state is valid. Returns true if valid, false if
  3250. * not.
  3251. * We assume that registers are always usable
  3252. */
  3253. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3254. {
  3255. if (enable_unrestricted_guest)
  3256. return true;
  3257. /* real mode guest state checks */
  3258. if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  3259. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3260. return false;
  3261. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3262. return false;
  3263. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3264. return false;
  3265. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3266. return false;
  3267. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3268. return false;
  3269. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3270. return false;
  3271. } else {
  3272. /* protected mode guest state checks */
  3273. if (!cs_ss_rpl_check(vcpu))
  3274. return false;
  3275. if (!code_segment_valid(vcpu))
  3276. return false;
  3277. if (!stack_segment_valid(vcpu))
  3278. return false;
  3279. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3280. return false;
  3281. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3282. return false;
  3283. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3284. return false;
  3285. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3286. return false;
  3287. if (!tr_valid(vcpu))
  3288. return false;
  3289. if (!ldtr_valid(vcpu))
  3290. return false;
  3291. }
  3292. /* TODO:
  3293. * - Add checks on RIP
  3294. * - Add checks on RFLAGS
  3295. */
  3296. return true;
  3297. }
  3298. static int init_rmode_tss(struct kvm *kvm)
  3299. {
  3300. gfn_t fn;
  3301. u16 data = 0;
  3302. int r, idx, ret = 0;
  3303. idx = srcu_read_lock(&kvm->srcu);
  3304. fn = kvm->arch.tss_addr >> PAGE_SHIFT;
  3305. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3306. if (r < 0)
  3307. goto out;
  3308. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3309. r = kvm_write_guest_page(kvm, fn++, &data,
  3310. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3311. if (r < 0)
  3312. goto out;
  3313. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3314. if (r < 0)
  3315. goto out;
  3316. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3317. if (r < 0)
  3318. goto out;
  3319. data = ~0;
  3320. r = kvm_write_guest_page(kvm, fn, &data,
  3321. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3322. sizeof(u8));
  3323. if (r < 0)
  3324. goto out;
  3325. ret = 1;
  3326. out:
  3327. srcu_read_unlock(&kvm->srcu, idx);
  3328. return ret;
  3329. }
  3330. static int init_rmode_identity_map(struct kvm *kvm)
  3331. {
  3332. int i, idx, r, ret;
  3333. pfn_t identity_map_pfn;
  3334. u32 tmp;
  3335. if (!enable_ept)
  3336. return 1;
  3337. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3338. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3339. "haven't been allocated!\n");
  3340. return 0;
  3341. }
  3342. if (likely(kvm->arch.ept_identity_pagetable_done))
  3343. return 1;
  3344. ret = 0;
  3345. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3346. idx = srcu_read_lock(&kvm->srcu);
  3347. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3348. if (r < 0)
  3349. goto out;
  3350. /* Set up identity-mapping pagetable for EPT in real mode */
  3351. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3352. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3353. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3354. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3355. &tmp, i * sizeof(tmp), sizeof(tmp));
  3356. if (r < 0)
  3357. goto out;
  3358. }
  3359. kvm->arch.ept_identity_pagetable_done = true;
  3360. ret = 1;
  3361. out:
  3362. srcu_read_unlock(&kvm->srcu, idx);
  3363. return ret;
  3364. }
  3365. static void seg_setup(int seg)
  3366. {
  3367. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3368. unsigned int ar;
  3369. vmcs_write16(sf->selector, 0);
  3370. vmcs_writel(sf->base, 0);
  3371. vmcs_write32(sf->limit, 0xffff);
  3372. ar = 0x93;
  3373. if (seg == VCPU_SREG_CS)
  3374. ar |= 0x08; /* code segment */
  3375. vmcs_write32(sf->ar_bytes, ar);
  3376. }
  3377. static int alloc_apic_access_page(struct kvm *kvm)
  3378. {
  3379. struct page *page;
  3380. struct kvm_userspace_memory_region kvm_userspace_mem;
  3381. int r = 0;
  3382. mutex_lock(&kvm->slots_lock);
  3383. if (kvm->arch.apic_access_page)
  3384. goto out;
  3385. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3386. kvm_userspace_mem.flags = 0;
  3387. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3388. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3389. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3390. if (r)
  3391. goto out;
  3392. page = gfn_to_page(kvm, 0xfee00);
  3393. if (is_error_page(page)) {
  3394. r = -EFAULT;
  3395. goto out;
  3396. }
  3397. kvm->arch.apic_access_page = page;
  3398. out:
  3399. mutex_unlock(&kvm->slots_lock);
  3400. return r;
  3401. }
  3402. static int alloc_identity_pagetable(struct kvm *kvm)
  3403. {
  3404. struct page *page;
  3405. struct kvm_userspace_memory_region kvm_userspace_mem;
  3406. int r = 0;
  3407. mutex_lock(&kvm->slots_lock);
  3408. if (kvm->arch.ept_identity_pagetable)
  3409. goto out;
  3410. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3411. kvm_userspace_mem.flags = 0;
  3412. kvm_userspace_mem.guest_phys_addr =
  3413. kvm->arch.ept_identity_map_addr;
  3414. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3415. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3416. if (r)
  3417. goto out;
  3418. page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3419. if (is_error_page(page)) {
  3420. r = -EFAULT;
  3421. goto out;
  3422. }
  3423. kvm->arch.ept_identity_pagetable = page;
  3424. out:
  3425. mutex_unlock(&kvm->slots_lock);
  3426. return r;
  3427. }
  3428. static void allocate_vpid(struct vcpu_vmx *vmx)
  3429. {
  3430. int vpid;
  3431. vmx->vpid = 0;
  3432. if (!enable_vpid)
  3433. return;
  3434. spin_lock(&vmx_vpid_lock);
  3435. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3436. if (vpid < VMX_NR_VPIDS) {
  3437. vmx->vpid = vpid;
  3438. __set_bit(vpid, vmx_vpid_bitmap);
  3439. }
  3440. spin_unlock(&vmx_vpid_lock);
  3441. }
  3442. static void free_vpid(struct vcpu_vmx *vmx)
  3443. {
  3444. if (!enable_vpid)
  3445. return;
  3446. spin_lock(&vmx_vpid_lock);
  3447. if (vmx->vpid != 0)
  3448. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3449. spin_unlock(&vmx_vpid_lock);
  3450. }
  3451. #define MSR_TYPE_R 1
  3452. #define MSR_TYPE_W 2
  3453. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
  3454. u32 msr, int type)
  3455. {
  3456. int f = sizeof(unsigned long);
  3457. if (!cpu_has_vmx_msr_bitmap())
  3458. return;
  3459. /*
  3460. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3461. * have the write-low and read-high bitmap offsets the wrong way round.
  3462. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3463. */
  3464. if (msr <= 0x1fff) {
  3465. if (type & MSR_TYPE_R)
  3466. /* read-low */
  3467. __clear_bit(msr, msr_bitmap + 0x000 / f);
  3468. if (type & MSR_TYPE_W)
  3469. /* write-low */
  3470. __clear_bit(msr, msr_bitmap + 0x800 / f);
  3471. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3472. msr &= 0x1fff;
  3473. if (type & MSR_TYPE_R)
  3474. /* read-high */
  3475. __clear_bit(msr, msr_bitmap + 0x400 / f);
  3476. if (type & MSR_TYPE_W)
  3477. /* write-high */
  3478. __clear_bit(msr, msr_bitmap + 0xc00 / f);
  3479. }
  3480. }
  3481. static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
  3482. u32 msr, int type)
  3483. {
  3484. int f = sizeof(unsigned long);
  3485. if (!cpu_has_vmx_msr_bitmap())
  3486. return;
  3487. /*
  3488. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3489. * have the write-low and read-high bitmap offsets the wrong way round.
  3490. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3491. */
  3492. if (msr <= 0x1fff) {
  3493. if (type & MSR_TYPE_R)
  3494. /* read-low */
  3495. __set_bit(msr, msr_bitmap + 0x000 / f);
  3496. if (type & MSR_TYPE_W)
  3497. /* write-low */
  3498. __set_bit(msr, msr_bitmap + 0x800 / f);
  3499. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3500. msr &= 0x1fff;
  3501. if (type & MSR_TYPE_R)
  3502. /* read-high */
  3503. __set_bit(msr, msr_bitmap + 0x400 / f);
  3504. if (type & MSR_TYPE_W)
  3505. /* write-high */
  3506. __set_bit(msr, msr_bitmap + 0xc00 / f);
  3507. }
  3508. }
  3509. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3510. {
  3511. if (!longmode_only)
  3512. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
  3513. msr, MSR_TYPE_R | MSR_TYPE_W);
  3514. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
  3515. msr, MSR_TYPE_R | MSR_TYPE_W);
  3516. }
  3517. static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
  3518. {
  3519. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3520. msr, MSR_TYPE_R);
  3521. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3522. msr, MSR_TYPE_R);
  3523. }
  3524. static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
  3525. {
  3526. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3527. msr, MSR_TYPE_R);
  3528. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3529. msr, MSR_TYPE_R);
  3530. }
  3531. static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
  3532. {
  3533. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3534. msr, MSR_TYPE_W);
  3535. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3536. msr, MSR_TYPE_W);
  3537. }
  3538. static int vmx_vm_has_apicv(struct kvm *kvm)
  3539. {
  3540. return enable_apicv && irqchip_in_kernel(kvm);
  3541. }
  3542. /*
  3543. * Send interrupt to vcpu via posted interrupt way.
  3544. * 1. If target vcpu is running(non-root mode), send posted interrupt
  3545. * notification to vcpu and hardware will sync PIR to vIRR atomically.
  3546. * 2. If target vcpu isn't running(root mode), kick it to pick up the
  3547. * interrupt from PIR in next vmentry.
  3548. */
  3549. static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
  3550. {
  3551. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3552. int r;
  3553. if (pi_test_and_set_pir(vector, &vmx->pi_desc))
  3554. return;
  3555. r = pi_test_and_set_on(&vmx->pi_desc);
  3556. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3557. #ifdef CONFIG_SMP
  3558. if (!r && (vcpu->mode == IN_GUEST_MODE))
  3559. apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
  3560. POSTED_INTR_VECTOR);
  3561. else
  3562. #endif
  3563. kvm_vcpu_kick(vcpu);
  3564. }
  3565. static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
  3566. {
  3567. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3568. if (!pi_test_and_clear_on(&vmx->pi_desc))
  3569. return;
  3570. kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
  3571. }
  3572. static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
  3573. {
  3574. return;
  3575. }
  3576. /*
  3577. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3578. * will not change in the lifetime of the guest.
  3579. * Note that host-state that does change is set elsewhere. E.g., host-state
  3580. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3581. */
  3582. static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
  3583. {
  3584. u32 low32, high32;
  3585. unsigned long tmpl;
  3586. struct desc_ptr dt;
  3587. vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
  3588. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3589. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3590. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3591. #ifdef CONFIG_X86_64
  3592. /*
  3593. * Load null selectors, so we can avoid reloading them in
  3594. * __vmx_load_host_state(), in case userspace uses the null selectors
  3595. * too (the expected case).
  3596. */
  3597. vmcs_write16(HOST_DS_SELECTOR, 0);
  3598. vmcs_write16(HOST_ES_SELECTOR, 0);
  3599. #else
  3600. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3601. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3602. #endif
  3603. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3604. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3605. native_store_idt(&dt);
  3606. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3607. vmx->host_idt_base = dt.address;
  3608. vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
  3609. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3610. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3611. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3612. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3613. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3614. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3615. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3616. }
  3617. }
  3618. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3619. {
  3620. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3621. if (enable_ept)
  3622. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3623. if (is_guest_mode(&vmx->vcpu))
  3624. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3625. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3626. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3627. }
  3628. static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
  3629. {
  3630. u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
  3631. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3632. pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
  3633. return pin_based_exec_ctrl;
  3634. }
  3635. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3636. {
  3637. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3638. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3639. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3640. #ifdef CONFIG_X86_64
  3641. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3642. CPU_BASED_CR8_LOAD_EXITING;
  3643. #endif
  3644. }
  3645. if (!enable_ept)
  3646. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3647. CPU_BASED_CR3_LOAD_EXITING |
  3648. CPU_BASED_INVLPG_EXITING;
  3649. return exec_control;
  3650. }
  3651. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3652. {
  3653. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3654. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3655. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3656. if (vmx->vpid == 0)
  3657. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3658. if (!enable_ept) {
  3659. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3660. enable_unrestricted_guest = 0;
  3661. /* Enable INVPCID for non-ept guests may cause performance regression. */
  3662. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  3663. }
  3664. if (!enable_unrestricted_guest)
  3665. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3666. if (!ple_gap)
  3667. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3668. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3669. exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
  3670. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  3671. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  3672. /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
  3673. (handle_vmptrld).
  3674. We can NOT enable shadow_vmcs here because we don't have yet
  3675. a current VMCS12
  3676. */
  3677. exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
  3678. return exec_control;
  3679. }
  3680. static void ept_set_mmio_spte_mask(void)
  3681. {
  3682. /*
  3683. * EPT Misconfigurations can be generated if the value of bits 2:0
  3684. * of an EPT paging-structure entry is 110b (write/execute).
  3685. * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
  3686. * spte.
  3687. */
  3688. kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
  3689. }
  3690. /*
  3691. * Sets up the vmcs for emulated real mode.
  3692. */
  3693. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3694. {
  3695. #ifdef CONFIG_X86_64
  3696. unsigned long a;
  3697. #endif
  3698. int i;
  3699. /* I/O */
  3700. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3701. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3702. if (enable_shadow_vmcs) {
  3703. vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
  3704. vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
  3705. }
  3706. if (cpu_has_vmx_msr_bitmap())
  3707. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3708. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3709. /* Control */
  3710. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
  3711. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3712. if (cpu_has_secondary_exec_ctrls()) {
  3713. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3714. vmx_secondary_exec_control(vmx));
  3715. }
  3716. if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
  3717. vmcs_write64(EOI_EXIT_BITMAP0, 0);
  3718. vmcs_write64(EOI_EXIT_BITMAP1, 0);
  3719. vmcs_write64(EOI_EXIT_BITMAP2, 0);
  3720. vmcs_write64(EOI_EXIT_BITMAP3, 0);
  3721. vmcs_write16(GUEST_INTR_STATUS, 0);
  3722. vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
  3723. vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
  3724. }
  3725. if (ple_gap) {
  3726. vmcs_write32(PLE_GAP, ple_gap);
  3727. vmcs_write32(PLE_WINDOW, ple_window);
  3728. }
  3729. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3730. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3731. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3732. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3733. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3734. vmx_set_constant_host_state(vmx);
  3735. #ifdef CONFIG_X86_64
  3736. rdmsrl(MSR_FS_BASE, a);
  3737. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3738. rdmsrl(MSR_GS_BASE, a);
  3739. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3740. #else
  3741. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3742. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3743. #endif
  3744. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3745. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3746. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3747. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3748. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3749. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3750. u32 msr_low, msr_high;
  3751. u64 host_pat;
  3752. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3753. host_pat = msr_low | ((u64) msr_high << 32);
  3754. /* Write the default value follow host pat */
  3755. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3756. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3757. vmx->vcpu.arch.pat = host_pat;
  3758. }
  3759. for (i = 0; i < NR_VMX_MSR; ++i) {
  3760. u32 index = vmx_msr_index[i];
  3761. u32 data_low, data_high;
  3762. int j = vmx->nmsrs;
  3763. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3764. continue;
  3765. if (wrmsr_safe(index, data_low, data_high) < 0)
  3766. continue;
  3767. vmx->guest_msrs[j].index = i;
  3768. vmx->guest_msrs[j].data = 0;
  3769. vmx->guest_msrs[j].mask = -1ull;
  3770. ++vmx->nmsrs;
  3771. }
  3772. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3773. /* 22.2.1, 20.8.1 */
  3774. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3775. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3776. set_cr4_guest_host_mask(vmx);
  3777. return 0;
  3778. }
  3779. static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3780. {
  3781. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3782. u64 msr;
  3783. vmx->rmode.vm86_active = 0;
  3784. vmx->soft_vnmi_blocked = 0;
  3785. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3786. kvm_set_cr8(&vmx->vcpu, 0);
  3787. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3788. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3789. msr |= MSR_IA32_APICBASE_BSP;
  3790. kvm_set_apic_base(&vmx->vcpu, msr);
  3791. vmx_segment_cache_clear(vmx);
  3792. seg_setup(VCPU_SREG_CS);
  3793. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3794. vmcs_write32(GUEST_CS_BASE, 0xffff0000);
  3795. seg_setup(VCPU_SREG_DS);
  3796. seg_setup(VCPU_SREG_ES);
  3797. seg_setup(VCPU_SREG_FS);
  3798. seg_setup(VCPU_SREG_GS);
  3799. seg_setup(VCPU_SREG_SS);
  3800. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3801. vmcs_writel(GUEST_TR_BASE, 0);
  3802. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3803. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3804. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3805. vmcs_writel(GUEST_LDTR_BASE, 0);
  3806. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3807. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3808. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3809. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3810. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3811. vmcs_writel(GUEST_RFLAGS, 0x02);
  3812. kvm_rip_write(vcpu, 0xfff0);
  3813. vmcs_writel(GUEST_GDTR_BASE, 0);
  3814. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3815. vmcs_writel(GUEST_IDTR_BASE, 0);
  3816. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3817. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3818. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3819. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3820. /* Special registers */
  3821. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3822. setup_msrs(vmx);
  3823. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3824. if (cpu_has_vmx_tpr_shadow()) {
  3825. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3826. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3827. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3828. __pa(vmx->vcpu.arch.apic->regs));
  3829. vmcs_write32(TPR_THRESHOLD, 0);
  3830. }
  3831. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3832. vmcs_write64(APIC_ACCESS_ADDR,
  3833. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3834. if (vmx_vm_has_apicv(vcpu->kvm))
  3835. memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
  3836. if (vmx->vpid != 0)
  3837. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3838. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3839. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3840. vmx_set_cr4(&vmx->vcpu, 0);
  3841. vmx_set_efer(&vmx->vcpu, 0);
  3842. vmx_fpu_activate(&vmx->vcpu);
  3843. update_exception_bitmap(&vmx->vcpu);
  3844. vpid_sync_context(vmx);
  3845. }
  3846. /*
  3847. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3848. * For most existing hypervisors, this will always return true.
  3849. */
  3850. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3851. {
  3852. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3853. PIN_BASED_EXT_INTR_MASK;
  3854. }
  3855. static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
  3856. {
  3857. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3858. PIN_BASED_NMI_EXITING;
  3859. }
  3860. static int enable_irq_window(struct kvm_vcpu *vcpu)
  3861. {
  3862. u32 cpu_based_vm_exec_control;
  3863. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
  3864. /*
  3865. * We get here if vmx_interrupt_allowed() said we can't
  3866. * inject to L1 now because L2 must run. The caller will have
  3867. * to make L2 exit right after entry, so we can inject to L1
  3868. * more promptly.
  3869. */
  3870. return -EBUSY;
  3871. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3872. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3873. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3874. return 0;
  3875. }
  3876. static int enable_nmi_window(struct kvm_vcpu *vcpu)
  3877. {
  3878. u32 cpu_based_vm_exec_control;
  3879. if (!cpu_has_virtual_nmis())
  3880. return enable_irq_window(vcpu);
  3881. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
  3882. return enable_irq_window(vcpu);
  3883. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3884. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3885. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3886. return 0;
  3887. }
  3888. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3889. {
  3890. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3891. uint32_t intr;
  3892. int irq = vcpu->arch.interrupt.nr;
  3893. trace_kvm_inj_virq(irq);
  3894. ++vcpu->stat.irq_injections;
  3895. if (vmx->rmode.vm86_active) {
  3896. int inc_eip = 0;
  3897. if (vcpu->arch.interrupt.soft)
  3898. inc_eip = vcpu->arch.event_exit_inst_len;
  3899. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3900. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3901. return;
  3902. }
  3903. intr = irq | INTR_INFO_VALID_MASK;
  3904. if (vcpu->arch.interrupt.soft) {
  3905. intr |= INTR_TYPE_SOFT_INTR;
  3906. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3907. vmx->vcpu.arch.event_exit_inst_len);
  3908. } else
  3909. intr |= INTR_TYPE_EXT_INTR;
  3910. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3911. }
  3912. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3913. {
  3914. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3915. if (is_guest_mode(vcpu))
  3916. return;
  3917. if (!cpu_has_virtual_nmis()) {
  3918. /*
  3919. * Tracking the NMI-blocked state in software is built upon
  3920. * finding the next open IRQ window. This, in turn, depends on
  3921. * well-behaving guests: They have to keep IRQs disabled at
  3922. * least as long as the NMI handler runs. Otherwise we may
  3923. * cause NMI nesting, maybe breaking the guest. But as this is
  3924. * highly unlikely, we can live with the residual risk.
  3925. */
  3926. vmx->soft_vnmi_blocked = 1;
  3927. vmx->vnmi_blocked_time = 0;
  3928. }
  3929. ++vcpu->stat.nmi_injections;
  3930. vmx->nmi_known_unmasked = false;
  3931. if (vmx->rmode.vm86_active) {
  3932. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3933. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3934. return;
  3935. }
  3936. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3937. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3938. }
  3939. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3940. {
  3941. if (!cpu_has_virtual_nmis())
  3942. return to_vmx(vcpu)->soft_vnmi_blocked;
  3943. if (to_vmx(vcpu)->nmi_known_unmasked)
  3944. return false;
  3945. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3946. }
  3947. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3948. {
  3949. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3950. if (!cpu_has_virtual_nmis()) {
  3951. if (vmx->soft_vnmi_blocked != masked) {
  3952. vmx->soft_vnmi_blocked = masked;
  3953. vmx->vnmi_blocked_time = 0;
  3954. }
  3955. } else {
  3956. vmx->nmi_known_unmasked = !masked;
  3957. if (masked)
  3958. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3959. GUEST_INTR_STATE_NMI);
  3960. else
  3961. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3962. GUEST_INTR_STATE_NMI);
  3963. }
  3964. }
  3965. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3966. {
  3967. if (is_guest_mode(vcpu)) {
  3968. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3969. if (to_vmx(vcpu)->nested.nested_run_pending)
  3970. return 0;
  3971. if (nested_exit_on_nmi(vcpu)) {
  3972. nested_vmx_vmexit(vcpu);
  3973. vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
  3974. vmcs12->vm_exit_intr_info = NMI_VECTOR |
  3975. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
  3976. /*
  3977. * The NMI-triggered VM exit counts as injection:
  3978. * clear this one and block further NMIs.
  3979. */
  3980. vcpu->arch.nmi_pending = 0;
  3981. vmx_set_nmi_mask(vcpu, true);
  3982. return 0;
  3983. }
  3984. }
  3985. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3986. return 0;
  3987. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3988. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3989. | GUEST_INTR_STATE_NMI));
  3990. }
  3991. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3992. {
  3993. if (is_guest_mode(vcpu)) {
  3994. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3995. if (to_vmx(vcpu)->nested.nested_run_pending)
  3996. return 0;
  3997. if (nested_exit_on_intr(vcpu)) {
  3998. nested_vmx_vmexit(vcpu);
  3999. vmcs12->vm_exit_reason =
  4000. EXIT_REASON_EXTERNAL_INTERRUPT;
  4001. vmcs12->vm_exit_intr_info = 0;
  4002. /*
  4003. * fall through to normal code, but now in L1, not L2
  4004. */
  4005. }
  4006. }
  4007. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  4008. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  4009. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  4010. }
  4011. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  4012. {
  4013. int ret;
  4014. struct kvm_userspace_memory_region tss_mem = {
  4015. .slot = TSS_PRIVATE_MEMSLOT,
  4016. .guest_phys_addr = addr,
  4017. .memory_size = PAGE_SIZE * 3,
  4018. .flags = 0,
  4019. };
  4020. ret = kvm_set_memory_region(kvm, &tss_mem);
  4021. if (ret)
  4022. return ret;
  4023. kvm->arch.tss_addr = addr;
  4024. if (!init_rmode_tss(kvm))
  4025. return -ENOMEM;
  4026. return 0;
  4027. }
  4028. static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
  4029. {
  4030. switch (vec) {
  4031. case BP_VECTOR:
  4032. /*
  4033. * Update instruction length as we may reinject the exception
  4034. * from user space while in guest debugging mode.
  4035. */
  4036. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  4037. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  4038. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  4039. return false;
  4040. /* fall through */
  4041. case DB_VECTOR:
  4042. if (vcpu->guest_debug &
  4043. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  4044. return false;
  4045. /* fall through */
  4046. case DE_VECTOR:
  4047. case OF_VECTOR:
  4048. case BR_VECTOR:
  4049. case UD_VECTOR:
  4050. case DF_VECTOR:
  4051. case SS_VECTOR:
  4052. case GP_VECTOR:
  4053. case MF_VECTOR:
  4054. return true;
  4055. break;
  4056. }
  4057. return false;
  4058. }
  4059. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  4060. int vec, u32 err_code)
  4061. {
  4062. /*
  4063. * Instruction with address size override prefix opcode 0x67
  4064. * Cause the #SS fault with 0 error code in VM86 mode.
  4065. */
  4066. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
  4067. if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
  4068. if (vcpu->arch.halt_request) {
  4069. vcpu->arch.halt_request = 0;
  4070. return kvm_emulate_halt(vcpu);
  4071. }
  4072. return 1;
  4073. }
  4074. return 0;
  4075. }
  4076. /*
  4077. * Forward all other exceptions that are valid in real mode.
  4078. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  4079. * the required debugging infrastructure rework.
  4080. */
  4081. kvm_queue_exception(vcpu, vec);
  4082. return 1;
  4083. }
  4084. /*
  4085. * Trigger machine check on the host. We assume all the MSRs are already set up
  4086. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  4087. * We pass a fake environment to the machine check handler because we want
  4088. * the guest to be always treated like user space, no matter what context
  4089. * it used internally.
  4090. */
  4091. static void kvm_machine_check(void)
  4092. {
  4093. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  4094. struct pt_regs regs = {
  4095. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  4096. .flags = X86_EFLAGS_IF,
  4097. };
  4098. do_machine_check(&regs, 0);
  4099. #endif
  4100. }
  4101. static int handle_machine_check(struct kvm_vcpu *vcpu)
  4102. {
  4103. /* already handled by vcpu_run */
  4104. return 1;
  4105. }
  4106. static int handle_exception(struct kvm_vcpu *vcpu)
  4107. {
  4108. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4109. struct kvm_run *kvm_run = vcpu->run;
  4110. u32 intr_info, ex_no, error_code;
  4111. unsigned long cr2, rip, dr6;
  4112. u32 vect_info;
  4113. enum emulation_result er;
  4114. vect_info = vmx->idt_vectoring_info;
  4115. intr_info = vmx->exit_intr_info;
  4116. if (is_machine_check(intr_info))
  4117. return handle_machine_check(vcpu);
  4118. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  4119. return 1; /* already handled by vmx_vcpu_run() */
  4120. if (is_no_device(intr_info)) {
  4121. vmx_fpu_activate(vcpu);
  4122. return 1;
  4123. }
  4124. if (is_invalid_opcode(intr_info)) {
  4125. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  4126. if (er != EMULATE_DONE)
  4127. kvm_queue_exception(vcpu, UD_VECTOR);
  4128. return 1;
  4129. }
  4130. error_code = 0;
  4131. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  4132. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  4133. /*
  4134. * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
  4135. * MMIO, it is better to report an internal error.
  4136. * See the comments in vmx_handle_exit.
  4137. */
  4138. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  4139. !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
  4140. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4141. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  4142. vcpu->run->internal.ndata = 2;
  4143. vcpu->run->internal.data[0] = vect_info;
  4144. vcpu->run->internal.data[1] = intr_info;
  4145. return 0;
  4146. }
  4147. if (is_page_fault(intr_info)) {
  4148. /* EPT won't cause page fault directly */
  4149. BUG_ON(enable_ept);
  4150. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  4151. trace_kvm_page_fault(cr2, error_code);
  4152. if (kvm_event_needs_reinjection(vcpu))
  4153. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  4154. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  4155. }
  4156. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  4157. if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
  4158. return handle_rmode_exception(vcpu, ex_no, error_code);
  4159. switch (ex_no) {
  4160. case DB_VECTOR:
  4161. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  4162. if (!(vcpu->guest_debug &
  4163. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  4164. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  4165. kvm_queue_exception(vcpu, DB_VECTOR);
  4166. return 1;
  4167. }
  4168. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  4169. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  4170. /* fall through */
  4171. case BP_VECTOR:
  4172. /*
  4173. * Update instruction length as we may reinject #BP from
  4174. * user space while in guest debugging mode. Reading it for
  4175. * #DB as well causes no harm, it is not used in that case.
  4176. */
  4177. vmx->vcpu.arch.event_exit_inst_len =
  4178. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  4179. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  4180. rip = kvm_rip_read(vcpu);
  4181. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  4182. kvm_run->debug.arch.exception = ex_no;
  4183. break;
  4184. default:
  4185. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  4186. kvm_run->ex.exception = ex_no;
  4187. kvm_run->ex.error_code = error_code;
  4188. break;
  4189. }
  4190. return 0;
  4191. }
  4192. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  4193. {
  4194. ++vcpu->stat.irq_exits;
  4195. return 1;
  4196. }
  4197. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  4198. {
  4199. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4200. return 0;
  4201. }
  4202. static int handle_io(struct kvm_vcpu *vcpu)
  4203. {
  4204. unsigned long exit_qualification;
  4205. int size, in, string;
  4206. unsigned port;
  4207. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4208. string = (exit_qualification & 16) != 0;
  4209. in = (exit_qualification & 8) != 0;
  4210. ++vcpu->stat.io_exits;
  4211. if (string || in)
  4212. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4213. port = exit_qualification >> 16;
  4214. size = (exit_qualification & 7) + 1;
  4215. skip_emulated_instruction(vcpu);
  4216. return kvm_fast_pio_out(vcpu, size, port);
  4217. }
  4218. static void
  4219. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  4220. {
  4221. /*
  4222. * Patch in the VMCALL instruction:
  4223. */
  4224. hypercall[0] = 0x0f;
  4225. hypercall[1] = 0x01;
  4226. hypercall[2] = 0xc1;
  4227. }
  4228. static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
  4229. {
  4230. unsigned long always_on = VMXON_CR0_ALWAYSON;
  4231. if (nested_vmx_secondary_ctls_high &
  4232. SECONDARY_EXEC_UNRESTRICTED_GUEST &&
  4233. nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
  4234. always_on &= ~(X86_CR0_PE | X86_CR0_PG);
  4235. return (val & always_on) == always_on;
  4236. }
  4237. /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
  4238. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  4239. {
  4240. if (is_guest_mode(vcpu)) {
  4241. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4242. unsigned long orig_val = val;
  4243. /*
  4244. * We get here when L2 changed cr0 in a way that did not change
  4245. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  4246. * but did change L0 shadowed bits. So we first calculate the
  4247. * effective cr0 value that L1 would like to write into the
  4248. * hardware. It consists of the L2-owned bits from the new
  4249. * value combined with the L1-owned bits from L1's guest_cr0.
  4250. */
  4251. val = (val & ~vmcs12->cr0_guest_host_mask) |
  4252. (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
  4253. if (!nested_cr0_valid(vmcs12, val))
  4254. return 1;
  4255. if (kvm_set_cr0(vcpu, val))
  4256. return 1;
  4257. vmcs_writel(CR0_READ_SHADOW, orig_val);
  4258. return 0;
  4259. } else {
  4260. if (to_vmx(vcpu)->nested.vmxon &&
  4261. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  4262. return 1;
  4263. return kvm_set_cr0(vcpu, val);
  4264. }
  4265. }
  4266. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  4267. {
  4268. if (is_guest_mode(vcpu)) {
  4269. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4270. unsigned long orig_val = val;
  4271. /* analogously to handle_set_cr0 */
  4272. val = (val & ~vmcs12->cr4_guest_host_mask) |
  4273. (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
  4274. if (kvm_set_cr4(vcpu, val))
  4275. return 1;
  4276. vmcs_writel(CR4_READ_SHADOW, orig_val);
  4277. return 0;
  4278. } else
  4279. return kvm_set_cr4(vcpu, val);
  4280. }
  4281. /* called to set cr0 as approriate for clts instruction exit. */
  4282. static void handle_clts(struct kvm_vcpu *vcpu)
  4283. {
  4284. if (is_guest_mode(vcpu)) {
  4285. /*
  4286. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  4287. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  4288. * just pretend it's off (also in arch.cr0 for fpu_activate).
  4289. */
  4290. vmcs_writel(CR0_READ_SHADOW,
  4291. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  4292. vcpu->arch.cr0 &= ~X86_CR0_TS;
  4293. } else
  4294. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  4295. }
  4296. static int handle_cr(struct kvm_vcpu *vcpu)
  4297. {
  4298. unsigned long exit_qualification, val;
  4299. int cr;
  4300. int reg;
  4301. int err;
  4302. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4303. cr = exit_qualification & 15;
  4304. reg = (exit_qualification >> 8) & 15;
  4305. switch ((exit_qualification >> 4) & 3) {
  4306. case 0: /* mov to cr */
  4307. val = kvm_register_read(vcpu, reg);
  4308. trace_kvm_cr_write(cr, val);
  4309. switch (cr) {
  4310. case 0:
  4311. err = handle_set_cr0(vcpu, val);
  4312. kvm_complete_insn_gp(vcpu, err);
  4313. return 1;
  4314. case 3:
  4315. err = kvm_set_cr3(vcpu, val);
  4316. kvm_complete_insn_gp(vcpu, err);
  4317. return 1;
  4318. case 4:
  4319. err = handle_set_cr4(vcpu, val);
  4320. kvm_complete_insn_gp(vcpu, err);
  4321. return 1;
  4322. case 8: {
  4323. u8 cr8_prev = kvm_get_cr8(vcpu);
  4324. u8 cr8 = kvm_register_read(vcpu, reg);
  4325. err = kvm_set_cr8(vcpu, cr8);
  4326. kvm_complete_insn_gp(vcpu, err);
  4327. if (irqchip_in_kernel(vcpu->kvm))
  4328. return 1;
  4329. if (cr8_prev <= cr8)
  4330. return 1;
  4331. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  4332. return 0;
  4333. }
  4334. }
  4335. break;
  4336. case 2: /* clts */
  4337. handle_clts(vcpu);
  4338. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  4339. skip_emulated_instruction(vcpu);
  4340. vmx_fpu_activate(vcpu);
  4341. return 1;
  4342. case 1: /*mov from cr*/
  4343. switch (cr) {
  4344. case 3:
  4345. val = kvm_read_cr3(vcpu);
  4346. kvm_register_write(vcpu, reg, val);
  4347. trace_kvm_cr_read(cr, val);
  4348. skip_emulated_instruction(vcpu);
  4349. return 1;
  4350. case 8:
  4351. val = kvm_get_cr8(vcpu);
  4352. kvm_register_write(vcpu, reg, val);
  4353. trace_kvm_cr_read(cr, val);
  4354. skip_emulated_instruction(vcpu);
  4355. return 1;
  4356. }
  4357. break;
  4358. case 3: /* lmsw */
  4359. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  4360. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  4361. kvm_lmsw(vcpu, val);
  4362. skip_emulated_instruction(vcpu);
  4363. return 1;
  4364. default:
  4365. break;
  4366. }
  4367. vcpu->run->exit_reason = 0;
  4368. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  4369. (int)(exit_qualification >> 4) & 3, cr);
  4370. return 0;
  4371. }
  4372. static int handle_dr(struct kvm_vcpu *vcpu)
  4373. {
  4374. unsigned long exit_qualification;
  4375. int dr, reg;
  4376. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  4377. if (!kvm_require_cpl(vcpu, 0))
  4378. return 1;
  4379. dr = vmcs_readl(GUEST_DR7);
  4380. if (dr & DR7_GD) {
  4381. /*
  4382. * As the vm-exit takes precedence over the debug trap, we
  4383. * need to emulate the latter, either for the host or the
  4384. * guest debugging itself.
  4385. */
  4386. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4387. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  4388. vcpu->run->debug.arch.dr7 = dr;
  4389. vcpu->run->debug.arch.pc =
  4390. vmcs_readl(GUEST_CS_BASE) +
  4391. vmcs_readl(GUEST_RIP);
  4392. vcpu->run->debug.arch.exception = DB_VECTOR;
  4393. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  4394. return 0;
  4395. } else {
  4396. vcpu->arch.dr7 &= ~DR7_GD;
  4397. vcpu->arch.dr6 |= DR6_BD;
  4398. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4399. kvm_queue_exception(vcpu, DB_VECTOR);
  4400. return 1;
  4401. }
  4402. }
  4403. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4404. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4405. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4406. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4407. unsigned long val;
  4408. if (!kvm_get_dr(vcpu, dr, &val))
  4409. kvm_register_write(vcpu, reg, val);
  4410. } else
  4411. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4412. skip_emulated_instruction(vcpu);
  4413. return 1;
  4414. }
  4415. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4416. {
  4417. vmcs_writel(GUEST_DR7, val);
  4418. }
  4419. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4420. {
  4421. kvm_emulate_cpuid(vcpu);
  4422. return 1;
  4423. }
  4424. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4425. {
  4426. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4427. u64 data;
  4428. if (vmx_get_msr(vcpu, ecx, &data)) {
  4429. trace_kvm_msr_read_ex(ecx);
  4430. kvm_inject_gp(vcpu, 0);
  4431. return 1;
  4432. }
  4433. trace_kvm_msr_read(ecx, data);
  4434. /* FIXME: handling of bits 32:63 of rax, rdx */
  4435. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4436. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4437. skip_emulated_instruction(vcpu);
  4438. return 1;
  4439. }
  4440. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4441. {
  4442. struct msr_data msr;
  4443. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4444. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4445. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4446. msr.data = data;
  4447. msr.index = ecx;
  4448. msr.host_initiated = false;
  4449. if (vmx_set_msr(vcpu, &msr) != 0) {
  4450. trace_kvm_msr_write_ex(ecx, data);
  4451. kvm_inject_gp(vcpu, 0);
  4452. return 1;
  4453. }
  4454. trace_kvm_msr_write(ecx, data);
  4455. skip_emulated_instruction(vcpu);
  4456. return 1;
  4457. }
  4458. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4459. {
  4460. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4461. return 1;
  4462. }
  4463. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4464. {
  4465. u32 cpu_based_vm_exec_control;
  4466. /* clear pending irq */
  4467. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4468. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4469. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4470. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4471. ++vcpu->stat.irq_window_exits;
  4472. /*
  4473. * If the user space waits to inject interrupts, exit as soon as
  4474. * possible
  4475. */
  4476. if (!irqchip_in_kernel(vcpu->kvm) &&
  4477. vcpu->run->request_interrupt_window &&
  4478. !kvm_cpu_has_interrupt(vcpu)) {
  4479. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4480. return 0;
  4481. }
  4482. return 1;
  4483. }
  4484. static int handle_halt(struct kvm_vcpu *vcpu)
  4485. {
  4486. skip_emulated_instruction(vcpu);
  4487. return kvm_emulate_halt(vcpu);
  4488. }
  4489. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4490. {
  4491. skip_emulated_instruction(vcpu);
  4492. kvm_emulate_hypercall(vcpu);
  4493. return 1;
  4494. }
  4495. static int handle_invd(struct kvm_vcpu *vcpu)
  4496. {
  4497. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4498. }
  4499. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4500. {
  4501. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4502. kvm_mmu_invlpg(vcpu, exit_qualification);
  4503. skip_emulated_instruction(vcpu);
  4504. return 1;
  4505. }
  4506. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4507. {
  4508. int err;
  4509. err = kvm_rdpmc(vcpu);
  4510. kvm_complete_insn_gp(vcpu, err);
  4511. return 1;
  4512. }
  4513. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4514. {
  4515. skip_emulated_instruction(vcpu);
  4516. kvm_emulate_wbinvd(vcpu);
  4517. return 1;
  4518. }
  4519. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4520. {
  4521. u64 new_bv = kvm_read_edx_eax(vcpu);
  4522. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4523. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4524. skip_emulated_instruction(vcpu);
  4525. return 1;
  4526. }
  4527. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4528. {
  4529. if (likely(fasteoi)) {
  4530. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4531. int access_type, offset;
  4532. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4533. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4534. /*
  4535. * Sane guest uses MOV to write EOI, with written value
  4536. * not cared. So make a short-circuit here by avoiding
  4537. * heavy instruction emulation.
  4538. */
  4539. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4540. (offset == APIC_EOI)) {
  4541. kvm_lapic_set_eoi(vcpu);
  4542. skip_emulated_instruction(vcpu);
  4543. return 1;
  4544. }
  4545. }
  4546. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4547. }
  4548. static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
  4549. {
  4550. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4551. int vector = exit_qualification & 0xff;
  4552. /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
  4553. kvm_apic_set_eoi_accelerated(vcpu, vector);
  4554. return 1;
  4555. }
  4556. static int handle_apic_write(struct kvm_vcpu *vcpu)
  4557. {
  4558. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4559. u32 offset = exit_qualification & 0xfff;
  4560. /* APIC-write VM exit is trap-like and thus no need to adjust IP */
  4561. kvm_apic_write_nodecode(vcpu, offset);
  4562. return 1;
  4563. }
  4564. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4565. {
  4566. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4567. unsigned long exit_qualification;
  4568. bool has_error_code = false;
  4569. u32 error_code = 0;
  4570. u16 tss_selector;
  4571. int reason, type, idt_v, idt_index;
  4572. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4573. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4574. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4575. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4576. reason = (u32)exit_qualification >> 30;
  4577. if (reason == TASK_SWITCH_GATE && idt_v) {
  4578. switch (type) {
  4579. case INTR_TYPE_NMI_INTR:
  4580. vcpu->arch.nmi_injected = false;
  4581. vmx_set_nmi_mask(vcpu, true);
  4582. break;
  4583. case INTR_TYPE_EXT_INTR:
  4584. case INTR_TYPE_SOFT_INTR:
  4585. kvm_clear_interrupt_queue(vcpu);
  4586. break;
  4587. case INTR_TYPE_HARD_EXCEPTION:
  4588. if (vmx->idt_vectoring_info &
  4589. VECTORING_INFO_DELIVER_CODE_MASK) {
  4590. has_error_code = true;
  4591. error_code =
  4592. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4593. }
  4594. /* fall through */
  4595. case INTR_TYPE_SOFT_EXCEPTION:
  4596. kvm_clear_exception_queue(vcpu);
  4597. break;
  4598. default:
  4599. break;
  4600. }
  4601. }
  4602. tss_selector = exit_qualification;
  4603. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4604. type != INTR_TYPE_EXT_INTR &&
  4605. type != INTR_TYPE_NMI_INTR))
  4606. skip_emulated_instruction(vcpu);
  4607. if (kvm_task_switch(vcpu, tss_selector,
  4608. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4609. has_error_code, error_code) == EMULATE_FAIL) {
  4610. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4611. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4612. vcpu->run->internal.ndata = 0;
  4613. return 0;
  4614. }
  4615. /* clear all local breakpoint enable flags */
  4616. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4617. /*
  4618. * TODO: What about debug traps on tss switch?
  4619. * Are we supposed to inject them and update dr6?
  4620. */
  4621. return 1;
  4622. }
  4623. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4624. {
  4625. unsigned long exit_qualification;
  4626. gpa_t gpa;
  4627. u32 error_code;
  4628. int gla_validity;
  4629. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4630. gla_validity = (exit_qualification >> 7) & 0x3;
  4631. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4632. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4633. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4634. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4635. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4636. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4637. (long unsigned int)exit_qualification);
  4638. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4639. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4640. return 0;
  4641. }
  4642. /*
  4643. * EPT violation happened while executing iret from NMI,
  4644. * "blocked by NMI" bit has to be set before next VM entry.
  4645. * There are errata that may cause this bit to not be set:
  4646. * AAK134, BY25.
  4647. */
  4648. if (exit_qualification & INTR_INFO_UNBLOCK_NMI)
  4649. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
  4650. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4651. trace_kvm_page_fault(gpa, exit_qualification);
  4652. /* It is a write fault? */
  4653. error_code = exit_qualification & (1U << 1);
  4654. /* It is a fetch fault? */
  4655. error_code |= (exit_qualification & (1U << 2)) << 2;
  4656. /* ept page table is present? */
  4657. error_code |= (exit_qualification >> 3) & 0x1;
  4658. vcpu->arch.exit_qualification = exit_qualification;
  4659. return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
  4660. }
  4661. static u64 ept_rsvd_mask(u64 spte, int level)
  4662. {
  4663. int i;
  4664. u64 mask = 0;
  4665. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4666. mask |= (1ULL << i);
  4667. if (level > 2)
  4668. /* bits 7:3 reserved */
  4669. mask |= 0xf8;
  4670. else if (level == 2) {
  4671. if (spte & (1ULL << 7))
  4672. /* 2MB ref, bits 20:12 reserved */
  4673. mask |= 0x1ff000;
  4674. else
  4675. /* bits 6:3 reserved */
  4676. mask |= 0x78;
  4677. }
  4678. return mask;
  4679. }
  4680. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4681. int level)
  4682. {
  4683. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4684. /* 010b (write-only) */
  4685. WARN_ON((spte & 0x7) == 0x2);
  4686. /* 110b (write/execute) */
  4687. WARN_ON((spte & 0x7) == 0x6);
  4688. /* 100b (execute-only) and value not supported by logical processor */
  4689. if (!cpu_has_vmx_ept_execute_only())
  4690. WARN_ON((spte & 0x7) == 0x4);
  4691. /* not 000b */
  4692. if ((spte & 0x7)) {
  4693. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4694. if (rsvd_bits != 0) {
  4695. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4696. __func__, rsvd_bits);
  4697. WARN_ON(1);
  4698. }
  4699. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4700. u64 ept_mem_type = (spte & 0x38) >> 3;
  4701. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4702. ept_mem_type == 7) {
  4703. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4704. __func__, ept_mem_type);
  4705. WARN_ON(1);
  4706. }
  4707. }
  4708. }
  4709. }
  4710. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4711. {
  4712. u64 sptes[4];
  4713. int nr_sptes, i, ret;
  4714. gpa_t gpa;
  4715. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4716. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4717. if (likely(ret == RET_MMIO_PF_EMULATE))
  4718. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4719. EMULATE_DONE;
  4720. if (unlikely(ret == RET_MMIO_PF_INVALID))
  4721. return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
  4722. if (unlikely(ret == RET_MMIO_PF_RETRY))
  4723. return 1;
  4724. /* It is the real ept misconfig */
  4725. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4726. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4727. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4728. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4729. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4730. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4731. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4732. return 0;
  4733. }
  4734. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4735. {
  4736. u32 cpu_based_vm_exec_control;
  4737. /* clear pending NMI */
  4738. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4739. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4740. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4741. ++vcpu->stat.nmi_window_exits;
  4742. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4743. return 1;
  4744. }
  4745. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4746. {
  4747. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4748. enum emulation_result err = EMULATE_DONE;
  4749. int ret = 1;
  4750. u32 cpu_exec_ctrl;
  4751. bool intr_window_requested;
  4752. unsigned count = 130;
  4753. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4754. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4755. while (!guest_state_valid(vcpu) && count-- != 0) {
  4756. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4757. return handle_interrupt_window(&vmx->vcpu);
  4758. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4759. return 1;
  4760. err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
  4761. if (err == EMULATE_USER_EXIT) {
  4762. ++vcpu->stat.mmio_exits;
  4763. ret = 0;
  4764. goto out;
  4765. }
  4766. if (err != EMULATE_DONE) {
  4767. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4768. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4769. vcpu->run->internal.ndata = 0;
  4770. return 0;
  4771. }
  4772. if (vcpu->arch.halt_request) {
  4773. vcpu->arch.halt_request = 0;
  4774. ret = kvm_emulate_halt(vcpu);
  4775. goto out;
  4776. }
  4777. if (signal_pending(current))
  4778. goto out;
  4779. if (need_resched())
  4780. schedule();
  4781. }
  4782. vmx->emulation_required = emulation_required(vcpu);
  4783. out:
  4784. return ret;
  4785. }
  4786. /*
  4787. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4788. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4789. */
  4790. static int handle_pause(struct kvm_vcpu *vcpu)
  4791. {
  4792. skip_emulated_instruction(vcpu);
  4793. kvm_vcpu_on_spin(vcpu);
  4794. return 1;
  4795. }
  4796. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4797. {
  4798. kvm_queue_exception(vcpu, UD_VECTOR);
  4799. return 1;
  4800. }
  4801. /*
  4802. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4803. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4804. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4805. * allows keeping them loaded on the processor, and in the future will allow
  4806. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4807. * every entry if they never change.
  4808. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4809. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4810. *
  4811. * The following functions allocate and free a vmcs02 in this pool.
  4812. */
  4813. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4814. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4815. {
  4816. struct vmcs02_list *item;
  4817. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4818. if (item->vmptr == vmx->nested.current_vmptr) {
  4819. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4820. return &item->vmcs02;
  4821. }
  4822. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4823. /* Recycle the least recently used VMCS. */
  4824. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4825. struct vmcs02_list, list);
  4826. item->vmptr = vmx->nested.current_vmptr;
  4827. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4828. return &item->vmcs02;
  4829. }
  4830. /* Create a new VMCS */
  4831. item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4832. if (!item)
  4833. return NULL;
  4834. item->vmcs02.vmcs = alloc_vmcs();
  4835. if (!item->vmcs02.vmcs) {
  4836. kfree(item);
  4837. return NULL;
  4838. }
  4839. loaded_vmcs_init(&item->vmcs02);
  4840. item->vmptr = vmx->nested.current_vmptr;
  4841. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4842. vmx->nested.vmcs02_num++;
  4843. return &item->vmcs02;
  4844. }
  4845. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4846. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4847. {
  4848. struct vmcs02_list *item;
  4849. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4850. if (item->vmptr == vmptr) {
  4851. free_loaded_vmcs(&item->vmcs02);
  4852. list_del(&item->list);
  4853. kfree(item);
  4854. vmx->nested.vmcs02_num--;
  4855. return;
  4856. }
  4857. }
  4858. /*
  4859. * Free all VMCSs saved for this vcpu, except the one pointed by
  4860. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4861. * currently used, if running L2), and vmcs01 when running L2.
  4862. */
  4863. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4864. {
  4865. struct vmcs02_list *item, *n;
  4866. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4867. if (vmx->loaded_vmcs != &item->vmcs02)
  4868. free_loaded_vmcs(&item->vmcs02);
  4869. list_del(&item->list);
  4870. kfree(item);
  4871. }
  4872. vmx->nested.vmcs02_num = 0;
  4873. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4874. free_loaded_vmcs(&vmx->vmcs01);
  4875. }
  4876. /*
  4877. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4878. * set the success or error code of an emulated VMX instruction, as specified
  4879. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4880. */
  4881. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4882. {
  4883. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4884. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4885. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4886. }
  4887. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4888. {
  4889. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4890. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4891. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4892. | X86_EFLAGS_CF);
  4893. }
  4894. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4895. u32 vm_instruction_error)
  4896. {
  4897. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4898. /*
  4899. * failValid writes the error number to the current VMCS, which
  4900. * can't be done there isn't a current VMCS.
  4901. */
  4902. nested_vmx_failInvalid(vcpu);
  4903. return;
  4904. }
  4905. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4906. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4907. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4908. | X86_EFLAGS_ZF);
  4909. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4910. /*
  4911. * We don't need to force a shadow sync because
  4912. * VM_INSTRUCTION_ERROR is not shadowed
  4913. */
  4914. }
  4915. /*
  4916. * Emulate the VMXON instruction.
  4917. * Currently, we just remember that VMX is active, and do not save or even
  4918. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4919. * do not currently need to store anything in that guest-allocated memory
  4920. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4921. * argument is different from the VMXON pointer (which the spec says they do).
  4922. */
  4923. static int handle_vmon(struct kvm_vcpu *vcpu)
  4924. {
  4925. struct kvm_segment cs;
  4926. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4927. struct vmcs *shadow_vmcs;
  4928. const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
  4929. | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  4930. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4931. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4932. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4933. * Otherwise, we should fail with #UD. We test these now:
  4934. */
  4935. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4936. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4937. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4938. kvm_queue_exception(vcpu, UD_VECTOR);
  4939. return 1;
  4940. }
  4941. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4942. if (is_long_mode(vcpu) && !cs.l) {
  4943. kvm_queue_exception(vcpu, UD_VECTOR);
  4944. return 1;
  4945. }
  4946. if (vmx_get_cpl(vcpu)) {
  4947. kvm_inject_gp(vcpu, 0);
  4948. return 1;
  4949. }
  4950. if (vmx->nested.vmxon) {
  4951. nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
  4952. skip_emulated_instruction(vcpu);
  4953. return 1;
  4954. }
  4955. if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
  4956. != VMXON_NEEDED_FEATURES) {
  4957. kvm_inject_gp(vcpu, 0);
  4958. return 1;
  4959. }
  4960. if (enable_shadow_vmcs) {
  4961. shadow_vmcs = alloc_vmcs();
  4962. if (!shadow_vmcs)
  4963. return -ENOMEM;
  4964. /* mark vmcs as shadow */
  4965. shadow_vmcs->revision_id |= (1u << 31);
  4966. /* init shadow vmcs */
  4967. vmcs_clear(shadow_vmcs);
  4968. vmx->nested.current_shadow_vmcs = shadow_vmcs;
  4969. }
  4970. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4971. vmx->nested.vmcs02_num = 0;
  4972. vmx->nested.vmxon = true;
  4973. skip_emulated_instruction(vcpu);
  4974. nested_vmx_succeed(vcpu);
  4975. return 1;
  4976. }
  4977. /*
  4978. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4979. * for running VMX instructions (except VMXON, whose prerequisites are
  4980. * slightly different). It also specifies what exception to inject otherwise.
  4981. */
  4982. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4983. {
  4984. struct kvm_segment cs;
  4985. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4986. if (!vmx->nested.vmxon) {
  4987. kvm_queue_exception(vcpu, UD_VECTOR);
  4988. return 0;
  4989. }
  4990. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4991. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4992. (is_long_mode(vcpu) && !cs.l)) {
  4993. kvm_queue_exception(vcpu, UD_VECTOR);
  4994. return 0;
  4995. }
  4996. if (vmx_get_cpl(vcpu)) {
  4997. kvm_inject_gp(vcpu, 0);
  4998. return 0;
  4999. }
  5000. return 1;
  5001. }
  5002. static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
  5003. {
  5004. u32 exec_control;
  5005. if (enable_shadow_vmcs) {
  5006. if (vmx->nested.current_vmcs12 != NULL) {
  5007. /* copy to memory all shadowed fields in case
  5008. they were modified */
  5009. copy_shadow_to_vmcs12(vmx);
  5010. vmx->nested.sync_shadow_vmcs = false;
  5011. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5012. exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
  5013. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5014. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5015. }
  5016. }
  5017. kunmap(vmx->nested.current_vmcs12_page);
  5018. nested_release_page(vmx->nested.current_vmcs12_page);
  5019. }
  5020. /*
  5021. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  5022. * just stops using VMX.
  5023. */
  5024. static void free_nested(struct vcpu_vmx *vmx)
  5025. {
  5026. if (!vmx->nested.vmxon)
  5027. return;
  5028. vmx->nested.vmxon = false;
  5029. if (vmx->nested.current_vmptr != -1ull) {
  5030. nested_release_vmcs12(vmx);
  5031. vmx->nested.current_vmptr = -1ull;
  5032. vmx->nested.current_vmcs12 = NULL;
  5033. }
  5034. if (enable_shadow_vmcs)
  5035. free_vmcs(vmx->nested.current_shadow_vmcs);
  5036. /* Unpin physical memory we referred to in current vmcs02 */
  5037. if (vmx->nested.apic_access_page) {
  5038. nested_release_page(vmx->nested.apic_access_page);
  5039. vmx->nested.apic_access_page = 0;
  5040. }
  5041. nested_free_all_saved_vmcss(vmx);
  5042. }
  5043. /* Emulate the VMXOFF instruction */
  5044. static int handle_vmoff(struct kvm_vcpu *vcpu)
  5045. {
  5046. if (!nested_vmx_check_permission(vcpu))
  5047. return 1;
  5048. free_nested(to_vmx(vcpu));
  5049. skip_emulated_instruction(vcpu);
  5050. nested_vmx_succeed(vcpu);
  5051. return 1;
  5052. }
  5053. /*
  5054. * Decode the memory-address operand of a vmx instruction, as recorded on an
  5055. * exit caused by such an instruction (run by a guest hypervisor).
  5056. * On success, returns 0. When the operand is invalid, returns 1 and throws
  5057. * #UD or #GP.
  5058. */
  5059. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  5060. unsigned long exit_qualification,
  5061. u32 vmx_instruction_info, gva_t *ret)
  5062. {
  5063. /*
  5064. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  5065. * Execution", on an exit, vmx_instruction_info holds most of the
  5066. * addressing components of the operand. Only the displacement part
  5067. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  5068. * For how an actual address is calculated from all these components,
  5069. * refer to Vol. 1, "Operand Addressing".
  5070. */
  5071. int scaling = vmx_instruction_info & 3;
  5072. int addr_size = (vmx_instruction_info >> 7) & 7;
  5073. bool is_reg = vmx_instruction_info & (1u << 10);
  5074. int seg_reg = (vmx_instruction_info >> 15) & 7;
  5075. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  5076. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  5077. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  5078. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  5079. if (is_reg) {
  5080. kvm_queue_exception(vcpu, UD_VECTOR);
  5081. return 1;
  5082. }
  5083. /* Addr = segment_base + offset */
  5084. /* offset = base + [index * scale] + displacement */
  5085. *ret = vmx_get_segment_base(vcpu, seg_reg);
  5086. if (base_is_valid)
  5087. *ret += kvm_register_read(vcpu, base_reg);
  5088. if (index_is_valid)
  5089. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  5090. *ret += exit_qualification; /* holds the displacement */
  5091. if (addr_size == 1) /* 32 bit */
  5092. *ret &= 0xffffffff;
  5093. /*
  5094. * TODO: throw #GP (and return 1) in various cases that the VM*
  5095. * instructions require it - e.g., offset beyond segment limit,
  5096. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  5097. * address, and so on. Currently these are not checked.
  5098. */
  5099. return 0;
  5100. }
  5101. /* Emulate the VMCLEAR instruction */
  5102. static int handle_vmclear(struct kvm_vcpu *vcpu)
  5103. {
  5104. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5105. gva_t gva;
  5106. gpa_t vmptr;
  5107. struct vmcs12 *vmcs12;
  5108. struct page *page;
  5109. struct x86_exception e;
  5110. if (!nested_vmx_check_permission(vcpu))
  5111. return 1;
  5112. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5113. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  5114. return 1;
  5115. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  5116. sizeof(vmptr), &e)) {
  5117. kvm_inject_page_fault(vcpu, &e);
  5118. return 1;
  5119. }
  5120. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  5121. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  5122. skip_emulated_instruction(vcpu);
  5123. return 1;
  5124. }
  5125. if (vmptr == vmx->nested.current_vmptr) {
  5126. nested_release_vmcs12(vmx);
  5127. vmx->nested.current_vmptr = -1ull;
  5128. vmx->nested.current_vmcs12 = NULL;
  5129. }
  5130. page = nested_get_page(vcpu, vmptr);
  5131. if (page == NULL) {
  5132. /*
  5133. * For accurate processor emulation, VMCLEAR beyond available
  5134. * physical memory should do nothing at all. However, it is
  5135. * possible that a nested vmx bug, not a guest hypervisor bug,
  5136. * resulted in this case, so let's shut down before doing any
  5137. * more damage:
  5138. */
  5139. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  5140. return 1;
  5141. }
  5142. vmcs12 = kmap(page);
  5143. vmcs12->launch_state = 0;
  5144. kunmap(page);
  5145. nested_release_page(page);
  5146. nested_free_vmcs02(vmx, vmptr);
  5147. skip_emulated_instruction(vcpu);
  5148. nested_vmx_succeed(vcpu);
  5149. return 1;
  5150. }
  5151. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  5152. /* Emulate the VMLAUNCH instruction */
  5153. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  5154. {
  5155. return nested_vmx_run(vcpu, true);
  5156. }
  5157. /* Emulate the VMRESUME instruction */
  5158. static int handle_vmresume(struct kvm_vcpu *vcpu)
  5159. {
  5160. return nested_vmx_run(vcpu, false);
  5161. }
  5162. enum vmcs_field_type {
  5163. VMCS_FIELD_TYPE_U16 = 0,
  5164. VMCS_FIELD_TYPE_U64 = 1,
  5165. VMCS_FIELD_TYPE_U32 = 2,
  5166. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  5167. };
  5168. static inline int vmcs_field_type(unsigned long field)
  5169. {
  5170. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  5171. return VMCS_FIELD_TYPE_U32;
  5172. return (field >> 13) & 0x3 ;
  5173. }
  5174. static inline int vmcs_field_readonly(unsigned long field)
  5175. {
  5176. return (((field >> 10) & 0x3) == 1);
  5177. }
  5178. /*
  5179. * Read a vmcs12 field. Since these can have varying lengths and we return
  5180. * one type, we chose the biggest type (u64) and zero-extend the return value
  5181. * to that size. Note that the caller, handle_vmread, might need to use only
  5182. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  5183. * 64-bit fields are to be returned).
  5184. */
  5185. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  5186. unsigned long field, u64 *ret)
  5187. {
  5188. short offset = vmcs_field_to_offset(field);
  5189. char *p;
  5190. if (offset < 0)
  5191. return 0;
  5192. p = ((char *)(get_vmcs12(vcpu))) + offset;
  5193. switch (vmcs_field_type(field)) {
  5194. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5195. *ret = *((natural_width *)p);
  5196. return 1;
  5197. case VMCS_FIELD_TYPE_U16:
  5198. *ret = *((u16 *)p);
  5199. return 1;
  5200. case VMCS_FIELD_TYPE_U32:
  5201. *ret = *((u32 *)p);
  5202. return 1;
  5203. case VMCS_FIELD_TYPE_U64:
  5204. *ret = *((u64 *)p);
  5205. return 1;
  5206. default:
  5207. return 0; /* can never happen. */
  5208. }
  5209. }
  5210. static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
  5211. unsigned long field, u64 field_value){
  5212. short offset = vmcs_field_to_offset(field);
  5213. char *p = ((char *) get_vmcs12(vcpu)) + offset;
  5214. if (offset < 0)
  5215. return false;
  5216. switch (vmcs_field_type(field)) {
  5217. case VMCS_FIELD_TYPE_U16:
  5218. *(u16 *)p = field_value;
  5219. return true;
  5220. case VMCS_FIELD_TYPE_U32:
  5221. *(u32 *)p = field_value;
  5222. return true;
  5223. case VMCS_FIELD_TYPE_U64:
  5224. *(u64 *)p = field_value;
  5225. return true;
  5226. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5227. *(natural_width *)p = field_value;
  5228. return true;
  5229. default:
  5230. return false; /* can never happen. */
  5231. }
  5232. }
  5233. static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
  5234. {
  5235. int i;
  5236. unsigned long field;
  5237. u64 field_value;
  5238. struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
  5239. const unsigned long *fields = shadow_read_write_fields;
  5240. const int num_fields = max_shadow_read_write_fields;
  5241. vmcs_load(shadow_vmcs);
  5242. for (i = 0; i < num_fields; i++) {
  5243. field = fields[i];
  5244. switch (vmcs_field_type(field)) {
  5245. case VMCS_FIELD_TYPE_U16:
  5246. field_value = vmcs_read16(field);
  5247. break;
  5248. case VMCS_FIELD_TYPE_U32:
  5249. field_value = vmcs_read32(field);
  5250. break;
  5251. case VMCS_FIELD_TYPE_U64:
  5252. field_value = vmcs_read64(field);
  5253. break;
  5254. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5255. field_value = vmcs_readl(field);
  5256. break;
  5257. }
  5258. vmcs12_write_any(&vmx->vcpu, field, field_value);
  5259. }
  5260. vmcs_clear(shadow_vmcs);
  5261. vmcs_load(vmx->loaded_vmcs->vmcs);
  5262. }
  5263. static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
  5264. {
  5265. const unsigned long *fields[] = {
  5266. shadow_read_write_fields,
  5267. shadow_read_only_fields
  5268. };
  5269. const int max_fields[] = {
  5270. max_shadow_read_write_fields,
  5271. max_shadow_read_only_fields
  5272. };
  5273. int i, q;
  5274. unsigned long field;
  5275. u64 field_value = 0;
  5276. struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
  5277. vmcs_load(shadow_vmcs);
  5278. for (q = 0; q < ARRAY_SIZE(fields); q++) {
  5279. for (i = 0; i < max_fields[q]; i++) {
  5280. field = fields[q][i];
  5281. vmcs12_read_any(&vmx->vcpu, field, &field_value);
  5282. switch (vmcs_field_type(field)) {
  5283. case VMCS_FIELD_TYPE_U16:
  5284. vmcs_write16(field, (u16)field_value);
  5285. break;
  5286. case VMCS_FIELD_TYPE_U32:
  5287. vmcs_write32(field, (u32)field_value);
  5288. break;
  5289. case VMCS_FIELD_TYPE_U64:
  5290. vmcs_write64(field, (u64)field_value);
  5291. break;
  5292. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5293. vmcs_writel(field, (long)field_value);
  5294. break;
  5295. }
  5296. }
  5297. }
  5298. vmcs_clear(shadow_vmcs);
  5299. vmcs_load(vmx->loaded_vmcs->vmcs);
  5300. }
  5301. /*
  5302. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  5303. * used before) all generate the same failure when it is missing.
  5304. */
  5305. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  5306. {
  5307. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5308. if (vmx->nested.current_vmptr == -1ull) {
  5309. nested_vmx_failInvalid(vcpu);
  5310. skip_emulated_instruction(vcpu);
  5311. return 0;
  5312. }
  5313. return 1;
  5314. }
  5315. static int handle_vmread(struct kvm_vcpu *vcpu)
  5316. {
  5317. unsigned long field;
  5318. u64 field_value;
  5319. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5320. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5321. gva_t gva = 0;
  5322. if (!nested_vmx_check_permission(vcpu) ||
  5323. !nested_vmx_check_vmcs12(vcpu))
  5324. return 1;
  5325. /* Decode instruction info and find the field to read */
  5326. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  5327. /* Read the field, zero-extended to a u64 field_value */
  5328. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  5329. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  5330. skip_emulated_instruction(vcpu);
  5331. return 1;
  5332. }
  5333. /*
  5334. * Now copy part of this value to register or memory, as requested.
  5335. * Note that the number of bits actually copied is 32 or 64 depending
  5336. * on the guest's mode (32 or 64 bit), not on the given field's length.
  5337. */
  5338. if (vmx_instruction_info & (1u << 10)) {
  5339. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  5340. field_value);
  5341. } else {
  5342. if (get_vmx_mem_address(vcpu, exit_qualification,
  5343. vmx_instruction_info, &gva))
  5344. return 1;
  5345. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  5346. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  5347. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  5348. }
  5349. nested_vmx_succeed(vcpu);
  5350. skip_emulated_instruction(vcpu);
  5351. return 1;
  5352. }
  5353. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  5354. {
  5355. unsigned long field;
  5356. gva_t gva;
  5357. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5358. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5359. /* The value to write might be 32 or 64 bits, depending on L1's long
  5360. * mode, and eventually we need to write that into a field of several
  5361. * possible lengths. The code below first zero-extends the value to 64
  5362. * bit (field_value), and then copies only the approriate number of
  5363. * bits into the vmcs12 field.
  5364. */
  5365. u64 field_value = 0;
  5366. struct x86_exception e;
  5367. if (!nested_vmx_check_permission(vcpu) ||
  5368. !nested_vmx_check_vmcs12(vcpu))
  5369. return 1;
  5370. if (vmx_instruction_info & (1u << 10))
  5371. field_value = kvm_register_read(vcpu,
  5372. (((vmx_instruction_info) >> 3) & 0xf));
  5373. else {
  5374. if (get_vmx_mem_address(vcpu, exit_qualification,
  5375. vmx_instruction_info, &gva))
  5376. return 1;
  5377. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  5378. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  5379. kvm_inject_page_fault(vcpu, &e);
  5380. return 1;
  5381. }
  5382. }
  5383. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  5384. if (vmcs_field_readonly(field)) {
  5385. nested_vmx_failValid(vcpu,
  5386. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  5387. skip_emulated_instruction(vcpu);
  5388. return 1;
  5389. }
  5390. if (!vmcs12_write_any(vcpu, field, field_value)) {
  5391. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  5392. skip_emulated_instruction(vcpu);
  5393. return 1;
  5394. }
  5395. nested_vmx_succeed(vcpu);
  5396. skip_emulated_instruction(vcpu);
  5397. return 1;
  5398. }
  5399. /* Emulate the VMPTRLD instruction */
  5400. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  5401. {
  5402. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5403. gva_t gva;
  5404. gpa_t vmptr;
  5405. struct x86_exception e;
  5406. u32 exec_control;
  5407. if (!nested_vmx_check_permission(vcpu))
  5408. return 1;
  5409. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5410. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  5411. return 1;
  5412. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  5413. sizeof(vmptr), &e)) {
  5414. kvm_inject_page_fault(vcpu, &e);
  5415. return 1;
  5416. }
  5417. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  5418. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  5419. skip_emulated_instruction(vcpu);
  5420. return 1;
  5421. }
  5422. if (vmx->nested.current_vmptr != vmptr) {
  5423. struct vmcs12 *new_vmcs12;
  5424. struct page *page;
  5425. page = nested_get_page(vcpu, vmptr);
  5426. if (page == NULL) {
  5427. nested_vmx_failInvalid(vcpu);
  5428. skip_emulated_instruction(vcpu);
  5429. return 1;
  5430. }
  5431. new_vmcs12 = kmap(page);
  5432. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  5433. kunmap(page);
  5434. nested_release_page_clean(page);
  5435. nested_vmx_failValid(vcpu,
  5436. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  5437. skip_emulated_instruction(vcpu);
  5438. return 1;
  5439. }
  5440. if (vmx->nested.current_vmptr != -1ull)
  5441. nested_release_vmcs12(vmx);
  5442. vmx->nested.current_vmptr = vmptr;
  5443. vmx->nested.current_vmcs12 = new_vmcs12;
  5444. vmx->nested.current_vmcs12_page = page;
  5445. if (enable_shadow_vmcs) {
  5446. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5447. exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
  5448. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5449. vmcs_write64(VMCS_LINK_POINTER,
  5450. __pa(vmx->nested.current_shadow_vmcs));
  5451. vmx->nested.sync_shadow_vmcs = true;
  5452. }
  5453. }
  5454. nested_vmx_succeed(vcpu);
  5455. skip_emulated_instruction(vcpu);
  5456. return 1;
  5457. }
  5458. /* Emulate the VMPTRST instruction */
  5459. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  5460. {
  5461. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5462. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5463. gva_t vmcs_gva;
  5464. struct x86_exception e;
  5465. if (!nested_vmx_check_permission(vcpu))
  5466. return 1;
  5467. if (get_vmx_mem_address(vcpu, exit_qualification,
  5468. vmx_instruction_info, &vmcs_gva))
  5469. return 1;
  5470. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  5471. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  5472. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  5473. sizeof(u64), &e)) {
  5474. kvm_inject_page_fault(vcpu, &e);
  5475. return 1;
  5476. }
  5477. nested_vmx_succeed(vcpu);
  5478. skip_emulated_instruction(vcpu);
  5479. return 1;
  5480. }
  5481. /* Emulate the INVEPT instruction */
  5482. static int handle_invept(struct kvm_vcpu *vcpu)
  5483. {
  5484. u32 vmx_instruction_info, types;
  5485. unsigned long type;
  5486. gva_t gva;
  5487. struct x86_exception e;
  5488. struct {
  5489. u64 eptp, gpa;
  5490. } operand;
  5491. u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
  5492. if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
  5493. !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
  5494. kvm_queue_exception(vcpu, UD_VECTOR);
  5495. return 1;
  5496. }
  5497. if (!nested_vmx_check_permission(vcpu))
  5498. return 1;
  5499. if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
  5500. kvm_queue_exception(vcpu, UD_VECTOR);
  5501. return 1;
  5502. }
  5503. vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5504. type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
  5505. types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
  5506. if (!(types & (1UL << type))) {
  5507. nested_vmx_failValid(vcpu,
  5508. VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
  5509. return 1;
  5510. }
  5511. /* According to the Intel VMX instruction reference, the memory
  5512. * operand is read even if it isn't needed (e.g., for type==global)
  5513. */
  5514. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5515. vmx_instruction_info, &gva))
  5516. return 1;
  5517. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
  5518. sizeof(operand), &e)) {
  5519. kvm_inject_page_fault(vcpu, &e);
  5520. return 1;
  5521. }
  5522. switch (type) {
  5523. case VMX_EPT_EXTENT_CONTEXT:
  5524. if ((operand.eptp & eptp_mask) !=
  5525. (nested_ept_get_cr3(vcpu) & eptp_mask))
  5526. break;
  5527. case VMX_EPT_EXTENT_GLOBAL:
  5528. kvm_mmu_sync_roots(vcpu);
  5529. kvm_mmu_flush_tlb(vcpu);
  5530. nested_vmx_succeed(vcpu);
  5531. break;
  5532. default:
  5533. BUG_ON(1);
  5534. break;
  5535. }
  5536. skip_emulated_instruction(vcpu);
  5537. return 1;
  5538. }
  5539. /*
  5540. * The exit handlers return 1 if the exit was handled fully and guest execution
  5541. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  5542. * to be done to userspace and return 0.
  5543. */
  5544. static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  5545. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  5546. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  5547. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  5548. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  5549. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  5550. [EXIT_REASON_CR_ACCESS] = handle_cr,
  5551. [EXIT_REASON_DR_ACCESS] = handle_dr,
  5552. [EXIT_REASON_CPUID] = handle_cpuid,
  5553. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  5554. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  5555. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  5556. [EXIT_REASON_HLT] = handle_halt,
  5557. [EXIT_REASON_INVD] = handle_invd,
  5558. [EXIT_REASON_INVLPG] = handle_invlpg,
  5559. [EXIT_REASON_RDPMC] = handle_rdpmc,
  5560. [EXIT_REASON_VMCALL] = handle_vmcall,
  5561. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  5562. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  5563. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  5564. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  5565. [EXIT_REASON_VMREAD] = handle_vmread,
  5566. [EXIT_REASON_VMRESUME] = handle_vmresume,
  5567. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  5568. [EXIT_REASON_VMOFF] = handle_vmoff,
  5569. [EXIT_REASON_VMON] = handle_vmon,
  5570. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  5571. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  5572. [EXIT_REASON_APIC_WRITE] = handle_apic_write,
  5573. [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
  5574. [EXIT_REASON_WBINVD] = handle_wbinvd,
  5575. [EXIT_REASON_XSETBV] = handle_xsetbv,
  5576. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  5577. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  5578. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  5579. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  5580. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  5581. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  5582. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  5583. [EXIT_REASON_INVEPT] = handle_invept,
  5584. };
  5585. static const int kvm_vmx_max_exit_handlers =
  5586. ARRAY_SIZE(kvm_vmx_exit_handlers);
  5587. static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
  5588. struct vmcs12 *vmcs12)
  5589. {
  5590. unsigned long exit_qualification;
  5591. gpa_t bitmap, last_bitmap;
  5592. unsigned int port;
  5593. int size;
  5594. u8 b;
  5595. if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
  5596. return 1;
  5597. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
  5598. return 0;
  5599. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5600. port = exit_qualification >> 16;
  5601. size = (exit_qualification & 7) + 1;
  5602. last_bitmap = (gpa_t)-1;
  5603. b = -1;
  5604. while (size > 0) {
  5605. if (port < 0x8000)
  5606. bitmap = vmcs12->io_bitmap_a;
  5607. else if (port < 0x10000)
  5608. bitmap = vmcs12->io_bitmap_b;
  5609. else
  5610. return 1;
  5611. bitmap += (port & 0x7fff) / 8;
  5612. if (last_bitmap != bitmap)
  5613. if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
  5614. return 1;
  5615. if (b & (1 << (port & 7)))
  5616. return 1;
  5617. port++;
  5618. size--;
  5619. last_bitmap = bitmap;
  5620. }
  5621. return 0;
  5622. }
  5623. /*
  5624. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  5625. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  5626. * disinterest in the current event (read or write a specific MSR) by using an
  5627. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  5628. */
  5629. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  5630. struct vmcs12 *vmcs12, u32 exit_reason)
  5631. {
  5632. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  5633. gpa_t bitmap;
  5634. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
  5635. return 1;
  5636. /*
  5637. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  5638. * for the four combinations of read/write and low/high MSR numbers.
  5639. * First we need to figure out which of the four to use:
  5640. */
  5641. bitmap = vmcs12->msr_bitmap;
  5642. if (exit_reason == EXIT_REASON_MSR_WRITE)
  5643. bitmap += 2048;
  5644. if (msr_index >= 0xc0000000) {
  5645. msr_index -= 0xc0000000;
  5646. bitmap += 1024;
  5647. }
  5648. /* Then read the msr_index'th bit from this bitmap: */
  5649. if (msr_index < 1024*8) {
  5650. unsigned char b;
  5651. if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
  5652. return 1;
  5653. return 1 & (b >> (msr_index & 7));
  5654. } else
  5655. return 1; /* let L1 handle the wrong parameter */
  5656. }
  5657. /*
  5658. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  5659. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  5660. * intercept (via guest_host_mask etc.) the current event.
  5661. */
  5662. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5663. struct vmcs12 *vmcs12)
  5664. {
  5665. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5666. int cr = exit_qualification & 15;
  5667. int reg = (exit_qualification >> 8) & 15;
  5668. unsigned long val = kvm_register_read(vcpu, reg);
  5669. switch ((exit_qualification >> 4) & 3) {
  5670. case 0: /* mov to cr */
  5671. switch (cr) {
  5672. case 0:
  5673. if (vmcs12->cr0_guest_host_mask &
  5674. (val ^ vmcs12->cr0_read_shadow))
  5675. return 1;
  5676. break;
  5677. case 3:
  5678. if ((vmcs12->cr3_target_count >= 1 &&
  5679. vmcs12->cr3_target_value0 == val) ||
  5680. (vmcs12->cr3_target_count >= 2 &&
  5681. vmcs12->cr3_target_value1 == val) ||
  5682. (vmcs12->cr3_target_count >= 3 &&
  5683. vmcs12->cr3_target_value2 == val) ||
  5684. (vmcs12->cr3_target_count >= 4 &&
  5685. vmcs12->cr3_target_value3 == val))
  5686. return 0;
  5687. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5688. return 1;
  5689. break;
  5690. case 4:
  5691. if (vmcs12->cr4_guest_host_mask &
  5692. (vmcs12->cr4_read_shadow ^ val))
  5693. return 1;
  5694. break;
  5695. case 8:
  5696. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5697. return 1;
  5698. break;
  5699. }
  5700. break;
  5701. case 2: /* clts */
  5702. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5703. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5704. return 1;
  5705. break;
  5706. case 1: /* mov from cr */
  5707. switch (cr) {
  5708. case 3:
  5709. if (vmcs12->cpu_based_vm_exec_control &
  5710. CPU_BASED_CR3_STORE_EXITING)
  5711. return 1;
  5712. break;
  5713. case 8:
  5714. if (vmcs12->cpu_based_vm_exec_control &
  5715. CPU_BASED_CR8_STORE_EXITING)
  5716. return 1;
  5717. break;
  5718. }
  5719. break;
  5720. case 3: /* lmsw */
  5721. /*
  5722. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5723. * cr0. Other attempted changes are ignored, with no exit.
  5724. */
  5725. if (vmcs12->cr0_guest_host_mask & 0xe &
  5726. (val ^ vmcs12->cr0_read_shadow))
  5727. return 1;
  5728. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5729. !(vmcs12->cr0_read_shadow & 0x1) &&
  5730. (val & 0x1))
  5731. return 1;
  5732. break;
  5733. }
  5734. return 0;
  5735. }
  5736. /*
  5737. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5738. * should handle it ourselves in L0 (and then continue L2). Only call this
  5739. * when in is_guest_mode (L2).
  5740. */
  5741. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5742. {
  5743. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5744. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5745. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5746. u32 exit_reason = vmx->exit_reason;
  5747. if (vmx->nested.nested_run_pending)
  5748. return 0;
  5749. if (unlikely(vmx->fail)) {
  5750. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5751. vmcs_read32(VM_INSTRUCTION_ERROR));
  5752. return 1;
  5753. }
  5754. switch (exit_reason) {
  5755. case EXIT_REASON_EXCEPTION_NMI:
  5756. if (!is_exception(intr_info))
  5757. return 0;
  5758. else if (is_page_fault(intr_info))
  5759. return enable_ept;
  5760. return vmcs12->exception_bitmap &
  5761. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5762. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5763. return 0;
  5764. case EXIT_REASON_TRIPLE_FAULT:
  5765. return 1;
  5766. case EXIT_REASON_PENDING_INTERRUPT:
  5767. return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
  5768. case EXIT_REASON_NMI_WINDOW:
  5769. return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
  5770. case EXIT_REASON_TASK_SWITCH:
  5771. return 1;
  5772. case EXIT_REASON_CPUID:
  5773. return 1;
  5774. case EXIT_REASON_HLT:
  5775. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5776. case EXIT_REASON_INVD:
  5777. return 1;
  5778. case EXIT_REASON_INVLPG:
  5779. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5780. case EXIT_REASON_RDPMC:
  5781. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5782. case EXIT_REASON_RDTSC:
  5783. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5784. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5785. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5786. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5787. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5788. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5789. case EXIT_REASON_INVEPT:
  5790. /*
  5791. * VMX instructions trap unconditionally. This allows L1 to
  5792. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5793. */
  5794. return 1;
  5795. case EXIT_REASON_CR_ACCESS:
  5796. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5797. case EXIT_REASON_DR_ACCESS:
  5798. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5799. case EXIT_REASON_IO_INSTRUCTION:
  5800. return nested_vmx_exit_handled_io(vcpu, vmcs12);
  5801. case EXIT_REASON_MSR_READ:
  5802. case EXIT_REASON_MSR_WRITE:
  5803. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5804. case EXIT_REASON_INVALID_STATE:
  5805. return 1;
  5806. case EXIT_REASON_MWAIT_INSTRUCTION:
  5807. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5808. case EXIT_REASON_MONITOR_INSTRUCTION:
  5809. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5810. case EXIT_REASON_PAUSE_INSTRUCTION:
  5811. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5812. nested_cpu_has2(vmcs12,
  5813. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5814. case EXIT_REASON_MCE_DURING_VMENTRY:
  5815. return 0;
  5816. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5817. return 1;
  5818. case EXIT_REASON_APIC_ACCESS:
  5819. return nested_cpu_has2(vmcs12,
  5820. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5821. case EXIT_REASON_EPT_VIOLATION:
  5822. /*
  5823. * L0 always deals with the EPT violation. If nested EPT is
  5824. * used, and the nested mmu code discovers that the address is
  5825. * missing in the guest EPT table (EPT12), the EPT violation
  5826. * will be injected with nested_ept_inject_page_fault()
  5827. */
  5828. return 0;
  5829. case EXIT_REASON_EPT_MISCONFIG:
  5830. /*
  5831. * L2 never uses directly L1's EPT, but rather L0's own EPT
  5832. * table (shadow on EPT) or a merged EPT table that L0 built
  5833. * (EPT on EPT). So any problems with the structure of the
  5834. * table is L0's fault.
  5835. */
  5836. return 0;
  5837. case EXIT_REASON_PREEMPTION_TIMER:
  5838. return vmcs12->pin_based_vm_exec_control &
  5839. PIN_BASED_VMX_PREEMPTION_TIMER;
  5840. case EXIT_REASON_WBINVD:
  5841. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5842. case EXIT_REASON_XSETBV:
  5843. return 1;
  5844. default:
  5845. return 1;
  5846. }
  5847. }
  5848. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5849. {
  5850. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5851. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5852. }
  5853. /*
  5854. * The guest has exited. See if we can fix it or if we need userspace
  5855. * assistance.
  5856. */
  5857. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5858. {
  5859. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5860. u32 exit_reason = vmx->exit_reason;
  5861. u32 vectoring_info = vmx->idt_vectoring_info;
  5862. /* If guest state is invalid, start emulating */
  5863. if (vmx->emulation_required)
  5864. return handle_invalid_guest_state(vcpu);
  5865. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5866. nested_vmx_vmexit(vcpu);
  5867. return 1;
  5868. }
  5869. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5870. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5871. vcpu->run->fail_entry.hardware_entry_failure_reason
  5872. = exit_reason;
  5873. return 0;
  5874. }
  5875. if (unlikely(vmx->fail)) {
  5876. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5877. vcpu->run->fail_entry.hardware_entry_failure_reason
  5878. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5879. return 0;
  5880. }
  5881. /*
  5882. * Note:
  5883. * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
  5884. * delivery event since it indicates guest is accessing MMIO.
  5885. * The vm-exit can be triggered again after return to guest that
  5886. * will cause infinite loop.
  5887. */
  5888. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5889. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5890. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5891. exit_reason != EXIT_REASON_TASK_SWITCH)) {
  5892. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  5893. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
  5894. vcpu->run->internal.ndata = 2;
  5895. vcpu->run->internal.data[0] = vectoring_info;
  5896. vcpu->run->internal.data[1] = exit_reason;
  5897. return 0;
  5898. }
  5899. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5900. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5901. get_vmcs12(vcpu))))) {
  5902. if (vmx_interrupt_allowed(vcpu)) {
  5903. vmx->soft_vnmi_blocked = 0;
  5904. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5905. vcpu->arch.nmi_pending) {
  5906. /*
  5907. * This CPU don't support us in finding the end of an
  5908. * NMI-blocked window if the guest runs with IRQs
  5909. * disabled. So we pull the trigger after 1 s of
  5910. * futile waiting, but inform the user about this.
  5911. */
  5912. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5913. "state on VCPU %d after 1 s timeout\n",
  5914. __func__, vcpu->vcpu_id);
  5915. vmx->soft_vnmi_blocked = 0;
  5916. }
  5917. }
  5918. if (exit_reason < kvm_vmx_max_exit_handlers
  5919. && kvm_vmx_exit_handlers[exit_reason])
  5920. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5921. else {
  5922. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5923. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5924. }
  5925. return 0;
  5926. }
  5927. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5928. {
  5929. if (irr == -1 || tpr < irr) {
  5930. vmcs_write32(TPR_THRESHOLD, 0);
  5931. return;
  5932. }
  5933. vmcs_write32(TPR_THRESHOLD, irr);
  5934. }
  5935. static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
  5936. {
  5937. u32 sec_exec_control;
  5938. /*
  5939. * There is not point to enable virtualize x2apic without enable
  5940. * apicv
  5941. */
  5942. if (!cpu_has_vmx_virtualize_x2apic_mode() ||
  5943. !vmx_vm_has_apicv(vcpu->kvm))
  5944. return;
  5945. if (!vm_need_tpr_shadow(vcpu->kvm))
  5946. return;
  5947. sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5948. if (set) {
  5949. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5950. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5951. } else {
  5952. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5953. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5954. }
  5955. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
  5956. vmx_set_msr_bitmap(vcpu);
  5957. }
  5958. static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
  5959. {
  5960. u16 status;
  5961. u8 old;
  5962. if (!vmx_vm_has_apicv(kvm))
  5963. return;
  5964. if (isr == -1)
  5965. isr = 0;
  5966. status = vmcs_read16(GUEST_INTR_STATUS);
  5967. old = status >> 8;
  5968. if (isr != old) {
  5969. status &= 0xff;
  5970. status |= isr << 8;
  5971. vmcs_write16(GUEST_INTR_STATUS, status);
  5972. }
  5973. }
  5974. static void vmx_set_rvi(int vector)
  5975. {
  5976. u16 status;
  5977. u8 old;
  5978. status = vmcs_read16(GUEST_INTR_STATUS);
  5979. old = (u8)status & 0xff;
  5980. if ((u8)vector != old) {
  5981. status &= ~0xff;
  5982. status |= (u8)vector;
  5983. vmcs_write16(GUEST_INTR_STATUS, status);
  5984. }
  5985. }
  5986. static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
  5987. {
  5988. if (max_irr == -1)
  5989. return;
  5990. vmx_set_rvi(max_irr);
  5991. }
  5992. static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
  5993. {
  5994. if (!vmx_vm_has_apicv(vcpu->kvm))
  5995. return;
  5996. vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
  5997. vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
  5998. vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
  5999. vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
  6000. }
  6001. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  6002. {
  6003. u32 exit_intr_info;
  6004. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  6005. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  6006. return;
  6007. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6008. exit_intr_info = vmx->exit_intr_info;
  6009. /* Handle machine checks before interrupts are enabled */
  6010. if (is_machine_check(exit_intr_info))
  6011. kvm_machine_check();
  6012. /* We need to handle NMIs before interrupts are enabled */
  6013. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  6014. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  6015. kvm_before_handle_nmi(&vmx->vcpu);
  6016. asm("int $2");
  6017. kvm_after_handle_nmi(&vmx->vcpu);
  6018. }
  6019. }
  6020. static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
  6021. {
  6022. u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6023. /*
  6024. * If external interrupt exists, IF bit is set in rflags/eflags on the
  6025. * interrupt stack frame, and interrupt will be enabled on a return
  6026. * from interrupt handler.
  6027. */
  6028. if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
  6029. == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
  6030. unsigned int vector;
  6031. unsigned long entry;
  6032. gate_desc *desc;
  6033. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6034. #ifdef CONFIG_X86_64
  6035. unsigned long tmp;
  6036. #endif
  6037. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  6038. desc = (gate_desc *)vmx->host_idt_base + vector;
  6039. entry = gate_offset(*desc);
  6040. asm volatile(
  6041. #ifdef CONFIG_X86_64
  6042. "mov %%" _ASM_SP ", %[sp]\n\t"
  6043. "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
  6044. "push $%c[ss]\n\t"
  6045. "push %[sp]\n\t"
  6046. #endif
  6047. "pushf\n\t"
  6048. "orl $0x200, (%%" _ASM_SP ")\n\t"
  6049. __ASM_SIZE(push) " $%c[cs]\n\t"
  6050. "call *%[entry]\n\t"
  6051. :
  6052. #ifdef CONFIG_X86_64
  6053. [sp]"=&r"(tmp)
  6054. #endif
  6055. :
  6056. [entry]"r"(entry),
  6057. [ss]"i"(__KERNEL_DS),
  6058. [cs]"i"(__KERNEL_CS)
  6059. );
  6060. } else
  6061. local_irq_enable();
  6062. }
  6063. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  6064. {
  6065. u32 exit_intr_info;
  6066. bool unblock_nmi;
  6067. u8 vector;
  6068. bool idtv_info_valid;
  6069. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  6070. if (cpu_has_virtual_nmis()) {
  6071. if (vmx->nmi_known_unmasked)
  6072. return;
  6073. /*
  6074. * Can't use vmx->exit_intr_info since we're not sure what
  6075. * the exit reason is.
  6076. */
  6077. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6078. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  6079. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  6080. /*
  6081. * SDM 3: 27.7.1.2 (September 2008)
  6082. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  6083. * a guest IRET fault.
  6084. * SDM 3: 23.2.2 (September 2008)
  6085. * Bit 12 is undefined in any of the following cases:
  6086. * If the VM exit sets the valid bit in the IDT-vectoring
  6087. * information field.
  6088. * If the VM exit is due to a double fault.
  6089. */
  6090. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  6091. vector != DF_VECTOR && !idtv_info_valid)
  6092. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  6093. GUEST_INTR_STATE_NMI);
  6094. else
  6095. vmx->nmi_known_unmasked =
  6096. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  6097. & GUEST_INTR_STATE_NMI);
  6098. } else if (unlikely(vmx->soft_vnmi_blocked))
  6099. vmx->vnmi_blocked_time +=
  6100. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  6101. }
  6102. static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
  6103. u32 idt_vectoring_info,
  6104. int instr_len_field,
  6105. int error_code_field)
  6106. {
  6107. u8 vector;
  6108. int type;
  6109. bool idtv_info_valid;
  6110. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  6111. vcpu->arch.nmi_injected = false;
  6112. kvm_clear_exception_queue(vcpu);
  6113. kvm_clear_interrupt_queue(vcpu);
  6114. if (!idtv_info_valid)
  6115. return;
  6116. kvm_make_request(KVM_REQ_EVENT, vcpu);
  6117. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  6118. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  6119. switch (type) {
  6120. case INTR_TYPE_NMI_INTR:
  6121. vcpu->arch.nmi_injected = true;
  6122. /*
  6123. * SDM 3: 27.7.1.2 (September 2008)
  6124. * Clear bit "block by NMI" before VM entry if a NMI
  6125. * delivery faulted.
  6126. */
  6127. vmx_set_nmi_mask(vcpu, false);
  6128. break;
  6129. case INTR_TYPE_SOFT_EXCEPTION:
  6130. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  6131. /* fall through */
  6132. case INTR_TYPE_HARD_EXCEPTION:
  6133. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  6134. u32 err = vmcs_read32(error_code_field);
  6135. kvm_requeue_exception_e(vcpu, vector, err);
  6136. } else
  6137. kvm_requeue_exception(vcpu, vector);
  6138. break;
  6139. case INTR_TYPE_SOFT_INTR:
  6140. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  6141. /* fall through */
  6142. case INTR_TYPE_EXT_INTR:
  6143. kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
  6144. break;
  6145. default:
  6146. break;
  6147. }
  6148. }
  6149. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  6150. {
  6151. __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
  6152. VM_EXIT_INSTRUCTION_LEN,
  6153. IDT_VECTORING_ERROR_CODE);
  6154. }
  6155. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  6156. {
  6157. __vmx_complete_interrupts(vcpu,
  6158. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  6159. VM_ENTRY_INSTRUCTION_LEN,
  6160. VM_ENTRY_EXCEPTION_ERROR_CODE);
  6161. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  6162. }
  6163. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  6164. {
  6165. int i, nr_msrs;
  6166. struct perf_guest_switch_msr *msrs;
  6167. msrs = perf_guest_get_msrs(&nr_msrs);
  6168. if (!msrs)
  6169. return;
  6170. for (i = 0; i < nr_msrs; i++)
  6171. if (msrs[i].host == msrs[i].guest)
  6172. clear_atomic_switch_msr(vmx, msrs[i].msr);
  6173. else
  6174. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  6175. msrs[i].host);
  6176. }
  6177. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  6178. {
  6179. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6180. unsigned long debugctlmsr;
  6181. /* Record the guest's net vcpu time for enforced NMI injections. */
  6182. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  6183. vmx->entry_time = ktime_get();
  6184. /* Don't enter VMX if guest state is invalid, let the exit handler
  6185. start emulation until we arrive back to a valid state */
  6186. if (vmx->emulation_required)
  6187. return;
  6188. if (vmx->nested.sync_shadow_vmcs) {
  6189. copy_vmcs12_to_shadow(vmx);
  6190. vmx->nested.sync_shadow_vmcs = false;
  6191. }
  6192. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  6193. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  6194. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  6195. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  6196. /* When single-stepping over STI and MOV SS, we must clear the
  6197. * corresponding interruptibility bits in the guest state. Otherwise
  6198. * vmentry fails as it then expects bit 14 (BS) in pending debug
  6199. * exceptions being set, but that's not correct for the guest debugging
  6200. * case. */
  6201. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  6202. vmx_set_interrupt_shadow(vcpu, 0);
  6203. atomic_switch_perf_msrs(vmx);
  6204. debugctlmsr = get_debugctlmsr();
  6205. vmx->__launched = vmx->loaded_vmcs->launched;
  6206. asm(
  6207. /* Store host registers */
  6208. "push %%" _ASM_DX "; push %%" _ASM_BP ";"
  6209. "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
  6210. "push %%" _ASM_CX " \n\t"
  6211. "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  6212. "je 1f \n\t"
  6213. "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  6214. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  6215. "1: \n\t"
  6216. /* Reload cr2 if changed */
  6217. "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
  6218. "mov %%cr2, %%" _ASM_DX " \n\t"
  6219. "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
  6220. "je 2f \n\t"
  6221. "mov %%" _ASM_AX", %%cr2 \n\t"
  6222. "2: \n\t"
  6223. /* Check if vmlaunch of vmresume is needed */
  6224. "cmpl $0, %c[launched](%0) \n\t"
  6225. /* Load guest registers. Don't clobber flags. */
  6226. "mov %c[rax](%0), %%" _ASM_AX " \n\t"
  6227. "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
  6228. "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
  6229. "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
  6230. "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
  6231. "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
  6232. #ifdef CONFIG_X86_64
  6233. "mov %c[r8](%0), %%r8 \n\t"
  6234. "mov %c[r9](%0), %%r9 \n\t"
  6235. "mov %c[r10](%0), %%r10 \n\t"
  6236. "mov %c[r11](%0), %%r11 \n\t"
  6237. "mov %c[r12](%0), %%r12 \n\t"
  6238. "mov %c[r13](%0), %%r13 \n\t"
  6239. "mov %c[r14](%0), %%r14 \n\t"
  6240. "mov %c[r15](%0), %%r15 \n\t"
  6241. #endif
  6242. "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
  6243. /* Enter guest mode */
  6244. "jne 1f \n\t"
  6245. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  6246. "jmp 2f \n\t"
  6247. "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
  6248. "2: "
  6249. /* Save guest registers, load host registers, keep flags */
  6250. "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
  6251. "pop %0 \n\t"
  6252. "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
  6253. "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
  6254. __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
  6255. "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
  6256. "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
  6257. "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
  6258. "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
  6259. #ifdef CONFIG_X86_64
  6260. "mov %%r8, %c[r8](%0) \n\t"
  6261. "mov %%r9, %c[r9](%0) \n\t"
  6262. "mov %%r10, %c[r10](%0) \n\t"
  6263. "mov %%r11, %c[r11](%0) \n\t"
  6264. "mov %%r12, %c[r12](%0) \n\t"
  6265. "mov %%r13, %c[r13](%0) \n\t"
  6266. "mov %%r14, %c[r14](%0) \n\t"
  6267. "mov %%r15, %c[r15](%0) \n\t"
  6268. #endif
  6269. "mov %%cr2, %%" _ASM_AX " \n\t"
  6270. "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
  6271. "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
  6272. "setbe %c[fail](%0) \n\t"
  6273. ".pushsection .rodata \n\t"
  6274. ".global vmx_return \n\t"
  6275. "vmx_return: " _ASM_PTR " 2b \n\t"
  6276. ".popsection"
  6277. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  6278. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  6279. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  6280. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  6281. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  6282. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  6283. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  6284. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  6285. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  6286. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  6287. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  6288. #ifdef CONFIG_X86_64
  6289. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  6290. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  6291. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  6292. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  6293. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  6294. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  6295. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  6296. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  6297. #endif
  6298. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  6299. [wordsize]"i"(sizeof(ulong))
  6300. : "cc", "memory"
  6301. #ifdef CONFIG_X86_64
  6302. , "rax", "rbx", "rdi", "rsi"
  6303. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  6304. #else
  6305. , "eax", "ebx", "edi", "esi"
  6306. #endif
  6307. );
  6308. /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
  6309. if (debugctlmsr)
  6310. update_debugctlmsr(debugctlmsr);
  6311. #ifndef CONFIG_X86_64
  6312. /*
  6313. * The sysexit path does not restore ds/es, so we must set them to
  6314. * a reasonable value ourselves.
  6315. *
  6316. * We can't defer this to vmx_load_host_state() since that function
  6317. * may be executed in interrupt context, which saves and restore segments
  6318. * around it, nullifying its effect.
  6319. */
  6320. loadsegment(ds, __USER_DS);
  6321. loadsegment(es, __USER_DS);
  6322. #endif
  6323. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  6324. | (1 << VCPU_EXREG_RFLAGS)
  6325. | (1 << VCPU_EXREG_CPL)
  6326. | (1 << VCPU_EXREG_PDPTR)
  6327. | (1 << VCPU_EXREG_SEGMENTS)
  6328. | (1 << VCPU_EXREG_CR3));
  6329. vcpu->arch.regs_dirty = 0;
  6330. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6331. vmx->loaded_vmcs->launched = 1;
  6332. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  6333. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  6334. /*
  6335. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  6336. * we did not inject a still-pending event to L1 now because of
  6337. * nested_run_pending, we need to re-enable this bit.
  6338. */
  6339. if (vmx->nested.nested_run_pending)
  6340. kvm_make_request(KVM_REQ_EVENT, vcpu);
  6341. vmx->nested.nested_run_pending = 0;
  6342. vmx_complete_atomic_exit(vmx);
  6343. vmx_recover_nmi_blocking(vmx);
  6344. vmx_complete_interrupts(vmx);
  6345. }
  6346. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  6347. {
  6348. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6349. free_vpid(vmx);
  6350. free_nested(vmx);
  6351. free_loaded_vmcs(vmx->loaded_vmcs);
  6352. kfree(vmx->guest_msrs);
  6353. kvm_vcpu_uninit(vcpu);
  6354. kmem_cache_free(kvm_vcpu_cache, vmx);
  6355. }
  6356. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  6357. {
  6358. int err;
  6359. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  6360. int cpu;
  6361. if (!vmx)
  6362. return ERR_PTR(-ENOMEM);
  6363. allocate_vpid(vmx);
  6364. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  6365. if (err)
  6366. goto free_vcpu;
  6367. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  6368. err = -ENOMEM;
  6369. if (!vmx->guest_msrs) {
  6370. goto uninit_vcpu;
  6371. }
  6372. vmx->loaded_vmcs = &vmx->vmcs01;
  6373. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  6374. if (!vmx->loaded_vmcs->vmcs)
  6375. goto free_msrs;
  6376. if (!vmm_exclusive)
  6377. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  6378. loaded_vmcs_init(vmx->loaded_vmcs);
  6379. if (!vmm_exclusive)
  6380. kvm_cpu_vmxoff();
  6381. cpu = get_cpu();
  6382. vmx_vcpu_load(&vmx->vcpu, cpu);
  6383. vmx->vcpu.cpu = cpu;
  6384. err = vmx_vcpu_setup(vmx);
  6385. vmx_vcpu_put(&vmx->vcpu);
  6386. put_cpu();
  6387. if (err)
  6388. goto free_vmcs;
  6389. if (vm_need_virtualize_apic_accesses(kvm)) {
  6390. err = alloc_apic_access_page(kvm);
  6391. if (err)
  6392. goto free_vmcs;
  6393. }
  6394. if (enable_ept) {
  6395. if (!kvm->arch.ept_identity_map_addr)
  6396. kvm->arch.ept_identity_map_addr =
  6397. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  6398. err = -ENOMEM;
  6399. if (alloc_identity_pagetable(kvm) != 0)
  6400. goto free_vmcs;
  6401. if (!init_rmode_identity_map(kvm))
  6402. goto free_vmcs;
  6403. }
  6404. vmx->nested.current_vmptr = -1ull;
  6405. vmx->nested.current_vmcs12 = NULL;
  6406. return &vmx->vcpu;
  6407. free_vmcs:
  6408. free_loaded_vmcs(vmx->loaded_vmcs);
  6409. free_msrs:
  6410. kfree(vmx->guest_msrs);
  6411. uninit_vcpu:
  6412. kvm_vcpu_uninit(&vmx->vcpu);
  6413. free_vcpu:
  6414. free_vpid(vmx);
  6415. kmem_cache_free(kvm_vcpu_cache, vmx);
  6416. return ERR_PTR(err);
  6417. }
  6418. static void __init vmx_check_processor_compat(void *rtn)
  6419. {
  6420. struct vmcs_config vmcs_conf;
  6421. *(int *)rtn = 0;
  6422. if (setup_vmcs_config(&vmcs_conf) < 0)
  6423. *(int *)rtn = -EIO;
  6424. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  6425. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  6426. smp_processor_id());
  6427. *(int *)rtn = -EIO;
  6428. }
  6429. }
  6430. static int get_ept_level(void)
  6431. {
  6432. return VMX_EPT_DEFAULT_GAW + 1;
  6433. }
  6434. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  6435. {
  6436. u64 ret;
  6437. /* For VT-d and EPT combination
  6438. * 1. MMIO: always map as UC
  6439. * 2. EPT with VT-d:
  6440. * a. VT-d without snooping control feature: can't guarantee the
  6441. * result, try to trust guest.
  6442. * b. VT-d with snooping control feature: snooping control feature of
  6443. * VT-d engine can guarantee the cache correctness. Just set it
  6444. * to WB to keep consistent with host. So the same as item 3.
  6445. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  6446. * consistent with host MTRR
  6447. */
  6448. if (is_mmio)
  6449. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  6450. else if (vcpu->kvm->arch.iommu_domain &&
  6451. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  6452. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  6453. VMX_EPT_MT_EPTE_SHIFT;
  6454. else
  6455. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  6456. | VMX_EPT_IPAT_BIT;
  6457. return ret;
  6458. }
  6459. static int vmx_get_lpage_level(void)
  6460. {
  6461. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  6462. return PT_DIRECTORY_LEVEL;
  6463. else
  6464. /* For shadow and EPT supported 1GB page */
  6465. return PT_PDPE_LEVEL;
  6466. }
  6467. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  6468. {
  6469. struct kvm_cpuid_entry2 *best;
  6470. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6471. u32 exec_control;
  6472. vmx->rdtscp_enabled = false;
  6473. if (vmx_rdtscp_supported()) {
  6474. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6475. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  6476. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  6477. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  6478. vmx->rdtscp_enabled = true;
  6479. else {
  6480. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6481. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6482. exec_control);
  6483. }
  6484. }
  6485. }
  6486. /* Exposing INVPCID only when PCID is exposed */
  6487. best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
  6488. if (vmx_invpcid_supported() &&
  6489. best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
  6490. guest_cpuid_has_pcid(vcpu)) {
  6491. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6492. exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
  6493. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6494. exec_control);
  6495. } else {
  6496. if (cpu_has_secondary_exec_ctrls()) {
  6497. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6498. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  6499. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6500. exec_control);
  6501. }
  6502. if (best)
  6503. best->ebx &= ~bit(X86_FEATURE_INVPCID);
  6504. }
  6505. }
  6506. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  6507. {
  6508. if (func == 1 && nested)
  6509. entry->ecx |= bit(X86_FEATURE_VMX);
  6510. }
  6511. static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
  6512. struct x86_exception *fault)
  6513. {
  6514. struct vmcs12 *vmcs12;
  6515. nested_vmx_vmexit(vcpu);
  6516. vmcs12 = get_vmcs12(vcpu);
  6517. if (fault->error_code & PFERR_RSVD_MASK)
  6518. vmcs12->vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  6519. else
  6520. vmcs12->vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
  6521. vmcs12->exit_qualification = vcpu->arch.exit_qualification;
  6522. vmcs12->guest_physical_address = fault->address;
  6523. }
  6524. /* Callbacks for nested_ept_init_mmu_context: */
  6525. static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
  6526. {
  6527. /* return the page table to be shadowed - in our case, EPT12 */
  6528. return get_vmcs12(vcpu)->ept_pointer;
  6529. }
  6530. static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
  6531. {
  6532. int r = kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
  6533. nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
  6534. vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
  6535. vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
  6536. vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
  6537. vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
  6538. return r;
  6539. }
  6540. static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
  6541. {
  6542. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  6543. }
  6544. /*
  6545. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  6546. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  6547. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  6548. * guest in a way that will both be appropriate to L1's requests, and our
  6549. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  6550. * function also has additional necessary side-effects, like setting various
  6551. * vcpu->arch fields.
  6552. */
  6553. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6554. {
  6555. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6556. u32 exec_control;
  6557. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  6558. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  6559. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  6560. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  6561. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  6562. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  6563. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  6564. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  6565. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  6566. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  6567. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  6568. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  6569. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  6570. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  6571. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  6572. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  6573. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  6574. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  6575. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  6576. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  6577. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  6578. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  6579. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  6580. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  6581. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  6582. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  6583. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  6584. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  6585. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  6586. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  6587. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  6588. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  6589. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  6590. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  6591. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  6592. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  6593. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  6594. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  6595. vmcs12->vm_entry_intr_info_field);
  6596. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  6597. vmcs12->vm_entry_exception_error_code);
  6598. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  6599. vmcs12->vm_entry_instruction_len);
  6600. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  6601. vmcs12->guest_interruptibility_info);
  6602. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  6603. kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
  6604. vmx_set_rflags(vcpu, vmcs12->guest_rflags);
  6605. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  6606. vmcs12->guest_pending_dbg_exceptions);
  6607. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  6608. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  6609. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  6610. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  6611. (vmcs_config.pin_based_exec_ctrl |
  6612. vmcs12->pin_based_vm_exec_control));
  6613. if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
  6614. vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
  6615. vmcs12->vmx_preemption_timer_value);
  6616. /*
  6617. * Whether page-faults are trapped is determined by a combination of
  6618. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  6619. * If enable_ept, L0 doesn't care about page faults and we should
  6620. * set all of these to L1's desires. However, if !enable_ept, L0 does
  6621. * care about (at least some) page faults, and because it is not easy
  6622. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  6623. * to exit on each and every L2 page fault. This is done by setting
  6624. * MASK=MATCH=0 and (see below) EB.PF=1.
  6625. * Note that below we don't need special code to set EB.PF beyond the
  6626. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  6627. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  6628. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  6629. *
  6630. * A problem with this approach (when !enable_ept) is that L1 may be
  6631. * injected with more page faults than it asked for. This could have
  6632. * caused problems, but in practice existing hypervisors don't care.
  6633. * To fix this, we will need to emulate the PFEC checking (on the L1
  6634. * page tables), using walk_addr(), when injecting PFs to L1.
  6635. */
  6636. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  6637. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  6638. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  6639. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  6640. if (cpu_has_secondary_exec_ctrls()) {
  6641. u32 exec_control = vmx_secondary_exec_control(vmx);
  6642. if (!vmx->rdtscp_enabled)
  6643. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6644. /* Take the following fields only from vmcs12 */
  6645. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6646. if (nested_cpu_has(vmcs12,
  6647. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  6648. exec_control |= vmcs12->secondary_vm_exec_control;
  6649. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  6650. /*
  6651. * Translate L1 physical address to host physical
  6652. * address for vmcs02. Keep the page pinned, so this
  6653. * physical address remains valid. We keep a reference
  6654. * to it so we can release it later.
  6655. */
  6656. if (vmx->nested.apic_access_page) /* shouldn't happen */
  6657. nested_release_page(vmx->nested.apic_access_page);
  6658. vmx->nested.apic_access_page =
  6659. nested_get_page(vcpu, vmcs12->apic_access_addr);
  6660. /*
  6661. * If translation failed, no matter: This feature asks
  6662. * to exit when accessing the given address, and if it
  6663. * can never be accessed, this feature won't do
  6664. * anything anyway.
  6665. */
  6666. if (!vmx->nested.apic_access_page)
  6667. exec_control &=
  6668. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6669. else
  6670. vmcs_write64(APIC_ACCESS_ADDR,
  6671. page_to_phys(vmx->nested.apic_access_page));
  6672. }
  6673. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  6674. }
  6675. /*
  6676. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  6677. * Some constant fields are set here by vmx_set_constant_host_state().
  6678. * Other fields are different per CPU, and will be set later when
  6679. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  6680. */
  6681. vmx_set_constant_host_state(vmx);
  6682. /*
  6683. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  6684. * entry, but only if the current (host) sp changed from the value
  6685. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  6686. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  6687. * here we just force the write to happen on entry.
  6688. */
  6689. vmx->host_rsp = 0;
  6690. exec_control = vmx_exec_control(vmx); /* L0's desires */
  6691. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  6692. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  6693. exec_control &= ~CPU_BASED_TPR_SHADOW;
  6694. exec_control |= vmcs12->cpu_based_vm_exec_control;
  6695. /*
  6696. * Merging of IO and MSR bitmaps not currently supported.
  6697. * Rather, exit every time.
  6698. */
  6699. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  6700. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  6701. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  6702. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  6703. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  6704. * bitwise-or of what L1 wants to trap for L2, and what we want to
  6705. * trap. Note that CR0.TS also needs updating - we do this later.
  6706. */
  6707. update_exception_bitmap(vcpu);
  6708. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  6709. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6710. /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
  6711. * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
  6712. * bits are further modified by vmx_set_efer() below.
  6713. */
  6714. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  6715. /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
  6716. * emulated by vmx_set_efer(), below.
  6717. */
  6718. vmcs_write32(VM_ENTRY_CONTROLS,
  6719. (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
  6720. ~VM_ENTRY_IA32E_MODE) |
  6721. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  6722. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
  6723. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  6724. vcpu->arch.pat = vmcs12->guest_ia32_pat;
  6725. } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  6726. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  6727. set_cr4_guest_host_mask(vmx);
  6728. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  6729. vmcs_write64(TSC_OFFSET,
  6730. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  6731. else
  6732. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6733. if (enable_vpid) {
  6734. /*
  6735. * Trivially support vpid by letting L2s share their parent
  6736. * L1's vpid. TODO: move to a more elaborate solution, giving
  6737. * each L2 its own vpid and exposing the vpid feature to L1.
  6738. */
  6739. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  6740. vmx_flush_tlb(vcpu);
  6741. }
  6742. if (nested_cpu_has_ept(vmcs12)) {
  6743. kvm_mmu_unload(vcpu);
  6744. nested_ept_init_mmu_context(vcpu);
  6745. }
  6746. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  6747. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  6748. else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  6749. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6750. else
  6751. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6752. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  6753. vmx_set_efer(vcpu, vcpu->arch.efer);
  6754. /*
  6755. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  6756. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  6757. * The CR0_READ_SHADOW is what L2 should have expected to read given
  6758. * the specifications by L1; It's not enough to take
  6759. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  6760. * have more bits than L1 expected.
  6761. */
  6762. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  6763. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  6764. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  6765. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  6766. /* shadow page tables on either EPT or shadow page tables */
  6767. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  6768. kvm_mmu_reset_context(vcpu);
  6769. /*
  6770. * L1 may access the L2's PDPTR, so save them to construct vmcs12
  6771. */
  6772. if (enable_ept) {
  6773. vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
  6774. vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
  6775. vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
  6776. vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
  6777. __clear_bit(VCPU_EXREG_PDPTR,
  6778. (unsigned long *)&vcpu->arch.regs_avail);
  6779. __clear_bit(VCPU_EXREG_PDPTR,
  6780. (unsigned long *)&vcpu->arch.regs_dirty);
  6781. }
  6782. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  6783. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  6784. }
  6785. /*
  6786. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  6787. * for running an L2 nested guest.
  6788. */
  6789. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  6790. {
  6791. struct vmcs12 *vmcs12;
  6792. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6793. int cpu;
  6794. struct loaded_vmcs *vmcs02;
  6795. bool ia32e;
  6796. if (!nested_vmx_check_permission(vcpu) ||
  6797. !nested_vmx_check_vmcs12(vcpu))
  6798. return 1;
  6799. skip_emulated_instruction(vcpu);
  6800. vmcs12 = get_vmcs12(vcpu);
  6801. if (enable_shadow_vmcs)
  6802. copy_shadow_to_vmcs12(vmx);
  6803. /*
  6804. * The nested entry process starts with enforcing various prerequisites
  6805. * on vmcs12 as required by the Intel SDM, and act appropriately when
  6806. * they fail: As the SDM explains, some conditions should cause the
  6807. * instruction to fail, while others will cause the instruction to seem
  6808. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  6809. * To speed up the normal (success) code path, we should avoid checking
  6810. * for misconfigurations which will anyway be caught by the processor
  6811. * when using the merged vmcs02.
  6812. */
  6813. if (vmcs12->launch_state == launch) {
  6814. nested_vmx_failValid(vcpu,
  6815. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  6816. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  6817. return 1;
  6818. }
  6819. if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
  6820. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6821. return 1;
  6822. }
  6823. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  6824. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  6825. /*TODO: Also verify bits beyond physical address width are 0*/
  6826. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6827. return 1;
  6828. }
  6829. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  6830. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  6831. /*TODO: Also verify bits beyond physical address width are 0*/
  6832. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6833. return 1;
  6834. }
  6835. if (vmcs12->vm_entry_msr_load_count > 0 ||
  6836. vmcs12->vm_exit_msr_load_count > 0 ||
  6837. vmcs12->vm_exit_msr_store_count > 0) {
  6838. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  6839. __func__);
  6840. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6841. return 1;
  6842. }
  6843. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  6844. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  6845. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  6846. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  6847. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  6848. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  6849. !vmx_control_verify(vmcs12->vm_exit_controls,
  6850. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  6851. !vmx_control_verify(vmcs12->vm_entry_controls,
  6852. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  6853. {
  6854. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6855. return 1;
  6856. }
  6857. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6858. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6859. nested_vmx_failValid(vcpu,
  6860. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  6861. return 1;
  6862. }
  6863. if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
  6864. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6865. nested_vmx_entry_failure(vcpu, vmcs12,
  6866. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6867. return 1;
  6868. }
  6869. if (vmcs12->vmcs_link_pointer != -1ull) {
  6870. nested_vmx_entry_failure(vcpu, vmcs12,
  6871. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6872. return 1;
  6873. }
  6874. /*
  6875. * If the load IA32_EFER VM-entry control is 1, the following checks
  6876. * are performed on the field for the IA32_EFER MSR:
  6877. * - Bits reserved in the IA32_EFER MSR must be 0.
  6878. * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
  6879. * the IA-32e mode guest VM-exit control. It must also be identical
  6880. * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
  6881. * CR0.PG) is 1.
  6882. */
  6883. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
  6884. ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
  6885. if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
  6886. ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
  6887. ((vmcs12->guest_cr0 & X86_CR0_PG) &&
  6888. ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
  6889. nested_vmx_entry_failure(vcpu, vmcs12,
  6890. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6891. return 1;
  6892. }
  6893. }
  6894. /*
  6895. * If the load IA32_EFER VM-exit control is 1, bits reserved in the
  6896. * IA32_EFER MSR must be 0 in the field for that register. In addition,
  6897. * the values of the LMA and LME bits in the field must each be that of
  6898. * the host address-space size VM-exit control.
  6899. */
  6900. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
  6901. ia32e = (vmcs12->vm_exit_controls &
  6902. VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
  6903. if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
  6904. ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
  6905. ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
  6906. nested_vmx_entry_failure(vcpu, vmcs12,
  6907. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6908. return 1;
  6909. }
  6910. }
  6911. /*
  6912. * We're finally done with prerequisite checking, and can start with
  6913. * the nested entry.
  6914. */
  6915. vmcs02 = nested_get_current_vmcs02(vmx);
  6916. if (!vmcs02)
  6917. return -ENOMEM;
  6918. enter_guest_mode(vcpu);
  6919. vmx->nested.nested_run_pending = 1;
  6920. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6921. cpu = get_cpu();
  6922. vmx->loaded_vmcs = vmcs02;
  6923. vmx_vcpu_put(vcpu);
  6924. vmx_vcpu_load(vcpu, cpu);
  6925. vcpu->cpu = cpu;
  6926. put_cpu();
  6927. vmx_segment_cache_clear(vmx);
  6928. vmcs12->launch_state = 1;
  6929. prepare_vmcs02(vcpu, vmcs12);
  6930. /*
  6931. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6932. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6933. * returned as far as L1 is concerned. It will only return (and set
  6934. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6935. */
  6936. return 1;
  6937. }
  6938. /*
  6939. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6940. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6941. * This function returns the new value we should put in vmcs12.guest_cr0.
  6942. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6943. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6944. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6945. * didn't trap the bit, because if L1 did, so would L0).
  6946. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6947. * been modified by L2, and L1 knows it. So just leave the old value of
  6948. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6949. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6950. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6951. * changed these bits, and therefore they need to be updated, but L0
  6952. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6953. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6954. */
  6955. static inline unsigned long
  6956. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6957. {
  6958. return
  6959. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6960. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6961. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6962. vcpu->arch.cr0_guest_owned_bits));
  6963. }
  6964. static inline unsigned long
  6965. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6966. {
  6967. return
  6968. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6969. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6970. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6971. vcpu->arch.cr4_guest_owned_bits));
  6972. }
  6973. static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
  6974. struct vmcs12 *vmcs12)
  6975. {
  6976. u32 idt_vectoring;
  6977. unsigned int nr;
  6978. if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
  6979. nr = vcpu->arch.exception.nr;
  6980. idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
  6981. if (kvm_exception_is_soft(nr)) {
  6982. vmcs12->vm_exit_instruction_len =
  6983. vcpu->arch.event_exit_inst_len;
  6984. idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
  6985. } else
  6986. idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
  6987. if (vcpu->arch.exception.has_error_code) {
  6988. idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
  6989. vmcs12->idt_vectoring_error_code =
  6990. vcpu->arch.exception.error_code;
  6991. }
  6992. vmcs12->idt_vectoring_info_field = idt_vectoring;
  6993. } else if (vcpu->arch.nmi_pending) {
  6994. vmcs12->idt_vectoring_info_field =
  6995. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
  6996. } else if (vcpu->arch.interrupt.pending) {
  6997. nr = vcpu->arch.interrupt.nr;
  6998. idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
  6999. if (vcpu->arch.interrupt.soft) {
  7000. idt_vectoring |= INTR_TYPE_SOFT_INTR;
  7001. vmcs12->vm_entry_instruction_len =
  7002. vcpu->arch.event_exit_inst_len;
  7003. } else
  7004. idt_vectoring |= INTR_TYPE_EXT_INTR;
  7005. vmcs12->idt_vectoring_info_field = idt_vectoring;
  7006. }
  7007. }
  7008. /*
  7009. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  7010. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  7011. * and this function updates it to reflect the changes to the guest state while
  7012. * L2 was running (and perhaps made some exits which were handled directly by L0
  7013. * without going back to L1), and to reflect the exit reason.
  7014. * Note that we do not have to copy here all VMCS fields, just those that
  7015. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  7016. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  7017. * which already writes to vmcs12 directly.
  7018. */
  7019. static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  7020. {
  7021. /* update guest state fields: */
  7022. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  7023. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  7024. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  7025. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  7026. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  7027. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  7028. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  7029. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  7030. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  7031. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  7032. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  7033. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  7034. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  7035. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  7036. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  7037. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  7038. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  7039. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  7040. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  7041. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  7042. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  7043. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  7044. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  7045. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  7046. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  7047. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  7048. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  7049. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  7050. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  7051. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  7052. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  7053. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  7054. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  7055. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  7056. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  7057. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  7058. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  7059. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  7060. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  7061. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  7062. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  7063. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  7064. vmcs12->guest_interruptibility_info =
  7065. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  7066. vmcs12->guest_pending_dbg_exceptions =
  7067. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  7068. /*
  7069. * In some cases (usually, nested EPT), L2 is allowed to change its
  7070. * own CR3 without exiting. If it has changed it, we must keep it.
  7071. * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
  7072. * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
  7073. *
  7074. * Additionally, restore L2's PDPTR to vmcs12.
  7075. */
  7076. if (enable_ept) {
  7077. vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
  7078. vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
  7079. vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
  7080. vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
  7081. vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
  7082. }
  7083. vmcs12->vm_entry_controls =
  7084. (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
  7085. (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
  7086. /* TODO: These cannot have changed unless we have MSR bitmaps and
  7087. * the relevant bit asks not to trap the change */
  7088. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  7089. if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
  7090. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  7091. if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
  7092. vmcs12->guest_ia32_efer = vcpu->arch.efer;
  7093. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  7094. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  7095. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  7096. /* update exit information fields: */
  7097. vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
  7098. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  7099. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  7100. if ((vmcs12->vm_exit_intr_info &
  7101. (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
  7102. (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
  7103. vmcs12->vm_exit_intr_error_code =
  7104. vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  7105. vmcs12->idt_vectoring_info_field = 0;
  7106. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  7107. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  7108. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
  7109. /* vm_entry_intr_info_field is cleared on exit. Emulate this
  7110. * instead of reading the real value. */
  7111. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  7112. /*
  7113. * Transfer the event that L0 or L1 may wanted to inject into
  7114. * L2 to IDT_VECTORING_INFO_FIELD.
  7115. */
  7116. vmcs12_save_pending_event(vcpu, vmcs12);
  7117. }
  7118. /*
  7119. * Drop what we picked up for L2 via vmx_complete_interrupts. It is
  7120. * preserved above and would only end up incorrectly in L1.
  7121. */
  7122. vcpu->arch.nmi_injected = false;
  7123. kvm_clear_exception_queue(vcpu);
  7124. kvm_clear_interrupt_queue(vcpu);
  7125. }
  7126. /*
  7127. * A part of what we need to when the nested L2 guest exits and we want to
  7128. * run its L1 parent, is to reset L1's guest state to the host state specified
  7129. * in vmcs12.
  7130. * This function is to be called not only on normal nested exit, but also on
  7131. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  7132. * Failures During or After Loading Guest State").
  7133. * This function should be called when the active VMCS is L1's (vmcs01).
  7134. */
  7135. static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
  7136. struct vmcs12 *vmcs12)
  7137. {
  7138. struct kvm_segment seg;
  7139. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  7140. vcpu->arch.efer = vmcs12->host_ia32_efer;
  7141. else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  7142. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  7143. else
  7144. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  7145. vmx_set_efer(vcpu, vcpu->arch.efer);
  7146. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  7147. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  7148. vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
  7149. /*
  7150. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  7151. * actually changed, because it depends on the current state of
  7152. * fpu_active (which may have changed).
  7153. * Note that vmx_set_cr0 refers to efer set above.
  7154. */
  7155. vmx_set_cr0(vcpu, vmcs12->host_cr0);
  7156. /*
  7157. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  7158. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  7159. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  7160. */
  7161. update_exception_bitmap(vcpu);
  7162. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  7163. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  7164. /*
  7165. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  7166. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  7167. */
  7168. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  7169. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  7170. if (nested_cpu_has_ept(vmcs12))
  7171. nested_ept_uninit_mmu_context(vcpu);
  7172. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  7173. kvm_mmu_reset_context(vcpu);
  7174. if (enable_vpid) {
  7175. /*
  7176. * Trivially support vpid by letting L2s share their parent
  7177. * L1's vpid. TODO: move to a more elaborate solution, giving
  7178. * each L2 its own vpid and exposing the vpid feature to L1.
  7179. */
  7180. vmx_flush_tlb(vcpu);
  7181. }
  7182. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  7183. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  7184. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  7185. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  7186. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  7187. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
  7188. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  7189. vcpu->arch.pat = vmcs12->host_ia32_pat;
  7190. }
  7191. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  7192. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  7193. vmcs12->host_ia32_perf_global_ctrl);
  7194. /* Set L1 segment info according to Intel SDM
  7195. 27.5.2 Loading Host Segment and Descriptor-Table Registers */
  7196. seg = (struct kvm_segment) {
  7197. .base = 0,
  7198. .limit = 0xFFFFFFFF,
  7199. .selector = vmcs12->host_cs_selector,
  7200. .type = 11,
  7201. .present = 1,
  7202. .s = 1,
  7203. .g = 1
  7204. };
  7205. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  7206. seg.l = 1;
  7207. else
  7208. seg.db = 1;
  7209. vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
  7210. seg = (struct kvm_segment) {
  7211. .base = 0,
  7212. .limit = 0xFFFFFFFF,
  7213. .type = 3,
  7214. .present = 1,
  7215. .s = 1,
  7216. .db = 1,
  7217. .g = 1
  7218. };
  7219. seg.selector = vmcs12->host_ds_selector;
  7220. vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
  7221. seg.selector = vmcs12->host_es_selector;
  7222. vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
  7223. seg.selector = vmcs12->host_ss_selector;
  7224. vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
  7225. seg.selector = vmcs12->host_fs_selector;
  7226. seg.base = vmcs12->host_fs_base;
  7227. vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
  7228. seg.selector = vmcs12->host_gs_selector;
  7229. seg.base = vmcs12->host_gs_base;
  7230. vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
  7231. seg = (struct kvm_segment) {
  7232. .base = vmcs12->host_tr_base,
  7233. .limit = 0x67,
  7234. .selector = vmcs12->host_tr_selector,
  7235. .type = 11,
  7236. .present = 1
  7237. };
  7238. vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
  7239. kvm_set_dr(vcpu, 7, 0x400);
  7240. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  7241. }
  7242. /*
  7243. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  7244. * and modify vmcs12 to make it see what it would expect to see there if
  7245. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  7246. */
  7247. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  7248. {
  7249. struct vcpu_vmx *vmx = to_vmx(vcpu);
  7250. int cpu;
  7251. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  7252. /* trying to cancel vmlaunch/vmresume is a bug */
  7253. WARN_ON_ONCE(vmx->nested.nested_run_pending);
  7254. leave_guest_mode(vcpu);
  7255. prepare_vmcs12(vcpu, vmcs12);
  7256. cpu = get_cpu();
  7257. vmx->loaded_vmcs = &vmx->vmcs01;
  7258. vmx_vcpu_put(vcpu);
  7259. vmx_vcpu_load(vcpu, cpu);
  7260. vcpu->cpu = cpu;
  7261. put_cpu();
  7262. vmx_segment_cache_clear(vmx);
  7263. /* if no vmcs02 cache requested, remove the one we used */
  7264. if (VMCS02_POOL_SIZE == 0)
  7265. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  7266. load_vmcs12_host_state(vcpu, vmcs12);
  7267. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  7268. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  7269. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  7270. vmx->host_rsp = 0;
  7271. /* Unpin physical memory we referred to in vmcs02 */
  7272. if (vmx->nested.apic_access_page) {
  7273. nested_release_page(vmx->nested.apic_access_page);
  7274. vmx->nested.apic_access_page = 0;
  7275. }
  7276. /*
  7277. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  7278. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  7279. * success or failure flag accordingly.
  7280. */
  7281. if (unlikely(vmx->fail)) {
  7282. vmx->fail = 0;
  7283. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  7284. } else
  7285. nested_vmx_succeed(vcpu);
  7286. if (enable_shadow_vmcs)
  7287. vmx->nested.sync_shadow_vmcs = true;
  7288. }
  7289. /*
  7290. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  7291. * 23.7 "VM-entry failures during or after loading guest state" (this also
  7292. * lists the acceptable exit-reason and exit-qualification parameters).
  7293. * It should only be called before L2 actually succeeded to run, and when
  7294. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  7295. */
  7296. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  7297. struct vmcs12 *vmcs12,
  7298. u32 reason, unsigned long qualification)
  7299. {
  7300. load_vmcs12_host_state(vcpu, vmcs12);
  7301. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  7302. vmcs12->exit_qualification = qualification;
  7303. nested_vmx_succeed(vcpu);
  7304. if (enable_shadow_vmcs)
  7305. to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
  7306. }
  7307. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  7308. struct x86_instruction_info *info,
  7309. enum x86_intercept_stage stage)
  7310. {
  7311. return X86EMUL_CONTINUE;
  7312. }
  7313. static struct kvm_x86_ops vmx_x86_ops = {
  7314. .cpu_has_kvm_support = cpu_has_kvm_support,
  7315. .disabled_by_bios = vmx_disabled_by_bios,
  7316. .hardware_setup = hardware_setup,
  7317. .hardware_unsetup = hardware_unsetup,
  7318. .check_processor_compatibility = vmx_check_processor_compat,
  7319. .hardware_enable = hardware_enable,
  7320. .hardware_disable = hardware_disable,
  7321. .cpu_has_accelerated_tpr = report_flexpriority,
  7322. .vcpu_create = vmx_create_vcpu,
  7323. .vcpu_free = vmx_free_vcpu,
  7324. .vcpu_reset = vmx_vcpu_reset,
  7325. .prepare_guest_switch = vmx_save_host_state,
  7326. .vcpu_load = vmx_vcpu_load,
  7327. .vcpu_put = vmx_vcpu_put,
  7328. .update_db_bp_intercept = update_exception_bitmap,
  7329. .get_msr = vmx_get_msr,
  7330. .set_msr = vmx_set_msr,
  7331. .get_segment_base = vmx_get_segment_base,
  7332. .get_segment = vmx_get_segment,
  7333. .set_segment = vmx_set_segment,
  7334. .get_cpl = vmx_get_cpl,
  7335. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  7336. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  7337. .decache_cr3 = vmx_decache_cr3,
  7338. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  7339. .set_cr0 = vmx_set_cr0,
  7340. .set_cr3 = vmx_set_cr3,
  7341. .set_cr4 = vmx_set_cr4,
  7342. .set_efer = vmx_set_efer,
  7343. .get_idt = vmx_get_idt,
  7344. .set_idt = vmx_set_idt,
  7345. .get_gdt = vmx_get_gdt,
  7346. .set_gdt = vmx_set_gdt,
  7347. .set_dr7 = vmx_set_dr7,
  7348. .cache_reg = vmx_cache_reg,
  7349. .get_rflags = vmx_get_rflags,
  7350. .set_rflags = vmx_set_rflags,
  7351. .fpu_activate = vmx_fpu_activate,
  7352. .fpu_deactivate = vmx_fpu_deactivate,
  7353. .tlb_flush = vmx_flush_tlb,
  7354. .run = vmx_vcpu_run,
  7355. .handle_exit = vmx_handle_exit,
  7356. .skip_emulated_instruction = skip_emulated_instruction,
  7357. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  7358. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  7359. .patch_hypercall = vmx_patch_hypercall,
  7360. .set_irq = vmx_inject_irq,
  7361. .set_nmi = vmx_inject_nmi,
  7362. .queue_exception = vmx_queue_exception,
  7363. .cancel_injection = vmx_cancel_injection,
  7364. .interrupt_allowed = vmx_interrupt_allowed,
  7365. .nmi_allowed = vmx_nmi_allowed,
  7366. .get_nmi_mask = vmx_get_nmi_mask,
  7367. .set_nmi_mask = vmx_set_nmi_mask,
  7368. .enable_nmi_window = enable_nmi_window,
  7369. .enable_irq_window = enable_irq_window,
  7370. .update_cr8_intercept = update_cr8_intercept,
  7371. .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
  7372. .vm_has_apicv = vmx_vm_has_apicv,
  7373. .load_eoi_exitmap = vmx_load_eoi_exitmap,
  7374. .hwapic_irr_update = vmx_hwapic_irr_update,
  7375. .hwapic_isr_update = vmx_hwapic_isr_update,
  7376. .sync_pir_to_irr = vmx_sync_pir_to_irr,
  7377. .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
  7378. .set_tss_addr = vmx_set_tss_addr,
  7379. .get_tdp_level = get_ept_level,
  7380. .get_mt_mask = vmx_get_mt_mask,
  7381. .get_exit_info = vmx_get_exit_info,
  7382. .get_lpage_level = vmx_get_lpage_level,
  7383. .cpuid_update = vmx_cpuid_update,
  7384. .rdtscp_supported = vmx_rdtscp_supported,
  7385. .invpcid_supported = vmx_invpcid_supported,
  7386. .set_supported_cpuid = vmx_set_supported_cpuid,
  7387. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  7388. .set_tsc_khz = vmx_set_tsc_khz,
  7389. .read_tsc_offset = vmx_read_tsc_offset,
  7390. .write_tsc_offset = vmx_write_tsc_offset,
  7391. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  7392. .compute_tsc_offset = vmx_compute_tsc_offset,
  7393. .read_l1_tsc = vmx_read_l1_tsc,
  7394. .set_tdp_cr3 = vmx_set_cr3,
  7395. .check_intercept = vmx_check_intercept,
  7396. .handle_external_intr = vmx_handle_external_intr,
  7397. };
  7398. static int __init vmx_init(void)
  7399. {
  7400. int r, i, msr;
  7401. rdmsrl_safe(MSR_EFER, &host_efer);
  7402. for (i = 0; i < NR_VMX_MSR; ++i)
  7403. kvm_define_shared_msr(i, vmx_msr_index[i]);
  7404. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  7405. if (!vmx_io_bitmap_a)
  7406. return -ENOMEM;
  7407. r = -ENOMEM;
  7408. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  7409. if (!vmx_io_bitmap_b)
  7410. goto out;
  7411. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  7412. if (!vmx_msr_bitmap_legacy)
  7413. goto out1;
  7414. vmx_msr_bitmap_legacy_x2apic =
  7415. (unsigned long *)__get_free_page(GFP_KERNEL);
  7416. if (!vmx_msr_bitmap_legacy_x2apic)
  7417. goto out2;
  7418. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  7419. if (!vmx_msr_bitmap_longmode)
  7420. goto out3;
  7421. vmx_msr_bitmap_longmode_x2apic =
  7422. (unsigned long *)__get_free_page(GFP_KERNEL);
  7423. if (!vmx_msr_bitmap_longmode_x2apic)
  7424. goto out4;
  7425. vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
  7426. if (!vmx_vmread_bitmap)
  7427. goto out5;
  7428. vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
  7429. if (!vmx_vmwrite_bitmap)
  7430. goto out6;
  7431. memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
  7432. memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
  7433. /* shadowed read/write fields */
  7434. for (i = 0; i < max_shadow_read_write_fields; i++) {
  7435. clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
  7436. clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
  7437. }
  7438. /* shadowed read only fields */
  7439. for (i = 0; i < max_shadow_read_only_fields; i++)
  7440. clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
  7441. /*
  7442. * Allow direct access to the PC debug port (it is often used for I/O
  7443. * delays, but the vmexits simply slow things down).
  7444. */
  7445. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  7446. clear_bit(0x80, vmx_io_bitmap_a);
  7447. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  7448. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  7449. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  7450. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  7451. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  7452. __alignof__(struct vcpu_vmx), THIS_MODULE);
  7453. if (r)
  7454. goto out7;
  7455. #ifdef CONFIG_KEXEC
  7456. rcu_assign_pointer(crash_vmclear_loaded_vmcss,
  7457. crash_vmclear_local_loaded_vmcss);
  7458. #endif
  7459. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  7460. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  7461. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  7462. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  7463. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  7464. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  7465. memcpy(vmx_msr_bitmap_legacy_x2apic,
  7466. vmx_msr_bitmap_legacy, PAGE_SIZE);
  7467. memcpy(vmx_msr_bitmap_longmode_x2apic,
  7468. vmx_msr_bitmap_longmode, PAGE_SIZE);
  7469. if (enable_apicv) {
  7470. for (msr = 0x800; msr <= 0x8ff; msr++)
  7471. vmx_disable_intercept_msr_read_x2apic(msr);
  7472. /* According SDM, in x2apic mode, the whole id reg is used.
  7473. * But in KVM, it only use the highest eight bits. Need to
  7474. * intercept it */
  7475. vmx_enable_intercept_msr_read_x2apic(0x802);
  7476. /* TMCCT */
  7477. vmx_enable_intercept_msr_read_x2apic(0x839);
  7478. /* TPR */
  7479. vmx_disable_intercept_msr_write_x2apic(0x808);
  7480. /* EOI */
  7481. vmx_disable_intercept_msr_write_x2apic(0x80b);
  7482. /* SELF-IPI */
  7483. vmx_disable_intercept_msr_write_x2apic(0x83f);
  7484. }
  7485. if (enable_ept) {
  7486. kvm_mmu_set_mask_ptes(0ull,
  7487. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  7488. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  7489. 0ull, VMX_EPT_EXECUTABLE_MASK);
  7490. ept_set_mmio_spte_mask();
  7491. kvm_enable_tdp();
  7492. } else
  7493. kvm_disable_tdp();
  7494. return 0;
  7495. out7:
  7496. free_page((unsigned long)vmx_vmwrite_bitmap);
  7497. out6:
  7498. free_page((unsigned long)vmx_vmread_bitmap);
  7499. out5:
  7500. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  7501. out4:
  7502. free_page((unsigned long)vmx_msr_bitmap_longmode);
  7503. out3:
  7504. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  7505. out2:
  7506. free_page((unsigned long)vmx_msr_bitmap_legacy);
  7507. out1:
  7508. free_page((unsigned long)vmx_io_bitmap_b);
  7509. out:
  7510. free_page((unsigned long)vmx_io_bitmap_a);
  7511. return r;
  7512. }
  7513. static void __exit vmx_exit(void)
  7514. {
  7515. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  7516. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  7517. free_page((unsigned long)vmx_msr_bitmap_legacy);
  7518. free_page((unsigned long)vmx_msr_bitmap_longmode);
  7519. free_page((unsigned long)vmx_io_bitmap_b);
  7520. free_page((unsigned long)vmx_io_bitmap_a);
  7521. free_page((unsigned long)vmx_vmwrite_bitmap);
  7522. free_page((unsigned long)vmx_vmread_bitmap);
  7523. #ifdef CONFIG_KEXEC
  7524. rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
  7525. synchronize_rcu();
  7526. #endif
  7527. kvm_exit();
  7528. }
  7529. module_init(vmx_init)
  7530. module_exit(vmx_exit)