hw_breakpoint.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License version 2 as
  4. * published by the Free Software Foundation.
  5. *
  6. * This program is distributed in the hope that it will be useful,
  7. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9. * GNU General Public License for more details.
  10. *
  11. * You should have received a copy of the GNU General Public License
  12. * along with this program; if not, write to the Free Software
  13. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. *
  15. * Copyright (C) 2009, 2010 ARM Limited
  16. *
  17. * Author: Will Deacon <will.deacon@arm.com>
  18. */
  19. /*
  20. * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
  21. * using the CPU's debug registers.
  22. */
  23. #define pr_fmt(fmt) "hw-breakpoint: " fmt
  24. #include <linux/errno.h>
  25. #include <linux/hardirq.h>
  26. #include <linux/perf_event.h>
  27. #include <linux/hw_breakpoint.h>
  28. #include <linux/smp.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cputype.h>
  31. #include <asm/current.h>
  32. #include <asm/hw_breakpoint.h>
  33. #include <asm/kdebug.h>
  34. #include <asm/traps.h>
  35. /* Breakpoint currently in use for each BRP. */
  36. static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
  37. /* Watchpoint currently in use for each WRP. */
  38. static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
  39. /* Number of BRP/WRP registers on this CPU. */
  40. static int core_num_brps;
  41. static int core_num_wrps;
  42. /* Debug architecture version. */
  43. static u8 debug_arch;
  44. /* Maximum supported watchpoint length. */
  45. static u8 max_watchpoint_len;
  46. #define READ_WB_REG_CASE(OP2, M, VAL) \
  47. case ((OP2 << 4) + M): \
  48. ARM_DBG_READ(c ## M, OP2, VAL); \
  49. break
  50. #define WRITE_WB_REG_CASE(OP2, M, VAL) \
  51. case ((OP2 << 4) + M): \
  52. ARM_DBG_WRITE(c ## M, OP2, VAL);\
  53. break
  54. #define GEN_READ_WB_REG_CASES(OP2, VAL) \
  55. READ_WB_REG_CASE(OP2, 0, VAL); \
  56. READ_WB_REG_CASE(OP2, 1, VAL); \
  57. READ_WB_REG_CASE(OP2, 2, VAL); \
  58. READ_WB_REG_CASE(OP2, 3, VAL); \
  59. READ_WB_REG_CASE(OP2, 4, VAL); \
  60. READ_WB_REG_CASE(OP2, 5, VAL); \
  61. READ_WB_REG_CASE(OP2, 6, VAL); \
  62. READ_WB_REG_CASE(OP2, 7, VAL); \
  63. READ_WB_REG_CASE(OP2, 8, VAL); \
  64. READ_WB_REG_CASE(OP2, 9, VAL); \
  65. READ_WB_REG_CASE(OP2, 10, VAL); \
  66. READ_WB_REG_CASE(OP2, 11, VAL); \
  67. READ_WB_REG_CASE(OP2, 12, VAL); \
  68. READ_WB_REG_CASE(OP2, 13, VAL); \
  69. READ_WB_REG_CASE(OP2, 14, VAL); \
  70. READ_WB_REG_CASE(OP2, 15, VAL)
  71. #define GEN_WRITE_WB_REG_CASES(OP2, VAL) \
  72. WRITE_WB_REG_CASE(OP2, 0, VAL); \
  73. WRITE_WB_REG_CASE(OP2, 1, VAL); \
  74. WRITE_WB_REG_CASE(OP2, 2, VAL); \
  75. WRITE_WB_REG_CASE(OP2, 3, VAL); \
  76. WRITE_WB_REG_CASE(OP2, 4, VAL); \
  77. WRITE_WB_REG_CASE(OP2, 5, VAL); \
  78. WRITE_WB_REG_CASE(OP2, 6, VAL); \
  79. WRITE_WB_REG_CASE(OP2, 7, VAL); \
  80. WRITE_WB_REG_CASE(OP2, 8, VAL); \
  81. WRITE_WB_REG_CASE(OP2, 9, VAL); \
  82. WRITE_WB_REG_CASE(OP2, 10, VAL); \
  83. WRITE_WB_REG_CASE(OP2, 11, VAL); \
  84. WRITE_WB_REG_CASE(OP2, 12, VAL); \
  85. WRITE_WB_REG_CASE(OP2, 13, VAL); \
  86. WRITE_WB_REG_CASE(OP2, 14, VAL); \
  87. WRITE_WB_REG_CASE(OP2, 15, VAL)
  88. static u32 read_wb_reg(int n)
  89. {
  90. u32 val = 0;
  91. switch (n) {
  92. GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val);
  93. GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val);
  94. GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val);
  95. GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val);
  96. default:
  97. pr_warning("attempt to read from unknown breakpoint "
  98. "register %d\n", n);
  99. }
  100. return val;
  101. }
  102. static void write_wb_reg(int n, u32 val)
  103. {
  104. switch (n) {
  105. GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val);
  106. GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val);
  107. GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val);
  108. GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val);
  109. default:
  110. pr_warning("attempt to write to unknown breakpoint "
  111. "register %d\n", n);
  112. }
  113. isb();
  114. }
  115. /* Determine debug architecture. */
  116. static u8 get_debug_arch(void)
  117. {
  118. u32 didr;
  119. /* Do we implement the extended CPUID interface? */
  120. if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
  121. pr_warning("CPUID feature registers not supported. "
  122. "Assuming v6 debug is present.\n");
  123. return ARM_DEBUG_ARCH_V6;
  124. }
  125. ARM_DBG_READ(c0, 0, didr);
  126. return (didr >> 16) & 0xf;
  127. }
  128. u8 arch_get_debug_arch(void)
  129. {
  130. return debug_arch;
  131. }
  132. static int debug_arch_supported(void)
  133. {
  134. u8 arch = get_debug_arch();
  135. /* We don't support the memory-mapped interface. */
  136. return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) ||
  137. arch >= ARM_DEBUG_ARCH_V7_1;
  138. }
  139. /* Can we determine the watchpoint access type from the fsr? */
  140. static int debug_exception_updates_fsr(void)
  141. {
  142. return 0;
  143. }
  144. /* Determine number of WRP registers available. */
  145. static int get_num_wrp_resources(void)
  146. {
  147. u32 didr;
  148. ARM_DBG_READ(c0, 0, didr);
  149. return ((didr >> 28) & 0xf) + 1;
  150. }
  151. /* Determine number of BRP registers available. */
  152. static int get_num_brp_resources(void)
  153. {
  154. u32 didr;
  155. ARM_DBG_READ(c0, 0, didr);
  156. return ((didr >> 24) & 0xf) + 1;
  157. }
  158. /* Does this core support mismatch breakpoints? */
  159. static int core_has_mismatch_brps(void)
  160. {
  161. return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 &&
  162. get_num_brp_resources() > 1);
  163. }
  164. /* Determine number of usable WRPs available. */
  165. static int get_num_wrps(void)
  166. {
  167. /*
  168. * On debug architectures prior to 7.1, when a watchpoint fires, the
  169. * only way to work out which watchpoint it was is by disassembling
  170. * the faulting instruction and working out the address of the memory
  171. * access.
  172. *
  173. * Furthermore, we can only do this if the watchpoint was precise
  174. * since imprecise watchpoints prevent us from calculating register
  175. * based addresses.
  176. *
  177. * Providing we have more than 1 breakpoint register, we only report
  178. * a single watchpoint register for the time being. This way, we always
  179. * know which watchpoint fired. In the future we can either add a
  180. * disassembler and address generation emulator, or we can insert a
  181. * check to see if the DFAR is set on watchpoint exception entry
  182. * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
  183. * that it is set on some implementations].
  184. */
  185. if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1)
  186. return 1;
  187. return get_num_wrp_resources();
  188. }
  189. /* Determine number of usable BRPs available. */
  190. static int get_num_brps(void)
  191. {
  192. int brps = get_num_brp_resources();
  193. return core_has_mismatch_brps() ? brps - 1 : brps;
  194. }
  195. /*
  196. * In order to access the breakpoint/watchpoint control registers,
  197. * we must be running in debug monitor mode. Unfortunately, we can
  198. * be put into halting debug mode at any time by an external debugger
  199. * but there is nothing we can do to prevent that.
  200. */
  201. static int enable_monitor_mode(void)
  202. {
  203. u32 dscr;
  204. int ret = 0;
  205. ARM_DBG_READ(c1, 0, dscr);
  206. /* Ensure that halting mode is disabled. */
  207. if (WARN_ONCE(dscr & ARM_DSCR_HDBGEN,
  208. "halting debug mode enabled. Unable to access hardware resources.\n")) {
  209. ret = -EPERM;
  210. goto out;
  211. }
  212. /* If monitor mode is already enabled, just return. */
  213. if (dscr & ARM_DSCR_MDBGEN)
  214. goto out;
  215. /* Write to the corresponding DSCR. */
  216. switch (get_debug_arch()) {
  217. case ARM_DEBUG_ARCH_V6:
  218. case ARM_DEBUG_ARCH_V6_1:
  219. ARM_DBG_WRITE(c1, 0, (dscr | ARM_DSCR_MDBGEN));
  220. break;
  221. case ARM_DEBUG_ARCH_V7_ECP14:
  222. case ARM_DEBUG_ARCH_V7_1:
  223. ARM_DBG_WRITE(c2, 2, (dscr | ARM_DSCR_MDBGEN));
  224. break;
  225. default:
  226. ret = -ENODEV;
  227. goto out;
  228. }
  229. /* Check that the write made it through. */
  230. ARM_DBG_READ(c1, 0, dscr);
  231. if (!(dscr & ARM_DSCR_MDBGEN))
  232. ret = -EPERM;
  233. out:
  234. return ret;
  235. }
  236. int hw_breakpoint_slots(int type)
  237. {
  238. if (!debug_arch_supported())
  239. return 0;
  240. /*
  241. * We can be called early, so don't rely on
  242. * our static variables being initialised.
  243. */
  244. switch (type) {
  245. case TYPE_INST:
  246. return get_num_brps();
  247. case TYPE_DATA:
  248. return get_num_wrps();
  249. default:
  250. pr_warning("unknown slot type: %d\n", type);
  251. return 0;
  252. }
  253. }
  254. /*
  255. * Check if 8-bit byte-address select is available.
  256. * This clobbers WRP 0.
  257. */
  258. static u8 get_max_wp_len(void)
  259. {
  260. u32 ctrl_reg;
  261. struct arch_hw_breakpoint_ctrl ctrl;
  262. u8 size = 4;
  263. if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14)
  264. goto out;
  265. memset(&ctrl, 0, sizeof(ctrl));
  266. ctrl.len = ARM_BREAKPOINT_LEN_8;
  267. ctrl_reg = encode_ctrl_reg(ctrl);
  268. write_wb_reg(ARM_BASE_WVR, 0);
  269. write_wb_reg(ARM_BASE_WCR, ctrl_reg);
  270. if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg)
  271. size = 8;
  272. out:
  273. return size;
  274. }
  275. u8 arch_get_max_wp_len(void)
  276. {
  277. return max_watchpoint_len;
  278. }
  279. /*
  280. * Install a perf counter breakpoint.
  281. */
  282. int arch_install_hw_breakpoint(struct perf_event *bp)
  283. {
  284. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  285. struct perf_event **slot, **slots;
  286. int i, max_slots, ctrl_base, val_base, ret = 0;
  287. u32 addr, ctrl;
  288. /* Ensure that we are in monitor mode and halting mode is disabled. */
  289. ret = enable_monitor_mode();
  290. if (ret)
  291. goto out;
  292. addr = info->address;
  293. ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
  294. if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
  295. /* Breakpoint */
  296. ctrl_base = ARM_BASE_BCR;
  297. val_base = ARM_BASE_BVR;
  298. slots = (struct perf_event **)__get_cpu_var(bp_on_reg);
  299. max_slots = core_num_brps;
  300. } else {
  301. /* Watchpoint */
  302. ctrl_base = ARM_BASE_WCR;
  303. val_base = ARM_BASE_WVR;
  304. slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
  305. max_slots = core_num_wrps;
  306. }
  307. for (i = 0; i < max_slots; ++i) {
  308. slot = &slots[i];
  309. if (!*slot) {
  310. *slot = bp;
  311. break;
  312. }
  313. }
  314. if (WARN_ONCE(i == max_slots, "Can't find any breakpoint slot\n")) {
  315. ret = -EBUSY;
  316. goto out;
  317. }
  318. /* Override the breakpoint data with the step data. */
  319. if (info->step_ctrl.enabled) {
  320. addr = info->trigger & ~0x3;
  321. ctrl = encode_ctrl_reg(info->step_ctrl);
  322. if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) {
  323. i = 0;
  324. ctrl_base = ARM_BASE_BCR + core_num_brps;
  325. val_base = ARM_BASE_BVR + core_num_brps;
  326. }
  327. }
  328. /* Setup the address register. */
  329. write_wb_reg(val_base + i, addr);
  330. /* Setup the control register. */
  331. write_wb_reg(ctrl_base + i, ctrl);
  332. out:
  333. return ret;
  334. }
  335. void arch_uninstall_hw_breakpoint(struct perf_event *bp)
  336. {
  337. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  338. struct perf_event **slot, **slots;
  339. int i, max_slots, base;
  340. if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
  341. /* Breakpoint */
  342. base = ARM_BASE_BCR;
  343. slots = (struct perf_event **)__get_cpu_var(bp_on_reg);
  344. max_slots = core_num_brps;
  345. } else {
  346. /* Watchpoint */
  347. base = ARM_BASE_WCR;
  348. slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
  349. max_slots = core_num_wrps;
  350. }
  351. /* Remove the breakpoint. */
  352. for (i = 0; i < max_slots; ++i) {
  353. slot = &slots[i];
  354. if (*slot == bp) {
  355. *slot = NULL;
  356. break;
  357. }
  358. }
  359. if (WARN_ONCE(i == max_slots, "Can't find any breakpoint slot\n"))
  360. return;
  361. /* Ensure that we disable the mismatch breakpoint. */
  362. if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
  363. info->step_ctrl.enabled) {
  364. i = 0;
  365. base = ARM_BASE_BCR + core_num_brps;
  366. }
  367. /* Reset the control register. */
  368. write_wb_reg(base + i, 0);
  369. }
  370. static int get_hbp_len(u8 hbp_len)
  371. {
  372. unsigned int len_in_bytes = 0;
  373. switch (hbp_len) {
  374. case ARM_BREAKPOINT_LEN_1:
  375. len_in_bytes = 1;
  376. break;
  377. case ARM_BREAKPOINT_LEN_2:
  378. len_in_bytes = 2;
  379. break;
  380. case ARM_BREAKPOINT_LEN_4:
  381. len_in_bytes = 4;
  382. break;
  383. case ARM_BREAKPOINT_LEN_8:
  384. len_in_bytes = 8;
  385. break;
  386. }
  387. return len_in_bytes;
  388. }
  389. /*
  390. * Check whether bp virtual address is in kernel space.
  391. */
  392. int arch_check_bp_in_kernelspace(struct perf_event *bp)
  393. {
  394. unsigned int len;
  395. unsigned long va;
  396. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  397. va = info->address;
  398. len = get_hbp_len(info->ctrl.len);
  399. return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
  400. }
  401. /*
  402. * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
  403. * Hopefully this will disappear when ptrace can bypass the conversion
  404. * to generic breakpoint descriptions.
  405. */
  406. int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
  407. int *gen_len, int *gen_type)
  408. {
  409. /* Type */
  410. switch (ctrl.type) {
  411. case ARM_BREAKPOINT_EXECUTE:
  412. *gen_type = HW_BREAKPOINT_X;
  413. break;
  414. case ARM_BREAKPOINT_LOAD:
  415. *gen_type = HW_BREAKPOINT_R;
  416. break;
  417. case ARM_BREAKPOINT_STORE:
  418. *gen_type = HW_BREAKPOINT_W;
  419. break;
  420. case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
  421. *gen_type = HW_BREAKPOINT_RW;
  422. break;
  423. default:
  424. return -EINVAL;
  425. }
  426. /* Len */
  427. switch (ctrl.len) {
  428. case ARM_BREAKPOINT_LEN_1:
  429. *gen_len = HW_BREAKPOINT_LEN_1;
  430. break;
  431. case ARM_BREAKPOINT_LEN_2:
  432. *gen_len = HW_BREAKPOINT_LEN_2;
  433. break;
  434. case ARM_BREAKPOINT_LEN_4:
  435. *gen_len = HW_BREAKPOINT_LEN_4;
  436. break;
  437. case ARM_BREAKPOINT_LEN_8:
  438. *gen_len = HW_BREAKPOINT_LEN_8;
  439. break;
  440. default:
  441. return -EINVAL;
  442. }
  443. return 0;
  444. }
  445. /*
  446. * Construct an arch_hw_breakpoint from a perf_event.
  447. */
  448. static int arch_build_bp_info(struct perf_event *bp)
  449. {
  450. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  451. /* Type */
  452. switch (bp->attr.bp_type) {
  453. case HW_BREAKPOINT_X:
  454. info->ctrl.type = ARM_BREAKPOINT_EXECUTE;
  455. break;
  456. case HW_BREAKPOINT_R:
  457. info->ctrl.type = ARM_BREAKPOINT_LOAD;
  458. break;
  459. case HW_BREAKPOINT_W:
  460. info->ctrl.type = ARM_BREAKPOINT_STORE;
  461. break;
  462. case HW_BREAKPOINT_RW:
  463. info->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
  464. break;
  465. default:
  466. return -EINVAL;
  467. }
  468. /* Len */
  469. switch (bp->attr.bp_len) {
  470. case HW_BREAKPOINT_LEN_1:
  471. info->ctrl.len = ARM_BREAKPOINT_LEN_1;
  472. break;
  473. case HW_BREAKPOINT_LEN_2:
  474. info->ctrl.len = ARM_BREAKPOINT_LEN_2;
  475. break;
  476. case HW_BREAKPOINT_LEN_4:
  477. info->ctrl.len = ARM_BREAKPOINT_LEN_4;
  478. break;
  479. case HW_BREAKPOINT_LEN_8:
  480. info->ctrl.len = ARM_BREAKPOINT_LEN_8;
  481. if ((info->ctrl.type != ARM_BREAKPOINT_EXECUTE)
  482. && max_watchpoint_len >= 8)
  483. break;
  484. default:
  485. return -EINVAL;
  486. }
  487. /*
  488. * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes.
  489. * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported
  490. * by the hardware and must be aligned to the appropriate number of
  491. * bytes.
  492. */
  493. if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE &&
  494. info->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
  495. info->ctrl.len != ARM_BREAKPOINT_LEN_4)
  496. return -EINVAL;
  497. /* Address */
  498. info->address = bp->attr.bp_addr;
  499. /* Privilege */
  500. info->ctrl.privilege = ARM_BREAKPOINT_USER;
  501. if (arch_check_bp_in_kernelspace(bp))
  502. info->ctrl.privilege |= ARM_BREAKPOINT_PRIV;
  503. /* Enabled? */
  504. info->ctrl.enabled = !bp->attr.disabled;
  505. /* Mismatch */
  506. info->ctrl.mismatch = 0;
  507. return 0;
  508. }
  509. /*
  510. * Validate the arch-specific HW Breakpoint register settings.
  511. */
  512. int arch_validate_hwbkpt_settings(struct perf_event *bp)
  513. {
  514. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  515. int ret = 0;
  516. u32 offset, alignment_mask = 0x3;
  517. /* Build the arch_hw_breakpoint. */
  518. ret = arch_build_bp_info(bp);
  519. if (ret)
  520. goto out;
  521. /* Check address alignment. */
  522. if (info->ctrl.len == ARM_BREAKPOINT_LEN_8)
  523. alignment_mask = 0x7;
  524. offset = info->address & alignment_mask;
  525. switch (offset) {
  526. case 0:
  527. /* Aligned */
  528. break;
  529. case 1:
  530. case 2:
  531. /* Allow halfword watchpoints and breakpoints. */
  532. if (info->ctrl.len == ARM_BREAKPOINT_LEN_2)
  533. break;
  534. case 3:
  535. /* Allow single byte watchpoint. */
  536. if (info->ctrl.len == ARM_BREAKPOINT_LEN_1)
  537. break;
  538. default:
  539. ret = -EINVAL;
  540. goto out;
  541. }
  542. info->address &= ~alignment_mask;
  543. info->ctrl.len <<= offset;
  544. if (!bp->overflow_handler) {
  545. /*
  546. * Mismatch breakpoints are required for single-stepping
  547. * breakpoints.
  548. */
  549. if (!core_has_mismatch_brps())
  550. return -EINVAL;
  551. /* We don't allow mismatch breakpoints in kernel space. */
  552. if (arch_check_bp_in_kernelspace(bp))
  553. return -EPERM;
  554. /*
  555. * Per-cpu breakpoints are not supported by our stepping
  556. * mechanism.
  557. */
  558. if (!bp->hw.bp_target)
  559. return -EINVAL;
  560. /*
  561. * We only support specific access types if the fsr
  562. * reports them.
  563. */
  564. if (!debug_exception_updates_fsr() &&
  565. (info->ctrl.type == ARM_BREAKPOINT_LOAD ||
  566. info->ctrl.type == ARM_BREAKPOINT_STORE))
  567. return -EINVAL;
  568. }
  569. out:
  570. return ret;
  571. }
  572. /*
  573. * Enable/disable single-stepping over the breakpoint bp at address addr.
  574. */
  575. static void enable_single_step(struct perf_event *bp, u32 addr)
  576. {
  577. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  578. arch_uninstall_hw_breakpoint(bp);
  579. info->step_ctrl.mismatch = 1;
  580. info->step_ctrl.len = ARM_BREAKPOINT_LEN_4;
  581. info->step_ctrl.type = ARM_BREAKPOINT_EXECUTE;
  582. info->step_ctrl.privilege = info->ctrl.privilege;
  583. info->step_ctrl.enabled = 1;
  584. info->trigger = addr;
  585. arch_install_hw_breakpoint(bp);
  586. }
  587. static void disable_single_step(struct perf_event *bp)
  588. {
  589. arch_uninstall_hw_breakpoint(bp);
  590. counter_arch_bp(bp)->step_ctrl.enabled = 0;
  591. arch_install_hw_breakpoint(bp);
  592. }
  593. static void watchpoint_handler(unsigned long addr, unsigned int fsr,
  594. struct pt_regs *regs)
  595. {
  596. int i, access;
  597. u32 val, ctrl_reg, alignment_mask;
  598. struct perf_event *wp, **slots;
  599. struct arch_hw_breakpoint *info;
  600. struct arch_hw_breakpoint_ctrl ctrl;
  601. slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
  602. for (i = 0; i < core_num_wrps; ++i) {
  603. rcu_read_lock();
  604. wp = slots[i];
  605. if (wp == NULL)
  606. goto unlock;
  607. info = counter_arch_bp(wp);
  608. /*
  609. * The DFAR is an unknown value on debug architectures prior
  610. * to 7.1. Since we only allow a single watchpoint on these
  611. * older CPUs, we can set the trigger to the lowest possible
  612. * faulting address.
  613. */
  614. if (debug_arch < ARM_DEBUG_ARCH_V7_1) {
  615. BUG_ON(i > 0);
  616. info->trigger = wp->attr.bp_addr;
  617. } else {
  618. if (info->ctrl.len == ARM_BREAKPOINT_LEN_8)
  619. alignment_mask = 0x7;
  620. else
  621. alignment_mask = 0x3;
  622. /* Check if the watchpoint value matches. */
  623. val = read_wb_reg(ARM_BASE_WVR + i);
  624. if (val != (addr & ~alignment_mask))
  625. goto unlock;
  626. /* Possible match, check the byte address select. */
  627. ctrl_reg = read_wb_reg(ARM_BASE_WCR + i);
  628. decode_ctrl_reg(ctrl_reg, &ctrl);
  629. if (!((1 << (addr & alignment_mask)) & ctrl.len))
  630. goto unlock;
  631. /* Check that the access type matches. */
  632. if (debug_exception_updates_fsr()) {
  633. access = (fsr & ARM_FSR_ACCESS_MASK) ?
  634. HW_BREAKPOINT_W : HW_BREAKPOINT_R;
  635. if (!(access & hw_breakpoint_type(wp)))
  636. goto unlock;
  637. }
  638. /* We have a winner. */
  639. info->trigger = addr;
  640. }
  641. pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
  642. perf_bp_event(wp, regs);
  643. /*
  644. * If no overflow handler is present, insert a temporary
  645. * mismatch breakpoint so we can single-step over the
  646. * watchpoint trigger.
  647. */
  648. if (!wp->overflow_handler)
  649. enable_single_step(wp, instruction_pointer(regs));
  650. unlock:
  651. rcu_read_unlock();
  652. }
  653. }
  654. static void watchpoint_single_step_handler(unsigned long pc)
  655. {
  656. int i;
  657. struct perf_event *wp, **slots;
  658. struct arch_hw_breakpoint *info;
  659. slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
  660. for (i = 0; i < core_num_wrps; ++i) {
  661. rcu_read_lock();
  662. wp = slots[i];
  663. if (wp == NULL)
  664. goto unlock;
  665. info = counter_arch_bp(wp);
  666. if (!info->step_ctrl.enabled)
  667. goto unlock;
  668. /*
  669. * Restore the original watchpoint if we've completed the
  670. * single-step.
  671. */
  672. if (info->trigger != pc)
  673. disable_single_step(wp);
  674. unlock:
  675. rcu_read_unlock();
  676. }
  677. }
  678. static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs)
  679. {
  680. int i;
  681. u32 ctrl_reg, val, addr;
  682. struct perf_event *bp, **slots;
  683. struct arch_hw_breakpoint *info;
  684. struct arch_hw_breakpoint_ctrl ctrl;
  685. slots = (struct perf_event **)__get_cpu_var(bp_on_reg);
  686. /* The exception entry code places the amended lr in the PC. */
  687. addr = regs->ARM_pc;
  688. /* Check the currently installed breakpoints first. */
  689. for (i = 0; i < core_num_brps; ++i) {
  690. rcu_read_lock();
  691. bp = slots[i];
  692. if (bp == NULL)
  693. goto unlock;
  694. info = counter_arch_bp(bp);
  695. /* Check if the breakpoint value matches. */
  696. val = read_wb_reg(ARM_BASE_BVR + i);
  697. if (val != (addr & ~0x3))
  698. goto mismatch;
  699. /* Possible match, check the byte address select to confirm. */
  700. ctrl_reg = read_wb_reg(ARM_BASE_BCR + i);
  701. decode_ctrl_reg(ctrl_reg, &ctrl);
  702. if ((1 << (addr & 0x3)) & ctrl.len) {
  703. info->trigger = addr;
  704. pr_debug("breakpoint fired: address = 0x%x\n", addr);
  705. perf_bp_event(bp, regs);
  706. if (!bp->overflow_handler)
  707. enable_single_step(bp, addr);
  708. goto unlock;
  709. }
  710. mismatch:
  711. /* If we're stepping a breakpoint, it can now be restored. */
  712. if (info->step_ctrl.enabled)
  713. disable_single_step(bp);
  714. unlock:
  715. rcu_read_unlock();
  716. }
  717. /* Handle any pending watchpoint single-step breakpoints. */
  718. watchpoint_single_step_handler(addr);
  719. }
  720. /*
  721. * Called from either the Data Abort Handler [watchpoint] or the
  722. * Prefetch Abort Handler [breakpoint] with interrupts disabled.
  723. */
  724. static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
  725. struct pt_regs *regs)
  726. {
  727. int ret = 0;
  728. u32 dscr;
  729. preempt_disable();
  730. if (interrupts_enabled(regs))
  731. local_irq_enable();
  732. /* We only handle watchpoints and hardware breakpoints. */
  733. ARM_DBG_READ(c1, 0, dscr);
  734. /* Perform perf callbacks. */
  735. switch (ARM_DSCR_MOE(dscr)) {
  736. case ARM_ENTRY_BREAKPOINT:
  737. breakpoint_handler(addr, regs);
  738. break;
  739. case ARM_ENTRY_ASYNC_WATCHPOINT:
  740. WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n");
  741. case ARM_ENTRY_SYNC_WATCHPOINT:
  742. watchpoint_handler(addr, fsr, regs);
  743. break;
  744. default:
  745. ret = 1; /* Unhandled fault. */
  746. }
  747. preempt_enable();
  748. return ret;
  749. }
  750. /*
  751. * One-time initialisation.
  752. */
  753. static cpumask_t debug_err_mask;
  754. static int debug_reg_trap(struct pt_regs *regs, unsigned int instr)
  755. {
  756. int cpu = smp_processor_id();
  757. pr_warning("Debug register access (0x%x) caused undefined instruction on CPU %d\n",
  758. instr, cpu);
  759. /* Set the error flag for this CPU and skip the faulting instruction. */
  760. cpumask_set_cpu(cpu, &debug_err_mask);
  761. instruction_pointer(regs) += 4;
  762. return 0;
  763. }
  764. static struct undef_hook debug_reg_hook = {
  765. .instr_mask = 0x0fe80f10,
  766. .instr_val = 0x0e000e10,
  767. .fn = debug_reg_trap,
  768. };
  769. static void reset_ctrl_regs(void *unused)
  770. {
  771. int i, raw_num_brps, err = 0, cpu = smp_processor_id();
  772. u32 dbg_power;
  773. /*
  774. * v7 debug contains save and restore registers so that debug state
  775. * can be maintained across low-power modes without leaving the debug
  776. * logic powered up. It is IMPLEMENTATION DEFINED whether we can access
  777. * the debug registers out of reset, so we must unlock the OS Lock
  778. * Access Register to avoid taking undefined instruction exceptions
  779. * later on.
  780. */
  781. switch (debug_arch) {
  782. case ARM_DEBUG_ARCH_V6:
  783. case ARM_DEBUG_ARCH_V6_1:
  784. /* ARMv6 cores just need to reset the registers. */
  785. goto reset_regs;
  786. case ARM_DEBUG_ARCH_V7_ECP14:
  787. /*
  788. * Ensure sticky power-down is clear (i.e. debug logic is
  789. * powered up).
  790. */
  791. asm volatile("mrc p14, 0, %0, c1, c5, 4" : "=r" (dbg_power));
  792. if ((dbg_power & 0x1) == 0)
  793. err = -EPERM;
  794. break;
  795. case ARM_DEBUG_ARCH_V7_1:
  796. /*
  797. * Ensure the OS double lock is clear.
  798. */
  799. asm volatile("mrc p14, 0, %0, c1, c3, 4" : "=r" (dbg_power));
  800. if ((dbg_power & 0x1) == 1)
  801. err = -EPERM;
  802. break;
  803. }
  804. if (err) {
  805. pr_warning("CPU %d debug is powered down!\n", cpu);
  806. cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
  807. return;
  808. }
  809. /*
  810. * Unconditionally clear the lock by writing a value
  811. * other than 0xC5ACCE55 to the access register.
  812. */
  813. asm volatile("mcr p14, 0, %0, c1, c0, 4" : : "r" (0));
  814. isb();
  815. /*
  816. * Clear any configured vector-catch events before
  817. * enabling monitor mode.
  818. */
  819. asm volatile("mcr p14, 0, %0, c0, c7, 0" : : "r" (0));
  820. isb();
  821. reset_regs:
  822. if (enable_monitor_mode())
  823. return;
  824. /* We must also reset any reserved registers. */
  825. raw_num_brps = get_num_brp_resources();
  826. for (i = 0; i < raw_num_brps; ++i) {
  827. write_wb_reg(ARM_BASE_BCR + i, 0UL);
  828. write_wb_reg(ARM_BASE_BVR + i, 0UL);
  829. }
  830. for (i = 0; i < core_num_wrps; ++i) {
  831. write_wb_reg(ARM_BASE_WCR + i, 0UL);
  832. write_wb_reg(ARM_BASE_WVR + i, 0UL);
  833. }
  834. }
  835. static int __cpuinit dbg_reset_notify(struct notifier_block *self,
  836. unsigned long action, void *cpu)
  837. {
  838. if (action == CPU_ONLINE)
  839. smp_call_function_single((int)cpu, reset_ctrl_regs, NULL, 1);
  840. return NOTIFY_OK;
  841. }
  842. static struct notifier_block __cpuinitdata dbg_reset_nb = {
  843. .notifier_call = dbg_reset_notify,
  844. };
  845. static int __init arch_hw_breakpoint_init(void)
  846. {
  847. u32 dscr;
  848. debug_arch = get_debug_arch();
  849. if (!debug_arch_supported()) {
  850. pr_info("debug architecture 0x%x unsupported.\n", debug_arch);
  851. return 0;
  852. }
  853. /* Determine how many BRPs/WRPs are available. */
  854. core_num_brps = get_num_brps();
  855. core_num_wrps = get_num_wrps();
  856. /*
  857. * We need to tread carefully here because DBGSWENABLE may be
  858. * driven low on this core and there isn't an architected way to
  859. * determine that.
  860. */
  861. register_undef_hook(&debug_reg_hook);
  862. /*
  863. * Reset the breakpoint resources. We assume that a halting
  864. * debugger will leave the world in a nice state for us.
  865. */
  866. on_each_cpu(reset_ctrl_regs, NULL, 1);
  867. unregister_undef_hook(&debug_reg_hook);
  868. if (!cpumask_empty(&debug_err_mask)) {
  869. core_num_brps = 0;
  870. core_num_wrps = 0;
  871. return 0;
  872. }
  873. pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n",
  874. core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
  875. "", core_num_wrps);
  876. ARM_DBG_READ(c1, 0, dscr);
  877. if (dscr & ARM_DSCR_HDBGEN) {
  878. max_watchpoint_len = 4;
  879. pr_warning("halting debug mode enabled. Assuming maximum watchpoint size of %u bytes.\n",
  880. max_watchpoint_len);
  881. } else {
  882. /* Work out the maximum supported watchpoint length. */
  883. max_watchpoint_len = get_max_wp_len();
  884. pr_info("maximum watchpoint size is %u bytes.\n",
  885. max_watchpoint_len);
  886. }
  887. /* Register debug fault handler. */
  888. hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
  889. TRAP_HWBKPT, "watchpoint debug exception");
  890. hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
  891. TRAP_HWBKPT, "breakpoint debug exception");
  892. /* Register hotplug notifier. */
  893. register_cpu_notifier(&dbg_reset_nb);
  894. return 0;
  895. }
  896. arch_initcall(arch_hw_breakpoint_init);
  897. void hw_breakpoint_pmu_read(struct perf_event *bp)
  898. {
  899. }
  900. /*
  901. * Dummy function to register with die_notifier.
  902. */
  903. int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
  904. unsigned long val, void *data)
  905. {
  906. return NOTIFY_DONE;
  907. }