sched.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071
  1. /*
  2. * linux/net/sunrpc/sched.c
  3. *
  4. * Scheduling for synchronous and asynchronous RPC requests.
  5. *
  6. * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
  7. *
  8. * TCP NFS related read + write fixes
  9. * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10. */
  11. #include <linux/module.h>
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/slab.h>
  15. #include <linux/mempool.h>
  16. #include <linux/smp.h>
  17. #include <linux/smp_lock.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/mutex.h>
  20. #include <linux/sunrpc/clnt.h>
  21. #ifdef RPC_DEBUG
  22. #define RPCDBG_FACILITY RPCDBG_SCHED
  23. #define RPC_TASK_MAGIC_ID 0xf00baa
  24. #endif
  25. /*
  26. * RPC slabs and memory pools
  27. */
  28. #define RPC_BUFFER_MAXSIZE (2048)
  29. #define RPC_BUFFER_POOLSIZE (8)
  30. #define RPC_TASK_POOLSIZE (8)
  31. static struct kmem_cache *rpc_task_slabp __read_mostly;
  32. static struct kmem_cache *rpc_buffer_slabp __read_mostly;
  33. static mempool_t *rpc_task_mempool __read_mostly;
  34. static mempool_t *rpc_buffer_mempool __read_mostly;
  35. static void __rpc_default_timer(struct rpc_task *task);
  36. static void rpc_async_schedule(struct work_struct *);
  37. static void rpc_release_task(struct rpc_task *task);
  38. /*
  39. * RPC tasks sit here while waiting for conditions to improve.
  40. */
  41. static struct rpc_wait_queue delay_queue;
  42. /*
  43. * rpciod-related stuff
  44. */
  45. struct workqueue_struct *rpciod_workqueue;
  46. /*
  47. * Disable the timer for a given RPC task. Should be called with
  48. * queue->lock and bh_disabled in order to avoid races within
  49. * rpc_run_timer().
  50. */
  51. static inline void
  52. __rpc_disable_timer(struct rpc_task *task)
  53. {
  54. dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  55. task->tk_timeout_fn = NULL;
  56. task->tk_timeout = 0;
  57. }
  58. /*
  59. * Run a timeout function.
  60. * We use the callback in order to allow __rpc_wake_up_task()
  61. * and friends to disable the timer synchronously on SMP systems
  62. * without calling del_timer_sync(). The latter could cause a
  63. * deadlock if called while we're holding spinlocks...
  64. */
  65. static void rpc_run_timer(struct rpc_task *task)
  66. {
  67. void (*callback)(struct rpc_task *);
  68. callback = task->tk_timeout_fn;
  69. task->tk_timeout_fn = NULL;
  70. if (callback && RPC_IS_QUEUED(task)) {
  71. dprintk("RPC: %5u running timer\n", task->tk_pid);
  72. callback(task);
  73. }
  74. smp_mb__before_clear_bit();
  75. clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
  76. smp_mb__after_clear_bit();
  77. }
  78. /*
  79. * Set up a timer for the current task.
  80. */
  81. static inline void
  82. __rpc_add_timer(struct rpc_task *task, rpc_action timer)
  83. {
  84. if (!task->tk_timeout)
  85. return;
  86. dprintk("RPC: %5u setting alarm for %lu ms\n",
  87. task->tk_pid, task->tk_timeout * 1000 / HZ);
  88. if (timer)
  89. task->tk_timeout_fn = timer;
  90. else
  91. task->tk_timeout_fn = __rpc_default_timer;
  92. set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
  93. mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
  94. }
  95. /*
  96. * Delete any timer for the current task. Because we use del_timer_sync(),
  97. * this function should never be called while holding queue->lock.
  98. */
  99. static void
  100. rpc_delete_timer(struct rpc_task *task)
  101. {
  102. if (RPC_IS_QUEUED(task))
  103. return;
  104. if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
  105. del_singleshot_timer_sync(&task->tk_timer);
  106. dprintk("RPC: %5u deleting timer\n", task->tk_pid);
  107. }
  108. }
  109. /*
  110. * Add new request to a priority queue.
  111. */
  112. static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
  113. {
  114. struct list_head *q;
  115. struct rpc_task *t;
  116. INIT_LIST_HEAD(&task->u.tk_wait.links);
  117. q = &queue->tasks[task->tk_priority];
  118. if (unlikely(task->tk_priority > queue->maxpriority))
  119. q = &queue->tasks[queue->maxpriority];
  120. list_for_each_entry(t, q, u.tk_wait.list) {
  121. if (t->tk_owner == task->tk_owner) {
  122. list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
  123. return;
  124. }
  125. }
  126. list_add_tail(&task->u.tk_wait.list, q);
  127. }
  128. /*
  129. * Add new request to wait queue.
  130. *
  131. * Swapper tasks always get inserted at the head of the queue.
  132. * This should avoid many nasty memory deadlocks and hopefully
  133. * improve overall performance.
  134. * Everyone else gets appended to the queue to ensure proper FIFO behavior.
  135. */
  136. static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  137. {
  138. BUG_ON (RPC_IS_QUEUED(task));
  139. if (RPC_IS_PRIORITY(queue))
  140. __rpc_add_wait_queue_priority(queue, task);
  141. else if (RPC_IS_SWAPPER(task))
  142. list_add(&task->u.tk_wait.list, &queue->tasks[0]);
  143. else
  144. list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
  145. task->u.tk_wait.rpc_waitq = queue;
  146. queue->qlen++;
  147. rpc_set_queued(task);
  148. dprintk("RPC: %5u added to queue %p \"%s\"\n",
  149. task->tk_pid, queue, rpc_qname(queue));
  150. }
  151. /*
  152. * Remove request from a priority queue.
  153. */
  154. static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
  155. {
  156. struct rpc_task *t;
  157. if (!list_empty(&task->u.tk_wait.links)) {
  158. t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
  159. list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
  160. list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
  161. }
  162. list_del(&task->u.tk_wait.list);
  163. }
  164. /*
  165. * Remove request from queue.
  166. * Note: must be called with spin lock held.
  167. */
  168. static void __rpc_remove_wait_queue(struct rpc_task *task)
  169. {
  170. struct rpc_wait_queue *queue;
  171. queue = task->u.tk_wait.rpc_waitq;
  172. if (RPC_IS_PRIORITY(queue))
  173. __rpc_remove_wait_queue_priority(task);
  174. else
  175. list_del(&task->u.tk_wait.list);
  176. queue->qlen--;
  177. dprintk("RPC: %5u removed from queue %p \"%s\"\n",
  178. task->tk_pid, queue, rpc_qname(queue));
  179. }
  180. static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
  181. {
  182. queue->priority = priority;
  183. queue->count = 1 << (priority * 2);
  184. }
  185. static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
  186. {
  187. queue->owner = pid;
  188. queue->nr = RPC_BATCH_COUNT;
  189. }
  190. static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
  191. {
  192. rpc_set_waitqueue_priority(queue, queue->maxpriority);
  193. rpc_set_waitqueue_owner(queue, 0);
  194. }
  195. static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
  196. {
  197. int i;
  198. spin_lock_init(&queue->lock);
  199. for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
  200. INIT_LIST_HEAD(&queue->tasks[i]);
  201. queue->maxpriority = nr_queues - 1;
  202. rpc_reset_waitqueue_priority(queue);
  203. #ifdef RPC_DEBUG
  204. queue->name = qname;
  205. #endif
  206. }
  207. void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  208. {
  209. __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
  210. }
  211. void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  212. {
  213. __rpc_init_priority_wait_queue(queue, qname, 1);
  214. }
  215. EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
  216. static int rpc_wait_bit_interruptible(void *word)
  217. {
  218. if (signal_pending(current))
  219. return -ERESTARTSYS;
  220. schedule();
  221. return 0;
  222. }
  223. #ifdef RPC_DEBUG
  224. static void rpc_task_set_debuginfo(struct rpc_task *task)
  225. {
  226. static atomic_t rpc_pid;
  227. task->tk_magic = RPC_TASK_MAGIC_ID;
  228. task->tk_pid = atomic_inc_return(&rpc_pid);
  229. }
  230. #else
  231. static inline void rpc_task_set_debuginfo(struct rpc_task *task)
  232. {
  233. }
  234. #endif
  235. static void rpc_set_active(struct rpc_task *task)
  236. {
  237. struct rpc_clnt *clnt;
  238. if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
  239. return;
  240. rpc_task_set_debuginfo(task);
  241. /* Add to global list of all tasks */
  242. clnt = task->tk_client;
  243. if (clnt != NULL) {
  244. spin_lock(&clnt->cl_lock);
  245. list_add_tail(&task->tk_task, &clnt->cl_tasks);
  246. spin_unlock(&clnt->cl_lock);
  247. }
  248. }
  249. /*
  250. * Mark an RPC call as having completed by clearing the 'active' bit
  251. */
  252. static void rpc_mark_complete_task(struct rpc_task *task)
  253. {
  254. smp_mb__before_clear_bit();
  255. clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  256. smp_mb__after_clear_bit();
  257. wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
  258. }
  259. /*
  260. * Allow callers to wait for completion of an RPC call
  261. */
  262. int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
  263. {
  264. if (action == NULL)
  265. action = rpc_wait_bit_interruptible;
  266. return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
  267. action, TASK_INTERRUPTIBLE);
  268. }
  269. EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
  270. /*
  271. * Make an RPC task runnable.
  272. *
  273. * Note: If the task is ASYNC, this must be called with
  274. * the spinlock held to protect the wait queue operation.
  275. */
  276. static void rpc_make_runnable(struct rpc_task *task)
  277. {
  278. BUG_ON(task->tk_timeout_fn);
  279. rpc_clear_queued(task);
  280. if (rpc_test_and_set_running(task))
  281. return;
  282. /* We might have raced */
  283. if (RPC_IS_QUEUED(task)) {
  284. rpc_clear_running(task);
  285. return;
  286. }
  287. if (RPC_IS_ASYNC(task)) {
  288. int status;
  289. INIT_WORK(&task->u.tk_work, rpc_async_schedule);
  290. status = queue_work(task->tk_workqueue, &task->u.tk_work);
  291. if (status < 0) {
  292. printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
  293. task->tk_status = status;
  294. return;
  295. }
  296. } else
  297. wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
  298. }
  299. /*
  300. * Prepare for sleeping on a wait queue.
  301. * By always appending tasks to the list we ensure FIFO behavior.
  302. * NB: An RPC task will only receive interrupt-driven events as long
  303. * as it's on a wait queue.
  304. */
  305. static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  306. rpc_action action, rpc_action timer)
  307. {
  308. dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
  309. task->tk_pid, rpc_qname(q), jiffies);
  310. if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
  311. printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
  312. return;
  313. }
  314. __rpc_add_wait_queue(q, task);
  315. BUG_ON(task->tk_callback != NULL);
  316. task->tk_callback = action;
  317. __rpc_add_timer(task, timer);
  318. }
  319. void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  320. rpc_action action, rpc_action timer)
  321. {
  322. /* Mark the task as being activated if so needed */
  323. rpc_set_active(task);
  324. /*
  325. * Protect the queue operations.
  326. */
  327. spin_lock_bh(&q->lock);
  328. __rpc_sleep_on(q, task, action, timer);
  329. spin_unlock_bh(&q->lock);
  330. }
  331. EXPORT_SYMBOL_GPL(rpc_sleep_on);
  332. /**
  333. * __rpc_do_wake_up_task - wake up a single rpc_task
  334. * @task: task to be woken up
  335. *
  336. * Caller must hold queue->lock, and have cleared the task queued flag.
  337. */
  338. static void __rpc_do_wake_up_task(struct rpc_task *task)
  339. {
  340. dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
  341. task->tk_pid, jiffies);
  342. #ifdef RPC_DEBUG
  343. BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
  344. #endif
  345. /* Has the task been executed yet? If not, we cannot wake it up! */
  346. if (!RPC_IS_ACTIVATED(task)) {
  347. printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
  348. return;
  349. }
  350. __rpc_disable_timer(task);
  351. __rpc_remove_wait_queue(task);
  352. rpc_make_runnable(task);
  353. dprintk("RPC: __rpc_wake_up_task done\n");
  354. }
  355. /*
  356. * Wake up the specified task
  357. */
  358. static void __rpc_wake_up_task(struct rpc_task *task)
  359. {
  360. if (rpc_start_wakeup(task)) {
  361. if (RPC_IS_QUEUED(task))
  362. __rpc_do_wake_up_task(task);
  363. rpc_finish_wakeup(task);
  364. }
  365. }
  366. /*
  367. * Default timeout handler if none specified by user
  368. */
  369. static void
  370. __rpc_default_timer(struct rpc_task *task)
  371. {
  372. dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
  373. task->tk_status = -ETIMEDOUT;
  374. rpc_wake_up_task(task);
  375. }
  376. /*
  377. * Wake up the specified task
  378. */
  379. void rpc_wake_up_task(struct rpc_task *task)
  380. {
  381. rcu_read_lock_bh();
  382. if (rpc_start_wakeup(task)) {
  383. if (RPC_IS_QUEUED(task)) {
  384. struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
  385. /* Note: we're already in a bh-safe context */
  386. spin_lock(&queue->lock);
  387. __rpc_do_wake_up_task(task);
  388. spin_unlock(&queue->lock);
  389. }
  390. rpc_finish_wakeup(task);
  391. }
  392. rcu_read_unlock_bh();
  393. }
  394. EXPORT_SYMBOL_GPL(rpc_wake_up_task);
  395. /*
  396. * Wake up the next task on a priority queue.
  397. */
  398. static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
  399. {
  400. struct list_head *q;
  401. struct rpc_task *task;
  402. /*
  403. * Service a batch of tasks from a single owner.
  404. */
  405. q = &queue->tasks[queue->priority];
  406. if (!list_empty(q)) {
  407. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  408. if (queue->owner == task->tk_owner) {
  409. if (--queue->nr)
  410. goto out;
  411. list_move_tail(&task->u.tk_wait.list, q);
  412. }
  413. /*
  414. * Check if we need to switch queues.
  415. */
  416. if (--queue->count)
  417. goto new_owner;
  418. }
  419. /*
  420. * Service the next queue.
  421. */
  422. do {
  423. if (q == &queue->tasks[0])
  424. q = &queue->tasks[queue->maxpriority];
  425. else
  426. q = q - 1;
  427. if (!list_empty(q)) {
  428. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  429. goto new_queue;
  430. }
  431. } while (q != &queue->tasks[queue->priority]);
  432. rpc_reset_waitqueue_priority(queue);
  433. return NULL;
  434. new_queue:
  435. rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
  436. new_owner:
  437. rpc_set_waitqueue_owner(queue, task->tk_owner);
  438. out:
  439. __rpc_wake_up_task(task);
  440. return task;
  441. }
  442. /*
  443. * Wake up the next task on the wait queue.
  444. */
  445. struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
  446. {
  447. struct rpc_task *task = NULL;
  448. dprintk("RPC: wake_up_next(%p \"%s\")\n",
  449. queue, rpc_qname(queue));
  450. rcu_read_lock_bh();
  451. spin_lock(&queue->lock);
  452. if (RPC_IS_PRIORITY(queue))
  453. task = __rpc_wake_up_next_priority(queue);
  454. else {
  455. task_for_first(task, &queue->tasks[0])
  456. __rpc_wake_up_task(task);
  457. }
  458. spin_unlock(&queue->lock);
  459. rcu_read_unlock_bh();
  460. return task;
  461. }
  462. EXPORT_SYMBOL_GPL(rpc_wake_up_next);
  463. /**
  464. * rpc_wake_up - wake up all rpc_tasks
  465. * @queue: rpc_wait_queue on which the tasks are sleeping
  466. *
  467. * Grabs queue->lock
  468. */
  469. void rpc_wake_up(struct rpc_wait_queue *queue)
  470. {
  471. struct rpc_task *task, *next;
  472. struct list_head *head;
  473. rcu_read_lock_bh();
  474. spin_lock(&queue->lock);
  475. head = &queue->tasks[queue->maxpriority];
  476. for (;;) {
  477. list_for_each_entry_safe(task, next, head, u.tk_wait.list)
  478. __rpc_wake_up_task(task);
  479. if (head == &queue->tasks[0])
  480. break;
  481. head--;
  482. }
  483. spin_unlock(&queue->lock);
  484. rcu_read_unlock_bh();
  485. }
  486. EXPORT_SYMBOL_GPL(rpc_wake_up);
  487. /**
  488. * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
  489. * @queue: rpc_wait_queue on which the tasks are sleeping
  490. * @status: status value to set
  491. *
  492. * Grabs queue->lock
  493. */
  494. void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
  495. {
  496. struct rpc_task *task, *next;
  497. struct list_head *head;
  498. rcu_read_lock_bh();
  499. spin_lock(&queue->lock);
  500. head = &queue->tasks[queue->maxpriority];
  501. for (;;) {
  502. list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
  503. task->tk_status = status;
  504. __rpc_wake_up_task(task);
  505. }
  506. if (head == &queue->tasks[0])
  507. break;
  508. head--;
  509. }
  510. spin_unlock(&queue->lock);
  511. rcu_read_unlock_bh();
  512. }
  513. EXPORT_SYMBOL_GPL(rpc_wake_up_status);
  514. static void __rpc_atrun(struct rpc_task *task)
  515. {
  516. rpc_wake_up_task(task);
  517. }
  518. /*
  519. * Run a task at a later time
  520. */
  521. void rpc_delay(struct rpc_task *task, unsigned long delay)
  522. {
  523. task->tk_timeout = delay;
  524. rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
  525. }
  526. EXPORT_SYMBOL_GPL(rpc_delay);
  527. /*
  528. * Helper to call task->tk_ops->rpc_call_prepare
  529. */
  530. static void rpc_prepare_task(struct rpc_task *task)
  531. {
  532. lock_kernel();
  533. task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
  534. unlock_kernel();
  535. }
  536. /*
  537. * Helper that calls task->tk_ops->rpc_call_done if it exists
  538. */
  539. void rpc_exit_task(struct rpc_task *task)
  540. {
  541. task->tk_action = NULL;
  542. if (task->tk_ops->rpc_call_done != NULL) {
  543. lock_kernel();
  544. task->tk_ops->rpc_call_done(task, task->tk_calldata);
  545. unlock_kernel();
  546. if (task->tk_action != NULL) {
  547. WARN_ON(RPC_ASSASSINATED(task));
  548. /* Always release the RPC slot and buffer memory */
  549. xprt_release(task);
  550. }
  551. }
  552. }
  553. EXPORT_SYMBOL_GPL(rpc_exit_task);
  554. void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
  555. {
  556. if (ops->rpc_release != NULL) {
  557. lock_kernel();
  558. ops->rpc_release(calldata);
  559. unlock_kernel();
  560. }
  561. }
  562. /*
  563. * This is the RPC `scheduler' (or rather, the finite state machine).
  564. */
  565. static void __rpc_execute(struct rpc_task *task)
  566. {
  567. int status = 0;
  568. dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
  569. task->tk_pid, task->tk_flags);
  570. BUG_ON(RPC_IS_QUEUED(task));
  571. for (;;) {
  572. /*
  573. * Garbage collection of pending timers...
  574. */
  575. rpc_delete_timer(task);
  576. /*
  577. * Execute any pending callback.
  578. */
  579. if (RPC_DO_CALLBACK(task)) {
  580. /* Define a callback save pointer */
  581. void (*save_callback)(struct rpc_task *);
  582. /*
  583. * If a callback exists, save it, reset it,
  584. * call it.
  585. * The save is needed to stop from resetting
  586. * another callback set within the callback handler
  587. * - Dave
  588. */
  589. save_callback=task->tk_callback;
  590. task->tk_callback=NULL;
  591. save_callback(task);
  592. }
  593. /*
  594. * Perform the next FSM step.
  595. * tk_action may be NULL when the task has been killed
  596. * by someone else.
  597. */
  598. if (!RPC_IS_QUEUED(task)) {
  599. if (task->tk_action == NULL)
  600. break;
  601. task->tk_action(task);
  602. }
  603. /*
  604. * Lockless check for whether task is sleeping or not.
  605. */
  606. if (!RPC_IS_QUEUED(task))
  607. continue;
  608. rpc_clear_running(task);
  609. if (RPC_IS_ASYNC(task)) {
  610. /* Careful! we may have raced... */
  611. if (RPC_IS_QUEUED(task))
  612. return;
  613. if (rpc_test_and_set_running(task))
  614. return;
  615. continue;
  616. }
  617. /* sync task: sleep here */
  618. dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
  619. /* Note: Caller should be using rpc_clnt_sigmask() */
  620. status = out_of_line_wait_on_bit(&task->tk_runstate,
  621. RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
  622. TASK_INTERRUPTIBLE);
  623. if (status == -ERESTARTSYS) {
  624. /*
  625. * When a sync task receives a signal, it exits with
  626. * -ERESTARTSYS. In order to catch any callbacks that
  627. * clean up after sleeping on some queue, we don't
  628. * break the loop here, but go around once more.
  629. */
  630. dprintk("RPC: %5u got signal\n", task->tk_pid);
  631. task->tk_flags |= RPC_TASK_KILLED;
  632. rpc_exit(task, -ERESTARTSYS);
  633. rpc_wake_up_task(task);
  634. }
  635. rpc_set_running(task);
  636. dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
  637. }
  638. dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
  639. task->tk_status);
  640. /* Release all resources associated with the task */
  641. rpc_release_task(task);
  642. }
  643. /*
  644. * User-visible entry point to the scheduler.
  645. *
  646. * This may be called recursively if e.g. an async NFS task updates
  647. * the attributes and finds that dirty pages must be flushed.
  648. * NOTE: Upon exit of this function the task is guaranteed to be
  649. * released. In particular note that tk_release() will have
  650. * been called, so your task memory may have been freed.
  651. */
  652. void rpc_execute(struct rpc_task *task)
  653. {
  654. rpc_set_active(task);
  655. rpc_set_running(task);
  656. __rpc_execute(task);
  657. }
  658. static void rpc_async_schedule(struct work_struct *work)
  659. {
  660. __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
  661. }
  662. struct rpc_buffer {
  663. size_t len;
  664. char data[];
  665. };
  666. /**
  667. * rpc_malloc - allocate an RPC buffer
  668. * @task: RPC task that will use this buffer
  669. * @size: requested byte size
  670. *
  671. * To prevent rpciod from hanging, this allocator never sleeps,
  672. * returning NULL if the request cannot be serviced immediately.
  673. * The caller can arrange to sleep in a way that is safe for rpciod.
  674. *
  675. * Most requests are 'small' (under 2KiB) and can be serviced from a
  676. * mempool, ensuring that NFS reads and writes can always proceed,
  677. * and that there is good locality of reference for these buffers.
  678. *
  679. * In order to avoid memory starvation triggering more writebacks of
  680. * NFS requests, we avoid using GFP_KERNEL.
  681. */
  682. void *rpc_malloc(struct rpc_task *task, size_t size)
  683. {
  684. struct rpc_buffer *buf;
  685. gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
  686. size += sizeof(struct rpc_buffer);
  687. if (size <= RPC_BUFFER_MAXSIZE)
  688. buf = mempool_alloc(rpc_buffer_mempool, gfp);
  689. else
  690. buf = kmalloc(size, gfp);
  691. if (!buf)
  692. return NULL;
  693. buf->len = size;
  694. dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
  695. task->tk_pid, size, buf);
  696. return &buf->data;
  697. }
  698. EXPORT_SYMBOL_GPL(rpc_malloc);
  699. /**
  700. * rpc_free - free buffer allocated via rpc_malloc
  701. * @buffer: buffer to free
  702. *
  703. */
  704. void rpc_free(void *buffer)
  705. {
  706. size_t size;
  707. struct rpc_buffer *buf;
  708. if (!buffer)
  709. return;
  710. buf = container_of(buffer, struct rpc_buffer, data);
  711. size = buf->len;
  712. dprintk("RPC: freeing buffer of size %zu at %p\n",
  713. size, buf);
  714. if (size <= RPC_BUFFER_MAXSIZE)
  715. mempool_free(buf, rpc_buffer_mempool);
  716. else
  717. kfree(buf);
  718. }
  719. EXPORT_SYMBOL_GPL(rpc_free);
  720. /*
  721. * Creation and deletion of RPC task structures
  722. */
  723. static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
  724. {
  725. memset(task, 0, sizeof(*task));
  726. setup_timer(&task->tk_timer, (void (*)(unsigned long))rpc_run_timer,
  727. (unsigned long)task);
  728. atomic_set(&task->tk_count, 1);
  729. task->tk_flags = task_setup_data->flags;
  730. task->tk_ops = task_setup_data->callback_ops;
  731. task->tk_calldata = task_setup_data->callback_data;
  732. INIT_LIST_HEAD(&task->tk_task);
  733. /* Initialize retry counters */
  734. task->tk_garb_retry = 2;
  735. task->tk_cred_retry = 2;
  736. task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
  737. task->tk_owner = current->tgid;
  738. /* Initialize workqueue for async tasks */
  739. task->tk_workqueue = rpciod_workqueue;
  740. task->tk_client = task_setup_data->rpc_client;
  741. if (task->tk_client != NULL) {
  742. kref_get(&task->tk_client->cl_kref);
  743. if (task->tk_client->cl_softrtry)
  744. task->tk_flags |= RPC_TASK_SOFT;
  745. if (!task->tk_client->cl_intr)
  746. task->tk_flags |= RPC_TASK_NOINTR;
  747. }
  748. if (task->tk_ops->rpc_call_prepare != NULL)
  749. task->tk_action = rpc_prepare_task;
  750. if (task_setup_data->rpc_message != NULL) {
  751. memcpy(&task->tk_msg, task_setup_data->rpc_message, sizeof(task->tk_msg));
  752. /* Bind the user cred */
  753. if (task->tk_msg.rpc_cred != NULL)
  754. rpcauth_holdcred(task);
  755. else
  756. rpcauth_bindcred(task);
  757. if (task->tk_action == NULL)
  758. rpc_call_start(task);
  759. }
  760. /* starting timestamp */
  761. task->tk_start = jiffies;
  762. dprintk("RPC: new task initialized, procpid %u\n",
  763. task_pid_nr(current));
  764. }
  765. static struct rpc_task *
  766. rpc_alloc_task(void)
  767. {
  768. return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
  769. }
  770. static void rpc_free_task(struct rcu_head *rcu)
  771. {
  772. struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
  773. dprintk("RPC: %5u freeing task\n", task->tk_pid);
  774. mempool_free(task, rpc_task_mempool);
  775. }
  776. /*
  777. * Create a new task for the specified client.
  778. */
  779. struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
  780. {
  781. struct rpc_task *task = setup_data->task;
  782. unsigned short flags = 0;
  783. if (task == NULL) {
  784. task = rpc_alloc_task();
  785. if (task == NULL)
  786. goto out;
  787. flags = RPC_TASK_DYNAMIC;
  788. }
  789. rpc_init_task(task, setup_data);
  790. task->tk_flags |= flags;
  791. dprintk("RPC: allocated task %p\n", task);
  792. out:
  793. return task;
  794. }
  795. void rpc_put_task(struct rpc_task *task)
  796. {
  797. const struct rpc_call_ops *tk_ops = task->tk_ops;
  798. void *calldata = task->tk_calldata;
  799. if (!atomic_dec_and_test(&task->tk_count))
  800. return;
  801. /* Release resources */
  802. if (task->tk_rqstp)
  803. xprt_release(task);
  804. if (task->tk_msg.rpc_cred)
  805. rpcauth_unbindcred(task);
  806. if (task->tk_client) {
  807. rpc_release_client(task->tk_client);
  808. task->tk_client = NULL;
  809. }
  810. if (task->tk_flags & RPC_TASK_DYNAMIC)
  811. call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
  812. rpc_release_calldata(tk_ops, calldata);
  813. }
  814. EXPORT_SYMBOL_GPL(rpc_put_task);
  815. static void rpc_release_task(struct rpc_task *task)
  816. {
  817. #ifdef RPC_DEBUG
  818. BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
  819. #endif
  820. dprintk("RPC: %5u release task\n", task->tk_pid);
  821. if (!list_empty(&task->tk_task)) {
  822. struct rpc_clnt *clnt = task->tk_client;
  823. /* Remove from client task list */
  824. spin_lock(&clnt->cl_lock);
  825. list_del(&task->tk_task);
  826. spin_unlock(&clnt->cl_lock);
  827. }
  828. BUG_ON (RPC_IS_QUEUED(task));
  829. /* Synchronously delete any running timer */
  830. rpc_delete_timer(task);
  831. #ifdef RPC_DEBUG
  832. task->tk_magic = 0;
  833. #endif
  834. /* Wake up anyone who is waiting for task completion */
  835. rpc_mark_complete_task(task);
  836. rpc_put_task(task);
  837. }
  838. /*
  839. * Kill all tasks for the given client.
  840. * XXX: kill their descendants as well?
  841. */
  842. void rpc_killall_tasks(struct rpc_clnt *clnt)
  843. {
  844. struct rpc_task *rovr;
  845. if (list_empty(&clnt->cl_tasks))
  846. return;
  847. dprintk("RPC: killing all tasks for client %p\n", clnt);
  848. /*
  849. * Spin lock all_tasks to prevent changes...
  850. */
  851. spin_lock(&clnt->cl_lock);
  852. list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
  853. if (! RPC_IS_ACTIVATED(rovr))
  854. continue;
  855. if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
  856. rovr->tk_flags |= RPC_TASK_KILLED;
  857. rpc_exit(rovr, -EIO);
  858. rpc_wake_up_task(rovr);
  859. }
  860. }
  861. spin_unlock(&clnt->cl_lock);
  862. }
  863. EXPORT_SYMBOL_GPL(rpc_killall_tasks);
  864. int rpciod_up(void)
  865. {
  866. return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
  867. }
  868. void rpciod_down(void)
  869. {
  870. module_put(THIS_MODULE);
  871. }
  872. /*
  873. * Start up the rpciod workqueue.
  874. */
  875. static int rpciod_start(void)
  876. {
  877. struct workqueue_struct *wq;
  878. /*
  879. * Create the rpciod thread and wait for it to start.
  880. */
  881. dprintk("RPC: creating workqueue rpciod\n");
  882. wq = create_workqueue("rpciod");
  883. rpciod_workqueue = wq;
  884. return rpciod_workqueue != NULL;
  885. }
  886. static void rpciod_stop(void)
  887. {
  888. struct workqueue_struct *wq = NULL;
  889. if (rpciod_workqueue == NULL)
  890. return;
  891. dprintk("RPC: destroying workqueue rpciod\n");
  892. wq = rpciod_workqueue;
  893. rpciod_workqueue = NULL;
  894. destroy_workqueue(wq);
  895. }
  896. void
  897. rpc_destroy_mempool(void)
  898. {
  899. rpciod_stop();
  900. if (rpc_buffer_mempool)
  901. mempool_destroy(rpc_buffer_mempool);
  902. if (rpc_task_mempool)
  903. mempool_destroy(rpc_task_mempool);
  904. if (rpc_task_slabp)
  905. kmem_cache_destroy(rpc_task_slabp);
  906. if (rpc_buffer_slabp)
  907. kmem_cache_destroy(rpc_buffer_slabp);
  908. }
  909. int
  910. rpc_init_mempool(void)
  911. {
  912. rpc_task_slabp = kmem_cache_create("rpc_tasks",
  913. sizeof(struct rpc_task),
  914. 0, SLAB_HWCACHE_ALIGN,
  915. NULL);
  916. if (!rpc_task_slabp)
  917. goto err_nomem;
  918. rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
  919. RPC_BUFFER_MAXSIZE,
  920. 0, SLAB_HWCACHE_ALIGN,
  921. NULL);
  922. if (!rpc_buffer_slabp)
  923. goto err_nomem;
  924. rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
  925. rpc_task_slabp);
  926. if (!rpc_task_mempool)
  927. goto err_nomem;
  928. rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
  929. rpc_buffer_slabp);
  930. if (!rpc_buffer_mempool)
  931. goto err_nomem;
  932. if (!rpciod_start())
  933. goto err_nomem;
  934. /*
  935. * The following is not strictly a mempool initialisation,
  936. * but there is no harm in doing it here
  937. */
  938. rpc_init_wait_queue(&delay_queue, "delayq");
  939. return 0;
  940. err_nomem:
  941. rpc_destroy_mempool();
  942. return -ENOMEM;
  943. }