raid1.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include <linux/slab.h>
  34. #include <linux/delay.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/ratelimit.h>
  38. #include "md.h"
  39. #include "raid1.h"
  40. #include "bitmap.h"
  41. /*
  42. * Number of guaranteed r1bios in case of extreme VM load:
  43. */
  44. #define NR_RAID1_BIOS 256
  45. static void allow_barrier(struct r1conf *conf);
  46. static void lower_barrier(struct r1conf *conf);
  47. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  48. {
  49. struct pool_info *pi = data;
  50. int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  51. /* allocate a r1bio with room for raid_disks entries in the bios array */
  52. return kzalloc(size, gfp_flags);
  53. }
  54. static void r1bio_pool_free(void *r1_bio, void *data)
  55. {
  56. kfree(r1_bio);
  57. }
  58. #define RESYNC_BLOCK_SIZE (64*1024)
  59. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  60. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  61. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  62. #define RESYNC_WINDOW (2048*1024)
  63. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  64. {
  65. struct pool_info *pi = data;
  66. struct page *page;
  67. struct r1bio *r1_bio;
  68. struct bio *bio;
  69. int i, j;
  70. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  71. if (!r1_bio)
  72. return NULL;
  73. /*
  74. * Allocate bios : 1 for reading, n-1 for writing
  75. */
  76. for (j = pi->raid_disks ; j-- ; ) {
  77. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  78. if (!bio)
  79. goto out_free_bio;
  80. r1_bio->bios[j] = bio;
  81. }
  82. /*
  83. * Allocate RESYNC_PAGES data pages and attach them to
  84. * the first bio.
  85. * If this is a user-requested check/repair, allocate
  86. * RESYNC_PAGES for each bio.
  87. */
  88. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  89. j = pi->raid_disks;
  90. else
  91. j = 1;
  92. while(j--) {
  93. bio = r1_bio->bios[j];
  94. for (i = 0; i < RESYNC_PAGES; i++) {
  95. page = alloc_page(gfp_flags);
  96. if (unlikely(!page))
  97. goto out_free_pages;
  98. bio->bi_io_vec[i].bv_page = page;
  99. bio->bi_vcnt = i+1;
  100. }
  101. }
  102. /* If not user-requests, copy the page pointers to all bios */
  103. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  104. for (i=0; i<RESYNC_PAGES ; i++)
  105. for (j=1; j<pi->raid_disks; j++)
  106. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  107. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  108. }
  109. r1_bio->master_bio = NULL;
  110. return r1_bio;
  111. out_free_pages:
  112. for (j=0 ; j < pi->raid_disks; j++)
  113. for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
  114. put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  115. j = -1;
  116. out_free_bio:
  117. while ( ++j < pi->raid_disks )
  118. bio_put(r1_bio->bios[j]);
  119. r1bio_pool_free(r1_bio, data);
  120. return NULL;
  121. }
  122. static void r1buf_pool_free(void *__r1_bio, void *data)
  123. {
  124. struct pool_info *pi = data;
  125. int i,j;
  126. struct r1bio *r1bio = __r1_bio;
  127. for (i = 0; i < RESYNC_PAGES; i++)
  128. for (j = pi->raid_disks; j-- ;) {
  129. if (j == 0 ||
  130. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  131. r1bio->bios[0]->bi_io_vec[i].bv_page)
  132. safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  133. }
  134. for (i=0 ; i < pi->raid_disks; i++)
  135. bio_put(r1bio->bios[i]);
  136. r1bio_pool_free(r1bio, data);
  137. }
  138. static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
  139. {
  140. int i;
  141. for (i = 0; i < conf->raid_disks; i++) {
  142. struct bio **bio = r1_bio->bios + i;
  143. if (!BIO_SPECIAL(*bio))
  144. bio_put(*bio);
  145. *bio = NULL;
  146. }
  147. }
  148. static void free_r1bio(struct r1bio *r1_bio)
  149. {
  150. struct r1conf *conf = r1_bio->mddev->private;
  151. put_all_bios(conf, r1_bio);
  152. mempool_free(r1_bio, conf->r1bio_pool);
  153. }
  154. static void put_buf(struct r1bio *r1_bio)
  155. {
  156. struct r1conf *conf = r1_bio->mddev->private;
  157. int i;
  158. for (i=0; i<conf->raid_disks; i++) {
  159. struct bio *bio = r1_bio->bios[i];
  160. if (bio->bi_end_io)
  161. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  162. }
  163. mempool_free(r1_bio, conf->r1buf_pool);
  164. lower_barrier(conf);
  165. }
  166. static void reschedule_retry(struct r1bio *r1_bio)
  167. {
  168. unsigned long flags;
  169. struct mddev *mddev = r1_bio->mddev;
  170. struct r1conf *conf = mddev->private;
  171. spin_lock_irqsave(&conf->device_lock, flags);
  172. list_add(&r1_bio->retry_list, &conf->retry_list);
  173. conf->nr_queued ++;
  174. spin_unlock_irqrestore(&conf->device_lock, flags);
  175. wake_up(&conf->wait_barrier);
  176. md_wakeup_thread(mddev->thread);
  177. }
  178. /*
  179. * raid_end_bio_io() is called when we have finished servicing a mirrored
  180. * operation and are ready to return a success/failure code to the buffer
  181. * cache layer.
  182. */
  183. static void call_bio_endio(struct r1bio *r1_bio)
  184. {
  185. struct bio *bio = r1_bio->master_bio;
  186. int done;
  187. struct r1conf *conf = r1_bio->mddev->private;
  188. if (bio->bi_phys_segments) {
  189. unsigned long flags;
  190. spin_lock_irqsave(&conf->device_lock, flags);
  191. bio->bi_phys_segments--;
  192. done = (bio->bi_phys_segments == 0);
  193. spin_unlock_irqrestore(&conf->device_lock, flags);
  194. } else
  195. done = 1;
  196. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  197. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  198. if (done) {
  199. bio_endio(bio, 0);
  200. /*
  201. * Wake up any possible resync thread that waits for the device
  202. * to go idle.
  203. */
  204. allow_barrier(conf);
  205. }
  206. }
  207. static void raid_end_bio_io(struct r1bio *r1_bio)
  208. {
  209. struct bio *bio = r1_bio->master_bio;
  210. /* if nobody has done the final endio yet, do it now */
  211. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  212. pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
  213. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  214. (unsigned long long) bio->bi_sector,
  215. (unsigned long long) bio->bi_sector +
  216. (bio->bi_size >> 9) - 1);
  217. call_bio_endio(r1_bio);
  218. }
  219. free_r1bio(r1_bio);
  220. }
  221. /*
  222. * Update disk head position estimator based on IRQ completion info.
  223. */
  224. static inline void update_head_pos(int disk, struct r1bio *r1_bio)
  225. {
  226. struct r1conf *conf = r1_bio->mddev->private;
  227. conf->mirrors[disk].head_position =
  228. r1_bio->sector + (r1_bio->sectors);
  229. }
  230. /*
  231. * Find the disk number which triggered given bio
  232. */
  233. static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
  234. {
  235. int mirror;
  236. int raid_disks = r1_bio->mddev->raid_disks;
  237. for (mirror = 0; mirror < raid_disks; mirror++)
  238. if (r1_bio->bios[mirror] == bio)
  239. break;
  240. BUG_ON(mirror == raid_disks);
  241. update_head_pos(mirror, r1_bio);
  242. return mirror;
  243. }
  244. static void raid1_end_read_request(struct bio *bio, int error)
  245. {
  246. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  247. struct r1bio *r1_bio = bio->bi_private;
  248. int mirror;
  249. struct r1conf *conf = r1_bio->mddev->private;
  250. mirror = r1_bio->read_disk;
  251. /*
  252. * this branch is our 'one mirror IO has finished' event handler:
  253. */
  254. update_head_pos(mirror, r1_bio);
  255. if (uptodate)
  256. set_bit(R1BIO_Uptodate, &r1_bio->state);
  257. else {
  258. /* If all other devices have failed, we want to return
  259. * the error upwards rather than fail the last device.
  260. * Here we redefine "uptodate" to mean "Don't want to retry"
  261. */
  262. unsigned long flags;
  263. spin_lock_irqsave(&conf->device_lock, flags);
  264. if (r1_bio->mddev->degraded == conf->raid_disks ||
  265. (r1_bio->mddev->degraded == conf->raid_disks-1 &&
  266. !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
  267. uptodate = 1;
  268. spin_unlock_irqrestore(&conf->device_lock, flags);
  269. }
  270. if (uptodate)
  271. raid_end_bio_io(r1_bio);
  272. else {
  273. /*
  274. * oops, read error:
  275. */
  276. char b[BDEVNAME_SIZE];
  277. printk_ratelimited(
  278. KERN_ERR "md/raid1:%s: %s: "
  279. "rescheduling sector %llu\n",
  280. mdname(conf->mddev),
  281. bdevname(conf->mirrors[mirror].rdev->bdev,
  282. b),
  283. (unsigned long long)r1_bio->sector);
  284. set_bit(R1BIO_ReadError, &r1_bio->state);
  285. reschedule_retry(r1_bio);
  286. }
  287. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  288. }
  289. static void close_write(struct r1bio *r1_bio)
  290. {
  291. /* it really is the end of this request */
  292. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  293. /* free extra copy of the data pages */
  294. int i = r1_bio->behind_page_count;
  295. while (i--)
  296. safe_put_page(r1_bio->behind_bvecs[i].bv_page);
  297. kfree(r1_bio->behind_bvecs);
  298. r1_bio->behind_bvecs = NULL;
  299. }
  300. /* clear the bitmap if all writes complete successfully */
  301. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  302. r1_bio->sectors,
  303. !test_bit(R1BIO_Degraded, &r1_bio->state),
  304. test_bit(R1BIO_BehindIO, &r1_bio->state));
  305. md_write_end(r1_bio->mddev);
  306. }
  307. static void r1_bio_write_done(struct r1bio *r1_bio)
  308. {
  309. if (!atomic_dec_and_test(&r1_bio->remaining))
  310. return;
  311. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  312. reschedule_retry(r1_bio);
  313. else {
  314. close_write(r1_bio);
  315. if (test_bit(R1BIO_MadeGood, &r1_bio->state))
  316. reschedule_retry(r1_bio);
  317. else
  318. raid_end_bio_io(r1_bio);
  319. }
  320. }
  321. static void raid1_end_write_request(struct bio *bio, int error)
  322. {
  323. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  324. struct r1bio *r1_bio = bio->bi_private;
  325. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  326. struct r1conf *conf = r1_bio->mddev->private;
  327. struct bio *to_put = NULL;
  328. mirror = find_bio_disk(r1_bio, bio);
  329. /*
  330. * 'one mirror IO has finished' event handler:
  331. */
  332. if (!uptodate) {
  333. set_bit(WriteErrorSeen,
  334. &conf->mirrors[mirror].rdev->flags);
  335. set_bit(R1BIO_WriteError, &r1_bio->state);
  336. } else {
  337. /*
  338. * Set R1BIO_Uptodate in our master bio, so that we
  339. * will return a good error code for to the higher
  340. * levels even if IO on some other mirrored buffer
  341. * fails.
  342. *
  343. * The 'master' represents the composite IO operation
  344. * to user-side. So if something waits for IO, then it
  345. * will wait for the 'master' bio.
  346. */
  347. sector_t first_bad;
  348. int bad_sectors;
  349. r1_bio->bios[mirror] = NULL;
  350. to_put = bio;
  351. set_bit(R1BIO_Uptodate, &r1_bio->state);
  352. /* Maybe we can clear some bad blocks. */
  353. if (is_badblock(conf->mirrors[mirror].rdev,
  354. r1_bio->sector, r1_bio->sectors,
  355. &first_bad, &bad_sectors)) {
  356. r1_bio->bios[mirror] = IO_MADE_GOOD;
  357. set_bit(R1BIO_MadeGood, &r1_bio->state);
  358. }
  359. }
  360. if (behind) {
  361. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  362. atomic_dec(&r1_bio->behind_remaining);
  363. /*
  364. * In behind mode, we ACK the master bio once the I/O
  365. * has safely reached all non-writemostly
  366. * disks. Setting the Returned bit ensures that this
  367. * gets done only once -- we don't ever want to return
  368. * -EIO here, instead we'll wait
  369. */
  370. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  371. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  372. /* Maybe we can return now */
  373. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  374. struct bio *mbio = r1_bio->master_bio;
  375. pr_debug("raid1: behind end write sectors"
  376. " %llu-%llu\n",
  377. (unsigned long long) mbio->bi_sector,
  378. (unsigned long long) mbio->bi_sector +
  379. (mbio->bi_size >> 9) - 1);
  380. call_bio_endio(r1_bio);
  381. }
  382. }
  383. }
  384. if (r1_bio->bios[mirror] == NULL)
  385. rdev_dec_pending(conf->mirrors[mirror].rdev,
  386. conf->mddev);
  387. /*
  388. * Let's see if all mirrored write operations have finished
  389. * already.
  390. */
  391. r1_bio_write_done(r1_bio);
  392. if (to_put)
  393. bio_put(to_put);
  394. }
  395. /*
  396. * This routine returns the disk from which the requested read should
  397. * be done. There is a per-array 'next expected sequential IO' sector
  398. * number - if this matches on the next IO then we use the last disk.
  399. * There is also a per-disk 'last know head position' sector that is
  400. * maintained from IRQ contexts, both the normal and the resync IO
  401. * completion handlers update this position correctly. If there is no
  402. * perfect sequential match then we pick the disk whose head is closest.
  403. *
  404. * If there are 2 mirrors in the same 2 devices, performance degrades
  405. * because position is mirror, not device based.
  406. *
  407. * The rdev for the device selected will have nr_pending incremented.
  408. */
  409. static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
  410. {
  411. const sector_t this_sector = r1_bio->sector;
  412. int sectors;
  413. int best_good_sectors;
  414. int start_disk;
  415. int best_disk;
  416. int i;
  417. sector_t best_dist;
  418. struct md_rdev *rdev;
  419. int choose_first;
  420. rcu_read_lock();
  421. /*
  422. * Check if we can balance. We can balance on the whole
  423. * device if no resync is going on, or below the resync window.
  424. * We take the first readable disk when above the resync window.
  425. */
  426. retry:
  427. sectors = r1_bio->sectors;
  428. best_disk = -1;
  429. best_dist = MaxSector;
  430. best_good_sectors = 0;
  431. if (conf->mddev->recovery_cp < MaxSector &&
  432. (this_sector + sectors >= conf->next_resync)) {
  433. choose_first = 1;
  434. start_disk = 0;
  435. } else {
  436. choose_first = 0;
  437. start_disk = conf->last_used;
  438. }
  439. for (i = 0 ; i < conf->raid_disks ; i++) {
  440. sector_t dist;
  441. sector_t first_bad;
  442. int bad_sectors;
  443. int disk = start_disk + i;
  444. if (disk >= conf->raid_disks)
  445. disk -= conf->raid_disks;
  446. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  447. if (r1_bio->bios[disk] == IO_BLOCKED
  448. || rdev == NULL
  449. || test_bit(Faulty, &rdev->flags))
  450. continue;
  451. if (!test_bit(In_sync, &rdev->flags) &&
  452. rdev->recovery_offset < this_sector + sectors)
  453. continue;
  454. if (test_bit(WriteMostly, &rdev->flags)) {
  455. /* Don't balance among write-mostly, just
  456. * use the first as a last resort */
  457. if (best_disk < 0)
  458. best_disk = disk;
  459. continue;
  460. }
  461. /* This is a reasonable device to use. It might
  462. * even be best.
  463. */
  464. if (is_badblock(rdev, this_sector, sectors,
  465. &first_bad, &bad_sectors)) {
  466. if (best_dist < MaxSector)
  467. /* already have a better device */
  468. continue;
  469. if (first_bad <= this_sector) {
  470. /* cannot read here. If this is the 'primary'
  471. * device, then we must not read beyond
  472. * bad_sectors from another device..
  473. */
  474. bad_sectors -= (this_sector - first_bad);
  475. if (choose_first && sectors > bad_sectors)
  476. sectors = bad_sectors;
  477. if (best_good_sectors > sectors)
  478. best_good_sectors = sectors;
  479. } else {
  480. sector_t good_sectors = first_bad - this_sector;
  481. if (good_sectors > best_good_sectors) {
  482. best_good_sectors = good_sectors;
  483. best_disk = disk;
  484. }
  485. if (choose_first)
  486. break;
  487. }
  488. continue;
  489. } else
  490. best_good_sectors = sectors;
  491. dist = abs(this_sector - conf->mirrors[disk].head_position);
  492. if (choose_first
  493. /* Don't change to another disk for sequential reads */
  494. || conf->next_seq_sect == this_sector
  495. || dist == 0
  496. /* If device is idle, use it */
  497. || atomic_read(&rdev->nr_pending) == 0) {
  498. best_disk = disk;
  499. break;
  500. }
  501. if (dist < best_dist) {
  502. best_dist = dist;
  503. best_disk = disk;
  504. }
  505. }
  506. if (best_disk >= 0) {
  507. rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
  508. if (!rdev)
  509. goto retry;
  510. atomic_inc(&rdev->nr_pending);
  511. if (test_bit(Faulty, &rdev->flags)) {
  512. /* cannot risk returning a device that failed
  513. * before we inc'ed nr_pending
  514. */
  515. rdev_dec_pending(rdev, conf->mddev);
  516. goto retry;
  517. }
  518. sectors = best_good_sectors;
  519. conf->next_seq_sect = this_sector + sectors;
  520. conf->last_used = best_disk;
  521. }
  522. rcu_read_unlock();
  523. *max_sectors = sectors;
  524. return best_disk;
  525. }
  526. int md_raid1_congested(struct mddev *mddev, int bits)
  527. {
  528. struct r1conf *conf = mddev->private;
  529. int i, ret = 0;
  530. rcu_read_lock();
  531. for (i = 0; i < mddev->raid_disks; i++) {
  532. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  533. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  534. struct request_queue *q = bdev_get_queue(rdev->bdev);
  535. BUG_ON(!q);
  536. /* Note the '|| 1' - when read_balance prefers
  537. * non-congested targets, it can be removed
  538. */
  539. if ((bits & (1<<BDI_async_congested)) || 1)
  540. ret |= bdi_congested(&q->backing_dev_info, bits);
  541. else
  542. ret &= bdi_congested(&q->backing_dev_info, bits);
  543. }
  544. }
  545. rcu_read_unlock();
  546. return ret;
  547. }
  548. EXPORT_SYMBOL_GPL(md_raid1_congested);
  549. static int raid1_congested(void *data, int bits)
  550. {
  551. struct mddev *mddev = data;
  552. return mddev_congested(mddev, bits) ||
  553. md_raid1_congested(mddev, bits);
  554. }
  555. static void flush_pending_writes(struct r1conf *conf)
  556. {
  557. /* Any writes that have been queued but are awaiting
  558. * bitmap updates get flushed here.
  559. */
  560. spin_lock_irq(&conf->device_lock);
  561. if (conf->pending_bio_list.head) {
  562. struct bio *bio;
  563. bio = bio_list_get(&conf->pending_bio_list);
  564. spin_unlock_irq(&conf->device_lock);
  565. /* flush any pending bitmap writes to
  566. * disk before proceeding w/ I/O */
  567. bitmap_unplug(conf->mddev->bitmap);
  568. while (bio) { /* submit pending writes */
  569. struct bio *next = bio->bi_next;
  570. bio->bi_next = NULL;
  571. generic_make_request(bio);
  572. bio = next;
  573. }
  574. } else
  575. spin_unlock_irq(&conf->device_lock);
  576. }
  577. /* Barriers....
  578. * Sometimes we need to suspend IO while we do something else,
  579. * either some resync/recovery, or reconfigure the array.
  580. * To do this we raise a 'barrier'.
  581. * The 'barrier' is a counter that can be raised multiple times
  582. * to count how many activities are happening which preclude
  583. * normal IO.
  584. * We can only raise the barrier if there is no pending IO.
  585. * i.e. if nr_pending == 0.
  586. * We choose only to raise the barrier if no-one is waiting for the
  587. * barrier to go down. This means that as soon as an IO request
  588. * is ready, no other operations which require a barrier will start
  589. * until the IO request has had a chance.
  590. *
  591. * So: regular IO calls 'wait_barrier'. When that returns there
  592. * is no backgroup IO happening, It must arrange to call
  593. * allow_barrier when it has finished its IO.
  594. * backgroup IO calls must call raise_barrier. Once that returns
  595. * there is no normal IO happeing. It must arrange to call
  596. * lower_barrier when the particular background IO completes.
  597. */
  598. #define RESYNC_DEPTH 32
  599. static void raise_barrier(struct r1conf *conf)
  600. {
  601. spin_lock_irq(&conf->resync_lock);
  602. /* Wait until no block IO is waiting */
  603. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  604. conf->resync_lock, );
  605. /* block any new IO from starting */
  606. conf->barrier++;
  607. /* Now wait for all pending IO to complete */
  608. wait_event_lock_irq(conf->wait_barrier,
  609. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  610. conf->resync_lock, );
  611. spin_unlock_irq(&conf->resync_lock);
  612. }
  613. static void lower_barrier(struct r1conf *conf)
  614. {
  615. unsigned long flags;
  616. BUG_ON(conf->barrier <= 0);
  617. spin_lock_irqsave(&conf->resync_lock, flags);
  618. conf->barrier--;
  619. spin_unlock_irqrestore(&conf->resync_lock, flags);
  620. wake_up(&conf->wait_barrier);
  621. }
  622. static void wait_barrier(struct r1conf *conf)
  623. {
  624. spin_lock_irq(&conf->resync_lock);
  625. if (conf->barrier) {
  626. conf->nr_waiting++;
  627. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  628. conf->resync_lock,
  629. );
  630. conf->nr_waiting--;
  631. }
  632. conf->nr_pending++;
  633. spin_unlock_irq(&conf->resync_lock);
  634. }
  635. static void allow_barrier(struct r1conf *conf)
  636. {
  637. unsigned long flags;
  638. spin_lock_irqsave(&conf->resync_lock, flags);
  639. conf->nr_pending--;
  640. spin_unlock_irqrestore(&conf->resync_lock, flags);
  641. wake_up(&conf->wait_barrier);
  642. }
  643. static void freeze_array(struct r1conf *conf)
  644. {
  645. /* stop syncio and normal IO and wait for everything to
  646. * go quite.
  647. * We increment barrier and nr_waiting, and then
  648. * wait until nr_pending match nr_queued+1
  649. * This is called in the context of one normal IO request
  650. * that has failed. Thus any sync request that might be pending
  651. * will be blocked by nr_pending, and we need to wait for
  652. * pending IO requests to complete or be queued for re-try.
  653. * Thus the number queued (nr_queued) plus this request (1)
  654. * must match the number of pending IOs (nr_pending) before
  655. * we continue.
  656. */
  657. spin_lock_irq(&conf->resync_lock);
  658. conf->barrier++;
  659. conf->nr_waiting++;
  660. wait_event_lock_irq(conf->wait_barrier,
  661. conf->nr_pending == conf->nr_queued+1,
  662. conf->resync_lock,
  663. flush_pending_writes(conf));
  664. spin_unlock_irq(&conf->resync_lock);
  665. }
  666. static void unfreeze_array(struct r1conf *conf)
  667. {
  668. /* reverse the effect of the freeze */
  669. spin_lock_irq(&conf->resync_lock);
  670. conf->barrier--;
  671. conf->nr_waiting--;
  672. wake_up(&conf->wait_barrier);
  673. spin_unlock_irq(&conf->resync_lock);
  674. }
  675. /* duplicate the data pages for behind I/O
  676. */
  677. static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
  678. {
  679. int i;
  680. struct bio_vec *bvec;
  681. struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
  682. GFP_NOIO);
  683. if (unlikely(!bvecs))
  684. return;
  685. bio_for_each_segment(bvec, bio, i) {
  686. bvecs[i] = *bvec;
  687. bvecs[i].bv_page = alloc_page(GFP_NOIO);
  688. if (unlikely(!bvecs[i].bv_page))
  689. goto do_sync_io;
  690. memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
  691. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  692. kunmap(bvecs[i].bv_page);
  693. kunmap(bvec->bv_page);
  694. }
  695. r1_bio->behind_bvecs = bvecs;
  696. r1_bio->behind_page_count = bio->bi_vcnt;
  697. set_bit(R1BIO_BehindIO, &r1_bio->state);
  698. return;
  699. do_sync_io:
  700. for (i = 0; i < bio->bi_vcnt; i++)
  701. if (bvecs[i].bv_page)
  702. put_page(bvecs[i].bv_page);
  703. kfree(bvecs);
  704. pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  705. }
  706. static int make_request(struct mddev *mddev, struct bio * bio)
  707. {
  708. struct r1conf *conf = mddev->private;
  709. struct mirror_info *mirror;
  710. struct r1bio *r1_bio;
  711. struct bio *read_bio;
  712. int i, disks;
  713. struct bitmap *bitmap;
  714. unsigned long flags;
  715. const int rw = bio_data_dir(bio);
  716. const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
  717. const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
  718. struct md_rdev *blocked_rdev;
  719. int plugged;
  720. int first_clone;
  721. int sectors_handled;
  722. int max_sectors;
  723. /*
  724. * Register the new request and wait if the reconstruction
  725. * thread has put up a bar for new requests.
  726. * Continue immediately if no resync is active currently.
  727. */
  728. md_write_start(mddev, bio); /* wait on superblock update early */
  729. if (bio_data_dir(bio) == WRITE &&
  730. bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
  731. bio->bi_sector < mddev->suspend_hi) {
  732. /* As the suspend_* range is controlled by
  733. * userspace, we want an interruptible
  734. * wait.
  735. */
  736. DEFINE_WAIT(w);
  737. for (;;) {
  738. flush_signals(current);
  739. prepare_to_wait(&conf->wait_barrier,
  740. &w, TASK_INTERRUPTIBLE);
  741. if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
  742. bio->bi_sector >= mddev->suspend_hi)
  743. break;
  744. schedule();
  745. }
  746. finish_wait(&conf->wait_barrier, &w);
  747. }
  748. wait_barrier(conf);
  749. bitmap = mddev->bitmap;
  750. /*
  751. * make_request() can abort the operation when READA is being
  752. * used and no empty request is available.
  753. *
  754. */
  755. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  756. r1_bio->master_bio = bio;
  757. r1_bio->sectors = bio->bi_size >> 9;
  758. r1_bio->state = 0;
  759. r1_bio->mddev = mddev;
  760. r1_bio->sector = bio->bi_sector;
  761. /* We might need to issue multiple reads to different
  762. * devices if there are bad blocks around, so we keep
  763. * track of the number of reads in bio->bi_phys_segments.
  764. * If this is 0, there is only one r1_bio and no locking
  765. * will be needed when requests complete. If it is
  766. * non-zero, then it is the number of not-completed requests.
  767. */
  768. bio->bi_phys_segments = 0;
  769. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  770. if (rw == READ) {
  771. /*
  772. * read balancing logic:
  773. */
  774. int rdisk;
  775. read_again:
  776. rdisk = read_balance(conf, r1_bio, &max_sectors);
  777. if (rdisk < 0) {
  778. /* couldn't find anywhere to read from */
  779. raid_end_bio_io(r1_bio);
  780. return 0;
  781. }
  782. mirror = conf->mirrors + rdisk;
  783. if (test_bit(WriteMostly, &mirror->rdev->flags) &&
  784. bitmap) {
  785. /* Reading from a write-mostly device must
  786. * take care not to over-take any writes
  787. * that are 'behind'
  788. */
  789. wait_event(bitmap->behind_wait,
  790. atomic_read(&bitmap->behind_writes) == 0);
  791. }
  792. r1_bio->read_disk = rdisk;
  793. read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  794. md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
  795. max_sectors);
  796. r1_bio->bios[rdisk] = read_bio;
  797. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  798. read_bio->bi_bdev = mirror->rdev->bdev;
  799. read_bio->bi_end_io = raid1_end_read_request;
  800. read_bio->bi_rw = READ | do_sync;
  801. read_bio->bi_private = r1_bio;
  802. if (max_sectors < r1_bio->sectors) {
  803. /* could not read all from this device, so we will
  804. * need another r1_bio.
  805. */
  806. sectors_handled = (r1_bio->sector + max_sectors
  807. - bio->bi_sector);
  808. r1_bio->sectors = max_sectors;
  809. spin_lock_irq(&conf->device_lock);
  810. if (bio->bi_phys_segments == 0)
  811. bio->bi_phys_segments = 2;
  812. else
  813. bio->bi_phys_segments++;
  814. spin_unlock_irq(&conf->device_lock);
  815. /* Cannot call generic_make_request directly
  816. * as that will be queued in __make_request
  817. * and subsequent mempool_alloc might block waiting
  818. * for it. So hand bio over to raid1d.
  819. */
  820. reschedule_retry(r1_bio);
  821. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  822. r1_bio->master_bio = bio;
  823. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  824. r1_bio->state = 0;
  825. r1_bio->mddev = mddev;
  826. r1_bio->sector = bio->bi_sector + sectors_handled;
  827. goto read_again;
  828. } else
  829. generic_make_request(read_bio);
  830. return 0;
  831. }
  832. /*
  833. * WRITE:
  834. */
  835. /* first select target devices under rcu_lock and
  836. * inc refcount on their rdev. Record them by setting
  837. * bios[x] to bio
  838. * If there are known/acknowledged bad blocks on any device on
  839. * which we have seen a write error, we want to avoid writing those
  840. * blocks.
  841. * This potentially requires several writes to write around
  842. * the bad blocks. Each set of writes gets it's own r1bio
  843. * with a set of bios attached.
  844. */
  845. plugged = mddev_check_plugged(mddev);
  846. disks = conf->raid_disks;
  847. retry_write:
  848. blocked_rdev = NULL;
  849. rcu_read_lock();
  850. max_sectors = r1_bio->sectors;
  851. for (i = 0; i < disks; i++) {
  852. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  853. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  854. atomic_inc(&rdev->nr_pending);
  855. blocked_rdev = rdev;
  856. break;
  857. }
  858. r1_bio->bios[i] = NULL;
  859. if (!rdev || test_bit(Faulty, &rdev->flags)) {
  860. set_bit(R1BIO_Degraded, &r1_bio->state);
  861. continue;
  862. }
  863. atomic_inc(&rdev->nr_pending);
  864. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  865. sector_t first_bad;
  866. int bad_sectors;
  867. int is_bad;
  868. is_bad = is_badblock(rdev, r1_bio->sector,
  869. max_sectors,
  870. &first_bad, &bad_sectors);
  871. if (is_bad < 0) {
  872. /* mustn't write here until the bad block is
  873. * acknowledged*/
  874. set_bit(BlockedBadBlocks, &rdev->flags);
  875. blocked_rdev = rdev;
  876. break;
  877. }
  878. if (is_bad && first_bad <= r1_bio->sector) {
  879. /* Cannot write here at all */
  880. bad_sectors -= (r1_bio->sector - first_bad);
  881. if (bad_sectors < max_sectors)
  882. /* mustn't write more than bad_sectors
  883. * to other devices yet
  884. */
  885. max_sectors = bad_sectors;
  886. rdev_dec_pending(rdev, mddev);
  887. /* We don't set R1BIO_Degraded as that
  888. * only applies if the disk is
  889. * missing, so it might be re-added,
  890. * and we want to know to recover this
  891. * chunk.
  892. * In this case the device is here,
  893. * and the fact that this chunk is not
  894. * in-sync is recorded in the bad
  895. * block log
  896. */
  897. continue;
  898. }
  899. if (is_bad) {
  900. int good_sectors = first_bad - r1_bio->sector;
  901. if (good_sectors < max_sectors)
  902. max_sectors = good_sectors;
  903. }
  904. }
  905. r1_bio->bios[i] = bio;
  906. }
  907. rcu_read_unlock();
  908. if (unlikely(blocked_rdev)) {
  909. /* Wait for this device to become unblocked */
  910. int j;
  911. for (j = 0; j < i; j++)
  912. if (r1_bio->bios[j])
  913. rdev_dec_pending(conf->mirrors[j].rdev, mddev);
  914. r1_bio->state = 0;
  915. allow_barrier(conf);
  916. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  917. wait_barrier(conf);
  918. goto retry_write;
  919. }
  920. if (max_sectors < r1_bio->sectors) {
  921. /* We are splitting this write into multiple parts, so
  922. * we need to prepare for allocating another r1_bio.
  923. */
  924. r1_bio->sectors = max_sectors;
  925. spin_lock_irq(&conf->device_lock);
  926. if (bio->bi_phys_segments == 0)
  927. bio->bi_phys_segments = 2;
  928. else
  929. bio->bi_phys_segments++;
  930. spin_unlock_irq(&conf->device_lock);
  931. }
  932. sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
  933. atomic_set(&r1_bio->remaining, 1);
  934. atomic_set(&r1_bio->behind_remaining, 0);
  935. first_clone = 1;
  936. for (i = 0; i < disks; i++) {
  937. struct bio *mbio;
  938. if (!r1_bio->bios[i])
  939. continue;
  940. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  941. md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
  942. if (first_clone) {
  943. /* do behind I/O ?
  944. * Not if there are too many, or cannot
  945. * allocate memory, or a reader on WriteMostly
  946. * is waiting for behind writes to flush */
  947. if (bitmap &&
  948. (atomic_read(&bitmap->behind_writes)
  949. < mddev->bitmap_info.max_write_behind) &&
  950. !waitqueue_active(&bitmap->behind_wait))
  951. alloc_behind_pages(mbio, r1_bio);
  952. bitmap_startwrite(bitmap, r1_bio->sector,
  953. r1_bio->sectors,
  954. test_bit(R1BIO_BehindIO,
  955. &r1_bio->state));
  956. first_clone = 0;
  957. }
  958. if (r1_bio->behind_bvecs) {
  959. struct bio_vec *bvec;
  960. int j;
  961. /* Yes, I really want the '__' version so that
  962. * we clear any unused pointer in the io_vec, rather
  963. * than leave them unchanged. This is important
  964. * because when we come to free the pages, we won't
  965. * know the original bi_idx, so we just free
  966. * them all
  967. */
  968. __bio_for_each_segment(bvec, mbio, j, 0)
  969. bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
  970. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  971. atomic_inc(&r1_bio->behind_remaining);
  972. }
  973. r1_bio->bios[i] = mbio;
  974. mbio->bi_sector = (r1_bio->sector +
  975. conf->mirrors[i].rdev->data_offset);
  976. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  977. mbio->bi_end_io = raid1_end_write_request;
  978. mbio->bi_rw = WRITE | do_flush_fua | do_sync;
  979. mbio->bi_private = r1_bio;
  980. atomic_inc(&r1_bio->remaining);
  981. spin_lock_irqsave(&conf->device_lock, flags);
  982. bio_list_add(&conf->pending_bio_list, mbio);
  983. spin_unlock_irqrestore(&conf->device_lock, flags);
  984. }
  985. /* Mustn't call r1_bio_write_done before this next test,
  986. * as it could result in the bio being freed.
  987. */
  988. if (sectors_handled < (bio->bi_size >> 9)) {
  989. r1_bio_write_done(r1_bio);
  990. /* We need another r1_bio. It has already been counted
  991. * in bio->bi_phys_segments
  992. */
  993. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  994. r1_bio->master_bio = bio;
  995. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  996. r1_bio->state = 0;
  997. r1_bio->mddev = mddev;
  998. r1_bio->sector = bio->bi_sector + sectors_handled;
  999. goto retry_write;
  1000. }
  1001. r1_bio_write_done(r1_bio);
  1002. /* In case raid1d snuck in to freeze_array */
  1003. wake_up(&conf->wait_barrier);
  1004. if (do_sync || !bitmap || !plugged)
  1005. md_wakeup_thread(mddev->thread);
  1006. return 0;
  1007. }
  1008. static void status(struct seq_file *seq, struct mddev *mddev)
  1009. {
  1010. struct r1conf *conf = mddev->private;
  1011. int i;
  1012. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  1013. conf->raid_disks - mddev->degraded);
  1014. rcu_read_lock();
  1015. for (i = 0; i < conf->raid_disks; i++) {
  1016. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1017. seq_printf(seq, "%s",
  1018. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  1019. }
  1020. rcu_read_unlock();
  1021. seq_printf(seq, "]");
  1022. }
  1023. static void error(struct mddev *mddev, struct md_rdev *rdev)
  1024. {
  1025. char b[BDEVNAME_SIZE];
  1026. struct r1conf *conf = mddev->private;
  1027. /*
  1028. * If it is not operational, then we have already marked it as dead
  1029. * else if it is the last working disks, ignore the error, let the
  1030. * next level up know.
  1031. * else mark the drive as failed
  1032. */
  1033. if (test_bit(In_sync, &rdev->flags)
  1034. && (conf->raid_disks - mddev->degraded) == 1) {
  1035. /*
  1036. * Don't fail the drive, act as though we were just a
  1037. * normal single drive.
  1038. * However don't try a recovery from this drive as
  1039. * it is very likely to fail.
  1040. */
  1041. conf->recovery_disabled = mddev->recovery_disabled;
  1042. return;
  1043. }
  1044. set_bit(Blocked, &rdev->flags);
  1045. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1046. unsigned long flags;
  1047. spin_lock_irqsave(&conf->device_lock, flags);
  1048. mddev->degraded++;
  1049. set_bit(Faulty, &rdev->flags);
  1050. spin_unlock_irqrestore(&conf->device_lock, flags);
  1051. /*
  1052. * if recovery is running, make sure it aborts.
  1053. */
  1054. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1055. } else
  1056. set_bit(Faulty, &rdev->flags);
  1057. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1058. printk(KERN_ALERT
  1059. "md/raid1:%s: Disk failure on %s, disabling device.\n"
  1060. "md/raid1:%s: Operation continuing on %d devices.\n",
  1061. mdname(mddev), bdevname(rdev->bdev, b),
  1062. mdname(mddev), conf->raid_disks - mddev->degraded);
  1063. }
  1064. static void print_conf(struct r1conf *conf)
  1065. {
  1066. int i;
  1067. printk(KERN_DEBUG "RAID1 conf printout:\n");
  1068. if (!conf) {
  1069. printk(KERN_DEBUG "(!conf)\n");
  1070. return;
  1071. }
  1072. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  1073. conf->raid_disks);
  1074. rcu_read_lock();
  1075. for (i = 0; i < conf->raid_disks; i++) {
  1076. char b[BDEVNAME_SIZE];
  1077. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1078. if (rdev)
  1079. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  1080. i, !test_bit(In_sync, &rdev->flags),
  1081. !test_bit(Faulty, &rdev->flags),
  1082. bdevname(rdev->bdev,b));
  1083. }
  1084. rcu_read_unlock();
  1085. }
  1086. static void close_sync(struct r1conf *conf)
  1087. {
  1088. wait_barrier(conf);
  1089. allow_barrier(conf);
  1090. mempool_destroy(conf->r1buf_pool);
  1091. conf->r1buf_pool = NULL;
  1092. }
  1093. static int raid1_spare_active(struct mddev *mddev)
  1094. {
  1095. int i;
  1096. struct r1conf *conf = mddev->private;
  1097. int count = 0;
  1098. unsigned long flags;
  1099. /*
  1100. * Find all failed disks within the RAID1 configuration
  1101. * and mark them readable.
  1102. * Called under mddev lock, so rcu protection not needed.
  1103. */
  1104. for (i = 0; i < conf->raid_disks; i++) {
  1105. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1106. if (rdev
  1107. && !test_bit(Faulty, &rdev->flags)
  1108. && !test_and_set_bit(In_sync, &rdev->flags)) {
  1109. count++;
  1110. sysfs_notify_dirent_safe(rdev->sysfs_state);
  1111. }
  1112. }
  1113. spin_lock_irqsave(&conf->device_lock, flags);
  1114. mddev->degraded -= count;
  1115. spin_unlock_irqrestore(&conf->device_lock, flags);
  1116. print_conf(conf);
  1117. return count;
  1118. }
  1119. static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
  1120. {
  1121. struct r1conf *conf = mddev->private;
  1122. int err = -EEXIST;
  1123. int mirror = 0;
  1124. struct mirror_info *p;
  1125. int first = 0;
  1126. int last = mddev->raid_disks - 1;
  1127. if (mddev->recovery_disabled == conf->recovery_disabled)
  1128. return -EBUSY;
  1129. if (rdev->raid_disk >= 0)
  1130. first = last = rdev->raid_disk;
  1131. for (mirror = first; mirror <= last; mirror++)
  1132. if ( !(p=conf->mirrors+mirror)->rdev) {
  1133. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1134. rdev->data_offset << 9);
  1135. /* as we don't honour merge_bvec_fn, we must
  1136. * never risk violating it, so limit
  1137. * ->max_segments to one lying with a single
  1138. * page, as a one page request is never in
  1139. * violation.
  1140. */
  1141. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  1142. blk_queue_max_segments(mddev->queue, 1);
  1143. blk_queue_segment_boundary(mddev->queue,
  1144. PAGE_CACHE_SIZE - 1);
  1145. }
  1146. p->head_position = 0;
  1147. rdev->raid_disk = mirror;
  1148. err = 0;
  1149. /* As all devices are equivalent, we don't need a full recovery
  1150. * if this was recently any drive of the array
  1151. */
  1152. if (rdev->saved_raid_disk < 0)
  1153. conf->fullsync = 1;
  1154. rcu_assign_pointer(p->rdev, rdev);
  1155. break;
  1156. }
  1157. md_integrity_add_rdev(rdev, mddev);
  1158. print_conf(conf);
  1159. return err;
  1160. }
  1161. static int raid1_remove_disk(struct mddev *mddev, int number)
  1162. {
  1163. struct r1conf *conf = mddev->private;
  1164. int err = 0;
  1165. struct md_rdev *rdev;
  1166. struct mirror_info *p = conf->mirrors+ number;
  1167. print_conf(conf);
  1168. rdev = p->rdev;
  1169. if (rdev) {
  1170. if (test_bit(In_sync, &rdev->flags) ||
  1171. atomic_read(&rdev->nr_pending)) {
  1172. err = -EBUSY;
  1173. goto abort;
  1174. }
  1175. /* Only remove non-faulty devices if recovery
  1176. * is not possible.
  1177. */
  1178. if (!test_bit(Faulty, &rdev->flags) &&
  1179. mddev->recovery_disabled != conf->recovery_disabled &&
  1180. mddev->degraded < conf->raid_disks) {
  1181. err = -EBUSY;
  1182. goto abort;
  1183. }
  1184. p->rdev = NULL;
  1185. synchronize_rcu();
  1186. if (atomic_read(&rdev->nr_pending)) {
  1187. /* lost the race, try later */
  1188. err = -EBUSY;
  1189. p->rdev = rdev;
  1190. goto abort;
  1191. }
  1192. err = md_integrity_register(mddev);
  1193. }
  1194. abort:
  1195. print_conf(conf);
  1196. return err;
  1197. }
  1198. static void end_sync_read(struct bio *bio, int error)
  1199. {
  1200. struct r1bio *r1_bio = bio->bi_private;
  1201. update_head_pos(r1_bio->read_disk, r1_bio);
  1202. /*
  1203. * we have read a block, now it needs to be re-written,
  1204. * or re-read if the read failed.
  1205. * We don't do much here, just schedule handling by raid1d
  1206. */
  1207. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1208. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1209. if (atomic_dec_and_test(&r1_bio->remaining))
  1210. reschedule_retry(r1_bio);
  1211. }
  1212. static void end_sync_write(struct bio *bio, int error)
  1213. {
  1214. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1215. struct r1bio *r1_bio = bio->bi_private;
  1216. struct mddev *mddev = r1_bio->mddev;
  1217. struct r1conf *conf = mddev->private;
  1218. int mirror=0;
  1219. sector_t first_bad;
  1220. int bad_sectors;
  1221. mirror = find_bio_disk(r1_bio, bio);
  1222. if (!uptodate) {
  1223. sector_t sync_blocks = 0;
  1224. sector_t s = r1_bio->sector;
  1225. long sectors_to_go = r1_bio->sectors;
  1226. /* make sure these bits doesn't get cleared. */
  1227. do {
  1228. bitmap_end_sync(mddev->bitmap, s,
  1229. &sync_blocks, 1);
  1230. s += sync_blocks;
  1231. sectors_to_go -= sync_blocks;
  1232. } while (sectors_to_go > 0);
  1233. set_bit(WriteErrorSeen,
  1234. &conf->mirrors[mirror].rdev->flags);
  1235. set_bit(R1BIO_WriteError, &r1_bio->state);
  1236. } else if (is_badblock(conf->mirrors[mirror].rdev,
  1237. r1_bio->sector,
  1238. r1_bio->sectors,
  1239. &first_bad, &bad_sectors) &&
  1240. !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
  1241. r1_bio->sector,
  1242. r1_bio->sectors,
  1243. &first_bad, &bad_sectors)
  1244. )
  1245. set_bit(R1BIO_MadeGood, &r1_bio->state);
  1246. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1247. int s = r1_bio->sectors;
  1248. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1249. test_bit(R1BIO_WriteError, &r1_bio->state))
  1250. reschedule_retry(r1_bio);
  1251. else {
  1252. put_buf(r1_bio);
  1253. md_done_sync(mddev, s, uptodate);
  1254. }
  1255. }
  1256. }
  1257. static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
  1258. int sectors, struct page *page, int rw)
  1259. {
  1260. if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
  1261. /* success */
  1262. return 1;
  1263. if (rw == WRITE)
  1264. set_bit(WriteErrorSeen, &rdev->flags);
  1265. /* need to record an error - either for the block or the device */
  1266. if (!rdev_set_badblocks(rdev, sector, sectors, 0))
  1267. md_error(rdev->mddev, rdev);
  1268. return 0;
  1269. }
  1270. static int fix_sync_read_error(struct r1bio *r1_bio)
  1271. {
  1272. /* Try some synchronous reads of other devices to get
  1273. * good data, much like with normal read errors. Only
  1274. * read into the pages we already have so we don't
  1275. * need to re-issue the read request.
  1276. * We don't need to freeze the array, because being in an
  1277. * active sync request, there is no normal IO, and
  1278. * no overlapping syncs.
  1279. * We don't need to check is_badblock() again as we
  1280. * made sure that anything with a bad block in range
  1281. * will have bi_end_io clear.
  1282. */
  1283. struct mddev *mddev = r1_bio->mddev;
  1284. struct r1conf *conf = mddev->private;
  1285. struct bio *bio = r1_bio->bios[r1_bio->read_disk];
  1286. sector_t sect = r1_bio->sector;
  1287. int sectors = r1_bio->sectors;
  1288. int idx = 0;
  1289. while(sectors) {
  1290. int s = sectors;
  1291. int d = r1_bio->read_disk;
  1292. int success = 0;
  1293. struct md_rdev *rdev;
  1294. int start;
  1295. if (s > (PAGE_SIZE>>9))
  1296. s = PAGE_SIZE >> 9;
  1297. do {
  1298. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1299. /* No rcu protection needed here devices
  1300. * can only be removed when no resync is
  1301. * active, and resync is currently active
  1302. */
  1303. rdev = conf->mirrors[d].rdev;
  1304. if (sync_page_io(rdev, sect, s<<9,
  1305. bio->bi_io_vec[idx].bv_page,
  1306. READ, false)) {
  1307. success = 1;
  1308. break;
  1309. }
  1310. }
  1311. d++;
  1312. if (d == conf->raid_disks)
  1313. d = 0;
  1314. } while (!success && d != r1_bio->read_disk);
  1315. if (!success) {
  1316. char b[BDEVNAME_SIZE];
  1317. int abort = 0;
  1318. /* Cannot read from anywhere, this block is lost.
  1319. * Record a bad block on each device. If that doesn't
  1320. * work just disable and interrupt the recovery.
  1321. * Don't fail devices as that won't really help.
  1322. */
  1323. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
  1324. " for block %llu\n",
  1325. mdname(mddev),
  1326. bdevname(bio->bi_bdev, b),
  1327. (unsigned long long)r1_bio->sector);
  1328. for (d = 0; d < conf->raid_disks; d++) {
  1329. rdev = conf->mirrors[d].rdev;
  1330. if (!rdev || test_bit(Faulty, &rdev->flags))
  1331. continue;
  1332. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1333. abort = 1;
  1334. }
  1335. if (abort) {
  1336. mddev->recovery_disabled = 1;
  1337. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1338. md_done_sync(mddev, r1_bio->sectors, 0);
  1339. put_buf(r1_bio);
  1340. return 0;
  1341. }
  1342. /* Try next page */
  1343. sectors -= s;
  1344. sect += s;
  1345. idx++;
  1346. continue;
  1347. }
  1348. start = d;
  1349. /* write it back and re-read */
  1350. while (d != r1_bio->read_disk) {
  1351. if (d == 0)
  1352. d = conf->raid_disks;
  1353. d--;
  1354. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1355. continue;
  1356. rdev = conf->mirrors[d].rdev;
  1357. if (r1_sync_page_io(rdev, sect, s,
  1358. bio->bi_io_vec[idx].bv_page,
  1359. WRITE) == 0) {
  1360. r1_bio->bios[d]->bi_end_io = NULL;
  1361. rdev_dec_pending(rdev, mddev);
  1362. }
  1363. }
  1364. d = start;
  1365. while (d != r1_bio->read_disk) {
  1366. if (d == 0)
  1367. d = conf->raid_disks;
  1368. d--;
  1369. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1370. continue;
  1371. rdev = conf->mirrors[d].rdev;
  1372. if (r1_sync_page_io(rdev, sect, s,
  1373. bio->bi_io_vec[idx].bv_page,
  1374. READ) != 0)
  1375. atomic_add(s, &rdev->corrected_errors);
  1376. }
  1377. sectors -= s;
  1378. sect += s;
  1379. idx ++;
  1380. }
  1381. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1382. set_bit(BIO_UPTODATE, &bio->bi_flags);
  1383. return 1;
  1384. }
  1385. static int process_checks(struct r1bio *r1_bio)
  1386. {
  1387. /* We have read all readable devices. If we haven't
  1388. * got the block, then there is no hope left.
  1389. * If we have, then we want to do a comparison
  1390. * and skip the write if everything is the same.
  1391. * If any blocks failed to read, then we need to
  1392. * attempt an over-write
  1393. */
  1394. struct mddev *mddev = r1_bio->mddev;
  1395. struct r1conf *conf = mddev->private;
  1396. int primary;
  1397. int i;
  1398. for (primary = 0; primary < conf->raid_disks; primary++)
  1399. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1400. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1401. r1_bio->bios[primary]->bi_end_io = NULL;
  1402. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1403. break;
  1404. }
  1405. r1_bio->read_disk = primary;
  1406. for (i = 0; i < conf->raid_disks; i++) {
  1407. int j;
  1408. int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
  1409. struct bio *pbio = r1_bio->bios[primary];
  1410. struct bio *sbio = r1_bio->bios[i];
  1411. int size;
  1412. if (r1_bio->bios[i]->bi_end_io != end_sync_read)
  1413. continue;
  1414. if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
  1415. for (j = vcnt; j-- ; ) {
  1416. struct page *p, *s;
  1417. p = pbio->bi_io_vec[j].bv_page;
  1418. s = sbio->bi_io_vec[j].bv_page;
  1419. if (memcmp(page_address(p),
  1420. page_address(s),
  1421. PAGE_SIZE))
  1422. break;
  1423. }
  1424. } else
  1425. j = 0;
  1426. if (j >= 0)
  1427. mddev->resync_mismatches += r1_bio->sectors;
  1428. if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
  1429. && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
  1430. /* No need to write to this device. */
  1431. sbio->bi_end_io = NULL;
  1432. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1433. continue;
  1434. }
  1435. /* fixup the bio for reuse */
  1436. sbio->bi_vcnt = vcnt;
  1437. sbio->bi_size = r1_bio->sectors << 9;
  1438. sbio->bi_idx = 0;
  1439. sbio->bi_phys_segments = 0;
  1440. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1441. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1442. sbio->bi_next = NULL;
  1443. sbio->bi_sector = r1_bio->sector +
  1444. conf->mirrors[i].rdev->data_offset;
  1445. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1446. size = sbio->bi_size;
  1447. for (j = 0; j < vcnt ; j++) {
  1448. struct bio_vec *bi;
  1449. bi = &sbio->bi_io_vec[j];
  1450. bi->bv_offset = 0;
  1451. if (size > PAGE_SIZE)
  1452. bi->bv_len = PAGE_SIZE;
  1453. else
  1454. bi->bv_len = size;
  1455. size -= PAGE_SIZE;
  1456. memcpy(page_address(bi->bv_page),
  1457. page_address(pbio->bi_io_vec[j].bv_page),
  1458. PAGE_SIZE);
  1459. }
  1460. }
  1461. return 0;
  1462. }
  1463. static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
  1464. {
  1465. struct r1conf *conf = mddev->private;
  1466. int i;
  1467. int disks = conf->raid_disks;
  1468. struct bio *bio, *wbio;
  1469. bio = r1_bio->bios[r1_bio->read_disk];
  1470. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  1471. /* ouch - failed to read all of that. */
  1472. if (!fix_sync_read_error(r1_bio))
  1473. return;
  1474. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1475. if (process_checks(r1_bio) < 0)
  1476. return;
  1477. /*
  1478. * schedule writes
  1479. */
  1480. atomic_set(&r1_bio->remaining, 1);
  1481. for (i = 0; i < disks ; i++) {
  1482. wbio = r1_bio->bios[i];
  1483. if (wbio->bi_end_io == NULL ||
  1484. (wbio->bi_end_io == end_sync_read &&
  1485. (i == r1_bio->read_disk ||
  1486. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1487. continue;
  1488. wbio->bi_rw = WRITE;
  1489. wbio->bi_end_io = end_sync_write;
  1490. atomic_inc(&r1_bio->remaining);
  1491. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1492. generic_make_request(wbio);
  1493. }
  1494. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1495. /* if we're here, all write(s) have completed, so clean up */
  1496. md_done_sync(mddev, r1_bio->sectors, 1);
  1497. put_buf(r1_bio);
  1498. }
  1499. }
  1500. /*
  1501. * This is a kernel thread which:
  1502. *
  1503. * 1. Retries failed read operations on working mirrors.
  1504. * 2. Updates the raid superblock when problems encounter.
  1505. * 3. Performs writes following reads for array synchronising.
  1506. */
  1507. static void fix_read_error(struct r1conf *conf, int read_disk,
  1508. sector_t sect, int sectors)
  1509. {
  1510. struct mddev *mddev = conf->mddev;
  1511. while(sectors) {
  1512. int s = sectors;
  1513. int d = read_disk;
  1514. int success = 0;
  1515. int start;
  1516. struct md_rdev *rdev;
  1517. if (s > (PAGE_SIZE>>9))
  1518. s = PAGE_SIZE >> 9;
  1519. do {
  1520. /* Note: no rcu protection needed here
  1521. * as this is synchronous in the raid1d thread
  1522. * which is the thread that might remove
  1523. * a device. If raid1d ever becomes multi-threaded....
  1524. */
  1525. sector_t first_bad;
  1526. int bad_sectors;
  1527. rdev = conf->mirrors[d].rdev;
  1528. if (rdev &&
  1529. test_bit(In_sync, &rdev->flags) &&
  1530. is_badblock(rdev, sect, s,
  1531. &first_bad, &bad_sectors) == 0 &&
  1532. sync_page_io(rdev, sect, s<<9,
  1533. conf->tmppage, READ, false))
  1534. success = 1;
  1535. else {
  1536. d++;
  1537. if (d == conf->raid_disks)
  1538. d = 0;
  1539. }
  1540. } while (!success && d != read_disk);
  1541. if (!success) {
  1542. /* Cannot read from anywhere - mark it bad */
  1543. struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
  1544. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1545. md_error(mddev, rdev);
  1546. break;
  1547. }
  1548. /* write it back and re-read */
  1549. start = d;
  1550. while (d != read_disk) {
  1551. if (d==0)
  1552. d = conf->raid_disks;
  1553. d--;
  1554. rdev = conf->mirrors[d].rdev;
  1555. if (rdev &&
  1556. test_bit(In_sync, &rdev->flags))
  1557. r1_sync_page_io(rdev, sect, s,
  1558. conf->tmppage, WRITE);
  1559. }
  1560. d = start;
  1561. while (d != read_disk) {
  1562. char b[BDEVNAME_SIZE];
  1563. if (d==0)
  1564. d = conf->raid_disks;
  1565. d--;
  1566. rdev = conf->mirrors[d].rdev;
  1567. if (rdev &&
  1568. test_bit(In_sync, &rdev->flags)) {
  1569. if (r1_sync_page_io(rdev, sect, s,
  1570. conf->tmppage, READ)) {
  1571. atomic_add(s, &rdev->corrected_errors);
  1572. printk(KERN_INFO
  1573. "md/raid1:%s: read error corrected "
  1574. "(%d sectors at %llu on %s)\n",
  1575. mdname(mddev), s,
  1576. (unsigned long long)(sect +
  1577. rdev->data_offset),
  1578. bdevname(rdev->bdev, b));
  1579. }
  1580. }
  1581. }
  1582. sectors -= s;
  1583. sect += s;
  1584. }
  1585. }
  1586. static void bi_complete(struct bio *bio, int error)
  1587. {
  1588. complete((struct completion *)bio->bi_private);
  1589. }
  1590. static int submit_bio_wait(int rw, struct bio *bio)
  1591. {
  1592. struct completion event;
  1593. rw |= REQ_SYNC;
  1594. init_completion(&event);
  1595. bio->bi_private = &event;
  1596. bio->bi_end_io = bi_complete;
  1597. submit_bio(rw, bio);
  1598. wait_for_completion(&event);
  1599. return test_bit(BIO_UPTODATE, &bio->bi_flags);
  1600. }
  1601. static int narrow_write_error(struct r1bio *r1_bio, int i)
  1602. {
  1603. struct mddev *mddev = r1_bio->mddev;
  1604. struct r1conf *conf = mddev->private;
  1605. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1606. int vcnt, idx;
  1607. struct bio_vec *vec;
  1608. /* bio has the data to be written to device 'i' where
  1609. * we just recently had a write error.
  1610. * We repeatedly clone the bio and trim down to one block,
  1611. * then try the write. Where the write fails we record
  1612. * a bad block.
  1613. * It is conceivable that the bio doesn't exactly align with
  1614. * blocks. We must handle this somehow.
  1615. *
  1616. * We currently own a reference on the rdev.
  1617. */
  1618. int block_sectors;
  1619. sector_t sector;
  1620. int sectors;
  1621. int sect_to_write = r1_bio->sectors;
  1622. int ok = 1;
  1623. if (rdev->badblocks.shift < 0)
  1624. return 0;
  1625. block_sectors = 1 << rdev->badblocks.shift;
  1626. sector = r1_bio->sector;
  1627. sectors = ((sector + block_sectors)
  1628. & ~(sector_t)(block_sectors - 1))
  1629. - sector;
  1630. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  1631. vcnt = r1_bio->behind_page_count;
  1632. vec = r1_bio->behind_bvecs;
  1633. idx = 0;
  1634. while (vec[idx].bv_page == NULL)
  1635. idx++;
  1636. } else {
  1637. vcnt = r1_bio->master_bio->bi_vcnt;
  1638. vec = r1_bio->master_bio->bi_io_vec;
  1639. idx = r1_bio->master_bio->bi_idx;
  1640. }
  1641. while (sect_to_write) {
  1642. struct bio *wbio;
  1643. if (sectors > sect_to_write)
  1644. sectors = sect_to_write;
  1645. /* Write at 'sector' for 'sectors'*/
  1646. wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
  1647. memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
  1648. wbio->bi_sector = r1_bio->sector;
  1649. wbio->bi_rw = WRITE;
  1650. wbio->bi_vcnt = vcnt;
  1651. wbio->bi_size = r1_bio->sectors << 9;
  1652. wbio->bi_idx = idx;
  1653. md_trim_bio(wbio, sector - r1_bio->sector, sectors);
  1654. wbio->bi_sector += rdev->data_offset;
  1655. wbio->bi_bdev = rdev->bdev;
  1656. if (submit_bio_wait(WRITE, wbio) == 0)
  1657. /* failure! */
  1658. ok = rdev_set_badblocks(rdev, sector,
  1659. sectors, 0)
  1660. && ok;
  1661. bio_put(wbio);
  1662. sect_to_write -= sectors;
  1663. sector += sectors;
  1664. sectors = block_sectors;
  1665. }
  1666. return ok;
  1667. }
  1668. static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1669. {
  1670. int m;
  1671. int s = r1_bio->sectors;
  1672. for (m = 0; m < conf->raid_disks ; m++) {
  1673. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1674. struct bio *bio = r1_bio->bios[m];
  1675. if (bio->bi_end_io == NULL)
  1676. continue;
  1677. if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1678. test_bit(R1BIO_MadeGood, &r1_bio->state)) {
  1679. rdev_clear_badblocks(rdev, r1_bio->sector, s);
  1680. }
  1681. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1682. test_bit(R1BIO_WriteError, &r1_bio->state)) {
  1683. if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
  1684. md_error(conf->mddev, rdev);
  1685. }
  1686. }
  1687. put_buf(r1_bio);
  1688. md_done_sync(conf->mddev, s, 1);
  1689. }
  1690. static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1691. {
  1692. int m;
  1693. for (m = 0; m < conf->raid_disks ; m++)
  1694. if (r1_bio->bios[m] == IO_MADE_GOOD) {
  1695. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1696. rdev_clear_badblocks(rdev,
  1697. r1_bio->sector,
  1698. r1_bio->sectors);
  1699. rdev_dec_pending(rdev, conf->mddev);
  1700. } else if (r1_bio->bios[m] != NULL) {
  1701. /* This drive got a write error. We need to
  1702. * narrow down and record precise write
  1703. * errors.
  1704. */
  1705. if (!narrow_write_error(r1_bio, m)) {
  1706. md_error(conf->mddev,
  1707. conf->mirrors[m].rdev);
  1708. /* an I/O failed, we can't clear the bitmap */
  1709. set_bit(R1BIO_Degraded, &r1_bio->state);
  1710. }
  1711. rdev_dec_pending(conf->mirrors[m].rdev,
  1712. conf->mddev);
  1713. }
  1714. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  1715. close_write(r1_bio);
  1716. raid_end_bio_io(r1_bio);
  1717. }
  1718. static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
  1719. {
  1720. int disk;
  1721. int max_sectors;
  1722. struct mddev *mddev = conf->mddev;
  1723. struct bio *bio;
  1724. char b[BDEVNAME_SIZE];
  1725. struct md_rdev *rdev;
  1726. clear_bit(R1BIO_ReadError, &r1_bio->state);
  1727. /* we got a read error. Maybe the drive is bad. Maybe just
  1728. * the block and we can fix it.
  1729. * We freeze all other IO, and try reading the block from
  1730. * other devices. When we find one, we re-write
  1731. * and check it that fixes the read error.
  1732. * This is all done synchronously while the array is
  1733. * frozen
  1734. */
  1735. if (mddev->ro == 0) {
  1736. freeze_array(conf);
  1737. fix_read_error(conf, r1_bio->read_disk,
  1738. r1_bio->sector, r1_bio->sectors);
  1739. unfreeze_array(conf);
  1740. } else
  1741. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1742. bio = r1_bio->bios[r1_bio->read_disk];
  1743. bdevname(bio->bi_bdev, b);
  1744. read_more:
  1745. disk = read_balance(conf, r1_bio, &max_sectors);
  1746. if (disk == -1) {
  1747. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
  1748. " read error for block %llu\n",
  1749. mdname(mddev), b, (unsigned long long)r1_bio->sector);
  1750. raid_end_bio_io(r1_bio);
  1751. } else {
  1752. const unsigned long do_sync
  1753. = r1_bio->master_bio->bi_rw & REQ_SYNC;
  1754. if (bio) {
  1755. r1_bio->bios[r1_bio->read_disk] =
  1756. mddev->ro ? IO_BLOCKED : NULL;
  1757. bio_put(bio);
  1758. }
  1759. r1_bio->read_disk = disk;
  1760. bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
  1761. md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
  1762. r1_bio->bios[r1_bio->read_disk] = bio;
  1763. rdev = conf->mirrors[disk].rdev;
  1764. printk_ratelimited(KERN_ERR
  1765. "md/raid1:%s: redirecting sector %llu"
  1766. " to other mirror: %s\n",
  1767. mdname(mddev),
  1768. (unsigned long long)r1_bio->sector,
  1769. bdevname(rdev->bdev, b));
  1770. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1771. bio->bi_bdev = rdev->bdev;
  1772. bio->bi_end_io = raid1_end_read_request;
  1773. bio->bi_rw = READ | do_sync;
  1774. bio->bi_private = r1_bio;
  1775. if (max_sectors < r1_bio->sectors) {
  1776. /* Drat - have to split this up more */
  1777. struct bio *mbio = r1_bio->master_bio;
  1778. int sectors_handled = (r1_bio->sector + max_sectors
  1779. - mbio->bi_sector);
  1780. r1_bio->sectors = max_sectors;
  1781. spin_lock_irq(&conf->device_lock);
  1782. if (mbio->bi_phys_segments == 0)
  1783. mbio->bi_phys_segments = 2;
  1784. else
  1785. mbio->bi_phys_segments++;
  1786. spin_unlock_irq(&conf->device_lock);
  1787. generic_make_request(bio);
  1788. bio = NULL;
  1789. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1790. r1_bio->master_bio = mbio;
  1791. r1_bio->sectors = (mbio->bi_size >> 9)
  1792. - sectors_handled;
  1793. r1_bio->state = 0;
  1794. set_bit(R1BIO_ReadError, &r1_bio->state);
  1795. r1_bio->mddev = mddev;
  1796. r1_bio->sector = mbio->bi_sector + sectors_handled;
  1797. goto read_more;
  1798. } else
  1799. generic_make_request(bio);
  1800. }
  1801. }
  1802. static void raid1d(struct mddev *mddev)
  1803. {
  1804. struct r1bio *r1_bio;
  1805. unsigned long flags;
  1806. struct r1conf *conf = mddev->private;
  1807. struct list_head *head = &conf->retry_list;
  1808. struct blk_plug plug;
  1809. md_check_recovery(mddev);
  1810. blk_start_plug(&plug);
  1811. for (;;) {
  1812. if (atomic_read(&mddev->plug_cnt) == 0)
  1813. flush_pending_writes(conf);
  1814. spin_lock_irqsave(&conf->device_lock, flags);
  1815. if (list_empty(head)) {
  1816. spin_unlock_irqrestore(&conf->device_lock, flags);
  1817. break;
  1818. }
  1819. r1_bio = list_entry(head->prev, struct r1bio, retry_list);
  1820. list_del(head->prev);
  1821. conf->nr_queued--;
  1822. spin_unlock_irqrestore(&conf->device_lock, flags);
  1823. mddev = r1_bio->mddev;
  1824. conf = mddev->private;
  1825. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  1826. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1827. test_bit(R1BIO_WriteError, &r1_bio->state))
  1828. handle_sync_write_finished(conf, r1_bio);
  1829. else
  1830. sync_request_write(mddev, r1_bio);
  1831. } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1832. test_bit(R1BIO_WriteError, &r1_bio->state))
  1833. handle_write_finished(conf, r1_bio);
  1834. else if (test_bit(R1BIO_ReadError, &r1_bio->state))
  1835. handle_read_error(conf, r1_bio);
  1836. else
  1837. /* just a partial read to be scheduled from separate
  1838. * context
  1839. */
  1840. generic_make_request(r1_bio->bios[r1_bio->read_disk]);
  1841. cond_resched();
  1842. if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
  1843. md_check_recovery(mddev);
  1844. }
  1845. blk_finish_plug(&plug);
  1846. }
  1847. static int init_resync(struct r1conf *conf)
  1848. {
  1849. int buffs;
  1850. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1851. BUG_ON(conf->r1buf_pool);
  1852. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  1853. conf->poolinfo);
  1854. if (!conf->r1buf_pool)
  1855. return -ENOMEM;
  1856. conf->next_resync = 0;
  1857. return 0;
  1858. }
  1859. /*
  1860. * perform a "sync" on one "block"
  1861. *
  1862. * We need to make sure that no normal I/O request - particularly write
  1863. * requests - conflict with active sync requests.
  1864. *
  1865. * This is achieved by tracking pending requests and a 'barrier' concept
  1866. * that can be installed to exclude normal IO requests.
  1867. */
  1868. static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1869. {
  1870. struct r1conf *conf = mddev->private;
  1871. struct r1bio *r1_bio;
  1872. struct bio *bio;
  1873. sector_t max_sector, nr_sectors;
  1874. int disk = -1;
  1875. int i;
  1876. int wonly = -1;
  1877. int write_targets = 0, read_targets = 0;
  1878. sector_t sync_blocks;
  1879. int still_degraded = 0;
  1880. int good_sectors = RESYNC_SECTORS;
  1881. int min_bad = 0; /* number of sectors that are bad in all devices */
  1882. if (!conf->r1buf_pool)
  1883. if (init_resync(conf))
  1884. return 0;
  1885. max_sector = mddev->dev_sectors;
  1886. if (sector_nr >= max_sector) {
  1887. /* If we aborted, we need to abort the
  1888. * sync on the 'current' bitmap chunk (there will
  1889. * only be one in raid1 resync.
  1890. * We can find the current addess in mddev->curr_resync
  1891. */
  1892. if (mddev->curr_resync < max_sector) /* aborted */
  1893. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1894. &sync_blocks, 1);
  1895. else /* completed sync */
  1896. conf->fullsync = 0;
  1897. bitmap_close_sync(mddev->bitmap);
  1898. close_sync(conf);
  1899. return 0;
  1900. }
  1901. if (mddev->bitmap == NULL &&
  1902. mddev->recovery_cp == MaxSector &&
  1903. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  1904. conf->fullsync == 0) {
  1905. *skipped = 1;
  1906. return max_sector - sector_nr;
  1907. }
  1908. /* before building a request, check if we can skip these blocks..
  1909. * This call the bitmap_start_sync doesn't actually record anything
  1910. */
  1911. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1912. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1913. /* We can skip this block, and probably several more */
  1914. *skipped = 1;
  1915. return sync_blocks;
  1916. }
  1917. /*
  1918. * If there is non-resync activity waiting for a turn,
  1919. * and resync is going fast enough,
  1920. * then let it though before starting on this new sync request.
  1921. */
  1922. if (!go_faster && conf->nr_waiting)
  1923. msleep_interruptible(1000);
  1924. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  1925. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  1926. raise_barrier(conf);
  1927. conf->next_resync = sector_nr;
  1928. rcu_read_lock();
  1929. /*
  1930. * If we get a correctably read error during resync or recovery,
  1931. * we might want to read from a different device. So we
  1932. * flag all drives that could conceivably be read from for READ,
  1933. * and any others (which will be non-In_sync devices) for WRITE.
  1934. * If a read fails, we try reading from something else for which READ
  1935. * is OK.
  1936. */
  1937. r1_bio->mddev = mddev;
  1938. r1_bio->sector = sector_nr;
  1939. r1_bio->state = 0;
  1940. set_bit(R1BIO_IsSync, &r1_bio->state);
  1941. for (i=0; i < conf->raid_disks; i++) {
  1942. struct md_rdev *rdev;
  1943. bio = r1_bio->bios[i];
  1944. /* take from bio_init */
  1945. bio->bi_next = NULL;
  1946. bio->bi_flags &= ~(BIO_POOL_MASK-1);
  1947. bio->bi_flags |= 1 << BIO_UPTODATE;
  1948. bio->bi_comp_cpu = -1;
  1949. bio->bi_rw = READ;
  1950. bio->bi_vcnt = 0;
  1951. bio->bi_idx = 0;
  1952. bio->bi_phys_segments = 0;
  1953. bio->bi_size = 0;
  1954. bio->bi_end_io = NULL;
  1955. bio->bi_private = NULL;
  1956. rdev = rcu_dereference(conf->mirrors[i].rdev);
  1957. if (rdev == NULL ||
  1958. test_bit(Faulty, &rdev->flags)) {
  1959. still_degraded = 1;
  1960. } else if (!test_bit(In_sync, &rdev->flags)) {
  1961. bio->bi_rw = WRITE;
  1962. bio->bi_end_io = end_sync_write;
  1963. write_targets ++;
  1964. } else {
  1965. /* may need to read from here */
  1966. sector_t first_bad = MaxSector;
  1967. int bad_sectors;
  1968. if (is_badblock(rdev, sector_nr, good_sectors,
  1969. &first_bad, &bad_sectors)) {
  1970. if (first_bad > sector_nr)
  1971. good_sectors = first_bad - sector_nr;
  1972. else {
  1973. bad_sectors -= (sector_nr - first_bad);
  1974. if (min_bad == 0 ||
  1975. min_bad > bad_sectors)
  1976. min_bad = bad_sectors;
  1977. }
  1978. }
  1979. if (sector_nr < first_bad) {
  1980. if (test_bit(WriteMostly, &rdev->flags)) {
  1981. if (wonly < 0)
  1982. wonly = i;
  1983. } else {
  1984. if (disk < 0)
  1985. disk = i;
  1986. }
  1987. bio->bi_rw = READ;
  1988. bio->bi_end_io = end_sync_read;
  1989. read_targets++;
  1990. }
  1991. }
  1992. if (bio->bi_end_io) {
  1993. atomic_inc(&rdev->nr_pending);
  1994. bio->bi_sector = sector_nr + rdev->data_offset;
  1995. bio->bi_bdev = rdev->bdev;
  1996. bio->bi_private = r1_bio;
  1997. }
  1998. }
  1999. rcu_read_unlock();
  2000. if (disk < 0)
  2001. disk = wonly;
  2002. r1_bio->read_disk = disk;
  2003. if (read_targets == 0 && min_bad > 0) {
  2004. /* These sectors are bad on all InSync devices, so we
  2005. * need to mark them bad on all write targets
  2006. */
  2007. int ok = 1;
  2008. for (i = 0 ; i < conf->raid_disks ; i++)
  2009. if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
  2010. struct md_rdev *rdev =
  2011. rcu_dereference(conf->mirrors[i].rdev);
  2012. ok = rdev_set_badblocks(rdev, sector_nr,
  2013. min_bad, 0
  2014. ) && ok;
  2015. }
  2016. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2017. *skipped = 1;
  2018. put_buf(r1_bio);
  2019. if (!ok) {
  2020. /* Cannot record the badblocks, so need to
  2021. * abort the resync.
  2022. * If there are multiple read targets, could just
  2023. * fail the really bad ones ???
  2024. */
  2025. conf->recovery_disabled = mddev->recovery_disabled;
  2026. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2027. return 0;
  2028. } else
  2029. return min_bad;
  2030. }
  2031. if (min_bad > 0 && min_bad < good_sectors) {
  2032. /* only resync enough to reach the next bad->good
  2033. * transition */
  2034. good_sectors = min_bad;
  2035. }
  2036. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  2037. /* extra read targets are also write targets */
  2038. write_targets += read_targets-1;
  2039. if (write_targets == 0 || read_targets == 0) {
  2040. /* There is nowhere to write, so all non-sync
  2041. * drives must be failed - so we are finished
  2042. */
  2043. sector_t rv = max_sector - sector_nr;
  2044. *skipped = 1;
  2045. put_buf(r1_bio);
  2046. return rv;
  2047. }
  2048. if (max_sector > mddev->resync_max)
  2049. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  2050. if (max_sector > sector_nr + good_sectors)
  2051. max_sector = sector_nr + good_sectors;
  2052. nr_sectors = 0;
  2053. sync_blocks = 0;
  2054. do {
  2055. struct page *page;
  2056. int len = PAGE_SIZE;
  2057. if (sector_nr + (len>>9) > max_sector)
  2058. len = (max_sector - sector_nr) << 9;
  2059. if (len == 0)
  2060. break;
  2061. if (sync_blocks == 0) {
  2062. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  2063. &sync_blocks, still_degraded) &&
  2064. !conf->fullsync &&
  2065. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2066. break;
  2067. BUG_ON(sync_blocks < (PAGE_SIZE>>9));
  2068. if ((len >> 9) > sync_blocks)
  2069. len = sync_blocks<<9;
  2070. }
  2071. for (i=0 ; i < conf->raid_disks; i++) {
  2072. bio = r1_bio->bios[i];
  2073. if (bio->bi_end_io) {
  2074. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  2075. if (bio_add_page(bio, page, len, 0) == 0) {
  2076. /* stop here */
  2077. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  2078. while (i > 0) {
  2079. i--;
  2080. bio = r1_bio->bios[i];
  2081. if (bio->bi_end_io==NULL)
  2082. continue;
  2083. /* remove last page from this bio */
  2084. bio->bi_vcnt--;
  2085. bio->bi_size -= len;
  2086. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  2087. }
  2088. goto bio_full;
  2089. }
  2090. }
  2091. }
  2092. nr_sectors += len>>9;
  2093. sector_nr += len>>9;
  2094. sync_blocks -= (len>>9);
  2095. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  2096. bio_full:
  2097. r1_bio->sectors = nr_sectors;
  2098. /* For a user-requested sync, we read all readable devices and do a
  2099. * compare
  2100. */
  2101. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  2102. atomic_set(&r1_bio->remaining, read_targets);
  2103. for (i=0; i<conf->raid_disks; i++) {
  2104. bio = r1_bio->bios[i];
  2105. if (bio->bi_end_io == end_sync_read) {
  2106. md_sync_acct(bio->bi_bdev, nr_sectors);
  2107. generic_make_request(bio);
  2108. }
  2109. }
  2110. } else {
  2111. atomic_set(&r1_bio->remaining, 1);
  2112. bio = r1_bio->bios[r1_bio->read_disk];
  2113. md_sync_acct(bio->bi_bdev, nr_sectors);
  2114. generic_make_request(bio);
  2115. }
  2116. return nr_sectors;
  2117. }
  2118. static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
  2119. {
  2120. if (sectors)
  2121. return sectors;
  2122. return mddev->dev_sectors;
  2123. }
  2124. static struct r1conf *setup_conf(struct mddev *mddev)
  2125. {
  2126. struct r1conf *conf;
  2127. int i;
  2128. struct mirror_info *disk;
  2129. struct md_rdev *rdev;
  2130. int err = -ENOMEM;
  2131. conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
  2132. if (!conf)
  2133. goto abort;
  2134. conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  2135. GFP_KERNEL);
  2136. if (!conf->mirrors)
  2137. goto abort;
  2138. conf->tmppage = alloc_page(GFP_KERNEL);
  2139. if (!conf->tmppage)
  2140. goto abort;
  2141. conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  2142. if (!conf->poolinfo)
  2143. goto abort;
  2144. conf->poolinfo->raid_disks = mddev->raid_disks;
  2145. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2146. r1bio_pool_free,
  2147. conf->poolinfo);
  2148. if (!conf->r1bio_pool)
  2149. goto abort;
  2150. conf->poolinfo->mddev = mddev;
  2151. spin_lock_init(&conf->device_lock);
  2152. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2153. int disk_idx = rdev->raid_disk;
  2154. if (disk_idx >= mddev->raid_disks
  2155. || disk_idx < 0)
  2156. continue;
  2157. disk = conf->mirrors + disk_idx;
  2158. disk->rdev = rdev;
  2159. disk->head_position = 0;
  2160. }
  2161. conf->raid_disks = mddev->raid_disks;
  2162. conf->mddev = mddev;
  2163. INIT_LIST_HEAD(&conf->retry_list);
  2164. spin_lock_init(&conf->resync_lock);
  2165. init_waitqueue_head(&conf->wait_barrier);
  2166. bio_list_init(&conf->pending_bio_list);
  2167. conf->last_used = -1;
  2168. for (i = 0; i < conf->raid_disks; i++) {
  2169. disk = conf->mirrors + i;
  2170. if (!disk->rdev ||
  2171. !test_bit(In_sync, &disk->rdev->flags)) {
  2172. disk->head_position = 0;
  2173. if (disk->rdev)
  2174. conf->fullsync = 1;
  2175. } else if (conf->last_used < 0)
  2176. /*
  2177. * The first working device is used as a
  2178. * starting point to read balancing.
  2179. */
  2180. conf->last_used = i;
  2181. }
  2182. err = -EIO;
  2183. if (conf->last_used < 0) {
  2184. printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
  2185. mdname(mddev));
  2186. goto abort;
  2187. }
  2188. err = -ENOMEM;
  2189. conf->thread = md_register_thread(raid1d, mddev, NULL);
  2190. if (!conf->thread) {
  2191. printk(KERN_ERR
  2192. "md/raid1:%s: couldn't allocate thread\n",
  2193. mdname(mddev));
  2194. goto abort;
  2195. }
  2196. return conf;
  2197. abort:
  2198. if (conf) {
  2199. if (conf->r1bio_pool)
  2200. mempool_destroy(conf->r1bio_pool);
  2201. kfree(conf->mirrors);
  2202. safe_put_page(conf->tmppage);
  2203. kfree(conf->poolinfo);
  2204. kfree(conf);
  2205. }
  2206. return ERR_PTR(err);
  2207. }
  2208. static int run(struct mddev *mddev)
  2209. {
  2210. struct r1conf *conf;
  2211. int i;
  2212. struct md_rdev *rdev;
  2213. if (mddev->level != 1) {
  2214. printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
  2215. mdname(mddev), mddev->level);
  2216. return -EIO;
  2217. }
  2218. if (mddev->reshape_position != MaxSector) {
  2219. printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
  2220. mdname(mddev));
  2221. return -EIO;
  2222. }
  2223. /*
  2224. * copy the already verified devices into our private RAID1
  2225. * bookkeeping area. [whatever we allocate in run(),
  2226. * should be freed in stop()]
  2227. */
  2228. if (mddev->private == NULL)
  2229. conf = setup_conf(mddev);
  2230. else
  2231. conf = mddev->private;
  2232. if (IS_ERR(conf))
  2233. return PTR_ERR(conf);
  2234. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2235. if (!mddev->gendisk)
  2236. continue;
  2237. disk_stack_limits(mddev->gendisk, rdev->bdev,
  2238. rdev->data_offset << 9);
  2239. /* as we don't honour merge_bvec_fn, we must never risk
  2240. * violating it, so limit ->max_segments to 1 lying within
  2241. * a single page, as a one page request is never in violation.
  2242. */
  2243. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  2244. blk_queue_max_segments(mddev->queue, 1);
  2245. blk_queue_segment_boundary(mddev->queue,
  2246. PAGE_CACHE_SIZE - 1);
  2247. }
  2248. }
  2249. mddev->degraded = 0;
  2250. for (i=0; i < conf->raid_disks; i++)
  2251. if (conf->mirrors[i].rdev == NULL ||
  2252. !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
  2253. test_bit(Faulty, &conf->mirrors[i].rdev->flags))
  2254. mddev->degraded++;
  2255. if (conf->raid_disks - mddev->degraded == 1)
  2256. mddev->recovery_cp = MaxSector;
  2257. if (mddev->recovery_cp != MaxSector)
  2258. printk(KERN_NOTICE "md/raid1:%s: not clean"
  2259. " -- starting background reconstruction\n",
  2260. mdname(mddev));
  2261. printk(KERN_INFO
  2262. "md/raid1:%s: active with %d out of %d mirrors\n",
  2263. mdname(mddev), mddev->raid_disks - mddev->degraded,
  2264. mddev->raid_disks);
  2265. /*
  2266. * Ok, everything is just fine now
  2267. */
  2268. mddev->thread = conf->thread;
  2269. conf->thread = NULL;
  2270. mddev->private = conf;
  2271. md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
  2272. if (mddev->queue) {
  2273. mddev->queue->backing_dev_info.congested_fn = raid1_congested;
  2274. mddev->queue->backing_dev_info.congested_data = mddev;
  2275. }
  2276. return md_integrity_register(mddev);
  2277. }
  2278. static int stop(struct mddev *mddev)
  2279. {
  2280. struct r1conf *conf = mddev->private;
  2281. struct bitmap *bitmap = mddev->bitmap;
  2282. /* wait for behind writes to complete */
  2283. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  2284. printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
  2285. mdname(mddev));
  2286. /* need to kick something here to make sure I/O goes? */
  2287. wait_event(bitmap->behind_wait,
  2288. atomic_read(&bitmap->behind_writes) == 0);
  2289. }
  2290. raise_barrier(conf);
  2291. lower_barrier(conf);
  2292. md_unregister_thread(&mddev->thread);
  2293. if (conf->r1bio_pool)
  2294. mempool_destroy(conf->r1bio_pool);
  2295. kfree(conf->mirrors);
  2296. kfree(conf->poolinfo);
  2297. kfree(conf);
  2298. mddev->private = NULL;
  2299. return 0;
  2300. }
  2301. static int raid1_resize(struct mddev *mddev, sector_t sectors)
  2302. {
  2303. /* no resync is happening, and there is enough space
  2304. * on all devices, so we can resize.
  2305. * We need to make sure resync covers any new space.
  2306. * If the array is shrinking we should possibly wait until
  2307. * any io in the removed space completes, but it hardly seems
  2308. * worth it.
  2309. */
  2310. md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
  2311. if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
  2312. return -EINVAL;
  2313. set_capacity(mddev->gendisk, mddev->array_sectors);
  2314. revalidate_disk(mddev->gendisk);
  2315. if (sectors > mddev->dev_sectors &&
  2316. mddev->recovery_cp > mddev->dev_sectors) {
  2317. mddev->recovery_cp = mddev->dev_sectors;
  2318. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2319. }
  2320. mddev->dev_sectors = sectors;
  2321. mddev->resync_max_sectors = sectors;
  2322. return 0;
  2323. }
  2324. static int raid1_reshape(struct mddev *mddev)
  2325. {
  2326. /* We need to:
  2327. * 1/ resize the r1bio_pool
  2328. * 2/ resize conf->mirrors
  2329. *
  2330. * We allocate a new r1bio_pool if we can.
  2331. * Then raise a device barrier and wait until all IO stops.
  2332. * Then resize conf->mirrors and swap in the new r1bio pool.
  2333. *
  2334. * At the same time, we "pack" the devices so that all the missing
  2335. * devices have the higher raid_disk numbers.
  2336. */
  2337. mempool_t *newpool, *oldpool;
  2338. struct pool_info *newpoolinfo;
  2339. struct mirror_info *newmirrors;
  2340. struct r1conf *conf = mddev->private;
  2341. int cnt, raid_disks;
  2342. unsigned long flags;
  2343. int d, d2, err;
  2344. /* Cannot change chunk_size, layout, or level */
  2345. if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
  2346. mddev->layout != mddev->new_layout ||
  2347. mddev->level != mddev->new_level) {
  2348. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2349. mddev->new_layout = mddev->layout;
  2350. mddev->new_level = mddev->level;
  2351. return -EINVAL;
  2352. }
  2353. err = md_allow_write(mddev);
  2354. if (err)
  2355. return err;
  2356. raid_disks = mddev->raid_disks + mddev->delta_disks;
  2357. if (raid_disks < conf->raid_disks) {
  2358. cnt=0;
  2359. for (d= 0; d < conf->raid_disks; d++)
  2360. if (conf->mirrors[d].rdev)
  2361. cnt++;
  2362. if (cnt > raid_disks)
  2363. return -EBUSY;
  2364. }
  2365. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  2366. if (!newpoolinfo)
  2367. return -ENOMEM;
  2368. newpoolinfo->mddev = mddev;
  2369. newpoolinfo->raid_disks = raid_disks;
  2370. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2371. r1bio_pool_free, newpoolinfo);
  2372. if (!newpool) {
  2373. kfree(newpoolinfo);
  2374. return -ENOMEM;
  2375. }
  2376. newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
  2377. if (!newmirrors) {
  2378. kfree(newpoolinfo);
  2379. mempool_destroy(newpool);
  2380. return -ENOMEM;
  2381. }
  2382. raise_barrier(conf);
  2383. /* ok, everything is stopped */
  2384. oldpool = conf->r1bio_pool;
  2385. conf->r1bio_pool = newpool;
  2386. for (d = d2 = 0; d < conf->raid_disks; d++) {
  2387. struct md_rdev *rdev = conf->mirrors[d].rdev;
  2388. if (rdev && rdev->raid_disk != d2) {
  2389. sysfs_unlink_rdev(mddev, rdev);
  2390. rdev->raid_disk = d2;
  2391. sysfs_unlink_rdev(mddev, rdev);
  2392. if (sysfs_link_rdev(mddev, rdev))
  2393. printk(KERN_WARNING
  2394. "md/raid1:%s: cannot register rd%d\n",
  2395. mdname(mddev), rdev->raid_disk);
  2396. }
  2397. if (rdev)
  2398. newmirrors[d2++].rdev = rdev;
  2399. }
  2400. kfree(conf->mirrors);
  2401. conf->mirrors = newmirrors;
  2402. kfree(conf->poolinfo);
  2403. conf->poolinfo = newpoolinfo;
  2404. spin_lock_irqsave(&conf->device_lock, flags);
  2405. mddev->degraded += (raid_disks - conf->raid_disks);
  2406. spin_unlock_irqrestore(&conf->device_lock, flags);
  2407. conf->raid_disks = mddev->raid_disks = raid_disks;
  2408. mddev->delta_disks = 0;
  2409. conf->last_used = 0; /* just make sure it is in-range */
  2410. lower_barrier(conf);
  2411. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2412. md_wakeup_thread(mddev->thread);
  2413. mempool_destroy(oldpool);
  2414. return 0;
  2415. }
  2416. static void raid1_quiesce(struct mddev *mddev, int state)
  2417. {
  2418. struct r1conf *conf = mddev->private;
  2419. switch(state) {
  2420. case 2: /* wake for suspend */
  2421. wake_up(&conf->wait_barrier);
  2422. break;
  2423. case 1:
  2424. raise_barrier(conf);
  2425. break;
  2426. case 0:
  2427. lower_barrier(conf);
  2428. break;
  2429. }
  2430. }
  2431. static void *raid1_takeover(struct mddev *mddev)
  2432. {
  2433. /* raid1 can take over:
  2434. * raid5 with 2 devices, any layout or chunk size
  2435. */
  2436. if (mddev->level == 5 && mddev->raid_disks == 2) {
  2437. struct r1conf *conf;
  2438. mddev->new_level = 1;
  2439. mddev->new_layout = 0;
  2440. mddev->new_chunk_sectors = 0;
  2441. conf = setup_conf(mddev);
  2442. if (!IS_ERR(conf))
  2443. conf->barrier = 1;
  2444. return conf;
  2445. }
  2446. return ERR_PTR(-EINVAL);
  2447. }
  2448. static struct md_personality raid1_personality =
  2449. {
  2450. .name = "raid1",
  2451. .level = 1,
  2452. .owner = THIS_MODULE,
  2453. .make_request = make_request,
  2454. .run = run,
  2455. .stop = stop,
  2456. .status = status,
  2457. .error_handler = error,
  2458. .hot_add_disk = raid1_add_disk,
  2459. .hot_remove_disk= raid1_remove_disk,
  2460. .spare_active = raid1_spare_active,
  2461. .sync_request = sync_request,
  2462. .resize = raid1_resize,
  2463. .size = raid1_size,
  2464. .check_reshape = raid1_reshape,
  2465. .quiesce = raid1_quiesce,
  2466. .takeover = raid1_takeover,
  2467. };
  2468. static int __init raid_init(void)
  2469. {
  2470. return register_md_personality(&raid1_personality);
  2471. }
  2472. static void raid_exit(void)
  2473. {
  2474. unregister_md_personality(&raid1_personality);
  2475. }
  2476. module_init(raid_init);
  2477. module_exit(raid_exit);
  2478. MODULE_LICENSE("GPL");
  2479. MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
  2480. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  2481. MODULE_ALIAS("md-raid1");
  2482. MODULE_ALIAS("md-level-1");