mv_94xx.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037
  1. /*
  2. * Marvell 88SE94xx hardware specific
  3. *
  4. * Copyright 2007 Red Hat, Inc.
  5. * Copyright 2008 Marvell. <kewei@marvell.com>
  6. * Copyright 2009-2011 Marvell. <yuxiangl@marvell.com>
  7. *
  8. * This file is licensed under GPLv2.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; version 2 of the
  13. * License.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
  23. * USA
  24. */
  25. #include "mv_sas.h"
  26. #include "mv_94xx.h"
  27. #include "mv_chips.h"
  28. static void mvs_94xx_detect_porttype(struct mvs_info *mvi, int i)
  29. {
  30. u32 reg;
  31. struct mvs_phy *phy = &mvi->phy[i];
  32. u32 phy_status;
  33. mvs_write_port_vsr_addr(mvi, i, VSR_PHY_MODE3);
  34. reg = mvs_read_port_vsr_data(mvi, i);
  35. phy_status = ((reg & 0x3f0000) >> 16) & 0xff;
  36. phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
  37. switch (phy_status) {
  38. case 0x10:
  39. phy->phy_type |= PORT_TYPE_SAS;
  40. break;
  41. case 0x1d:
  42. default:
  43. phy->phy_type |= PORT_TYPE_SATA;
  44. break;
  45. }
  46. }
  47. void set_phy_tuning(struct mvs_info *mvi, int phy_id,
  48. struct phy_tuning phy_tuning)
  49. {
  50. u32 tmp, setting_0 = 0, setting_1 = 0;
  51. u8 i;
  52. /* Remap information for B0 chip:
  53. *
  54. * R0Ch -> R118h[15:0] (Adapted DFE F3 - F5 coefficient)
  55. * R0Dh -> R118h[31:16] (Generation 1 Setting 0)
  56. * R0Eh -> R11Ch[15:0] (Generation 1 Setting 1)
  57. * R0Fh -> R11Ch[31:16] (Generation 2 Setting 0)
  58. * R10h -> R120h[15:0] (Generation 2 Setting 1)
  59. * R11h -> R120h[31:16] (Generation 3 Setting 0)
  60. * R12h -> R124h[15:0] (Generation 3 Setting 1)
  61. * R13h -> R124h[31:16] (Generation 4 Setting 0 (Reserved))
  62. */
  63. /* A0 has a different set of registers */
  64. if (mvi->pdev->revision == VANIR_A0_REV)
  65. return;
  66. for (i = 0; i < 3; i++) {
  67. /* loop 3 times, set Gen 1, Gen 2, Gen 3 */
  68. switch (i) {
  69. case 0:
  70. setting_0 = GENERATION_1_SETTING;
  71. setting_1 = GENERATION_1_2_SETTING;
  72. break;
  73. case 1:
  74. setting_0 = GENERATION_1_2_SETTING;
  75. setting_1 = GENERATION_2_3_SETTING;
  76. break;
  77. case 2:
  78. setting_0 = GENERATION_2_3_SETTING;
  79. setting_1 = GENERATION_3_4_SETTING;
  80. break;
  81. }
  82. /* Set:
  83. *
  84. * Transmitter Emphasis Enable
  85. * Transmitter Emphasis Amplitude
  86. * Transmitter Amplitude
  87. */
  88. mvs_write_port_vsr_addr(mvi, phy_id, setting_0);
  89. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  90. tmp &= ~(0xFBE << 16);
  91. tmp |= (((phy_tuning.trans_emp_en << 11) |
  92. (phy_tuning.trans_emp_amp << 7) |
  93. (phy_tuning.trans_amp << 1)) << 16);
  94. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  95. /* Set Transmitter Amplitude Adjust */
  96. mvs_write_port_vsr_addr(mvi, phy_id, setting_1);
  97. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  98. tmp &= ~(0xC000);
  99. tmp |= (phy_tuning.trans_amp_adj << 14);
  100. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  101. }
  102. }
  103. void set_phy_ffe_tuning(struct mvs_info *mvi, int phy_id,
  104. struct ffe_control ffe)
  105. {
  106. u32 tmp;
  107. /* Don't run this if A0/B0 */
  108. if ((mvi->pdev->revision == VANIR_A0_REV)
  109. || (mvi->pdev->revision == VANIR_B0_REV))
  110. return;
  111. /* FFE Resistor and Capacitor */
  112. /* R10Ch DFE Resolution Control/Squelch and FFE Setting
  113. *
  114. * FFE_FORCE [7]
  115. * FFE_RES_SEL [6:4]
  116. * FFE_CAP_SEL [3:0]
  117. */
  118. mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_FFE_CONTROL);
  119. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  120. tmp &= ~0xFF;
  121. /* Read from HBA_Info_Page */
  122. tmp |= ((0x1 << 7) |
  123. (ffe.ffe_rss_sel << 4) |
  124. (ffe.ffe_cap_sel << 0));
  125. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  126. /* R064h PHY Mode Register 1
  127. *
  128. * DFE_DIS 18
  129. */
  130. mvs_write_port_vsr_addr(mvi, phy_id, VSR_REF_CLOCK_CRTL);
  131. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  132. tmp &= ~0x40001;
  133. /* Hard coding */
  134. /* No defines in HBA_Info_Page */
  135. tmp |= (0 << 18);
  136. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  137. /* R110h DFE F0-F1 Coefficient Control/DFE Update Control
  138. *
  139. * DFE_UPDATE_EN [11:6]
  140. * DFE_FX_FORCE [5:0]
  141. */
  142. mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_DFE_UPDATE_CRTL);
  143. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  144. tmp &= ~0xFFF;
  145. /* Hard coding */
  146. /* No defines in HBA_Info_Page */
  147. tmp |= ((0x3F << 6) | (0x0 << 0));
  148. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  149. /* R1A0h Interface and Digital Reference Clock Control/Reserved_50h
  150. *
  151. * FFE_TRAIN_EN 3
  152. */
  153. mvs_write_port_vsr_addr(mvi, phy_id, VSR_REF_CLOCK_CRTL);
  154. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  155. tmp &= ~0x8;
  156. /* Hard coding */
  157. /* No defines in HBA_Info_Page */
  158. tmp |= (0 << 3);
  159. mvs_write_port_vsr_data(mvi, phy_id, tmp);
  160. }
  161. /*Notice: this function must be called when phy is disabled*/
  162. void set_phy_rate(struct mvs_info *mvi, int phy_id, u8 rate)
  163. {
  164. union reg_phy_cfg phy_cfg, phy_cfg_tmp;
  165. mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_MODE2);
  166. phy_cfg_tmp.v = mvs_read_port_vsr_data(mvi, phy_id);
  167. phy_cfg.v = 0;
  168. phy_cfg.u.disable_phy = phy_cfg_tmp.u.disable_phy;
  169. phy_cfg.u.sas_support = 1;
  170. phy_cfg.u.sata_support = 1;
  171. phy_cfg.u.sata_host_mode = 1;
  172. switch (rate) {
  173. case 0x0:
  174. /* support 1.5 Gbps */
  175. phy_cfg.u.speed_support = 1;
  176. phy_cfg.u.snw_3_support = 0;
  177. phy_cfg.u.tx_lnk_parity = 1;
  178. phy_cfg.u.tx_spt_phs_lnk_rate = 0x30;
  179. break;
  180. case 0x1:
  181. /* support 1.5, 3.0 Gbps */
  182. phy_cfg.u.speed_support = 3;
  183. phy_cfg.u.tx_spt_phs_lnk_rate = 0x3c;
  184. phy_cfg.u.tx_lgcl_lnk_rate = 0x08;
  185. break;
  186. case 0x2:
  187. default:
  188. /* support 1.5, 3.0, 6.0 Gbps */
  189. phy_cfg.u.speed_support = 7;
  190. phy_cfg.u.snw_3_support = 1;
  191. phy_cfg.u.tx_lnk_parity = 1;
  192. phy_cfg.u.tx_spt_phs_lnk_rate = 0x3f;
  193. phy_cfg.u.tx_lgcl_lnk_rate = 0x09;
  194. break;
  195. }
  196. mvs_write_port_vsr_data(mvi, phy_id, phy_cfg.v);
  197. }
  198. static void __devinit
  199. mvs_94xx_config_reg_from_hba(struct mvs_info *mvi, int phy_id)
  200. {
  201. u32 temp;
  202. temp = (u32)(*(u32 *)&mvi->hba_info_param.phy_tuning[phy_id]);
  203. if (temp == 0xFFFFFFFFL) {
  204. mvi->hba_info_param.phy_tuning[phy_id].trans_emp_amp = 0x6;
  205. mvi->hba_info_param.phy_tuning[phy_id].trans_amp = 0x1A;
  206. mvi->hba_info_param.phy_tuning[phy_id].trans_amp_adj = 0x3;
  207. }
  208. temp = (u8)(*(u8 *)&mvi->hba_info_param.ffe_ctl[phy_id]);
  209. if (temp == 0xFFL) {
  210. switch (mvi->pdev->revision) {
  211. case VANIR_A0_REV:
  212. case VANIR_B0_REV:
  213. mvi->hba_info_param.ffe_ctl[phy_id].ffe_rss_sel = 0x7;
  214. mvi->hba_info_param.ffe_ctl[phy_id].ffe_cap_sel = 0x7;
  215. break;
  216. case VANIR_C0_REV:
  217. case VANIR_C1_REV:
  218. case VANIR_C2_REV:
  219. default:
  220. mvi->hba_info_param.ffe_ctl[phy_id].ffe_rss_sel = 0x7;
  221. mvi->hba_info_param.ffe_ctl[phy_id].ffe_cap_sel = 0xC;
  222. break;
  223. }
  224. }
  225. temp = (u8)(*(u8 *)&mvi->hba_info_param.phy_rate[phy_id]);
  226. if (temp == 0xFFL)
  227. /*set default phy_rate = 6Gbps*/
  228. mvi->hba_info_param.phy_rate[phy_id] = 0x2;
  229. set_phy_tuning(mvi, phy_id,
  230. mvi->hba_info_param.phy_tuning[phy_id]);
  231. set_phy_ffe_tuning(mvi, phy_id,
  232. mvi->hba_info_param.ffe_ctl[phy_id]);
  233. set_phy_rate(mvi, phy_id,
  234. mvi->hba_info_param.phy_rate[phy_id]);
  235. }
  236. static void __devinit mvs_94xx_enable_xmt(struct mvs_info *mvi, int phy_id)
  237. {
  238. void __iomem *regs = mvi->regs;
  239. u32 tmp;
  240. tmp = mr32(MVS_PCS);
  241. tmp |= 1 << (phy_id + PCS_EN_PORT_XMT_SHIFT2);
  242. mw32(MVS_PCS, tmp);
  243. }
  244. static void mvs_94xx_phy_reset(struct mvs_info *mvi, u32 phy_id, int hard)
  245. {
  246. u32 tmp;
  247. u32 delay = 5000;
  248. if (hard == MVS_PHY_TUNE) {
  249. mvs_write_port_cfg_addr(mvi, phy_id, PHYR_SATA_CTL);
  250. tmp = mvs_read_port_cfg_data(mvi, phy_id);
  251. mvs_write_port_cfg_data(mvi, phy_id, tmp|0x20000000);
  252. mvs_write_port_cfg_data(mvi, phy_id, tmp|0x100000);
  253. return;
  254. }
  255. tmp = mvs_read_port_irq_stat(mvi, phy_id);
  256. tmp &= ~PHYEV_RDY_CH;
  257. mvs_write_port_irq_stat(mvi, phy_id, tmp);
  258. if (hard) {
  259. tmp = mvs_read_phy_ctl(mvi, phy_id);
  260. tmp |= PHY_RST_HARD;
  261. mvs_write_phy_ctl(mvi, phy_id, tmp);
  262. do {
  263. tmp = mvs_read_phy_ctl(mvi, phy_id);
  264. udelay(10);
  265. delay--;
  266. } while ((tmp & PHY_RST_HARD) && delay);
  267. if (!delay)
  268. mv_dprintk("phy hard reset failed.\n");
  269. } else {
  270. tmp = mvs_read_phy_ctl(mvi, phy_id);
  271. tmp |= PHY_RST;
  272. mvs_write_phy_ctl(mvi, phy_id, tmp);
  273. }
  274. }
  275. static void mvs_94xx_phy_disable(struct mvs_info *mvi, u32 phy_id)
  276. {
  277. u32 tmp;
  278. mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_MODE2);
  279. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  280. mvs_write_port_vsr_data(mvi, phy_id, tmp | 0x00800000);
  281. }
  282. static void mvs_94xx_phy_enable(struct mvs_info *mvi, u32 phy_id)
  283. {
  284. u32 tmp;
  285. u8 revision = 0;
  286. revision = mvi->pdev->revision;
  287. if (revision == VANIR_A0_REV) {
  288. mvs_write_port_vsr_addr(mvi, phy_id, CMD_HOST_RD_DATA);
  289. mvs_write_port_vsr_data(mvi, phy_id, 0x8300ffc1);
  290. }
  291. if (revision == VANIR_B0_REV) {
  292. mvs_write_port_vsr_addr(mvi, phy_id, CMD_APP_MEM_CTL);
  293. mvs_write_port_vsr_data(mvi, phy_id, 0x08001006);
  294. mvs_write_port_vsr_addr(mvi, phy_id, CMD_HOST_RD_DATA);
  295. mvs_write_port_vsr_data(mvi, phy_id, 0x0000705f);
  296. }
  297. mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_MODE2);
  298. tmp = mvs_read_port_vsr_data(mvi, phy_id);
  299. tmp |= bit(0);
  300. mvs_write_port_vsr_data(mvi, phy_id, tmp & 0xfd7fffff);
  301. }
  302. static int __devinit mvs_94xx_init(struct mvs_info *mvi)
  303. {
  304. void __iomem *regs = mvi->regs;
  305. int i;
  306. u32 tmp, cctl;
  307. u8 revision;
  308. revision = mvi->pdev->revision;
  309. mvs_show_pcie_usage(mvi);
  310. if (mvi->flags & MVF_FLAG_SOC) {
  311. tmp = mr32(MVS_PHY_CTL);
  312. tmp &= ~PCTL_PWR_OFF;
  313. tmp |= PCTL_PHY_DSBL;
  314. mw32(MVS_PHY_CTL, tmp);
  315. }
  316. /* Init Chip */
  317. /* make sure RST is set; HBA_RST /should/ have done that for us */
  318. cctl = mr32(MVS_CTL) & 0xFFFF;
  319. if (cctl & CCTL_RST)
  320. cctl &= ~CCTL_RST;
  321. else
  322. mw32_f(MVS_CTL, cctl | CCTL_RST);
  323. if (mvi->flags & MVF_FLAG_SOC) {
  324. tmp = mr32(MVS_PHY_CTL);
  325. tmp &= ~PCTL_PWR_OFF;
  326. tmp |= PCTL_COM_ON;
  327. tmp &= ~PCTL_PHY_DSBL;
  328. tmp |= PCTL_LINK_RST;
  329. mw32(MVS_PHY_CTL, tmp);
  330. msleep(100);
  331. tmp &= ~PCTL_LINK_RST;
  332. mw32(MVS_PHY_CTL, tmp);
  333. msleep(100);
  334. }
  335. /* disable Multiplexing, enable phy implemented */
  336. mw32(MVS_PORTS_IMP, 0xFF);
  337. if (revision == VANIR_A0_REV) {
  338. mw32(MVS_PA_VSR_ADDR, CMD_CMWK_OOB_DET);
  339. mw32(MVS_PA_VSR_PORT, 0x00018080);
  340. }
  341. mw32(MVS_PA_VSR_ADDR, VSR_PHY_MODE2);
  342. if (revision == VANIR_A0_REV || revision == VANIR_B0_REV)
  343. /* set 6G/3G/1.5G, multiplexing, without SSC */
  344. mw32(MVS_PA_VSR_PORT, 0x0084d4fe);
  345. else
  346. /* set 6G/3G/1.5G, multiplexing, with and without SSC */
  347. mw32(MVS_PA_VSR_PORT, 0x0084fffe);
  348. if (revision == VANIR_B0_REV) {
  349. mw32(MVS_PA_VSR_ADDR, CMD_APP_MEM_CTL);
  350. mw32(MVS_PA_VSR_PORT, 0x08001006);
  351. mw32(MVS_PA_VSR_ADDR, CMD_HOST_RD_DATA);
  352. mw32(MVS_PA_VSR_PORT, 0x0000705f);
  353. }
  354. /* reset control */
  355. mw32(MVS_PCS, 0); /* MVS_PCS */
  356. mw32(MVS_STP_REG_SET_0, 0);
  357. mw32(MVS_STP_REG_SET_1, 0);
  358. /* init phys */
  359. mvs_phy_hacks(mvi);
  360. /* set LED blink when IO*/
  361. mw32(MVS_PA_VSR_ADDR, VSR_PHY_ACT_LED);
  362. tmp = mr32(MVS_PA_VSR_PORT);
  363. tmp &= 0xFFFF00FF;
  364. tmp |= 0x00003300;
  365. mw32(MVS_PA_VSR_PORT, tmp);
  366. mw32(MVS_CMD_LIST_LO, mvi->slot_dma);
  367. mw32(MVS_CMD_LIST_HI, (mvi->slot_dma >> 16) >> 16);
  368. mw32(MVS_RX_FIS_LO, mvi->rx_fis_dma);
  369. mw32(MVS_RX_FIS_HI, (mvi->rx_fis_dma >> 16) >> 16);
  370. mw32(MVS_TX_CFG, MVS_CHIP_SLOT_SZ);
  371. mw32(MVS_TX_LO, mvi->tx_dma);
  372. mw32(MVS_TX_HI, (mvi->tx_dma >> 16) >> 16);
  373. mw32(MVS_RX_CFG, MVS_RX_RING_SZ);
  374. mw32(MVS_RX_LO, mvi->rx_dma);
  375. mw32(MVS_RX_HI, (mvi->rx_dma >> 16) >> 16);
  376. for (i = 0; i < mvi->chip->n_phy; i++) {
  377. mvs_94xx_phy_disable(mvi, i);
  378. /* set phy local SAS address */
  379. mvs_set_sas_addr(mvi, i, CONFIG_ID_FRAME3, CONFIG_ID_FRAME4,
  380. cpu_to_le64(mvi->phy[i].dev_sas_addr));
  381. mvs_94xx_enable_xmt(mvi, i);
  382. mvs_94xx_config_reg_from_hba(mvi, i);
  383. mvs_94xx_phy_enable(mvi, i);
  384. mvs_94xx_phy_reset(mvi, i, PHY_RST_HARD);
  385. msleep(500);
  386. mvs_94xx_detect_porttype(mvi, i);
  387. }
  388. if (mvi->flags & MVF_FLAG_SOC) {
  389. /* set select registers */
  390. writel(0x0E008000, regs + 0x000);
  391. writel(0x59000008, regs + 0x004);
  392. writel(0x20, regs + 0x008);
  393. writel(0x20, regs + 0x00c);
  394. writel(0x20, regs + 0x010);
  395. writel(0x20, regs + 0x014);
  396. writel(0x20, regs + 0x018);
  397. writel(0x20, regs + 0x01c);
  398. }
  399. for (i = 0; i < mvi->chip->n_phy; i++) {
  400. /* clear phy int status */
  401. tmp = mvs_read_port_irq_stat(mvi, i);
  402. tmp &= ~PHYEV_SIG_FIS;
  403. mvs_write_port_irq_stat(mvi, i, tmp);
  404. /* set phy int mask */
  405. tmp = PHYEV_RDY_CH | PHYEV_BROAD_CH |
  406. PHYEV_ID_DONE | PHYEV_DCDR_ERR | PHYEV_CRC_ERR ;
  407. mvs_write_port_irq_mask(mvi, i, tmp);
  408. msleep(100);
  409. mvs_update_phyinfo(mvi, i, 1);
  410. }
  411. /* FIXME: update wide port bitmaps */
  412. /* little endian for open address and command table, etc. */
  413. /*
  414. * it seems that ( from the spec ) turning on big-endian won't
  415. * do us any good on big-endian machines, need further confirmation
  416. */
  417. cctl = mr32(MVS_CTL);
  418. cctl |= CCTL_ENDIAN_CMD;
  419. cctl &= ~CCTL_ENDIAN_OPEN;
  420. cctl |= CCTL_ENDIAN_RSP;
  421. mw32_f(MVS_CTL, cctl);
  422. /* reset CMD queue */
  423. tmp = mr32(MVS_PCS);
  424. tmp |= PCS_CMD_RST;
  425. tmp &= ~PCS_SELF_CLEAR;
  426. mw32(MVS_PCS, tmp);
  427. /* interrupt coalescing may cause missing HW interrput in some case,
  428. * and the max count is 0x1ff, while our max slot is 0x200,
  429. * it will make count 0.
  430. */
  431. tmp = 0;
  432. if (MVS_CHIP_SLOT_SZ > 0x1ff)
  433. mw32(MVS_INT_COAL, 0x1ff | COAL_EN);
  434. else
  435. mw32(MVS_INT_COAL, MVS_CHIP_SLOT_SZ | COAL_EN);
  436. tmp = 0x10000 | interrupt_coalescing;
  437. mw32(MVS_INT_COAL_TMOUT, tmp);
  438. /* ladies and gentlemen, start your engines */
  439. mw32(MVS_TX_CFG, 0);
  440. mw32(MVS_TX_CFG, MVS_CHIP_SLOT_SZ | TX_EN);
  441. mw32(MVS_RX_CFG, MVS_RX_RING_SZ | RX_EN);
  442. /* enable CMD/CMPL_Q/RESP mode */
  443. mw32(MVS_PCS, PCS_SATA_RETRY_2 | PCS_FIS_RX_EN |
  444. PCS_CMD_EN | PCS_CMD_STOP_ERR);
  445. /* enable completion queue interrupt */
  446. tmp = (CINT_PORT_MASK | CINT_DONE | CINT_MEM | CINT_SRS | CINT_CI_STOP |
  447. CINT_DMA_PCIE | CINT_NON_SPEC_NCQ_ERROR);
  448. tmp |= CINT_PHY_MASK;
  449. mw32(MVS_INT_MASK, tmp);
  450. /* Enable SRS interrupt */
  451. mw32(MVS_INT_MASK_SRS_0, 0xFFFF);
  452. return 0;
  453. }
  454. static int mvs_94xx_ioremap(struct mvs_info *mvi)
  455. {
  456. if (!mvs_ioremap(mvi, 2, -1)) {
  457. mvi->regs_ex = mvi->regs + 0x10200;
  458. mvi->regs += 0x20000;
  459. if (mvi->id == 1)
  460. mvi->regs += 0x4000;
  461. return 0;
  462. }
  463. return -1;
  464. }
  465. static void mvs_94xx_iounmap(struct mvs_info *mvi)
  466. {
  467. if (mvi->regs) {
  468. mvi->regs -= 0x20000;
  469. if (mvi->id == 1)
  470. mvi->regs -= 0x4000;
  471. mvs_iounmap(mvi->regs);
  472. }
  473. }
  474. static void mvs_94xx_interrupt_enable(struct mvs_info *mvi)
  475. {
  476. void __iomem *regs = mvi->regs_ex;
  477. u32 tmp;
  478. tmp = mr32(MVS_GBL_CTL);
  479. tmp |= (IRQ_SAS_A | IRQ_SAS_B);
  480. mw32(MVS_GBL_INT_STAT, tmp);
  481. writel(tmp, regs + 0x0C);
  482. writel(tmp, regs + 0x10);
  483. writel(tmp, regs + 0x14);
  484. writel(tmp, regs + 0x18);
  485. mw32(MVS_GBL_CTL, tmp);
  486. }
  487. static void mvs_94xx_interrupt_disable(struct mvs_info *mvi)
  488. {
  489. void __iomem *regs = mvi->regs_ex;
  490. u32 tmp;
  491. tmp = mr32(MVS_GBL_CTL);
  492. tmp &= ~(IRQ_SAS_A | IRQ_SAS_B);
  493. mw32(MVS_GBL_INT_STAT, tmp);
  494. writel(tmp, regs + 0x0C);
  495. writel(tmp, regs + 0x10);
  496. writel(tmp, regs + 0x14);
  497. writel(tmp, regs + 0x18);
  498. mw32(MVS_GBL_CTL, tmp);
  499. }
  500. static u32 mvs_94xx_isr_status(struct mvs_info *mvi, int irq)
  501. {
  502. void __iomem *regs = mvi->regs_ex;
  503. u32 stat = 0;
  504. if (!(mvi->flags & MVF_FLAG_SOC)) {
  505. stat = mr32(MVS_GBL_INT_STAT);
  506. if (!(stat & (IRQ_SAS_A | IRQ_SAS_B)))
  507. return 0;
  508. }
  509. return stat;
  510. }
  511. static irqreturn_t mvs_94xx_isr(struct mvs_info *mvi, int irq, u32 stat)
  512. {
  513. void __iomem *regs = mvi->regs;
  514. if (((stat & IRQ_SAS_A) && mvi->id == 0) ||
  515. ((stat & IRQ_SAS_B) && mvi->id == 1)) {
  516. mw32_f(MVS_INT_STAT, CINT_DONE);
  517. #ifndef MVS_USE_TASKLET
  518. spin_lock(&mvi->lock);
  519. #endif
  520. mvs_int_full(mvi);
  521. #ifndef MVS_USE_TASKLET
  522. spin_unlock(&mvi->lock);
  523. #endif
  524. }
  525. return IRQ_HANDLED;
  526. }
  527. static void mvs_94xx_command_active(struct mvs_info *mvi, u32 slot_idx)
  528. {
  529. u32 tmp;
  530. tmp = mvs_cr32(mvi, MVS_COMMAND_ACTIVE+(slot_idx >> 3));
  531. if (tmp && 1 << (slot_idx % 32)) {
  532. mv_printk("command active %08X, slot [%x].\n", tmp, slot_idx);
  533. mvs_cw32(mvi, MVS_COMMAND_ACTIVE + (slot_idx >> 3),
  534. 1 << (slot_idx % 32));
  535. do {
  536. tmp = mvs_cr32(mvi,
  537. MVS_COMMAND_ACTIVE + (slot_idx >> 3));
  538. } while (tmp & 1 << (slot_idx % 32));
  539. }
  540. }
  541. void mvs_94xx_clear_srs_irq(struct mvs_info *mvi, u8 reg_set, u8 clear_all)
  542. {
  543. void __iomem *regs = mvi->regs;
  544. u32 tmp;
  545. if (clear_all) {
  546. tmp = mr32(MVS_INT_STAT_SRS_0);
  547. if (tmp) {
  548. mv_dprintk("check SRS 0 %08X.\n", tmp);
  549. mw32(MVS_INT_STAT_SRS_0, tmp);
  550. }
  551. tmp = mr32(MVS_INT_STAT_SRS_1);
  552. if (tmp) {
  553. mv_dprintk("check SRS 1 %08X.\n", tmp);
  554. mw32(MVS_INT_STAT_SRS_1, tmp);
  555. }
  556. } else {
  557. if (reg_set > 31)
  558. tmp = mr32(MVS_INT_STAT_SRS_1);
  559. else
  560. tmp = mr32(MVS_INT_STAT_SRS_0);
  561. if (tmp & (1 << (reg_set % 32))) {
  562. mv_dprintk("register set 0x%x was stopped.\n", reg_set);
  563. if (reg_set > 31)
  564. mw32(MVS_INT_STAT_SRS_1, 1 << (reg_set % 32));
  565. else
  566. mw32(MVS_INT_STAT_SRS_0, 1 << (reg_set % 32));
  567. }
  568. }
  569. }
  570. static void mvs_94xx_issue_stop(struct mvs_info *mvi, enum mvs_port_type type,
  571. u32 tfs)
  572. {
  573. void __iomem *regs = mvi->regs;
  574. u32 tmp;
  575. mvs_94xx_clear_srs_irq(mvi, 0, 1);
  576. tmp = mr32(MVS_INT_STAT);
  577. mw32(MVS_INT_STAT, tmp | CINT_CI_STOP);
  578. tmp = mr32(MVS_PCS) | 0xFF00;
  579. mw32(MVS_PCS, tmp);
  580. }
  581. static void mvs_94xx_non_spec_ncq_error(struct mvs_info *mvi)
  582. {
  583. void __iomem *regs = mvi->regs;
  584. u32 err_0, err_1;
  585. u8 i;
  586. struct mvs_device *device;
  587. err_0 = mr32(MVS_NON_NCQ_ERR_0);
  588. err_1 = mr32(MVS_NON_NCQ_ERR_1);
  589. mv_dprintk("non specific ncq error err_0:%x,err_1:%x.\n",
  590. err_0, err_1);
  591. for (i = 0; i < 32; i++) {
  592. if (err_0 & bit(i)) {
  593. device = mvs_find_dev_by_reg_set(mvi, i);
  594. if (device)
  595. mvs_release_task(mvi, device->sas_device);
  596. }
  597. if (err_1 & bit(i)) {
  598. device = mvs_find_dev_by_reg_set(mvi, i+32);
  599. if (device)
  600. mvs_release_task(mvi, device->sas_device);
  601. }
  602. }
  603. mw32(MVS_NON_NCQ_ERR_0, err_0);
  604. mw32(MVS_NON_NCQ_ERR_1, err_1);
  605. }
  606. static void mvs_94xx_free_reg_set(struct mvs_info *mvi, u8 *tfs)
  607. {
  608. void __iomem *regs = mvi->regs;
  609. u8 reg_set = *tfs;
  610. if (*tfs == MVS_ID_NOT_MAPPED)
  611. return;
  612. mvi->sata_reg_set &= ~bit(reg_set);
  613. if (reg_set < 32)
  614. w_reg_set_enable(reg_set, (u32)mvi->sata_reg_set);
  615. else
  616. w_reg_set_enable(reg_set, (u32)(mvi->sata_reg_set >> 32));
  617. *tfs = MVS_ID_NOT_MAPPED;
  618. return;
  619. }
  620. static u8 mvs_94xx_assign_reg_set(struct mvs_info *mvi, u8 *tfs)
  621. {
  622. int i;
  623. void __iomem *regs = mvi->regs;
  624. if (*tfs != MVS_ID_NOT_MAPPED)
  625. return 0;
  626. i = mv_ffc64(mvi->sata_reg_set);
  627. if (i >= 32) {
  628. mvi->sata_reg_set |= bit(i);
  629. w_reg_set_enable(i, (u32)(mvi->sata_reg_set >> 32));
  630. *tfs = i;
  631. return 0;
  632. } else if (i >= 0) {
  633. mvi->sata_reg_set |= bit(i);
  634. w_reg_set_enable(i, (u32)mvi->sata_reg_set);
  635. *tfs = i;
  636. return 0;
  637. }
  638. return MVS_ID_NOT_MAPPED;
  639. }
  640. static void mvs_94xx_make_prd(struct scatterlist *scatter, int nr, void *prd)
  641. {
  642. int i;
  643. struct scatterlist *sg;
  644. struct mvs_prd *buf_prd = prd;
  645. struct mvs_prd_imt im_len;
  646. *(u32 *)&im_len = 0;
  647. for_each_sg(scatter, sg, nr, i) {
  648. buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
  649. im_len.len = sg_dma_len(sg);
  650. buf_prd->im_len = cpu_to_le32(*(u32 *)&im_len);
  651. buf_prd++;
  652. }
  653. }
  654. static int mvs_94xx_oob_done(struct mvs_info *mvi, int i)
  655. {
  656. u32 phy_st;
  657. phy_st = mvs_read_phy_ctl(mvi, i);
  658. if (phy_st & PHY_READY_MASK) /* phy ready */
  659. return 1;
  660. return 0;
  661. }
  662. static void mvs_94xx_get_dev_identify_frame(struct mvs_info *mvi, int port_id,
  663. struct sas_identify_frame *id)
  664. {
  665. int i;
  666. u32 id_frame[7];
  667. for (i = 0; i < 7; i++) {
  668. mvs_write_port_cfg_addr(mvi, port_id,
  669. CONFIG_ID_FRAME0 + i * 4);
  670. id_frame[i] = cpu_to_le32(mvs_read_port_cfg_data(mvi, port_id));
  671. }
  672. memcpy(id, id_frame, 28);
  673. }
  674. static void mvs_94xx_get_att_identify_frame(struct mvs_info *mvi, int port_id,
  675. struct sas_identify_frame *id)
  676. {
  677. int i;
  678. u32 id_frame[7];
  679. /* mvs_hexdump(28, (u8 *)id_frame, 0); */
  680. for (i = 0; i < 7; i++) {
  681. mvs_write_port_cfg_addr(mvi, port_id,
  682. CONFIG_ATT_ID_FRAME0 + i * 4);
  683. id_frame[i] = cpu_to_le32(mvs_read_port_cfg_data(mvi, port_id));
  684. mv_dprintk("94xx phy %d atta frame %d %x.\n",
  685. port_id + mvi->id * mvi->chip->n_phy, i, id_frame[i]);
  686. }
  687. /* mvs_hexdump(28, (u8 *)id_frame, 0); */
  688. memcpy(id, id_frame, 28);
  689. }
  690. static u32 mvs_94xx_make_dev_info(struct sas_identify_frame *id)
  691. {
  692. u32 att_dev_info = 0;
  693. att_dev_info |= id->dev_type;
  694. if (id->stp_iport)
  695. att_dev_info |= PORT_DEV_STP_INIT;
  696. if (id->smp_iport)
  697. att_dev_info |= PORT_DEV_SMP_INIT;
  698. if (id->ssp_iport)
  699. att_dev_info |= PORT_DEV_SSP_INIT;
  700. if (id->stp_tport)
  701. att_dev_info |= PORT_DEV_STP_TRGT;
  702. if (id->smp_tport)
  703. att_dev_info |= PORT_DEV_SMP_TRGT;
  704. if (id->ssp_tport)
  705. att_dev_info |= PORT_DEV_SSP_TRGT;
  706. att_dev_info |= (u32)id->phy_id<<24;
  707. return att_dev_info;
  708. }
  709. static u32 mvs_94xx_make_att_info(struct sas_identify_frame *id)
  710. {
  711. return mvs_94xx_make_dev_info(id);
  712. }
  713. static void mvs_94xx_fix_phy_info(struct mvs_info *mvi, int i,
  714. struct sas_identify_frame *id)
  715. {
  716. struct mvs_phy *phy = &mvi->phy[i];
  717. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  718. mv_dprintk("get all reg link rate is 0x%x\n", phy->phy_status);
  719. sas_phy->linkrate =
  720. (phy->phy_status & PHY_NEG_SPP_PHYS_LINK_RATE_MASK) >>
  721. PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET;
  722. sas_phy->linkrate += 0x8;
  723. mv_dprintk("get link rate is %d\n", sas_phy->linkrate);
  724. phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS;
  725. phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS;
  726. mvs_94xx_get_dev_identify_frame(mvi, i, id);
  727. phy->dev_info = mvs_94xx_make_dev_info(id);
  728. if (phy->phy_type & PORT_TYPE_SAS) {
  729. mvs_94xx_get_att_identify_frame(mvi, i, id);
  730. phy->att_dev_info = mvs_94xx_make_att_info(id);
  731. phy->att_dev_sas_addr = *(u64 *)id->sas_addr;
  732. } else {
  733. phy->att_dev_info = PORT_DEV_STP_TRGT | 1;
  734. }
  735. }
  736. void mvs_94xx_phy_set_link_rate(struct mvs_info *mvi, u32 phy_id,
  737. struct sas_phy_linkrates *rates)
  738. {
  739. u32 lrmax = 0;
  740. u32 tmp;
  741. tmp = mvs_read_phy_ctl(mvi, phy_id);
  742. lrmax = (rates->maximum_linkrate - SAS_LINK_RATE_1_5_GBPS) << 12;
  743. if (lrmax) {
  744. tmp &= ~(0x3 << 12);
  745. tmp |= lrmax;
  746. }
  747. mvs_write_phy_ctl(mvi, phy_id, tmp);
  748. mvs_94xx_phy_reset(mvi, phy_id, PHY_RST_HARD);
  749. }
  750. static void mvs_94xx_clear_active_cmds(struct mvs_info *mvi)
  751. {
  752. u32 tmp;
  753. void __iomem *regs = mvi->regs;
  754. tmp = mr32(MVS_STP_REG_SET_0);
  755. mw32(MVS_STP_REG_SET_0, 0);
  756. mw32(MVS_STP_REG_SET_0, tmp);
  757. tmp = mr32(MVS_STP_REG_SET_1);
  758. mw32(MVS_STP_REG_SET_1, 0);
  759. mw32(MVS_STP_REG_SET_1, tmp);
  760. }
  761. u32 mvs_94xx_spi_read_data(struct mvs_info *mvi)
  762. {
  763. void __iomem *regs = mvi->regs_ex - 0x10200;
  764. return mr32(SPI_RD_DATA_REG_94XX);
  765. }
  766. void mvs_94xx_spi_write_data(struct mvs_info *mvi, u32 data)
  767. {
  768. void __iomem *regs = mvi->regs_ex - 0x10200;
  769. mw32(SPI_RD_DATA_REG_94XX, data);
  770. }
  771. int mvs_94xx_spi_buildcmd(struct mvs_info *mvi,
  772. u32 *dwCmd,
  773. u8 cmd,
  774. u8 read,
  775. u8 length,
  776. u32 addr
  777. )
  778. {
  779. void __iomem *regs = mvi->regs_ex - 0x10200;
  780. u32 dwTmp;
  781. dwTmp = ((u32)cmd << 8) | ((u32)length << 4);
  782. if (read)
  783. dwTmp |= SPI_CTRL_READ_94XX;
  784. if (addr != MV_MAX_U32) {
  785. mw32(SPI_ADDR_REG_94XX, (addr & 0x0003FFFFL));
  786. dwTmp |= SPI_ADDR_VLD_94XX;
  787. }
  788. *dwCmd = dwTmp;
  789. return 0;
  790. }
  791. int mvs_94xx_spi_issuecmd(struct mvs_info *mvi, u32 cmd)
  792. {
  793. void __iomem *regs = mvi->regs_ex - 0x10200;
  794. mw32(SPI_CTRL_REG_94XX, cmd | SPI_CTRL_SpiStart_94XX);
  795. return 0;
  796. }
  797. int mvs_94xx_spi_waitdataready(struct mvs_info *mvi, u32 timeout)
  798. {
  799. void __iomem *regs = mvi->regs_ex - 0x10200;
  800. u32 i, dwTmp;
  801. for (i = 0; i < timeout; i++) {
  802. dwTmp = mr32(SPI_CTRL_REG_94XX);
  803. if (!(dwTmp & SPI_CTRL_SpiStart_94XX))
  804. return 0;
  805. msleep(10);
  806. }
  807. return -1;
  808. }
  809. void mvs_94xx_fix_dma(struct mvs_info *mvi, u32 phy_mask,
  810. int buf_len, int from, void *prd)
  811. {
  812. int i;
  813. struct mvs_prd *buf_prd = prd;
  814. dma_addr_t buf_dma;
  815. struct mvs_prd_imt im_len;
  816. *(u32 *)&im_len = 0;
  817. buf_prd += from;
  818. #define PRD_CHAINED_ENTRY 0x01
  819. if ((mvi->pdev->revision == VANIR_A0_REV) ||
  820. (mvi->pdev->revision == VANIR_B0_REV))
  821. buf_dma = (phy_mask <= 0x08) ?
  822. mvi->bulk_buffer_dma : mvi->bulk_buffer_dma1;
  823. else
  824. return;
  825. for (i = from; i < MAX_SG_ENTRY; i++, ++buf_prd) {
  826. if (i == MAX_SG_ENTRY - 1) {
  827. buf_prd->addr = cpu_to_le64(virt_to_phys(buf_prd - 1));
  828. im_len.len = 2;
  829. im_len.misc_ctl = PRD_CHAINED_ENTRY;
  830. } else {
  831. buf_prd->addr = cpu_to_le64(buf_dma);
  832. im_len.len = buf_len;
  833. }
  834. buf_prd->im_len = cpu_to_le32(*(u32 *)&im_len);
  835. }
  836. }
  837. static void mvs_94xx_tune_interrupt(struct mvs_info *mvi, u32 time)
  838. {
  839. void __iomem *regs = mvi->regs;
  840. u32 tmp = 0;
  841. /* interrupt coalescing may cause missing HW interrput in some case,
  842. * and the max count is 0x1ff, while our max slot is 0x200,
  843. * it will make count 0.
  844. */
  845. if (time == 0) {
  846. mw32(MVS_INT_COAL, 0);
  847. mw32(MVS_INT_COAL_TMOUT, 0x10000);
  848. } else {
  849. if (MVS_CHIP_SLOT_SZ > 0x1ff)
  850. mw32(MVS_INT_COAL, 0x1ff|COAL_EN);
  851. else
  852. mw32(MVS_INT_COAL, MVS_CHIP_SLOT_SZ|COAL_EN);
  853. tmp = 0x10000 | time;
  854. mw32(MVS_INT_COAL_TMOUT, tmp);
  855. }
  856. }
  857. const struct mvs_dispatch mvs_94xx_dispatch = {
  858. "mv94xx",
  859. mvs_94xx_init,
  860. NULL,
  861. mvs_94xx_ioremap,
  862. mvs_94xx_iounmap,
  863. mvs_94xx_isr,
  864. mvs_94xx_isr_status,
  865. mvs_94xx_interrupt_enable,
  866. mvs_94xx_interrupt_disable,
  867. mvs_read_phy_ctl,
  868. mvs_write_phy_ctl,
  869. mvs_read_port_cfg_data,
  870. mvs_write_port_cfg_data,
  871. mvs_write_port_cfg_addr,
  872. mvs_read_port_vsr_data,
  873. mvs_write_port_vsr_data,
  874. mvs_write_port_vsr_addr,
  875. mvs_read_port_irq_stat,
  876. mvs_write_port_irq_stat,
  877. mvs_read_port_irq_mask,
  878. mvs_write_port_irq_mask,
  879. mvs_94xx_command_active,
  880. mvs_94xx_clear_srs_irq,
  881. mvs_94xx_issue_stop,
  882. mvs_start_delivery,
  883. mvs_rx_update,
  884. mvs_int_full,
  885. mvs_94xx_assign_reg_set,
  886. mvs_94xx_free_reg_set,
  887. mvs_get_prd_size,
  888. mvs_get_prd_count,
  889. mvs_94xx_make_prd,
  890. mvs_94xx_detect_porttype,
  891. mvs_94xx_oob_done,
  892. mvs_94xx_fix_phy_info,
  893. NULL,
  894. mvs_94xx_phy_set_link_rate,
  895. mvs_hw_max_link_rate,
  896. mvs_94xx_phy_disable,
  897. mvs_94xx_phy_enable,
  898. mvs_94xx_phy_reset,
  899. NULL,
  900. mvs_94xx_clear_active_cmds,
  901. mvs_94xx_spi_read_data,
  902. mvs_94xx_spi_write_data,
  903. mvs_94xx_spi_buildcmd,
  904. mvs_94xx_spi_issuecmd,
  905. mvs_94xx_spi_waitdataready,
  906. mvs_94xx_fix_dma,
  907. mvs_94xx_tune_interrupt,
  908. mvs_94xx_non_spec_ncq_error,
  909. };