messenger.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* static tag bytes (protocol control messages) */
  29. static char tag_msg = CEPH_MSGR_TAG_MSG;
  30. static char tag_ack = CEPH_MSGR_TAG_ACK;
  31. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  32. #ifdef CONFIG_LOCKDEP
  33. static struct lock_class_key socket_class;
  34. #endif
  35. /*
  36. * When skipping (ignoring) a block of input we read it into a "skip
  37. * buffer," which is this many bytes in size.
  38. */
  39. #define SKIP_BUF_SIZE 1024
  40. static void queue_con(struct ceph_connection *con);
  41. static void con_work(struct work_struct *);
  42. static void ceph_fault(struct ceph_connection *con);
  43. /*
  44. * Nicely render a sockaddr as a string. An array of formatted
  45. * strings is used, to approximate reentrancy.
  46. */
  47. #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
  48. #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
  49. #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
  50. #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
  51. static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  52. static atomic_t addr_str_seq = ATOMIC_INIT(0);
  53. static struct page *zero_page; /* used in certain error cases */
  54. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  55. {
  56. int i;
  57. char *s;
  58. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  59. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  60. i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  61. s = addr_str[i];
  62. switch (ss->ss_family) {
  63. case AF_INET:
  64. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  65. ntohs(in4->sin_port));
  66. break;
  67. case AF_INET6:
  68. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  69. ntohs(in6->sin6_port));
  70. break;
  71. default:
  72. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
  73. ss->ss_family);
  74. }
  75. return s;
  76. }
  77. EXPORT_SYMBOL(ceph_pr_addr);
  78. static void encode_my_addr(struct ceph_messenger *msgr)
  79. {
  80. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  81. ceph_encode_addr(&msgr->my_enc_addr);
  82. }
  83. /*
  84. * work queue for all reading and writing to/from the socket.
  85. */
  86. static struct workqueue_struct *ceph_msgr_wq;
  87. void _ceph_msgr_exit(void)
  88. {
  89. if (ceph_msgr_wq) {
  90. destroy_workqueue(ceph_msgr_wq);
  91. ceph_msgr_wq = NULL;
  92. }
  93. BUG_ON(zero_page == NULL);
  94. kunmap(zero_page);
  95. page_cache_release(zero_page);
  96. zero_page = NULL;
  97. }
  98. int ceph_msgr_init(void)
  99. {
  100. BUG_ON(zero_page != NULL);
  101. zero_page = ZERO_PAGE(0);
  102. page_cache_get(zero_page);
  103. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  104. if (ceph_msgr_wq)
  105. return 0;
  106. pr_err("msgr_init failed to create workqueue\n");
  107. _ceph_msgr_exit();
  108. return -ENOMEM;
  109. }
  110. EXPORT_SYMBOL(ceph_msgr_init);
  111. void ceph_msgr_exit(void)
  112. {
  113. BUG_ON(ceph_msgr_wq == NULL);
  114. _ceph_msgr_exit();
  115. }
  116. EXPORT_SYMBOL(ceph_msgr_exit);
  117. void ceph_msgr_flush(void)
  118. {
  119. flush_workqueue(ceph_msgr_wq);
  120. }
  121. EXPORT_SYMBOL(ceph_msgr_flush);
  122. /*
  123. * socket callback functions
  124. */
  125. /* data available on socket, or listen socket received a connect */
  126. static void ceph_data_ready(struct sock *sk, int count_unused)
  127. {
  128. struct ceph_connection *con = sk->sk_user_data;
  129. if (sk->sk_state != TCP_CLOSE_WAIT) {
  130. dout("ceph_data_ready on %p state = %lu, queueing work\n",
  131. con, con->state);
  132. queue_con(con);
  133. }
  134. }
  135. /* socket has buffer space for writing */
  136. static void ceph_write_space(struct sock *sk)
  137. {
  138. struct ceph_connection *con = sk->sk_user_data;
  139. /* only queue to workqueue if there is data we want to write,
  140. * and there is sufficient space in the socket buffer to accept
  141. * more data. clear SOCK_NOSPACE so that ceph_write_space()
  142. * doesn't get called again until try_write() fills the socket
  143. * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
  144. * and net/core/stream.c:sk_stream_write_space().
  145. */
  146. if (test_bit(WRITE_PENDING, &con->state)) {
  147. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  148. dout("ceph_write_space %p queueing write work\n", con);
  149. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  150. queue_con(con);
  151. }
  152. } else {
  153. dout("ceph_write_space %p nothing to write\n", con);
  154. }
  155. }
  156. /* socket's state has changed */
  157. static void ceph_state_change(struct sock *sk)
  158. {
  159. struct ceph_connection *con = sk->sk_user_data;
  160. dout("ceph_state_change %p state = %lu sk_state = %u\n",
  161. con, con->state, sk->sk_state);
  162. if (test_bit(CLOSED, &con->state))
  163. return;
  164. switch (sk->sk_state) {
  165. case TCP_CLOSE:
  166. dout("ceph_state_change TCP_CLOSE\n");
  167. case TCP_CLOSE_WAIT:
  168. dout("ceph_state_change TCP_CLOSE_WAIT\n");
  169. if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
  170. if (test_bit(CONNECTING, &con->state))
  171. con->error_msg = "connection failed";
  172. else
  173. con->error_msg = "socket closed";
  174. queue_con(con);
  175. }
  176. break;
  177. case TCP_ESTABLISHED:
  178. dout("ceph_state_change TCP_ESTABLISHED\n");
  179. queue_con(con);
  180. break;
  181. default: /* Everything else is uninteresting */
  182. break;
  183. }
  184. }
  185. /*
  186. * set up socket callbacks
  187. */
  188. static void set_sock_callbacks(struct socket *sock,
  189. struct ceph_connection *con)
  190. {
  191. struct sock *sk = sock->sk;
  192. sk->sk_user_data = con;
  193. sk->sk_data_ready = ceph_data_ready;
  194. sk->sk_write_space = ceph_write_space;
  195. sk->sk_state_change = ceph_state_change;
  196. }
  197. /*
  198. * socket helpers
  199. */
  200. /*
  201. * initiate connection to a remote socket.
  202. */
  203. static int ceph_tcp_connect(struct ceph_connection *con)
  204. {
  205. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  206. struct socket *sock;
  207. int ret;
  208. BUG_ON(con->sock);
  209. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  210. IPPROTO_TCP, &sock);
  211. if (ret)
  212. return ret;
  213. sock->sk->sk_allocation = GFP_NOFS;
  214. #ifdef CONFIG_LOCKDEP
  215. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  216. #endif
  217. set_sock_callbacks(sock, con);
  218. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  219. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  220. O_NONBLOCK);
  221. if (ret == -EINPROGRESS) {
  222. dout("connect %s EINPROGRESS sk_state = %u\n",
  223. ceph_pr_addr(&con->peer_addr.in_addr),
  224. sock->sk->sk_state);
  225. } else if (ret < 0) {
  226. pr_err("connect %s error %d\n",
  227. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  228. sock_release(sock);
  229. con->error_msg = "connect error";
  230. return ret;
  231. }
  232. con->sock = sock;
  233. return 0;
  234. }
  235. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  236. {
  237. struct kvec iov = {buf, len};
  238. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  239. int r;
  240. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  241. if (r == -EAGAIN)
  242. r = 0;
  243. return r;
  244. }
  245. /*
  246. * write something. @more is true if caller will be sending more data
  247. * shortly.
  248. */
  249. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  250. size_t kvlen, size_t len, int more)
  251. {
  252. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  253. int r;
  254. if (more)
  255. msg.msg_flags |= MSG_MORE;
  256. else
  257. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  258. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  259. if (r == -EAGAIN)
  260. r = 0;
  261. return r;
  262. }
  263. static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
  264. int offset, size_t size, int more)
  265. {
  266. int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
  267. int ret;
  268. ret = kernel_sendpage(sock, page, offset, size, flags);
  269. if (ret == -EAGAIN)
  270. ret = 0;
  271. return ret;
  272. }
  273. /*
  274. * Shutdown/close the socket for the given connection.
  275. */
  276. static int con_close_socket(struct ceph_connection *con)
  277. {
  278. int rc;
  279. dout("con_close_socket on %p sock %p\n", con, con->sock);
  280. if (!con->sock)
  281. return 0;
  282. set_bit(SOCK_CLOSED, &con->state);
  283. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  284. sock_release(con->sock);
  285. con->sock = NULL;
  286. clear_bit(SOCK_CLOSED, &con->state);
  287. return rc;
  288. }
  289. /*
  290. * Reset a connection. Discard all incoming and outgoing messages
  291. * and clear *_seq state.
  292. */
  293. static void ceph_msg_remove(struct ceph_msg *msg)
  294. {
  295. list_del_init(&msg->list_head);
  296. ceph_msg_put(msg);
  297. }
  298. static void ceph_msg_remove_list(struct list_head *head)
  299. {
  300. while (!list_empty(head)) {
  301. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  302. list_head);
  303. ceph_msg_remove(msg);
  304. }
  305. }
  306. static void reset_connection(struct ceph_connection *con)
  307. {
  308. /* reset connection, out_queue, msg_ and connect_seq */
  309. /* discard existing out_queue and msg_seq */
  310. ceph_msg_remove_list(&con->out_queue);
  311. ceph_msg_remove_list(&con->out_sent);
  312. if (con->in_msg) {
  313. ceph_msg_put(con->in_msg);
  314. con->in_msg = NULL;
  315. }
  316. con->connect_seq = 0;
  317. con->out_seq = 0;
  318. if (con->out_msg) {
  319. ceph_msg_put(con->out_msg);
  320. con->out_msg = NULL;
  321. }
  322. con->in_seq = 0;
  323. con->in_seq_acked = 0;
  324. }
  325. /*
  326. * mark a peer down. drop any open connections.
  327. */
  328. void ceph_con_close(struct ceph_connection *con)
  329. {
  330. dout("con_close %p peer %s\n", con,
  331. ceph_pr_addr(&con->peer_addr.in_addr));
  332. set_bit(CLOSED, &con->state); /* in case there's queued work */
  333. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  334. clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
  335. clear_bit(KEEPALIVE_PENDING, &con->state);
  336. clear_bit(WRITE_PENDING, &con->state);
  337. mutex_lock(&con->mutex);
  338. reset_connection(con);
  339. con->peer_global_seq = 0;
  340. cancel_delayed_work(&con->work);
  341. mutex_unlock(&con->mutex);
  342. queue_con(con);
  343. }
  344. EXPORT_SYMBOL(ceph_con_close);
  345. /*
  346. * Reopen a closed connection, with a new peer address.
  347. */
  348. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  349. {
  350. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  351. set_bit(OPENING, &con->state);
  352. clear_bit(CLOSED, &con->state);
  353. memcpy(&con->peer_addr, addr, sizeof(*addr));
  354. con->delay = 0; /* reset backoff memory */
  355. queue_con(con);
  356. }
  357. EXPORT_SYMBOL(ceph_con_open);
  358. /*
  359. * return true if this connection ever successfully opened
  360. */
  361. bool ceph_con_opened(struct ceph_connection *con)
  362. {
  363. return con->connect_seq > 0;
  364. }
  365. /*
  366. * generic get/put
  367. */
  368. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  369. {
  370. int nref = __atomic_add_unless(&con->nref, 1, 0);
  371. dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
  372. return nref ? con : NULL;
  373. }
  374. void ceph_con_put(struct ceph_connection *con)
  375. {
  376. int nref = atomic_dec_return(&con->nref);
  377. BUG_ON(nref < 0);
  378. if (nref == 0) {
  379. BUG_ON(con->sock);
  380. kfree(con);
  381. }
  382. dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
  383. }
  384. /*
  385. * initialize a new connection.
  386. */
  387. void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
  388. {
  389. dout("con_init %p\n", con);
  390. memset(con, 0, sizeof(*con));
  391. atomic_set(&con->nref, 1);
  392. con->msgr = msgr;
  393. mutex_init(&con->mutex);
  394. INIT_LIST_HEAD(&con->out_queue);
  395. INIT_LIST_HEAD(&con->out_sent);
  396. INIT_DELAYED_WORK(&con->work, con_work);
  397. }
  398. EXPORT_SYMBOL(ceph_con_init);
  399. /*
  400. * We maintain a global counter to order connection attempts. Get
  401. * a unique seq greater than @gt.
  402. */
  403. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  404. {
  405. u32 ret;
  406. spin_lock(&msgr->global_seq_lock);
  407. if (msgr->global_seq < gt)
  408. msgr->global_seq = gt;
  409. ret = ++msgr->global_seq;
  410. spin_unlock(&msgr->global_seq_lock);
  411. return ret;
  412. }
  413. static void ceph_con_out_kvec_reset(struct ceph_connection *con)
  414. {
  415. con->out_kvec_left = 0;
  416. con->out_kvec_bytes = 0;
  417. con->out_kvec_cur = &con->out_kvec[0];
  418. }
  419. static void ceph_con_out_kvec_add(struct ceph_connection *con,
  420. size_t size, void *data)
  421. {
  422. int index;
  423. index = con->out_kvec_left;
  424. BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
  425. con->out_kvec[index].iov_len = size;
  426. con->out_kvec[index].iov_base = data;
  427. con->out_kvec_left++;
  428. con->out_kvec_bytes += size;
  429. }
  430. /*
  431. * Prepare footer for currently outgoing message, and finish things
  432. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  433. */
  434. static void prepare_write_message_footer(struct ceph_connection *con)
  435. {
  436. struct ceph_msg *m = con->out_msg;
  437. int v = con->out_kvec_left;
  438. dout("prepare_write_message_footer %p\n", con);
  439. con->out_kvec_is_msg = true;
  440. con->out_kvec[v].iov_base = &m->footer;
  441. con->out_kvec[v].iov_len = sizeof(m->footer);
  442. con->out_kvec_bytes += sizeof(m->footer);
  443. con->out_kvec_left++;
  444. con->out_more = m->more_to_follow;
  445. con->out_msg_done = true;
  446. }
  447. /*
  448. * Prepare headers for the next outgoing message.
  449. */
  450. static void prepare_write_message(struct ceph_connection *con)
  451. {
  452. struct ceph_msg *m;
  453. u32 crc;
  454. ceph_con_out_kvec_reset(con);
  455. con->out_kvec_is_msg = true;
  456. con->out_msg_done = false;
  457. /* Sneak an ack in there first? If we can get it into the same
  458. * TCP packet that's a good thing. */
  459. if (con->in_seq > con->in_seq_acked) {
  460. con->in_seq_acked = con->in_seq;
  461. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  462. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  463. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  464. &con->out_temp_ack);
  465. }
  466. m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
  467. con->out_msg = m;
  468. /* put message on sent list */
  469. ceph_msg_get(m);
  470. list_move_tail(&m->list_head, &con->out_sent);
  471. /*
  472. * only assign outgoing seq # if we haven't sent this message
  473. * yet. if it is requeued, resend with it's original seq.
  474. */
  475. if (m->needs_out_seq) {
  476. m->hdr.seq = cpu_to_le64(++con->out_seq);
  477. m->needs_out_seq = false;
  478. }
  479. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  480. m, con->out_seq, le16_to_cpu(m->hdr.type),
  481. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  482. le32_to_cpu(m->hdr.data_len),
  483. m->nr_pages);
  484. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  485. /* tag + hdr + front + middle */
  486. ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
  487. ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
  488. ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
  489. if (m->middle)
  490. ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
  491. m->middle->vec.iov_base);
  492. /* fill in crc (except data pages), footer */
  493. crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
  494. con->out_msg->hdr.crc = cpu_to_le32(crc);
  495. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  496. crc = crc32c(0, m->front.iov_base, m->front.iov_len);
  497. con->out_msg->footer.front_crc = cpu_to_le32(crc);
  498. if (m->middle) {
  499. crc = crc32c(0, m->middle->vec.iov_base,
  500. m->middle->vec.iov_len);
  501. con->out_msg->footer.middle_crc = cpu_to_le32(crc);
  502. } else
  503. con->out_msg->footer.middle_crc = 0;
  504. con->out_msg->footer.data_crc = 0;
  505. dout("prepare_write_message front_crc %u data_crc %u\n",
  506. le32_to_cpu(con->out_msg->footer.front_crc),
  507. le32_to_cpu(con->out_msg->footer.middle_crc));
  508. /* is there a data payload? */
  509. if (le32_to_cpu(m->hdr.data_len) > 0) {
  510. /* initialize page iterator */
  511. con->out_msg_pos.page = 0;
  512. if (m->pages)
  513. con->out_msg_pos.page_pos = m->page_alignment;
  514. else
  515. con->out_msg_pos.page_pos = 0;
  516. con->out_msg_pos.data_pos = 0;
  517. con->out_msg_pos.did_page_crc = false;
  518. con->out_more = 1; /* data + footer will follow */
  519. } else {
  520. /* no, queue up footer too and be done */
  521. prepare_write_message_footer(con);
  522. }
  523. set_bit(WRITE_PENDING, &con->state);
  524. }
  525. /*
  526. * Prepare an ack.
  527. */
  528. static void prepare_write_ack(struct ceph_connection *con)
  529. {
  530. dout("prepare_write_ack %p %llu -> %llu\n", con,
  531. con->in_seq_acked, con->in_seq);
  532. con->in_seq_acked = con->in_seq;
  533. ceph_con_out_kvec_reset(con);
  534. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  535. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  536. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  537. &con->out_temp_ack);
  538. con->out_more = 1; /* more will follow.. eventually.. */
  539. set_bit(WRITE_PENDING, &con->state);
  540. }
  541. /*
  542. * Prepare to write keepalive byte.
  543. */
  544. static void prepare_write_keepalive(struct ceph_connection *con)
  545. {
  546. dout("prepare_write_keepalive %p\n", con);
  547. ceph_con_out_kvec_reset(con);
  548. ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
  549. set_bit(WRITE_PENDING, &con->state);
  550. }
  551. /*
  552. * Connection negotiation.
  553. */
  554. static int prepare_connect_authorizer(struct ceph_connection *con)
  555. {
  556. void *auth_buf;
  557. int auth_len = 0;
  558. int auth_protocol = 0;
  559. mutex_unlock(&con->mutex);
  560. if (con->ops->get_authorizer)
  561. con->ops->get_authorizer(con, &auth_buf, &auth_len,
  562. &auth_protocol, &con->auth_reply_buf,
  563. &con->auth_reply_buf_len,
  564. con->auth_retry);
  565. mutex_lock(&con->mutex);
  566. if (test_bit(CLOSED, &con->state) ||
  567. test_bit(OPENING, &con->state))
  568. return -EAGAIN;
  569. con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
  570. con->out_connect.authorizer_len = cpu_to_le32(auth_len);
  571. if (auth_len)
  572. ceph_con_out_kvec_add(con, auth_len, auth_buf);
  573. return 0;
  574. }
  575. /*
  576. * We connected to a peer and are saying hello.
  577. */
  578. static void prepare_write_banner(struct ceph_messenger *msgr,
  579. struct ceph_connection *con)
  580. {
  581. ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
  582. ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
  583. &msgr->my_enc_addr);
  584. con->out_more = 0;
  585. set_bit(WRITE_PENDING, &con->state);
  586. }
  587. static int prepare_write_connect(struct ceph_messenger *msgr,
  588. struct ceph_connection *con,
  589. int include_banner)
  590. {
  591. unsigned global_seq = get_global_seq(con->msgr, 0);
  592. int proto;
  593. switch (con->peer_name.type) {
  594. case CEPH_ENTITY_TYPE_MON:
  595. proto = CEPH_MONC_PROTOCOL;
  596. break;
  597. case CEPH_ENTITY_TYPE_OSD:
  598. proto = CEPH_OSDC_PROTOCOL;
  599. break;
  600. case CEPH_ENTITY_TYPE_MDS:
  601. proto = CEPH_MDSC_PROTOCOL;
  602. break;
  603. default:
  604. BUG();
  605. }
  606. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  607. con->connect_seq, global_seq, proto);
  608. con->out_connect.features = cpu_to_le64(msgr->supported_features);
  609. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  610. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  611. con->out_connect.global_seq = cpu_to_le32(global_seq);
  612. con->out_connect.protocol_version = cpu_to_le32(proto);
  613. con->out_connect.flags = 0;
  614. if (include_banner)
  615. prepare_write_banner(msgr, con);
  616. ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
  617. con->out_more = 0;
  618. set_bit(WRITE_PENDING, &con->state);
  619. return prepare_connect_authorizer(con);
  620. }
  621. /*
  622. * write as much of pending kvecs to the socket as we can.
  623. * 1 -> done
  624. * 0 -> socket full, but more to do
  625. * <0 -> error
  626. */
  627. static int write_partial_kvec(struct ceph_connection *con)
  628. {
  629. int ret;
  630. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  631. while (con->out_kvec_bytes > 0) {
  632. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  633. con->out_kvec_left, con->out_kvec_bytes,
  634. con->out_more);
  635. if (ret <= 0)
  636. goto out;
  637. con->out_kvec_bytes -= ret;
  638. if (con->out_kvec_bytes == 0)
  639. break; /* done */
  640. /* account for full iov entries consumed */
  641. while (ret >= con->out_kvec_cur->iov_len) {
  642. BUG_ON(!con->out_kvec_left);
  643. ret -= con->out_kvec_cur->iov_len;
  644. con->out_kvec_cur++;
  645. con->out_kvec_left--;
  646. }
  647. /* and for a partially-consumed entry */
  648. if (ret) {
  649. con->out_kvec_cur->iov_len -= ret;
  650. con->out_kvec_cur->iov_base += ret;
  651. }
  652. }
  653. con->out_kvec_left = 0;
  654. con->out_kvec_is_msg = false;
  655. ret = 1;
  656. out:
  657. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  658. con->out_kvec_bytes, con->out_kvec_left, ret);
  659. return ret; /* done! */
  660. }
  661. #ifdef CONFIG_BLOCK
  662. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  663. {
  664. if (!bio) {
  665. *iter = NULL;
  666. *seg = 0;
  667. return;
  668. }
  669. *iter = bio;
  670. *seg = bio->bi_idx;
  671. }
  672. static void iter_bio_next(struct bio **bio_iter, int *seg)
  673. {
  674. if (*bio_iter == NULL)
  675. return;
  676. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  677. (*seg)++;
  678. if (*seg == (*bio_iter)->bi_vcnt)
  679. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  680. }
  681. #endif
  682. /*
  683. * Write as much message data payload as we can. If we finish, queue
  684. * up the footer.
  685. * 1 -> done, footer is now queued in out_kvec[].
  686. * 0 -> socket full, but more to do
  687. * <0 -> error
  688. */
  689. static int write_partial_msg_pages(struct ceph_connection *con)
  690. {
  691. struct ceph_msg *msg = con->out_msg;
  692. unsigned data_len = le32_to_cpu(msg->hdr.data_len);
  693. size_t len;
  694. bool do_datacrc = !con->msgr->nocrc;
  695. int ret;
  696. int total_max_write;
  697. int in_trail = 0;
  698. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  699. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  700. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  701. con->out_msg_pos.page_pos);
  702. #ifdef CONFIG_BLOCK
  703. if (msg->bio && !msg->bio_iter)
  704. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  705. #endif
  706. while (data_len > con->out_msg_pos.data_pos) {
  707. struct page *page = NULL;
  708. int max_write = PAGE_SIZE;
  709. int bio_offset = 0;
  710. total_max_write = data_len - trail_len -
  711. con->out_msg_pos.data_pos;
  712. /*
  713. * if we are calculating the data crc (the default), we need
  714. * to map the page. if our pages[] has been revoked, use the
  715. * zero page.
  716. */
  717. /* have we reached the trail part of the data? */
  718. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  719. in_trail = 1;
  720. total_max_write = data_len - con->out_msg_pos.data_pos;
  721. page = list_first_entry(&msg->trail->head,
  722. struct page, lru);
  723. max_write = PAGE_SIZE;
  724. } else if (msg->pages) {
  725. page = msg->pages[con->out_msg_pos.page];
  726. } else if (msg->pagelist) {
  727. page = list_first_entry(&msg->pagelist->head,
  728. struct page, lru);
  729. #ifdef CONFIG_BLOCK
  730. } else if (msg->bio) {
  731. struct bio_vec *bv;
  732. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  733. page = bv->bv_page;
  734. bio_offset = bv->bv_offset;
  735. max_write = bv->bv_len;
  736. #endif
  737. } else {
  738. page = zero_page;
  739. }
  740. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  741. total_max_write);
  742. if (do_datacrc && !con->out_msg_pos.did_page_crc) {
  743. void *base;
  744. u32 crc;
  745. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  746. char *kaddr;
  747. kaddr = kmap(page);
  748. BUG_ON(kaddr == NULL);
  749. base = kaddr + con->out_msg_pos.page_pos + bio_offset;
  750. crc = crc32c(tmpcrc, base, len);
  751. con->out_msg->footer.data_crc = cpu_to_le32(crc);
  752. con->out_msg_pos.did_page_crc = true;
  753. }
  754. ret = ceph_tcp_sendpage(con->sock, page,
  755. con->out_msg_pos.page_pos + bio_offset,
  756. len, 1);
  757. if (do_datacrc)
  758. kunmap(page);
  759. if (ret <= 0)
  760. goto out;
  761. con->out_msg_pos.data_pos += ret;
  762. con->out_msg_pos.page_pos += ret;
  763. if (ret == len) {
  764. con->out_msg_pos.page_pos = 0;
  765. con->out_msg_pos.page++;
  766. con->out_msg_pos.did_page_crc = false;
  767. if (in_trail)
  768. list_move_tail(&page->lru,
  769. &msg->trail->head);
  770. else if (msg->pagelist)
  771. list_move_tail(&page->lru,
  772. &msg->pagelist->head);
  773. #ifdef CONFIG_BLOCK
  774. else if (msg->bio)
  775. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  776. #endif
  777. }
  778. }
  779. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  780. /* prepare and queue up footer, too */
  781. if (!do_datacrc)
  782. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  783. ceph_con_out_kvec_reset(con);
  784. prepare_write_message_footer(con);
  785. ret = 1;
  786. out:
  787. return ret;
  788. }
  789. /*
  790. * write some zeros
  791. */
  792. static int write_partial_skip(struct ceph_connection *con)
  793. {
  794. int ret;
  795. while (con->out_skip > 0) {
  796. size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
  797. ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
  798. if (ret <= 0)
  799. goto out;
  800. con->out_skip -= ret;
  801. }
  802. ret = 1;
  803. out:
  804. return ret;
  805. }
  806. /*
  807. * Prepare to read connection handshake, or an ack.
  808. */
  809. static void prepare_read_banner(struct ceph_connection *con)
  810. {
  811. dout("prepare_read_banner %p\n", con);
  812. con->in_base_pos = 0;
  813. }
  814. static void prepare_read_connect(struct ceph_connection *con)
  815. {
  816. dout("prepare_read_connect %p\n", con);
  817. con->in_base_pos = 0;
  818. }
  819. static void prepare_read_ack(struct ceph_connection *con)
  820. {
  821. dout("prepare_read_ack %p\n", con);
  822. con->in_base_pos = 0;
  823. }
  824. static void prepare_read_tag(struct ceph_connection *con)
  825. {
  826. dout("prepare_read_tag %p\n", con);
  827. con->in_base_pos = 0;
  828. con->in_tag = CEPH_MSGR_TAG_READY;
  829. }
  830. /*
  831. * Prepare to read a message.
  832. */
  833. static int prepare_read_message(struct ceph_connection *con)
  834. {
  835. dout("prepare_read_message %p\n", con);
  836. BUG_ON(con->in_msg != NULL);
  837. con->in_base_pos = 0;
  838. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  839. return 0;
  840. }
  841. static int read_partial(struct ceph_connection *con,
  842. int end, int size, void *object)
  843. {
  844. while (con->in_base_pos < end) {
  845. int left = end - con->in_base_pos;
  846. int have = size - left;
  847. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  848. if (ret <= 0)
  849. return ret;
  850. con->in_base_pos += ret;
  851. }
  852. return 1;
  853. }
  854. /*
  855. * Read all or part of the connect-side handshake on a new connection
  856. */
  857. static int read_partial_banner(struct ceph_connection *con)
  858. {
  859. int size;
  860. int end;
  861. int ret;
  862. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  863. /* peer's banner */
  864. size = strlen(CEPH_BANNER);
  865. end = size;
  866. ret = read_partial(con, end, size, con->in_banner);
  867. if (ret <= 0)
  868. goto out;
  869. size = sizeof (con->actual_peer_addr);
  870. end += size;
  871. ret = read_partial(con, end, size, &con->actual_peer_addr);
  872. if (ret <= 0)
  873. goto out;
  874. size = sizeof (con->peer_addr_for_me);
  875. end += size;
  876. ret = read_partial(con, end, size, &con->peer_addr_for_me);
  877. if (ret <= 0)
  878. goto out;
  879. out:
  880. return ret;
  881. }
  882. static int read_partial_connect(struct ceph_connection *con)
  883. {
  884. int size;
  885. int end;
  886. int ret;
  887. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  888. size = sizeof (con->in_reply);
  889. end = size;
  890. ret = read_partial(con, end, size, &con->in_reply);
  891. if (ret <= 0)
  892. goto out;
  893. size = le32_to_cpu(con->in_reply.authorizer_len);
  894. end += size;
  895. ret = read_partial(con, end, size, con->auth_reply_buf);
  896. if (ret <= 0)
  897. goto out;
  898. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  899. con, (int)con->in_reply.tag,
  900. le32_to_cpu(con->in_reply.connect_seq),
  901. le32_to_cpu(con->in_reply.global_seq));
  902. out:
  903. return ret;
  904. }
  905. /*
  906. * Verify the hello banner looks okay.
  907. */
  908. static int verify_hello(struct ceph_connection *con)
  909. {
  910. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  911. pr_err("connect to %s got bad banner\n",
  912. ceph_pr_addr(&con->peer_addr.in_addr));
  913. con->error_msg = "protocol error, bad banner";
  914. return -1;
  915. }
  916. return 0;
  917. }
  918. static bool addr_is_blank(struct sockaddr_storage *ss)
  919. {
  920. switch (ss->ss_family) {
  921. case AF_INET:
  922. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  923. case AF_INET6:
  924. return
  925. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  926. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  927. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  928. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  929. }
  930. return false;
  931. }
  932. static int addr_port(struct sockaddr_storage *ss)
  933. {
  934. switch (ss->ss_family) {
  935. case AF_INET:
  936. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  937. case AF_INET6:
  938. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  939. }
  940. return 0;
  941. }
  942. static void addr_set_port(struct sockaddr_storage *ss, int p)
  943. {
  944. switch (ss->ss_family) {
  945. case AF_INET:
  946. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  947. break;
  948. case AF_INET6:
  949. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  950. break;
  951. }
  952. }
  953. /*
  954. * Unlike other *_pton function semantics, zero indicates success.
  955. */
  956. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  957. char delim, const char **ipend)
  958. {
  959. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  960. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  961. memset(ss, 0, sizeof(*ss));
  962. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  963. ss->ss_family = AF_INET;
  964. return 0;
  965. }
  966. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  967. ss->ss_family = AF_INET6;
  968. return 0;
  969. }
  970. return -EINVAL;
  971. }
  972. /*
  973. * Extract hostname string and resolve using kernel DNS facility.
  974. */
  975. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  976. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  977. struct sockaddr_storage *ss, char delim, const char **ipend)
  978. {
  979. const char *end, *delim_p;
  980. char *colon_p, *ip_addr = NULL;
  981. int ip_len, ret;
  982. /*
  983. * The end of the hostname occurs immediately preceding the delimiter or
  984. * the port marker (':') where the delimiter takes precedence.
  985. */
  986. delim_p = memchr(name, delim, namelen);
  987. colon_p = memchr(name, ':', namelen);
  988. if (delim_p && colon_p)
  989. end = delim_p < colon_p ? delim_p : colon_p;
  990. else if (!delim_p && colon_p)
  991. end = colon_p;
  992. else {
  993. end = delim_p;
  994. if (!end) /* case: hostname:/ */
  995. end = name + namelen;
  996. }
  997. if (end <= name)
  998. return -EINVAL;
  999. /* do dns_resolve upcall */
  1000. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  1001. if (ip_len > 0)
  1002. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  1003. else
  1004. ret = -ESRCH;
  1005. kfree(ip_addr);
  1006. *ipend = end;
  1007. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  1008. ret, ret ? "failed" : ceph_pr_addr(ss));
  1009. return ret;
  1010. }
  1011. #else
  1012. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1013. struct sockaddr_storage *ss, char delim, const char **ipend)
  1014. {
  1015. return -EINVAL;
  1016. }
  1017. #endif
  1018. /*
  1019. * Parse a server name (IP or hostname). If a valid IP address is not found
  1020. * then try to extract a hostname to resolve using userspace DNS upcall.
  1021. */
  1022. static int ceph_parse_server_name(const char *name, size_t namelen,
  1023. struct sockaddr_storage *ss, char delim, const char **ipend)
  1024. {
  1025. int ret;
  1026. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1027. if (ret)
  1028. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1029. return ret;
  1030. }
  1031. /*
  1032. * Parse an ip[:port] list into an addr array. Use the default
  1033. * monitor port if a port isn't specified.
  1034. */
  1035. int ceph_parse_ips(const char *c, const char *end,
  1036. struct ceph_entity_addr *addr,
  1037. int max_count, int *count)
  1038. {
  1039. int i, ret = -EINVAL;
  1040. const char *p = c;
  1041. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1042. for (i = 0; i < max_count; i++) {
  1043. const char *ipend;
  1044. struct sockaddr_storage *ss = &addr[i].in_addr;
  1045. int port;
  1046. char delim = ',';
  1047. if (*p == '[') {
  1048. delim = ']';
  1049. p++;
  1050. }
  1051. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1052. if (ret)
  1053. goto bad;
  1054. ret = -EINVAL;
  1055. p = ipend;
  1056. if (delim == ']') {
  1057. if (*p != ']') {
  1058. dout("missing matching ']'\n");
  1059. goto bad;
  1060. }
  1061. p++;
  1062. }
  1063. /* port? */
  1064. if (p < end && *p == ':') {
  1065. port = 0;
  1066. p++;
  1067. while (p < end && *p >= '0' && *p <= '9') {
  1068. port = (port * 10) + (*p - '0');
  1069. p++;
  1070. }
  1071. if (port > 65535 || port == 0)
  1072. goto bad;
  1073. } else {
  1074. port = CEPH_MON_PORT;
  1075. }
  1076. addr_set_port(ss, port);
  1077. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1078. if (p == end)
  1079. break;
  1080. if (*p != ',')
  1081. goto bad;
  1082. p++;
  1083. }
  1084. if (p != end)
  1085. goto bad;
  1086. if (count)
  1087. *count = i + 1;
  1088. return 0;
  1089. bad:
  1090. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1091. return ret;
  1092. }
  1093. EXPORT_SYMBOL(ceph_parse_ips);
  1094. static int process_banner(struct ceph_connection *con)
  1095. {
  1096. dout("process_banner on %p\n", con);
  1097. if (verify_hello(con) < 0)
  1098. return -1;
  1099. ceph_decode_addr(&con->actual_peer_addr);
  1100. ceph_decode_addr(&con->peer_addr_for_me);
  1101. /*
  1102. * Make sure the other end is who we wanted. note that the other
  1103. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1104. * them the benefit of the doubt.
  1105. */
  1106. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1107. sizeof(con->peer_addr)) != 0 &&
  1108. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1109. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1110. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1111. ceph_pr_addr(&con->peer_addr.in_addr),
  1112. (int)le32_to_cpu(con->peer_addr.nonce),
  1113. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1114. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1115. con->error_msg = "wrong peer at address";
  1116. return -1;
  1117. }
  1118. /*
  1119. * did we learn our address?
  1120. */
  1121. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1122. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1123. memcpy(&con->msgr->inst.addr.in_addr,
  1124. &con->peer_addr_for_me.in_addr,
  1125. sizeof(con->peer_addr_for_me.in_addr));
  1126. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1127. encode_my_addr(con->msgr);
  1128. dout("process_banner learned my addr is %s\n",
  1129. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1130. }
  1131. set_bit(NEGOTIATING, &con->state);
  1132. prepare_read_connect(con);
  1133. return 0;
  1134. }
  1135. static void fail_protocol(struct ceph_connection *con)
  1136. {
  1137. reset_connection(con);
  1138. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1139. mutex_unlock(&con->mutex);
  1140. if (con->ops->bad_proto)
  1141. con->ops->bad_proto(con);
  1142. mutex_lock(&con->mutex);
  1143. }
  1144. static int process_connect(struct ceph_connection *con)
  1145. {
  1146. u64 sup_feat = con->msgr->supported_features;
  1147. u64 req_feat = con->msgr->required_features;
  1148. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1149. int ret;
  1150. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1151. switch (con->in_reply.tag) {
  1152. case CEPH_MSGR_TAG_FEATURES:
  1153. pr_err("%s%lld %s feature set mismatch,"
  1154. " my %llx < server's %llx, missing %llx\n",
  1155. ENTITY_NAME(con->peer_name),
  1156. ceph_pr_addr(&con->peer_addr.in_addr),
  1157. sup_feat, server_feat, server_feat & ~sup_feat);
  1158. con->error_msg = "missing required protocol features";
  1159. fail_protocol(con);
  1160. return -1;
  1161. case CEPH_MSGR_TAG_BADPROTOVER:
  1162. pr_err("%s%lld %s protocol version mismatch,"
  1163. " my %d != server's %d\n",
  1164. ENTITY_NAME(con->peer_name),
  1165. ceph_pr_addr(&con->peer_addr.in_addr),
  1166. le32_to_cpu(con->out_connect.protocol_version),
  1167. le32_to_cpu(con->in_reply.protocol_version));
  1168. con->error_msg = "protocol version mismatch";
  1169. fail_protocol(con);
  1170. return -1;
  1171. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1172. con->auth_retry++;
  1173. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1174. con->auth_retry);
  1175. if (con->auth_retry == 2) {
  1176. con->error_msg = "connect authorization failure";
  1177. return -1;
  1178. }
  1179. con->auth_retry = 1;
  1180. ceph_con_out_kvec_reset(con);
  1181. ret = prepare_write_connect(con->msgr, con, 0);
  1182. if (ret < 0)
  1183. return ret;
  1184. prepare_read_connect(con);
  1185. break;
  1186. case CEPH_MSGR_TAG_RESETSESSION:
  1187. /*
  1188. * If we connected with a large connect_seq but the peer
  1189. * has no record of a session with us (no connection, or
  1190. * connect_seq == 0), they will send RESETSESION to indicate
  1191. * that they must have reset their session, and may have
  1192. * dropped messages.
  1193. */
  1194. dout("process_connect got RESET peer seq %u\n",
  1195. le32_to_cpu(con->in_connect.connect_seq));
  1196. pr_err("%s%lld %s connection reset\n",
  1197. ENTITY_NAME(con->peer_name),
  1198. ceph_pr_addr(&con->peer_addr.in_addr));
  1199. reset_connection(con);
  1200. ceph_con_out_kvec_reset(con);
  1201. prepare_write_connect(con->msgr, con, 0);
  1202. prepare_read_connect(con);
  1203. /* Tell ceph about it. */
  1204. mutex_unlock(&con->mutex);
  1205. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1206. if (con->ops->peer_reset)
  1207. con->ops->peer_reset(con);
  1208. mutex_lock(&con->mutex);
  1209. if (test_bit(CLOSED, &con->state) ||
  1210. test_bit(OPENING, &con->state))
  1211. return -EAGAIN;
  1212. break;
  1213. case CEPH_MSGR_TAG_RETRY_SESSION:
  1214. /*
  1215. * If we sent a smaller connect_seq than the peer has, try
  1216. * again with a larger value.
  1217. */
  1218. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1219. le32_to_cpu(con->out_connect.connect_seq),
  1220. le32_to_cpu(con->in_connect.connect_seq));
  1221. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1222. ceph_con_out_kvec_reset(con);
  1223. prepare_write_connect(con->msgr, con, 0);
  1224. prepare_read_connect(con);
  1225. break;
  1226. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1227. /*
  1228. * If we sent a smaller global_seq than the peer has, try
  1229. * again with a larger value.
  1230. */
  1231. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1232. con->peer_global_seq,
  1233. le32_to_cpu(con->in_connect.global_seq));
  1234. get_global_seq(con->msgr,
  1235. le32_to_cpu(con->in_connect.global_seq));
  1236. ceph_con_out_kvec_reset(con);
  1237. prepare_write_connect(con->msgr, con, 0);
  1238. prepare_read_connect(con);
  1239. break;
  1240. case CEPH_MSGR_TAG_READY:
  1241. if (req_feat & ~server_feat) {
  1242. pr_err("%s%lld %s protocol feature mismatch,"
  1243. " my required %llx > server's %llx, need %llx\n",
  1244. ENTITY_NAME(con->peer_name),
  1245. ceph_pr_addr(&con->peer_addr.in_addr),
  1246. req_feat, server_feat, req_feat & ~server_feat);
  1247. con->error_msg = "missing required protocol features";
  1248. fail_protocol(con);
  1249. return -1;
  1250. }
  1251. clear_bit(CONNECTING, &con->state);
  1252. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1253. con->connect_seq++;
  1254. con->peer_features = server_feat;
  1255. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1256. con->peer_global_seq,
  1257. le32_to_cpu(con->in_reply.connect_seq),
  1258. con->connect_seq);
  1259. WARN_ON(con->connect_seq !=
  1260. le32_to_cpu(con->in_reply.connect_seq));
  1261. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1262. set_bit(LOSSYTX, &con->state);
  1263. prepare_read_tag(con);
  1264. break;
  1265. case CEPH_MSGR_TAG_WAIT:
  1266. /*
  1267. * If there is a connection race (we are opening
  1268. * connections to each other), one of us may just have
  1269. * to WAIT. This shouldn't happen if we are the
  1270. * client.
  1271. */
  1272. pr_err("process_connect got WAIT as client\n");
  1273. con->error_msg = "protocol error, got WAIT as client";
  1274. return -1;
  1275. default:
  1276. pr_err("connect protocol error, will retry\n");
  1277. con->error_msg = "protocol error, garbage tag during connect";
  1278. return -1;
  1279. }
  1280. return 0;
  1281. }
  1282. /*
  1283. * read (part of) an ack
  1284. */
  1285. static int read_partial_ack(struct ceph_connection *con)
  1286. {
  1287. int size = sizeof (con->in_temp_ack);
  1288. int end = size;
  1289. return read_partial(con, end, size, &con->in_temp_ack);
  1290. }
  1291. /*
  1292. * We can finally discard anything that's been acked.
  1293. */
  1294. static void process_ack(struct ceph_connection *con)
  1295. {
  1296. struct ceph_msg *m;
  1297. u64 ack = le64_to_cpu(con->in_temp_ack);
  1298. u64 seq;
  1299. while (!list_empty(&con->out_sent)) {
  1300. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1301. list_head);
  1302. seq = le64_to_cpu(m->hdr.seq);
  1303. if (seq > ack)
  1304. break;
  1305. dout("got ack for seq %llu type %d at %p\n", seq,
  1306. le16_to_cpu(m->hdr.type), m);
  1307. m->ack_stamp = jiffies;
  1308. ceph_msg_remove(m);
  1309. }
  1310. prepare_read_tag(con);
  1311. }
  1312. static int read_partial_message_section(struct ceph_connection *con,
  1313. struct kvec *section,
  1314. unsigned int sec_len, u32 *crc)
  1315. {
  1316. int ret, left;
  1317. BUG_ON(!section);
  1318. while (section->iov_len < sec_len) {
  1319. BUG_ON(section->iov_base == NULL);
  1320. left = sec_len - section->iov_len;
  1321. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1322. section->iov_len, left);
  1323. if (ret <= 0)
  1324. return ret;
  1325. section->iov_len += ret;
  1326. }
  1327. if (section->iov_len == sec_len)
  1328. *crc = crc32c(0, section->iov_base, section->iov_len);
  1329. return 1;
  1330. }
  1331. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1332. struct ceph_msg_header *hdr,
  1333. int *skip);
  1334. static int read_partial_message_pages(struct ceph_connection *con,
  1335. struct page **pages,
  1336. unsigned data_len, bool do_datacrc)
  1337. {
  1338. void *p;
  1339. int ret;
  1340. int left;
  1341. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1342. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1343. /* (page) data */
  1344. BUG_ON(pages == NULL);
  1345. p = kmap(pages[con->in_msg_pos.page]);
  1346. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1347. left);
  1348. if (ret > 0 && do_datacrc)
  1349. con->in_data_crc =
  1350. crc32c(con->in_data_crc,
  1351. p + con->in_msg_pos.page_pos, ret);
  1352. kunmap(pages[con->in_msg_pos.page]);
  1353. if (ret <= 0)
  1354. return ret;
  1355. con->in_msg_pos.data_pos += ret;
  1356. con->in_msg_pos.page_pos += ret;
  1357. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1358. con->in_msg_pos.page_pos = 0;
  1359. con->in_msg_pos.page++;
  1360. }
  1361. return ret;
  1362. }
  1363. #ifdef CONFIG_BLOCK
  1364. static int read_partial_message_bio(struct ceph_connection *con,
  1365. struct bio **bio_iter, int *bio_seg,
  1366. unsigned data_len, bool do_datacrc)
  1367. {
  1368. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1369. void *p;
  1370. int ret, left;
  1371. if (IS_ERR(bv))
  1372. return PTR_ERR(bv);
  1373. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1374. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1375. p = kmap(bv->bv_page) + bv->bv_offset;
  1376. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1377. left);
  1378. if (ret > 0 && do_datacrc)
  1379. con->in_data_crc =
  1380. crc32c(con->in_data_crc,
  1381. p + con->in_msg_pos.page_pos, ret);
  1382. kunmap(bv->bv_page);
  1383. if (ret <= 0)
  1384. return ret;
  1385. con->in_msg_pos.data_pos += ret;
  1386. con->in_msg_pos.page_pos += ret;
  1387. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1388. con->in_msg_pos.page_pos = 0;
  1389. iter_bio_next(bio_iter, bio_seg);
  1390. }
  1391. return ret;
  1392. }
  1393. #endif
  1394. /*
  1395. * read (part of) a message.
  1396. */
  1397. static int read_partial_message(struct ceph_connection *con)
  1398. {
  1399. struct ceph_msg *m = con->in_msg;
  1400. int size;
  1401. int end;
  1402. int ret;
  1403. unsigned front_len, middle_len, data_len;
  1404. bool do_datacrc = !con->msgr->nocrc;
  1405. int skip;
  1406. u64 seq;
  1407. u32 crc;
  1408. dout("read_partial_message con %p msg %p\n", con, m);
  1409. /* header */
  1410. size = sizeof (con->in_hdr);
  1411. end = size;
  1412. ret = read_partial(con, end, size, &con->in_hdr);
  1413. if (ret <= 0)
  1414. return ret;
  1415. crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
  1416. if (cpu_to_le32(crc) != con->in_hdr.crc) {
  1417. pr_err("read_partial_message bad hdr "
  1418. " crc %u != expected %u\n",
  1419. crc, con->in_hdr.crc);
  1420. return -EBADMSG;
  1421. }
  1422. front_len = le32_to_cpu(con->in_hdr.front_len);
  1423. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1424. return -EIO;
  1425. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1426. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1427. return -EIO;
  1428. data_len = le32_to_cpu(con->in_hdr.data_len);
  1429. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1430. return -EIO;
  1431. /* verify seq# */
  1432. seq = le64_to_cpu(con->in_hdr.seq);
  1433. if ((s64)seq - (s64)con->in_seq < 1) {
  1434. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1435. ENTITY_NAME(con->peer_name),
  1436. ceph_pr_addr(&con->peer_addr.in_addr),
  1437. seq, con->in_seq + 1);
  1438. con->in_base_pos = -front_len - middle_len - data_len -
  1439. sizeof(m->footer);
  1440. con->in_tag = CEPH_MSGR_TAG_READY;
  1441. return 0;
  1442. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1443. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1444. seq, con->in_seq + 1);
  1445. con->error_msg = "bad message sequence # for incoming message";
  1446. return -EBADMSG;
  1447. }
  1448. /* allocate message? */
  1449. if (!con->in_msg) {
  1450. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1451. con->in_hdr.front_len, con->in_hdr.data_len);
  1452. skip = 0;
  1453. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1454. if (skip) {
  1455. /* skip this message */
  1456. dout("alloc_msg said skip message\n");
  1457. BUG_ON(con->in_msg);
  1458. con->in_base_pos = -front_len - middle_len - data_len -
  1459. sizeof(m->footer);
  1460. con->in_tag = CEPH_MSGR_TAG_READY;
  1461. con->in_seq++;
  1462. return 0;
  1463. }
  1464. if (!con->in_msg) {
  1465. con->error_msg =
  1466. "error allocating memory for incoming message";
  1467. return -ENOMEM;
  1468. }
  1469. m = con->in_msg;
  1470. m->front.iov_len = 0; /* haven't read it yet */
  1471. if (m->middle)
  1472. m->middle->vec.iov_len = 0;
  1473. con->in_msg_pos.page = 0;
  1474. if (m->pages)
  1475. con->in_msg_pos.page_pos = m->page_alignment;
  1476. else
  1477. con->in_msg_pos.page_pos = 0;
  1478. con->in_msg_pos.data_pos = 0;
  1479. }
  1480. /* front */
  1481. ret = read_partial_message_section(con, &m->front, front_len,
  1482. &con->in_front_crc);
  1483. if (ret <= 0)
  1484. return ret;
  1485. /* middle */
  1486. if (m->middle) {
  1487. ret = read_partial_message_section(con, &m->middle->vec,
  1488. middle_len,
  1489. &con->in_middle_crc);
  1490. if (ret <= 0)
  1491. return ret;
  1492. }
  1493. #ifdef CONFIG_BLOCK
  1494. if (m->bio && !m->bio_iter)
  1495. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1496. #endif
  1497. /* (page) data */
  1498. while (con->in_msg_pos.data_pos < data_len) {
  1499. if (m->pages) {
  1500. ret = read_partial_message_pages(con, m->pages,
  1501. data_len, do_datacrc);
  1502. if (ret <= 0)
  1503. return ret;
  1504. #ifdef CONFIG_BLOCK
  1505. } else if (m->bio) {
  1506. ret = read_partial_message_bio(con,
  1507. &m->bio_iter, &m->bio_seg,
  1508. data_len, do_datacrc);
  1509. if (ret <= 0)
  1510. return ret;
  1511. #endif
  1512. } else {
  1513. BUG_ON(1);
  1514. }
  1515. }
  1516. /* footer */
  1517. size = sizeof (m->footer);
  1518. end += size;
  1519. ret = read_partial(con, end, size, &m->footer);
  1520. if (ret <= 0)
  1521. return ret;
  1522. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1523. m, front_len, m->footer.front_crc, middle_len,
  1524. m->footer.middle_crc, data_len, m->footer.data_crc);
  1525. /* crc ok? */
  1526. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1527. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1528. m, con->in_front_crc, m->footer.front_crc);
  1529. return -EBADMSG;
  1530. }
  1531. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1532. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1533. m, con->in_middle_crc, m->footer.middle_crc);
  1534. return -EBADMSG;
  1535. }
  1536. if (do_datacrc &&
  1537. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1538. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1539. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1540. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1541. return -EBADMSG;
  1542. }
  1543. return 1; /* done! */
  1544. }
  1545. /*
  1546. * Process message. This happens in the worker thread. The callback should
  1547. * be careful not to do anything that waits on other incoming messages or it
  1548. * may deadlock.
  1549. */
  1550. static void process_message(struct ceph_connection *con)
  1551. {
  1552. struct ceph_msg *msg;
  1553. msg = con->in_msg;
  1554. con->in_msg = NULL;
  1555. /* if first message, set peer_name */
  1556. if (con->peer_name.type == 0)
  1557. con->peer_name = msg->hdr.src;
  1558. con->in_seq++;
  1559. mutex_unlock(&con->mutex);
  1560. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1561. msg, le64_to_cpu(msg->hdr.seq),
  1562. ENTITY_NAME(msg->hdr.src),
  1563. le16_to_cpu(msg->hdr.type),
  1564. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1565. le32_to_cpu(msg->hdr.front_len),
  1566. le32_to_cpu(msg->hdr.data_len),
  1567. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1568. con->ops->dispatch(con, msg);
  1569. mutex_lock(&con->mutex);
  1570. prepare_read_tag(con);
  1571. }
  1572. /*
  1573. * Write something to the socket. Called in a worker thread when the
  1574. * socket appears to be writeable and we have something ready to send.
  1575. */
  1576. static int try_write(struct ceph_connection *con)
  1577. {
  1578. struct ceph_messenger *msgr = con->msgr;
  1579. int ret = 1;
  1580. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1581. atomic_read(&con->nref));
  1582. more:
  1583. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1584. /* open the socket first? */
  1585. if (con->sock == NULL) {
  1586. ceph_con_out_kvec_reset(con);
  1587. prepare_write_connect(msgr, con, 1);
  1588. prepare_read_banner(con);
  1589. set_bit(CONNECTING, &con->state);
  1590. clear_bit(NEGOTIATING, &con->state);
  1591. BUG_ON(con->in_msg);
  1592. con->in_tag = CEPH_MSGR_TAG_READY;
  1593. dout("try_write initiating connect on %p new state %lu\n",
  1594. con, con->state);
  1595. ret = ceph_tcp_connect(con);
  1596. if (ret < 0) {
  1597. con->error_msg = "connect error";
  1598. goto out;
  1599. }
  1600. }
  1601. more_kvec:
  1602. /* kvec data queued? */
  1603. if (con->out_skip) {
  1604. ret = write_partial_skip(con);
  1605. if (ret <= 0)
  1606. goto out;
  1607. }
  1608. if (con->out_kvec_left) {
  1609. ret = write_partial_kvec(con);
  1610. if (ret <= 0)
  1611. goto out;
  1612. }
  1613. /* msg pages? */
  1614. if (con->out_msg) {
  1615. if (con->out_msg_done) {
  1616. ceph_msg_put(con->out_msg);
  1617. con->out_msg = NULL; /* we're done with this one */
  1618. goto do_next;
  1619. }
  1620. ret = write_partial_msg_pages(con);
  1621. if (ret == 1)
  1622. goto more_kvec; /* we need to send the footer, too! */
  1623. if (ret == 0)
  1624. goto out;
  1625. if (ret < 0) {
  1626. dout("try_write write_partial_msg_pages err %d\n",
  1627. ret);
  1628. goto out;
  1629. }
  1630. }
  1631. do_next:
  1632. if (!test_bit(CONNECTING, &con->state)) {
  1633. /* is anything else pending? */
  1634. if (!list_empty(&con->out_queue)) {
  1635. prepare_write_message(con);
  1636. goto more;
  1637. }
  1638. if (con->in_seq > con->in_seq_acked) {
  1639. prepare_write_ack(con);
  1640. goto more;
  1641. }
  1642. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
  1643. prepare_write_keepalive(con);
  1644. goto more;
  1645. }
  1646. }
  1647. /* Nothing to do! */
  1648. clear_bit(WRITE_PENDING, &con->state);
  1649. dout("try_write nothing else to write.\n");
  1650. ret = 0;
  1651. out:
  1652. dout("try_write done on %p ret %d\n", con, ret);
  1653. return ret;
  1654. }
  1655. /*
  1656. * Read what we can from the socket.
  1657. */
  1658. static int try_read(struct ceph_connection *con)
  1659. {
  1660. int ret = -1;
  1661. if (!con->sock)
  1662. return 0;
  1663. if (test_bit(STANDBY, &con->state))
  1664. return 0;
  1665. dout("try_read start on %p\n", con);
  1666. more:
  1667. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1668. con->in_base_pos);
  1669. /*
  1670. * process_connect and process_message drop and re-take
  1671. * con->mutex. make sure we handle a racing close or reopen.
  1672. */
  1673. if (test_bit(CLOSED, &con->state) ||
  1674. test_bit(OPENING, &con->state)) {
  1675. ret = -EAGAIN;
  1676. goto out;
  1677. }
  1678. if (test_bit(CONNECTING, &con->state)) {
  1679. if (!test_bit(NEGOTIATING, &con->state)) {
  1680. dout("try_read connecting\n");
  1681. ret = read_partial_banner(con);
  1682. if (ret <= 0)
  1683. goto out;
  1684. ret = process_banner(con);
  1685. if (ret < 0)
  1686. goto out;
  1687. }
  1688. ret = read_partial_connect(con);
  1689. if (ret <= 0)
  1690. goto out;
  1691. ret = process_connect(con);
  1692. if (ret < 0)
  1693. goto out;
  1694. goto more;
  1695. }
  1696. if (con->in_base_pos < 0) {
  1697. /*
  1698. * skipping + discarding content.
  1699. *
  1700. * FIXME: there must be a better way to do this!
  1701. */
  1702. static char buf[SKIP_BUF_SIZE];
  1703. int skip = min((int) sizeof (buf), -con->in_base_pos);
  1704. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1705. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1706. if (ret <= 0)
  1707. goto out;
  1708. con->in_base_pos += ret;
  1709. if (con->in_base_pos)
  1710. goto more;
  1711. }
  1712. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1713. /*
  1714. * what's next?
  1715. */
  1716. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1717. if (ret <= 0)
  1718. goto out;
  1719. dout("try_read got tag %d\n", (int)con->in_tag);
  1720. switch (con->in_tag) {
  1721. case CEPH_MSGR_TAG_MSG:
  1722. prepare_read_message(con);
  1723. break;
  1724. case CEPH_MSGR_TAG_ACK:
  1725. prepare_read_ack(con);
  1726. break;
  1727. case CEPH_MSGR_TAG_CLOSE:
  1728. set_bit(CLOSED, &con->state); /* fixme */
  1729. goto out;
  1730. default:
  1731. goto bad_tag;
  1732. }
  1733. }
  1734. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1735. ret = read_partial_message(con);
  1736. if (ret <= 0) {
  1737. switch (ret) {
  1738. case -EBADMSG:
  1739. con->error_msg = "bad crc";
  1740. ret = -EIO;
  1741. break;
  1742. case -EIO:
  1743. con->error_msg = "io error";
  1744. break;
  1745. }
  1746. goto out;
  1747. }
  1748. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1749. goto more;
  1750. process_message(con);
  1751. goto more;
  1752. }
  1753. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1754. ret = read_partial_ack(con);
  1755. if (ret <= 0)
  1756. goto out;
  1757. process_ack(con);
  1758. goto more;
  1759. }
  1760. out:
  1761. dout("try_read done on %p ret %d\n", con, ret);
  1762. return ret;
  1763. bad_tag:
  1764. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1765. con->error_msg = "protocol error, garbage tag";
  1766. ret = -1;
  1767. goto out;
  1768. }
  1769. /*
  1770. * Atomically queue work on a connection. Bump @con reference to
  1771. * avoid races with connection teardown.
  1772. */
  1773. static void queue_con(struct ceph_connection *con)
  1774. {
  1775. if (test_bit(DEAD, &con->state)) {
  1776. dout("queue_con %p ignoring: DEAD\n",
  1777. con);
  1778. return;
  1779. }
  1780. if (!con->ops->get(con)) {
  1781. dout("queue_con %p ref count 0\n", con);
  1782. return;
  1783. }
  1784. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1785. dout("queue_con %p - already queued\n", con);
  1786. con->ops->put(con);
  1787. } else {
  1788. dout("queue_con %p\n", con);
  1789. }
  1790. }
  1791. /*
  1792. * Do some work on a connection. Drop a connection ref when we're done.
  1793. */
  1794. static void con_work(struct work_struct *work)
  1795. {
  1796. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1797. work.work);
  1798. int ret;
  1799. mutex_lock(&con->mutex);
  1800. restart:
  1801. if (test_and_clear_bit(BACKOFF, &con->state)) {
  1802. dout("con_work %p backing off\n", con);
  1803. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1804. round_jiffies_relative(con->delay))) {
  1805. dout("con_work %p backoff %lu\n", con, con->delay);
  1806. mutex_unlock(&con->mutex);
  1807. return;
  1808. } else {
  1809. con->ops->put(con);
  1810. dout("con_work %p FAILED to back off %lu\n", con,
  1811. con->delay);
  1812. }
  1813. }
  1814. if (test_bit(STANDBY, &con->state)) {
  1815. dout("con_work %p STANDBY\n", con);
  1816. goto done;
  1817. }
  1818. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1819. dout("con_work CLOSED\n");
  1820. con_close_socket(con);
  1821. goto done;
  1822. }
  1823. if (test_and_clear_bit(OPENING, &con->state)) {
  1824. /* reopen w/ new peer */
  1825. dout("con_work OPENING\n");
  1826. con_close_socket(con);
  1827. }
  1828. if (test_and_clear_bit(SOCK_CLOSED, &con->state))
  1829. goto fault;
  1830. ret = try_read(con);
  1831. if (ret == -EAGAIN)
  1832. goto restart;
  1833. if (ret < 0)
  1834. goto fault;
  1835. ret = try_write(con);
  1836. if (ret == -EAGAIN)
  1837. goto restart;
  1838. if (ret < 0)
  1839. goto fault;
  1840. done:
  1841. mutex_unlock(&con->mutex);
  1842. done_unlocked:
  1843. con->ops->put(con);
  1844. return;
  1845. fault:
  1846. mutex_unlock(&con->mutex);
  1847. ceph_fault(con); /* error/fault path */
  1848. goto done_unlocked;
  1849. }
  1850. /*
  1851. * Generic error/fault handler. A retry mechanism is used with
  1852. * exponential backoff
  1853. */
  1854. static void ceph_fault(struct ceph_connection *con)
  1855. {
  1856. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1857. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1858. dout("fault %p state %lu to peer %s\n",
  1859. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1860. if (test_bit(LOSSYTX, &con->state)) {
  1861. dout("fault on LOSSYTX channel\n");
  1862. goto out;
  1863. }
  1864. mutex_lock(&con->mutex);
  1865. if (test_bit(CLOSED, &con->state))
  1866. goto out_unlock;
  1867. con_close_socket(con);
  1868. if (con->in_msg) {
  1869. ceph_msg_put(con->in_msg);
  1870. con->in_msg = NULL;
  1871. }
  1872. /* Requeue anything that hasn't been acked */
  1873. list_splice_init(&con->out_sent, &con->out_queue);
  1874. /* If there are no messages queued or keepalive pending, place
  1875. * the connection in a STANDBY state */
  1876. if (list_empty(&con->out_queue) &&
  1877. !test_bit(KEEPALIVE_PENDING, &con->state)) {
  1878. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1879. clear_bit(WRITE_PENDING, &con->state);
  1880. set_bit(STANDBY, &con->state);
  1881. } else {
  1882. /* retry after a delay. */
  1883. if (con->delay == 0)
  1884. con->delay = BASE_DELAY_INTERVAL;
  1885. else if (con->delay < MAX_DELAY_INTERVAL)
  1886. con->delay *= 2;
  1887. con->ops->get(con);
  1888. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1889. round_jiffies_relative(con->delay))) {
  1890. dout("fault queued %p delay %lu\n", con, con->delay);
  1891. } else {
  1892. con->ops->put(con);
  1893. dout("fault failed to queue %p delay %lu, backoff\n",
  1894. con, con->delay);
  1895. /*
  1896. * In many cases we see a socket state change
  1897. * while con_work is running and end up
  1898. * queuing (non-delayed) work, such that we
  1899. * can't backoff with a delay. Set a flag so
  1900. * that when con_work restarts we schedule the
  1901. * delay then.
  1902. */
  1903. set_bit(BACKOFF, &con->state);
  1904. }
  1905. }
  1906. out_unlock:
  1907. mutex_unlock(&con->mutex);
  1908. out:
  1909. /*
  1910. * in case we faulted due to authentication, invalidate our
  1911. * current tickets so that we can get new ones.
  1912. */
  1913. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1914. dout("calling invalidate_authorizer()\n");
  1915. con->ops->invalidate_authorizer(con);
  1916. }
  1917. if (con->ops->fault)
  1918. con->ops->fault(con);
  1919. }
  1920. /*
  1921. * create a new messenger instance
  1922. */
  1923. struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
  1924. u32 supported_features,
  1925. u32 required_features)
  1926. {
  1927. struct ceph_messenger *msgr;
  1928. msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
  1929. if (msgr == NULL)
  1930. return ERR_PTR(-ENOMEM);
  1931. msgr->supported_features = supported_features;
  1932. msgr->required_features = required_features;
  1933. spin_lock_init(&msgr->global_seq_lock);
  1934. if (myaddr)
  1935. msgr->inst.addr = *myaddr;
  1936. /* select a random nonce */
  1937. msgr->inst.addr.type = 0;
  1938. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  1939. encode_my_addr(msgr);
  1940. dout("messenger_create %p\n", msgr);
  1941. return msgr;
  1942. }
  1943. EXPORT_SYMBOL(ceph_messenger_create);
  1944. void ceph_messenger_destroy(struct ceph_messenger *msgr)
  1945. {
  1946. dout("destroy %p\n", msgr);
  1947. kfree(msgr);
  1948. dout("destroyed messenger %p\n", msgr);
  1949. }
  1950. EXPORT_SYMBOL(ceph_messenger_destroy);
  1951. static void clear_standby(struct ceph_connection *con)
  1952. {
  1953. /* come back from STANDBY? */
  1954. if (test_and_clear_bit(STANDBY, &con->state)) {
  1955. mutex_lock(&con->mutex);
  1956. dout("clear_standby %p and ++connect_seq\n", con);
  1957. con->connect_seq++;
  1958. WARN_ON(test_bit(WRITE_PENDING, &con->state));
  1959. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
  1960. mutex_unlock(&con->mutex);
  1961. }
  1962. }
  1963. /*
  1964. * Queue up an outgoing message on the given connection.
  1965. */
  1966. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  1967. {
  1968. if (test_bit(CLOSED, &con->state)) {
  1969. dout("con_send %p closed, dropping %p\n", con, msg);
  1970. ceph_msg_put(msg);
  1971. return;
  1972. }
  1973. /* set src+dst */
  1974. msg->hdr.src = con->msgr->inst.name;
  1975. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  1976. msg->needs_out_seq = true;
  1977. /* queue */
  1978. mutex_lock(&con->mutex);
  1979. BUG_ON(!list_empty(&msg->list_head));
  1980. list_add_tail(&msg->list_head, &con->out_queue);
  1981. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  1982. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  1983. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1984. le32_to_cpu(msg->hdr.front_len),
  1985. le32_to_cpu(msg->hdr.middle_len),
  1986. le32_to_cpu(msg->hdr.data_len));
  1987. mutex_unlock(&con->mutex);
  1988. /* if there wasn't anything waiting to send before, queue
  1989. * new work */
  1990. clear_standby(con);
  1991. if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  1992. queue_con(con);
  1993. }
  1994. EXPORT_SYMBOL(ceph_con_send);
  1995. /*
  1996. * Revoke a message that was previously queued for send
  1997. */
  1998. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  1999. {
  2000. mutex_lock(&con->mutex);
  2001. if (!list_empty(&msg->list_head)) {
  2002. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  2003. list_del_init(&msg->list_head);
  2004. ceph_msg_put(msg);
  2005. msg->hdr.seq = 0;
  2006. }
  2007. if (con->out_msg == msg) {
  2008. dout("con_revoke %p msg %p - was sending\n", con, msg);
  2009. con->out_msg = NULL;
  2010. if (con->out_kvec_is_msg) {
  2011. con->out_skip = con->out_kvec_bytes;
  2012. con->out_kvec_is_msg = false;
  2013. }
  2014. ceph_msg_put(msg);
  2015. msg->hdr.seq = 0;
  2016. }
  2017. mutex_unlock(&con->mutex);
  2018. }
  2019. /*
  2020. * Revoke a message that we may be reading data into
  2021. */
  2022. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  2023. {
  2024. mutex_lock(&con->mutex);
  2025. if (con->in_msg && con->in_msg == msg) {
  2026. unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
  2027. unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2028. unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
  2029. /* skip rest of message */
  2030. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  2031. con->in_base_pos = con->in_base_pos -
  2032. sizeof(struct ceph_msg_header) -
  2033. front_len -
  2034. middle_len -
  2035. data_len -
  2036. sizeof(struct ceph_msg_footer);
  2037. ceph_msg_put(con->in_msg);
  2038. con->in_msg = NULL;
  2039. con->in_tag = CEPH_MSGR_TAG_READY;
  2040. con->in_seq++;
  2041. } else {
  2042. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  2043. con, con->in_msg, msg);
  2044. }
  2045. mutex_unlock(&con->mutex);
  2046. }
  2047. /*
  2048. * Queue a keepalive byte to ensure the tcp connection is alive.
  2049. */
  2050. void ceph_con_keepalive(struct ceph_connection *con)
  2051. {
  2052. dout("con_keepalive %p\n", con);
  2053. clear_standby(con);
  2054. if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
  2055. test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2056. queue_con(con);
  2057. }
  2058. EXPORT_SYMBOL(ceph_con_keepalive);
  2059. /*
  2060. * construct a new message with given type, size
  2061. * the new msg has a ref count of 1.
  2062. */
  2063. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2064. bool can_fail)
  2065. {
  2066. struct ceph_msg *m;
  2067. m = kmalloc(sizeof(*m), flags);
  2068. if (m == NULL)
  2069. goto out;
  2070. kref_init(&m->kref);
  2071. INIT_LIST_HEAD(&m->list_head);
  2072. m->hdr.tid = 0;
  2073. m->hdr.type = cpu_to_le16(type);
  2074. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2075. m->hdr.version = 0;
  2076. m->hdr.front_len = cpu_to_le32(front_len);
  2077. m->hdr.middle_len = 0;
  2078. m->hdr.data_len = 0;
  2079. m->hdr.data_off = 0;
  2080. m->hdr.reserved = 0;
  2081. m->footer.front_crc = 0;
  2082. m->footer.middle_crc = 0;
  2083. m->footer.data_crc = 0;
  2084. m->footer.flags = 0;
  2085. m->front_max = front_len;
  2086. m->front_is_vmalloc = false;
  2087. m->more_to_follow = false;
  2088. m->ack_stamp = 0;
  2089. m->pool = NULL;
  2090. /* middle */
  2091. m->middle = NULL;
  2092. /* data */
  2093. m->nr_pages = 0;
  2094. m->page_alignment = 0;
  2095. m->pages = NULL;
  2096. m->pagelist = NULL;
  2097. m->bio = NULL;
  2098. m->bio_iter = NULL;
  2099. m->bio_seg = 0;
  2100. m->trail = NULL;
  2101. /* front */
  2102. if (front_len) {
  2103. if (front_len > PAGE_CACHE_SIZE) {
  2104. m->front.iov_base = __vmalloc(front_len, flags,
  2105. PAGE_KERNEL);
  2106. m->front_is_vmalloc = true;
  2107. } else {
  2108. m->front.iov_base = kmalloc(front_len, flags);
  2109. }
  2110. if (m->front.iov_base == NULL) {
  2111. dout("ceph_msg_new can't allocate %d bytes\n",
  2112. front_len);
  2113. goto out2;
  2114. }
  2115. } else {
  2116. m->front.iov_base = NULL;
  2117. }
  2118. m->front.iov_len = front_len;
  2119. dout("ceph_msg_new %p front %d\n", m, front_len);
  2120. return m;
  2121. out2:
  2122. ceph_msg_put(m);
  2123. out:
  2124. if (!can_fail) {
  2125. pr_err("msg_new can't create type %d front %d\n", type,
  2126. front_len);
  2127. WARN_ON(1);
  2128. } else {
  2129. dout("msg_new can't create type %d front %d\n", type,
  2130. front_len);
  2131. }
  2132. return NULL;
  2133. }
  2134. EXPORT_SYMBOL(ceph_msg_new);
  2135. /*
  2136. * Allocate "middle" portion of a message, if it is needed and wasn't
  2137. * allocated by alloc_msg. This allows us to read a small fixed-size
  2138. * per-type header in the front and then gracefully fail (i.e.,
  2139. * propagate the error to the caller based on info in the front) when
  2140. * the middle is too large.
  2141. */
  2142. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2143. {
  2144. int type = le16_to_cpu(msg->hdr.type);
  2145. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2146. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2147. ceph_msg_type_name(type), middle_len);
  2148. BUG_ON(!middle_len);
  2149. BUG_ON(msg->middle);
  2150. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2151. if (!msg->middle)
  2152. return -ENOMEM;
  2153. return 0;
  2154. }
  2155. /*
  2156. * Generic message allocator, for incoming messages.
  2157. */
  2158. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2159. struct ceph_msg_header *hdr,
  2160. int *skip)
  2161. {
  2162. int type = le16_to_cpu(hdr->type);
  2163. int front_len = le32_to_cpu(hdr->front_len);
  2164. int middle_len = le32_to_cpu(hdr->middle_len);
  2165. struct ceph_msg *msg = NULL;
  2166. int ret;
  2167. if (con->ops->alloc_msg) {
  2168. mutex_unlock(&con->mutex);
  2169. msg = con->ops->alloc_msg(con, hdr, skip);
  2170. mutex_lock(&con->mutex);
  2171. if (!msg || *skip)
  2172. return NULL;
  2173. }
  2174. if (!msg) {
  2175. *skip = 0;
  2176. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2177. if (!msg) {
  2178. pr_err("unable to allocate msg type %d len %d\n",
  2179. type, front_len);
  2180. return NULL;
  2181. }
  2182. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2183. }
  2184. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2185. if (middle_len && !msg->middle) {
  2186. ret = ceph_alloc_middle(con, msg);
  2187. if (ret < 0) {
  2188. ceph_msg_put(msg);
  2189. return NULL;
  2190. }
  2191. }
  2192. return msg;
  2193. }
  2194. /*
  2195. * Free a generically kmalloc'd message.
  2196. */
  2197. void ceph_msg_kfree(struct ceph_msg *m)
  2198. {
  2199. dout("msg_kfree %p\n", m);
  2200. if (m->front_is_vmalloc)
  2201. vfree(m->front.iov_base);
  2202. else
  2203. kfree(m->front.iov_base);
  2204. kfree(m);
  2205. }
  2206. /*
  2207. * Drop a msg ref. Destroy as needed.
  2208. */
  2209. void ceph_msg_last_put(struct kref *kref)
  2210. {
  2211. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2212. dout("ceph_msg_put last one on %p\n", m);
  2213. WARN_ON(!list_empty(&m->list_head));
  2214. /* drop middle, data, if any */
  2215. if (m->middle) {
  2216. ceph_buffer_put(m->middle);
  2217. m->middle = NULL;
  2218. }
  2219. m->nr_pages = 0;
  2220. m->pages = NULL;
  2221. if (m->pagelist) {
  2222. ceph_pagelist_release(m->pagelist);
  2223. kfree(m->pagelist);
  2224. m->pagelist = NULL;
  2225. }
  2226. m->trail = NULL;
  2227. if (m->pool)
  2228. ceph_msgpool_put(m->pool, m);
  2229. else
  2230. ceph_msg_kfree(m);
  2231. }
  2232. EXPORT_SYMBOL(ceph_msg_last_put);
  2233. void ceph_msg_dump(struct ceph_msg *msg)
  2234. {
  2235. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2236. msg->front_max, msg->nr_pages);
  2237. print_hex_dump(KERN_DEBUG, "header: ",
  2238. DUMP_PREFIX_OFFSET, 16, 1,
  2239. &msg->hdr, sizeof(msg->hdr), true);
  2240. print_hex_dump(KERN_DEBUG, " front: ",
  2241. DUMP_PREFIX_OFFSET, 16, 1,
  2242. msg->front.iov_base, msg->front.iov_len, true);
  2243. if (msg->middle)
  2244. print_hex_dump(KERN_DEBUG, "middle: ",
  2245. DUMP_PREFIX_OFFSET, 16, 1,
  2246. msg->middle->vec.iov_base,
  2247. msg->middle->vec.iov_len, true);
  2248. print_hex_dump(KERN_DEBUG, "footer: ",
  2249. DUMP_PREFIX_OFFSET, 16, 1,
  2250. &msg->footer, sizeof(msg->footer), true);
  2251. }
  2252. EXPORT_SYMBOL(ceph_msg_dump);