init.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454
  1. #include <linux/gfp.h>
  2. #include <linux/initrd.h>
  3. #include <linux/ioport.h>
  4. #include <linux/swap.h>
  5. #include <linux/memblock.h>
  6. #include <linux/bootmem.h> /* for max_low_pfn */
  7. #include <asm/cacheflush.h>
  8. #include <asm/e820.h>
  9. #include <asm/init.h>
  10. #include <asm/page.h>
  11. #include <asm/page_types.h>
  12. #include <asm/sections.h>
  13. #include <asm/setup.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/tlb.h>
  16. #include <asm/proto.h>
  17. #include <asm/dma.h> /* for MAX_DMA_PFN */
  18. unsigned long __initdata pgt_buf_start;
  19. unsigned long __meminitdata pgt_buf_end;
  20. unsigned long __meminitdata pgt_buf_top;
  21. int after_bootmem;
  22. int direct_gbpages
  23. #ifdef CONFIG_DIRECT_GBPAGES
  24. = 1
  25. #endif
  26. ;
  27. struct map_range {
  28. unsigned long start;
  29. unsigned long end;
  30. unsigned page_size_mask;
  31. };
  32. static int page_size_mask;
  33. static void __init probe_page_size_mask(void)
  34. {
  35. #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
  36. /*
  37. * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
  38. * This will simplify cpa(), which otherwise needs to support splitting
  39. * large pages into small in interrupt context, etc.
  40. */
  41. if (direct_gbpages)
  42. page_size_mask |= 1 << PG_LEVEL_1G;
  43. if (cpu_has_pse)
  44. page_size_mask |= 1 << PG_LEVEL_2M;
  45. #endif
  46. /* Enable PSE if available */
  47. if (cpu_has_pse)
  48. set_in_cr4(X86_CR4_PSE);
  49. /* Enable PGE if available */
  50. if (cpu_has_pge) {
  51. set_in_cr4(X86_CR4_PGE);
  52. __supported_pte_mask |= _PAGE_GLOBAL;
  53. }
  54. }
  55. void __init native_pagetable_reserve(u64 start, u64 end)
  56. {
  57. memblock_reserve(start, end - start);
  58. }
  59. #ifdef CONFIG_X86_32
  60. #define NR_RANGE_MR 3
  61. #else /* CONFIG_X86_64 */
  62. #define NR_RANGE_MR 5
  63. #endif
  64. static int __meminit save_mr(struct map_range *mr, int nr_range,
  65. unsigned long start_pfn, unsigned long end_pfn,
  66. unsigned long page_size_mask)
  67. {
  68. if (start_pfn < end_pfn) {
  69. if (nr_range >= NR_RANGE_MR)
  70. panic("run out of range for init_memory_mapping\n");
  71. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  72. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  73. mr[nr_range].page_size_mask = page_size_mask;
  74. nr_range++;
  75. }
  76. return nr_range;
  77. }
  78. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  79. unsigned long start,
  80. unsigned long end)
  81. {
  82. unsigned long start_pfn, end_pfn;
  83. unsigned long pos;
  84. int i;
  85. /* head if not big page alignment ? */
  86. start_pfn = start >> PAGE_SHIFT;
  87. pos = start_pfn << PAGE_SHIFT;
  88. #ifdef CONFIG_X86_32
  89. /*
  90. * Don't use a large page for the first 2/4MB of memory
  91. * because there are often fixed size MTRRs in there
  92. * and overlapping MTRRs into large pages can cause
  93. * slowdowns.
  94. */
  95. if (pos == 0)
  96. end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
  97. else
  98. end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
  99. << (PMD_SHIFT - PAGE_SHIFT);
  100. #else /* CONFIG_X86_64 */
  101. end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
  102. << (PMD_SHIFT - PAGE_SHIFT);
  103. #endif
  104. if (end_pfn > (end >> PAGE_SHIFT))
  105. end_pfn = end >> PAGE_SHIFT;
  106. if (start_pfn < end_pfn) {
  107. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  108. pos = end_pfn << PAGE_SHIFT;
  109. }
  110. /* big page (2M) range */
  111. start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
  112. << (PMD_SHIFT - PAGE_SHIFT);
  113. #ifdef CONFIG_X86_32
  114. end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
  115. #else /* CONFIG_X86_64 */
  116. end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
  117. << (PUD_SHIFT - PAGE_SHIFT);
  118. if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
  119. end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
  120. #endif
  121. if (start_pfn < end_pfn) {
  122. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  123. page_size_mask & (1<<PG_LEVEL_2M));
  124. pos = end_pfn << PAGE_SHIFT;
  125. }
  126. #ifdef CONFIG_X86_64
  127. /* big page (1G) range */
  128. start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
  129. << (PUD_SHIFT - PAGE_SHIFT);
  130. end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
  131. if (start_pfn < end_pfn) {
  132. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  133. page_size_mask &
  134. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  135. pos = end_pfn << PAGE_SHIFT;
  136. }
  137. /* tail is not big page (1G) alignment */
  138. start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
  139. << (PMD_SHIFT - PAGE_SHIFT);
  140. end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
  141. if (start_pfn < end_pfn) {
  142. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  143. page_size_mask & (1<<PG_LEVEL_2M));
  144. pos = end_pfn << PAGE_SHIFT;
  145. }
  146. #endif
  147. /* tail is not big page (2M) alignment */
  148. start_pfn = pos>>PAGE_SHIFT;
  149. end_pfn = end>>PAGE_SHIFT;
  150. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  151. /* try to merge same page size and continuous */
  152. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  153. unsigned long old_start;
  154. if (mr[i].end != mr[i+1].start ||
  155. mr[i].page_size_mask != mr[i+1].page_size_mask)
  156. continue;
  157. /* move it */
  158. old_start = mr[i].start;
  159. memmove(&mr[i], &mr[i+1],
  160. (nr_range - 1 - i) * sizeof(struct map_range));
  161. mr[i--].start = old_start;
  162. nr_range--;
  163. }
  164. for (i = 0; i < nr_range; i++)
  165. printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
  166. mr[i].start, mr[i].end - 1,
  167. (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
  168. (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
  169. return nr_range;
  170. }
  171. /*
  172. * First calculate space needed for kernel direct mapping page tables to cover
  173. * mr[0].start to mr[nr_range - 1].end, while accounting for possible 2M and 1GB
  174. * pages. Then find enough contiguous space for those page tables.
  175. */
  176. static void __init find_early_table_space(unsigned long start, unsigned long end)
  177. {
  178. int i;
  179. unsigned long puds = 0, pmds = 0, ptes = 0, tables;
  180. unsigned long good_end;
  181. phys_addr_t base;
  182. struct map_range mr[NR_RANGE_MR];
  183. int nr_range;
  184. memset(mr, 0, sizeof(mr));
  185. nr_range = 0;
  186. nr_range = split_mem_range(mr, nr_range, start, end);
  187. for (i = 0; i < nr_range; i++) {
  188. unsigned long range, extra;
  189. range = mr[i].end - mr[i].start;
  190. puds += (range + PUD_SIZE - 1) >> PUD_SHIFT;
  191. if (mr[i].page_size_mask & (1 << PG_LEVEL_1G)) {
  192. extra = range - ((range >> PUD_SHIFT) << PUD_SHIFT);
  193. pmds += (extra + PMD_SIZE - 1) >> PMD_SHIFT;
  194. } else {
  195. pmds += (range + PMD_SIZE - 1) >> PMD_SHIFT;
  196. }
  197. if (mr[i].page_size_mask & (1 << PG_LEVEL_2M)) {
  198. extra = range - ((range >> PMD_SHIFT) << PMD_SHIFT);
  199. #ifdef CONFIG_X86_32
  200. extra += PMD_SIZE;
  201. #endif
  202. ptes += (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
  203. } else {
  204. ptes += (range + PAGE_SIZE - 1) >> PAGE_SHIFT;
  205. }
  206. }
  207. tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
  208. tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
  209. tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
  210. #ifdef CONFIG_X86_32
  211. /* for fixmap */
  212. tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
  213. good_end = max_pfn_mapped << PAGE_SHIFT;
  214. #endif
  215. base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
  216. if (!base)
  217. panic("Cannot find space for the kernel page tables");
  218. pgt_buf_start = base >> PAGE_SHIFT;
  219. pgt_buf_end = pgt_buf_start;
  220. pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
  221. printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx]\n",
  222. mr[nr_range - 1].end - 1, pgt_buf_start << PAGE_SHIFT,
  223. (pgt_buf_top << PAGE_SHIFT) - 1);
  224. }
  225. /*
  226. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  227. * This runs before bootmem is initialized and gets pages directly from
  228. * the physical memory. To access them they are temporarily mapped.
  229. */
  230. unsigned long __init_refok init_memory_mapping(unsigned long start,
  231. unsigned long end)
  232. {
  233. struct map_range mr[NR_RANGE_MR];
  234. unsigned long ret = 0;
  235. int nr_range, i;
  236. pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  237. start, end - 1);
  238. memset(mr, 0, sizeof(mr));
  239. nr_range = split_mem_range(mr, 0, start, end);
  240. /*
  241. * Find space for the kernel direct mapping tables.
  242. *
  243. * Later we should allocate these tables in the local node of the
  244. * memory mapped. Unfortunately this is done currently before the
  245. * nodes are discovered.
  246. */
  247. if (!after_bootmem)
  248. find_early_table_space(start, end);
  249. for (i = 0; i < nr_range; i++)
  250. ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  251. mr[i].page_size_mask);
  252. #ifdef CONFIG_X86_32
  253. early_ioremap_page_table_range_init();
  254. load_cr3(swapper_pg_dir);
  255. #endif
  256. __flush_tlb_all();
  257. /*
  258. * Reserve the kernel pagetable pages we used (pgt_buf_start -
  259. * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
  260. * so that they can be reused for other purposes.
  261. *
  262. * On native it just means calling memblock_reserve, on Xen it also
  263. * means marking RW the pagetable pages that we allocated before
  264. * but that haven't been used.
  265. *
  266. * In fact on xen we mark RO the whole range pgt_buf_start -
  267. * pgt_buf_top, because we have to make sure that when
  268. * init_memory_mapping reaches the pagetable pages area, it maps
  269. * RO all the pagetable pages, including the ones that are beyond
  270. * pgt_buf_end at that time.
  271. */
  272. if (!after_bootmem && pgt_buf_end > pgt_buf_start)
  273. x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
  274. PFN_PHYS(pgt_buf_end));
  275. if (!after_bootmem)
  276. early_memtest(start, end);
  277. return ret >> PAGE_SHIFT;
  278. }
  279. void __init init_mem_mapping(void)
  280. {
  281. probe_page_size_mask();
  282. /* max_pfn_mapped is updated here */
  283. max_low_pfn_mapped = init_memory_mapping(0, max_low_pfn<<PAGE_SHIFT);
  284. max_pfn_mapped = max_low_pfn_mapped;
  285. #ifdef CONFIG_X86_64
  286. if (max_pfn > max_low_pfn) {
  287. max_pfn_mapped = init_memory_mapping(1UL<<32,
  288. max_pfn<<PAGE_SHIFT);
  289. /* can we preseve max_low_pfn ?*/
  290. max_low_pfn = max_pfn;
  291. }
  292. #endif
  293. }
  294. /*
  295. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  296. * is valid. The argument is a physical page number.
  297. *
  298. *
  299. * On x86, access has to be given to the first megabyte of ram because that area
  300. * contains bios code and data regions used by X and dosemu and similar apps.
  301. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  302. * mmio resources as well as potential bios/acpi data regions.
  303. */
  304. int devmem_is_allowed(unsigned long pagenr)
  305. {
  306. if (pagenr < 256)
  307. return 1;
  308. if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
  309. return 0;
  310. if (!page_is_ram(pagenr))
  311. return 1;
  312. return 0;
  313. }
  314. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  315. {
  316. unsigned long addr;
  317. unsigned long begin_aligned, end_aligned;
  318. /* Make sure boundaries are page aligned */
  319. begin_aligned = PAGE_ALIGN(begin);
  320. end_aligned = end & PAGE_MASK;
  321. if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
  322. begin = begin_aligned;
  323. end = end_aligned;
  324. }
  325. if (begin >= end)
  326. return;
  327. addr = begin;
  328. /*
  329. * If debugging page accesses then do not free this memory but
  330. * mark them not present - any buggy init-section access will
  331. * create a kernel page fault:
  332. */
  333. #ifdef CONFIG_DEBUG_PAGEALLOC
  334. printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
  335. begin, end - 1);
  336. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  337. #else
  338. /*
  339. * We just marked the kernel text read only above, now that
  340. * we are going to free part of that, we need to make that
  341. * writeable and non-executable first.
  342. */
  343. set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
  344. set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
  345. printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
  346. for (; addr < end; addr += PAGE_SIZE) {
  347. ClearPageReserved(virt_to_page(addr));
  348. init_page_count(virt_to_page(addr));
  349. memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
  350. free_page(addr);
  351. totalram_pages++;
  352. }
  353. #endif
  354. }
  355. void free_initmem(void)
  356. {
  357. free_init_pages("unused kernel memory",
  358. (unsigned long)(&__init_begin),
  359. (unsigned long)(&__init_end));
  360. }
  361. #ifdef CONFIG_BLK_DEV_INITRD
  362. void __init free_initrd_mem(unsigned long start, unsigned long end)
  363. {
  364. /*
  365. * end could be not aligned, and We can not align that,
  366. * decompresser could be confused by aligned initrd_end
  367. * We already reserve the end partial page before in
  368. * - i386_start_kernel()
  369. * - x86_64_start_kernel()
  370. * - relocate_initrd()
  371. * So here We can do PAGE_ALIGN() safely to get partial page to be freed
  372. */
  373. free_init_pages("initrd memory", start, PAGE_ALIGN(end));
  374. }
  375. #endif
  376. void __init zone_sizes_init(void)
  377. {
  378. unsigned long max_zone_pfns[MAX_NR_ZONES];
  379. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  380. #ifdef CONFIG_ZONE_DMA
  381. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  382. #endif
  383. #ifdef CONFIG_ZONE_DMA32
  384. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  385. #endif
  386. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  387. #ifdef CONFIG_HIGHMEM
  388. max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
  389. #endif
  390. free_area_init_nodes(max_zone_pfns);
  391. }