mv_sas.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200
  1. /*
  2. * Marvell 88SE64xx/88SE94xx main function
  3. *
  4. * Copyright 2007 Red Hat, Inc.
  5. * Copyright 2008 Marvell. <kewei@marvell.com>
  6. * Copyright 2009-2011 Marvell. <yuxiangl@marvell.com>
  7. *
  8. * This file is licensed under GPLv2.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; version 2 of the
  13. * License.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
  23. * USA
  24. */
  25. #include "mv_sas.h"
  26. static int mvs_find_tag(struct mvs_info *mvi, struct sas_task *task, u32 *tag)
  27. {
  28. if (task->lldd_task) {
  29. struct mvs_slot_info *slot;
  30. slot = task->lldd_task;
  31. *tag = slot->slot_tag;
  32. return 1;
  33. }
  34. return 0;
  35. }
  36. void mvs_tag_clear(struct mvs_info *mvi, u32 tag)
  37. {
  38. void *bitmap = mvi->tags;
  39. clear_bit(tag, bitmap);
  40. }
  41. void mvs_tag_free(struct mvs_info *mvi, u32 tag)
  42. {
  43. mvs_tag_clear(mvi, tag);
  44. }
  45. void mvs_tag_set(struct mvs_info *mvi, unsigned int tag)
  46. {
  47. void *bitmap = mvi->tags;
  48. set_bit(tag, bitmap);
  49. }
  50. inline int mvs_tag_alloc(struct mvs_info *mvi, u32 *tag_out)
  51. {
  52. unsigned int index, tag;
  53. void *bitmap = mvi->tags;
  54. index = find_first_zero_bit(bitmap, mvi->tags_num);
  55. tag = index;
  56. if (tag >= mvi->tags_num)
  57. return -SAS_QUEUE_FULL;
  58. mvs_tag_set(mvi, tag);
  59. *tag_out = tag;
  60. return 0;
  61. }
  62. void mvs_tag_init(struct mvs_info *mvi)
  63. {
  64. int i;
  65. for (i = 0; i < mvi->tags_num; ++i)
  66. mvs_tag_clear(mvi, i);
  67. }
  68. struct mvs_info *mvs_find_dev_mvi(struct domain_device *dev)
  69. {
  70. unsigned long i = 0, j = 0, hi = 0;
  71. struct sas_ha_struct *sha = dev->port->ha;
  72. struct mvs_info *mvi = NULL;
  73. struct asd_sas_phy *phy;
  74. while (sha->sas_port[i]) {
  75. if (sha->sas_port[i] == dev->port) {
  76. phy = container_of(sha->sas_port[i]->phy_list.next,
  77. struct asd_sas_phy, port_phy_el);
  78. j = 0;
  79. while (sha->sas_phy[j]) {
  80. if (sha->sas_phy[j] == phy)
  81. break;
  82. j++;
  83. }
  84. break;
  85. }
  86. i++;
  87. }
  88. hi = j/((struct mvs_prv_info *)sha->lldd_ha)->n_phy;
  89. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi];
  90. return mvi;
  91. }
  92. int mvs_find_dev_phyno(struct domain_device *dev, int *phyno)
  93. {
  94. unsigned long i = 0, j = 0, n = 0, num = 0;
  95. struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
  96. struct mvs_info *mvi = mvi_dev->mvi_info;
  97. struct sas_ha_struct *sha = dev->port->ha;
  98. while (sha->sas_port[i]) {
  99. if (sha->sas_port[i] == dev->port) {
  100. struct asd_sas_phy *phy;
  101. list_for_each_entry(phy,
  102. &sha->sas_port[i]->phy_list, port_phy_el) {
  103. j = 0;
  104. while (sha->sas_phy[j]) {
  105. if (sha->sas_phy[j] == phy)
  106. break;
  107. j++;
  108. }
  109. phyno[n] = (j >= mvi->chip->n_phy) ?
  110. (j - mvi->chip->n_phy) : j;
  111. num++;
  112. n++;
  113. }
  114. break;
  115. }
  116. i++;
  117. }
  118. return num;
  119. }
  120. struct mvs_device *mvs_find_dev_by_reg_set(struct mvs_info *mvi,
  121. u8 reg_set)
  122. {
  123. u32 dev_no;
  124. for (dev_no = 0; dev_no < MVS_MAX_DEVICES; dev_no++) {
  125. if (mvi->devices[dev_no].taskfileset == MVS_ID_NOT_MAPPED)
  126. continue;
  127. if (mvi->devices[dev_no].taskfileset == reg_set)
  128. return &mvi->devices[dev_no];
  129. }
  130. return NULL;
  131. }
  132. static inline void mvs_free_reg_set(struct mvs_info *mvi,
  133. struct mvs_device *dev)
  134. {
  135. if (!dev) {
  136. mv_printk("device has been free.\n");
  137. return;
  138. }
  139. if (dev->taskfileset == MVS_ID_NOT_MAPPED)
  140. return;
  141. MVS_CHIP_DISP->free_reg_set(mvi, &dev->taskfileset);
  142. }
  143. static inline u8 mvs_assign_reg_set(struct mvs_info *mvi,
  144. struct mvs_device *dev)
  145. {
  146. if (dev->taskfileset != MVS_ID_NOT_MAPPED)
  147. return 0;
  148. return MVS_CHIP_DISP->assign_reg_set(mvi, &dev->taskfileset);
  149. }
  150. void mvs_phys_reset(struct mvs_info *mvi, u32 phy_mask, int hard)
  151. {
  152. u32 no;
  153. for_each_phy(phy_mask, phy_mask, no) {
  154. if (!(phy_mask & 1))
  155. continue;
  156. MVS_CHIP_DISP->phy_reset(mvi, no, hard);
  157. }
  158. }
  159. int mvs_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
  160. void *funcdata)
  161. {
  162. int rc = 0, phy_id = sas_phy->id;
  163. u32 tmp, i = 0, hi;
  164. struct sas_ha_struct *sha = sas_phy->ha;
  165. struct mvs_info *mvi = NULL;
  166. while (sha->sas_phy[i]) {
  167. if (sha->sas_phy[i] == sas_phy)
  168. break;
  169. i++;
  170. }
  171. hi = i/((struct mvs_prv_info *)sha->lldd_ha)->n_phy;
  172. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi];
  173. switch (func) {
  174. case PHY_FUNC_SET_LINK_RATE:
  175. MVS_CHIP_DISP->phy_set_link_rate(mvi, phy_id, funcdata);
  176. break;
  177. case PHY_FUNC_HARD_RESET:
  178. tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_id);
  179. if (tmp & PHY_RST_HARD)
  180. break;
  181. MVS_CHIP_DISP->phy_reset(mvi, phy_id, MVS_HARD_RESET);
  182. break;
  183. case PHY_FUNC_LINK_RESET:
  184. MVS_CHIP_DISP->phy_enable(mvi, phy_id);
  185. MVS_CHIP_DISP->phy_reset(mvi, phy_id, MVS_SOFT_RESET);
  186. break;
  187. case PHY_FUNC_DISABLE:
  188. MVS_CHIP_DISP->phy_disable(mvi, phy_id);
  189. break;
  190. case PHY_FUNC_RELEASE_SPINUP_HOLD:
  191. default:
  192. rc = -ENOSYS;
  193. }
  194. msleep(200);
  195. return rc;
  196. }
  197. void mvs_set_sas_addr(struct mvs_info *mvi, int port_id, u32 off_lo,
  198. u32 off_hi, u64 sas_addr)
  199. {
  200. u32 lo = (u32)sas_addr;
  201. u32 hi = (u32)(sas_addr>>32);
  202. MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_lo);
  203. MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, lo);
  204. MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_hi);
  205. MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, hi);
  206. }
  207. static void mvs_bytes_dmaed(struct mvs_info *mvi, int i)
  208. {
  209. struct mvs_phy *phy = &mvi->phy[i];
  210. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  211. struct sas_ha_struct *sas_ha;
  212. if (!phy->phy_attached)
  213. return;
  214. if (!(phy->att_dev_info & PORT_DEV_TRGT_MASK)
  215. && phy->phy_type & PORT_TYPE_SAS) {
  216. return;
  217. }
  218. sas_ha = mvi->sas;
  219. sas_ha->notify_phy_event(sas_phy, PHYE_OOB_DONE);
  220. if (sas_phy->phy) {
  221. struct sas_phy *sphy = sas_phy->phy;
  222. sphy->negotiated_linkrate = sas_phy->linkrate;
  223. sphy->minimum_linkrate = phy->minimum_linkrate;
  224. sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
  225. sphy->maximum_linkrate = phy->maximum_linkrate;
  226. sphy->maximum_linkrate_hw = MVS_CHIP_DISP->phy_max_link_rate();
  227. }
  228. if (phy->phy_type & PORT_TYPE_SAS) {
  229. struct sas_identify_frame *id;
  230. id = (struct sas_identify_frame *)phy->frame_rcvd;
  231. id->dev_type = phy->identify.device_type;
  232. id->initiator_bits = SAS_PROTOCOL_ALL;
  233. id->target_bits = phy->identify.target_port_protocols;
  234. /* direct attached SAS device */
  235. if (phy->att_dev_info & PORT_SSP_TRGT_MASK) {
  236. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_PHY_STAT);
  237. MVS_CHIP_DISP->write_port_cfg_data(mvi, i, 0x00);
  238. }
  239. } else if (phy->phy_type & PORT_TYPE_SATA) {
  240. /*Nothing*/
  241. }
  242. mv_dprintk("phy %d byte dmaded.\n", i + mvi->id * mvi->chip->n_phy);
  243. sas_phy->frame_rcvd_size = phy->frame_rcvd_size;
  244. mvi->sas->notify_port_event(sas_phy,
  245. PORTE_BYTES_DMAED);
  246. }
  247. void mvs_scan_start(struct Scsi_Host *shost)
  248. {
  249. int i, j;
  250. unsigned short core_nr;
  251. struct mvs_info *mvi;
  252. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  253. struct mvs_prv_info *mvs_prv = sha->lldd_ha;
  254. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  255. for (j = 0; j < core_nr; j++) {
  256. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[j];
  257. for (i = 0; i < mvi->chip->n_phy; ++i)
  258. mvs_bytes_dmaed(mvi, i);
  259. }
  260. mvs_prv->scan_finished = 1;
  261. }
  262. int mvs_scan_finished(struct Scsi_Host *shost, unsigned long time)
  263. {
  264. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  265. struct mvs_prv_info *mvs_prv = sha->lldd_ha;
  266. if (mvs_prv->scan_finished == 0)
  267. return 0;
  268. sas_drain_work(sha);
  269. return 1;
  270. }
  271. static int mvs_task_prep_smp(struct mvs_info *mvi,
  272. struct mvs_task_exec_info *tei)
  273. {
  274. int elem, rc, i;
  275. struct sas_ha_struct *sha = mvi->sas;
  276. struct sas_task *task = tei->task;
  277. struct mvs_cmd_hdr *hdr = tei->hdr;
  278. struct domain_device *dev = task->dev;
  279. struct asd_sas_port *sas_port = dev->port;
  280. struct sas_phy *sphy = dev->phy;
  281. struct asd_sas_phy *sas_phy = sha->sas_phy[sphy->number];
  282. struct scatterlist *sg_req, *sg_resp;
  283. u32 req_len, resp_len, tag = tei->tag;
  284. void *buf_tmp;
  285. u8 *buf_oaf;
  286. dma_addr_t buf_tmp_dma;
  287. void *buf_prd;
  288. struct mvs_slot_info *slot = &mvi->slot_info[tag];
  289. u32 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
  290. /*
  291. * DMA-map SMP request, response buffers
  292. */
  293. sg_req = &task->smp_task.smp_req;
  294. elem = dma_map_sg(mvi->dev, sg_req, 1, PCI_DMA_TODEVICE);
  295. if (!elem)
  296. return -ENOMEM;
  297. req_len = sg_dma_len(sg_req);
  298. sg_resp = &task->smp_task.smp_resp;
  299. elem = dma_map_sg(mvi->dev, sg_resp, 1, PCI_DMA_FROMDEVICE);
  300. if (!elem) {
  301. rc = -ENOMEM;
  302. goto err_out;
  303. }
  304. resp_len = SB_RFB_MAX;
  305. /* must be in dwords */
  306. if ((req_len & 0x3) || (resp_len & 0x3)) {
  307. rc = -EINVAL;
  308. goto err_out_2;
  309. }
  310. /*
  311. * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
  312. */
  313. /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ***** */
  314. buf_tmp = slot->buf;
  315. buf_tmp_dma = slot->buf_dma;
  316. hdr->cmd_tbl = cpu_to_le64(sg_dma_address(sg_req));
  317. /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
  318. buf_oaf = buf_tmp;
  319. hdr->open_frame = cpu_to_le64(buf_tmp_dma);
  320. buf_tmp += MVS_OAF_SZ;
  321. buf_tmp_dma += MVS_OAF_SZ;
  322. /* region 3: PRD table *********************************** */
  323. buf_prd = buf_tmp;
  324. if (tei->n_elem)
  325. hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
  326. else
  327. hdr->prd_tbl = 0;
  328. i = MVS_CHIP_DISP->prd_size() * tei->n_elem;
  329. buf_tmp += i;
  330. buf_tmp_dma += i;
  331. /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
  332. slot->response = buf_tmp;
  333. hdr->status_buf = cpu_to_le64(buf_tmp_dma);
  334. if (mvi->flags & MVF_FLAG_SOC)
  335. hdr->reserved[0] = 0;
  336. /*
  337. * Fill in TX ring and command slot header
  338. */
  339. slot->tx = mvi->tx_prod;
  340. mvi->tx[mvi->tx_prod] = cpu_to_le32((TXQ_CMD_SMP << TXQ_CMD_SHIFT) |
  341. TXQ_MODE_I | tag |
  342. (MVS_PHY_ID << TXQ_PHY_SHIFT));
  343. hdr->flags |= flags;
  344. hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | ((req_len - 4) / 4));
  345. hdr->tags = cpu_to_le32(tag);
  346. hdr->data_len = 0;
  347. /* generate open address frame hdr (first 12 bytes) */
  348. /* initiator, SMP, ftype 1h */
  349. buf_oaf[0] = (1 << 7) | (PROTOCOL_SMP << 4) | 0x01;
  350. buf_oaf[1] = min(sas_port->linkrate, dev->linkrate) & 0xf;
  351. *(u16 *)(buf_oaf + 2) = 0xFFFF; /* SAS SPEC */
  352. memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
  353. /* fill in PRD (scatter/gather) table, if any */
  354. MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
  355. return 0;
  356. err_out_2:
  357. dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_resp, 1,
  358. PCI_DMA_FROMDEVICE);
  359. err_out:
  360. dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_req, 1,
  361. PCI_DMA_TODEVICE);
  362. return rc;
  363. }
  364. static u32 mvs_get_ncq_tag(struct sas_task *task, u32 *tag)
  365. {
  366. struct ata_queued_cmd *qc = task->uldd_task;
  367. if (qc) {
  368. if (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
  369. qc->tf.command == ATA_CMD_FPDMA_READ) {
  370. *tag = qc->tag;
  371. return 1;
  372. }
  373. }
  374. return 0;
  375. }
  376. static int mvs_task_prep_ata(struct mvs_info *mvi,
  377. struct mvs_task_exec_info *tei)
  378. {
  379. struct sas_ha_struct *sha = mvi->sas;
  380. struct sas_task *task = tei->task;
  381. struct domain_device *dev = task->dev;
  382. struct mvs_device *mvi_dev = dev->lldd_dev;
  383. struct mvs_cmd_hdr *hdr = tei->hdr;
  384. struct asd_sas_port *sas_port = dev->port;
  385. struct sas_phy *sphy = dev->phy;
  386. struct asd_sas_phy *sas_phy = sha->sas_phy[sphy->number];
  387. struct mvs_slot_info *slot;
  388. void *buf_prd;
  389. u32 tag = tei->tag, hdr_tag;
  390. u32 flags, del_q;
  391. void *buf_tmp;
  392. u8 *buf_cmd, *buf_oaf;
  393. dma_addr_t buf_tmp_dma;
  394. u32 i, req_len, resp_len;
  395. const u32 max_resp_len = SB_RFB_MAX;
  396. if (mvs_assign_reg_set(mvi, mvi_dev) == MVS_ID_NOT_MAPPED) {
  397. mv_dprintk("Have not enough regiset for dev %d.\n",
  398. mvi_dev->device_id);
  399. return -EBUSY;
  400. }
  401. slot = &mvi->slot_info[tag];
  402. slot->tx = mvi->tx_prod;
  403. del_q = TXQ_MODE_I | tag |
  404. (TXQ_CMD_STP << TXQ_CMD_SHIFT) |
  405. (MVS_PHY_ID << TXQ_PHY_SHIFT) |
  406. (mvi_dev->taskfileset << TXQ_SRS_SHIFT);
  407. mvi->tx[mvi->tx_prod] = cpu_to_le32(del_q);
  408. if (task->data_dir == DMA_FROM_DEVICE)
  409. flags = (MVS_CHIP_DISP->prd_count() << MCH_PRD_LEN_SHIFT);
  410. else
  411. flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
  412. if (task->ata_task.use_ncq)
  413. flags |= MCH_FPDMA;
  414. if (dev->sata_dev.command_set == ATAPI_COMMAND_SET) {
  415. if (task->ata_task.fis.command != ATA_CMD_ID_ATAPI)
  416. flags |= MCH_ATAPI;
  417. }
  418. hdr->flags = cpu_to_le32(flags);
  419. if (task->ata_task.use_ncq && mvs_get_ncq_tag(task, &hdr_tag))
  420. task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
  421. else
  422. hdr_tag = tag;
  423. hdr->tags = cpu_to_le32(hdr_tag);
  424. hdr->data_len = cpu_to_le32(task->total_xfer_len);
  425. /*
  426. * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
  427. */
  428. /* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */
  429. buf_cmd = buf_tmp = slot->buf;
  430. buf_tmp_dma = slot->buf_dma;
  431. hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
  432. buf_tmp += MVS_ATA_CMD_SZ;
  433. buf_tmp_dma += MVS_ATA_CMD_SZ;
  434. /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
  435. /* used for STP. unused for SATA? */
  436. buf_oaf = buf_tmp;
  437. hdr->open_frame = cpu_to_le64(buf_tmp_dma);
  438. buf_tmp += MVS_OAF_SZ;
  439. buf_tmp_dma += MVS_OAF_SZ;
  440. /* region 3: PRD table ********************************************* */
  441. buf_prd = buf_tmp;
  442. if (tei->n_elem)
  443. hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
  444. else
  445. hdr->prd_tbl = 0;
  446. i = MVS_CHIP_DISP->prd_size() * MVS_CHIP_DISP->prd_count();
  447. buf_tmp += i;
  448. buf_tmp_dma += i;
  449. /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
  450. slot->response = buf_tmp;
  451. hdr->status_buf = cpu_to_le64(buf_tmp_dma);
  452. if (mvi->flags & MVF_FLAG_SOC)
  453. hdr->reserved[0] = 0;
  454. req_len = sizeof(struct host_to_dev_fis);
  455. resp_len = MVS_SLOT_BUF_SZ - MVS_ATA_CMD_SZ -
  456. sizeof(struct mvs_err_info) - i;
  457. /* request, response lengths */
  458. resp_len = min(resp_len, max_resp_len);
  459. hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));
  460. if (likely(!task->ata_task.device_control_reg_update))
  461. task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
  462. /* fill in command FIS and ATAPI CDB */
  463. memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
  464. if (dev->sata_dev.command_set == ATAPI_COMMAND_SET)
  465. memcpy(buf_cmd + STP_ATAPI_CMD,
  466. task->ata_task.atapi_packet, 16);
  467. /* generate open address frame hdr (first 12 bytes) */
  468. /* initiator, STP, ftype 1h */
  469. buf_oaf[0] = (1 << 7) | (PROTOCOL_STP << 4) | 0x1;
  470. buf_oaf[1] = min(sas_port->linkrate, dev->linkrate) & 0xf;
  471. *(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1);
  472. memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
  473. /* fill in PRD (scatter/gather) table, if any */
  474. MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
  475. if (task->data_dir == DMA_FROM_DEVICE)
  476. MVS_CHIP_DISP->dma_fix(mvi, sas_port->phy_mask,
  477. TRASH_BUCKET_SIZE, tei->n_elem, buf_prd);
  478. return 0;
  479. }
  480. static int mvs_task_prep_ssp(struct mvs_info *mvi,
  481. struct mvs_task_exec_info *tei, int is_tmf,
  482. struct mvs_tmf_task *tmf)
  483. {
  484. struct sas_task *task = tei->task;
  485. struct mvs_cmd_hdr *hdr = tei->hdr;
  486. struct mvs_port *port = tei->port;
  487. struct domain_device *dev = task->dev;
  488. struct mvs_device *mvi_dev = dev->lldd_dev;
  489. struct asd_sas_port *sas_port = dev->port;
  490. struct mvs_slot_info *slot;
  491. void *buf_prd;
  492. struct ssp_frame_hdr *ssp_hdr;
  493. void *buf_tmp;
  494. u8 *buf_cmd, *buf_oaf, fburst = 0;
  495. dma_addr_t buf_tmp_dma;
  496. u32 flags;
  497. u32 resp_len, req_len, i, tag = tei->tag;
  498. const u32 max_resp_len = SB_RFB_MAX;
  499. u32 phy_mask;
  500. slot = &mvi->slot_info[tag];
  501. phy_mask = ((port->wide_port_phymap) ? port->wide_port_phymap :
  502. sas_port->phy_mask) & TXQ_PHY_MASK;
  503. slot->tx = mvi->tx_prod;
  504. mvi->tx[mvi->tx_prod] = cpu_to_le32(TXQ_MODE_I | tag |
  505. (TXQ_CMD_SSP << TXQ_CMD_SHIFT) |
  506. (phy_mask << TXQ_PHY_SHIFT));
  507. flags = MCH_RETRY;
  508. if (task->ssp_task.enable_first_burst) {
  509. flags |= MCH_FBURST;
  510. fburst = (1 << 7);
  511. }
  512. if (is_tmf)
  513. flags |= (MCH_SSP_FR_TASK << MCH_SSP_FR_TYPE_SHIFT);
  514. else
  515. flags |= (MCH_SSP_FR_CMD << MCH_SSP_FR_TYPE_SHIFT);
  516. hdr->flags = cpu_to_le32(flags | (tei->n_elem << MCH_PRD_LEN_SHIFT));
  517. hdr->tags = cpu_to_le32(tag);
  518. hdr->data_len = cpu_to_le32(task->total_xfer_len);
  519. /*
  520. * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
  521. */
  522. /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
  523. buf_cmd = buf_tmp = slot->buf;
  524. buf_tmp_dma = slot->buf_dma;
  525. hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
  526. buf_tmp += MVS_SSP_CMD_SZ;
  527. buf_tmp_dma += MVS_SSP_CMD_SZ;
  528. /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
  529. buf_oaf = buf_tmp;
  530. hdr->open_frame = cpu_to_le64(buf_tmp_dma);
  531. buf_tmp += MVS_OAF_SZ;
  532. buf_tmp_dma += MVS_OAF_SZ;
  533. /* region 3: PRD table ********************************************* */
  534. buf_prd = buf_tmp;
  535. if (tei->n_elem)
  536. hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
  537. else
  538. hdr->prd_tbl = 0;
  539. i = MVS_CHIP_DISP->prd_size() * tei->n_elem;
  540. buf_tmp += i;
  541. buf_tmp_dma += i;
  542. /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
  543. slot->response = buf_tmp;
  544. hdr->status_buf = cpu_to_le64(buf_tmp_dma);
  545. if (mvi->flags & MVF_FLAG_SOC)
  546. hdr->reserved[0] = 0;
  547. resp_len = MVS_SLOT_BUF_SZ - MVS_SSP_CMD_SZ - MVS_OAF_SZ -
  548. sizeof(struct mvs_err_info) - i;
  549. resp_len = min(resp_len, max_resp_len);
  550. req_len = sizeof(struct ssp_frame_hdr) + 28;
  551. /* request, response lengths */
  552. hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));
  553. /* generate open address frame hdr (first 12 bytes) */
  554. /* initiator, SSP, ftype 1h */
  555. buf_oaf[0] = (1 << 7) | (PROTOCOL_SSP << 4) | 0x1;
  556. buf_oaf[1] = min(sas_port->linkrate, dev->linkrate) & 0xf;
  557. *(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1);
  558. memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
  559. /* fill in SSP frame header (Command Table.SSP frame header) */
  560. ssp_hdr = (struct ssp_frame_hdr *)buf_cmd;
  561. if (is_tmf)
  562. ssp_hdr->frame_type = SSP_TASK;
  563. else
  564. ssp_hdr->frame_type = SSP_COMMAND;
  565. memcpy(ssp_hdr->hashed_dest_addr, dev->hashed_sas_addr,
  566. HASHED_SAS_ADDR_SIZE);
  567. memcpy(ssp_hdr->hashed_src_addr,
  568. dev->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
  569. ssp_hdr->tag = cpu_to_be16(tag);
  570. /* fill in IU for TASK and Command Frame */
  571. buf_cmd += sizeof(*ssp_hdr);
  572. memcpy(buf_cmd, &task->ssp_task.LUN, 8);
  573. if (ssp_hdr->frame_type != SSP_TASK) {
  574. buf_cmd[9] = fburst | task->ssp_task.task_attr |
  575. (task->ssp_task.task_prio << 3);
  576. memcpy(buf_cmd + 12, task->ssp_task.cmd->cmnd,
  577. task->ssp_task.cmd->cmd_len);
  578. } else{
  579. buf_cmd[10] = tmf->tmf;
  580. switch (tmf->tmf) {
  581. case TMF_ABORT_TASK:
  582. case TMF_QUERY_TASK:
  583. buf_cmd[12] =
  584. (tmf->tag_of_task_to_be_managed >> 8) & 0xff;
  585. buf_cmd[13] =
  586. tmf->tag_of_task_to_be_managed & 0xff;
  587. break;
  588. default:
  589. break;
  590. }
  591. }
  592. /* fill in PRD (scatter/gather) table, if any */
  593. MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
  594. return 0;
  595. }
  596. #define DEV_IS_GONE(mvi_dev) ((!mvi_dev || (mvi_dev->dev_type == SAS_PHY_UNUSED)))
  597. static int mvs_task_prep(struct sas_task *task, struct mvs_info *mvi, int is_tmf,
  598. struct mvs_tmf_task *tmf, int *pass)
  599. {
  600. struct domain_device *dev = task->dev;
  601. struct mvs_device *mvi_dev = dev->lldd_dev;
  602. struct mvs_task_exec_info tei;
  603. struct mvs_slot_info *slot;
  604. u32 tag = 0xdeadbeef, n_elem = 0;
  605. int rc = 0;
  606. if (!dev->port) {
  607. struct task_status_struct *tsm = &task->task_status;
  608. tsm->resp = SAS_TASK_UNDELIVERED;
  609. tsm->stat = SAS_PHY_DOWN;
  610. /*
  611. * libsas will use dev->port, should
  612. * not call task_done for sata
  613. */
  614. if (dev->dev_type != SAS_SATA_DEV)
  615. task->task_done(task);
  616. return rc;
  617. }
  618. if (DEV_IS_GONE(mvi_dev)) {
  619. if (mvi_dev)
  620. mv_dprintk("device %d not ready.\n",
  621. mvi_dev->device_id);
  622. else
  623. mv_dprintk("device %016llx not ready.\n",
  624. SAS_ADDR(dev->sas_addr));
  625. rc = SAS_PHY_DOWN;
  626. return rc;
  627. }
  628. tei.port = dev->port->lldd_port;
  629. if (tei.port && !tei.port->port_attached && !tmf) {
  630. if (sas_protocol_ata(task->task_proto)) {
  631. struct task_status_struct *ts = &task->task_status;
  632. mv_dprintk("SATA/STP port %d does not attach"
  633. "device.\n", dev->port->id);
  634. ts->resp = SAS_TASK_COMPLETE;
  635. ts->stat = SAS_PHY_DOWN;
  636. task->task_done(task);
  637. } else {
  638. struct task_status_struct *ts = &task->task_status;
  639. mv_dprintk("SAS port %d does not attach"
  640. "device.\n", dev->port->id);
  641. ts->resp = SAS_TASK_UNDELIVERED;
  642. ts->stat = SAS_PHY_DOWN;
  643. task->task_done(task);
  644. }
  645. return rc;
  646. }
  647. if (!sas_protocol_ata(task->task_proto)) {
  648. if (task->num_scatter) {
  649. n_elem = dma_map_sg(mvi->dev,
  650. task->scatter,
  651. task->num_scatter,
  652. task->data_dir);
  653. if (!n_elem) {
  654. rc = -ENOMEM;
  655. goto prep_out;
  656. }
  657. }
  658. } else {
  659. n_elem = task->num_scatter;
  660. }
  661. rc = mvs_tag_alloc(mvi, &tag);
  662. if (rc)
  663. goto err_out;
  664. slot = &mvi->slot_info[tag];
  665. task->lldd_task = NULL;
  666. slot->n_elem = n_elem;
  667. slot->slot_tag = tag;
  668. slot->buf = pci_pool_alloc(mvi->dma_pool, GFP_ATOMIC, &slot->buf_dma);
  669. if (!slot->buf)
  670. goto err_out_tag;
  671. memset(slot->buf, 0, MVS_SLOT_BUF_SZ);
  672. tei.task = task;
  673. tei.hdr = &mvi->slot[tag];
  674. tei.tag = tag;
  675. tei.n_elem = n_elem;
  676. switch (task->task_proto) {
  677. case SAS_PROTOCOL_SMP:
  678. rc = mvs_task_prep_smp(mvi, &tei);
  679. break;
  680. case SAS_PROTOCOL_SSP:
  681. rc = mvs_task_prep_ssp(mvi, &tei, is_tmf, tmf);
  682. break;
  683. case SAS_PROTOCOL_SATA:
  684. case SAS_PROTOCOL_STP:
  685. case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
  686. rc = mvs_task_prep_ata(mvi, &tei);
  687. break;
  688. default:
  689. dev_printk(KERN_ERR, mvi->dev,
  690. "unknown sas_task proto: 0x%x\n",
  691. task->task_proto);
  692. rc = -EINVAL;
  693. break;
  694. }
  695. if (rc) {
  696. mv_dprintk("rc is %x\n", rc);
  697. goto err_out_slot_buf;
  698. }
  699. slot->task = task;
  700. slot->port = tei.port;
  701. task->lldd_task = slot;
  702. list_add_tail(&slot->entry, &tei.port->list);
  703. spin_lock(&task->task_state_lock);
  704. task->task_state_flags |= SAS_TASK_AT_INITIATOR;
  705. spin_unlock(&task->task_state_lock);
  706. mvi_dev->running_req++;
  707. ++(*pass);
  708. mvi->tx_prod = (mvi->tx_prod + 1) & (MVS_CHIP_SLOT_SZ - 1);
  709. return rc;
  710. err_out_slot_buf:
  711. pci_pool_free(mvi->dma_pool, slot->buf, slot->buf_dma);
  712. err_out_tag:
  713. mvs_tag_free(mvi, tag);
  714. err_out:
  715. dev_printk(KERN_ERR, mvi->dev, "mvsas prep failed[%d]!\n", rc);
  716. if (!sas_protocol_ata(task->task_proto))
  717. if (n_elem)
  718. dma_unmap_sg(mvi->dev, task->scatter, n_elem,
  719. task->data_dir);
  720. prep_out:
  721. return rc;
  722. }
  723. static struct mvs_task_list *mvs_task_alloc_list(int *num, gfp_t gfp_flags)
  724. {
  725. struct mvs_task_list *first = NULL;
  726. for (; *num > 0; --*num) {
  727. struct mvs_task_list *mvs_list = kmem_cache_zalloc(mvs_task_list_cache, gfp_flags);
  728. if (!mvs_list)
  729. break;
  730. INIT_LIST_HEAD(&mvs_list->list);
  731. if (!first)
  732. first = mvs_list;
  733. else
  734. list_add_tail(&mvs_list->list, &first->list);
  735. }
  736. return first;
  737. }
  738. static inline void mvs_task_free_list(struct mvs_task_list *mvs_list)
  739. {
  740. LIST_HEAD(list);
  741. struct list_head *pos, *a;
  742. struct mvs_task_list *mlist = NULL;
  743. __list_add(&list, mvs_list->list.prev, &mvs_list->list);
  744. list_for_each_safe(pos, a, &list) {
  745. list_del_init(pos);
  746. mlist = list_entry(pos, struct mvs_task_list, list);
  747. kmem_cache_free(mvs_task_list_cache, mlist);
  748. }
  749. }
  750. static int mvs_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags,
  751. struct completion *completion, int is_tmf,
  752. struct mvs_tmf_task *tmf)
  753. {
  754. struct mvs_info *mvi = NULL;
  755. u32 rc = 0;
  756. u32 pass = 0;
  757. unsigned long flags = 0;
  758. mvi = ((struct mvs_device *)task->dev->lldd_dev)->mvi_info;
  759. spin_lock_irqsave(&mvi->lock, flags);
  760. rc = mvs_task_prep(task, mvi, is_tmf, tmf, &pass);
  761. if (rc)
  762. dev_printk(KERN_ERR, mvi->dev, "mvsas exec failed[%d]!\n", rc);
  763. if (likely(pass))
  764. MVS_CHIP_DISP->start_delivery(mvi, (mvi->tx_prod - 1) &
  765. (MVS_CHIP_SLOT_SZ - 1));
  766. spin_unlock_irqrestore(&mvi->lock, flags);
  767. return rc;
  768. }
  769. static int mvs_collector_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags,
  770. struct completion *completion, int is_tmf,
  771. struct mvs_tmf_task *tmf)
  772. {
  773. struct domain_device *dev = task->dev;
  774. struct mvs_prv_info *mpi = dev->port->ha->lldd_ha;
  775. struct mvs_info *mvi = NULL;
  776. struct sas_task *t = task;
  777. struct mvs_task_list *mvs_list = NULL, *a;
  778. LIST_HEAD(q);
  779. int pass[2] = {0};
  780. u32 rc = 0;
  781. u32 n = num;
  782. unsigned long flags = 0;
  783. mvs_list = mvs_task_alloc_list(&n, gfp_flags);
  784. if (n) {
  785. printk(KERN_ERR "%s: mvs alloc list failed.\n", __func__);
  786. rc = -ENOMEM;
  787. goto free_list;
  788. }
  789. __list_add(&q, mvs_list->list.prev, &mvs_list->list);
  790. list_for_each_entry(a, &q, list) {
  791. a->task = t;
  792. t = list_entry(t->list.next, struct sas_task, list);
  793. }
  794. list_for_each_entry(a, &q , list) {
  795. t = a->task;
  796. mvi = ((struct mvs_device *)t->dev->lldd_dev)->mvi_info;
  797. spin_lock_irqsave(&mvi->lock, flags);
  798. rc = mvs_task_prep(t, mvi, is_tmf, tmf, &pass[mvi->id]);
  799. if (rc)
  800. dev_printk(KERN_ERR, mvi->dev, "mvsas exec failed[%d]!\n", rc);
  801. spin_unlock_irqrestore(&mvi->lock, flags);
  802. }
  803. if (likely(pass[0]))
  804. MVS_CHIP_DISP->start_delivery(mpi->mvi[0],
  805. (mpi->mvi[0]->tx_prod - 1) & (MVS_CHIP_SLOT_SZ - 1));
  806. if (likely(pass[1]))
  807. MVS_CHIP_DISP->start_delivery(mpi->mvi[1],
  808. (mpi->mvi[1]->tx_prod - 1) & (MVS_CHIP_SLOT_SZ - 1));
  809. list_del_init(&q);
  810. free_list:
  811. if (mvs_list)
  812. mvs_task_free_list(mvs_list);
  813. return rc;
  814. }
  815. int mvs_queue_command(struct sas_task *task, const int num,
  816. gfp_t gfp_flags)
  817. {
  818. struct mvs_device *mvi_dev = task->dev->lldd_dev;
  819. struct sas_ha_struct *sas = mvi_dev->mvi_info->sas;
  820. if (sas->lldd_max_execute_num < 2)
  821. return mvs_task_exec(task, num, gfp_flags, NULL, 0, NULL);
  822. else
  823. return mvs_collector_task_exec(task, num, gfp_flags, NULL, 0, NULL);
  824. }
  825. static void mvs_slot_free(struct mvs_info *mvi, u32 rx_desc)
  826. {
  827. u32 slot_idx = rx_desc & RXQ_SLOT_MASK;
  828. mvs_tag_clear(mvi, slot_idx);
  829. }
  830. static void mvs_slot_task_free(struct mvs_info *mvi, struct sas_task *task,
  831. struct mvs_slot_info *slot, u32 slot_idx)
  832. {
  833. if (!slot->task)
  834. return;
  835. if (!sas_protocol_ata(task->task_proto))
  836. if (slot->n_elem)
  837. dma_unmap_sg(mvi->dev, task->scatter,
  838. slot->n_elem, task->data_dir);
  839. switch (task->task_proto) {
  840. case SAS_PROTOCOL_SMP:
  841. dma_unmap_sg(mvi->dev, &task->smp_task.smp_resp, 1,
  842. PCI_DMA_FROMDEVICE);
  843. dma_unmap_sg(mvi->dev, &task->smp_task.smp_req, 1,
  844. PCI_DMA_TODEVICE);
  845. break;
  846. case SAS_PROTOCOL_SATA:
  847. case SAS_PROTOCOL_STP:
  848. case SAS_PROTOCOL_SSP:
  849. default:
  850. /* do nothing */
  851. break;
  852. }
  853. if (slot->buf) {
  854. pci_pool_free(mvi->dma_pool, slot->buf, slot->buf_dma);
  855. slot->buf = NULL;
  856. }
  857. list_del_init(&slot->entry);
  858. task->lldd_task = NULL;
  859. slot->task = NULL;
  860. slot->port = NULL;
  861. slot->slot_tag = 0xFFFFFFFF;
  862. mvs_slot_free(mvi, slot_idx);
  863. }
  864. static void mvs_update_wideport(struct mvs_info *mvi, int phy_no)
  865. {
  866. struct mvs_phy *phy = &mvi->phy[phy_no];
  867. struct mvs_port *port = phy->port;
  868. int j, no;
  869. for_each_phy(port->wide_port_phymap, j, no) {
  870. if (j & 1) {
  871. MVS_CHIP_DISP->write_port_cfg_addr(mvi, no,
  872. PHYR_WIDE_PORT);
  873. MVS_CHIP_DISP->write_port_cfg_data(mvi, no,
  874. port->wide_port_phymap);
  875. } else {
  876. MVS_CHIP_DISP->write_port_cfg_addr(mvi, no,
  877. PHYR_WIDE_PORT);
  878. MVS_CHIP_DISP->write_port_cfg_data(mvi, no,
  879. 0);
  880. }
  881. }
  882. }
  883. static u32 mvs_is_phy_ready(struct mvs_info *mvi, int i)
  884. {
  885. u32 tmp;
  886. struct mvs_phy *phy = &mvi->phy[i];
  887. struct mvs_port *port = phy->port;
  888. tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, i);
  889. if ((tmp & PHY_READY_MASK) && !(phy->irq_status & PHYEV_POOF)) {
  890. if (!port)
  891. phy->phy_attached = 1;
  892. return tmp;
  893. }
  894. if (port) {
  895. if (phy->phy_type & PORT_TYPE_SAS) {
  896. port->wide_port_phymap &= ~(1U << i);
  897. if (!port->wide_port_phymap)
  898. port->port_attached = 0;
  899. mvs_update_wideport(mvi, i);
  900. } else if (phy->phy_type & PORT_TYPE_SATA)
  901. port->port_attached = 0;
  902. phy->port = NULL;
  903. phy->phy_attached = 0;
  904. phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
  905. }
  906. return 0;
  907. }
  908. static void *mvs_get_d2h_reg(struct mvs_info *mvi, int i, void *buf)
  909. {
  910. u32 *s = (u32 *) buf;
  911. if (!s)
  912. return NULL;
  913. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG3);
  914. s[3] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
  915. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG2);
  916. s[2] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
  917. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG1);
  918. s[1] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
  919. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG0);
  920. s[0] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
  921. if (((s[1] & 0x00FFFFFF) == 0x00EB1401) && (*(u8 *)&s[3] == 0x01))
  922. s[1] = 0x00EB1401 | (*((u8 *)&s[1] + 3) & 0x10);
  923. return s;
  924. }
  925. static u32 mvs_is_sig_fis_received(u32 irq_status)
  926. {
  927. return irq_status & PHYEV_SIG_FIS;
  928. }
  929. static void mvs_sig_remove_timer(struct mvs_phy *phy)
  930. {
  931. if (phy->timer.function)
  932. del_timer(&phy->timer);
  933. phy->timer.function = NULL;
  934. }
  935. void mvs_update_phyinfo(struct mvs_info *mvi, int i, int get_st)
  936. {
  937. struct mvs_phy *phy = &mvi->phy[i];
  938. struct sas_identify_frame *id;
  939. id = (struct sas_identify_frame *)phy->frame_rcvd;
  940. if (get_st) {
  941. phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, i);
  942. phy->phy_status = mvs_is_phy_ready(mvi, i);
  943. }
  944. if (phy->phy_status) {
  945. int oob_done = 0;
  946. struct asd_sas_phy *sas_phy = &mvi->phy[i].sas_phy;
  947. oob_done = MVS_CHIP_DISP->oob_done(mvi, i);
  948. MVS_CHIP_DISP->fix_phy_info(mvi, i, id);
  949. if (phy->phy_type & PORT_TYPE_SATA) {
  950. phy->identify.target_port_protocols = SAS_PROTOCOL_STP;
  951. if (mvs_is_sig_fis_received(phy->irq_status)) {
  952. mvs_sig_remove_timer(phy);
  953. phy->phy_attached = 1;
  954. phy->att_dev_sas_addr =
  955. i + mvi->id * mvi->chip->n_phy;
  956. if (oob_done)
  957. sas_phy->oob_mode = SATA_OOB_MODE;
  958. phy->frame_rcvd_size =
  959. sizeof(struct dev_to_host_fis);
  960. mvs_get_d2h_reg(mvi, i, id);
  961. } else {
  962. u32 tmp;
  963. dev_printk(KERN_DEBUG, mvi->dev,
  964. "Phy%d : No sig fis\n", i);
  965. tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, i);
  966. MVS_CHIP_DISP->write_port_irq_mask(mvi, i,
  967. tmp | PHYEV_SIG_FIS);
  968. phy->phy_attached = 0;
  969. phy->phy_type &= ~PORT_TYPE_SATA;
  970. goto out_done;
  971. }
  972. } else if (phy->phy_type & PORT_TYPE_SAS
  973. || phy->att_dev_info & PORT_SSP_INIT_MASK) {
  974. phy->phy_attached = 1;
  975. phy->identify.device_type =
  976. phy->att_dev_info & PORT_DEV_TYPE_MASK;
  977. if (phy->identify.device_type == SAS_END_DEVICE)
  978. phy->identify.target_port_protocols =
  979. SAS_PROTOCOL_SSP;
  980. else if (phy->identify.device_type != SAS_PHY_UNUSED)
  981. phy->identify.target_port_protocols =
  982. SAS_PROTOCOL_SMP;
  983. if (oob_done)
  984. sas_phy->oob_mode = SAS_OOB_MODE;
  985. phy->frame_rcvd_size =
  986. sizeof(struct sas_identify_frame);
  987. }
  988. memcpy(sas_phy->attached_sas_addr,
  989. &phy->att_dev_sas_addr, SAS_ADDR_SIZE);
  990. if (MVS_CHIP_DISP->phy_work_around)
  991. MVS_CHIP_DISP->phy_work_around(mvi, i);
  992. }
  993. mv_dprintk("phy %d attach dev info is %x\n",
  994. i + mvi->id * mvi->chip->n_phy, phy->att_dev_info);
  995. mv_dprintk("phy %d attach sas addr is %llx\n",
  996. i + mvi->id * mvi->chip->n_phy, phy->att_dev_sas_addr);
  997. out_done:
  998. if (get_st)
  999. MVS_CHIP_DISP->write_port_irq_stat(mvi, i, phy->irq_status);
  1000. }
  1001. static void mvs_port_notify_formed(struct asd_sas_phy *sas_phy, int lock)
  1002. {
  1003. struct sas_ha_struct *sas_ha = sas_phy->ha;
  1004. struct mvs_info *mvi = NULL; int i = 0, hi;
  1005. struct mvs_phy *phy = sas_phy->lldd_phy;
  1006. struct asd_sas_port *sas_port = sas_phy->port;
  1007. struct mvs_port *port;
  1008. unsigned long flags = 0;
  1009. if (!sas_port)
  1010. return;
  1011. while (sas_ha->sas_phy[i]) {
  1012. if (sas_ha->sas_phy[i] == sas_phy)
  1013. break;
  1014. i++;
  1015. }
  1016. hi = i/((struct mvs_prv_info *)sas_ha->lldd_ha)->n_phy;
  1017. mvi = ((struct mvs_prv_info *)sas_ha->lldd_ha)->mvi[hi];
  1018. if (i >= mvi->chip->n_phy)
  1019. port = &mvi->port[i - mvi->chip->n_phy];
  1020. else
  1021. port = &mvi->port[i];
  1022. if (lock)
  1023. spin_lock_irqsave(&mvi->lock, flags);
  1024. port->port_attached = 1;
  1025. phy->port = port;
  1026. sas_port->lldd_port = port;
  1027. if (phy->phy_type & PORT_TYPE_SAS) {
  1028. port->wide_port_phymap = sas_port->phy_mask;
  1029. mv_printk("set wide port phy map %x\n", sas_port->phy_mask);
  1030. mvs_update_wideport(mvi, sas_phy->id);
  1031. /* direct attached SAS device */
  1032. if (phy->att_dev_info & PORT_SSP_TRGT_MASK) {
  1033. MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_PHY_STAT);
  1034. MVS_CHIP_DISP->write_port_cfg_data(mvi, i, 0x04);
  1035. }
  1036. }
  1037. if (lock)
  1038. spin_unlock_irqrestore(&mvi->lock, flags);
  1039. }
  1040. static void mvs_port_notify_deformed(struct asd_sas_phy *sas_phy, int lock)
  1041. {
  1042. struct domain_device *dev;
  1043. struct mvs_phy *phy = sas_phy->lldd_phy;
  1044. struct mvs_info *mvi = phy->mvi;
  1045. struct asd_sas_port *port = sas_phy->port;
  1046. int phy_no = 0;
  1047. while (phy != &mvi->phy[phy_no]) {
  1048. phy_no++;
  1049. if (phy_no >= MVS_MAX_PHYS)
  1050. return;
  1051. }
  1052. list_for_each_entry(dev, &port->dev_list, dev_list_node)
  1053. mvs_do_release_task(phy->mvi, phy_no, dev);
  1054. }
  1055. void mvs_port_formed(struct asd_sas_phy *sas_phy)
  1056. {
  1057. mvs_port_notify_formed(sas_phy, 1);
  1058. }
  1059. void mvs_port_deformed(struct asd_sas_phy *sas_phy)
  1060. {
  1061. mvs_port_notify_deformed(sas_phy, 1);
  1062. }
  1063. struct mvs_device *mvs_alloc_dev(struct mvs_info *mvi)
  1064. {
  1065. u32 dev;
  1066. for (dev = 0; dev < MVS_MAX_DEVICES; dev++) {
  1067. if (mvi->devices[dev].dev_type == SAS_PHY_UNUSED) {
  1068. mvi->devices[dev].device_id = dev;
  1069. return &mvi->devices[dev];
  1070. }
  1071. }
  1072. if (dev == MVS_MAX_DEVICES)
  1073. mv_printk("max support %d devices, ignore ..\n",
  1074. MVS_MAX_DEVICES);
  1075. return NULL;
  1076. }
  1077. void mvs_free_dev(struct mvs_device *mvi_dev)
  1078. {
  1079. u32 id = mvi_dev->device_id;
  1080. memset(mvi_dev, 0, sizeof(*mvi_dev));
  1081. mvi_dev->device_id = id;
  1082. mvi_dev->dev_type = SAS_PHY_UNUSED;
  1083. mvi_dev->dev_status = MVS_DEV_NORMAL;
  1084. mvi_dev->taskfileset = MVS_ID_NOT_MAPPED;
  1085. }
  1086. int mvs_dev_found_notify(struct domain_device *dev, int lock)
  1087. {
  1088. unsigned long flags = 0;
  1089. int res = 0;
  1090. struct mvs_info *mvi = NULL;
  1091. struct domain_device *parent_dev = dev->parent;
  1092. struct mvs_device *mvi_device;
  1093. mvi = mvs_find_dev_mvi(dev);
  1094. if (lock)
  1095. spin_lock_irqsave(&mvi->lock, flags);
  1096. mvi_device = mvs_alloc_dev(mvi);
  1097. if (!mvi_device) {
  1098. res = -1;
  1099. goto found_out;
  1100. }
  1101. dev->lldd_dev = mvi_device;
  1102. mvi_device->dev_status = MVS_DEV_NORMAL;
  1103. mvi_device->dev_type = dev->dev_type;
  1104. mvi_device->mvi_info = mvi;
  1105. mvi_device->sas_device = dev;
  1106. if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) {
  1107. int phy_id;
  1108. u8 phy_num = parent_dev->ex_dev.num_phys;
  1109. struct ex_phy *phy;
  1110. for (phy_id = 0; phy_id < phy_num; phy_id++) {
  1111. phy = &parent_dev->ex_dev.ex_phy[phy_id];
  1112. if (SAS_ADDR(phy->attached_sas_addr) ==
  1113. SAS_ADDR(dev->sas_addr)) {
  1114. mvi_device->attached_phy = phy_id;
  1115. break;
  1116. }
  1117. }
  1118. if (phy_id == phy_num) {
  1119. mv_printk("Error: no attached dev:%016llx"
  1120. "at ex:%016llx.\n",
  1121. SAS_ADDR(dev->sas_addr),
  1122. SAS_ADDR(parent_dev->sas_addr));
  1123. res = -1;
  1124. }
  1125. }
  1126. found_out:
  1127. if (lock)
  1128. spin_unlock_irqrestore(&mvi->lock, flags);
  1129. return res;
  1130. }
  1131. int mvs_dev_found(struct domain_device *dev)
  1132. {
  1133. return mvs_dev_found_notify(dev, 1);
  1134. }
  1135. void mvs_dev_gone_notify(struct domain_device *dev)
  1136. {
  1137. unsigned long flags = 0;
  1138. struct mvs_device *mvi_dev = dev->lldd_dev;
  1139. struct mvs_info *mvi = mvi_dev->mvi_info;
  1140. spin_lock_irqsave(&mvi->lock, flags);
  1141. if (mvi_dev) {
  1142. mv_dprintk("found dev[%d:%x] is gone.\n",
  1143. mvi_dev->device_id, mvi_dev->dev_type);
  1144. mvs_release_task(mvi, dev);
  1145. mvs_free_reg_set(mvi, mvi_dev);
  1146. mvs_free_dev(mvi_dev);
  1147. } else {
  1148. mv_dprintk("found dev has gone.\n");
  1149. }
  1150. dev->lldd_dev = NULL;
  1151. mvi_dev->sas_device = NULL;
  1152. spin_unlock_irqrestore(&mvi->lock, flags);
  1153. }
  1154. void mvs_dev_gone(struct domain_device *dev)
  1155. {
  1156. mvs_dev_gone_notify(dev);
  1157. }
  1158. static void mvs_task_done(struct sas_task *task)
  1159. {
  1160. if (!del_timer(&task->slow_task->timer))
  1161. return;
  1162. complete(&task->slow_task->completion);
  1163. }
  1164. static void mvs_tmf_timedout(unsigned long data)
  1165. {
  1166. struct sas_task *task = (struct sas_task *)data;
  1167. task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  1168. complete(&task->slow_task->completion);
  1169. }
  1170. #define MVS_TASK_TIMEOUT 20
  1171. static int mvs_exec_internal_tmf_task(struct domain_device *dev,
  1172. void *parameter, u32 para_len, struct mvs_tmf_task *tmf)
  1173. {
  1174. int res, retry;
  1175. struct sas_task *task = NULL;
  1176. for (retry = 0; retry < 3; retry++) {
  1177. task = sas_alloc_slow_task(GFP_KERNEL);
  1178. if (!task)
  1179. return -ENOMEM;
  1180. task->dev = dev;
  1181. task->task_proto = dev->tproto;
  1182. memcpy(&task->ssp_task, parameter, para_len);
  1183. task->task_done = mvs_task_done;
  1184. task->slow_task->timer.data = (unsigned long) task;
  1185. task->slow_task->timer.function = mvs_tmf_timedout;
  1186. task->slow_task->timer.expires = jiffies + MVS_TASK_TIMEOUT*HZ;
  1187. add_timer(&task->slow_task->timer);
  1188. res = mvs_task_exec(task, 1, GFP_KERNEL, NULL, 1, tmf);
  1189. if (res) {
  1190. del_timer(&task->slow_task->timer);
  1191. mv_printk("executing internel task failed:%d\n", res);
  1192. goto ex_err;
  1193. }
  1194. wait_for_completion(&task->slow_task->completion);
  1195. res = TMF_RESP_FUNC_FAILED;
  1196. /* Even TMF timed out, return direct. */
  1197. if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  1198. if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  1199. mv_printk("TMF task[%x] timeout.\n", tmf->tmf);
  1200. goto ex_err;
  1201. }
  1202. }
  1203. if (task->task_status.resp == SAS_TASK_COMPLETE &&
  1204. task->task_status.stat == SAM_STAT_GOOD) {
  1205. res = TMF_RESP_FUNC_COMPLETE;
  1206. break;
  1207. }
  1208. if (task->task_status.resp == SAS_TASK_COMPLETE &&
  1209. task->task_status.stat == SAS_DATA_UNDERRUN) {
  1210. /* no error, but return the number of bytes of
  1211. * underrun */
  1212. res = task->task_status.residual;
  1213. break;
  1214. }
  1215. if (task->task_status.resp == SAS_TASK_COMPLETE &&
  1216. task->task_status.stat == SAS_DATA_OVERRUN) {
  1217. mv_dprintk("blocked task error.\n");
  1218. res = -EMSGSIZE;
  1219. break;
  1220. } else {
  1221. mv_dprintk(" task to dev %016llx response: 0x%x "
  1222. "status 0x%x\n",
  1223. SAS_ADDR(dev->sas_addr),
  1224. task->task_status.resp,
  1225. task->task_status.stat);
  1226. sas_free_task(task);
  1227. task = NULL;
  1228. }
  1229. }
  1230. ex_err:
  1231. BUG_ON(retry == 3 && task != NULL);
  1232. sas_free_task(task);
  1233. return res;
  1234. }
  1235. static int mvs_debug_issue_ssp_tmf(struct domain_device *dev,
  1236. u8 *lun, struct mvs_tmf_task *tmf)
  1237. {
  1238. struct sas_ssp_task ssp_task;
  1239. if (!(dev->tproto & SAS_PROTOCOL_SSP))
  1240. return TMF_RESP_FUNC_ESUPP;
  1241. memcpy(ssp_task.LUN, lun, 8);
  1242. return mvs_exec_internal_tmf_task(dev, &ssp_task,
  1243. sizeof(ssp_task), tmf);
  1244. }
  1245. /* Standard mandates link reset for ATA (type 0)
  1246. and hard reset for SSP (type 1) , only for RECOVERY */
  1247. static int mvs_debug_I_T_nexus_reset(struct domain_device *dev)
  1248. {
  1249. int rc;
  1250. struct sas_phy *phy = sas_get_local_phy(dev);
  1251. int reset_type = (dev->dev_type == SAS_SATA_DEV ||
  1252. (dev->tproto & SAS_PROTOCOL_STP)) ? 0 : 1;
  1253. rc = sas_phy_reset(phy, reset_type);
  1254. sas_put_local_phy(phy);
  1255. msleep(2000);
  1256. return rc;
  1257. }
  1258. /* mandatory SAM-3 */
  1259. int mvs_lu_reset(struct domain_device *dev, u8 *lun)
  1260. {
  1261. unsigned long flags;
  1262. int rc = TMF_RESP_FUNC_FAILED;
  1263. struct mvs_tmf_task tmf_task;
  1264. struct mvs_device * mvi_dev = dev->lldd_dev;
  1265. struct mvs_info *mvi = mvi_dev->mvi_info;
  1266. tmf_task.tmf = TMF_LU_RESET;
  1267. mvi_dev->dev_status = MVS_DEV_EH;
  1268. rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
  1269. if (rc == TMF_RESP_FUNC_COMPLETE) {
  1270. spin_lock_irqsave(&mvi->lock, flags);
  1271. mvs_release_task(mvi, dev);
  1272. spin_unlock_irqrestore(&mvi->lock, flags);
  1273. }
  1274. /* If failed, fall-through I_T_Nexus reset */
  1275. mv_printk("%s for device[%x]:rc= %d\n", __func__,
  1276. mvi_dev->device_id, rc);
  1277. return rc;
  1278. }
  1279. int mvs_I_T_nexus_reset(struct domain_device *dev)
  1280. {
  1281. unsigned long flags;
  1282. int rc = TMF_RESP_FUNC_FAILED;
  1283. struct mvs_device * mvi_dev = (struct mvs_device *)dev->lldd_dev;
  1284. struct mvs_info *mvi = mvi_dev->mvi_info;
  1285. if (mvi_dev->dev_status != MVS_DEV_EH)
  1286. return TMF_RESP_FUNC_COMPLETE;
  1287. else
  1288. mvi_dev->dev_status = MVS_DEV_NORMAL;
  1289. rc = mvs_debug_I_T_nexus_reset(dev);
  1290. mv_printk("%s for device[%x]:rc= %d\n",
  1291. __func__, mvi_dev->device_id, rc);
  1292. spin_lock_irqsave(&mvi->lock, flags);
  1293. mvs_release_task(mvi, dev);
  1294. spin_unlock_irqrestore(&mvi->lock, flags);
  1295. return rc;
  1296. }
  1297. /* optional SAM-3 */
  1298. int mvs_query_task(struct sas_task *task)
  1299. {
  1300. u32 tag;
  1301. struct scsi_lun lun;
  1302. struct mvs_tmf_task tmf_task;
  1303. int rc = TMF_RESP_FUNC_FAILED;
  1304. if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) {
  1305. struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task;
  1306. struct domain_device *dev = task->dev;
  1307. struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
  1308. struct mvs_info *mvi = mvi_dev->mvi_info;
  1309. int_to_scsilun(cmnd->device->lun, &lun);
  1310. rc = mvs_find_tag(mvi, task, &tag);
  1311. if (rc == 0) {
  1312. rc = TMF_RESP_FUNC_FAILED;
  1313. return rc;
  1314. }
  1315. tmf_task.tmf = TMF_QUERY_TASK;
  1316. tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag);
  1317. rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
  1318. switch (rc) {
  1319. /* The task is still in Lun, release it then */
  1320. case TMF_RESP_FUNC_SUCC:
  1321. /* The task is not in Lun or failed, reset the phy */
  1322. case TMF_RESP_FUNC_FAILED:
  1323. case TMF_RESP_FUNC_COMPLETE:
  1324. break;
  1325. }
  1326. }
  1327. mv_printk("%s:rc= %d\n", __func__, rc);
  1328. return rc;
  1329. }
  1330. /* mandatory SAM-3, still need free task/slot info */
  1331. int mvs_abort_task(struct sas_task *task)
  1332. {
  1333. struct scsi_lun lun;
  1334. struct mvs_tmf_task tmf_task;
  1335. struct domain_device *dev = task->dev;
  1336. struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
  1337. struct mvs_info *mvi;
  1338. int rc = TMF_RESP_FUNC_FAILED;
  1339. unsigned long flags;
  1340. u32 tag;
  1341. if (!mvi_dev) {
  1342. mv_printk("Device has removed\n");
  1343. return TMF_RESP_FUNC_FAILED;
  1344. }
  1345. mvi = mvi_dev->mvi_info;
  1346. spin_lock_irqsave(&task->task_state_lock, flags);
  1347. if (task->task_state_flags & SAS_TASK_STATE_DONE) {
  1348. spin_unlock_irqrestore(&task->task_state_lock, flags);
  1349. rc = TMF_RESP_FUNC_COMPLETE;
  1350. goto out;
  1351. }
  1352. spin_unlock_irqrestore(&task->task_state_lock, flags);
  1353. mvi_dev->dev_status = MVS_DEV_EH;
  1354. if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) {
  1355. struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task;
  1356. int_to_scsilun(cmnd->device->lun, &lun);
  1357. rc = mvs_find_tag(mvi, task, &tag);
  1358. if (rc == 0) {
  1359. mv_printk("No such tag in %s\n", __func__);
  1360. rc = TMF_RESP_FUNC_FAILED;
  1361. return rc;
  1362. }
  1363. tmf_task.tmf = TMF_ABORT_TASK;
  1364. tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag);
  1365. rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
  1366. /* if successful, clear the task and callback forwards.*/
  1367. if (rc == TMF_RESP_FUNC_COMPLETE) {
  1368. u32 slot_no;
  1369. struct mvs_slot_info *slot;
  1370. if (task->lldd_task) {
  1371. slot = task->lldd_task;
  1372. slot_no = (u32) (slot - mvi->slot_info);
  1373. spin_lock_irqsave(&mvi->lock, flags);
  1374. mvs_slot_complete(mvi, slot_no, 1);
  1375. spin_unlock_irqrestore(&mvi->lock, flags);
  1376. }
  1377. }
  1378. } else if (task->task_proto & SAS_PROTOCOL_SATA ||
  1379. task->task_proto & SAS_PROTOCOL_STP) {
  1380. if (SAS_SATA_DEV == dev->dev_type) {
  1381. struct mvs_slot_info *slot = task->lldd_task;
  1382. u32 slot_idx = (u32)(slot - mvi->slot_info);
  1383. mv_dprintk("mvs_abort_task() mvi=%p task=%p "
  1384. "slot=%p slot_idx=x%x\n",
  1385. mvi, task, slot, slot_idx);
  1386. task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  1387. mvs_slot_task_free(mvi, task, slot, slot_idx);
  1388. rc = TMF_RESP_FUNC_COMPLETE;
  1389. goto out;
  1390. }
  1391. }
  1392. out:
  1393. if (rc != TMF_RESP_FUNC_COMPLETE)
  1394. mv_printk("%s:rc= %d\n", __func__, rc);
  1395. return rc;
  1396. }
  1397. int mvs_abort_task_set(struct domain_device *dev, u8 *lun)
  1398. {
  1399. int rc = TMF_RESP_FUNC_FAILED;
  1400. struct mvs_tmf_task tmf_task;
  1401. tmf_task.tmf = TMF_ABORT_TASK_SET;
  1402. rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
  1403. return rc;
  1404. }
  1405. int mvs_clear_aca(struct domain_device *dev, u8 *lun)
  1406. {
  1407. int rc = TMF_RESP_FUNC_FAILED;
  1408. struct mvs_tmf_task tmf_task;
  1409. tmf_task.tmf = TMF_CLEAR_ACA;
  1410. rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
  1411. return rc;
  1412. }
  1413. int mvs_clear_task_set(struct domain_device *dev, u8 *lun)
  1414. {
  1415. int rc = TMF_RESP_FUNC_FAILED;
  1416. struct mvs_tmf_task tmf_task;
  1417. tmf_task.tmf = TMF_CLEAR_TASK_SET;
  1418. rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
  1419. return rc;
  1420. }
  1421. static int mvs_sata_done(struct mvs_info *mvi, struct sas_task *task,
  1422. u32 slot_idx, int err)
  1423. {
  1424. struct mvs_device *mvi_dev = task->dev->lldd_dev;
  1425. struct task_status_struct *tstat = &task->task_status;
  1426. struct ata_task_resp *resp = (struct ata_task_resp *)tstat->buf;
  1427. int stat = SAM_STAT_GOOD;
  1428. resp->frame_len = sizeof(struct dev_to_host_fis);
  1429. memcpy(&resp->ending_fis[0],
  1430. SATA_RECEIVED_D2H_FIS(mvi_dev->taskfileset),
  1431. sizeof(struct dev_to_host_fis));
  1432. tstat->buf_valid_size = sizeof(*resp);
  1433. if (unlikely(err)) {
  1434. if (unlikely(err & CMD_ISS_STPD))
  1435. stat = SAS_OPEN_REJECT;
  1436. else
  1437. stat = SAS_PROTO_RESPONSE;
  1438. }
  1439. return stat;
  1440. }
  1441. void mvs_set_sense(u8 *buffer, int len, int d_sense,
  1442. int key, int asc, int ascq)
  1443. {
  1444. memset(buffer, 0, len);
  1445. if (d_sense) {
  1446. /* Descriptor format */
  1447. if (len < 4) {
  1448. mv_printk("Length %d of sense buffer too small to "
  1449. "fit sense %x:%x:%x", len, key, asc, ascq);
  1450. }
  1451. buffer[0] = 0x72; /* Response Code */
  1452. if (len > 1)
  1453. buffer[1] = key; /* Sense Key */
  1454. if (len > 2)
  1455. buffer[2] = asc; /* ASC */
  1456. if (len > 3)
  1457. buffer[3] = ascq; /* ASCQ */
  1458. } else {
  1459. if (len < 14) {
  1460. mv_printk("Length %d of sense buffer too small to "
  1461. "fit sense %x:%x:%x", len, key, asc, ascq);
  1462. }
  1463. buffer[0] = 0x70; /* Response Code */
  1464. if (len > 2)
  1465. buffer[2] = key; /* Sense Key */
  1466. if (len > 7)
  1467. buffer[7] = 0x0a; /* Additional Sense Length */
  1468. if (len > 12)
  1469. buffer[12] = asc; /* ASC */
  1470. if (len > 13)
  1471. buffer[13] = ascq; /* ASCQ */
  1472. }
  1473. return;
  1474. }
  1475. void mvs_fill_ssp_resp_iu(struct ssp_response_iu *iu,
  1476. u8 key, u8 asc, u8 asc_q)
  1477. {
  1478. iu->datapres = 2;
  1479. iu->response_data_len = 0;
  1480. iu->sense_data_len = 17;
  1481. iu->status = 02;
  1482. mvs_set_sense(iu->sense_data, 17, 0,
  1483. key, asc, asc_q);
  1484. }
  1485. static int mvs_slot_err(struct mvs_info *mvi, struct sas_task *task,
  1486. u32 slot_idx)
  1487. {
  1488. struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
  1489. int stat;
  1490. u32 err_dw0 = le32_to_cpu(*(u32 *)slot->response);
  1491. u32 err_dw1 = le32_to_cpu(*((u32 *)slot->response + 1));
  1492. u32 tfs = 0;
  1493. enum mvs_port_type type = PORT_TYPE_SAS;
  1494. if (err_dw0 & CMD_ISS_STPD)
  1495. MVS_CHIP_DISP->issue_stop(mvi, type, tfs);
  1496. MVS_CHIP_DISP->command_active(mvi, slot_idx);
  1497. stat = SAM_STAT_CHECK_CONDITION;
  1498. switch (task->task_proto) {
  1499. case SAS_PROTOCOL_SSP:
  1500. {
  1501. stat = SAS_ABORTED_TASK;
  1502. if ((err_dw0 & NO_DEST) || err_dw1 & bit(31)) {
  1503. struct ssp_response_iu *iu = slot->response +
  1504. sizeof(struct mvs_err_info);
  1505. mvs_fill_ssp_resp_iu(iu, NOT_READY, 0x04, 01);
  1506. sas_ssp_task_response(mvi->dev, task, iu);
  1507. stat = SAM_STAT_CHECK_CONDITION;
  1508. }
  1509. if (err_dw1 & bit(31))
  1510. mv_printk("reuse same slot, retry command.\n");
  1511. break;
  1512. }
  1513. case SAS_PROTOCOL_SMP:
  1514. stat = SAM_STAT_CHECK_CONDITION;
  1515. break;
  1516. case SAS_PROTOCOL_SATA:
  1517. case SAS_PROTOCOL_STP:
  1518. case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
  1519. {
  1520. task->ata_task.use_ncq = 0;
  1521. stat = SAS_PROTO_RESPONSE;
  1522. mvs_sata_done(mvi, task, slot_idx, err_dw0);
  1523. }
  1524. break;
  1525. default:
  1526. break;
  1527. }
  1528. return stat;
  1529. }
  1530. int mvs_slot_complete(struct mvs_info *mvi, u32 rx_desc, u32 flags)
  1531. {
  1532. u32 slot_idx = rx_desc & RXQ_SLOT_MASK;
  1533. struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
  1534. struct sas_task *task = slot->task;
  1535. struct mvs_device *mvi_dev = NULL;
  1536. struct task_status_struct *tstat;
  1537. struct domain_device *dev;
  1538. u32 aborted;
  1539. void *to;
  1540. enum exec_status sts;
  1541. if (unlikely(!task || !task->lldd_task || !task->dev))
  1542. return -1;
  1543. tstat = &task->task_status;
  1544. dev = task->dev;
  1545. mvi_dev = dev->lldd_dev;
  1546. spin_lock(&task->task_state_lock);
  1547. task->task_state_flags &=
  1548. ~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR);
  1549. task->task_state_flags |= SAS_TASK_STATE_DONE;
  1550. /* race condition*/
  1551. aborted = task->task_state_flags & SAS_TASK_STATE_ABORTED;
  1552. spin_unlock(&task->task_state_lock);
  1553. memset(tstat, 0, sizeof(*tstat));
  1554. tstat->resp = SAS_TASK_COMPLETE;
  1555. if (unlikely(aborted)) {
  1556. tstat->stat = SAS_ABORTED_TASK;
  1557. if (mvi_dev && mvi_dev->running_req)
  1558. mvi_dev->running_req--;
  1559. if (sas_protocol_ata(task->task_proto))
  1560. mvs_free_reg_set(mvi, mvi_dev);
  1561. mvs_slot_task_free(mvi, task, slot, slot_idx);
  1562. return -1;
  1563. }
  1564. /* when no device attaching, go ahead and complete by error handling*/
  1565. if (unlikely(!mvi_dev || flags)) {
  1566. if (!mvi_dev)
  1567. mv_dprintk("port has not device.\n");
  1568. tstat->stat = SAS_PHY_DOWN;
  1569. goto out;
  1570. }
  1571. /* error info record present */
  1572. if (unlikely((rx_desc & RXQ_ERR) && (*(u64 *) slot->response))) {
  1573. mv_dprintk("port %d slot %d rx_desc %X has error info"
  1574. "%016llX.\n", slot->port->sas_port.id, slot_idx,
  1575. rx_desc, (u64)(*(u64 *)slot->response));
  1576. tstat->stat = mvs_slot_err(mvi, task, slot_idx);
  1577. tstat->resp = SAS_TASK_COMPLETE;
  1578. goto out;
  1579. }
  1580. switch (task->task_proto) {
  1581. case SAS_PROTOCOL_SSP:
  1582. /* hw says status == 0, datapres == 0 */
  1583. if (rx_desc & RXQ_GOOD) {
  1584. tstat->stat = SAM_STAT_GOOD;
  1585. tstat->resp = SAS_TASK_COMPLETE;
  1586. }
  1587. /* response frame present */
  1588. else if (rx_desc & RXQ_RSP) {
  1589. struct ssp_response_iu *iu = slot->response +
  1590. sizeof(struct mvs_err_info);
  1591. sas_ssp_task_response(mvi->dev, task, iu);
  1592. } else
  1593. tstat->stat = SAM_STAT_CHECK_CONDITION;
  1594. break;
  1595. case SAS_PROTOCOL_SMP: {
  1596. struct scatterlist *sg_resp = &task->smp_task.smp_resp;
  1597. tstat->stat = SAM_STAT_GOOD;
  1598. to = kmap_atomic(sg_page(sg_resp));
  1599. memcpy(to + sg_resp->offset,
  1600. slot->response + sizeof(struct mvs_err_info),
  1601. sg_dma_len(sg_resp));
  1602. kunmap_atomic(to);
  1603. break;
  1604. }
  1605. case SAS_PROTOCOL_SATA:
  1606. case SAS_PROTOCOL_STP:
  1607. case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: {
  1608. tstat->stat = mvs_sata_done(mvi, task, slot_idx, 0);
  1609. break;
  1610. }
  1611. default:
  1612. tstat->stat = SAM_STAT_CHECK_CONDITION;
  1613. break;
  1614. }
  1615. if (!slot->port->port_attached) {
  1616. mv_dprintk("port %d has removed.\n", slot->port->sas_port.id);
  1617. tstat->stat = SAS_PHY_DOWN;
  1618. }
  1619. out:
  1620. if (mvi_dev && mvi_dev->running_req) {
  1621. mvi_dev->running_req--;
  1622. if (sas_protocol_ata(task->task_proto) && !mvi_dev->running_req)
  1623. mvs_free_reg_set(mvi, mvi_dev);
  1624. }
  1625. mvs_slot_task_free(mvi, task, slot, slot_idx);
  1626. sts = tstat->stat;
  1627. spin_unlock(&mvi->lock);
  1628. if (task->task_done)
  1629. task->task_done(task);
  1630. spin_lock(&mvi->lock);
  1631. return sts;
  1632. }
  1633. void mvs_do_release_task(struct mvs_info *mvi,
  1634. int phy_no, struct domain_device *dev)
  1635. {
  1636. u32 slot_idx;
  1637. struct mvs_phy *phy;
  1638. struct mvs_port *port;
  1639. struct mvs_slot_info *slot, *slot2;
  1640. phy = &mvi->phy[phy_no];
  1641. port = phy->port;
  1642. if (!port)
  1643. return;
  1644. /* clean cmpl queue in case request is already finished */
  1645. mvs_int_rx(mvi, false);
  1646. list_for_each_entry_safe(slot, slot2, &port->list, entry) {
  1647. struct sas_task *task;
  1648. slot_idx = (u32) (slot - mvi->slot_info);
  1649. task = slot->task;
  1650. if (dev && task->dev != dev)
  1651. continue;
  1652. mv_printk("Release slot [%x] tag[%x], task [%p]:\n",
  1653. slot_idx, slot->slot_tag, task);
  1654. MVS_CHIP_DISP->command_active(mvi, slot_idx);
  1655. mvs_slot_complete(mvi, slot_idx, 1);
  1656. }
  1657. }
  1658. void mvs_release_task(struct mvs_info *mvi,
  1659. struct domain_device *dev)
  1660. {
  1661. int i, phyno[WIDE_PORT_MAX_PHY], num;
  1662. num = mvs_find_dev_phyno(dev, phyno);
  1663. for (i = 0; i < num; i++)
  1664. mvs_do_release_task(mvi, phyno[i], dev);
  1665. }
  1666. static void mvs_phy_disconnected(struct mvs_phy *phy)
  1667. {
  1668. phy->phy_attached = 0;
  1669. phy->att_dev_info = 0;
  1670. phy->att_dev_sas_addr = 0;
  1671. }
  1672. static void mvs_work_queue(struct work_struct *work)
  1673. {
  1674. struct delayed_work *dw = container_of(work, struct delayed_work, work);
  1675. struct mvs_wq *mwq = container_of(dw, struct mvs_wq, work_q);
  1676. struct mvs_info *mvi = mwq->mvi;
  1677. unsigned long flags;
  1678. u32 phy_no = (unsigned long) mwq->data;
  1679. struct sas_ha_struct *sas_ha = mvi->sas;
  1680. struct mvs_phy *phy = &mvi->phy[phy_no];
  1681. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  1682. spin_lock_irqsave(&mvi->lock, flags);
  1683. if (mwq->handler & PHY_PLUG_EVENT) {
  1684. if (phy->phy_event & PHY_PLUG_OUT) {
  1685. u32 tmp;
  1686. struct sas_identify_frame *id;
  1687. id = (struct sas_identify_frame *)phy->frame_rcvd;
  1688. tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no);
  1689. phy->phy_event &= ~PHY_PLUG_OUT;
  1690. if (!(tmp & PHY_READY_MASK)) {
  1691. sas_phy_disconnected(sas_phy);
  1692. mvs_phy_disconnected(phy);
  1693. sas_ha->notify_phy_event(sas_phy,
  1694. PHYE_LOSS_OF_SIGNAL);
  1695. mv_dprintk("phy%d Removed Device\n", phy_no);
  1696. } else {
  1697. MVS_CHIP_DISP->detect_porttype(mvi, phy_no);
  1698. mvs_update_phyinfo(mvi, phy_no, 1);
  1699. mvs_bytes_dmaed(mvi, phy_no);
  1700. mvs_port_notify_formed(sas_phy, 0);
  1701. mv_dprintk("phy%d Attached Device\n", phy_no);
  1702. }
  1703. }
  1704. } else if (mwq->handler & EXP_BRCT_CHG) {
  1705. phy->phy_event &= ~EXP_BRCT_CHG;
  1706. sas_ha->notify_port_event(sas_phy,
  1707. PORTE_BROADCAST_RCVD);
  1708. mv_dprintk("phy%d Got Broadcast Change\n", phy_no);
  1709. }
  1710. list_del(&mwq->entry);
  1711. spin_unlock_irqrestore(&mvi->lock, flags);
  1712. kfree(mwq);
  1713. }
  1714. static int mvs_handle_event(struct mvs_info *mvi, void *data, int handler)
  1715. {
  1716. struct mvs_wq *mwq;
  1717. int ret = 0;
  1718. mwq = kmalloc(sizeof(struct mvs_wq), GFP_ATOMIC);
  1719. if (mwq) {
  1720. mwq->mvi = mvi;
  1721. mwq->data = data;
  1722. mwq->handler = handler;
  1723. MV_INIT_DELAYED_WORK(&mwq->work_q, mvs_work_queue, mwq);
  1724. list_add_tail(&mwq->entry, &mvi->wq_list);
  1725. schedule_delayed_work(&mwq->work_q, HZ * 2);
  1726. } else
  1727. ret = -ENOMEM;
  1728. return ret;
  1729. }
  1730. static void mvs_sig_time_out(unsigned long tphy)
  1731. {
  1732. struct mvs_phy *phy = (struct mvs_phy *)tphy;
  1733. struct mvs_info *mvi = phy->mvi;
  1734. u8 phy_no;
  1735. for (phy_no = 0; phy_no < mvi->chip->n_phy; phy_no++) {
  1736. if (&mvi->phy[phy_no] == phy) {
  1737. mv_dprintk("Get signature time out, reset phy %d\n",
  1738. phy_no+mvi->id*mvi->chip->n_phy);
  1739. MVS_CHIP_DISP->phy_reset(mvi, phy_no, MVS_HARD_RESET);
  1740. }
  1741. }
  1742. }
  1743. void mvs_int_port(struct mvs_info *mvi, int phy_no, u32 events)
  1744. {
  1745. u32 tmp;
  1746. struct mvs_phy *phy = &mvi->phy[phy_no];
  1747. phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, phy_no);
  1748. MVS_CHIP_DISP->write_port_irq_stat(mvi, phy_no, phy->irq_status);
  1749. mv_dprintk("phy %d ctrl sts=0x%08X.\n", phy_no+mvi->id*mvi->chip->n_phy,
  1750. MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no));
  1751. mv_dprintk("phy %d irq sts = 0x%08X\n", phy_no+mvi->id*mvi->chip->n_phy,
  1752. phy->irq_status);
  1753. /*
  1754. * events is port event now ,
  1755. * we need check the interrupt status which belongs to per port.
  1756. */
  1757. if (phy->irq_status & PHYEV_DCDR_ERR) {
  1758. mv_dprintk("phy %d STP decoding error.\n",
  1759. phy_no + mvi->id*mvi->chip->n_phy);
  1760. }
  1761. if (phy->irq_status & PHYEV_POOF) {
  1762. mdelay(500);
  1763. if (!(phy->phy_event & PHY_PLUG_OUT)) {
  1764. int dev_sata = phy->phy_type & PORT_TYPE_SATA;
  1765. int ready;
  1766. mvs_do_release_task(mvi, phy_no, NULL);
  1767. phy->phy_event |= PHY_PLUG_OUT;
  1768. MVS_CHIP_DISP->clear_srs_irq(mvi, 0, 1);
  1769. mvs_handle_event(mvi,
  1770. (void *)(unsigned long)phy_no,
  1771. PHY_PLUG_EVENT);
  1772. ready = mvs_is_phy_ready(mvi, phy_no);
  1773. if (ready || dev_sata) {
  1774. if (MVS_CHIP_DISP->stp_reset)
  1775. MVS_CHIP_DISP->stp_reset(mvi,
  1776. phy_no);
  1777. else
  1778. MVS_CHIP_DISP->phy_reset(mvi,
  1779. phy_no, MVS_SOFT_RESET);
  1780. return;
  1781. }
  1782. }
  1783. }
  1784. if (phy->irq_status & PHYEV_COMWAKE) {
  1785. tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, phy_no);
  1786. MVS_CHIP_DISP->write_port_irq_mask(mvi, phy_no,
  1787. tmp | PHYEV_SIG_FIS);
  1788. if (phy->timer.function == NULL) {
  1789. phy->timer.data = (unsigned long)phy;
  1790. phy->timer.function = mvs_sig_time_out;
  1791. phy->timer.expires = jiffies + 5*HZ;
  1792. add_timer(&phy->timer);
  1793. }
  1794. }
  1795. if (phy->irq_status & (PHYEV_SIG_FIS | PHYEV_ID_DONE)) {
  1796. phy->phy_status = mvs_is_phy_ready(mvi, phy_no);
  1797. mv_dprintk("notify plug in on phy[%d]\n", phy_no);
  1798. if (phy->phy_status) {
  1799. mdelay(10);
  1800. MVS_CHIP_DISP->detect_porttype(mvi, phy_no);
  1801. if (phy->phy_type & PORT_TYPE_SATA) {
  1802. tmp = MVS_CHIP_DISP->read_port_irq_mask(
  1803. mvi, phy_no);
  1804. tmp &= ~PHYEV_SIG_FIS;
  1805. MVS_CHIP_DISP->write_port_irq_mask(mvi,
  1806. phy_no, tmp);
  1807. }
  1808. mvs_update_phyinfo(mvi, phy_no, 0);
  1809. if (phy->phy_type & PORT_TYPE_SAS) {
  1810. MVS_CHIP_DISP->phy_reset(mvi, phy_no, MVS_PHY_TUNE);
  1811. mdelay(10);
  1812. }
  1813. mvs_bytes_dmaed(mvi, phy_no);
  1814. /* whether driver is going to handle hot plug */
  1815. if (phy->phy_event & PHY_PLUG_OUT) {
  1816. mvs_port_notify_formed(&phy->sas_phy, 0);
  1817. phy->phy_event &= ~PHY_PLUG_OUT;
  1818. }
  1819. } else {
  1820. mv_dprintk("plugin interrupt but phy%d is gone\n",
  1821. phy_no + mvi->id*mvi->chip->n_phy);
  1822. }
  1823. } else if (phy->irq_status & PHYEV_BROAD_CH) {
  1824. mv_dprintk("phy %d broadcast change.\n",
  1825. phy_no + mvi->id*mvi->chip->n_phy);
  1826. mvs_handle_event(mvi, (void *)(unsigned long)phy_no,
  1827. EXP_BRCT_CHG);
  1828. }
  1829. }
  1830. int mvs_int_rx(struct mvs_info *mvi, bool self_clear)
  1831. {
  1832. u32 rx_prod_idx, rx_desc;
  1833. bool attn = false;
  1834. /* the first dword in the RX ring is special: it contains
  1835. * a mirror of the hardware's RX producer index, so that
  1836. * we don't have to stall the CPU reading that register.
  1837. * The actual RX ring is offset by one dword, due to this.
  1838. */
  1839. rx_prod_idx = mvi->rx_cons;
  1840. mvi->rx_cons = le32_to_cpu(mvi->rx[0]);
  1841. if (mvi->rx_cons == 0xfff) /* h/w hasn't touched RX ring yet */
  1842. return 0;
  1843. /* The CMPL_Q may come late, read from register and try again
  1844. * note: if coalescing is enabled,
  1845. * it will need to read from register every time for sure
  1846. */
  1847. if (unlikely(mvi->rx_cons == rx_prod_idx))
  1848. mvi->rx_cons = MVS_CHIP_DISP->rx_update(mvi) & RX_RING_SZ_MASK;
  1849. if (mvi->rx_cons == rx_prod_idx)
  1850. return 0;
  1851. while (mvi->rx_cons != rx_prod_idx) {
  1852. /* increment our internal RX consumer pointer */
  1853. rx_prod_idx = (rx_prod_idx + 1) & (MVS_RX_RING_SZ - 1);
  1854. rx_desc = le32_to_cpu(mvi->rx[rx_prod_idx + 1]);
  1855. if (likely(rx_desc & RXQ_DONE))
  1856. mvs_slot_complete(mvi, rx_desc, 0);
  1857. if (rx_desc & RXQ_ATTN) {
  1858. attn = true;
  1859. } else if (rx_desc & RXQ_ERR) {
  1860. if (!(rx_desc & RXQ_DONE))
  1861. mvs_slot_complete(mvi, rx_desc, 0);
  1862. } else if (rx_desc & RXQ_SLOT_RESET) {
  1863. mvs_slot_free(mvi, rx_desc);
  1864. }
  1865. }
  1866. if (attn && self_clear)
  1867. MVS_CHIP_DISP->int_full(mvi);
  1868. return 0;
  1869. }