futex.c 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/module.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <asm/futex.h>
  63. #include "rtmutex_common.h"
  64. int __read_mostly futex_cmpxchg_enabled;
  65. #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  66. /*
  67. * Priority Inheritance state:
  68. */
  69. struct futex_pi_state {
  70. /*
  71. * list of 'owned' pi_state instances - these have to be
  72. * cleaned up in do_exit() if the task exits prematurely:
  73. */
  74. struct list_head list;
  75. /*
  76. * The PI object:
  77. */
  78. struct rt_mutex pi_mutex;
  79. struct task_struct *owner;
  80. atomic_t refcount;
  81. union futex_key key;
  82. };
  83. /*
  84. * We use this hashed waitqueue instead of a normal wait_queue_t, so
  85. * we can wake only the relevant ones (hashed queues may be shared).
  86. *
  87. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  88. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  89. * The order of wakup is always to make the first condition true, then
  90. * wake up q->waiter, then make the second condition true.
  91. */
  92. struct futex_q {
  93. struct plist_node list;
  94. /* Waiter reference */
  95. struct task_struct *task;
  96. /* Which hash list lock to use: */
  97. spinlock_t *lock_ptr;
  98. /* Key which the futex is hashed on: */
  99. union futex_key key;
  100. /* Optional priority inheritance state: */
  101. struct futex_pi_state *pi_state;
  102. /* rt_waiter storage for requeue_pi: */
  103. struct rt_mutex_waiter *rt_waiter;
  104. /* The expected requeue pi target futex key: */
  105. union futex_key *requeue_pi_key;
  106. /* Bitset for the optional bitmasked wakeup */
  107. u32 bitset;
  108. };
  109. /*
  110. * Hash buckets are shared by all the futex_keys that hash to the same
  111. * location. Each key may have multiple futex_q structures, one for each task
  112. * waiting on a futex.
  113. */
  114. struct futex_hash_bucket {
  115. spinlock_t lock;
  116. struct plist_head chain;
  117. };
  118. static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  119. /*
  120. * We hash on the keys returned from get_futex_key (see below).
  121. */
  122. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  123. {
  124. u32 hash = jhash2((u32*)&key->both.word,
  125. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  126. key->both.offset);
  127. return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  128. }
  129. /*
  130. * Return 1 if two futex_keys are equal, 0 otherwise.
  131. */
  132. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  133. {
  134. return (key1->both.word == key2->both.word
  135. && key1->both.ptr == key2->both.ptr
  136. && key1->both.offset == key2->both.offset);
  137. }
  138. /*
  139. * Take a reference to the resource addressed by a key.
  140. * Can be called while holding spinlocks.
  141. *
  142. */
  143. static void get_futex_key_refs(union futex_key *key)
  144. {
  145. if (!key->both.ptr)
  146. return;
  147. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  148. case FUT_OFF_INODE:
  149. atomic_inc(&key->shared.inode->i_count);
  150. break;
  151. case FUT_OFF_MMSHARED:
  152. atomic_inc(&key->private.mm->mm_count);
  153. break;
  154. }
  155. }
  156. /*
  157. * Drop a reference to the resource addressed by a key.
  158. * The hash bucket spinlock must not be held.
  159. */
  160. static void drop_futex_key_refs(union futex_key *key)
  161. {
  162. if (!key->both.ptr) {
  163. /* If we're here then we tried to put a key we failed to get */
  164. WARN_ON_ONCE(1);
  165. return;
  166. }
  167. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  168. case FUT_OFF_INODE:
  169. iput(key->shared.inode);
  170. break;
  171. case FUT_OFF_MMSHARED:
  172. mmdrop(key->private.mm);
  173. break;
  174. }
  175. }
  176. /**
  177. * get_futex_key - Get parameters which are the keys for a futex.
  178. * @uaddr: virtual address of the futex
  179. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  180. * @key: address where result is stored.
  181. * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
  182. *
  183. * Returns a negative error code or 0
  184. * The key words are stored in *key on success.
  185. *
  186. * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
  187. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  188. * We can usually work out the index without swapping in the page.
  189. *
  190. * lock_page() might sleep, the caller should not hold a spinlock.
  191. */
  192. static int
  193. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  194. {
  195. unsigned long address = (unsigned long)uaddr;
  196. struct mm_struct *mm = current->mm;
  197. struct page *page;
  198. int err;
  199. /*
  200. * The futex address must be "naturally" aligned.
  201. */
  202. key->both.offset = address % PAGE_SIZE;
  203. if (unlikely((address % sizeof(u32)) != 0))
  204. return -EINVAL;
  205. address -= key->both.offset;
  206. /*
  207. * PROCESS_PRIVATE futexes are fast.
  208. * As the mm cannot disappear under us and the 'key' only needs
  209. * virtual address, we dont even have to find the underlying vma.
  210. * Note : We do have to check 'uaddr' is a valid user address,
  211. * but access_ok() should be faster than find_vma()
  212. */
  213. if (!fshared) {
  214. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  215. return -EFAULT;
  216. key->private.mm = mm;
  217. key->private.address = address;
  218. get_futex_key_refs(key);
  219. return 0;
  220. }
  221. again:
  222. err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
  223. if (err < 0)
  224. return err;
  225. page = compound_head(page);
  226. lock_page(page);
  227. if (!page->mapping) {
  228. unlock_page(page);
  229. put_page(page);
  230. goto again;
  231. }
  232. /*
  233. * Private mappings are handled in a simple way.
  234. *
  235. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  236. * it's a read-only handle, it's expected that futexes attach to
  237. * the object not the particular process.
  238. */
  239. if (PageAnon(page)) {
  240. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  241. key->private.mm = mm;
  242. key->private.address = address;
  243. } else {
  244. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  245. key->shared.inode = page->mapping->host;
  246. key->shared.pgoff = page->index;
  247. }
  248. get_futex_key_refs(key);
  249. unlock_page(page);
  250. put_page(page);
  251. return 0;
  252. }
  253. static inline
  254. void put_futex_key(int fshared, union futex_key *key)
  255. {
  256. drop_futex_key_refs(key);
  257. }
  258. /*
  259. * fault_in_user_writeable - fault in user address and verify RW access
  260. * @uaddr: pointer to faulting user space address
  261. *
  262. * Slow path to fixup the fault we just took in the atomic write
  263. * access to @uaddr.
  264. *
  265. * We have no generic implementation of a non destructive write to the
  266. * user address. We know that we faulted in the atomic pagefault
  267. * disabled section so we can as well avoid the #PF overhead by
  268. * calling get_user_pages() right away.
  269. */
  270. static int fault_in_user_writeable(u32 __user *uaddr)
  271. {
  272. int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
  273. 1, 1, 0, NULL, NULL);
  274. return ret < 0 ? ret : 0;
  275. }
  276. /**
  277. * futex_top_waiter() - Return the highest priority waiter on a futex
  278. * @hb: the hash bucket the futex_q's reside in
  279. * @key: the futex key (to distinguish it from other futex futex_q's)
  280. *
  281. * Must be called with the hb lock held.
  282. */
  283. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  284. union futex_key *key)
  285. {
  286. struct futex_q *this;
  287. plist_for_each_entry(this, &hb->chain, list) {
  288. if (match_futex(&this->key, key))
  289. return this;
  290. }
  291. return NULL;
  292. }
  293. static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
  294. {
  295. u32 curval;
  296. pagefault_disable();
  297. curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
  298. pagefault_enable();
  299. return curval;
  300. }
  301. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  302. {
  303. int ret;
  304. pagefault_disable();
  305. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  306. pagefault_enable();
  307. return ret ? -EFAULT : 0;
  308. }
  309. /*
  310. * PI code:
  311. */
  312. static int refill_pi_state_cache(void)
  313. {
  314. struct futex_pi_state *pi_state;
  315. if (likely(current->pi_state_cache))
  316. return 0;
  317. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  318. if (!pi_state)
  319. return -ENOMEM;
  320. INIT_LIST_HEAD(&pi_state->list);
  321. /* pi_mutex gets initialized later */
  322. pi_state->owner = NULL;
  323. atomic_set(&pi_state->refcount, 1);
  324. pi_state->key = FUTEX_KEY_INIT;
  325. current->pi_state_cache = pi_state;
  326. return 0;
  327. }
  328. static struct futex_pi_state * alloc_pi_state(void)
  329. {
  330. struct futex_pi_state *pi_state = current->pi_state_cache;
  331. WARN_ON(!pi_state);
  332. current->pi_state_cache = NULL;
  333. return pi_state;
  334. }
  335. static void free_pi_state(struct futex_pi_state *pi_state)
  336. {
  337. if (!atomic_dec_and_test(&pi_state->refcount))
  338. return;
  339. /*
  340. * If pi_state->owner is NULL, the owner is most probably dying
  341. * and has cleaned up the pi_state already
  342. */
  343. if (pi_state->owner) {
  344. spin_lock_irq(&pi_state->owner->pi_lock);
  345. list_del_init(&pi_state->list);
  346. spin_unlock_irq(&pi_state->owner->pi_lock);
  347. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  348. }
  349. if (current->pi_state_cache)
  350. kfree(pi_state);
  351. else {
  352. /*
  353. * pi_state->list is already empty.
  354. * clear pi_state->owner.
  355. * refcount is at 0 - put it back to 1.
  356. */
  357. pi_state->owner = NULL;
  358. atomic_set(&pi_state->refcount, 1);
  359. current->pi_state_cache = pi_state;
  360. }
  361. }
  362. /*
  363. * Look up the task based on what TID userspace gave us.
  364. * We dont trust it.
  365. */
  366. static struct task_struct * futex_find_get_task(pid_t pid)
  367. {
  368. struct task_struct *p;
  369. const struct cred *cred = current_cred(), *pcred;
  370. rcu_read_lock();
  371. p = find_task_by_vpid(pid);
  372. if (!p) {
  373. p = ERR_PTR(-ESRCH);
  374. } else {
  375. pcred = __task_cred(p);
  376. if (cred->euid != pcred->euid &&
  377. cred->euid != pcred->uid)
  378. p = ERR_PTR(-ESRCH);
  379. else
  380. get_task_struct(p);
  381. }
  382. rcu_read_unlock();
  383. return p;
  384. }
  385. /*
  386. * This task is holding PI mutexes at exit time => bad.
  387. * Kernel cleans up PI-state, but userspace is likely hosed.
  388. * (Robust-futex cleanup is separate and might save the day for userspace.)
  389. */
  390. void exit_pi_state_list(struct task_struct *curr)
  391. {
  392. struct list_head *next, *head = &curr->pi_state_list;
  393. struct futex_pi_state *pi_state;
  394. struct futex_hash_bucket *hb;
  395. union futex_key key = FUTEX_KEY_INIT;
  396. if (!futex_cmpxchg_enabled)
  397. return;
  398. /*
  399. * We are a ZOMBIE and nobody can enqueue itself on
  400. * pi_state_list anymore, but we have to be careful
  401. * versus waiters unqueueing themselves:
  402. */
  403. spin_lock_irq(&curr->pi_lock);
  404. while (!list_empty(head)) {
  405. next = head->next;
  406. pi_state = list_entry(next, struct futex_pi_state, list);
  407. key = pi_state->key;
  408. hb = hash_futex(&key);
  409. spin_unlock_irq(&curr->pi_lock);
  410. spin_lock(&hb->lock);
  411. spin_lock_irq(&curr->pi_lock);
  412. /*
  413. * We dropped the pi-lock, so re-check whether this
  414. * task still owns the PI-state:
  415. */
  416. if (head->next != next) {
  417. spin_unlock(&hb->lock);
  418. continue;
  419. }
  420. WARN_ON(pi_state->owner != curr);
  421. WARN_ON(list_empty(&pi_state->list));
  422. list_del_init(&pi_state->list);
  423. pi_state->owner = NULL;
  424. spin_unlock_irq(&curr->pi_lock);
  425. rt_mutex_unlock(&pi_state->pi_mutex);
  426. spin_unlock(&hb->lock);
  427. spin_lock_irq(&curr->pi_lock);
  428. }
  429. spin_unlock_irq(&curr->pi_lock);
  430. }
  431. static int
  432. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  433. union futex_key *key, struct futex_pi_state **ps)
  434. {
  435. struct futex_pi_state *pi_state = NULL;
  436. struct futex_q *this, *next;
  437. struct plist_head *head;
  438. struct task_struct *p;
  439. pid_t pid = uval & FUTEX_TID_MASK;
  440. head = &hb->chain;
  441. plist_for_each_entry_safe(this, next, head, list) {
  442. if (match_futex(&this->key, key)) {
  443. /*
  444. * Another waiter already exists - bump up
  445. * the refcount and return its pi_state:
  446. */
  447. pi_state = this->pi_state;
  448. /*
  449. * Userspace might have messed up non PI and PI futexes
  450. */
  451. if (unlikely(!pi_state))
  452. return -EINVAL;
  453. WARN_ON(!atomic_read(&pi_state->refcount));
  454. WARN_ON(pid && pi_state->owner &&
  455. pi_state->owner->pid != pid);
  456. atomic_inc(&pi_state->refcount);
  457. *ps = pi_state;
  458. return 0;
  459. }
  460. }
  461. /*
  462. * We are the first waiter - try to look up the real owner and attach
  463. * the new pi_state to it, but bail out when TID = 0
  464. */
  465. if (!pid)
  466. return -ESRCH;
  467. p = futex_find_get_task(pid);
  468. if (IS_ERR(p))
  469. return PTR_ERR(p);
  470. /*
  471. * We need to look at the task state flags to figure out,
  472. * whether the task is exiting. To protect against the do_exit
  473. * change of the task flags, we do this protected by
  474. * p->pi_lock:
  475. */
  476. spin_lock_irq(&p->pi_lock);
  477. if (unlikely(p->flags & PF_EXITING)) {
  478. /*
  479. * The task is on the way out. When PF_EXITPIDONE is
  480. * set, we know that the task has finished the
  481. * cleanup:
  482. */
  483. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  484. spin_unlock_irq(&p->pi_lock);
  485. put_task_struct(p);
  486. return ret;
  487. }
  488. pi_state = alloc_pi_state();
  489. /*
  490. * Initialize the pi_mutex in locked state and make 'p'
  491. * the owner of it:
  492. */
  493. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  494. /* Store the key for possible exit cleanups: */
  495. pi_state->key = *key;
  496. WARN_ON(!list_empty(&pi_state->list));
  497. list_add(&pi_state->list, &p->pi_state_list);
  498. pi_state->owner = p;
  499. spin_unlock_irq(&p->pi_lock);
  500. put_task_struct(p);
  501. *ps = pi_state;
  502. return 0;
  503. }
  504. /**
  505. * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
  506. * @uaddr: the pi futex user address
  507. * @hb: the pi futex hash bucket
  508. * @key: the futex key associated with uaddr and hb
  509. * @ps: the pi_state pointer where we store the result of the
  510. * lookup
  511. * @task: the task to perform the atomic lock work for. This will
  512. * be "current" except in the case of requeue pi.
  513. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  514. *
  515. * Returns:
  516. * 0 - ready to wait
  517. * 1 - acquired the lock
  518. * <0 - error
  519. *
  520. * The hb->lock and futex_key refs shall be held by the caller.
  521. */
  522. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  523. union futex_key *key,
  524. struct futex_pi_state **ps,
  525. struct task_struct *task, int set_waiters)
  526. {
  527. int lock_taken, ret, ownerdied = 0;
  528. u32 uval, newval, curval;
  529. retry:
  530. ret = lock_taken = 0;
  531. /*
  532. * To avoid races, we attempt to take the lock here again
  533. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  534. * the locks. It will most likely not succeed.
  535. */
  536. newval = task_pid_vnr(task);
  537. if (set_waiters)
  538. newval |= FUTEX_WAITERS;
  539. curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
  540. if (unlikely(curval == -EFAULT))
  541. return -EFAULT;
  542. /*
  543. * Detect deadlocks.
  544. */
  545. if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
  546. return -EDEADLK;
  547. /*
  548. * Surprise - we got the lock. Just return to userspace:
  549. */
  550. if (unlikely(!curval))
  551. return 1;
  552. uval = curval;
  553. /*
  554. * Set the FUTEX_WAITERS flag, so the owner will know it has someone
  555. * to wake at the next unlock.
  556. */
  557. newval = curval | FUTEX_WAITERS;
  558. /*
  559. * There are two cases, where a futex might have no owner (the
  560. * owner TID is 0): OWNER_DIED. We take over the futex in this
  561. * case. We also do an unconditional take over, when the owner
  562. * of the futex died.
  563. *
  564. * This is safe as we are protected by the hash bucket lock !
  565. */
  566. if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
  567. /* Keep the OWNER_DIED bit */
  568. newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
  569. ownerdied = 0;
  570. lock_taken = 1;
  571. }
  572. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  573. if (unlikely(curval == -EFAULT))
  574. return -EFAULT;
  575. if (unlikely(curval != uval))
  576. goto retry;
  577. /*
  578. * We took the lock due to owner died take over.
  579. */
  580. if (unlikely(lock_taken))
  581. return 1;
  582. /*
  583. * We dont have the lock. Look up the PI state (or create it if
  584. * we are the first waiter):
  585. */
  586. ret = lookup_pi_state(uval, hb, key, ps);
  587. if (unlikely(ret)) {
  588. switch (ret) {
  589. case -ESRCH:
  590. /*
  591. * No owner found for this futex. Check if the
  592. * OWNER_DIED bit is set to figure out whether
  593. * this is a robust futex or not.
  594. */
  595. if (get_futex_value_locked(&curval, uaddr))
  596. return -EFAULT;
  597. /*
  598. * We simply start over in case of a robust
  599. * futex. The code above will take the futex
  600. * and return happy.
  601. */
  602. if (curval & FUTEX_OWNER_DIED) {
  603. ownerdied = 1;
  604. goto retry;
  605. }
  606. default:
  607. break;
  608. }
  609. }
  610. return ret;
  611. }
  612. /*
  613. * The hash bucket lock must be held when this is called.
  614. * Afterwards, the futex_q must not be accessed.
  615. */
  616. static void wake_futex(struct futex_q *q)
  617. {
  618. struct task_struct *p = q->task;
  619. /*
  620. * We set q->lock_ptr = NULL _before_ we wake up the task. If
  621. * a non futex wake up happens on another CPU then the task
  622. * might exit and p would dereference a non existing task
  623. * struct. Prevent this by holding a reference on p across the
  624. * wake up.
  625. */
  626. get_task_struct(p);
  627. plist_del(&q->list, &q->list.plist);
  628. /*
  629. * The waiting task can free the futex_q as soon as
  630. * q->lock_ptr = NULL is written, without taking any locks. A
  631. * memory barrier is required here to prevent the following
  632. * store to lock_ptr from getting ahead of the plist_del.
  633. */
  634. smp_wmb();
  635. q->lock_ptr = NULL;
  636. wake_up_state(p, TASK_NORMAL);
  637. put_task_struct(p);
  638. }
  639. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  640. {
  641. struct task_struct *new_owner;
  642. struct futex_pi_state *pi_state = this->pi_state;
  643. u32 curval, newval;
  644. if (!pi_state)
  645. return -EINVAL;
  646. spin_lock(&pi_state->pi_mutex.wait_lock);
  647. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  648. /*
  649. * This happens when we have stolen the lock and the original
  650. * pending owner did not enqueue itself back on the rt_mutex.
  651. * Thats not a tragedy. We know that way, that a lock waiter
  652. * is on the fly. We make the futex_q waiter the pending owner.
  653. */
  654. if (!new_owner)
  655. new_owner = this->task;
  656. /*
  657. * We pass it to the next owner. (The WAITERS bit is always
  658. * kept enabled while there is PI state around. We must also
  659. * preserve the owner died bit.)
  660. */
  661. if (!(uval & FUTEX_OWNER_DIED)) {
  662. int ret = 0;
  663. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  664. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  665. if (curval == -EFAULT)
  666. ret = -EFAULT;
  667. else if (curval != uval)
  668. ret = -EINVAL;
  669. if (ret) {
  670. spin_unlock(&pi_state->pi_mutex.wait_lock);
  671. return ret;
  672. }
  673. }
  674. spin_lock_irq(&pi_state->owner->pi_lock);
  675. WARN_ON(list_empty(&pi_state->list));
  676. list_del_init(&pi_state->list);
  677. spin_unlock_irq(&pi_state->owner->pi_lock);
  678. spin_lock_irq(&new_owner->pi_lock);
  679. WARN_ON(!list_empty(&pi_state->list));
  680. list_add(&pi_state->list, &new_owner->pi_state_list);
  681. pi_state->owner = new_owner;
  682. spin_unlock_irq(&new_owner->pi_lock);
  683. spin_unlock(&pi_state->pi_mutex.wait_lock);
  684. rt_mutex_unlock(&pi_state->pi_mutex);
  685. return 0;
  686. }
  687. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  688. {
  689. u32 oldval;
  690. /*
  691. * There is no waiter, so we unlock the futex. The owner died
  692. * bit has not to be preserved here. We are the owner:
  693. */
  694. oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
  695. if (oldval == -EFAULT)
  696. return oldval;
  697. if (oldval != uval)
  698. return -EAGAIN;
  699. return 0;
  700. }
  701. /*
  702. * Express the locking dependencies for lockdep:
  703. */
  704. static inline void
  705. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  706. {
  707. if (hb1 <= hb2) {
  708. spin_lock(&hb1->lock);
  709. if (hb1 < hb2)
  710. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  711. } else { /* hb1 > hb2 */
  712. spin_lock(&hb2->lock);
  713. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  714. }
  715. }
  716. static inline void
  717. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  718. {
  719. spin_unlock(&hb1->lock);
  720. if (hb1 != hb2)
  721. spin_unlock(&hb2->lock);
  722. }
  723. /*
  724. * Wake up waiters matching bitset queued on this futex (uaddr).
  725. */
  726. static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
  727. {
  728. struct futex_hash_bucket *hb;
  729. struct futex_q *this, *next;
  730. struct plist_head *head;
  731. union futex_key key = FUTEX_KEY_INIT;
  732. int ret;
  733. if (!bitset)
  734. return -EINVAL;
  735. ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
  736. if (unlikely(ret != 0))
  737. goto out;
  738. hb = hash_futex(&key);
  739. spin_lock(&hb->lock);
  740. head = &hb->chain;
  741. plist_for_each_entry_safe(this, next, head, list) {
  742. if (match_futex (&this->key, &key)) {
  743. if (this->pi_state || this->rt_waiter) {
  744. ret = -EINVAL;
  745. break;
  746. }
  747. /* Check if one of the bits is set in both bitsets */
  748. if (!(this->bitset & bitset))
  749. continue;
  750. wake_futex(this);
  751. if (++ret >= nr_wake)
  752. break;
  753. }
  754. }
  755. spin_unlock(&hb->lock);
  756. put_futex_key(fshared, &key);
  757. out:
  758. return ret;
  759. }
  760. /*
  761. * Wake up all waiters hashed on the physical page that is mapped
  762. * to this virtual address:
  763. */
  764. static int
  765. futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
  766. int nr_wake, int nr_wake2, int op)
  767. {
  768. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  769. struct futex_hash_bucket *hb1, *hb2;
  770. struct plist_head *head;
  771. struct futex_q *this, *next;
  772. int ret, op_ret;
  773. retry:
  774. ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
  775. if (unlikely(ret != 0))
  776. goto out;
  777. ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
  778. if (unlikely(ret != 0))
  779. goto out_put_key1;
  780. hb1 = hash_futex(&key1);
  781. hb2 = hash_futex(&key2);
  782. double_lock_hb(hb1, hb2);
  783. retry_private:
  784. op_ret = futex_atomic_op_inuser(op, uaddr2);
  785. if (unlikely(op_ret < 0)) {
  786. double_unlock_hb(hb1, hb2);
  787. #ifndef CONFIG_MMU
  788. /*
  789. * we don't get EFAULT from MMU faults if we don't have an MMU,
  790. * but we might get them from range checking
  791. */
  792. ret = op_ret;
  793. goto out_put_keys;
  794. #endif
  795. if (unlikely(op_ret != -EFAULT)) {
  796. ret = op_ret;
  797. goto out_put_keys;
  798. }
  799. ret = fault_in_user_writeable(uaddr2);
  800. if (ret)
  801. goto out_put_keys;
  802. if (!fshared)
  803. goto retry_private;
  804. put_futex_key(fshared, &key2);
  805. put_futex_key(fshared, &key1);
  806. goto retry;
  807. }
  808. head = &hb1->chain;
  809. plist_for_each_entry_safe(this, next, head, list) {
  810. if (match_futex (&this->key, &key1)) {
  811. wake_futex(this);
  812. if (++ret >= nr_wake)
  813. break;
  814. }
  815. }
  816. if (op_ret > 0) {
  817. head = &hb2->chain;
  818. op_ret = 0;
  819. plist_for_each_entry_safe(this, next, head, list) {
  820. if (match_futex (&this->key, &key2)) {
  821. wake_futex(this);
  822. if (++op_ret >= nr_wake2)
  823. break;
  824. }
  825. }
  826. ret += op_ret;
  827. }
  828. double_unlock_hb(hb1, hb2);
  829. out_put_keys:
  830. put_futex_key(fshared, &key2);
  831. out_put_key1:
  832. put_futex_key(fshared, &key1);
  833. out:
  834. return ret;
  835. }
  836. /**
  837. * requeue_futex() - Requeue a futex_q from one hb to another
  838. * @q: the futex_q to requeue
  839. * @hb1: the source hash_bucket
  840. * @hb2: the target hash_bucket
  841. * @key2: the new key for the requeued futex_q
  842. */
  843. static inline
  844. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  845. struct futex_hash_bucket *hb2, union futex_key *key2)
  846. {
  847. /*
  848. * If key1 and key2 hash to the same bucket, no need to
  849. * requeue.
  850. */
  851. if (likely(&hb1->chain != &hb2->chain)) {
  852. plist_del(&q->list, &hb1->chain);
  853. plist_add(&q->list, &hb2->chain);
  854. q->lock_ptr = &hb2->lock;
  855. #ifdef CONFIG_DEBUG_PI_LIST
  856. q->list.plist.lock = &hb2->lock;
  857. #endif
  858. }
  859. get_futex_key_refs(key2);
  860. q->key = *key2;
  861. }
  862. /**
  863. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  864. * q: the futex_q
  865. * key: the key of the requeue target futex
  866. *
  867. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  868. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  869. * to the requeue target futex so the waiter can detect the wakeup on the right
  870. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  871. * atomic lock acquisition. Must be called with the q->lock_ptr held.
  872. */
  873. static inline
  874. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key)
  875. {
  876. drop_futex_key_refs(&q->key);
  877. get_futex_key_refs(key);
  878. q->key = *key;
  879. WARN_ON(plist_node_empty(&q->list));
  880. plist_del(&q->list, &q->list.plist);
  881. WARN_ON(!q->rt_waiter);
  882. q->rt_waiter = NULL;
  883. wake_up_state(q->task, TASK_NORMAL);
  884. }
  885. /**
  886. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  887. * @pifutex: the user address of the to futex
  888. * @hb1: the from futex hash bucket, must be locked by the caller
  889. * @hb2: the to futex hash bucket, must be locked by the caller
  890. * @key1: the from futex key
  891. * @key2: the to futex key
  892. * @ps: address to store the pi_state pointer
  893. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  894. *
  895. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  896. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  897. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  898. * hb1 and hb2 must be held by the caller.
  899. *
  900. * Returns:
  901. * 0 - failed to acquire the lock atomicly
  902. * 1 - acquired the lock
  903. * <0 - error
  904. */
  905. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  906. struct futex_hash_bucket *hb1,
  907. struct futex_hash_bucket *hb2,
  908. union futex_key *key1, union futex_key *key2,
  909. struct futex_pi_state **ps, int set_waiters)
  910. {
  911. struct futex_q *top_waiter = NULL;
  912. u32 curval;
  913. int ret;
  914. if (get_futex_value_locked(&curval, pifutex))
  915. return -EFAULT;
  916. /*
  917. * Find the top_waiter and determine if there are additional waiters.
  918. * If the caller intends to requeue more than 1 waiter to pifutex,
  919. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  920. * as we have means to handle the possible fault. If not, don't set
  921. * the bit unecessarily as it will force the subsequent unlock to enter
  922. * the kernel.
  923. */
  924. top_waiter = futex_top_waiter(hb1, key1);
  925. /* There are no waiters, nothing for us to do. */
  926. if (!top_waiter)
  927. return 0;
  928. /* Ensure we requeue to the expected futex. */
  929. if (!match_futex(top_waiter->requeue_pi_key, key2))
  930. return -EINVAL;
  931. /*
  932. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  933. * the contended case or if set_waiters is 1. The pi_state is returned
  934. * in ps in contended cases.
  935. */
  936. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  937. set_waiters);
  938. if (ret == 1)
  939. requeue_pi_wake_futex(top_waiter, key2);
  940. return ret;
  941. }
  942. /**
  943. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  944. * uaddr1: source futex user address
  945. * uaddr2: target futex user address
  946. * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  947. * nr_requeue: number of waiters to requeue (0-INT_MAX)
  948. * requeue_pi: if we are attempting to requeue from a non-pi futex to a
  949. * pi futex (pi to pi requeue is not supported)
  950. *
  951. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  952. * uaddr2 atomically on behalf of the top waiter.
  953. *
  954. * Returns:
  955. * >=0 - on success, the number of tasks requeued or woken
  956. * <0 - on error
  957. */
  958. static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
  959. int nr_wake, int nr_requeue, u32 *cmpval,
  960. int requeue_pi)
  961. {
  962. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  963. int drop_count = 0, task_count = 0, ret;
  964. struct futex_pi_state *pi_state = NULL;
  965. struct futex_hash_bucket *hb1, *hb2;
  966. struct plist_head *head1;
  967. struct futex_q *this, *next;
  968. u32 curval2;
  969. if (requeue_pi) {
  970. /*
  971. * requeue_pi requires a pi_state, try to allocate it now
  972. * without any locks in case it fails.
  973. */
  974. if (refill_pi_state_cache())
  975. return -ENOMEM;
  976. /*
  977. * requeue_pi must wake as many tasks as it can, up to nr_wake
  978. * + nr_requeue, since it acquires the rt_mutex prior to
  979. * returning to userspace, so as to not leave the rt_mutex with
  980. * waiters and no owner. However, second and third wake-ups
  981. * cannot be predicted as they involve race conditions with the
  982. * first wake and a fault while looking up the pi_state. Both
  983. * pthread_cond_signal() and pthread_cond_broadcast() should
  984. * use nr_wake=1.
  985. */
  986. if (nr_wake != 1)
  987. return -EINVAL;
  988. }
  989. retry:
  990. if (pi_state != NULL) {
  991. /*
  992. * We will have to lookup the pi_state again, so free this one
  993. * to keep the accounting correct.
  994. */
  995. free_pi_state(pi_state);
  996. pi_state = NULL;
  997. }
  998. ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
  999. if (unlikely(ret != 0))
  1000. goto out;
  1001. ret = get_futex_key(uaddr2, fshared, &key2,
  1002. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1003. if (unlikely(ret != 0))
  1004. goto out_put_key1;
  1005. hb1 = hash_futex(&key1);
  1006. hb2 = hash_futex(&key2);
  1007. retry_private:
  1008. double_lock_hb(hb1, hb2);
  1009. if (likely(cmpval != NULL)) {
  1010. u32 curval;
  1011. ret = get_futex_value_locked(&curval, uaddr1);
  1012. if (unlikely(ret)) {
  1013. double_unlock_hb(hb1, hb2);
  1014. ret = get_user(curval, uaddr1);
  1015. if (ret)
  1016. goto out_put_keys;
  1017. if (!fshared)
  1018. goto retry_private;
  1019. put_futex_key(fshared, &key2);
  1020. put_futex_key(fshared, &key1);
  1021. goto retry;
  1022. }
  1023. if (curval != *cmpval) {
  1024. ret = -EAGAIN;
  1025. goto out_unlock;
  1026. }
  1027. }
  1028. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1029. /*
  1030. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1031. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1032. * bit. We force this here where we are able to easily handle
  1033. * faults rather in the requeue loop below.
  1034. */
  1035. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1036. &key2, &pi_state, nr_requeue);
  1037. /*
  1038. * At this point the top_waiter has either taken uaddr2 or is
  1039. * waiting on it. If the former, then the pi_state will not
  1040. * exist yet, look it up one more time to ensure we have a
  1041. * reference to it.
  1042. */
  1043. if (ret == 1) {
  1044. WARN_ON(pi_state);
  1045. task_count++;
  1046. ret = get_futex_value_locked(&curval2, uaddr2);
  1047. if (!ret)
  1048. ret = lookup_pi_state(curval2, hb2, &key2,
  1049. &pi_state);
  1050. }
  1051. switch (ret) {
  1052. case 0:
  1053. break;
  1054. case -EFAULT:
  1055. double_unlock_hb(hb1, hb2);
  1056. put_futex_key(fshared, &key2);
  1057. put_futex_key(fshared, &key1);
  1058. ret = fault_in_user_writeable(uaddr2);
  1059. if (!ret)
  1060. goto retry;
  1061. goto out;
  1062. case -EAGAIN:
  1063. /* The owner was exiting, try again. */
  1064. double_unlock_hb(hb1, hb2);
  1065. put_futex_key(fshared, &key2);
  1066. put_futex_key(fshared, &key1);
  1067. cond_resched();
  1068. goto retry;
  1069. default:
  1070. goto out_unlock;
  1071. }
  1072. }
  1073. head1 = &hb1->chain;
  1074. plist_for_each_entry_safe(this, next, head1, list) {
  1075. if (task_count - nr_wake >= nr_requeue)
  1076. break;
  1077. if (!match_futex(&this->key, &key1))
  1078. continue;
  1079. WARN_ON(!requeue_pi && this->rt_waiter);
  1080. WARN_ON(requeue_pi && !this->rt_waiter);
  1081. /*
  1082. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1083. * lock, we already woke the top_waiter. If not, it will be
  1084. * woken by futex_unlock_pi().
  1085. */
  1086. if (++task_count <= nr_wake && !requeue_pi) {
  1087. wake_futex(this);
  1088. continue;
  1089. }
  1090. /* Ensure we requeue to the expected futex for requeue_pi. */
  1091. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1092. ret = -EINVAL;
  1093. break;
  1094. }
  1095. /*
  1096. * Requeue nr_requeue waiters and possibly one more in the case
  1097. * of requeue_pi if we couldn't acquire the lock atomically.
  1098. */
  1099. if (requeue_pi) {
  1100. /* Prepare the waiter to take the rt_mutex. */
  1101. atomic_inc(&pi_state->refcount);
  1102. this->pi_state = pi_state;
  1103. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1104. this->rt_waiter,
  1105. this->task, 1);
  1106. if (ret == 1) {
  1107. /* We got the lock. */
  1108. requeue_pi_wake_futex(this, &key2);
  1109. continue;
  1110. } else if (ret) {
  1111. /* -EDEADLK */
  1112. this->pi_state = NULL;
  1113. free_pi_state(pi_state);
  1114. goto out_unlock;
  1115. }
  1116. }
  1117. requeue_futex(this, hb1, hb2, &key2);
  1118. drop_count++;
  1119. }
  1120. out_unlock:
  1121. double_unlock_hb(hb1, hb2);
  1122. /*
  1123. * drop_futex_key_refs() must be called outside the spinlocks. During
  1124. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1125. * one at key2 and updated their key pointer. We no longer need to
  1126. * hold the references to key1.
  1127. */
  1128. while (--drop_count >= 0)
  1129. drop_futex_key_refs(&key1);
  1130. out_put_keys:
  1131. put_futex_key(fshared, &key2);
  1132. out_put_key1:
  1133. put_futex_key(fshared, &key1);
  1134. out:
  1135. if (pi_state != NULL)
  1136. free_pi_state(pi_state);
  1137. return ret ? ret : task_count;
  1138. }
  1139. /* The key must be already stored in q->key. */
  1140. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1141. {
  1142. struct futex_hash_bucket *hb;
  1143. get_futex_key_refs(&q->key);
  1144. hb = hash_futex(&q->key);
  1145. q->lock_ptr = &hb->lock;
  1146. spin_lock(&hb->lock);
  1147. return hb;
  1148. }
  1149. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1150. {
  1151. int prio;
  1152. /*
  1153. * The priority used to register this element is
  1154. * - either the real thread-priority for the real-time threads
  1155. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1156. * - or MAX_RT_PRIO for non-RT threads.
  1157. * Thus, all RT-threads are woken first in priority order, and
  1158. * the others are woken last, in FIFO order.
  1159. */
  1160. prio = min(current->normal_prio, MAX_RT_PRIO);
  1161. plist_node_init(&q->list, prio);
  1162. #ifdef CONFIG_DEBUG_PI_LIST
  1163. q->list.plist.lock = &hb->lock;
  1164. #endif
  1165. plist_add(&q->list, &hb->chain);
  1166. q->task = current;
  1167. spin_unlock(&hb->lock);
  1168. }
  1169. static inline void
  1170. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  1171. {
  1172. spin_unlock(&hb->lock);
  1173. drop_futex_key_refs(&q->key);
  1174. }
  1175. /*
  1176. * queue_me and unqueue_me must be called as a pair, each
  1177. * exactly once. They are called with the hashed spinlock held.
  1178. */
  1179. /* Return 1 if we were still queued (ie. 0 means we were woken) */
  1180. static int unqueue_me(struct futex_q *q)
  1181. {
  1182. spinlock_t *lock_ptr;
  1183. int ret = 0;
  1184. /* In the common case we don't take the spinlock, which is nice. */
  1185. retry:
  1186. lock_ptr = q->lock_ptr;
  1187. barrier();
  1188. if (lock_ptr != NULL) {
  1189. spin_lock(lock_ptr);
  1190. /*
  1191. * q->lock_ptr can change between reading it and
  1192. * spin_lock(), causing us to take the wrong lock. This
  1193. * corrects the race condition.
  1194. *
  1195. * Reasoning goes like this: if we have the wrong lock,
  1196. * q->lock_ptr must have changed (maybe several times)
  1197. * between reading it and the spin_lock(). It can
  1198. * change again after the spin_lock() but only if it was
  1199. * already changed before the spin_lock(). It cannot,
  1200. * however, change back to the original value. Therefore
  1201. * we can detect whether we acquired the correct lock.
  1202. */
  1203. if (unlikely(lock_ptr != q->lock_ptr)) {
  1204. spin_unlock(lock_ptr);
  1205. goto retry;
  1206. }
  1207. WARN_ON(plist_node_empty(&q->list));
  1208. plist_del(&q->list, &q->list.plist);
  1209. BUG_ON(q->pi_state);
  1210. spin_unlock(lock_ptr);
  1211. ret = 1;
  1212. }
  1213. drop_futex_key_refs(&q->key);
  1214. return ret;
  1215. }
  1216. /*
  1217. * PI futexes can not be requeued and must remove themself from the
  1218. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1219. * and dropped here.
  1220. */
  1221. static void unqueue_me_pi(struct futex_q *q)
  1222. {
  1223. WARN_ON(plist_node_empty(&q->list));
  1224. plist_del(&q->list, &q->list.plist);
  1225. BUG_ON(!q->pi_state);
  1226. free_pi_state(q->pi_state);
  1227. q->pi_state = NULL;
  1228. spin_unlock(q->lock_ptr);
  1229. drop_futex_key_refs(&q->key);
  1230. }
  1231. /*
  1232. * Fixup the pi_state owner with the new owner.
  1233. *
  1234. * Must be called with hash bucket lock held and mm->sem held for non
  1235. * private futexes.
  1236. */
  1237. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1238. struct task_struct *newowner, int fshared)
  1239. {
  1240. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1241. struct futex_pi_state *pi_state = q->pi_state;
  1242. struct task_struct *oldowner = pi_state->owner;
  1243. u32 uval, curval, newval;
  1244. int ret;
  1245. /* Owner died? */
  1246. if (!pi_state->owner)
  1247. newtid |= FUTEX_OWNER_DIED;
  1248. /*
  1249. * We are here either because we stole the rtmutex from the
  1250. * pending owner or we are the pending owner which failed to
  1251. * get the rtmutex. We have to replace the pending owner TID
  1252. * in the user space variable. This must be atomic as we have
  1253. * to preserve the owner died bit here.
  1254. *
  1255. * Note: We write the user space value _before_ changing the pi_state
  1256. * because we can fault here. Imagine swapped out pages or a fork
  1257. * that marked all the anonymous memory readonly for cow.
  1258. *
  1259. * Modifying pi_state _before_ the user space value would
  1260. * leave the pi_state in an inconsistent state when we fault
  1261. * here, because we need to drop the hash bucket lock to
  1262. * handle the fault. This might be observed in the PID check
  1263. * in lookup_pi_state.
  1264. */
  1265. retry:
  1266. if (get_futex_value_locked(&uval, uaddr))
  1267. goto handle_fault;
  1268. while (1) {
  1269. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1270. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  1271. if (curval == -EFAULT)
  1272. goto handle_fault;
  1273. if (curval == uval)
  1274. break;
  1275. uval = curval;
  1276. }
  1277. /*
  1278. * We fixed up user space. Now we need to fix the pi_state
  1279. * itself.
  1280. */
  1281. if (pi_state->owner != NULL) {
  1282. spin_lock_irq(&pi_state->owner->pi_lock);
  1283. WARN_ON(list_empty(&pi_state->list));
  1284. list_del_init(&pi_state->list);
  1285. spin_unlock_irq(&pi_state->owner->pi_lock);
  1286. }
  1287. pi_state->owner = newowner;
  1288. spin_lock_irq(&newowner->pi_lock);
  1289. WARN_ON(!list_empty(&pi_state->list));
  1290. list_add(&pi_state->list, &newowner->pi_state_list);
  1291. spin_unlock_irq(&newowner->pi_lock);
  1292. return 0;
  1293. /*
  1294. * To handle the page fault we need to drop the hash bucket
  1295. * lock here. That gives the other task (either the pending
  1296. * owner itself or the task which stole the rtmutex) the
  1297. * chance to try the fixup of the pi_state. So once we are
  1298. * back from handling the fault we need to check the pi_state
  1299. * after reacquiring the hash bucket lock and before trying to
  1300. * do another fixup. When the fixup has been done already we
  1301. * simply return.
  1302. */
  1303. handle_fault:
  1304. spin_unlock(q->lock_ptr);
  1305. ret = fault_in_user_writeable(uaddr);
  1306. spin_lock(q->lock_ptr);
  1307. /*
  1308. * Check if someone else fixed it for us:
  1309. */
  1310. if (pi_state->owner != oldowner)
  1311. return 0;
  1312. if (ret)
  1313. return ret;
  1314. goto retry;
  1315. }
  1316. /*
  1317. * In case we must use restart_block to restart a futex_wait,
  1318. * we encode in the 'flags' shared capability
  1319. */
  1320. #define FLAGS_SHARED 0x01
  1321. #define FLAGS_CLOCKRT 0x02
  1322. #define FLAGS_HAS_TIMEOUT 0x04
  1323. static long futex_wait_restart(struct restart_block *restart);
  1324. /**
  1325. * fixup_owner() - Post lock pi_state and corner case management
  1326. * @uaddr: user address of the futex
  1327. * @fshared: whether the futex is shared (1) or not (0)
  1328. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1329. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1330. *
  1331. * After attempting to lock an rt_mutex, this function is called to cleanup
  1332. * the pi_state owner as well as handle race conditions that may allow us to
  1333. * acquire the lock. Must be called with the hb lock held.
  1334. *
  1335. * Returns:
  1336. * 1 - success, lock taken
  1337. * 0 - success, lock not taken
  1338. * <0 - on error (-EFAULT)
  1339. */
  1340. static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
  1341. int locked)
  1342. {
  1343. struct task_struct *owner;
  1344. int ret = 0;
  1345. if (locked) {
  1346. /*
  1347. * Got the lock. We might not be the anticipated owner if we
  1348. * did a lock-steal - fix up the PI-state in that case:
  1349. */
  1350. if (q->pi_state->owner != current)
  1351. ret = fixup_pi_state_owner(uaddr, q, current, fshared);
  1352. goto out;
  1353. }
  1354. /*
  1355. * Catch the rare case, where the lock was released when we were on the
  1356. * way back before we locked the hash bucket.
  1357. */
  1358. if (q->pi_state->owner == current) {
  1359. /*
  1360. * Try to get the rt_mutex now. This might fail as some other
  1361. * task acquired the rt_mutex after we removed ourself from the
  1362. * rt_mutex waiters list.
  1363. */
  1364. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1365. locked = 1;
  1366. goto out;
  1367. }
  1368. /*
  1369. * pi_state is incorrect, some other task did a lock steal and
  1370. * we returned due to timeout or signal without taking the
  1371. * rt_mutex. Too late. We can access the rt_mutex_owner without
  1372. * locking, as the other task is now blocked on the hash bucket
  1373. * lock. Fix the state up.
  1374. */
  1375. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1376. ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
  1377. goto out;
  1378. }
  1379. /*
  1380. * Paranoia check. If we did not take the lock, then we should not be
  1381. * the owner, nor the pending owner, of the rt_mutex.
  1382. */
  1383. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1384. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1385. "pi-state %p\n", ret,
  1386. q->pi_state->pi_mutex.owner,
  1387. q->pi_state->owner);
  1388. out:
  1389. return ret ? ret : locked;
  1390. }
  1391. /**
  1392. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1393. * @hb: the futex hash bucket, must be locked by the caller
  1394. * @q: the futex_q to queue up on
  1395. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1396. */
  1397. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1398. struct hrtimer_sleeper *timeout)
  1399. {
  1400. queue_me(q, hb);
  1401. /*
  1402. * There might have been scheduling since the queue_me(), as we
  1403. * cannot hold a spinlock across the get_user() in case it
  1404. * faults, and we cannot just set TASK_INTERRUPTIBLE state when
  1405. * queueing ourselves into the futex hash. This code thus has to
  1406. * rely on the futex_wake() code removing us from hash when it
  1407. * wakes us up.
  1408. */
  1409. set_current_state(TASK_INTERRUPTIBLE);
  1410. /* Arm the timer */
  1411. if (timeout) {
  1412. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1413. if (!hrtimer_active(&timeout->timer))
  1414. timeout->task = NULL;
  1415. }
  1416. /*
  1417. * !plist_node_empty() is safe here without any lock.
  1418. * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
  1419. */
  1420. if (likely(!plist_node_empty(&q->list))) {
  1421. /*
  1422. * If the timer has already expired, current will already be
  1423. * flagged for rescheduling. Only call schedule if there
  1424. * is no timeout, or if it has yet to expire.
  1425. */
  1426. if (!timeout || timeout->task)
  1427. schedule();
  1428. }
  1429. __set_current_state(TASK_RUNNING);
  1430. }
  1431. /**
  1432. * futex_wait_setup() - Prepare to wait on a futex
  1433. * @uaddr: the futex userspace address
  1434. * @val: the expected value
  1435. * @fshared: whether the futex is shared (1) or not (0)
  1436. * @q: the associated futex_q
  1437. * @hb: storage for hash_bucket pointer to be returned to caller
  1438. *
  1439. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  1440. * compare it with the expected value. Handle atomic faults internally.
  1441. * Return with the hb lock held and a q.key reference on success, and unlocked
  1442. * with no q.key reference on failure.
  1443. *
  1444. * Returns:
  1445. * 0 - uaddr contains val and hb has been locked
  1446. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
  1447. */
  1448. static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
  1449. struct futex_q *q, struct futex_hash_bucket **hb)
  1450. {
  1451. u32 uval;
  1452. int ret;
  1453. /*
  1454. * Access the page AFTER the hash-bucket is locked.
  1455. * Order is important:
  1456. *
  1457. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1458. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1459. *
  1460. * The basic logical guarantee of a futex is that it blocks ONLY
  1461. * if cond(var) is known to be true at the time of blocking, for
  1462. * any cond. If we queued after testing *uaddr, that would open
  1463. * a race condition where we could block indefinitely with
  1464. * cond(var) false, which would violate the guarantee.
  1465. *
  1466. * A consequence is that futex_wait() can return zero and absorb
  1467. * a wakeup when *uaddr != val on entry to the syscall. This is
  1468. * rare, but normal.
  1469. */
  1470. retry:
  1471. q->key = FUTEX_KEY_INIT;
  1472. ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
  1473. if (unlikely(ret != 0))
  1474. return ret;
  1475. retry_private:
  1476. *hb = queue_lock(q);
  1477. ret = get_futex_value_locked(&uval, uaddr);
  1478. if (ret) {
  1479. queue_unlock(q, *hb);
  1480. ret = get_user(uval, uaddr);
  1481. if (ret)
  1482. goto out;
  1483. if (!fshared)
  1484. goto retry_private;
  1485. put_futex_key(fshared, &q->key);
  1486. goto retry;
  1487. }
  1488. if (uval != val) {
  1489. queue_unlock(q, *hb);
  1490. ret = -EWOULDBLOCK;
  1491. }
  1492. out:
  1493. if (ret)
  1494. put_futex_key(fshared, &q->key);
  1495. return ret;
  1496. }
  1497. static int futex_wait(u32 __user *uaddr, int fshared,
  1498. u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
  1499. {
  1500. struct hrtimer_sleeper timeout, *to = NULL;
  1501. struct restart_block *restart;
  1502. struct futex_hash_bucket *hb;
  1503. struct futex_q q;
  1504. int ret;
  1505. if (!bitset)
  1506. return -EINVAL;
  1507. q.pi_state = NULL;
  1508. q.bitset = bitset;
  1509. q.rt_waiter = NULL;
  1510. q.requeue_pi_key = NULL;
  1511. if (abs_time) {
  1512. to = &timeout;
  1513. hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
  1514. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1515. hrtimer_init_sleeper(to, current);
  1516. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1517. current->timer_slack_ns);
  1518. }
  1519. /* Prepare to wait on uaddr. */
  1520. ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
  1521. if (ret)
  1522. goto out;
  1523. /* queue_me and wait for wakeup, timeout, or a signal. */
  1524. futex_wait_queue_me(hb, &q, to);
  1525. /* If we were woken (and unqueued), we succeeded, whatever. */
  1526. ret = 0;
  1527. if (!unqueue_me(&q))
  1528. goto out_put_key;
  1529. ret = -ETIMEDOUT;
  1530. if (to && !to->task)
  1531. goto out_put_key;
  1532. /*
  1533. * We expect signal_pending(current), but another thread may
  1534. * have handled it for us already.
  1535. */
  1536. ret = -ERESTARTSYS;
  1537. if (!abs_time)
  1538. goto out_put_key;
  1539. restart = &current_thread_info()->restart_block;
  1540. restart->fn = futex_wait_restart;
  1541. restart->futex.uaddr = (u32 *)uaddr;
  1542. restart->futex.val = val;
  1543. restart->futex.time = abs_time->tv64;
  1544. restart->futex.bitset = bitset;
  1545. restart->futex.flags = FLAGS_HAS_TIMEOUT;
  1546. if (fshared)
  1547. restart->futex.flags |= FLAGS_SHARED;
  1548. if (clockrt)
  1549. restart->futex.flags |= FLAGS_CLOCKRT;
  1550. ret = -ERESTART_RESTARTBLOCK;
  1551. out_put_key:
  1552. put_futex_key(fshared, &q.key);
  1553. out:
  1554. if (to) {
  1555. hrtimer_cancel(&to->timer);
  1556. destroy_hrtimer_on_stack(&to->timer);
  1557. }
  1558. return ret;
  1559. }
  1560. static long futex_wait_restart(struct restart_block *restart)
  1561. {
  1562. u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
  1563. int fshared = 0;
  1564. ktime_t t, *tp = NULL;
  1565. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  1566. t.tv64 = restart->futex.time;
  1567. tp = &t;
  1568. }
  1569. restart->fn = do_no_restart_syscall;
  1570. if (restart->futex.flags & FLAGS_SHARED)
  1571. fshared = 1;
  1572. return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
  1573. restart->futex.bitset,
  1574. restart->futex.flags & FLAGS_CLOCKRT);
  1575. }
  1576. /*
  1577. * Userspace tried a 0 -> TID atomic transition of the futex value
  1578. * and failed. The kernel side here does the whole locking operation:
  1579. * if there are waiters then it will block, it does PI, etc. (Due to
  1580. * races the kernel might see a 0 value of the futex too.)
  1581. */
  1582. static int futex_lock_pi(u32 __user *uaddr, int fshared,
  1583. int detect, ktime_t *time, int trylock)
  1584. {
  1585. struct hrtimer_sleeper timeout, *to = NULL;
  1586. struct futex_hash_bucket *hb;
  1587. struct futex_q q;
  1588. int res, ret;
  1589. if (refill_pi_state_cache())
  1590. return -ENOMEM;
  1591. if (time) {
  1592. to = &timeout;
  1593. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  1594. HRTIMER_MODE_ABS);
  1595. hrtimer_init_sleeper(to, current);
  1596. hrtimer_set_expires(&to->timer, *time);
  1597. }
  1598. q.pi_state = NULL;
  1599. q.rt_waiter = NULL;
  1600. q.requeue_pi_key = NULL;
  1601. retry:
  1602. q.key = FUTEX_KEY_INIT;
  1603. ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
  1604. if (unlikely(ret != 0))
  1605. goto out;
  1606. retry_private:
  1607. hb = queue_lock(&q);
  1608. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  1609. if (unlikely(ret)) {
  1610. switch (ret) {
  1611. case 1:
  1612. /* We got the lock. */
  1613. ret = 0;
  1614. goto out_unlock_put_key;
  1615. case -EFAULT:
  1616. goto uaddr_faulted;
  1617. case -EAGAIN:
  1618. /*
  1619. * Task is exiting and we just wait for the
  1620. * exit to complete.
  1621. */
  1622. queue_unlock(&q, hb);
  1623. put_futex_key(fshared, &q.key);
  1624. cond_resched();
  1625. goto retry;
  1626. default:
  1627. goto out_unlock_put_key;
  1628. }
  1629. }
  1630. /*
  1631. * Only actually queue now that the atomic ops are done:
  1632. */
  1633. queue_me(&q, hb);
  1634. WARN_ON(!q.pi_state);
  1635. /*
  1636. * Block on the PI mutex:
  1637. */
  1638. if (!trylock)
  1639. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1640. else {
  1641. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1642. /* Fixup the trylock return value: */
  1643. ret = ret ? 0 : -EWOULDBLOCK;
  1644. }
  1645. spin_lock(q.lock_ptr);
  1646. /*
  1647. * Fixup the pi_state owner and possibly acquire the lock if we
  1648. * haven't already.
  1649. */
  1650. res = fixup_owner(uaddr, fshared, &q, !ret);
  1651. /*
  1652. * If fixup_owner() returned an error, proprogate that. If it acquired
  1653. * the lock, clear our -ETIMEDOUT or -EINTR.
  1654. */
  1655. if (res)
  1656. ret = (res < 0) ? res : 0;
  1657. /*
  1658. * If fixup_owner() faulted and was unable to handle the fault, unlock
  1659. * it and return the fault to userspace.
  1660. */
  1661. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  1662. rt_mutex_unlock(&q.pi_state->pi_mutex);
  1663. /* Unqueue and drop the lock */
  1664. unqueue_me_pi(&q);
  1665. goto out;
  1666. out_unlock_put_key:
  1667. queue_unlock(&q, hb);
  1668. out_put_key:
  1669. put_futex_key(fshared, &q.key);
  1670. out:
  1671. if (to)
  1672. destroy_hrtimer_on_stack(&to->timer);
  1673. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  1674. uaddr_faulted:
  1675. queue_unlock(&q, hb);
  1676. ret = fault_in_user_writeable(uaddr);
  1677. if (ret)
  1678. goto out_put_key;
  1679. if (!fshared)
  1680. goto retry_private;
  1681. put_futex_key(fshared, &q.key);
  1682. goto retry;
  1683. }
  1684. /*
  1685. * Userspace attempted a TID -> 0 atomic transition, and failed.
  1686. * This is the in-kernel slowpath: we look up the PI state (if any),
  1687. * and do the rt-mutex unlock.
  1688. */
  1689. static int futex_unlock_pi(u32 __user *uaddr, int fshared)
  1690. {
  1691. struct futex_hash_bucket *hb;
  1692. struct futex_q *this, *next;
  1693. u32 uval;
  1694. struct plist_head *head;
  1695. union futex_key key = FUTEX_KEY_INIT;
  1696. int ret;
  1697. retry:
  1698. if (get_user(uval, uaddr))
  1699. return -EFAULT;
  1700. /*
  1701. * We release only a lock we actually own:
  1702. */
  1703. if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
  1704. return -EPERM;
  1705. ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
  1706. if (unlikely(ret != 0))
  1707. goto out;
  1708. hb = hash_futex(&key);
  1709. spin_lock(&hb->lock);
  1710. /*
  1711. * To avoid races, try to do the TID -> 0 atomic transition
  1712. * again. If it succeeds then we can return without waking
  1713. * anyone else up:
  1714. */
  1715. if (!(uval & FUTEX_OWNER_DIED))
  1716. uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
  1717. if (unlikely(uval == -EFAULT))
  1718. goto pi_faulted;
  1719. /*
  1720. * Rare case: we managed to release the lock atomically,
  1721. * no need to wake anyone else up:
  1722. */
  1723. if (unlikely(uval == task_pid_vnr(current)))
  1724. goto out_unlock;
  1725. /*
  1726. * Ok, other tasks may need to be woken up - check waiters
  1727. * and do the wakeup if necessary:
  1728. */
  1729. head = &hb->chain;
  1730. plist_for_each_entry_safe(this, next, head, list) {
  1731. if (!match_futex (&this->key, &key))
  1732. continue;
  1733. ret = wake_futex_pi(uaddr, uval, this);
  1734. /*
  1735. * The atomic access to the futex value
  1736. * generated a pagefault, so retry the
  1737. * user-access and the wakeup:
  1738. */
  1739. if (ret == -EFAULT)
  1740. goto pi_faulted;
  1741. goto out_unlock;
  1742. }
  1743. /*
  1744. * No waiters - kernel unlocks the futex:
  1745. */
  1746. if (!(uval & FUTEX_OWNER_DIED)) {
  1747. ret = unlock_futex_pi(uaddr, uval);
  1748. if (ret == -EFAULT)
  1749. goto pi_faulted;
  1750. }
  1751. out_unlock:
  1752. spin_unlock(&hb->lock);
  1753. put_futex_key(fshared, &key);
  1754. out:
  1755. return ret;
  1756. pi_faulted:
  1757. spin_unlock(&hb->lock);
  1758. put_futex_key(fshared, &key);
  1759. ret = fault_in_user_writeable(uaddr);
  1760. if (!ret)
  1761. goto retry;
  1762. return ret;
  1763. }
  1764. /**
  1765. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  1766. * @hb: the hash_bucket futex_q was original enqueued on
  1767. * @q: the futex_q woken while waiting to be requeued
  1768. * @key2: the futex_key of the requeue target futex
  1769. * @timeout: the timeout associated with the wait (NULL if none)
  1770. *
  1771. * Detect if the task was woken on the initial futex as opposed to the requeue
  1772. * target futex. If so, determine if it was a timeout or a signal that caused
  1773. * the wakeup and return the appropriate error code to the caller. Must be
  1774. * called with the hb lock held.
  1775. *
  1776. * Returns
  1777. * 0 - no early wakeup detected
  1778. * <0 - -ETIMEDOUT or -ERESTARTNOINTR
  1779. */
  1780. static inline
  1781. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  1782. struct futex_q *q, union futex_key *key2,
  1783. struct hrtimer_sleeper *timeout)
  1784. {
  1785. int ret = 0;
  1786. /*
  1787. * With the hb lock held, we avoid races while we process the wakeup.
  1788. * We only need to hold hb (and not hb2) to ensure atomicity as the
  1789. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  1790. * It can't be requeued from uaddr2 to something else since we don't
  1791. * support a PI aware source futex for requeue.
  1792. */
  1793. if (!match_futex(&q->key, key2)) {
  1794. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  1795. /*
  1796. * We were woken prior to requeue by a timeout or a signal.
  1797. * Unqueue the futex_q and determine which it was.
  1798. */
  1799. plist_del(&q->list, &q->list.plist);
  1800. drop_futex_key_refs(&q->key);
  1801. if (timeout && !timeout->task)
  1802. ret = -ETIMEDOUT;
  1803. else
  1804. ret = -ERESTARTNOINTR;
  1805. }
  1806. return ret;
  1807. }
  1808. /**
  1809. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  1810. * @uaddr: the futex we initialyl wait on (non-pi)
  1811. * @fshared: whether the futexes are shared (1) or not (0). They must be
  1812. * the same type, no requeueing from private to shared, etc.
  1813. * @val: the expected value of uaddr
  1814. * @abs_time: absolute timeout
  1815. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all.
  1816. * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
  1817. * @uaddr2: the pi futex we will take prior to returning to user-space
  1818. *
  1819. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  1820. * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
  1821. * complete the acquisition of the rt_mutex prior to returning to userspace.
  1822. * This ensures the rt_mutex maintains an owner when it has waiters; without
  1823. * one, the pi logic wouldn't know which task to boost/deboost, if there was a
  1824. * need to.
  1825. *
  1826. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  1827. * via the following:
  1828. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  1829. * 2) wakeup on uaddr2 after a requeue
  1830. * 3) signal
  1831. * 4) timeout
  1832. *
  1833. * If 3, cleanup and return -ERESTARTNOINTR.
  1834. *
  1835. * If 2, we may then block on trying to take the rt_mutex and return via:
  1836. * 5) successful lock
  1837. * 6) signal
  1838. * 7) timeout
  1839. * 8) other lock acquisition failure
  1840. *
  1841. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  1842. *
  1843. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  1844. *
  1845. * Returns:
  1846. * 0 - On success
  1847. * <0 - On error
  1848. */
  1849. static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
  1850. u32 val, ktime_t *abs_time, u32 bitset,
  1851. int clockrt, u32 __user *uaddr2)
  1852. {
  1853. struct hrtimer_sleeper timeout, *to = NULL;
  1854. struct rt_mutex_waiter rt_waiter;
  1855. struct rt_mutex *pi_mutex = NULL;
  1856. struct futex_hash_bucket *hb;
  1857. union futex_key key2;
  1858. struct futex_q q;
  1859. int res, ret;
  1860. if (!bitset)
  1861. return -EINVAL;
  1862. if (abs_time) {
  1863. to = &timeout;
  1864. hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
  1865. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1866. hrtimer_init_sleeper(to, current);
  1867. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1868. current->timer_slack_ns);
  1869. }
  1870. /*
  1871. * The waiter is allocated on our stack, manipulated by the requeue
  1872. * code while we sleep on uaddr.
  1873. */
  1874. debug_rt_mutex_init_waiter(&rt_waiter);
  1875. rt_waiter.task = NULL;
  1876. key2 = FUTEX_KEY_INIT;
  1877. ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
  1878. if (unlikely(ret != 0))
  1879. goto out;
  1880. q.pi_state = NULL;
  1881. q.bitset = bitset;
  1882. q.rt_waiter = &rt_waiter;
  1883. q.requeue_pi_key = &key2;
  1884. /* Prepare to wait on uaddr. */
  1885. ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
  1886. if (ret)
  1887. goto out_key2;
  1888. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  1889. futex_wait_queue_me(hb, &q, to);
  1890. spin_lock(&hb->lock);
  1891. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  1892. spin_unlock(&hb->lock);
  1893. if (ret)
  1894. goto out_put_keys;
  1895. /*
  1896. * In order for us to be here, we know our q.key == key2, and since
  1897. * we took the hb->lock above, we also know that futex_requeue() has
  1898. * completed and we no longer have to concern ourselves with a wakeup
  1899. * race with the atomic proxy lock acquition by the requeue code.
  1900. */
  1901. /* Check if the requeue code acquired the second futex for us. */
  1902. if (!q.rt_waiter) {
  1903. /*
  1904. * Got the lock. We might not be the anticipated owner if we
  1905. * did a lock-steal - fix up the PI-state in that case.
  1906. */
  1907. if (q.pi_state && (q.pi_state->owner != current)) {
  1908. spin_lock(q.lock_ptr);
  1909. ret = fixup_pi_state_owner(uaddr2, &q, current,
  1910. fshared);
  1911. spin_unlock(q.lock_ptr);
  1912. }
  1913. } else {
  1914. /*
  1915. * We have been woken up by futex_unlock_pi(), a timeout, or a
  1916. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  1917. * the pi_state.
  1918. */
  1919. WARN_ON(!&q.pi_state);
  1920. pi_mutex = &q.pi_state->pi_mutex;
  1921. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
  1922. debug_rt_mutex_free_waiter(&rt_waiter);
  1923. spin_lock(q.lock_ptr);
  1924. /*
  1925. * Fixup the pi_state owner and possibly acquire the lock if we
  1926. * haven't already.
  1927. */
  1928. res = fixup_owner(uaddr2, fshared, &q, !ret);
  1929. /*
  1930. * If fixup_owner() returned an error, proprogate that. If it
  1931. * acquired the lock, clear our -ETIMEDOUT or -EINTR.
  1932. */
  1933. if (res)
  1934. ret = (res < 0) ? res : 0;
  1935. /* Unqueue and drop the lock. */
  1936. unqueue_me_pi(&q);
  1937. }
  1938. /*
  1939. * If fixup_pi_state_owner() faulted and was unable to handle the
  1940. * fault, unlock the rt_mutex and return the fault to userspace.
  1941. */
  1942. if (ret == -EFAULT) {
  1943. if (rt_mutex_owner(pi_mutex) == current)
  1944. rt_mutex_unlock(pi_mutex);
  1945. } else if (ret == -EINTR) {
  1946. /*
  1947. * We've already been requeued, but cannot restart by calling
  1948. * futex_lock_pi() directly. We could restart this syscall, but
  1949. * it would detect that the user space "val" changed and return
  1950. * -EWOULDBLOCK. Save the overhead of the restart and return
  1951. * -EWOULDBLOCK directly.
  1952. */
  1953. ret = -EWOULDBLOCK;
  1954. }
  1955. out_put_keys:
  1956. put_futex_key(fshared, &q.key);
  1957. out_key2:
  1958. put_futex_key(fshared, &key2);
  1959. out:
  1960. if (to) {
  1961. hrtimer_cancel(&to->timer);
  1962. destroy_hrtimer_on_stack(&to->timer);
  1963. }
  1964. return ret;
  1965. }
  1966. /*
  1967. * Support for robust futexes: the kernel cleans up held futexes at
  1968. * thread exit time.
  1969. *
  1970. * Implementation: user-space maintains a per-thread list of locks it
  1971. * is holding. Upon do_exit(), the kernel carefully walks this list,
  1972. * and marks all locks that are owned by this thread with the
  1973. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  1974. * always manipulated with the lock held, so the list is private and
  1975. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  1976. * field, to allow the kernel to clean up if the thread dies after
  1977. * acquiring the lock, but just before it could have added itself to
  1978. * the list. There can only be one such pending lock.
  1979. */
  1980. /**
  1981. * sys_set_robust_list - set the robust-futex list head of a task
  1982. * @head: pointer to the list-head
  1983. * @len: length of the list-head, as userspace expects
  1984. */
  1985. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  1986. size_t, len)
  1987. {
  1988. if (!futex_cmpxchg_enabled)
  1989. return -ENOSYS;
  1990. /*
  1991. * The kernel knows only one size for now:
  1992. */
  1993. if (unlikely(len != sizeof(*head)))
  1994. return -EINVAL;
  1995. current->robust_list = head;
  1996. return 0;
  1997. }
  1998. /**
  1999. * sys_get_robust_list - get the robust-futex list head of a task
  2000. * @pid: pid of the process [zero for current task]
  2001. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2002. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2003. */
  2004. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2005. struct robust_list_head __user * __user *, head_ptr,
  2006. size_t __user *, len_ptr)
  2007. {
  2008. struct robust_list_head __user *head;
  2009. unsigned long ret;
  2010. const struct cred *cred = current_cred(), *pcred;
  2011. if (!futex_cmpxchg_enabled)
  2012. return -ENOSYS;
  2013. if (!pid)
  2014. head = current->robust_list;
  2015. else {
  2016. struct task_struct *p;
  2017. ret = -ESRCH;
  2018. rcu_read_lock();
  2019. p = find_task_by_vpid(pid);
  2020. if (!p)
  2021. goto err_unlock;
  2022. ret = -EPERM;
  2023. pcred = __task_cred(p);
  2024. if (cred->euid != pcred->euid &&
  2025. cred->euid != pcred->uid &&
  2026. !capable(CAP_SYS_PTRACE))
  2027. goto err_unlock;
  2028. head = p->robust_list;
  2029. rcu_read_unlock();
  2030. }
  2031. if (put_user(sizeof(*head), len_ptr))
  2032. return -EFAULT;
  2033. return put_user(head, head_ptr);
  2034. err_unlock:
  2035. rcu_read_unlock();
  2036. return ret;
  2037. }
  2038. /*
  2039. * Process a futex-list entry, check whether it's owned by the
  2040. * dying task, and do notification if so:
  2041. */
  2042. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2043. {
  2044. u32 uval, nval, mval;
  2045. retry:
  2046. if (get_user(uval, uaddr))
  2047. return -1;
  2048. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2049. /*
  2050. * Ok, this dying thread is truly holding a futex
  2051. * of interest. Set the OWNER_DIED bit atomically
  2052. * via cmpxchg, and if the value had FUTEX_WAITERS
  2053. * set, wake up a waiter (if any). (We have to do a
  2054. * futex_wake() even if OWNER_DIED is already set -
  2055. * to handle the rare but possible case of recursive
  2056. * thread-death.) The rest of the cleanup is done in
  2057. * userspace.
  2058. */
  2059. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2060. nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
  2061. if (nval == -EFAULT)
  2062. return -1;
  2063. if (nval != uval)
  2064. goto retry;
  2065. /*
  2066. * Wake robust non-PI futexes here. The wakeup of
  2067. * PI futexes happens in exit_pi_state():
  2068. */
  2069. if (!pi && (uval & FUTEX_WAITERS))
  2070. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2071. }
  2072. return 0;
  2073. }
  2074. /*
  2075. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2076. */
  2077. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2078. struct robust_list __user * __user *head,
  2079. int *pi)
  2080. {
  2081. unsigned long uentry;
  2082. if (get_user(uentry, (unsigned long __user *)head))
  2083. return -EFAULT;
  2084. *entry = (void __user *)(uentry & ~1UL);
  2085. *pi = uentry & 1;
  2086. return 0;
  2087. }
  2088. /*
  2089. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2090. * and mark any locks found there dead, and notify any waiters.
  2091. *
  2092. * We silently return on any sign of list-walking problem.
  2093. */
  2094. void exit_robust_list(struct task_struct *curr)
  2095. {
  2096. struct robust_list_head __user *head = curr->robust_list;
  2097. struct robust_list __user *entry, *next_entry, *pending;
  2098. unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
  2099. unsigned long futex_offset;
  2100. int rc;
  2101. if (!futex_cmpxchg_enabled)
  2102. return;
  2103. /*
  2104. * Fetch the list head (which was registered earlier, via
  2105. * sys_set_robust_list()):
  2106. */
  2107. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2108. return;
  2109. /*
  2110. * Fetch the relative futex offset:
  2111. */
  2112. if (get_user(futex_offset, &head->futex_offset))
  2113. return;
  2114. /*
  2115. * Fetch any possibly pending lock-add first, and handle it
  2116. * if it exists:
  2117. */
  2118. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2119. return;
  2120. next_entry = NULL; /* avoid warning with gcc */
  2121. while (entry != &head->list) {
  2122. /*
  2123. * Fetch the next entry in the list before calling
  2124. * handle_futex_death:
  2125. */
  2126. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2127. /*
  2128. * A pending lock might already be on the list, so
  2129. * don't process it twice:
  2130. */
  2131. if (entry != pending)
  2132. if (handle_futex_death((void __user *)entry + futex_offset,
  2133. curr, pi))
  2134. return;
  2135. if (rc)
  2136. return;
  2137. entry = next_entry;
  2138. pi = next_pi;
  2139. /*
  2140. * Avoid excessively long or circular lists:
  2141. */
  2142. if (!--limit)
  2143. break;
  2144. cond_resched();
  2145. }
  2146. if (pending)
  2147. handle_futex_death((void __user *)pending + futex_offset,
  2148. curr, pip);
  2149. }
  2150. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2151. u32 __user *uaddr2, u32 val2, u32 val3)
  2152. {
  2153. int clockrt, ret = -ENOSYS;
  2154. int cmd = op & FUTEX_CMD_MASK;
  2155. int fshared = 0;
  2156. if (!(op & FUTEX_PRIVATE_FLAG))
  2157. fshared = 1;
  2158. clockrt = op & FUTEX_CLOCK_REALTIME;
  2159. if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
  2160. return -ENOSYS;
  2161. switch (cmd) {
  2162. case FUTEX_WAIT:
  2163. val3 = FUTEX_BITSET_MATCH_ANY;
  2164. case FUTEX_WAIT_BITSET:
  2165. ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
  2166. break;
  2167. case FUTEX_WAKE:
  2168. val3 = FUTEX_BITSET_MATCH_ANY;
  2169. case FUTEX_WAKE_BITSET:
  2170. ret = futex_wake(uaddr, fshared, val, val3);
  2171. break;
  2172. case FUTEX_REQUEUE:
  2173. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
  2174. break;
  2175. case FUTEX_CMP_REQUEUE:
  2176. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
  2177. 0);
  2178. break;
  2179. case FUTEX_WAKE_OP:
  2180. ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
  2181. break;
  2182. case FUTEX_LOCK_PI:
  2183. if (futex_cmpxchg_enabled)
  2184. ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
  2185. break;
  2186. case FUTEX_UNLOCK_PI:
  2187. if (futex_cmpxchg_enabled)
  2188. ret = futex_unlock_pi(uaddr, fshared);
  2189. break;
  2190. case FUTEX_TRYLOCK_PI:
  2191. if (futex_cmpxchg_enabled)
  2192. ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
  2193. break;
  2194. case FUTEX_WAIT_REQUEUE_PI:
  2195. val3 = FUTEX_BITSET_MATCH_ANY;
  2196. ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
  2197. clockrt, uaddr2);
  2198. break;
  2199. case FUTEX_CMP_REQUEUE_PI:
  2200. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
  2201. 1);
  2202. break;
  2203. default:
  2204. ret = -ENOSYS;
  2205. }
  2206. return ret;
  2207. }
  2208. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2209. struct timespec __user *, utime, u32 __user *, uaddr2,
  2210. u32, val3)
  2211. {
  2212. struct timespec ts;
  2213. ktime_t t, *tp = NULL;
  2214. u32 val2 = 0;
  2215. int cmd = op & FUTEX_CMD_MASK;
  2216. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2217. cmd == FUTEX_WAIT_BITSET ||
  2218. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2219. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2220. return -EFAULT;
  2221. if (!timespec_valid(&ts))
  2222. return -EINVAL;
  2223. t = timespec_to_ktime(ts);
  2224. if (cmd == FUTEX_WAIT)
  2225. t = ktime_add_safe(ktime_get(), t);
  2226. tp = &t;
  2227. }
  2228. /*
  2229. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2230. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2231. */
  2232. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2233. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2234. val2 = (u32) (unsigned long) utime;
  2235. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2236. }
  2237. static int __init futex_init(void)
  2238. {
  2239. u32 curval;
  2240. int i;
  2241. /*
  2242. * This will fail and we want it. Some arch implementations do
  2243. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2244. * functionality. We want to know that before we call in any
  2245. * of the complex code paths. Also we want to prevent
  2246. * registration of robust lists in that case. NULL is
  2247. * guaranteed to fault and we get -EFAULT on functional
  2248. * implementation, the non functional ones will return
  2249. * -ENOSYS.
  2250. */
  2251. curval = cmpxchg_futex_value_locked(NULL, 0, 0);
  2252. if (curval == -EFAULT)
  2253. futex_cmpxchg_enabled = 1;
  2254. for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
  2255. plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
  2256. spin_lock_init(&futex_queues[i].lock);
  2257. }
  2258. return 0;
  2259. }
  2260. __initcall(futex_init);