e7xxx_edac.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568
  1. /*
  2. * Intel e7xxx Memory Controller kernel module
  3. * (C) 2003 Linux Networx (http://lnxi.com)
  4. * This file may be distributed under the terms of the
  5. * GNU General Public License.
  6. *
  7. * See "enum e7xxx_chips" below for supported chipsets
  8. *
  9. * Written by Thayne Harbaugh
  10. * Based on work by Dan Hollis <goemon at anime dot net> and others.
  11. * http://www.anime.net/~goemon/linux-ecc/
  12. *
  13. * Contributors:
  14. * Eric Biederman (Linux Networx)
  15. * Tom Zimmerman (Linux Networx)
  16. * Jim Garlick (Lawrence Livermore National Labs)
  17. * Dave Peterson (Lawrence Livermore National Labs)
  18. * That One Guy (Some other place)
  19. * Wang Zhenyu (intel.com)
  20. *
  21. * $Id: edac_e7xxx.c,v 1.5.2.9 2005/10/05 00:43:44 dsp_llnl Exp $
  22. *
  23. */
  24. #include <linux/module.h>
  25. #include <linux/init.h>
  26. #include <linux/pci.h>
  27. #include <linux/pci_ids.h>
  28. #include <linux/slab.h>
  29. #include <linux/edac.h>
  30. #include "edac_core.h"
  31. #define E7XXX_REVISION " Ver: 2.0.2 " __DATE__
  32. #define EDAC_MOD_STR "e7xxx_edac"
  33. #define e7xxx_printk(level, fmt, arg...) \
  34. edac_printk(level, "e7xxx", fmt, ##arg)
  35. #define e7xxx_mc_printk(mci, level, fmt, arg...) \
  36. edac_mc_chipset_printk(mci, level, "e7xxx", fmt, ##arg)
  37. #ifndef PCI_DEVICE_ID_INTEL_7205_0
  38. #define PCI_DEVICE_ID_INTEL_7205_0 0x255d
  39. #endif /* PCI_DEVICE_ID_INTEL_7205_0 */
  40. #ifndef PCI_DEVICE_ID_INTEL_7205_1_ERR
  41. #define PCI_DEVICE_ID_INTEL_7205_1_ERR 0x2551
  42. #endif /* PCI_DEVICE_ID_INTEL_7205_1_ERR */
  43. #ifndef PCI_DEVICE_ID_INTEL_7500_0
  44. #define PCI_DEVICE_ID_INTEL_7500_0 0x2540
  45. #endif /* PCI_DEVICE_ID_INTEL_7500_0 */
  46. #ifndef PCI_DEVICE_ID_INTEL_7500_1_ERR
  47. #define PCI_DEVICE_ID_INTEL_7500_1_ERR 0x2541
  48. #endif /* PCI_DEVICE_ID_INTEL_7500_1_ERR */
  49. #ifndef PCI_DEVICE_ID_INTEL_7501_0
  50. #define PCI_DEVICE_ID_INTEL_7501_0 0x254c
  51. #endif /* PCI_DEVICE_ID_INTEL_7501_0 */
  52. #ifndef PCI_DEVICE_ID_INTEL_7501_1_ERR
  53. #define PCI_DEVICE_ID_INTEL_7501_1_ERR 0x2541
  54. #endif /* PCI_DEVICE_ID_INTEL_7501_1_ERR */
  55. #ifndef PCI_DEVICE_ID_INTEL_7505_0
  56. #define PCI_DEVICE_ID_INTEL_7505_0 0x2550
  57. #endif /* PCI_DEVICE_ID_INTEL_7505_0 */
  58. #ifndef PCI_DEVICE_ID_INTEL_7505_1_ERR
  59. #define PCI_DEVICE_ID_INTEL_7505_1_ERR 0x2551
  60. #endif /* PCI_DEVICE_ID_INTEL_7505_1_ERR */
  61. #define E7XXX_NR_CSROWS 8 /* number of csrows */
  62. #define E7XXX_NR_DIMMS 8 /* FIXME - is this correct? */
  63. /* E7XXX register addresses - device 0 function 0 */
  64. #define E7XXX_DRB 0x60 /* DRAM row boundary register (8b) */
  65. #define E7XXX_DRA 0x70 /* DRAM row attribute register (8b) */
  66. /*
  67. * 31 Device width row 7 0=x8 1=x4
  68. * 27 Device width row 6
  69. * 23 Device width row 5
  70. * 19 Device width row 4
  71. * 15 Device width row 3
  72. * 11 Device width row 2
  73. * 7 Device width row 1
  74. * 3 Device width row 0
  75. */
  76. #define E7XXX_DRC 0x7C /* DRAM controller mode reg (32b) */
  77. /*
  78. * 22 Number channels 0=1,1=2
  79. * 19:18 DRB Granularity 32/64MB
  80. */
  81. #define E7XXX_TOLM 0xC4 /* DRAM top of low memory reg (16b) */
  82. #define E7XXX_REMAPBASE 0xC6 /* DRAM remap base address reg (16b) */
  83. #define E7XXX_REMAPLIMIT 0xC8 /* DRAM remap limit address reg (16b) */
  84. /* E7XXX register addresses - device 0 function 1 */
  85. #define E7XXX_DRAM_FERR 0x80 /* DRAM first error register (8b) */
  86. #define E7XXX_DRAM_NERR 0x82 /* DRAM next error register (8b) */
  87. #define E7XXX_DRAM_CELOG_ADD 0xA0 /* DRAM first correctable memory */
  88. /* error address register (32b) */
  89. /*
  90. * 31:28 Reserved
  91. * 27:6 CE address (4k block 33:12)
  92. * 5:0 Reserved
  93. */
  94. #define E7XXX_DRAM_UELOG_ADD 0xB0 /* DRAM first uncorrectable memory */
  95. /* error address register (32b) */
  96. /*
  97. * 31:28 Reserved
  98. * 27:6 CE address (4k block 33:12)
  99. * 5:0 Reserved
  100. */
  101. #define E7XXX_DRAM_CELOG_SYNDROME 0xD0 /* DRAM first correctable memory */
  102. /* error syndrome register (16b) */
  103. enum e7xxx_chips {
  104. E7500 = 0,
  105. E7501,
  106. E7505,
  107. E7205,
  108. };
  109. struct e7xxx_pvt {
  110. struct pci_dev *bridge_ck;
  111. u32 tolm;
  112. u32 remapbase;
  113. u32 remaplimit;
  114. const struct e7xxx_dev_info *dev_info;
  115. };
  116. struct e7xxx_dev_info {
  117. u16 err_dev;
  118. const char *ctl_name;
  119. };
  120. struct e7xxx_error_info {
  121. u8 dram_ferr;
  122. u8 dram_nerr;
  123. u32 dram_celog_add;
  124. u16 dram_celog_syndrome;
  125. u32 dram_uelog_add;
  126. };
  127. static const struct e7xxx_dev_info e7xxx_devs[] = {
  128. [E7500] = {
  129. .err_dev = PCI_DEVICE_ID_INTEL_7500_1_ERR,
  130. .ctl_name = "E7500"},
  131. [E7501] = {
  132. .err_dev = PCI_DEVICE_ID_INTEL_7501_1_ERR,
  133. .ctl_name = "E7501"},
  134. [E7505] = {
  135. .err_dev = PCI_DEVICE_ID_INTEL_7505_1_ERR,
  136. .ctl_name = "E7505"},
  137. [E7205] = {
  138. .err_dev = PCI_DEVICE_ID_INTEL_7205_1_ERR,
  139. .ctl_name = "E7205"},
  140. };
  141. /* FIXME - is this valid for both SECDED and S4ECD4ED? */
  142. static inline int e7xxx_find_channel(u16 syndrome)
  143. {
  144. debugf3("%s()\n", __func__);
  145. if ((syndrome & 0xff00) == 0)
  146. return 0;
  147. if ((syndrome & 0x00ff) == 0)
  148. return 1;
  149. if ((syndrome & 0xf000) == 0 || (syndrome & 0x0f00) == 0)
  150. return 0;
  151. return 1;
  152. }
  153. static unsigned long ctl_page_to_phys(struct mem_ctl_info *mci,
  154. unsigned long page)
  155. {
  156. u32 remap;
  157. struct e7xxx_pvt *pvt = (struct e7xxx_pvt *)mci->pvt_info;
  158. debugf3("%s()\n", __func__);
  159. if ((page < pvt->tolm) ||
  160. ((page >= 0x100000) && (page < pvt->remapbase)))
  161. return page;
  162. remap = (page - pvt->tolm) + pvt->remapbase;
  163. if (remap < pvt->remaplimit)
  164. return remap;
  165. e7xxx_printk(KERN_ERR, "Invalid page %lx - out of range\n", page);
  166. return pvt->tolm - 1;
  167. }
  168. static void process_ce(struct mem_ctl_info *mci, struct e7xxx_error_info *info)
  169. {
  170. u32 error_1b, page;
  171. u16 syndrome;
  172. int row;
  173. int channel;
  174. debugf3("%s()\n", __func__);
  175. /* read the error address */
  176. error_1b = info->dram_celog_add;
  177. /* FIXME - should use PAGE_SHIFT */
  178. page = error_1b >> 6; /* convert the address to 4k page */
  179. /* read the syndrome */
  180. syndrome = info->dram_celog_syndrome;
  181. /* FIXME - check for -1 */
  182. row = edac_mc_find_csrow_by_page(mci, page);
  183. /* convert syndrome to channel */
  184. channel = e7xxx_find_channel(syndrome);
  185. edac_mc_handle_ce(mci, page, 0, syndrome, row, channel, "e7xxx CE");
  186. }
  187. static void process_ce_no_info(struct mem_ctl_info *mci)
  188. {
  189. debugf3("%s()\n", __func__);
  190. edac_mc_handle_ce_no_info(mci, "e7xxx CE log register overflow");
  191. }
  192. static void process_ue(struct mem_ctl_info *mci, struct e7xxx_error_info *info)
  193. {
  194. u32 error_2b, block_page;
  195. int row;
  196. debugf3("%s()\n", __func__);
  197. /* read the error address */
  198. error_2b = info->dram_uelog_add;
  199. /* FIXME - should use PAGE_SHIFT */
  200. block_page = error_2b >> 6; /* convert to 4k address */
  201. row = edac_mc_find_csrow_by_page(mci, block_page);
  202. edac_mc_handle_ue(mci, block_page, 0, row, "e7xxx UE");
  203. }
  204. static void process_ue_no_info(struct mem_ctl_info *mci)
  205. {
  206. debugf3("%s()\n", __func__);
  207. edac_mc_handle_ue_no_info(mci, "e7xxx UE log register overflow");
  208. }
  209. static void e7xxx_get_error_info(struct mem_ctl_info *mci,
  210. struct e7xxx_error_info *info)
  211. {
  212. struct e7xxx_pvt *pvt;
  213. pvt = (struct e7xxx_pvt *)mci->pvt_info;
  214. pci_read_config_byte(pvt->bridge_ck, E7XXX_DRAM_FERR, &info->dram_ferr);
  215. pci_read_config_byte(pvt->bridge_ck, E7XXX_DRAM_NERR, &info->dram_nerr);
  216. if ((info->dram_ferr & 1) || (info->dram_nerr & 1)) {
  217. pci_read_config_dword(pvt->bridge_ck, E7XXX_DRAM_CELOG_ADD,
  218. &info->dram_celog_add);
  219. pci_read_config_word(pvt->bridge_ck,
  220. E7XXX_DRAM_CELOG_SYNDROME,
  221. &info->dram_celog_syndrome);
  222. }
  223. if ((info->dram_ferr & 2) || (info->dram_nerr & 2))
  224. pci_read_config_dword(pvt->bridge_ck, E7XXX_DRAM_UELOG_ADD,
  225. &info->dram_uelog_add);
  226. if (info->dram_ferr & 3)
  227. pci_write_bits8(pvt->bridge_ck, E7XXX_DRAM_FERR, 0x03, 0x03);
  228. if (info->dram_nerr & 3)
  229. pci_write_bits8(pvt->bridge_ck, E7XXX_DRAM_NERR, 0x03, 0x03);
  230. }
  231. static int e7xxx_process_error_info(struct mem_ctl_info *mci,
  232. struct e7xxx_error_info *info,
  233. int handle_errors)
  234. {
  235. int error_found;
  236. error_found = 0;
  237. /* decode and report errors */
  238. if (info->dram_ferr & 1) { /* check first error correctable */
  239. error_found = 1;
  240. if (handle_errors)
  241. process_ce(mci, info);
  242. }
  243. if (info->dram_ferr & 2) { /* check first error uncorrectable */
  244. error_found = 1;
  245. if (handle_errors)
  246. process_ue(mci, info);
  247. }
  248. if (info->dram_nerr & 1) { /* check next error correctable */
  249. error_found = 1;
  250. if (handle_errors) {
  251. if (info->dram_ferr & 1)
  252. process_ce_no_info(mci);
  253. else
  254. process_ce(mci, info);
  255. }
  256. }
  257. if (info->dram_nerr & 2) { /* check next error uncorrectable */
  258. error_found = 1;
  259. if (handle_errors) {
  260. if (info->dram_ferr & 2)
  261. process_ue_no_info(mci);
  262. else
  263. process_ue(mci, info);
  264. }
  265. }
  266. return error_found;
  267. }
  268. static void e7xxx_check(struct mem_ctl_info *mci)
  269. {
  270. struct e7xxx_error_info info;
  271. debugf3("%s()\n", __func__);
  272. e7xxx_get_error_info(mci, &info);
  273. e7xxx_process_error_info(mci, &info, 1);
  274. }
  275. /* Return 1 if dual channel mode is active. Else return 0. */
  276. static inline int dual_channel_active(u32 drc, int dev_idx)
  277. {
  278. return (dev_idx == E7501) ? ((drc >> 22) & 0x1) : 1;
  279. }
  280. /* Return DRB granularity (0=32mb, 1=64mb). */
  281. static inline int drb_granularity(u32 drc, int dev_idx)
  282. {
  283. /* only e7501 can be single channel */
  284. return (dev_idx == E7501) ? ((drc >> 18) & 0x3) : 1;
  285. }
  286. static void e7xxx_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev,
  287. int dev_idx, u32 drc)
  288. {
  289. unsigned long last_cumul_size;
  290. int index;
  291. u8 value;
  292. u32 dra, cumul_size;
  293. int drc_chan, drc_drbg, drc_ddim, mem_dev;
  294. struct csrow_info *csrow;
  295. pci_read_config_dword(pdev, E7XXX_DRA, &dra);
  296. drc_chan = dual_channel_active(drc, dev_idx);
  297. drc_drbg = drb_granularity(drc, dev_idx);
  298. drc_ddim = (drc >> 20) & 0x3;
  299. last_cumul_size = 0;
  300. /* The dram row boundary (DRB) reg values are boundary address
  301. * for each DRAM row with a granularity of 32 or 64MB (single/dual
  302. * channel operation). DRB regs are cumulative; therefore DRB7 will
  303. * contain the total memory contained in all eight rows.
  304. */
  305. for (index = 0; index < mci->nr_csrows; index++) {
  306. /* mem_dev 0=x8, 1=x4 */
  307. mem_dev = (dra >> (index * 4 + 3)) & 0x1;
  308. csrow = &mci->csrows[index];
  309. pci_read_config_byte(pdev, E7XXX_DRB + index, &value);
  310. /* convert a 64 or 32 MiB DRB to a page size. */
  311. cumul_size = value << (25 + drc_drbg - PAGE_SHIFT);
  312. debugf3("%s(): (%d) cumul_size 0x%x\n", __func__, index,
  313. cumul_size);
  314. if (cumul_size == last_cumul_size)
  315. continue; /* not populated */
  316. csrow->first_page = last_cumul_size;
  317. csrow->last_page = cumul_size - 1;
  318. csrow->nr_pages = cumul_size - last_cumul_size;
  319. last_cumul_size = cumul_size;
  320. csrow->grain = 1 << 12; /* 4KiB - resolution of CELOG */
  321. csrow->mtype = MEM_RDDR; /* only one type supported */
  322. csrow->dtype = mem_dev ? DEV_X4 : DEV_X8;
  323. /*
  324. * if single channel or x8 devices then SECDED
  325. * if dual channel and x4 then S4ECD4ED
  326. */
  327. if (drc_ddim) {
  328. if (drc_chan && mem_dev) {
  329. csrow->edac_mode = EDAC_S4ECD4ED;
  330. mci->edac_cap |= EDAC_FLAG_S4ECD4ED;
  331. } else {
  332. csrow->edac_mode = EDAC_SECDED;
  333. mci->edac_cap |= EDAC_FLAG_SECDED;
  334. }
  335. } else
  336. csrow->edac_mode = EDAC_NONE;
  337. }
  338. }
  339. static int e7xxx_probe1(struct pci_dev *pdev, int dev_idx)
  340. {
  341. u16 pci_data;
  342. struct mem_ctl_info *mci = NULL;
  343. struct e7xxx_pvt *pvt = NULL;
  344. u32 drc;
  345. int drc_chan;
  346. struct e7xxx_error_info discard;
  347. debugf0("%s(): mci\n", __func__);
  348. /* make sure error reporting method is sane */
  349. switch (edac_op_state) {
  350. case EDAC_OPSTATE_POLL:
  351. case EDAC_OPSTATE_NMI:
  352. break;
  353. default:
  354. edac_op_state = EDAC_OPSTATE_POLL;
  355. break;
  356. }
  357. pci_read_config_dword(pdev, E7XXX_DRC, &drc);
  358. drc_chan = dual_channel_active(drc, dev_idx);
  359. mci = edac_mc_alloc(sizeof(*pvt), E7XXX_NR_CSROWS, drc_chan + 1);
  360. if (mci == NULL)
  361. return -ENOMEM;
  362. debugf3("%s(): init mci\n", __func__);
  363. mci->mtype_cap = MEM_FLAG_RDDR;
  364. mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED |
  365. EDAC_FLAG_S4ECD4ED;
  366. /* FIXME - what if different memory types are in different csrows? */
  367. mci->mod_name = EDAC_MOD_STR;
  368. mci->mod_ver = E7XXX_REVISION;
  369. mci->dev = &pdev->dev;
  370. debugf3("%s(): init pvt\n", __func__);
  371. pvt = (struct e7xxx_pvt *)mci->pvt_info;
  372. pvt->dev_info = &e7xxx_devs[dev_idx];
  373. pvt->bridge_ck = pci_get_device(PCI_VENDOR_ID_INTEL,
  374. pvt->dev_info->err_dev, pvt->bridge_ck);
  375. if (!pvt->bridge_ck) {
  376. e7xxx_printk(KERN_ERR, "error reporting device not found:"
  377. "vendor %x device 0x%x (broken BIOS?)\n",
  378. PCI_VENDOR_ID_INTEL, e7xxx_devs[dev_idx].err_dev);
  379. goto fail0;
  380. }
  381. debugf3("%s(): more mci init\n", __func__);
  382. mci->ctl_name = pvt->dev_info->ctl_name;
  383. mci->dev_name = pci_name(pdev);
  384. mci->edac_check = e7xxx_check;
  385. mci->ctl_page_to_phys = ctl_page_to_phys;
  386. e7xxx_init_csrows(mci, pdev, dev_idx, drc);
  387. mci->edac_cap |= EDAC_FLAG_NONE;
  388. debugf3("%s(): tolm, remapbase, remaplimit\n", __func__);
  389. /* load the top of low memory, remap base, and remap limit vars */
  390. pci_read_config_word(pdev, E7XXX_TOLM, &pci_data);
  391. pvt->tolm = ((u32) pci_data) << 4;
  392. pci_read_config_word(pdev, E7XXX_REMAPBASE, &pci_data);
  393. pvt->remapbase = ((u32) pci_data) << 14;
  394. pci_read_config_word(pdev, E7XXX_REMAPLIMIT, &pci_data);
  395. pvt->remaplimit = ((u32) pci_data) << 14;
  396. e7xxx_printk(KERN_INFO,
  397. "tolm = %x, remapbase = %x, remaplimit = %x\n", pvt->tolm,
  398. pvt->remapbase, pvt->remaplimit);
  399. /* clear any pending errors, or initial state bits */
  400. e7xxx_get_error_info(mci, &discard);
  401. /* Here we assume that we will never see multiple instances of this
  402. * type of memory controller. The ID is therefore hardcoded to 0.
  403. */
  404. if (edac_mc_add_mc(mci, 0)) {
  405. debugf3("%s(): failed edac_mc_add_mc()\n", __func__);
  406. goto fail1;
  407. }
  408. /* get this far and it's successful */
  409. debugf3("%s(): success\n", __func__);
  410. return 0;
  411. fail1:
  412. pci_dev_put(pvt->bridge_ck);
  413. fail0:
  414. edac_mc_free(mci);
  415. return -ENODEV;
  416. }
  417. /* returns count (>= 0), or negative on error */
  418. static int __devinit e7xxx_init_one(struct pci_dev *pdev,
  419. const struct pci_device_id *ent)
  420. {
  421. debugf0("%s()\n", __func__);
  422. /* wake up and enable device */
  423. return pci_enable_device(pdev) ?
  424. -EIO : e7xxx_probe1(pdev, ent->driver_data);
  425. }
  426. static void __devexit e7xxx_remove_one(struct pci_dev *pdev)
  427. {
  428. struct mem_ctl_info *mci;
  429. struct e7xxx_pvt *pvt;
  430. debugf0("%s()\n", __func__);
  431. if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
  432. return;
  433. pvt = (struct e7xxx_pvt *)mci->pvt_info;
  434. pci_dev_put(pvt->bridge_ck);
  435. edac_mc_free(mci);
  436. }
  437. static const struct pci_device_id e7xxx_pci_tbl[] __devinitdata = {
  438. {
  439. PCI_VEND_DEV(INTEL, 7205_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  440. E7205},
  441. {
  442. PCI_VEND_DEV(INTEL, 7500_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  443. E7500},
  444. {
  445. PCI_VEND_DEV(INTEL, 7501_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  446. E7501},
  447. {
  448. PCI_VEND_DEV(INTEL, 7505_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  449. E7505},
  450. {
  451. 0,
  452. } /* 0 terminated list. */
  453. };
  454. MODULE_DEVICE_TABLE(pci, e7xxx_pci_tbl);
  455. static struct pci_driver e7xxx_driver = {
  456. .name = EDAC_MOD_STR,
  457. .probe = e7xxx_init_one,
  458. .remove = __devexit_p(e7xxx_remove_one),
  459. .id_table = e7xxx_pci_tbl,
  460. };
  461. static int __init e7xxx_init(void)
  462. {
  463. return pci_register_driver(&e7xxx_driver);
  464. }
  465. static void __exit e7xxx_exit(void)
  466. {
  467. pci_unregister_driver(&e7xxx_driver);
  468. }
  469. module_init(e7xxx_init);
  470. module_exit(e7xxx_exit);
  471. MODULE_LICENSE("GPL");
  472. MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
  473. "Based on.work by Dan Hollis et al");
  474. MODULE_DESCRIPTION("MC support for Intel e7xxx memory controllers");
  475. module_param(edac_op_state, int, 0444);
  476. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");