intelfbhw.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/config.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/errno.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/tty.h>
  27. #include <linux/slab.h>
  28. #include <linux/delay.h>
  29. #include <linux/fb.h>
  30. #include <linux/ioport.h>
  31. #include <linux/init.h>
  32. #include <linux/pci.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/pagemap.h>
  35. #include <asm/io.h>
  36. #include "intelfb.h"
  37. #include "intelfbhw.h"
  38. struct pll_min_max {
  39. int min_m, max_m;
  40. int min_m1, max_m1;
  41. int min_m2, max_m2;
  42. int min_n, max_n;
  43. int min_p, max_p;
  44. int min_p1, max_p1;
  45. int min_vco_freq, max_vco_freq;
  46. int p_transition_clock;
  47. };
  48. #define PLLS_I8xx 0
  49. #define PLLS_I9xx 1
  50. #define PLLS_MAX 2
  51. struct pll_min_max plls[PLLS_MAX] = {
  52. { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000 }, //I8xx
  53. { 75, 120, 10, 20, 5, 9, 4, 7, 5, 80, 1, 8, 930000, 2800000, 200000 } //I9xx
  54. };
  55. int
  56. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  57. {
  58. u32 tmp;
  59. if (!pdev || !dinfo)
  60. return 1;
  61. switch (pdev->device) {
  62. case PCI_DEVICE_ID_INTEL_830M:
  63. dinfo->name = "Intel(R) 830M";
  64. dinfo->chipset = INTEL_830M;
  65. dinfo->mobile = 1;
  66. dinfo->pll_index = PLLS_I8xx;
  67. return 0;
  68. case PCI_DEVICE_ID_INTEL_845G:
  69. dinfo->name = "Intel(R) 845G";
  70. dinfo->chipset = INTEL_845G;
  71. dinfo->mobile = 0;
  72. dinfo->pll_index = PLLS_I8xx;
  73. return 0;
  74. case PCI_DEVICE_ID_INTEL_85XGM:
  75. tmp = 0;
  76. dinfo->mobile = 1;
  77. dinfo->pll_index = PLLS_I8xx;
  78. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  79. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  80. INTEL_85X_VARIANT_MASK) {
  81. case INTEL_VAR_855GME:
  82. dinfo->name = "Intel(R) 855GME";
  83. dinfo->chipset = INTEL_855GME;
  84. return 0;
  85. case INTEL_VAR_855GM:
  86. dinfo->name = "Intel(R) 855GM";
  87. dinfo->chipset = INTEL_855GM;
  88. return 0;
  89. case INTEL_VAR_852GME:
  90. dinfo->name = "Intel(R) 852GME";
  91. dinfo->chipset = INTEL_852GME;
  92. return 0;
  93. case INTEL_VAR_852GM:
  94. dinfo->name = "Intel(R) 852GM";
  95. dinfo->chipset = INTEL_852GM;
  96. return 0;
  97. default:
  98. dinfo->name = "Intel(R) 852GM/855GM";
  99. dinfo->chipset = INTEL_85XGM;
  100. return 0;
  101. }
  102. break;
  103. case PCI_DEVICE_ID_INTEL_865G:
  104. dinfo->name = "Intel(R) 865G";
  105. dinfo->chipset = INTEL_865G;
  106. dinfo->mobile = 0;
  107. dinfo->pll_index = PLLS_I8xx;
  108. return 0;
  109. case PCI_DEVICE_ID_INTEL_915G:
  110. dinfo->name = "Intel(R) 915G";
  111. dinfo->chipset = INTEL_915G;
  112. dinfo->mobile = 0;
  113. dinfo->pll_index = PLLS_I9xx;
  114. return 0;
  115. case PCI_DEVICE_ID_INTEL_915GM:
  116. dinfo->name = "Intel(R) 915GM";
  117. dinfo->chipset = INTEL_915GM;
  118. dinfo->mobile = 1;
  119. dinfo->pll_index = PLLS_I9xx;
  120. return 0;
  121. default:
  122. return 1;
  123. }
  124. }
  125. int
  126. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  127. int *stolen_size)
  128. {
  129. struct pci_dev *bridge_dev;
  130. u16 tmp;
  131. if (!pdev || !aperture_size || !stolen_size)
  132. return 1;
  133. /* Find the bridge device. It is always 0:0.0 */
  134. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  135. ERR_MSG("cannot find bridge device\n");
  136. return 1;
  137. }
  138. /* Get the fb aperture size and "stolen" memory amount. */
  139. tmp = 0;
  140. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  141. switch (pdev->device) {
  142. case PCI_DEVICE_ID_INTEL_830M:
  143. case PCI_DEVICE_ID_INTEL_845G:
  144. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  145. *aperture_size = MB(64);
  146. else
  147. *aperture_size = MB(128);
  148. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  149. case INTEL_830_GMCH_GMS_STOLEN_512:
  150. *stolen_size = KB(512) - KB(132);
  151. return 0;
  152. case INTEL_830_GMCH_GMS_STOLEN_1024:
  153. *stolen_size = MB(1) - KB(132);
  154. return 0;
  155. case INTEL_830_GMCH_GMS_STOLEN_8192:
  156. *stolen_size = MB(8) - KB(132);
  157. return 0;
  158. case INTEL_830_GMCH_GMS_LOCAL:
  159. ERR_MSG("only local memory found\n");
  160. return 1;
  161. case INTEL_830_GMCH_GMS_DISABLED:
  162. ERR_MSG("video memory is disabled\n");
  163. return 1;
  164. default:
  165. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  166. tmp & INTEL_830_GMCH_GMS_MASK);
  167. return 1;
  168. }
  169. break;
  170. default:
  171. *aperture_size = MB(128);
  172. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  173. case INTEL_855_GMCH_GMS_STOLEN_1M:
  174. *stolen_size = MB(1) - KB(132);
  175. return 0;
  176. case INTEL_855_GMCH_GMS_STOLEN_4M:
  177. *stolen_size = MB(4) - KB(132);
  178. return 0;
  179. case INTEL_855_GMCH_GMS_STOLEN_8M:
  180. *stolen_size = MB(8) - KB(132);
  181. return 0;
  182. case INTEL_855_GMCH_GMS_STOLEN_16M:
  183. *stolen_size = MB(16) - KB(132);
  184. return 0;
  185. case INTEL_855_GMCH_GMS_STOLEN_32M:
  186. *stolen_size = MB(32) - KB(132);
  187. return 0;
  188. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  189. *stolen_size = MB(48) - KB(132);
  190. return 0;
  191. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  192. *stolen_size = MB(64) - KB(132);
  193. return 0;
  194. case INTEL_855_GMCH_GMS_DISABLED:
  195. ERR_MSG("video memory is disabled\n");
  196. return 0;
  197. default:
  198. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  199. tmp & INTEL_855_GMCH_GMS_MASK);
  200. return 1;
  201. }
  202. }
  203. }
  204. int
  205. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  206. {
  207. int dvo = 0;
  208. if (INREG(LVDS) & PORT_ENABLE)
  209. dvo |= LVDS_PORT;
  210. if (INREG(DVOA) & PORT_ENABLE)
  211. dvo |= DVOA_PORT;
  212. if (INREG(DVOB) & PORT_ENABLE)
  213. dvo |= DVOB_PORT;
  214. if (INREG(DVOC) & PORT_ENABLE)
  215. dvo |= DVOC_PORT;
  216. return dvo;
  217. }
  218. const char *
  219. intelfbhw_dvo_to_string(int dvo)
  220. {
  221. if (dvo & DVOA_PORT)
  222. return "DVO port A";
  223. else if (dvo & DVOB_PORT)
  224. return "DVO port B";
  225. else if (dvo & DVOC_PORT)
  226. return "DVO port C";
  227. else if (dvo & LVDS_PORT)
  228. return "LVDS port";
  229. else
  230. return NULL;
  231. }
  232. int
  233. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  234. struct fb_var_screeninfo *var)
  235. {
  236. int bytes_per_pixel;
  237. int tmp;
  238. #if VERBOSE > 0
  239. DBG_MSG("intelfbhw_validate_mode\n");
  240. #endif
  241. bytes_per_pixel = var->bits_per_pixel / 8;
  242. if (bytes_per_pixel == 3)
  243. bytes_per_pixel = 4;
  244. /* Check if enough video memory. */
  245. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  246. if (tmp > dinfo->fb.size) {
  247. WRN_MSG("Not enough video ram for mode "
  248. "(%d KByte vs %d KByte).\n",
  249. BtoKB(tmp), BtoKB(dinfo->fb.size));
  250. return 1;
  251. }
  252. /* Check if x/y limits are OK. */
  253. if (var->xres - 1 > HACTIVE_MASK) {
  254. WRN_MSG("X resolution too large (%d vs %d).\n",
  255. var->xres, HACTIVE_MASK + 1);
  256. return 1;
  257. }
  258. if (var->yres - 1 > VACTIVE_MASK) {
  259. WRN_MSG("Y resolution too large (%d vs %d).\n",
  260. var->yres, VACTIVE_MASK + 1);
  261. return 1;
  262. }
  263. /* Check for interlaced/doublescan modes. */
  264. if (var->vmode & FB_VMODE_INTERLACED) {
  265. WRN_MSG("Mode is interlaced.\n");
  266. return 1;
  267. }
  268. if (var->vmode & FB_VMODE_DOUBLE) {
  269. WRN_MSG("Mode is double-scan.\n");
  270. return 1;
  271. }
  272. /* Check if clock is OK. */
  273. tmp = 1000000000 / var->pixclock;
  274. if (tmp < MIN_CLOCK) {
  275. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  276. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  277. return 1;
  278. }
  279. if (tmp > MAX_CLOCK) {
  280. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  281. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  282. return 1;
  283. }
  284. return 0;
  285. }
  286. int
  287. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  288. {
  289. struct intelfb_info *dinfo = GET_DINFO(info);
  290. u32 offset, xoffset, yoffset;
  291. #if VERBOSE > 0
  292. DBG_MSG("intelfbhw_pan_display\n");
  293. #endif
  294. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  295. yoffset = var->yoffset;
  296. if ((xoffset + var->xres > var->xres_virtual) ||
  297. (yoffset + var->yres > var->yres_virtual))
  298. return -EINVAL;
  299. offset = (yoffset * dinfo->pitch) +
  300. (xoffset * var->bits_per_pixel) / 8;
  301. offset += dinfo->fb.offset << 12;
  302. OUTREG(DSPABASE, offset);
  303. return 0;
  304. }
  305. /* Blank the screen. */
  306. void
  307. intelfbhw_do_blank(int blank, struct fb_info *info)
  308. {
  309. struct intelfb_info *dinfo = GET_DINFO(info);
  310. u32 tmp;
  311. #if VERBOSE > 0
  312. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  313. #endif
  314. /* Turn plane A on or off */
  315. tmp = INREG(DSPACNTR);
  316. if (blank)
  317. tmp &= ~DISPPLANE_PLANE_ENABLE;
  318. else
  319. tmp |= DISPPLANE_PLANE_ENABLE;
  320. OUTREG(DSPACNTR, tmp);
  321. /* Flush */
  322. tmp = INREG(DSPABASE);
  323. OUTREG(DSPABASE, tmp);
  324. /* Turn off/on the HW cursor */
  325. #if VERBOSE > 0
  326. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  327. #endif
  328. if (dinfo->cursor_on) {
  329. if (blank) {
  330. intelfbhw_cursor_hide(dinfo);
  331. } else {
  332. intelfbhw_cursor_show(dinfo);
  333. }
  334. dinfo->cursor_on = 1;
  335. }
  336. dinfo->cursor_blanked = blank;
  337. /* Set DPMS level */
  338. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  339. switch (blank) {
  340. case FB_BLANK_UNBLANK:
  341. case FB_BLANK_NORMAL:
  342. tmp |= ADPA_DPMS_D0;
  343. break;
  344. case FB_BLANK_VSYNC_SUSPEND:
  345. tmp |= ADPA_DPMS_D1;
  346. break;
  347. case FB_BLANK_HSYNC_SUSPEND:
  348. tmp |= ADPA_DPMS_D2;
  349. break;
  350. case FB_BLANK_POWERDOWN:
  351. tmp |= ADPA_DPMS_D3;
  352. break;
  353. }
  354. OUTREG(ADPA, tmp);
  355. return;
  356. }
  357. void
  358. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  359. unsigned red, unsigned green, unsigned blue,
  360. unsigned transp)
  361. {
  362. #if VERBOSE > 0
  363. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  364. regno, red, green, blue);
  365. #endif
  366. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  367. PALETTE_A : PALETTE_B;
  368. OUTREG(palette_reg + (regno << 2),
  369. (red << PALETTE_8_RED_SHIFT) |
  370. (green << PALETTE_8_GREEN_SHIFT) |
  371. (blue << PALETTE_8_BLUE_SHIFT));
  372. }
  373. int
  374. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  375. int flag)
  376. {
  377. int i;
  378. #if VERBOSE > 0
  379. DBG_MSG("intelfbhw_read_hw_state\n");
  380. #endif
  381. if (!hw || !dinfo)
  382. return -1;
  383. /* Read in as much of the HW state as possible. */
  384. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  385. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  386. hw->vga_pd = INREG(VGAPD);
  387. hw->dpll_a = INREG(DPLL_A);
  388. hw->dpll_b = INREG(DPLL_B);
  389. hw->fpa0 = INREG(FPA0);
  390. hw->fpa1 = INREG(FPA1);
  391. hw->fpb0 = INREG(FPB0);
  392. hw->fpb1 = INREG(FPB1);
  393. if (flag == 1)
  394. return flag;
  395. #if 0
  396. /* This seems to be a problem with the 852GM/855GM */
  397. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  398. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  399. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  400. }
  401. #endif
  402. if (flag == 2)
  403. return flag;
  404. hw->htotal_a = INREG(HTOTAL_A);
  405. hw->hblank_a = INREG(HBLANK_A);
  406. hw->hsync_a = INREG(HSYNC_A);
  407. hw->vtotal_a = INREG(VTOTAL_A);
  408. hw->vblank_a = INREG(VBLANK_A);
  409. hw->vsync_a = INREG(VSYNC_A);
  410. hw->src_size_a = INREG(SRC_SIZE_A);
  411. hw->bclrpat_a = INREG(BCLRPAT_A);
  412. hw->htotal_b = INREG(HTOTAL_B);
  413. hw->hblank_b = INREG(HBLANK_B);
  414. hw->hsync_b = INREG(HSYNC_B);
  415. hw->vtotal_b = INREG(VTOTAL_B);
  416. hw->vblank_b = INREG(VBLANK_B);
  417. hw->vsync_b = INREG(VSYNC_B);
  418. hw->src_size_b = INREG(SRC_SIZE_B);
  419. hw->bclrpat_b = INREG(BCLRPAT_B);
  420. if (flag == 3)
  421. return flag;
  422. hw->adpa = INREG(ADPA);
  423. hw->dvoa = INREG(DVOA);
  424. hw->dvob = INREG(DVOB);
  425. hw->dvoc = INREG(DVOC);
  426. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  427. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  428. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  429. hw->lvds = INREG(LVDS);
  430. if (flag == 4)
  431. return flag;
  432. hw->pipe_a_conf = INREG(PIPEACONF);
  433. hw->pipe_b_conf = INREG(PIPEBCONF);
  434. hw->disp_arb = INREG(DISPARB);
  435. if (flag == 5)
  436. return flag;
  437. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  438. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  439. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  440. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  441. if (flag == 6)
  442. return flag;
  443. for (i = 0; i < 4; i++) {
  444. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  445. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  446. }
  447. if (flag == 7)
  448. return flag;
  449. hw->cursor_size = INREG(CURSOR_SIZE);
  450. if (flag == 8)
  451. return flag;
  452. hw->disp_a_ctrl = INREG(DSPACNTR);
  453. hw->disp_b_ctrl = INREG(DSPBCNTR);
  454. hw->disp_a_base = INREG(DSPABASE);
  455. hw->disp_b_base = INREG(DSPBBASE);
  456. hw->disp_a_stride = INREG(DSPASTRIDE);
  457. hw->disp_b_stride = INREG(DSPBSTRIDE);
  458. if (flag == 9)
  459. return flag;
  460. hw->vgacntrl = INREG(VGACNTRL);
  461. if (flag == 10)
  462. return flag;
  463. hw->add_id = INREG(ADD_ID);
  464. if (flag == 11)
  465. return flag;
  466. for (i = 0; i < 7; i++) {
  467. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  468. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  469. if (i < 3)
  470. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  471. }
  472. for (i = 0; i < 8; i++)
  473. hw->fence[i] = INREG(FENCE + (i << 2));
  474. hw->instpm = INREG(INSTPM);
  475. hw->mem_mode = INREG(MEM_MODE);
  476. hw->fw_blc_0 = INREG(FW_BLC_0);
  477. hw->fw_blc_1 = INREG(FW_BLC_1);
  478. return 0;
  479. }
  480. static int calc_vclock3(int index, int m, int n, int p)
  481. {
  482. return PLL_REFCLK * m / n / p;
  483. }
  484. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
  485. {
  486. switch(index)
  487. {
  488. case PLLS_I9xx:
  489. return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  490. ((p1)) * (p2 ? 10 : 5)));
  491. case PLLS_I8xx:
  492. default:
  493. return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  494. ((p1+2) * (1 << (p2 + 1)))));
  495. }
  496. }
  497. void
  498. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  499. {
  500. #if REGDUMP
  501. int i, m1, m2, n, p1, p2;
  502. int index = dinfo->pll_index;
  503. DBG_MSG("intelfbhw_print_hw_state\n");
  504. if (!hw || !dinfo)
  505. return;
  506. /* Read in as much of the HW state as possible. */
  507. printk("hw state dump start\n");
  508. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  509. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  510. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  511. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  512. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  513. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  514. if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
  515. p1 = 0;
  516. else
  517. p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
  518. p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
  519. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  520. m1, m2, n, p1, p2);
  521. printk(" VGA0: clock is %d\n",
  522. calc_vclock(index, m1, m2, n, p1, p2));
  523. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  524. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  525. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  526. if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
  527. p1 = 0;
  528. else
  529. p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
  530. p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
  531. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  532. m1, m2, n, p1, p2);
  533. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  534. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  535. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  536. printk(" FPA0: 0x%08x\n", hw->fpa0);
  537. printk(" FPA1: 0x%08x\n", hw->fpa1);
  538. printk(" FPB0: 0x%08x\n", hw->fpb0);
  539. printk(" FPB1: 0x%08x\n", hw->fpb1);
  540. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  541. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  542. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  543. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  544. p1 = 0;
  545. else
  546. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  547. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  548. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  549. m1, m2, n, p1, p2);
  550. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  551. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  552. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  553. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  554. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  555. p1 = 0;
  556. else
  557. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  558. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  559. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  560. m1, m2, n, p1, p2);
  561. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  562. #if 0
  563. printk(" PALETTE_A:\n");
  564. for (i = 0; i < PALETTE_8_ENTRIES)
  565. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  566. printk(" PALETTE_B:\n");
  567. for (i = 0; i < PALETTE_8_ENTRIES)
  568. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  569. #endif
  570. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  571. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  572. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  573. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  574. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  575. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  576. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  577. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  578. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  579. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  580. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  581. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  582. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  583. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  584. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  585. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  586. printk(" ADPA: 0x%08x\n", hw->adpa);
  587. printk(" DVOA: 0x%08x\n", hw->dvoa);
  588. printk(" DVOB: 0x%08x\n", hw->dvob);
  589. printk(" DVOC: 0x%08x\n", hw->dvoc);
  590. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  591. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  592. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  593. printk(" LVDS: 0x%08x\n", hw->lvds);
  594. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  595. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  596. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  597. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  598. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  599. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  600. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  601. printk(" CURSOR_A_PALETTE: ");
  602. for (i = 0; i < 4; i++) {
  603. printk("0x%08x", hw->cursor_a_palette[i]);
  604. if (i < 3)
  605. printk(", ");
  606. }
  607. printk("\n");
  608. printk(" CURSOR_B_PALETTE: ");
  609. for (i = 0; i < 4; i++) {
  610. printk("0x%08x", hw->cursor_b_palette[i]);
  611. if (i < 3)
  612. printk(", ");
  613. }
  614. printk("\n");
  615. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  616. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  617. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  618. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  619. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  620. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  621. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  622. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  623. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  624. for (i = 0; i < 7; i++) {
  625. printk(" SWF0%d 0x%08x\n", i,
  626. hw->swf0x[i]);
  627. }
  628. for (i = 0; i < 7; i++) {
  629. printk(" SWF1%d 0x%08x\n", i,
  630. hw->swf1x[i]);
  631. }
  632. for (i = 0; i < 3; i++) {
  633. printk(" SWF3%d 0x%08x\n", i,
  634. hw->swf3x[i]);
  635. }
  636. for (i = 0; i < 8; i++)
  637. printk(" FENCE%d 0x%08x\n", i,
  638. hw->fence[i]);
  639. printk(" INSTPM 0x%08x\n", hw->instpm);
  640. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  641. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  642. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  643. printk("hw state dump end\n");
  644. #endif
  645. }
  646. /* Split the M parameter into M1 and M2. */
  647. static int
  648. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  649. {
  650. int m1, m2;
  651. int testm;
  652. /* no point optimising too much - brute force m */
  653. for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++)
  654. {
  655. for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++)
  656. {
  657. testm = ( 5 * ( m1 + 2 )) + (m2 + 2);
  658. if (testm == m)
  659. {
  660. *retm1 = (unsigned int)m1;
  661. *retm2 = (unsigned int)m2;
  662. return 0;
  663. }
  664. }
  665. }
  666. return 1;
  667. }
  668. /* Split the P parameter into P1 and P2. */
  669. static int
  670. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  671. {
  672. int p1, p2;
  673. if (index == PLLS_I9xx)
  674. {
  675. p1 = (p / 10) + 1;
  676. p2 = 0;
  677. *retp1 = (unsigned int)p1;
  678. *retp2 = (unsigned int)p2;
  679. return 0;
  680. }
  681. if (index == PLLS_I8xx)
  682. {
  683. if (p % 4 == 0)
  684. p2 = 1;
  685. else
  686. p2 = 0;
  687. p1 = (p / (1 << (p2 + 1))) - 2;
  688. if (p % 4 == 0 && p1 < plls[index].min_p1) {
  689. p2 = 0;
  690. p1 = (p / (1 << (p2 + 1))) - 2;
  691. }
  692. if (p1 < plls[index].min_p1 || p1 > plls[index].max_p1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
  693. return 1;
  694. } else {
  695. *retp1 = (unsigned int)p1;
  696. *retp2 = (unsigned int)p2;
  697. return 0;
  698. }
  699. }
  700. return 1;
  701. }
  702. static int
  703. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  704. u32 *retp2, u32 *retclock)
  705. {
  706. u32 m1, m2, n, p1, p2, n1;
  707. u32 f_vco, p, p_best = 0, m, f_out;
  708. u32 err_max, err_target, err_best = 10000000;
  709. u32 n_best = 0, m_best = 0, f_best, f_err;
  710. u32 p_min, p_max, p_inc, div_min, div_max;
  711. /* Accept 0.5% difference, but aim for 0.1% */
  712. err_max = 5 * clock / 1000;
  713. err_target = clock / 1000;
  714. DBG_MSG("Clock is %d\n", clock);
  715. div_max = plls[index].max_vco_freq / clock;
  716. div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
  717. if (clock <= plls[index].p_transition_clock)
  718. p_inc = 4;
  719. else
  720. p_inc = 2;
  721. p_min = ROUND_UP_TO(div_min, p_inc);
  722. p_max = ROUND_DOWN_TO(div_max, p_inc);
  723. if (p_min < plls[index].min_p)
  724. p_min = 4;
  725. if (p_max > plls[index].max_p)
  726. p_max = 128;
  727. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  728. p = p_min;
  729. do {
  730. if (splitp(index, p, &p1, &p2)) {
  731. WRN_MSG("cannot split p = %d\n", p);
  732. p += p_inc;
  733. continue;
  734. }
  735. n = plls[index].min_n;
  736. f_vco = clock * p;
  737. do {
  738. m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
  739. if (m < plls[index].min_m)
  740. m = plls[index].min_m;
  741. if (m > plls[index].max_m)
  742. m = plls[index].max_m;
  743. f_out = calc_vclock3(index, m, n, p);
  744. if (splitm(index, m, &m1, &m2)) {
  745. WRN_MSG("cannot split m = %d\n", m);
  746. n++;
  747. continue;
  748. }
  749. if (clock > f_out)
  750. f_err = clock - f_out;
  751. else
  752. f_err = f_out - clock;
  753. if (f_err < err_best) {
  754. m_best = m;
  755. n_best = n;
  756. p_best = p;
  757. f_best = f_out;
  758. err_best = f_err;
  759. }
  760. n++;
  761. } while ((n <= plls[index].max_n) && (f_out >= clock));
  762. p += p_inc;
  763. } while ((p <= p_max));
  764. if (!m_best) {
  765. WRN_MSG("cannot find parameters for clock %d\n", clock);
  766. return 1;
  767. }
  768. m = m_best;
  769. n = n_best;
  770. p = p_best;
  771. splitm(index, m, &m1, &m2);
  772. splitp(index, p, &p1, &p2);
  773. n1 = n - 2;
  774. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  775. "f: %d (%d), VCO: %d\n",
  776. m, m1, m2, n, n1, p, p1, p2,
  777. calc_vclock3(index, m, n, p),
  778. calc_vclock(index, m1, m2, n1, p1, p2),
  779. calc_vclock3(index, m, n, p) * p);
  780. *retm1 = m1;
  781. *retm2 = m2;
  782. *retn = n1;
  783. *retp1 = p1;
  784. *retp2 = p2;
  785. *retclock = calc_vclock(index, m1, m2, n1, p1, p2);
  786. return 0;
  787. }
  788. static __inline__ int
  789. check_overflow(u32 value, u32 limit, const char *description)
  790. {
  791. if (value > limit) {
  792. WRN_MSG("%s value %d exceeds limit %d\n",
  793. description, value, limit);
  794. return 1;
  795. }
  796. return 0;
  797. }
  798. /* It is assumed that hw is filled in with the initial state information. */
  799. int
  800. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  801. struct fb_var_screeninfo *var)
  802. {
  803. int pipe = PIPE_A;
  804. u32 *dpll, *fp0, *fp1;
  805. u32 m1, m2, n, p1, p2, clock_target, clock;
  806. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  807. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  808. u32 vsync_pol, hsync_pol;
  809. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  810. DBG_MSG("intelfbhw_mode_to_hw\n");
  811. /* Disable VGA */
  812. hw->vgacntrl |= VGA_DISABLE;
  813. /* Check whether pipe A or pipe B is enabled. */
  814. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  815. pipe = PIPE_A;
  816. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  817. pipe = PIPE_B;
  818. /* Set which pipe's registers will be set. */
  819. if (pipe == PIPE_B) {
  820. dpll = &hw->dpll_b;
  821. fp0 = &hw->fpb0;
  822. fp1 = &hw->fpb1;
  823. hs = &hw->hsync_b;
  824. hb = &hw->hblank_b;
  825. ht = &hw->htotal_b;
  826. vs = &hw->vsync_b;
  827. vb = &hw->vblank_b;
  828. vt = &hw->vtotal_b;
  829. ss = &hw->src_size_b;
  830. pipe_conf = &hw->pipe_b_conf;
  831. } else {
  832. dpll = &hw->dpll_a;
  833. fp0 = &hw->fpa0;
  834. fp1 = &hw->fpa1;
  835. hs = &hw->hsync_a;
  836. hb = &hw->hblank_a;
  837. ht = &hw->htotal_a;
  838. vs = &hw->vsync_a;
  839. vb = &hw->vblank_a;
  840. vt = &hw->vtotal_a;
  841. ss = &hw->src_size_a;
  842. pipe_conf = &hw->pipe_a_conf;
  843. }
  844. /* Use ADPA register for sync control. */
  845. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  846. /* sync polarity */
  847. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  848. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  849. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  850. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  851. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  852. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  853. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  854. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  855. /* Connect correct pipe to the analog port DAC */
  856. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  857. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  858. /* Set DPMS state to D0 (on) */
  859. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  860. hw->adpa |= ADPA_DPMS_D0;
  861. hw->adpa |= ADPA_DAC_ENABLE;
  862. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  863. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  864. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  865. /* Desired clock in kHz */
  866. clock_target = 1000000000 / var->pixclock;
  867. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
  868. WRN_MSG("calc_pll_params failed\n");
  869. return 1;
  870. }
  871. /* Check for overflow. */
  872. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  873. return 1;
  874. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  875. return 1;
  876. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  877. return 1;
  878. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  879. return 1;
  880. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  881. return 1;
  882. *dpll &= ~DPLL_P1_FORCE_DIV2;
  883. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  884. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  885. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  886. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  887. (m1 << FP_M1_DIVISOR_SHIFT) |
  888. (m2 << FP_M2_DIVISOR_SHIFT);
  889. *fp1 = *fp0;
  890. hw->dvob &= ~PORT_ENABLE;
  891. hw->dvoc &= ~PORT_ENABLE;
  892. /* Use display plane A. */
  893. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  894. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  895. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  896. switch (intelfb_var_to_depth(var)) {
  897. case 8:
  898. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  899. break;
  900. case 15:
  901. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  902. break;
  903. case 16:
  904. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  905. break;
  906. case 24:
  907. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  908. break;
  909. }
  910. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  911. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  912. /* Set CRTC registers. */
  913. hactive = var->xres;
  914. hsync_start = hactive + var->right_margin;
  915. hsync_end = hsync_start + var->hsync_len;
  916. htotal = hsync_end + var->left_margin;
  917. hblank_start = hactive;
  918. hblank_end = htotal;
  919. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  920. hactive, hsync_start, hsync_end, htotal, hblank_start,
  921. hblank_end);
  922. vactive = var->yres;
  923. vsync_start = vactive + var->lower_margin;
  924. vsync_end = vsync_start + var->vsync_len;
  925. vtotal = vsync_end + var->upper_margin;
  926. vblank_start = vactive;
  927. vblank_end = vtotal;
  928. vblank_end = vsync_end + 1;
  929. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  930. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  931. vblank_end);
  932. /* Adjust for register values, and check for overflow. */
  933. hactive--;
  934. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  935. return 1;
  936. hsync_start--;
  937. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  938. return 1;
  939. hsync_end--;
  940. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  941. return 1;
  942. htotal--;
  943. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  944. return 1;
  945. hblank_start--;
  946. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  947. return 1;
  948. hblank_end--;
  949. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  950. return 1;
  951. vactive--;
  952. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  953. return 1;
  954. vsync_start--;
  955. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  956. return 1;
  957. vsync_end--;
  958. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  959. return 1;
  960. vtotal--;
  961. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  962. return 1;
  963. vblank_start--;
  964. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  965. return 1;
  966. vblank_end--;
  967. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  968. return 1;
  969. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  970. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  971. (hblank_end << HSYNCEND_SHIFT);
  972. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  973. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  974. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  975. (vblank_end << VSYNCEND_SHIFT);
  976. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  977. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  978. (vactive << SRC_SIZE_VERT_SHIFT);
  979. hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
  980. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  981. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  982. var->xoffset * var->bits_per_pixel / 8;
  983. hw->disp_a_base += dinfo->fb.offset << 12;
  984. /* Check stride alignment. */
  985. if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
  986. WRN_MSG("display stride %d has bad alignment %d\n",
  987. hw->disp_a_stride, STRIDE_ALIGNMENT);
  988. return 1;
  989. }
  990. /* Set the palette to 8-bit mode. */
  991. *pipe_conf &= ~PIPECONF_GAMMA;
  992. return 0;
  993. }
  994. /* Program a (non-VGA) video mode. */
  995. int
  996. intelfbhw_program_mode(struct intelfb_info *dinfo,
  997. const struct intelfb_hwstate *hw, int blank)
  998. {
  999. int pipe = PIPE_A;
  1000. u32 tmp;
  1001. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1002. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1003. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1004. u32 hsync_reg, htotal_reg, hblank_reg;
  1005. u32 vsync_reg, vtotal_reg, vblank_reg;
  1006. u32 src_size_reg;
  1007. /* Assume single pipe, display plane A, analog CRT. */
  1008. #if VERBOSE > 0
  1009. DBG_MSG("intelfbhw_program_mode\n");
  1010. #endif
  1011. /* Disable VGA */
  1012. tmp = INREG(VGACNTRL);
  1013. tmp |= VGA_DISABLE;
  1014. OUTREG(VGACNTRL, tmp);
  1015. /* Check whether pipe A or pipe B is enabled. */
  1016. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1017. pipe = PIPE_A;
  1018. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1019. pipe = PIPE_B;
  1020. dinfo->pipe = pipe;
  1021. if (pipe == PIPE_B) {
  1022. dpll = &hw->dpll_b;
  1023. fp0 = &hw->fpb0;
  1024. fp1 = &hw->fpb1;
  1025. pipe_conf = &hw->pipe_b_conf;
  1026. hs = &hw->hsync_b;
  1027. hb = &hw->hblank_b;
  1028. ht = &hw->htotal_b;
  1029. vs = &hw->vsync_b;
  1030. vb = &hw->vblank_b;
  1031. vt = &hw->vtotal_b;
  1032. ss = &hw->src_size_b;
  1033. dpll_reg = DPLL_B;
  1034. fp0_reg = FPB0;
  1035. fp1_reg = FPB1;
  1036. pipe_conf_reg = PIPEBCONF;
  1037. hsync_reg = HSYNC_B;
  1038. htotal_reg = HTOTAL_B;
  1039. hblank_reg = HBLANK_B;
  1040. vsync_reg = VSYNC_B;
  1041. vtotal_reg = VTOTAL_B;
  1042. vblank_reg = VBLANK_B;
  1043. src_size_reg = SRC_SIZE_B;
  1044. } else {
  1045. dpll = &hw->dpll_a;
  1046. fp0 = &hw->fpa0;
  1047. fp1 = &hw->fpa1;
  1048. pipe_conf = &hw->pipe_a_conf;
  1049. hs = &hw->hsync_a;
  1050. hb = &hw->hblank_a;
  1051. ht = &hw->htotal_a;
  1052. vs = &hw->vsync_a;
  1053. vb = &hw->vblank_a;
  1054. vt = &hw->vtotal_a;
  1055. ss = &hw->src_size_a;
  1056. dpll_reg = DPLL_A;
  1057. fp0_reg = FPA0;
  1058. fp1_reg = FPA1;
  1059. pipe_conf_reg = PIPEACONF;
  1060. hsync_reg = HSYNC_A;
  1061. htotal_reg = HTOTAL_A;
  1062. hblank_reg = HBLANK_A;
  1063. vsync_reg = VSYNC_A;
  1064. vtotal_reg = VTOTAL_A;
  1065. vblank_reg = VBLANK_A;
  1066. src_size_reg = SRC_SIZE_A;
  1067. }
  1068. /* Disable planes A and B. */
  1069. tmp = INREG(DSPACNTR);
  1070. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1071. OUTREG(DSPACNTR, tmp);
  1072. tmp = INREG(DSPBCNTR);
  1073. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1074. OUTREG(DSPBCNTR, tmp);
  1075. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1076. mdelay(20);
  1077. /* Disable Sync */
  1078. tmp = INREG(ADPA);
  1079. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1080. tmp |= ADPA_DPMS_D3;
  1081. OUTREG(ADPA, tmp);
  1082. /* turn off pipe */
  1083. tmp = INREG(pipe_conf_reg);
  1084. tmp &= ~PIPECONF_ENABLE;
  1085. OUTREG(pipe_conf_reg, tmp);
  1086. /* turn off PLL */
  1087. tmp = INREG(dpll_reg);
  1088. dpll_reg &= ~DPLL_VCO_ENABLE;
  1089. OUTREG(dpll_reg, tmp);
  1090. /* Set PLL parameters */
  1091. OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
  1092. OUTREG(fp0_reg, *fp0);
  1093. OUTREG(fp1_reg, *fp1);
  1094. /* Set pipe parameters */
  1095. OUTREG(hsync_reg, *hs);
  1096. OUTREG(hblank_reg, *hb);
  1097. OUTREG(htotal_reg, *ht);
  1098. OUTREG(vsync_reg, *vs);
  1099. OUTREG(vblank_reg, *vb);
  1100. OUTREG(vtotal_reg, *vt);
  1101. OUTREG(src_size_reg, *ss);
  1102. /* Set DVOs B/C */
  1103. OUTREG(DVOB, hw->dvob);
  1104. OUTREG(DVOC, hw->dvoc);
  1105. /* Set ADPA */
  1106. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1107. /* Enable PLL */
  1108. tmp = INREG(dpll_reg);
  1109. tmp |= DPLL_VCO_ENABLE;
  1110. OUTREG(dpll_reg, tmp);
  1111. /* Enable pipe */
  1112. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1113. /* Enable sync */
  1114. tmp = INREG(ADPA);
  1115. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1116. tmp |= ADPA_DPMS_D0;
  1117. OUTREG(ADPA, tmp);
  1118. /* setup display plane */
  1119. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1120. /*
  1121. * i830M errata: the display plane must be enabled
  1122. * to allow writes to the other bits in the plane
  1123. * control register.
  1124. */
  1125. tmp = INREG(DSPACNTR);
  1126. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1127. tmp |= DISPPLANE_PLANE_ENABLE;
  1128. OUTREG(DSPACNTR, tmp);
  1129. OUTREG(DSPACNTR,
  1130. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1131. mdelay(1);
  1132. }
  1133. }
  1134. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1135. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1136. OUTREG(DSPABASE, hw->disp_a_base);
  1137. /* Enable plane */
  1138. if (!blank) {
  1139. tmp = INREG(DSPACNTR);
  1140. tmp |= DISPPLANE_PLANE_ENABLE;
  1141. OUTREG(DSPACNTR, tmp);
  1142. OUTREG(DSPABASE, hw->disp_a_base);
  1143. }
  1144. return 0;
  1145. }
  1146. /* forward declarations */
  1147. static void refresh_ring(struct intelfb_info *dinfo);
  1148. static void reset_state(struct intelfb_info *dinfo);
  1149. static void do_flush(struct intelfb_info *dinfo);
  1150. static int
  1151. wait_ring(struct intelfb_info *dinfo, int n)
  1152. {
  1153. int i = 0;
  1154. unsigned long end;
  1155. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1156. #if VERBOSE > 0
  1157. DBG_MSG("wait_ring: %d\n", n);
  1158. #endif
  1159. end = jiffies + (HZ * 3);
  1160. while (dinfo->ring_space < n) {
  1161. dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
  1162. RING_HEAD_MASK);
  1163. if (dinfo->ring_tail + RING_MIN_FREE <
  1164. (u32 __iomem) dinfo->ring_head)
  1165. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1166. - (dinfo->ring_tail + RING_MIN_FREE);
  1167. else
  1168. dinfo->ring_space = (dinfo->ring.size +
  1169. (u32 __iomem) dinfo->ring_head)
  1170. - (dinfo->ring_tail + RING_MIN_FREE);
  1171. if ((u32 __iomem) dinfo->ring_head != last_head) {
  1172. end = jiffies + (HZ * 3);
  1173. last_head = (u32 __iomem) dinfo->ring_head;
  1174. }
  1175. i++;
  1176. if (time_before(end, jiffies)) {
  1177. if (!i) {
  1178. /* Try again */
  1179. reset_state(dinfo);
  1180. refresh_ring(dinfo);
  1181. do_flush(dinfo);
  1182. end = jiffies + (HZ * 3);
  1183. i = 1;
  1184. } else {
  1185. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1186. dinfo->ring_space, n);
  1187. WRN_MSG("lockup - turning off hardware "
  1188. "acceleration\n");
  1189. dinfo->ring_lockup = 1;
  1190. break;
  1191. }
  1192. }
  1193. udelay(1);
  1194. }
  1195. return i;
  1196. }
  1197. static void
  1198. do_flush(struct intelfb_info *dinfo) {
  1199. START_RING(2);
  1200. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1201. OUT_RING(MI_NOOP);
  1202. ADVANCE_RING();
  1203. }
  1204. void
  1205. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1206. {
  1207. #if VERBOSE > 0
  1208. DBG_MSG("intelfbhw_do_sync\n");
  1209. #endif
  1210. if (!dinfo->accel)
  1211. return;
  1212. /*
  1213. * Send a flush, then wait until the ring is empty. This is what
  1214. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1215. * than the recommended method (both have problems).
  1216. */
  1217. do_flush(dinfo);
  1218. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1219. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1220. }
  1221. static void
  1222. refresh_ring(struct intelfb_info *dinfo)
  1223. {
  1224. #if VERBOSE > 0
  1225. DBG_MSG("refresh_ring\n");
  1226. #endif
  1227. dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
  1228. RING_HEAD_MASK);
  1229. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1230. if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
  1231. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1232. - (dinfo->ring_tail + RING_MIN_FREE);
  1233. else
  1234. dinfo->ring_space = (dinfo->ring.size +
  1235. (u32 __iomem) dinfo->ring_head)
  1236. - (dinfo->ring_tail + RING_MIN_FREE);
  1237. }
  1238. static void
  1239. reset_state(struct intelfb_info *dinfo)
  1240. {
  1241. int i;
  1242. u32 tmp;
  1243. #if VERBOSE > 0
  1244. DBG_MSG("reset_state\n");
  1245. #endif
  1246. for (i = 0; i < FENCE_NUM; i++)
  1247. OUTREG(FENCE + (i << 2), 0);
  1248. /* Flush the ring buffer if it's enabled. */
  1249. tmp = INREG(PRI_RING_LENGTH);
  1250. if (tmp & RING_ENABLE) {
  1251. #if VERBOSE > 0
  1252. DBG_MSG("reset_state: ring was enabled\n");
  1253. #endif
  1254. refresh_ring(dinfo);
  1255. intelfbhw_do_sync(dinfo);
  1256. DO_RING_IDLE();
  1257. }
  1258. OUTREG(PRI_RING_LENGTH, 0);
  1259. OUTREG(PRI_RING_HEAD, 0);
  1260. OUTREG(PRI_RING_TAIL, 0);
  1261. OUTREG(PRI_RING_START, 0);
  1262. }
  1263. /* Stop the 2D engine, and turn off the ring buffer. */
  1264. void
  1265. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1266. {
  1267. #if VERBOSE > 0
  1268. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1269. dinfo->ring_active);
  1270. #endif
  1271. if (!dinfo->accel)
  1272. return;
  1273. dinfo->ring_active = 0;
  1274. reset_state(dinfo);
  1275. }
  1276. /*
  1277. * Enable the ring buffer, and initialise the 2D engine.
  1278. * It is assumed that the graphics engine has been stopped by previously
  1279. * calling intelfb_2d_stop().
  1280. */
  1281. void
  1282. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1283. {
  1284. #if VERBOSE > 0
  1285. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1286. dinfo->accel, dinfo->ring_active);
  1287. #endif
  1288. if (!dinfo->accel)
  1289. return;
  1290. /* Initialise the primary ring buffer. */
  1291. OUTREG(PRI_RING_LENGTH, 0);
  1292. OUTREG(PRI_RING_TAIL, 0);
  1293. OUTREG(PRI_RING_HEAD, 0);
  1294. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1295. OUTREG(PRI_RING_LENGTH,
  1296. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1297. RING_NO_REPORT | RING_ENABLE);
  1298. refresh_ring(dinfo);
  1299. dinfo->ring_active = 1;
  1300. }
  1301. /* 2D fillrect (solid fill or invert) */
  1302. void
  1303. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1304. u32 color, u32 pitch, u32 bpp, u32 rop)
  1305. {
  1306. u32 br00, br09, br13, br14, br16;
  1307. #if VERBOSE > 0
  1308. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1309. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1310. #endif
  1311. br00 = COLOR_BLT_CMD;
  1312. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1313. br13 = (rop << ROP_SHIFT) | pitch;
  1314. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1315. br16 = color;
  1316. switch (bpp) {
  1317. case 8:
  1318. br13 |= COLOR_DEPTH_8;
  1319. break;
  1320. case 16:
  1321. br13 |= COLOR_DEPTH_16;
  1322. break;
  1323. case 32:
  1324. br13 |= COLOR_DEPTH_32;
  1325. br00 |= WRITE_ALPHA | WRITE_RGB;
  1326. break;
  1327. }
  1328. START_RING(6);
  1329. OUT_RING(br00);
  1330. OUT_RING(br13);
  1331. OUT_RING(br14);
  1332. OUT_RING(br09);
  1333. OUT_RING(br16);
  1334. OUT_RING(MI_NOOP);
  1335. ADVANCE_RING();
  1336. #if VERBOSE > 0
  1337. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1338. dinfo->ring_tail, dinfo->ring_space);
  1339. #endif
  1340. }
  1341. void
  1342. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1343. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1344. {
  1345. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1346. #if VERBOSE > 0
  1347. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1348. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1349. #endif
  1350. br00 = XY_SRC_COPY_BLT_CMD;
  1351. br09 = dinfo->fb_start;
  1352. br11 = (pitch << PITCH_SHIFT);
  1353. br12 = dinfo->fb_start;
  1354. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1355. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1356. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1357. ((dsty + h) << HEIGHT_SHIFT);
  1358. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1359. switch (bpp) {
  1360. case 8:
  1361. br13 |= COLOR_DEPTH_8;
  1362. break;
  1363. case 16:
  1364. br13 |= COLOR_DEPTH_16;
  1365. break;
  1366. case 32:
  1367. br13 |= COLOR_DEPTH_32;
  1368. br00 |= WRITE_ALPHA | WRITE_RGB;
  1369. break;
  1370. }
  1371. START_RING(8);
  1372. OUT_RING(br00);
  1373. OUT_RING(br13);
  1374. OUT_RING(br22);
  1375. OUT_RING(br23);
  1376. OUT_RING(br09);
  1377. OUT_RING(br26);
  1378. OUT_RING(br11);
  1379. OUT_RING(br12);
  1380. ADVANCE_RING();
  1381. }
  1382. int
  1383. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1384. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1385. {
  1386. int nbytes, ndwords, pad, tmp;
  1387. u32 br00, br09, br13, br18, br19, br22, br23;
  1388. int dat, ix, iy, iw;
  1389. int i, j;
  1390. #if VERBOSE > 0
  1391. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1392. #endif
  1393. /* size in bytes of a padded scanline */
  1394. nbytes = ROUND_UP_TO(w, 16) / 8;
  1395. /* Total bytes of padded scanline data to write out. */
  1396. nbytes = nbytes * h;
  1397. /*
  1398. * Check if the glyph data exceeds the immediate mode limit.
  1399. * It would take a large font (1K pixels) to hit this limit.
  1400. */
  1401. if (nbytes > MAX_MONO_IMM_SIZE)
  1402. return 0;
  1403. /* Src data is packaged a dword (32-bit) at a time. */
  1404. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1405. /*
  1406. * Ring has to be padded to a quad word. But because the command starts
  1407. with 7 bytes, pad only if there is an even number of ndwords
  1408. */
  1409. pad = !(ndwords % 2);
  1410. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1411. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1412. br09 = dinfo->fb_start;
  1413. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1414. br18 = bg;
  1415. br19 = fg;
  1416. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1417. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1418. switch (bpp) {
  1419. case 8:
  1420. br13 |= COLOR_DEPTH_8;
  1421. break;
  1422. case 16:
  1423. br13 |= COLOR_DEPTH_16;
  1424. break;
  1425. case 32:
  1426. br13 |= COLOR_DEPTH_32;
  1427. br00 |= WRITE_ALPHA | WRITE_RGB;
  1428. break;
  1429. }
  1430. START_RING(8 + ndwords);
  1431. OUT_RING(br00);
  1432. OUT_RING(br13);
  1433. OUT_RING(br22);
  1434. OUT_RING(br23);
  1435. OUT_RING(br09);
  1436. OUT_RING(br18);
  1437. OUT_RING(br19);
  1438. ix = iy = 0;
  1439. iw = ROUND_UP_TO(w, 8) / 8;
  1440. while (ndwords--) {
  1441. dat = 0;
  1442. for (j = 0; j < 2; ++j) {
  1443. for (i = 0; i < 2; ++i) {
  1444. if (ix != iw || i == 0)
  1445. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1446. }
  1447. if (ix == iw && iy != (h-1)) {
  1448. ix = 0;
  1449. ++iy;
  1450. }
  1451. }
  1452. OUT_RING(dat);
  1453. }
  1454. if (pad)
  1455. OUT_RING(MI_NOOP);
  1456. ADVANCE_RING();
  1457. return 1;
  1458. }
  1459. /* HW cursor functions. */
  1460. void
  1461. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1462. {
  1463. u32 tmp;
  1464. #if VERBOSE > 0
  1465. DBG_MSG("intelfbhw_cursor_init\n");
  1466. #endif
  1467. if (dinfo->mobile) {
  1468. if (!dinfo->cursor.physical)
  1469. return;
  1470. tmp = INREG(CURSOR_A_CONTROL);
  1471. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1472. CURSOR_MEM_TYPE_LOCAL |
  1473. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1474. tmp |= CURSOR_MODE_DISABLE;
  1475. OUTREG(CURSOR_A_CONTROL, tmp);
  1476. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1477. } else {
  1478. tmp = INREG(CURSOR_CONTROL);
  1479. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1480. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1481. tmp = CURSOR_FORMAT_3C;
  1482. OUTREG(CURSOR_CONTROL, tmp);
  1483. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1484. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1485. (64 << CURSOR_SIZE_V_SHIFT);
  1486. OUTREG(CURSOR_SIZE, tmp);
  1487. }
  1488. }
  1489. void
  1490. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1491. {
  1492. u32 tmp;
  1493. #if VERBOSE > 0
  1494. DBG_MSG("intelfbhw_cursor_hide\n");
  1495. #endif
  1496. dinfo->cursor_on = 0;
  1497. if (dinfo->mobile) {
  1498. if (!dinfo->cursor.physical)
  1499. return;
  1500. tmp = INREG(CURSOR_A_CONTROL);
  1501. tmp &= ~CURSOR_MODE_MASK;
  1502. tmp |= CURSOR_MODE_DISABLE;
  1503. OUTREG(CURSOR_A_CONTROL, tmp);
  1504. /* Flush changes */
  1505. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1506. } else {
  1507. tmp = INREG(CURSOR_CONTROL);
  1508. tmp &= ~CURSOR_ENABLE;
  1509. OUTREG(CURSOR_CONTROL, tmp);
  1510. }
  1511. }
  1512. void
  1513. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1514. {
  1515. u32 tmp;
  1516. #if VERBOSE > 0
  1517. DBG_MSG("intelfbhw_cursor_show\n");
  1518. #endif
  1519. dinfo->cursor_on = 1;
  1520. if (dinfo->cursor_blanked)
  1521. return;
  1522. if (dinfo->mobile) {
  1523. if (!dinfo->cursor.physical)
  1524. return;
  1525. tmp = INREG(CURSOR_A_CONTROL);
  1526. tmp &= ~CURSOR_MODE_MASK;
  1527. tmp |= CURSOR_MODE_64_4C_AX;
  1528. OUTREG(CURSOR_A_CONTROL, tmp);
  1529. /* Flush changes */
  1530. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1531. } else {
  1532. tmp = INREG(CURSOR_CONTROL);
  1533. tmp |= CURSOR_ENABLE;
  1534. OUTREG(CURSOR_CONTROL, tmp);
  1535. }
  1536. }
  1537. void
  1538. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1539. {
  1540. u32 tmp;
  1541. #if VERBOSE > 0
  1542. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1543. #endif
  1544. /*
  1545. * Sets the position. The coordinates are assumed to already
  1546. * have any offset adjusted. Assume that the cursor is never
  1547. * completely off-screen, and that x, y are always >= 0.
  1548. */
  1549. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1550. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1551. OUTREG(CURSOR_A_POSITION, tmp);
  1552. }
  1553. void
  1554. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1555. {
  1556. #if VERBOSE > 0
  1557. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1558. #endif
  1559. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1560. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1561. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1562. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1563. }
  1564. void
  1565. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1566. u8 *data)
  1567. {
  1568. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1569. int i, j, w = width / 8;
  1570. int mod = width % 8, t_mask, d_mask;
  1571. #if VERBOSE > 0
  1572. DBG_MSG("intelfbhw_cursor_load\n");
  1573. #endif
  1574. if (!dinfo->cursor.virtual)
  1575. return;
  1576. t_mask = 0xff >> mod;
  1577. d_mask = ~(0xff >> mod);
  1578. for (i = height; i--; ) {
  1579. for (j = 0; j < w; j++) {
  1580. writeb(0x00, addr + j);
  1581. writeb(*(data++), addr + j+8);
  1582. }
  1583. if (mod) {
  1584. writeb(t_mask, addr + j);
  1585. writeb(*(data++) & d_mask, addr + j+8);
  1586. }
  1587. addr += 16;
  1588. }
  1589. }
  1590. void
  1591. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1592. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1593. int i, j;
  1594. #if VERBOSE > 0
  1595. DBG_MSG("intelfbhw_cursor_reset\n");
  1596. #endif
  1597. if (!dinfo->cursor.virtual)
  1598. return;
  1599. for (i = 64; i--; ) {
  1600. for (j = 0; j < 8; j++) {
  1601. writeb(0xff, addr + j+0);
  1602. writeb(0x00, addr + j+8);
  1603. }
  1604. addr += 16;
  1605. }
  1606. }