mv_xor.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365
  1. /*
  2. * offload engine driver for the Marvell XOR engine
  3. * Copyright (C) 2007, 2008, Marvell International Ltd.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/async_tx.h>
  21. #include <linux/delay.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/memory.h>
  27. #include <asm/plat-orion/mv_xor.h>
  28. #include "mv_xor.h"
  29. static void mv_xor_issue_pending(struct dma_chan *chan);
  30. #define to_mv_xor_chan(chan) \
  31. container_of(chan, struct mv_xor_chan, common)
  32. #define to_mv_xor_device(dev) \
  33. container_of(dev, struct mv_xor_device, common)
  34. #define to_mv_xor_slot(tx) \
  35. container_of(tx, struct mv_xor_desc_slot, async_tx)
  36. static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
  37. {
  38. struct mv_xor_desc *hw_desc = desc->hw_desc;
  39. hw_desc->status = (1 << 31);
  40. hw_desc->phy_next_desc = 0;
  41. hw_desc->desc_command = (1 << 31);
  42. }
  43. static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
  44. {
  45. struct mv_xor_desc *hw_desc = desc->hw_desc;
  46. return hw_desc->phy_dest_addr;
  47. }
  48. static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
  49. int src_idx)
  50. {
  51. struct mv_xor_desc *hw_desc = desc->hw_desc;
  52. return hw_desc->phy_src_addr[src_idx];
  53. }
  54. static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
  55. u32 byte_count)
  56. {
  57. struct mv_xor_desc *hw_desc = desc->hw_desc;
  58. hw_desc->byte_count = byte_count;
  59. }
  60. static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
  61. u32 next_desc_addr)
  62. {
  63. struct mv_xor_desc *hw_desc = desc->hw_desc;
  64. BUG_ON(hw_desc->phy_next_desc);
  65. hw_desc->phy_next_desc = next_desc_addr;
  66. }
  67. static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
  68. {
  69. struct mv_xor_desc *hw_desc = desc->hw_desc;
  70. hw_desc->phy_next_desc = 0;
  71. }
  72. static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
  73. {
  74. desc->value = val;
  75. }
  76. static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
  77. dma_addr_t addr)
  78. {
  79. struct mv_xor_desc *hw_desc = desc->hw_desc;
  80. hw_desc->phy_dest_addr = addr;
  81. }
  82. static int mv_chan_memset_slot_count(size_t len)
  83. {
  84. return 1;
  85. }
  86. #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
  87. static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
  88. int index, dma_addr_t addr)
  89. {
  90. struct mv_xor_desc *hw_desc = desc->hw_desc;
  91. hw_desc->phy_src_addr[index] = addr;
  92. if (desc->type == DMA_XOR)
  93. hw_desc->desc_command |= (1 << index);
  94. }
  95. static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
  96. {
  97. return __raw_readl(XOR_CURR_DESC(chan));
  98. }
  99. static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
  100. u32 next_desc_addr)
  101. {
  102. __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
  103. }
  104. static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
  105. {
  106. __raw_writel(desc_addr, XOR_DEST_POINTER(chan));
  107. }
  108. static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
  109. {
  110. __raw_writel(block_size, XOR_BLOCK_SIZE(chan));
  111. }
  112. static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
  113. {
  114. __raw_writel(value, XOR_INIT_VALUE_LOW(chan));
  115. __raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
  116. }
  117. static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
  118. {
  119. u32 val = __raw_readl(XOR_INTR_MASK(chan));
  120. val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
  121. __raw_writel(val, XOR_INTR_MASK(chan));
  122. }
  123. static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
  124. {
  125. u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
  126. intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
  127. return intr_cause;
  128. }
  129. static int mv_is_err_intr(u32 intr_cause)
  130. {
  131. if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
  132. return 1;
  133. return 0;
  134. }
  135. static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
  136. {
  137. u32 val = (1 << (1 + (chan->idx * 16)));
  138. dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
  139. __raw_writel(val, XOR_INTR_CAUSE(chan));
  140. }
  141. static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
  142. {
  143. u32 val = 0xFFFF0000 >> (chan->idx * 16);
  144. __raw_writel(val, XOR_INTR_CAUSE(chan));
  145. }
  146. static int mv_can_chain(struct mv_xor_desc_slot *desc)
  147. {
  148. struct mv_xor_desc_slot *chain_old_tail = list_entry(
  149. desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
  150. if (chain_old_tail->type != desc->type)
  151. return 0;
  152. if (desc->type == DMA_MEMSET)
  153. return 0;
  154. return 1;
  155. }
  156. static void mv_set_mode(struct mv_xor_chan *chan,
  157. enum dma_transaction_type type)
  158. {
  159. u32 op_mode;
  160. u32 config = __raw_readl(XOR_CONFIG(chan));
  161. switch (type) {
  162. case DMA_XOR:
  163. op_mode = XOR_OPERATION_MODE_XOR;
  164. break;
  165. case DMA_MEMCPY:
  166. op_mode = XOR_OPERATION_MODE_MEMCPY;
  167. break;
  168. case DMA_MEMSET:
  169. op_mode = XOR_OPERATION_MODE_MEMSET;
  170. break;
  171. default:
  172. dev_printk(KERN_ERR, chan->device->common.dev,
  173. "error: unsupported operation %d.\n",
  174. type);
  175. BUG();
  176. return;
  177. }
  178. config &= ~0x7;
  179. config |= op_mode;
  180. __raw_writel(config, XOR_CONFIG(chan));
  181. chan->current_type = type;
  182. }
  183. static void mv_chan_activate(struct mv_xor_chan *chan)
  184. {
  185. u32 activation;
  186. dev_dbg(chan->device->common.dev, " activate chan.\n");
  187. activation = __raw_readl(XOR_ACTIVATION(chan));
  188. activation |= 0x1;
  189. __raw_writel(activation, XOR_ACTIVATION(chan));
  190. }
  191. static char mv_chan_is_busy(struct mv_xor_chan *chan)
  192. {
  193. u32 state = __raw_readl(XOR_ACTIVATION(chan));
  194. state = (state >> 4) & 0x3;
  195. return (state == 1) ? 1 : 0;
  196. }
  197. static int mv_chan_xor_slot_count(size_t len, int src_cnt)
  198. {
  199. return 1;
  200. }
  201. /**
  202. * mv_xor_free_slots - flags descriptor slots for reuse
  203. * @slot: Slot to free
  204. * Caller must hold &mv_chan->lock while calling this function
  205. */
  206. static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
  207. struct mv_xor_desc_slot *slot)
  208. {
  209. dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
  210. __func__, __LINE__, slot);
  211. slot->slots_per_op = 0;
  212. }
  213. /*
  214. * mv_xor_start_new_chain - program the engine to operate on new chain headed by
  215. * sw_desc
  216. * Caller must hold &mv_chan->lock while calling this function
  217. */
  218. static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
  219. struct mv_xor_desc_slot *sw_desc)
  220. {
  221. dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
  222. __func__, __LINE__, sw_desc);
  223. if (sw_desc->type != mv_chan->current_type)
  224. mv_set_mode(mv_chan, sw_desc->type);
  225. if (sw_desc->type == DMA_MEMSET) {
  226. /* for memset requests we need to program the engine, no
  227. * descriptors used.
  228. */
  229. struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
  230. mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
  231. mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
  232. mv_chan_set_value(mv_chan, sw_desc->value);
  233. } else {
  234. /* set the hardware chain */
  235. mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
  236. }
  237. mv_chan->pending += sw_desc->slot_cnt;
  238. mv_xor_issue_pending(&mv_chan->common);
  239. }
  240. static dma_cookie_t
  241. mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
  242. struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
  243. {
  244. BUG_ON(desc->async_tx.cookie < 0);
  245. if (desc->async_tx.cookie > 0) {
  246. cookie = desc->async_tx.cookie;
  247. /* call the callback (must not sleep or submit new
  248. * operations to this channel)
  249. */
  250. if (desc->async_tx.callback)
  251. desc->async_tx.callback(
  252. desc->async_tx.callback_param);
  253. /* unmap dma addresses
  254. * (unmap_single vs unmap_page?)
  255. */
  256. if (desc->group_head && desc->unmap_len) {
  257. struct mv_xor_desc_slot *unmap = desc->group_head;
  258. struct device *dev =
  259. &mv_chan->device->pdev->dev;
  260. u32 len = unmap->unmap_len;
  261. u32 src_cnt = unmap->unmap_src_cnt;
  262. dma_addr_t addr = mv_desc_get_dest_addr(unmap);
  263. dma_unmap_page(dev, addr, len, DMA_FROM_DEVICE);
  264. while (src_cnt--) {
  265. addr = mv_desc_get_src_addr(unmap, src_cnt);
  266. dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
  267. }
  268. desc->group_head = NULL;
  269. }
  270. }
  271. /* run dependent operations */
  272. async_tx_run_dependencies(&desc->async_tx);
  273. return cookie;
  274. }
  275. static int
  276. mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
  277. {
  278. struct mv_xor_desc_slot *iter, *_iter;
  279. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  280. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  281. completed_node) {
  282. if (async_tx_test_ack(&iter->async_tx)) {
  283. list_del(&iter->completed_node);
  284. mv_xor_free_slots(mv_chan, iter);
  285. }
  286. }
  287. return 0;
  288. }
  289. static int
  290. mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
  291. struct mv_xor_chan *mv_chan)
  292. {
  293. dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
  294. __func__, __LINE__, desc, desc->async_tx.flags);
  295. list_del(&desc->chain_node);
  296. /* the client is allowed to attach dependent operations
  297. * until 'ack' is set
  298. */
  299. if (!async_tx_test_ack(&desc->async_tx)) {
  300. /* move this slot to the completed_slots */
  301. list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
  302. return 0;
  303. }
  304. mv_xor_free_slots(mv_chan, desc);
  305. return 0;
  306. }
  307. static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  308. {
  309. struct mv_xor_desc_slot *iter, *_iter;
  310. dma_cookie_t cookie = 0;
  311. int busy = mv_chan_is_busy(mv_chan);
  312. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  313. int seen_current = 0;
  314. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  315. dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
  316. mv_xor_clean_completed_slots(mv_chan);
  317. /* free completed slots from the chain starting with
  318. * the oldest descriptor
  319. */
  320. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  321. chain_node) {
  322. prefetch(_iter);
  323. prefetch(&_iter->async_tx);
  324. /* do not advance past the current descriptor loaded into the
  325. * hardware channel, subsequent descriptors are either in
  326. * process or have not been submitted
  327. */
  328. if (seen_current)
  329. break;
  330. /* stop the search if we reach the current descriptor and the
  331. * channel is busy
  332. */
  333. if (iter->async_tx.phys == current_desc) {
  334. seen_current = 1;
  335. if (busy)
  336. break;
  337. }
  338. cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
  339. if (mv_xor_clean_slot(iter, mv_chan))
  340. break;
  341. }
  342. if ((busy == 0) && !list_empty(&mv_chan->chain)) {
  343. struct mv_xor_desc_slot *chain_head;
  344. chain_head = list_entry(mv_chan->chain.next,
  345. struct mv_xor_desc_slot,
  346. chain_node);
  347. mv_xor_start_new_chain(mv_chan, chain_head);
  348. }
  349. if (cookie > 0)
  350. mv_chan->completed_cookie = cookie;
  351. }
  352. static void
  353. mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  354. {
  355. spin_lock_bh(&mv_chan->lock);
  356. __mv_xor_slot_cleanup(mv_chan);
  357. spin_unlock_bh(&mv_chan->lock);
  358. }
  359. static void mv_xor_tasklet(unsigned long data)
  360. {
  361. struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
  362. __mv_xor_slot_cleanup(chan);
  363. }
  364. static struct mv_xor_desc_slot *
  365. mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
  366. int slots_per_op)
  367. {
  368. struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
  369. LIST_HEAD(chain);
  370. int slots_found, retry = 0;
  371. /* start search from the last allocated descrtiptor
  372. * if a contiguous allocation can not be found start searching
  373. * from the beginning of the list
  374. */
  375. retry:
  376. slots_found = 0;
  377. if (retry == 0)
  378. iter = mv_chan->last_used;
  379. else
  380. iter = list_entry(&mv_chan->all_slots,
  381. struct mv_xor_desc_slot,
  382. slot_node);
  383. list_for_each_entry_safe_continue(
  384. iter, _iter, &mv_chan->all_slots, slot_node) {
  385. prefetch(_iter);
  386. prefetch(&_iter->async_tx);
  387. if (iter->slots_per_op) {
  388. /* give up after finding the first busy slot
  389. * on the second pass through the list
  390. */
  391. if (retry)
  392. break;
  393. slots_found = 0;
  394. continue;
  395. }
  396. /* start the allocation if the slot is correctly aligned */
  397. if (!slots_found++)
  398. alloc_start = iter;
  399. if (slots_found == num_slots) {
  400. struct mv_xor_desc_slot *alloc_tail = NULL;
  401. struct mv_xor_desc_slot *last_used = NULL;
  402. iter = alloc_start;
  403. while (num_slots) {
  404. int i;
  405. /* pre-ack all but the last descriptor */
  406. async_tx_ack(&iter->async_tx);
  407. list_add_tail(&iter->chain_node, &chain);
  408. alloc_tail = iter;
  409. iter->async_tx.cookie = 0;
  410. iter->slot_cnt = num_slots;
  411. iter->xor_check_result = NULL;
  412. for (i = 0; i < slots_per_op; i++) {
  413. iter->slots_per_op = slots_per_op - i;
  414. last_used = iter;
  415. iter = list_entry(iter->slot_node.next,
  416. struct mv_xor_desc_slot,
  417. slot_node);
  418. }
  419. num_slots -= slots_per_op;
  420. }
  421. alloc_tail->group_head = alloc_start;
  422. alloc_tail->async_tx.cookie = -EBUSY;
  423. list_splice(&chain, &alloc_tail->async_tx.tx_list);
  424. mv_chan->last_used = last_used;
  425. mv_desc_clear_next_desc(alloc_start);
  426. mv_desc_clear_next_desc(alloc_tail);
  427. return alloc_tail;
  428. }
  429. }
  430. if (!retry++)
  431. goto retry;
  432. /* try to free some slots if the allocation fails */
  433. tasklet_schedule(&mv_chan->irq_tasklet);
  434. return NULL;
  435. }
  436. static dma_cookie_t
  437. mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
  438. struct mv_xor_desc_slot *desc)
  439. {
  440. dma_cookie_t cookie = mv_chan->common.cookie;
  441. if (++cookie < 0)
  442. cookie = 1;
  443. mv_chan->common.cookie = desc->async_tx.cookie = cookie;
  444. return cookie;
  445. }
  446. /************************ DMA engine API functions ****************************/
  447. static dma_cookie_t
  448. mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
  449. {
  450. struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
  451. struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
  452. struct mv_xor_desc_slot *grp_start, *old_chain_tail;
  453. dma_cookie_t cookie;
  454. int new_hw_chain = 1;
  455. dev_dbg(mv_chan->device->common.dev,
  456. "%s sw_desc %p: async_tx %p\n",
  457. __func__, sw_desc, &sw_desc->async_tx);
  458. grp_start = sw_desc->group_head;
  459. spin_lock_bh(&mv_chan->lock);
  460. cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
  461. if (list_empty(&mv_chan->chain))
  462. list_splice_init(&sw_desc->async_tx.tx_list, &mv_chan->chain);
  463. else {
  464. new_hw_chain = 0;
  465. old_chain_tail = list_entry(mv_chan->chain.prev,
  466. struct mv_xor_desc_slot,
  467. chain_node);
  468. list_splice_init(&grp_start->async_tx.tx_list,
  469. &old_chain_tail->chain_node);
  470. if (!mv_can_chain(grp_start))
  471. goto submit_done;
  472. dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
  473. old_chain_tail->async_tx.phys);
  474. /* fix up the hardware chain */
  475. mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
  476. /* if the channel is not busy */
  477. if (!mv_chan_is_busy(mv_chan)) {
  478. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  479. /*
  480. * and the curren desc is the end of the chain before
  481. * the append, then we need to start the channel
  482. */
  483. if (current_desc == old_chain_tail->async_tx.phys)
  484. new_hw_chain = 1;
  485. }
  486. }
  487. if (new_hw_chain)
  488. mv_xor_start_new_chain(mv_chan, grp_start);
  489. submit_done:
  490. spin_unlock_bh(&mv_chan->lock);
  491. return cookie;
  492. }
  493. /* returns the number of allocated descriptors */
  494. static int mv_xor_alloc_chan_resources(struct dma_chan *chan,
  495. struct dma_client *client)
  496. {
  497. char *hw_desc;
  498. int idx;
  499. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  500. struct mv_xor_desc_slot *slot = NULL;
  501. struct mv_xor_platform_data *plat_data =
  502. mv_chan->device->pdev->dev.platform_data;
  503. int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
  504. /* Allocate descriptor slots */
  505. idx = mv_chan->slots_allocated;
  506. while (idx < num_descs_in_pool) {
  507. slot = kzalloc(sizeof(*slot), GFP_KERNEL);
  508. if (!slot) {
  509. printk(KERN_INFO "MV XOR Channel only initialized"
  510. " %d descriptor slots", idx);
  511. break;
  512. }
  513. hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
  514. slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  515. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  516. slot->async_tx.tx_submit = mv_xor_tx_submit;
  517. INIT_LIST_HEAD(&slot->chain_node);
  518. INIT_LIST_HEAD(&slot->slot_node);
  519. INIT_LIST_HEAD(&slot->async_tx.tx_list);
  520. hw_desc = (char *) mv_chan->device->dma_desc_pool;
  521. slot->async_tx.phys =
  522. (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  523. slot->idx = idx++;
  524. spin_lock_bh(&mv_chan->lock);
  525. mv_chan->slots_allocated = idx;
  526. list_add_tail(&slot->slot_node, &mv_chan->all_slots);
  527. spin_unlock_bh(&mv_chan->lock);
  528. }
  529. if (mv_chan->slots_allocated && !mv_chan->last_used)
  530. mv_chan->last_used = list_entry(mv_chan->all_slots.next,
  531. struct mv_xor_desc_slot,
  532. slot_node);
  533. dev_dbg(mv_chan->device->common.dev,
  534. "allocated %d descriptor slots last_used: %p\n",
  535. mv_chan->slots_allocated, mv_chan->last_used);
  536. return mv_chan->slots_allocated ? : -ENOMEM;
  537. }
  538. static struct dma_async_tx_descriptor *
  539. mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  540. size_t len, unsigned long flags)
  541. {
  542. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  543. struct mv_xor_desc_slot *sw_desc, *grp_start;
  544. int slot_cnt;
  545. dev_dbg(mv_chan->device->common.dev,
  546. "%s dest: %x src %x len: %u flags: %ld\n",
  547. __func__, dest, src, len, flags);
  548. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  549. return NULL;
  550. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  551. spin_lock_bh(&mv_chan->lock);
  552. slot_cnt = mv_chan_memcpy_slot_count(len);
  553. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  554. if (sw_desc) {
  555. sw_desc->type = DMA_MEMCPY;
  556. sw_desc->async_tx.flags = flags;
  557. grp_start = sw_desc->group_head;
  558. mv_desc_init(grp_start, flags);
  559. mv_desc_set_byte_count(grp_start, len);
  560. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  561. mv_desc_set_src_addr(grp_start, 0, src);
  562. sw_desc->unmap_src_cnt = 1;
  563. sw_desc->unmap_len = len;
  564. }
  565. spin_unlock_bh(&mv_chan->lock);
  566. dev_dbg(mv_chan->device->common.dev,
  567. "%s sw_desc %p async_tx %p\n",
  568. __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
  569. return sw_desc ? &sw_desc->async_tx : NULL;
  570. }
  571. static struct dma_async_tx_descriptor *
  572. mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
  573. size_t len, unsigned long flags)
  574. {
  575. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  576. struct mv_xor_desc_slot *sw_desc, *grp_start;
  577. int slot_cnt;
  578. dev_dbg(mv_chan->device->common.dev,
  579. "%s dest: %x len: %u flags: %ld\n",
  580. __func__, dest, len, flags);
  581. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  582. return NULL;
  583. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  584. spin_lock_bh(&mv_chan->lock);
  585. slot_cnt = mv_chan_memset_slot_count(len);
  586. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  587. if (sw_desc) {
  588. sw_desc->type = DMA_MEMSET;
  589. sw_desc->async_tx.flags = flags;
  590. grp_start = sw_desc->group_head;
  591. mv_desc_init(grp_start, flags);
  592. mv_desc_set_byte_count(grp_start, len);
  593. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  594. mv_desc_set_block_fill_val(grp_start, value);
  595. sw_desc->unmap_src_cnt = 1;
  596. sw_desc->unmap_len = len;
  597. }
  598. spin_unlock_bh(&mv_chan->lock);
  599. dev_dbg(mv_chan->device->common.dev,
  600. "%s sw_desc %p async_tx %p \n",
  601. __func__, sw_desc, &sw_desc->async_tx);
  602. return sw_desc ? &sw_desc->async_tx : NULL;
  603. }
  604. static struct dma_async_tx_descriptor *
  605. mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  606. unsigned int src_cnt, size_t len, unsigned long flags)
  607. {
  608. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  609. struct mv_xor_desc_slot *sw_desc, *grp_start;
  610. int slot_cnt;
  611. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  612. return NULL;
  613. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  614. dev_dbg(mv_chan->device->common.dev,
  615. "%s src_cnt: %d len: dest %x %u flags: %ld\n",
  616. __func__, src_cnt, len, dest, flags);
  617. spin_lock_bh(&mv_chan->lock);
  618. slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
  619. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  620. if (sw_desc) {
  621. sw_desc->type = DMA_XOR;
  622. sw_desc->async_tx.flags = flags;
  623. grp_start = sw_desc->group_head;
  624. mv_desc_init(grp_start, flags);
  625. /* the byte count field is the same as in memcpy desc*/
  626. mv_desc_set_byte_count(grp_start, len);
  627. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  628. sw_desc->unmap_src_cnt = src_cnt;
  629. sw_desc->unmap_len = len;
  630. while (src_cnt--)
  631. mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
  632. }
  633. spin_unlock_bh(&mv_chan->lock);
  634. dev_dbg(mv_chan->device->common.dev,
  635. "%s sw_desc %p async_tx %p \n",
  636. __func__, sw_desc, &sw_desc->async_tx);
  637. return sw_desc ? &sw_desc->async_tx : NULL;
  638. }
  639. static void mv_xor_free_chan_resources(struct dma_chan *chan)
  640. {
  641. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  642. struct mv_xor_desc_slot *iter, *_iter;
  643. int in_use_descs = 0;
  644. mv_xor_slot_cleanup(mv_chan);
  645. spin_lock_bh(&mv_chan->lock);
  646. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  647. chain_node) {
  648. in_use_descs++;
  649. list_del(&iter->chain_node);
  650. }
  651. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  652. completed_node) {
  653. in_use_descs++;
  654. list_del(&iter->completed_node);
  655. }
  656. list_for_each_entry_safe_reverse(
  657. iter, _iter, &mv_chan->all_slots, slot_node) {
  658. list_del(&iter->slot_node);
  659. kfree(iter);
  660. mv_chan->slots_allocated--;
  661. }
  662. mv_chan->last_used = NULL;
  663. dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
  664. __func__, mv_chan->slots_allocated);
  665. spin_unlock_bh(&mv_chan->lock);
  666. if (in_use_descs)
  667. dev_err(mv_chan->device->common.dev,
  668. "freeing %d in use descriptors!\n", in_use_descs);
  669. }
  670. /**
  671. * mv_xor_is_complete - poll the status of an XOR transaction
  672. * @chan: XOR channel handle
  673. * @cookie: XOR transaction identifier
  674. */
  675. static enum dma_status mv_xor_is_complete(struct dma_chan *chan,
  676. dma_cookie_t cookie,
  677. dma_cookie_t *done,
  678. dma_cookie_t *used)
  679. {
  680. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  681. dma_cookie_t last_used;
  682. dma_cookie_t last_complete;
  683. enum dma_status ret;
  684. last_used = chan->cookie;
  685. last_complete = mv_chan->completed_cookie;
  686. mv_chan->is_complete_cookie = cookie;
  687. if (done)
  688. *done = last_complete;
  689. if (used)
  690. *used = last_used;
  691. ret = dma_async_is_complete(cookie, last_complete, last_used);
  692. if (ret == DMA_SUCCESS) {
  693. mv_xor_clean_completed_slots(mv_chan);
  694. return ret;
  695. }
  696. mv_xor_slot_cleanup(mv_chan);
  697. last_used = chan->cookie;
  698. last_complete = mv_chan->completed_cookie;
  699. if (done)
  700. *done = last_complete;
  701. if (used)
  702. *used = last_used;
  703. return dma_async_is_complete(cookie, last_complete, last_used);
  704. }
  705. static void mv_dump_xor_regs(struct mv_xor_chan *chan)
  706. {
  707. u32 val;
  708. val = __raw_readl(XOR_CONFIG(chan));
  709. dev_printk(KERN_ERR, chan->device->common.dev,
  710. "config 0x%08x.\n", val);
  711. val = __raw_readl(XOR_ACTIVATION(chan));
  712. dev_printk(KERN_ERR, chan->device->common.dev,
  713. "activation 0x%08x.\n", val);
  714. val = __raw_readl(XOR_INTR_CAUSE(chan));
  715. dev_printk(KERN_ERR, chan->device->common.dev,
  716. "intr cause 0x%08x.\n", val);
  717. val = __raw_readl(XOR_INTR_MASK(chan));
  718. dev_printk(KERN_ERR, chan->device->common.dev,
  719. "intr mask 0x%08x.\n", val);
  720. val = __raw_readl(XOR_ERROR_CAUSE(chan));
  721. dev_printk(KERN_ERR, chan->device->common.dev,
  722. "error cause 0x%08x.\n", val);
  723. val = __raw_readl(XOR_ERROR_ADDR(chan));
  724. dev_printk(KERN_ERR, chan->device->common.dev,
  725. "error addr 0x%08x.\n", val);
  726. }
  727. static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
  728. u32 intr_cause)
  729. {
  730. if (intr_cause & (1 << 4)) {
  731. dev_dbg(chan->device->common.dev,
  732. "ignore this error\n");
  733. return;
  734. }
  735. dev_printk(KERN_ERR, chan->device->common.dev,
  736. "error on chan %d. intr cause 0x%08x.\n",
  737. chan->idx, intr_cause);
  738. mv_dump_xor_regs(chan);
  739. BUG();
  740. }
  741. static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
  742. {
  743. struct mv_xor_chan *chan = data;
  744. u32 intr_cause = mv_chan_get_intr_cause(chan);
  745. dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
  746. if (mv_is_err_intr(intr_cause))
  747. mv_xor_err_interrupt_handler(chan, intr_cause);
  748. tasklet_schedule(&chan->irq_tasklet);
  749. mv_xor_device_clear_eoc_cause(chan);
  750. return IRQ_HANDLED;
  751. }
  752. static void mv_xor_issue_pending(struct dma_chan *chan)
  753. {
  754. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  755. if (mv_chan->pending >= MV_XOR_THRESHOLD) {
  756. mv_chan->pending = 0;
  757. mv_chan_activate(mv_chan);
  758. }
  759. }
  760. /*
  761. * Perform a transaction to verify the HW works.
  762. */
  763. #define MV_XOR_TEST_SIZE 2000
  764. static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
  765. {
  766. int i;
  767. void *src, *dest;
  768. dma_addr_t src_dma, dest_dma;
  769. struct dma_chan *dma_chan;
  770. dma_cookie_t cookie;
  771. struct dma_async_tx_descriptor *tx;
  772. int err = 0;
  773. struct mv_xor_chan *mv_chan;
  774. src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  775. if (!src)
  776. return -ENOMEM;
  777. dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  778. if (!dest) {
  779. kfree(src);
  780. return -ENOMEM;
  781. }
  782. /* Fill in src buffer */
  783. for (i = 0; i < MV_XOR_TEST_SIZE; i++)
  784. ((u8 *) src)[i] = (u8)i;
  785. /* Start copy, using first DMA channel */
  786. dma_chan = container_of(device->common.channels.next,
  787. struct dma_chan,
  788. device_node);
  789. if (mv_xor_alloc_chan_resources(dma_chan, NULL) < 1) {
  790. err = -ENODEV;
  791. goto out;
  792. }
  793. dest_dma = dma_map_single(dma_chan->device->dev, dest,
  794. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  795. src_dma = dma_map_single(dma_chan->device->dev, src,
  796. MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
  797. tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
  798. MV_XOR_TEST_SIZE, 0);
  799. cookie = mv_xor_tx_submit(tx);
  800. mv_xor_issue_pending(dma_chan);
  801. async_tx_ack(tx);
  802. msleep(1);
  803. if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
  804. DMA_SUCCESS) {
  805. dev_printk(KERN_ERR, dma_chan->device->dev,
  806. "Self-test copy timed out, disabling\n");
  807. err = -ENODEV;
  808. goto free_resources;
  809. }
  810. mv_chan = to_mv_xor_chan(dma_chan);
  811. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  812. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  813. if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
  814. dev_printk(KERN_ERR, dma_chan->device->dev,
  815. "Self-test copy failed compare, disabling\n");
  816. err = -ENODEV;
  817. goto free_resources;
  818. }
  819. free_resources:
  820. mv_xor_free_chan_resources(dma_chan);
  821. out:
  822. kfree(src);
  823. kfree(dest);
  824. return err;
  825. }
  826. #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
  827. static int __devinit
  828. mv_xor_xor_self_test(struct mv_xor_device *device)
  829. {
  830. int i, src_idx;
  831. struct page *dest;
  832. struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
  833. dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
  834. dma_addr_t dest_dma;
  835. struct dma_async_tx_descriptor *tx;
  836. struct dma_chan *dma_chan;
  837. dma_cookie_t cookie;
  838. u8 cmp_byte = 0;
  839. u32 cmp_word;
  840. int err = 0;
  841. struct mv_xor_chan *mv_chan;
  842. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  843. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  844. if (!xor_srcs[src_idx])
  845. while (src_idx--) {
  846. __free_page(xor_srcs[src_idx]);
  847. return -ENOMEM;
  848. }
  849. }
  850. dest = alloc_page(GFP_KERNEL);
  851. if (!dest)
  852. while (src_idx--) {
  853. __free_page(xor_srcs[src_idx]);
  854. return -ENOMEM;
  855. }
  856. /* Fill in src buffers */
  857. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  858. u8 *ptr = page_address(xor_srcs[src_idx]);
  859. for (i = 0; i < PAGE_SIZE; i++)
  860. ptr[i] = (1 << src_idx);
  861. }
  862. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
  863. cmp_byte ^= (u8) (1 << src_idx);
  864. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  865. (cmp_byte << 8) | cmp_byte;
  866. memset(page_address(dest), 0, PAGE_SIZE);
  867. dma_chan = container_of(device->common.channels.next,
  868. struct dma_chan,
  869. device_node);
  870. if (mv_xor_alloc_chan_resources(dma_chan, NULL) < 1) {
  871. err = -ENODEV;
  872. goto out;
  873. }
  874. /* test xor */
  875. dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
  876. DMA_FROM_DEVICE);
  877. for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
  878. dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
  879. 0, PAGE_SIZE, DMA_TO_DEVICE);
  880. tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  881. MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
  882. cookie = mv_xor_tx_submit(tx);
  883. mv_xor_issue_pending(dma_chan);
  884. async_tx_ack(tx);
  885. msleep(8);
  886. if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
  887. DMA_SUCCESS) {
  888. dev_printk(KERN_ERR, dma_chan->device->dev,
  889. "Self-test xor timed out, disabling\n");
  890. err = -ENODEV;
  891. goto free_resources;
  892. }
  893. mv_chan = to_mv_xor_chan(dma_chan);
  894. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  895. PAGE_SIZE, DMA_FROM_DEVICE);
  896. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  897. u32 *ptr = page_address(dest);
  898. if (ptr[i] != cmp_word) {
  899. dev_printk(KERN_ERR, dma_chan->device->dev,
  900. "Self-test xor failed compare, disabling."
  901. " index %d, data %x, expected %x\n", i,
  902. ptr[i], cmp_word);
  903. err = -ENODEV;
  904. goto free_resources;
  905. }
  906. }
  907. free_resources:
  908. mv_xor_free_chan_resources(dma_chan);
  909. out:
  910. src_idx = MV_XOR_NUM_SRC_TEST;
  911. while (src_idx--)
  912. __free_page(xor_srcs[src_idx]);
  913. __free_page(dest);
  914. return err;
  915. }
  916. static int __devexit mv_xor_remove(struct platform_device *dev)
  917. {
  918. struct mv_xor_device *device = platform_get_drvdata(dev);
  919. struct dma_chan *chan, *_chan;
  920. struct mv_xor_chan *mv_chan;
  921. struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
  922. dma_async_device_unregister(&device->common);
  923. dma_free_coherent(&dev->dev, plat_data->pool_size,
  924. device->dma_desc_pool_virt, device->dma_desc_pool);
  925. list_for_each_entry_safe(chan, _chan, &device->common.channels,
  926. device_node) {
  927. mv_chan = to_mv_xor_chan(chan);
  928. list_del(&chan->device_node);
  929. }
  930. return 0;
  931. }
  932. static int __devinit mv_xor_probe(struct platform_device *pdev)
  933. {
  934. int ret = 0;
  935. int irq;
  936. struct mv_xor_device *adev;
  937. struct mv_xor_chan *mv_chan;
  938. struct dma_device *dma_dev;
  939. struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
  940. adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
  941. if (!adev)
  942. return -ENOMEM;
  943. dma_dev = &adev->common;
  944. /* allocate coherent memory for hardware descriptors
  945. * note: writecombine gives slightly better performance, but
  946. * requires that we explicitly flush the writes
  947. */
  948. adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
  949. plat_data->pool_size,
  950. &adev->dma_desc_pool,
  951. GFP_KERNEL);
  952. if (!adev->dma_desc_pool_virt)
  953. return -ENOMEM;
  954. adev->id = plat_data->hw_id;
  955. /* discover transaction capabilites from the platform data */
  956. dma_dev->cap_mask = plat_data->cap_mask;
  957. adev->pdev = pdev;
  958. platform_set_drvdata(pdev, adev);
  959. adev->shared = platform_get_drvdata(plat_data->shared);
  960. INIT_LIST_HEAD(&dma_dev->channels);
  961. /* set base routines */
  962. dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
  963. dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
  964. dma_dev->device_is_tx_complete = mv_xor_is_complete;
  965. dma_dev->device_issue_pending = mv_xor_issue_pending;
  966. dma_dev->dev = &pdev->dev;
  967. /* set prep routines based on capability */
  968. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
  969. dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
  970. if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
  971. dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
  972. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  973. dma_dev->max_xor = 8; ;
  974. dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
  975. }
  976. mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
  977. if (!mv_chan) {
  978. ret = -ENOMEM;
  979. goto err_free_dma;
  980. }
  981. mv_chan->device = adev;
  982. mv_chan->idx = plat_data->hw_id;
  983. mv_chan->mmr_base = adev->shared->xor_base;
  984. if (!mv_chan->mmr_base) {
  985. ret = -ENOMEM;
  986. goto err_free_dma;
  987. }
  988. tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
  989. mv_chan);
  990. /* clear errors before enabling interrupts */
  991. mv_xor_device_clear_err_status(mv_chan);
  992. irq = platform_get_irq(pdev, 0);
  993. if (irq < 0) {
  994. ret = irq;
  995. goto err_free_dma;
  996. }
  997. ret = devm_request_irq(&pdev->dev, irq,
  998. mv_xor_interrupt_handler,
  999. 0, dev_name(&pdev->dev), mv_chan);
  1000. if (ret)
  1001. goto err_free_dma;
  1002. mv_chan_unmask_interrupts(mv_chan);
  1003. mv_set_mode(mv_chan, DMA_MEMCPY);
  1004. spin_lock_init(&mv_chan->lock);
  1005. INIT_LIST_HEAD(&mv_chan->chain);
  1006. INIT_LIST_HEAD(&mv_chan->completed_slots);
  1007. INIT_LIST_HEAD(&mv_chan->all_slots);
  1008. INIT_RCU_HEAD(&mv_chan->common.rcu);
  1009. mv_chan->common.device = dma_dev;
  1010. list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
  1011. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
  1012. ret = mv_xor_memcpy_self_test(adev);
  1013. dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
  1014. if (ret)
  1015. goto err_free_dma;
  1016. }
  1017. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  1018. ret = mv_xor_xor_self_test(adev);
  1019. dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
  1020. if (ret)
  1021. goto err_free_dma;
  1022. }
  1023. dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
  1024. "( %s%s%s%s)\n",
  1025. dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
  1026. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
  1027. dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
  1028. dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
  1029. dma_async_device_register(dma_dev);
  1030. goto out;
  1031. err_free_dma:
  1032. dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
  1033. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  1034. out:
  1035. return ret;
  1036. }
  1037. static void
  1038. mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
  1039. struct mbus_dram_target_info *dram)
  1040. {
  1041. void __iomem *base = msp->xor_base;
  1042. u32 win_enable = 0;
  1043. int i;
  1044. for (i = 0; i < 8; i++) {
  1045. writel(0, base + WINDOW_BASE(i));
  1046. writel(0, base + WINDOW_SIZE(i));
  1047. if (i < 4)
  1048. writel(0, base + WINDOW_REMAP_HIGH(i));
  1049. }
  1050. for (i = 0; i < dram->num_cs; i++) {
  1051. struct mbus_dram_window *cs = dram->cs + i;
  1052. writel((cs->base & 0xffff0000) |
  1053. (cs->mbus_attr << 8) |
  1054. dram->mbus_dram_target_id, base + WINDOW_BASE(i));
  1055. writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
  1056. win_enable |= (1 << i);
  1057. win_enable |= 3 << (16 + (2 * i));
  1058. }
  1059. writel(win_enable, base + WINDOW_BAR_ENABLE(0));
  1060. writel(win_enable, base + WINDOW_BAR_ENABLE(1));
  1061. }
  1062. static struct platform_driver mv_xor_driver = {
  1063. .probe = mv_xor_probe,
  1064. .remove = mv_xor_remove,
  1065. .driver = {
  1066. .owner = THIS_MODULE,
  1067. .name = MV_XOR_NAME,
  1068. },
  1069. };
  1070. static int mv_xor_shared_probe(struct platform_device *pdev)
  1071. {
  1072. struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data;
  1073. struct mv_xor_shared_private *msp;
  1074. struct resource *res;
  1075. dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
  1076. msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
  1077. if (!msp)
  1078. return -ENOMEM;
  1079. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1080. if (!res)
  1081. return -ENODEV;
  1082. msp->xor_base = devm_ioremap(&pdev->dev, res->start,
  1083. res->end - res->start + 1);
  1084. if (!msp->xor_base)
  1085. return -EBUSY;
  1086. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1087. if (!res)
  1088. return -ENODEV;
  1089. msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
  1090. res->end - res->start + 1);
  1091. if (!msp->xor_high_base)
  1092. return -EBUSY;
  1093. platform_set_drvdata(pdev, msp);
  1094. /*
  1095. * (Re-)program MBUS remapping windows if we are asked to.
  1096. */
  1097. if (msd != NULL && msd->dram != NULL)
  1098. mv_xor_conf_mbus_windows(msp, msd->dram);
  1099. return 0;
  1100. }
  1101. static int mv_xor_shared_remove(struct platform_device *pdev)
  1102. {
  1103. return 0;
  1104. }
  1105. static struct platform_driver mv_xor_shared_driver = {
  1106. .probe = mv_xor_shared_probe,
  1107. .remove = mv_xor_shared_remove,
  1108. .driver = {
  1109. .owner = THIS_MODULE,
  1110. .name = MV_XOR_SHARED_NAME,
  1111. },
  1112. };
  1113. static int __init mv_xor_init(void)
  1114. {
  1115. int rc;
  1116. rc = platform_driver_register(&mv_xor_shared_driver);
  1117. if (!rc) {
  1118. rc = platform_driver_register(&mv_xor_driver);
  1119. if (rc)
  1120. platform_driver_unregister(&mv_xor_shared_driver);
  1121. }
  1122. return rc;
  1123. }
  1124. module_init(mv_xor_init);
  1125. /* it's currently unsafe to unload this module */
  1126. #if 0
  1127. static void __exit mv_xor_exit(void)
  1128. {
  1129. platform_driver_unregister(&mv_xor_driver);
  1130. platform_driver_unregister(&mv_xor_shared_driver);
  1131. return;
  1132. }
  1133. module_exit(mv_xor_exit);
  1134. #endif
  1135. MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
  1136. MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
  1137. MODULE_LICENSE("GPL");