i915_gem.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  41. uint64_t offset,
  42. uint64_t size);
  43. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  44. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  45. unsigned alignment,
  46. bool map_and_fenceable);
  47. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  48. struct drm_i915_fence_reg *reg);
  49. static int i915_gem_phys_pwrite(struct drm_device *dev,
  50. struct drm_i915_gem_object *obj,
  51. struct drm_i915_gem_pwrite *args,
  52. struct drm_file *file);
  53. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  54. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  55. struct shrink_control *sc);
  56. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  57. /* some bookkeeping */
  58. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  59. size_t size)
  60. {
  61. dev_priv->mm.object_count++;
  62. dev_priv->mm.object_memory += size;
  63. }
  64. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  65. size_t size)
  66. {
  67. dev_priv->mm.object_count--;
  68. dev_priv->mm.object_memory -= size;
  69. }
  70. static int
  71. i915_gem_wait_for_error(struct drm_device *dev)
  72. {
  73. struct drm_i915_private *dev_priv = dev->dev_private;
  74. struct completion *x = &dev_priv->error_completion;
  75. unsigned long flags;
  76. int ret;
  77. if (!atomic_read(&dev_priv->mm.wedged))
  78. return 0;
  79. ret = wait_for_completion_interruptible(x);
  80. if (ret)
  81. return ret;
  82. if (atomic_read(&dev_priv->mm.wedged)) {
  83. /* GPU is hung, bump the completion count to account for
  84. * the token we just consumed so that we never hit zero and
  85. * end up waiting upon a subsequent completion event that
  86. * will never happen.
  87. */
  88. spin_lock_irqsave(&x->wait.lock, flags);
  89. x->done++;
  90. spin_unlock_irqrestore(&x->wait.lock, flags);
  91. }
  92. return 0;
  93. }
  94. int i915_mutex_lock_interruptible(struct drm_device *dev)
  95. {
  96. int ret;
  97. ret = i915_gem_wait_for_error(dev);
  98. if (ret)
  99. return ret;
  100. ret = mutex_lock_interruptible(&dev->struct_mutex);
  101. if (ret)
  102. return ret;
  103. WARN_ON(i915_verify_lists(dev));
  104. return 0;
  105. }
  106. static inline bool
  107. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  108. {
  109. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  110. }
  111. int
  112. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  113. struct drm_file *file)
  114. {
  115. struct drm_i915_gem_init *args = data;
  116. if (args->gtt_start >= args->gtt_end ||
  117. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  118. return -EINVAL;
  119. mutex_lock(&dev->struct_mutex);
  120. i915_gem_init_global_gtt(dev, args->gtt_start,
  121. args->gtt_end, args->gtt_end);
  122. mutex_unlock(&dev->struct_mutex);
  123. return 0;
  124. }
  125. int
  126. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  127. struct drm_file *file)
  128. {
  129. struct drm_i915_private *dev_priv = dev->dev_private;
  130. struct drm_i915_gem_get_aperture *args = data;
  131. struct drm_i915_gem_object *obj;
  132. size_t pinned;
  133. if (!(dev->driver->driver_features & DRIVER_GEM))
  134. return -ENODEV;
  135. pinned = 0;
  136. mutex_lock(&dev->struct_mutex);
  137. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  138. pinned += obj->gtt_space->size;
  139. mutex_unlock(&dev->struct_mutex);
  140. args->aper_size = dev_priv->mm.gtt_total;
  141. args->aper_available_size = args->aper_size - pinned;
  142. return 0;
  143. }
  144. static int
  145. i915_gem_create(struct drm_file *file,
  146. struct drm_device *dev,
  147. uint64_t size,
  148. uint32_t *handle_p)
  149. {
  150. struct drm_i915_gem_object *obj;
  151. int ret;
  152. u32 handle;
  153. size = roundup(size, PAGE_SIZE);
  154. if (size == 0)
  155. return -EINVAL;
  156. /* Allocate the new object */
  157. obj = i915_gem_alloc_object(dev, size);
  158. if (obj == NULL)
  159. return -ENOMEM;
  160. ret = drm_gem_handle_create(file, &obj->base, &handle);
  161. if (ret) {
  162. drm_gem_object_release(&obj->base);
  163. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  164. kfree(obj);
  165. return ret;
  166. }
  167. /* drop reference from allocate - handle holds it now */
  168. drm_gem_object_unreference(&obj->base);
  169. trace_i915_gem_object_create(obj);
  170. *handle_p = handle;
  171. return 0;
  172. }
  173. int
  174. i915_gem_dumb_create(struct drm_file *file,
  175. struct drm_device *dev,
  176. struct drm_mode_create_dumb *args)
  177. {
  178. /* have to work out size/pitch and return them */
  179. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  180. args->size = args->pitch * args->height;
  181. return i915_gem_create(file, dev,
  182. args->size, &args->handle);
  183. }
  184. int i915_gem_dumb_destroy(struct drm_file *file,
  185. struct drm_device *dev,
  186. uint32_t handle)
  187. {
  188. return drm_gem_handle_delete(file, handle);
  189. }
  190. /**
  191. * Creates a new mm object and returns a handle to it.
  192. */
  193. int
  194. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  195. struct drm_file *file)
  196. {
  197. struct drm_i915_gem_create *args = data;
  198. return i915_gem_create(file, dev,
  199. args->size, &args->handle);
  200. }
  201. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  202. {
  203. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  204. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  205. obj->tiling_mode != I915_TILING_NONE;
  206. }
  207. static inline int
  208. __copy_to_user_swizzled(char __user *cpu_vaddr,
  209. const char *gpu_vaddr, int gpu_offset,
  210. int length)
  211. {
  212. int ret, cpu_offset = 0;
  213. while (length > 0) {
  214. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  215. int this_length = min(cacheline_end - gpu_offset, length);
  216. int swizzled_gpu_offset = gpu_offset ^ 64;
  217. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  218. gpu_vaddr + swizzled_gpu_offset,
  219. this_length);
  220. if (ret)
  221. return ret + length;
  222. cpu_offset += this_length;
  223. gpu_offset += this_length;
  224. length -= this_length;
  225. }
  226. return 0;
  227. }
  228. static inline int
  229. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  230. const char *cpu_vaddr,
  231. int length)
  232. {
  233. int ret, cpu_offset = 0;
  234. while (length > 0) {
  235. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  236. int this_length = min(cacheline_end - gpu_offset, length);
  237. int swizzled_gpu_offset = gpu_offset ^ 64;
  238. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  239. cpu_vaddr + cpu_offset,
  240. this_length);
  241. if (ret)
  242. return ret + length;
  243. cpu_offset += this_length;
  244. gpu_offset += this_length;
  245. length -= this_length;
  246. }
  247. return 0;
  248. }
  249. static int
  250. i915_gem_shmem_pread(struct drm_device *dev,
  251. struct drm_i915_gem_object *obj,
  252. struct drm_i915_gem_pread *args,
  253. struct drm_file *file)
  254. {
  255. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  256. char __user *user_data;
  257. ssize_t remain;
  258. loff_t offset;
  259. int shmem_page_offset, page_length, ret = 0;
  260. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  261. int hit_slowpath = 0;
  262. int needs_clflush = 0;
  263. user_data = (char __user *) (uintptr_t) args->data_ptr;
  264. remain = args->size;
  265. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  266. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  267. /* If we're not in the cpu read domain, set ourself into the gtt
  268. * read domain and manually flush cachelines (if required). This
  269. * optimizes for the case when the gpu will dirty the data
  270. * anyway again before the next pread happens. */
  271. if (obj->cache_level == I915_CACHE_NONE)
  272. needs_clflush = 1;
  273. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  274. if (ret)
  275. return ret;
  276. }
  277. offset = args->offset;
  278. while (remain > 0) {
  279. struct page *page;
  280. char *vaddr;
  281. /* Operation in this page
  282. *
  283. * shmem_page_offset = offset within page in shmem file
  284. * page_length = bytes to copy for this page
  285. */
  286. shmem_page_offset = offset_in_page(offset);
  287. page_length = remain;
  288. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  289. page_length = PAGE_SIZE - shmem_page_offset;
  290. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  291. if (IS_ERR(page)) {
  292. ret = PTR_ERR(page);
  293. goto out;
  294. }
  295. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  296. (page_to_phys(page) & (1 << 17)) != 0;
  297. if (!page_do_bit17_swizzling) {
  298. vaddr = kmap_atomic(page);
  299. if (needs_clflush)
  300. drm_clflush_virt_range(vaddr + shmem_page_offset,
  301. page_length);
  302. ret = __copy_to_user_inatomic(user_data,
  303. vaddr + shmem_page_offset,
  304. page_length);
  305. kunmap_atomic(vaddr);
  306. if (ret == 0)
  307. goto next_page;
  308. }
  309. hit_slowpath = 1;
  310. mutex_unlock(&dev->struct_mutex);
  311. vaddr = kmap(page);
  312. if (needs_clflush)
  313. drm_clflush_virt_range(vaddr + shmem_page_offset,
  314. page_length);
  315. if (page_do_bit17_swizzling)
  316. ret = __copy_to_user_swizzled(user_data,
  317. vaddr, shmem_page_offset,
  318. page_length);
  319. else
  320. ret = __copy_to_user(user_data,
  321. vaddr + shmem_page_offset,
  322. page_length);
  323. kunmap(page);
  324. mutex_lock(&dev->struct_mutex);
  325. next_page:
  326. mark_page_accessed(page);
  327. page_cache_release(page);
  328. if (ret) {
  329. ret = -EFAULT;
  330. goto out;
  331. }
  332. remain -= page_length;
  333. user_data += page_length;
  334. offset += page_length;
  335. }
  336. out:
  337. if (hit_slowpath) {
  338. /* Fixup: Kill any reinstated backing storage pages */
  339. if (obj->madv == __I915_MADV_PURGED)
  340. i915_gem_object_truncate(obj);
  341. }
  342. return ret;
  343. }
  344. /**
  345. * Reads data from the object referenced by handle.
  346. *
  347. * On error, the contents of *data are undefined.
  348. */
  349. int
  350. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  351. struct drm_file *file)
  352. {
  353. struct drm_i915_gem_pread *args = data;
  354. struct drm_i915_gem_object *obj;
  355. int ret = 0;
  356. if (args->size == 0)
  357. return 0;
  358. if (!access_ok(VERIFY_WRITE,
  359. (char __user *)(uintptr_t)args->data_ptr,
  360. args->size))
  361. return -EFAULT;
  362. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  363. args->size);
  364. if (ret)
  365. return -EFAULT;
  366. ret = i915_mutex_lock_interruptible(dev);
  367. if (ret)
  368. return ret;
  369. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  370. if (&obj->base == NULL) {
  371. ret = -ENOENT;
  372. goto unlock;
  373. }
  374. /* Bounds check source. */
  375. if (args->offset > obj->base.size ||
  376. args->size > obj->base.size - args->offset) {
  377. ret = -EINVAL;
  378. goto out;
  379. }
  380. trace_i915_gem_object_pread(obj, args->offset, args->size);
  381. ret = i915_gem_shmem_pread(dev, obj, args, file);
  382. out:
  383. drm_gem_object_unreference(&obj->base);
  384. unlock:
  385. mutex_unlock(&dev->struct_mutex);
  386. return ret;
  387. }
  388. /* This is the fast write path which cannot handle
  389. * page faults in the source data
  390. */
  391. static inline int
  392. fast_user_write(struct io_mapping *mapping,
  393. loff_t page_base, int page_offset,
  394. char __user *user_data,
  395. int length)
  396. {
  397. char *vaddr_atomic;
  398. unsigned long unwritten;
  399. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  400. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  401. user_data, length);
  402. io_mapping_unmap_atomic(vaddr_atomic);
  403. return unwritten;
  404. }
  405. /* Here's the write path which can sleep for
  406. * page faults
  407. */
  408. static inline void
  409. slow_kernel_write(struct io_mapping *mapping,
  410. loff_t gtt_base, int gtt_offset,
  411. struct page *user_page, int user_offset,
  412. int length)
  413. {
  414. char __iomem *dst_vaddr;
  415. char *src_vaddr;
  416. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  417. src_vaddr = kmap(user_page);
  418. memcpy_toio(dst_vaddr + gtt_offset,
  419. src_vaddr + user_offset,
  420. length);
  421. kunmap(user_page);
  422. io_mapping_unmap(dst_vaddr);
  423. }
  424. /**
  425. * This is the fast pwrite path, where we copy the data directly from the
  426. * user into the GTT, uncached.
  427. */
  428. static int
  429. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  430. struct drm_i915_gem_object *obj,
  431. struct drm_i915_gem_pwrite *args,
  432. struct drm_file *file)
  433. {
  434. drm_i915_private_t *dev_priv = dev->dev_private;
  435. ssize_t remain;
  436. loff_t offset, page_base;
  437. char __user *user_data;
  438. int page_offset, page_length;
  439. user_data = (char __user *) (uintptr_t) args->data_ptr;
  440. remain = args->size;
  441. offset = obj->gtt_offset + args->offset;
  442. while (remain > 0) {
  443. /* Operation in this page
  444. *
  445. * page_base = page offset within aperture
  446. * page_offset = offset within page
  447. * page_length = bytes to copy for this page
  448. */
  449. page_base = offset & PAGE_MASK;
  450. page_offset = offset_in_page(offset);
  451. page_length = remain;
  452. if ((page_offset + remain) > PAGE_SIZE)
  453. page_length = PAGE_SIZE - page_offset;
  454. /* If we get a fault while copying data, then (presumably) our
  455. * source page isn't available. Return the error and we'll
  456. * retry in the slow path.
  457. */
  458. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  459. page_offset, user_data, page_length))
  460. return -EFAULT;
  461. remain -= page_length;
  462. user_data += page_length;
  463. offset += page_length;
  464. }
  465. return 0;
  466. }
  467. /**
  468. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  469. * the memory and maps it using kmap_atomic for copying.
  470. *
  471. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  472. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  473. */
  474. static int
  475. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  476. struct drm_i915_gem_object *obj,
  477. struct drm_i915_gem_pwrite *args,
  478. struct drm_file *file)
  479. {
  480. drm_i915_private_t *dev_priv = dev->dev_private;
  481. ssize_t remain;
  482. loff_t gtt_page_base, offset;
  483. loff_t first_data_page, last_data_page, num_pages;
  484. loff_t pinned_pages, i;
  485. struct page **user_pages;
  486. struct mm_struct *mm = current->mm;
  487. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  488. int ret;
  489. uint64_t data_ptr = args->data_ptr;
  490. remain = args->size;
  491. /* Pin the user pages containing the data. We can't fault while
  492. * holding the struct mutex, and all of the pwrite implementations
  493. * want to hold it while dereferencing the user data.
  494. */
  495. first_data_page = data_ptr / PAGE_SIZE;
  496. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  497. num_pages = last_data_page - first_data_page + 1;
  498. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  499. if (user_pages == NULL)
  500. return -ENOMEM;
  501. mutex_unlock(&dev->struct_mutex);
  502. down_read(&mm->mmap_sem);
  503. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  504. num_pages, 0, 0, user_pages, NULL);
  505. up_read(&mm->mmap_sem);
  506. mutex_lock(&dev->struct_mutex);
  507. if (pinned_pages < num_pages) {
  508. ret = -EFAULT;
  509. goto out_unpin_pages;
  510. }
  511. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  512. if (ret)
  513. goto out_unpin_pages;
  514. ret = i915_gem_object_put_fence(obj);
  515. if (ret)
  516. goto out_unpin_pages;
  517. offset = obj->gtt_offset + args->offset;
  518. while (remain > 0) {
  519. /* Operation in this page
  520. *
  521. * gtt_page_base = page offset within aperture
  522. * gtt_page_offset = offset within page in aperture
  523. * data_page_index = page number in get_user_pages return
  524. * data_page_offset = offset with data_page_index page.
  525. * page_length = bytes to copy for this page
  526. */
  527. gtt_page_base = offset & PAGE_MASK;
  528. gtt_page_offset = offset_in_page(offset);
  529. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  530. data_page_offset = offset_in_page(data_ptr);
  531. page_length = remain;
  532. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  533. page_length = PAGE_SIZE - gtt_page_offset;
  534. if ((data_page_offset + page_length) > PAGE_SIZE)
  535. page_length = PAGE_SIZE - data_page_offset;
  536. slow_kernel_write(dev_priv->mm.gtt_mapping,
  537. gtt_page_base, gtt_page_offset,
  538. user_pages[data_page_index],
  539. data_page_offset,
  540. page_length);
  541. remain -= page_length;
  542. offset += page_length;
  543. data_ptr += page_length;
  544. }
  545. out_unpin_pages:
  546. for (i = 0; i < pinned_pages; i++)
  547. page_cache_release(user_pages[i]);
  548. drm_free_large(user_pages);
  549. return ret;
  550. }
  551. static int
  552. i915_gem_shmem_pwrite(struct drm_device *dev,
  553. struct drm_i915_gem_object *obj,
  554. struct drm_i915_gem_pwrite *args,
  555. struct drm_file *file)
  556. {
  557. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  558. ssize_t remain;
  559. loff_t offset;
  560. char __user *user_data;
  561. int shmem_page_offset, page_length, ret = 0;
  562. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  563. int hit_slowpath = 0;
  564. user_data = (char __user *) (uintptr_t) args->data_ptr;
  565. remain = args->size;
  566. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  567. offset = args->offset;
  568. obj->dirty = 1;
  569. while (remain > 0) {
  570. struct page *page;
  571. char *vaddr;
  572. /* Operation in this page
  573. *
  574. * shmem_page_offset = offset within page in shmem file
  575. * page_length = bytes to copy for this page
  576. */
  577. shmem_page_offset = offset_in_page(offset);
  578. page_length = remain;
  579. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  580. page_length = PAGE_SIZE - shmem_page_offset;
  581. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  582. if (IS_ERR(page)) {
  583. ret = PTR_ERR(page);
  584. goto out;
  585. }
  586. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  587. (page_to_phys(page) & (1 << 17)) != 0;
  588. if (!page_do_bit17_swizzling) {
  589. vaddr = kmap_atomic(page);
  590. ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
  591. user_data,
  592. page_length);
  593. kunmap_atomic(vaddr);
  594. if (ret == 0)
  595. goto next_page;
  596. }
  597. hit_slowpath = 1;
  598. mutex_unlock(&dev->struct_mutex);
  599. vaddr = kmap(page);
  600. if (page_do_bit17_swizzling)
  601. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  602. user_data,
  603. page_length);
  604. else
  605. ret = __copy_from_user(vaddr + shmem_page_offset,
  606. user_data,
  607. page_length);
  608. kunmap(page);
  609. mutex_lock(&dev->struct_mutex);
  610. next_page:
  611. set_page_dirty(page);
  612. mark_page_accessed(page);
  613. page_cache_release(page);
  614. if (ret) {
  615. ret = -EFAULT;
  616. goto out;
  617. }
  618. remain -= page_length;
  619. user_data += page_length;
  620. offset += page_length;
  621. }
  622. out:
  623. if (hit_slowpath) {
  624. /* Fixup: Kill any reinstated backing storage pages */
  625. if (obj->madv == __I915_MADV_PURGED)
  626. i915_gem_object_truncate(obj);
  627. /* and flush dirty cachelines in case the object isn't in the cpu write
  628. * domain anymore. */
  629. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  630. i915_gem_clflush_object(obj);
  631. intel_gtt_chipset_flush();
  632. }
  633. }
  634. return ret;
  635. }
  636. /**
  637. * Writes data to the object referenced by handle.
  638. *
  639. * On error, the contents of the buffer that were to be modified are undefined.
  640. */
  641. int
  642. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  643. struct drm_file *file)
  644. {
  645. struct drm_i915_gem_pwrite *args = data;
  646. struct drm_i915_gem_object *obj;
  647. int ret;
  648. if (args->size == 0)
  649. return 0;
  650. if (!access_ok(VERIFY_READ,
  651. (char __user *)(uintptr_t)args->data_ptr,
  652. args->size))
  653. return -EFAULT;
  654. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  655. args->size);
  656. if (ret)
  657. return -EFAULT;
  658. ret = i915_mutex_lock_interruptible(dev);
  659. if (ret)
  660. return ret;
  661. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  662. if (&obj->base == NULL) {
  663. ret = -ENOENT;
  664. goto unlock;
  665. }
  666. /* Bounds check destination. */
  667. if (args->offset > obj->base.size ||
  668. args->size > obj->base.size - args->offset) {
  669. ret = -EINVAL;
  670. goto out;
  671. }
  672. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  673. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  674. * it would end up going through the fenced access, and we'll get
  675. * different detiling behavior between reading and writing.
  676. * pread/pwrite currently are reading and writing from the CPU
  677. * perspective, requiring manual detiling by the client.
  678. */
  679. if (obj->phys_obj) {
  680. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  681. goto out;
  682. }
  683. if (obj->gtt_space &&
  684. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  685. ret = i915_gem_object_pin(obj, 0, true);
  686. if (ret)
  687. goto out;
  688. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  689. if (ret)
  690. goto out_unpin;
  691. ret = i915_gem_object_put_fence(obj);
  692. if (ret)
  693. goto out_unpin;
  694. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  695. if (ret == -EFAULT)
  696. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  697. out_unpin:
  698. i915_gem_object_unpin(obj);
  699. if (ret != -EFAULT)
  700. goto out;
  701. /* Fall through to the shmfs paths because the gtt paths might
  702. * fail with non-page-backed user pointers (e.g. gtt mappings
  703. * when moving data between textures). */
  704. }
  705. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  706. if (ret)
  707. goto out;
  708. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  709. out:
  710. drm_gem_object_unreference(&obj->base);
  711. unlock:
  712. mutex_unlock(&dev->struct_mutex);
  713. return ret;
  714. }
  715. /**
  716. * Called when user space prepares to use an object with the CPU, either
  717. * through the mmap ioctl's mapping or a GTT mapping.
  718. */
  719. int
  720. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  721. struct drm_file *file)
  722. {
  723. struct drm_i915_gem_set_domain *args = data;
  724. struct drm_i915_gem_object *obj;
  725. uint32_t read_domains = args->read_domains;
  726. uint32_t write_domain = args->write_domain;
  727. int ret;
  728. if (!(dev->driver->driver_features & DRIVER_GEM))
  729. return -ENODEV;
  730. /* Only handle setting domains to types used by the CPU. */
  731. if (write_domain & I915_GEM_GPU_DOMAINS)
  732. return -EINVAL;
  733. if (read_domains & I915_GEM_GPU_DOMAINS)
  734. return -EINVAL;
  735. /* Having something in the write domain implies it's in the read
  736. * domain, and only that read domain. Enforce that in the request.
  737. */
  738. if (write_domain != 0 && read_domains != write_domain)
  739. return -EINVAL;
  740. ret = i915_mutex_lock_interruptible(dev);
  741. if (ret)
  742. return ret;
  743. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  744. if (&obj->base == NULL) {
  745. ret = -ENOENT;
  746. goto unlock;
  747. }
  748. if (read_domains & I915_GEM_DOMAIN_GTT) {
  749. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  750. /* Silently promote "you're not bound, there was nothing to do"
  751. * to success, since the client was just asking us to
  752. * make sure everything was done.
  753. */
  754. if (ret == -EINVAL)
  755. ret = 0;
  756. } else {
  757. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  758. }
  759. drm_gem_object_unreference(&obj->base);
  760. unlock:
  761. mutex_unlock(&dev->struct_mutex);
  762. return ret;
  763. }
  764. /**
  765. * Called when user space has done writes to this buffer
  766. */
  767. int
  768. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  769. struct drm_file *file)
  770. {
  771. struct drm_i915_gem_sw_finish *args = data;
  772. struct drm_i915_gem_object *obj;
  773. int ret = 0;
  774. if (!(dev->driver->driver_features & DRIVER_GEM))
  775. return -ENODEV;
  776. ret = i915_mutex_lock_interruptible(dev);
  777. if (ret)
  778. return ret;
  779. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  780. if (&obj->base == NULL) {
  781. ret = -ENOENT;
  782. goto unlock;
  783. }
  784. /* Pinned buffers may be scanout, so flush the cache */
  785. if (obj->pin_count)
  786. i915_gem_object_flush_cpu_write_domain(obj);
  787. drm_gem_object_unreference(&obj->base);
  788. unlock:
  789. mutex_unlock(&dev->struct_mutex);
  790. return ret;
  791. }
  792. /**
  793. * Maps the contents of an object, returning the address it is mapped
  794. * into.
  795. *
  796. * While the mapping holds a reference on the contents of the object, it doesn't
  797. * imply a ref on the object itself.
  798. */
  799. int
  800. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  801. struct drm_file *file)
  802. {
  803. struct drm_i915_gem_mmap *args = data;
  804. struct drm_gem_object *obj;
  805. unsigned long addr;
  806. if (!(dev->driver->driver_features & DRIVER_GEM))
  807. return -ENODEV;
  808. obj = drm_gem_object_lookup(dev, file, args->handle);
  809. if (obj == NULL)
  810. return -ENOENT;
  811. down_write(&current->mm->mmap_sem);
  812. addr = do_mmap(obj->filp, 0, args->size,
  813. PROT_READ | PROT_WRITE, MAP_SHARED,
  814. args->offset);
  815. up_write(&current->mm->mmap_sem);
  816. drm_gem_object_unreference_unlocked(obj);
  817. if (IS_ERR((void *)addr))
  818. return addr;
  819. args->addr_ptr = (uint64_t) addr;
  820. return 0;
  821. }
  822. /**
  823. * i915_gem_fault - fault a page into the GTT
  824. * vma: VMA in question
  825. * vmf: fault info
  826. *
  827. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  828. * from userspace. The fault handler takes care of binding the object to
  829. * the GTT (if needed), allocating and programming a fence register (again,
  830. * only if needed based on whether the old reg is still valid or the object
  831. * is tiled) and inserting a new PTE into the faulting process.
  832. *
  833. * Note that the faulting process may involve evicting existing objects
  834. * from the GTT and/or fence registers to make room. So performance may
  835. * suffer if the GTT working set is large or there are few fence registers
  836. * left.
  837. */
  838. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  839. {
  840. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  841. struct drm_device *dev = obj->base.dev;
  842. drm_i915_private_t *dev_priv = dev->dev_private;
  843. pgoff_t page_offset;
  844. unsigned long pfn;
  845. int ret = 0;
  846. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  847. /* We don't use vmf->pgoff since that has the fake offset */
  848. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  849. PAGE_SHIFT;
  850. ret = i915_mutex_lock_interruptible(dev);
  851. if (ret)
  852. goto out;
  853. trace_i915_gem_object_fault(obj, page_offset, true, write);
  854. /* Now bind it into the GTT if needed */
  855. if (!obj->map_and_fenceable) {
  856. ret = i915_gem_object_unbind(obj);
  857. if (ret)
  858. goto unlock;
  859. }
  860. if (!obj->gtt_space) {
  861. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  862. if (ret)
  863. goto unlock;
  864. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  865. if (ret)
  866. goto unlock;
  867. }
  868. if (!obj->has_global_gtt_mapping)
  869. i915_gem_gtt_bind_object(obj, obj->cache_level);
  870. if (obj->tiling_mode == I915_TILING_NONE)
  871. ret = i915_gem_object_put_fence(obj);
  872. else
  873. ret = i915_gem_object_get_fence(obj, NULL);
  874. if (ret)
  875. goto unlock;
  876. if (i915_gem_object_is_inactive(obj))
  877. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  878. obj->fault_mappable = true;
  879. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  880. page_offset;
  881. /* Finally, remap it using the new GTT offset */
  882. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  883. unlock:
  884. mutex_unlock(&dev->struct_mutex);
  885. out:
  886. switch (ret) {
  887. case -EIO:
  888. case -EAGAIN:
  889. /* Give the error handler a chance to run and move the
  890. * objects off the GPU active list. Next time we service the
  891. * fault, we should be able to transition the page into the
  892. * GTT without touching the GPU (and so avoid further
  893. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  894. * with coherency, just lost writes.
  895. */
  896. set_need_resched();
  897. case 0:
  898. case -ERESTARTSYS:
  899. case -EINTR:
  900. return VM_FAULT_NOPAGE;
  901. case -ENOMEM:
  902. return VM_FAULT_OOM;
  903. default:
  904. return VM_FAULT_SIGBUS;
  905. }
  906. }
  907. /**
  908. * i915_gem_release_mmap - remove physical page mappings
  909. * @obj: obj in question
  910. *
  911. * Preserve the reservation of the mmapping with the DRM core code, but
  912. * relinquish ownership of the pages back to the system.
  913. *
  914. * It is vital that we remove the page mapping if we have mapped a tiled
  915. * object through the GTT and then lose the fence register due to
  916. * resource pressure. Similarly if the object has been moved out of the
  917. * aperture, than pages mapped into userspace must be revoked. Removing the
  918. * mapping will then trigger a page fault on the next user access, allowing
  919. * fixup by i915_gem_fault().
  920. */
  921. void
  922. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  923. {
  924. if (!obj->fault_mappable)
  925. return;
  926. if (obj->base.dev->dev_mapping)
  927. unmap_mapping_range(obj->base.dev->dev_mapping,
  928. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  929. obj->base.size, 1);
  930. obj->fault_mappable = false;
  931. }
  932. static uint32_t
  933. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  934. {
  935. uint32_t gtt_size;
  936. if (INTEL_INFO(dev)->gen >= 4 ||
  937. tiling_mode == I915_TILING_NONE)
  938. return size;
  939. /* Previous chips need a power-of-two fence region when tiling */
  940. if (INTEL_INFO(dev)->gen == 3)
  941. gtt_size = 1024*1024;
  942. else
  943. gtt_size = 512*1024;
  944. while (gtt_size < size)
  945. gtt_size <<= 1;
  946. return gtt_size;
  947. }
  948. /**
  949. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  950. * @obj: object to check
  951. *
  952. * Return the required GTT alignment for an object, taking into account
  953. * potential fence register mapping.
  954. */
  955. static uint32_t
  956. i915_gem_get_gtt_alignment(struct drm_device *dev,
  957. uint32_t size,
  958. int tiling_mode)
  959. {
  960. /*
  961. * Minimum alignment is 4k (GTT page size), but might be greater
  962. * if a fence register is needed for the object.
  963. */
  964. if (INTEL_INFO(dev)->gen >= 4 ||
  965. tiling_mode == I915_TILING_NONE)
  966. return 4096;
  967. /*
  968. * Previous chips need to be aligned to the size of the smallest
  969. * fence register that can contain the object.
  970. */
  971. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  972. }
  973. /**
  974. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  975. * unfenced object
  976. * @dev: the device
  977. * @size: size of the object
  978. * @tiling_mode: tiling mode of the object
  979. *
  980. * Return the required GTT alignment for an object, only taking into account
  981. * unfenced tiled surface requirements.
  982. */
  983. uint32_t
  984. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  985. uint32_t size,
  986. int tiling_mode)
  987. {
  988. /*
  989. * Minimum alignment is 4k (GTT page size) for sane hw.
  990. */
  991. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  992. tiling_mode == I915_TILING_NONE)
  993. return 4096;
  994. /* Previous hardware however needs to be aligned to a power-of-two
  995. * tile height. The simplest method for determining this is to reuse
  996. * the power-of-tile object size.
  997. */
  998. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  999. }
  1000. int
  1001. i915_gem_mmap_gtt(struct drm_file *file,
  1002. struct drm_device *dev,
  1003. uint32_t handle,
  1004. uint64_t *offset)
  1005. {
  1006. struct drm_i915_private *dev_priv = dev->dev_private;
  1007. struct drm_i915_gem_object *obj;
  1008. int ret;
  1009. if (!(dev->driver->driver_features & DRIVER_GEM))
  1010. return -ENODEV;
  1011. ret = i915_mutex_lock_interruptible(dev);
  1012. if (ret)
  1013. return ret;
  1014. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1015. if (&obj->base == NULL) {
  1016. ret = -ENOENT;
  1017. goto unlock;
  1018. }
  1019. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1020. ret = -E2BIG;
  1021. goto out;
  1022. }
  1023. if (obj->madv != I915_MADV_WILLNEED) {
  1024. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1025. ret = -EINVAL;
  1026. goto out;
  1027. }
  1028. if (!obj->base.map_list.map) {
  1029. ret = drm_gem_create_mmap_offset(&obj->base);
  1030. if (ret)
  1031. goto out;
  1032. }
  1033. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1034. out:
  1035. drm_gem_object_unreference(&obj->base);
  1036. unlock:
  1037. mutex_unlock(&dev->struct_mutex);
  1038. return ret;
  1039. }
  1040. /**
  1041. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1042. * @dev: DRM device
  1043. * @data: GTT mapping ioctl data
  1044. * @file: GEM object info
  1045. *
  1046. * Simply returns the fake offset to userspace so it can mmap it.
  1047. * The mmap call will end up in drm_gem_mmap(), which will set things
  1048. * up so we can get faults in the handler above.
  1049. *
  1050. * The fault handler will take care of binding the object into the GTT
  1051. * (since it may have been evicted to make room for something), allocating
  1052. * a fence register, and mapping the appropriate aperture address into
  1053. * userspace.
  1054. */
  1055. int
  1056. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1057. struct drm_file *file)
  1058. {
  1059. struct drm_i915_gem_mmap_gtt *args = data;
  1060. if (!(dev->driver->driver_features & DRIVER_GEM))
  1061. return -ENODEV;
  1062. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1063. }
  1064. static int
  1065. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1066. gfp_t gfpmask)
  1067. {
  1068. int page_count, i;
  1069. struct address_space *mapping;
  1070. struct inode *inode;
  1071. struct page *page;
  1072. /* Get the list of pages out of our struct file. They'll be pinned
  1073. * at this point until we release them.
  1074. */
  1075. page_count = obj->base.size / PAGE_SIZE;
  1076. BUG_ON(obj->pages != NULL);
  1077. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1078. if (obj->pages == NULL)
  1079. return -ENOMEM;
  1080. inode = obj->base.filp->f_path.dentry->d_inode;
  1081. mapping = inode->i_mapping;
  1082. gfpmask |= mapping_gfp_mask(mapping);
  1083. for (i = 0; i < page_count; i++) {
  1084. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1085. if (IS_ERR(page))
  1086. goto err_pages;
  1087. obj->pages[i] = page;
  1088. }
  1089. if (i915_gem_object_needs_bit17_swizzle(obj))
  1090. i915_gem_object_do_bit_17_swizzle(obj);
  1091. return 0;
  1092. err_pages:
  1093. while (i--)
  1094. page_cache_release(obj->pages[i]);
  1095. drm_free_large(obj->pages);
  1096. obj->pages = NULL;
  1097. return PTR_ERR(page);
  1098. }
  1099. static void
  1100. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1101. {
  1102. int page_count = obj->base.size / PAGE_SIZE;
  1103. int i;
  1104. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1105. if (i915_gem_object_needs_bit17_swizzle(obj))
  1106. i915_gem_object_save_bit_17_swizzle(obj);
  1107. if (obj->madv == I915_MADV_DONTNEED)
  1108. obj->dirty = 0;
  1109. for (i = 0; i < page_count; i++) {
  1110. if (obj->dirty)
  1111. set_page_dirty(obj->pages[i]);
  1112. if (obj->madv == I915_MADV_WILLNEED)
  1113. mark_page_accessed(obj->pages[i]);
  1114. page_cache_release(obj->pages[i]);
  1115. }
  1116. obj->dirty = 0;
  1117. drm_free_large(obj->pages);
  1118. obj->pages = NULL;
  1119. }
  1120. void
  1121. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1122. struct intel_ring_buffer *ring,
  1123. u32 seqno)
  1124. {
  1125. struct drm_device *dev = obj->base.dev;
  1126. struct drm_i915_private *dev_priv = dev->dev_private;
  1127. BUG_ON(ring == NULL);
  1128. obj->ring = ring;
  1129. /* Add a reference if we're newly entering the active list. */
  1130. if (!obj->active) {
  1131. drm_gem_object_reference(&obj->base);
  1132. obj->active = 1;
  1133. }
  1134. /* Move from whatever list we were on to the tail of execution. */
  1135. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1136. list_move_tail(&obj->ring_list, &ring->active_list);
  1137. obj->last_rendering_seqno = seqno;
  1138. if (obj->fenced_gpu_access) {
  1139. struct drm_i915_fence_reg *reg;
  1140. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1141. obj->last_fenced_seqno = seqno;
  1142. obj->last_fenced_ring = ring;
  1143. reg = &dev_priv->fence_regs[obj->fence_reg];
  1144. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1145. }
  1146. }
  1147. static void
  1148. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1149. {
  1150. list_del_init(&obj->ring_list);
  1151. obj->last_rendering_seqno = 0;
  1152. }
  1153. static void
  1154. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1155. {
  1156. struct drm_device *dev = obj->base.dev;
  1157. drm_i915_private_t *dev_priv = dev->dev_private;
  1158. BUG_ON(!obj->active);
  1159. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1160. i915_gem_object_move_off_active(obj);
  1161. }
  1162. static void
  1163. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1164. {
  1165. struct drm_device *dev = obj->base.dev;
  1166. struct drm_i915_private *dev_priv = dev->dev_private;
  1167. if (obj->pin_count != 0)
  1168. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1169. else
  1170. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1171. BUG_ON(!list_empty(&obj->gpu_write_list));
  1172. BUG_ON(!obj->active);
  1173. obj->ring = NULL;
  1174. i915_gem_object_move_off_active(obj);
  1175. obj->fenced_gpu_access = false;
  1176. obj->active = 0;
  1177. obj->pending_gpu_write = false;
  1178. drm_gem_object_unreference(&obj->base);
  1179. WARN_ON(i915_verify_lists(dev));
  1180. }
  1181. /* Immediately discard the backing storage */
  1182. static void
  1183. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1184. {
  1185. struct inode *inode;
  1186. /* Our goal here is to return as much of the memory as
  1187. * is possible back to the system as we are called from OOM.
  1188. * To do this we must instruct the shmfs to drop all of its
  1189. * backing pages, *now*.
  1190. */
  1191. inode = obj->base.filp->f_path.dentry->d_inode;
  1192. shmem_truncate_range(inode, 0, (loff_t)-1);
  1193. if (obj->base.map_list.map)
  1194. drm_gem_free_mmap_offset(&obj->base);
  1195. obj->madv = __I915_MADV_PURGED;
  1196. }
  1197. static inline int
  1198. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1199. {
  1200. return obj->madv == I915_MADV_DONTNEED;
  1201. }
  1202. static void
  1203. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1204. uint32_t flush_domains)
  1205. {
  1206. struct drm_i915_gem_object *obj, *next;
  1207. list_for_each_entry_safe(obj, next,
  1208. &ring->gpu_write_list,
  1209. gpu_write_list) {
  1210. if (obj->base.write_domain & flush_domains) {
  1211. uint32_t old_write_domain = obj->base.write_domain;
  1212. obj->base.write_domain = 0;
  1213. list_del_init(&obj->gpu_write_list);
  1214. i915_gem_object_move_to_active(obj, ring,
  1215. i915_gem_next_request_seqno(ring));
  1216. trace_i915_gem_object_change_domain(obj,
  1217. obj->base.read_domains,
  1218. old_write_domain);
  1219. }
  1220. }
  1221. }
  1222. static u32
  1223. i915_gem_get_seqno(struct drm_device *dev)
  1224. {
  1225. drm_i915_private_t *dev_priv = dev->dev_private;
  1226. u32 seqno = dev_priv->next_seqno;
  1227. /* reserve 0 for non-seqno */
  1228. if (++dev_priv->next_seqno == 0)
  1229. dev_priv->next_seqno = 1;
  1230. return seqno;
  1231. }
  1232. u32
  1233. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1234. {
  1235. if (ring->outstanding_lazy_request == 0)
  1236. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1237. return ring->outstanding_lazy_request;
  1238. }
  1239. int
  1240. i915_add_request(struct intel_ring_buffer *ring,
  1241. struct drm_file *file,
  1242. struct drm_i915_gem_request *request)
  1243. {
  1244. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1245. uint32_t seqno;
  1246. u32 request_ring_position;
  1247. int was_empty;
  1248. int ret;
  1249. BUG_ON(request == NULL);
  1250. seqno = i915_gem_next_request_seqno(ring);
  1251. /* Record the position of the start of the request so that
  1252. * should we detect the updated seqno part-way through the
  1253. * GPU processing the request, we never over-estimate the
  1254. * position of the head.
  1255. */
  1256. request_ring_position = intel_ring_get_tail(ring);
  1257. ret = ring->add_request(ring, &seqno);
  1258. if (ret)
  1259. return ret;
  1260. trace_i915_gem_request_add(ring, seqno);
  1261. request->seqno = seqno;
  1262. request->ring = ring;
  1263. request->tail = request_ring_position;
  1264. request->emitted_jiffies = jiffies;
  1265. was_empty = list_empty(&ring->request_list);
  1266. list_add_tail(&request->list, &ring->request_list);
  1267. if (file) {
  1268. struct drm_i915_file_private *file_priv = file->driver_priv;
  1269. spin_lock(&file_priv->mm.lock);
  1270. request->file_priv = file_priv;
  1271. list_add_tail(&request->client_list,
  1272. &file_priv->mm.request_list);
  1273. spin_unlock(&file_priv->mm.lock);
  1274. }
  1275. ring->outstanding_lazy_request = 0;
  1276. if (!dev_priv->mm.suspended) {
  1277. if (i915_enable_hangcheck) {
  1278. mod_timer(&dev_priv->hangcheck_timer,
  1279. jiffies +
  1280. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1281. }
  1282. if (was_empty)
  1283. queue_delayed_work(dev_priv->wq,
  1284. &dev_priv->mm.retire_work, HZ);
  1285. }
  1286. return 0;
  1287. }
  1288. static inline void
  1289. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1290. {
  1291. struct drm_i915_file_private *file_priv = request->file_priv;
  1292. if (!file_priv)
  1293. return;
  1294. spin_lock(&file_priv->mm.lock);
  1295. if (request->file_priv) {
  1296. list_del(&request->client_list);
  1297. request->file_priv = NULL;
  1298. }
  1299. spin_unlock(&file_priv->mm.lock);
  1300. }
  1301. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1302. struct intel_ring_buffer *ring)
  1303. {
  1304. while (!list_empty(&ring->request_list)) {
  1305. struct drm_i915_gem_request *request;
  1306. request = list_first_entry(&ring->request_list,
  1307. struct drm_i915_gem_request,
  1308. list);
  1309. list_del(&request->list);
  1310. i915_gem_request_remove_from_client(request);
  1311. kfree(request);
  1312. }
  1313. while (!list_empty(&ring->active_list)) {
  1314. struct drm_i915_gem_object *obj;
  1315. obj = list_first_entry(&ring->active_list,
  1316. struct drm_i915_gem_object,
  1317. ring_list);
  1318. obj->base.write_domain = 0;
  1319. list_del_init(&obj->gpu_write_list);
  1320. i915_gem_object_move_to_inactive(obj);
  1321. }
  1322. }
  1323. static void i915_gem_reset_fences(struct drm_device *dev)
  1324. {
  1325. struct drm_i915_private *dev_priv = dev->dev_private;
  1326. int i;
  1327. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1328. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1329. struct drm_i915_gem_object *obj = reg->obj;
  1330. if (!obj)
  1331. continue;
  1332. if (obj->tiling_mode)
  1333. i915_gem_release_mmap(obj);
  1334. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1335. reg->obj->fenced_gpu_access = false;
  1336. reg->obj->last_fenced_seqno = 0;
  1337. reg->obj->last_fenced_ring = NULL;
  1338. i915_gem_clear_fence_reg(dev, reg);
  1339. }
  1340. }
  1341. void i915_gem_reset(struct drm_device *dev)
  1342. {
  1343. struct drm_i915_private *dev_priv = dev->dev_private;
  1344. struct drm_i915_gem_object *obj;
  1345. int i;
  1346. for (i = 0; i < I915_NUM_RINGS; i++)
  1347. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1348. /* Remove anything from the flushing lists. The GPU cache is likely
  1349. * to be lost on reset along with the data, so simply move the
  1350. * lost bo to the inactive list.
  1351. */
  1352. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1353. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1354. struct drm_i915_gem_object,
  1355. mm_list);
  1356. obj->base.write_domain = 0;
  1357. list_del_init(&obj->gpu_write_list);
  1358. i915_gem_object_move_to_inactive(obj);
  1359. }
  1360. /* Move everything out of the GPU domains to ensure we do any
  1361. * necessary invalidation upon reuse.
  1362. */
  1363. list_for_each_entry(obj,
  1364. &dev_priv->mm.inactive_list,
  1365. mm_list)
  1366. {
  1367. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1368. }
  1369. /* The fence registers are invalidated so clear them out */
  1370. i915_gem_reset_fences(dev);
  1371. }
  1372. /**
  1373. * This function clears the request list as sequence numbers are passed.
  1374. */
  1375. void
  1376. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1377. {
  1378. uint32_t seqno;
  1379. int i;
  1380. if (list_empty(&ring->request_list))
  1381. return;
  1382. WARN_ON(i915_verify_lists(ring->dev));
  1383. seqno = ring->get_seqno(ring);
  1384. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1385. if (seqno >= ring->sync_seqno[i])
  1386. ring->sync_seqno[i] = 0;
  1387. while (!list_empty(&ring->request_list)) {
  1388. struct drm_i915_gem_request *request;
  1389. request = list_first_entry(&ring->request_list,
  1390. struct drm_i915_gem_request,
  1391. list);
  1392. if (!i915_seqno_passed(seqno, request->seqno))
  1393. break;
  1394. trace_i915_gem_request_retire(ring, request->seqno);
  1395. /* We know the GPU must have read the request to have
  1396. * sent us the seqno + interrupt, so use the position
  1397. * of tail of the request to update the last known position
  1398. * of the GPU head.
  1399. */
  1400. ring->last_retired_head = request->tail;
  1401. list_del(&request->list);
  1402. i915_gem_request_remove_from_client(request);
  1403. kfree(request);
  1404. }
  1405. /* Move any buffers on the active list that are no longer referenced
  1406. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1407. */
  1408. while (!list_empty(&ring->active_list)) {
  1409. struct drm_i915_gem_object *obj;
  1410. obj = list_first_entry(&ring->active_list,
  1411. struct drm_i915_gem_object,
  1412. ring_list);
  1413. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1414. break;
  1415. if (obj->base.write_domain != 0)
  1416. i915_gem_object_move_to_flushing(obj);
  1417. else
  1418. i915_gem_object_move_to_inactive(obj);
  1419. }
  1420. if (unlikely(ring->trace_irq_seqno &&
  1421. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1422. ring->irq_put(ring);
  1423. ring->trace_irq_seqno = 0;
  1424. }
  1425. WARN_ON(i915_verify_lists(ring->dev));
  1426. }
  1427. void
  1428. i915_gem_retire_requests(struct drm_device *dev)
  1429. {
  1430. drm_i915_private_t *dev_priv = dev->dev_private;
  1431. int i;
  1432. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1433. struct drm_i915_gem_object *obj, *next;
  1434. /* We must be careful that during unbind() we do not
  1435. * accidentally infinitely recurse into retire requests.
  1436. * Currently:
  1437. * retire -> free -> unbind -> wait -> retire_ring
  1438. */
  1439. list_for_each_entry_safe(obj, next,
  1440. &dev_priv->mm.deferred_free_list,
  1441. mm_list)
  1442. i915_gem_free_object_tail(obj);
  1443. }
  1444. for (i = 0; i < I915_NUM_RINGS; i++)
  1445. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1446. }
  1447. static void
  1448. i915_gem_retire_work_handler(struct work_struct *work)
  1449. {
  1450. drm_i915_private_t *dev_priv;
  1451. struct drm_device *dev;
  1452. bool idle;
  1453. int i;
  1454. dev_priv = container_of(work, drm_i915_private_t,
  1455. mm.retire_work.work);
  1456. dev = dev_priv->dev;
  1457. /* Come back later if the device is busy... */
  1458. if (!mutex_trylock(&dev->struct_mutex)) {
  1459. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1460. return;
  1461. }
  1462. i915_gem_retire_requests(dev);
  1463. /* Send a periodic flush down the ring so we don't hold onto GEM
  1464. * objects indefinitely.
  1465. */
  1466. idle = true;
  1467. for (i = 0; i < I915_NUM_RINGS; i++) {
  1468. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1469. if (!list_empty(&ring->gpu_write_list)) {
  1470. struct drm_i915_gem_request *request;
  1471. int ret;
  1472. ret = i915_gem_flush_ring(ring,
  1473. 0, I915_GEM_GPU_DOMAINS);
  1474. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1475. if (ret || request == NULL ||
  1476. i915_add_request(ring, NULL, request))
  1477. kfree(request);
  1478. }
  1479. idle &= list_empty(&ring->request_list);
  1480. }
  1481. if (!dev_priv->mm.suspended && !idle)
  1482. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1483. mutex_unlock(&dev->struct_mutex);
  1484. }
  1485. /**
  1486. * Waits for a sequence number to be signaled, and cleans up the
  1487. * request and object lists appropriately for that event.
  1488. */
  1489. int
  1490. i915_wait_request(struct intel_ring_buffer *ring,
  1491. uint32_t seqno,
  1492. bool do_retire)
  1493. {
  1494. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1495. u32 ier;
  1496. int ret = 0;
  1497. BUG_ON(seqno == 0);
  1498. if (atomic_read(&dev_priv->mm.wedged)) {
  1499. struct completion *x = &dev_priv->error_completion;
  1500. bool recovery_complete;
  1501. unsigned long flags;
  1502. /* Give the error handler a chance to run. */
  1503. spin_lock_irqsave(&x->wait.lock, flags);
  1504. recovery_complete = x->done > 0;
  1505. spin_unlock_irqrestore(&x->wait.lock, flags);
  1506. return recovery_complete ? -EIO : -EAGAIN;
  1507. }
  1508. if (seqno == ring->outstanding_lazy_request) {
  1509. struct drm_i915_gem_request *request;
  1510. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1511. if (request == NULL)
  1512. return -ENOMEM;
  1513. ret = i915_add_request(ring, NULL, request);
  1514. if (ret) {
  1515. kfree(request);
  1516. return ret;
  1517. }
  1518. seqno = request->seqno;
  1519. }
  1520. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1521. if (HAS_PCH_SPLIT(ring->dev))
  1522. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1523. else
  1524. ier = I915_READ(IER);
  1525. if (!ier) {
  1526. DRM_ERROR("something (likely vbetool) disabled "
  1527. "interrupts, re-enabling\n");
  1528. ring->dev->driver->irq_preinstall(ring->dev);
  1529. ring->dev->driver->irq_postinstall(ring->dev);
  1530. }
  1531. trace_i915_gem_request_wait_begin(ring, seqno);
  1532. ring->waiting_seqno = seqno;
  1533. if (ring->irq_get(ring)) {
  1534. if (dev_priv->mm.interruptible)
  1535. ret = wait_event_interruptible(ring->irq_queue,
  1536. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1537. || atomic_read(&dev_priv->mm.wedged));
  1538. else
  1539. wait_event(ring->irq_queue,
  1540. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1541. || atomic_read(&dev_priv->mm.wedged));
  1542. ring->irq_put(ring);
  1543. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1544. seqno) ||
  1545. atomic_read(&dev_priv->mm.wedged), 3000))
  1546. ret = -EBUSY;
  1547. ring->waiting_seqno = 0;
  1548. trace_i915_gem_request_wait_end(ring, seqno);
  1549. }
  1550. if (atomic_read(&dev_priv->mm.wedged))
  1551. ret = -EAGAIN;
  1552. /* Directly dispatch request retiring. While we have the work queue
  1553. * to handle this, the waiter on a request often wants an associated
  1554. * buffer to have made it to the inactive list, and we would need
  1555. * a separate wait queue to handle that.
  1556. */
  1557. if (ret == 0 && do_retire)
  1558. i915_gem_retire_requests_ring(ring);
  1559. return ret;
  1560. }
  1561. /**
  1562. * Ensures that all rendering to the object has completed and the object is
  1563. * safe to unbind from the GTT or access from the CPU.
  1564. */
  1565. int
  1566. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1567. {
  1568. int ret;
  1569. /* This function only exists to support waiting for existing rendering,
  1570. * not for emitting required flushes.
  1571. */
  1572. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1573. /* If there is rendering queued on the buffer being evicted, wait for
  1574. * it.
  1575. */
  1576. if (obj->active) {
  1577. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1578. true);
  1579. if (ret)
  1580. return ret;
  1581. }
  1582. return 0;
  1583. }
  1584. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1585. {
  1586. u32 old_write_domain, old_read_domains;
  1587. /* Act a barrier for all accesses through the GTT */
  1588. mb();
  1589. /* Force a pagefault for domain tracking on next user access */
  1590. i915_gem_release_mmap(obj);
  1591. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1592. return;
  1593. old_read_domains = obj->base.read_domains;
  1594. old_write_domain = obj->base.write_domain;
  1595. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1596. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1597. trace_i915_gem_object_change_domain(obj,
  1598. old_read_domains,
  1599. old_write_domain);
  1600. }
  1601. /**
  1602. * Unbinds an object from the GTT aperture.
  1603. */
  1604. int
  1605. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1606. {
  1607. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1608. int ret = 0;
  1609. if (obj->gtt_space == NULL)
  1610. return 0;
  1611. if (obj->pin_count != 0) {
  1612. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1613. return -EINVAL;
  1614. }
  1615. ret = i915_gem_object_finish_gpu(obj);
  1616. if (ret == -ERESTARTSYS)
  1617. return ret;
  1618. /* Continue on if we fail due to EIO, the GPU is hung so we
  1619. * should be safe and we need to cleanup or else we might
  1620. * cause memory corruption through use-after-free.
  1621. */
  1622. i915_gem_object_finish_gtt(obj);
  1623. /* Move the object to the CPU domain to ensure that
  1624. * any possible CPU writes while it's not in the GTT
  1625. * are flushed when we go to remap it.
  1626. */
  1627. if (ret == 0)
  1628. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1629. if (ret == -ERESTARTSYS)
  1630. return ret;
  1631. if (ret) {
  1632. /* In the event of a disaster, abandon all caches and
  1633. * hope for the best.
  1634. */
  1635. i915_gem_clflush_object(obj);
  1636. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1637. }
  1638. /* release the fence reg _after_ flushing */
  1639. ret = i915_gem_object_put_fence(obj);
  1640. if (ret == -ERESTARTSYS)
  1641. return ret;
  1642. trace_i915_gem_object_unbind(obj);
  1643. if (obj->has_global_gtt_mapping)
  1644. i915_gem_gtt_unbind_object(obj);
  1645. if (obj->has_aliasing_ppgtt_mapping) {
  1646. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1647. obj->has_aliasing_ppgtt_mapping = 0;
  1648. }
  1649. i915_gem_gtt_finish_object(obj);
  1650. i915_gem_object_put_pages_gtt(obj);
  1651. list_del_init(&obj->gtt_list);
  1652. list_del_init(&obj->mm_list);
  1653. /* Avoid an unnecessary call to unbind on rebind. */
  1654. obj->map_and_fenceable = true;
  1655. drm_mm_put_block(obj->gtt_space);
  1656. obj->gtt_space = NULL;
  1657. obj->gtt_offset = 0;
  1658. if (i915_gem_object_is_purgeable(obj))
  1659. i915_gem_object_truncate(obj);
  1660. return ret;
  1661. }
  1662. int
  1663. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1664. uint32_t invalidate_domains,
  1665. uint32_t flush_domains)
  1666. {
  1667. int ret;
  1668. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1669. return 0;
  1670. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1671. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1672. if (ret)
  1673. return ret;
  1674. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1675. i915_gem_process_flushing_list(ring, flush_domains);
  1676. return 0;
  1677. }
  1678. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1679. {
  1680. int ret;
  1681. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1682. return 0;
  1683. if (!list_empty(&ring->gpu_write_list)) {
  1684. ret = i915_gem_flush_ring(ring,
  1685. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1686. if (ret)
  1687. return ret;
  1688. }
  1689. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1690. do_retire);
  1691. }
  1692. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1693. {
  1694. drm_i915_private_t *dev_priv = dev->dev_private;
  1695. int ret, i;
  1696. /* Flush everything onto the inactive list. */
  1697. for (i = 0; i < I915_NUM_RINGS; i++) {
  1698. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1699. if (ret)
  1700. return ret;
  1701. }
  1702. return 0;
  1703. }
  1704. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1705. struct intel_ring_buffer *pipelined)
  1706. {
  1707. struct drm_device *dev = obj->base.dev;
  1708. drm_i915_private_t *dev_priv = dev->dev_private;
  1709. u32 size = obj->gtt_space->size;
  1710. int regnum = obj->fence_reg;
  1711. uint64_t val;
  1712. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1713. 0xfffff000) << 32;
  1714. val |= obj->gtt_offset & 0xfffff000;
  1715. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1716. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1717. if (obj->tiling_mode == I915_TILING_Y)
  1718. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1719. val |= I965_FENCE_REG_VALID;
  1720. if (pipelined) {
  1721. int ret = intel_ring_begin(pipelined, 6);
  1722. if (ret)
  1723. return ret;
  1724. intel_ring_emit(pipelined, MI_NOOP);
  1725. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1726. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1727. intel_ring_emit(pipelined, (u32)val);
  1728. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1729. intel_ring_emit(pipelined, (u32)(val >> 32));
  1730. intel_ring_advance(pipelined);
  1731. } else
  1732. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1733. return 0;
  1734. }
  1735. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1736. struct intel_ring_buffer *pipelined)
  1737. {
  1738. struct drm_device *dev = obj->base.dev;
  1739. drm_i915_private_t *dev_priv = dev->dev_private;
  1740. u32 size = obj->gtt_space->size;
  1741. int regnum = obj->fence_reg;
  1742. uint64_t val;
  1743. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1744. 0xfffff000) << 32;
  1745. val |= obj->gtt_offset & 0xfffff000;
  1746. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1747. if (obj->tiling_mode == I915_TILING_Y)
  1748. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1749. val |= I965_FENCE_REG_VALID;
  1750. if (pipelined) {
  1751. int ret = intel_ring_begin(pipelined, 6);
  1752. if (ret)
  1753. return ret;
  1754. intel_ring_emit(pipelined, MI_NOOP);
  1755. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1756. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1757. intel_ring_emit(pipelined, (u32)val);
  1758. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1759. intel_ring_emit(pipelined, (u32)(val >> 32));
  1760. intel_ring_advance(pipelined);
  1761. } else
  1762. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1763. return 0;
  1764. }
  1765. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1766. struct intel_ring_buffer *pipelined)
  1767. {
  1768. struct drm_device *dev = obj->base.dev;
  1769. drm_i915_private_t *dev_priv = dev->dev_private;
  1770. u32 size = obj->gtt_space->size;
  1771. u32 fence_reg, val, pitch_val;
  1772. int tile_width;
  1773. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1774. (size & -size) != size ||
  1775. (obj->gtt_offset & (size - 1)),
  1776. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1777. obj->gtt_offset, obj->map_and_fenceable, size))
  1778. return -EINVAL;
  1779. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1780. tile_width = 128;
  1781. else
  1782. tile_width = 512;
  1783. /* Note: pitch better be a power of two tile widths */
  1784. pitch_val = obj->stride / tile_width;
  1785. pitch_val = ffs(pitch_val) - 1;
  1786. val = obj->gtt_offset;
  1787. if (obj->tiling_mode == I915_TILING_Y)
  1788. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1789. val |= I915_FENCE_SIZE_BITS(size);
  1790. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1791. val |= I830_FENCE_REG_VALID;
  1792. fence_reg = obj->fence_reg;
  1793. if (fence_reg < 8)
  1794. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1795. else
  1796. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1797. if (pipelined) {
  1798. int ret = intel_ring_begin(pipelined, 4);
  1799. if (ret)
  1800. return ret;
  1801. intel_ring_emit(pipelined, MI_NOOP);
  1802. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1803. intel_ring_emit(pipelined, fence_reg);
  1804. intel_ring_emit(pipelined, val);
  1805. intel_ring_advance(pipelined);
  1806. } else
  1807. I915_WRITE(fence_reg, val);
  1808. return 0;
  1809. }
  1810. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1811. struct intel_ring_buffer *pipelined)
  1812. {
  1813. struct drm_device *dev = obj->base.dev;
  1814. drm_i915_private_t *dev_priv = dev->dev_private;
  1815. u32 size = obj->gtt_space->size;
  1816. int regnum = obj->fence_reg;
  1817. uint32_t val;
  1818. uint32_t pitch_val;
  1819. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1820. (size & -size) != size ||
  1821. (obj->gtt_offset & (size - 1)),
  1822. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1823. obj->gtt_offset, size))
  1824. return -EINVAL;
  1825. pitch_val = obj->stride / 128;
  1826. pitch_val = ffs(pitch_val) - 1;
  1827. val = obj->gtt_offset;
  1828. if (obj->tiling_mode == I915_TILING_Y)
  1829. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1830. val |= I830_FENCE_SIZE_BITS(size);
  1831. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1832. val |= I830_FENCE_REG_VALID;
  1833. if (pipelined) {
  1834. int ret = intel_ring_begin(pipelined, 4);
  1835. if (ret)
  1836. return ret;
  1837. intel_ring_emit(pipelined, MI_NOOP);
  1838. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1839. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1840. intel_ring_emit(pipelined, val);
  1841. intel_ring_advance(pipelined);
  1842. } else
  1843. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1844. return 0;
  1845. }
  1846. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1847. {
  1848. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1849. }
  1850. static int
  1851. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1852. struct intel_ring_buffer *pipelined)
  1853. {
  1854. int ret;
  1855. if (obj->fenced_gpu_access) {
  1856. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1857. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1858. 0, obj->base.write_domain);
  1859. if (ret)
  1860. return ret;
  1861. }
  1862. obj->fenced_gpu_access = false;
  1863. }
  1864. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1865. if (!ring_passed_seqno(obj->last_fenced_ring,
  1866. obj->last_fenced_seqno)) {
  1867. ret = i915_wait_request(obj->last_fenced_ring,
  1868. obj->last_fenced_seqno,
  1869. true);
  1870. if (ret)
  1871. return ret;
  1872. }
  1873. obj->last_fenced_seqno = 0;
  1874. obj->last_fenced_ring = NULL;
  1875. }
  1876. /* Ensure that all CPU reads are completed before installing a fence
  1877. * and all writes before removing the fence.
  1878. */
  1879. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1880. mb();
  1881. return 0;
  1882. }
  1883. int
  1884. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1885. {
  1886. int ret;
  1887. if (obj->tiling_mode)
  1888. i915_gem_release_mmap(obj);
  1889. ret = i915_gem_object_flush_fence(obj, NULL);
  1890. if (ret)
  1891. return ret;
  1892. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1893. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1894. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1895. i915_gem_clear_fence_reg(obj->base.dev,
  1896. &dev_priv->fence_regs[obj->fence_reg]);
  1897. obj->fence_reg = I915_FENCE_REG_NONE;
  1898. }
  1899. return 0;
  1900. }
  1901. static struct drm_i915_fence_reg *
  1902. i915_find_fence_reg(struct drm_device *dev,
  1903. struct intel_ring_buffer *pipelined)
  1904. {
  1905. struct drm_i915_private *dev_priv = dev->dev_private;
  1906. struct drm_i915_fence_reg *reg, *first, *avail;
  1907. int i;
  1908. /* First try to find a free reg */
  1909. avail = NULL;
  1910. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1911. reg = &dev_priv->fence_regs[i];
  1912. if (!reg->obj)
  1913. return reg;
  1914. if (!reg->pin_count)
  1915. avail = reg;
  1916. }
  1917. if (avail == NULL)
  1918. return NULL;
  1919. /* None available, try to steal one or wait for a user to finish */
  1920. avail = first = NULL;
  1921. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1922. if (reg->pin_count)
  1923. continue;
  1924. if (first == NULL)
  1925. first = reg;
  1926. if (!pipelined ||
  1927. !reg->obj->last_fenced_ring ||
  1928. reg->obj->last_fenced_ring == pipelined) {
  1929. avail = reg;
  1930. break;
  1931. }
  1932. }
  1933. if (avail == NULL)
  1934. avail = first;
  1935. return avail;
  1936. }
  1937. /**
  1938. * i915_gem_object_get_fence - set up a fence reg for an object
  1939. * @obj: object to map through a fence reg
  1940. * @pipelined: ring on which to queue the change, or NULL for CPU access
  1941. * @interruptible: must we wait uninterruptibly for the register to retire?
  1942. *
  1943. * When mapping objects through the GTT, userspace wants to be able to write
  1944. * to them without having to worry about swizzling if the object is tiled.
  1945. *
  1946. * This function walks the fence regs looking for a free one for @obj,
  1947. * stealing one if it can't find any.
  1948. *
  1949. * It then sets up the reg based on the object's properties: address, pitch
  1950. * and tiling format.
  1951. */
  1952. int
  1953. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  1954. struct intel_ring_buffer *pipelined)
  1955. {
  1956. struct drm_device *dev = obj->base.dev;
  1957. struct drm_i915_private *dev_priv = dev->dev_private;
  1958. struct drm_i915_fence_reg *reg;
  1959. int ret;
  1960. /* XXX disable pipelining. There are bugs. Shocking. */
  1961. pipelined = NULL;
  1962. /* Just update our place in the LRU if our fence is getting reused. */
  1963. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1964. reg = &dev_priv->fence_regs[obj->fence_reg];
  1965. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1966. if (obj->tiling_changed) {
  1967. ret = i915_gem_object_flush_fence(obj, pipelined);
  1968. if (ret)
  1969. return ret;
  1970. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  1971. pipelined = NULL;
  1972. if (pipelined) {
  1973. reg->setup_seqno =
  1974. i915_gem_next_request_seqno(pipelined);
  1975. obj->last_fenced_seqno = reg->setup_seqno;
  1976. obj->last_fenced_ring = pipelined;
  1977. }
  1978. goto update;
  1979. }
  1980. if (!pipelined) {
  1981. if (reg->setup_seqno) {
  1982. if (!ring_passed_seqno(obj->last_fenced_ring,
  1983. reg->setup_seqno)) {
  1984. ret = i915_wait_request(obj->last_fenced_ring,
  1985. reg->setup_seqno,
  1986. true);
  1987. if (ret)
  1988. return ret;
  1989. }
  1990. reg->setup_seqno = 0;
  1991. }
  1992. } else if (obj->last_fenced_ring &&
  1993. obj->last_fenced_ring != pipelined) {
  1994. ret = i915_gem_object_flush_fence(obj, pipelined);
  1995. if (ret)
  1996. return ret;
  1997. }
  1998. return 0;
  1999. }
  2000. reg = i915_find_fence_reg(dev, pipelined);
  2001. if (reg == NULL)
  2002. return -EDEADLK;
  2003. ret = i915_gem_object_flush_fence(obj, pipelined);
  2004. if (ret)
  2005. return ret;
  2006. if (reg->obj) {
  2007. struct drm_i915_gem_object *old = reg->obj;
  2008. drm_gem_object_reference(&old->base);
  2009. if (old->tiling_mode)
  2010. i915_gem_release_mmap(old);
  2011. ret = i915_gem_object_flush_fence(old, pipelined);
  2012. if (ret) {
  2013. drm_gem_object_unreference(&old->base);
  2014. return ret;
  2015. }
  2016. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2017. pipelined = NULL;
  2018. old->fence_reg = I915_FENCE_REG_NONE;
  2019. old->last_fenced_ring = pipelined;
  2020. old->last_fenced_seqno =
  2021. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2022. drm_gem_object_unreference(&old->base);
  2023. } else if (obj->last_fenced_seqno == 0)
  2024. pipelined = NULL;
  2025. reg->obj = obj;
  2026. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2027. obj->fence_reg = reg - dev_priv->fence_regs;
  2028. obj->last_fenced_ring = pipelined;
  2029. reg->setup_seqno =
  2030. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2031. obj->last_fenced_seqno = reg->setup_seqno;
  2032. update:
  2033. obj->tiling_changed = false;
  2034. switch (INTEL_INFO(dev)->gen) {
  2035. case 7:
  2036. case 6:
  2037. ret = sandybridge_write_fence_reg(obj, pipelined);
  2038. break;
  2039. case 5:
  2040. case 4:
  2041. ret = i965_write_fence_reg(obj, pipelined);
  2042. break;
  2043. case 3:
  2044. ret = i915_write_fence_reg(obj, pipelined);
  2045. break;
  2046. case 2:
  2047. ret = i830_write_fence_reg(obj, pipelined);
  2048. break;
  2049. }
  2050. return ret;
  2051. }
  2052. /**
  2053. * i915_gem_clear_fence_reg - clear out fence register info
  2054. * @obj: object to clear
  2055. *
  2056. * Zeroes out the fence register itself and clears out the associated
  2057. * data structures in dev_priv and obj.
  2058. */
  2059. static void
  2060. i915_gem_clear_fence_reg(struct drm_device *dev,
  2061. struct drm_i915_fence_reg *reg)
  2062. {
  2063. drm_i915_private_t *dev_priv = dev->dev_private;
  2064. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2065. switch (INTEL_INFO(dev)->gen) {
  2066. case 7:
  2067. case 6:
  2068. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2069. break;
  2070. case 5:
  2071. case 4:
  2072. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2073. break;
  2074. case 3:
  2075. if (fence_reg >= 8)
  2076. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2077. else
  2078. case 2:
  2079. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2080. I915_WRITE(fence_reg, 0);
  2081. break;
  2082. }
  2083. list_del_init(&reg->lru_list);
  2084. reg->obj = NULL;
  2085. reg->setup_seqno = 0;
  2086. reg->pin_count = 0;
  2087. }
  2088. /**
  2089. * Finds free space in the GTT aperture and binds the object there.
  2090. */
  2091. static int
  2092. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2093. unsigned alignment,
  2094. bool map_and_fenceable)
  2095. {
  2096. struct drm_device *dev = obj->base.dev;
  2097. drm_i915_private_t *dev_priv = dev->dev_private;
  2098. struct drm_mm_node *free_space;
  2099. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2100. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2101. bool mappable, fenceable;
  2102. int ret;
  2103. if (obj->madv != I915_MADV_WILLNEED) {
  2104. DRM_ERROR("Attempting to bind a purgeable object\n");
  2105. return -EINVAL;
  2106. }
  2107. fence_size = i915_gem_get_gtt_size(dev,
  2108. obj->base.size,
  2109. obj->tiling_mode);
  2110. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2111. obj->base.size,
  2112. obj->tiling_mode);
  2113. unfenced_alignment =
  2114. i915_gem_get_unfenced_gtt_alignment(dev,
  2115. obj->base.size,
  2116. obj->tiling_mode);
  2117. if (alignment == 0)
  2118. alignment = map_and_fenceable ? fence_alignment :
  2119. unfenced_alignment;
  2120. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2121. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2122. return -EINVAL;
  2123. }
  2124. size = map_and_fenceable ? fence_size : obj->base.size;
  2125. /* If the object is bigger than the entire aperture, reject it early
  2126. * before evicting everything in a vain attempt to find space.
  2127. */
  2128. if (obj->base.size >
  2129. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2130. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2131. return -E2BIG;
  2132. }
  2133. search_free:
  2134. if (map_and_fenceable)
  2135. free_space =
  2136. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2137. size, alignment, 0,
  2138. dev_priv->mm.gtt_mappable_end,
  2139. 0);
  2140. else
  2141. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2142. size, alignment, 0);
  2143. if (free_space != NULL) {
  2144. if (map_and_fenceable)
  2145. obj->gtt_space =
  2146. drm_mm_get_block_range_generic(free_space,
  2147. size, alignment, 0,
  2148. dev_priv->mm.gtt_mappable_end,
  2149. 0);
  2150. else
  2151. obj->gtt_space =
  2152. drm_mm_get_block(free_space, size, alignment);
  2153. }
  2154. if (obj->gtt_space == NULL) {
  2155. /* If the gtt is empty and we're still having trouble
  2156. * fitting our object in, we're out of memory.
  2157. */
  2158. ret = i915_gem_evict_something(dev, size, alignment,
  2159. map_and_fenceable);
  2160. if (ret)
  2161. return ret;
  2162. goto search_free;
  2163. }
  2164. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2165. if (ret) {
  2166. drm_mm_put_block(obj->gtt_space);
  2167. obj->gtt_space = NULL;
  2168. if (ret == -ENOMEM) {
  2169. /* first try to reclaim some memory by clearing the GTT */
  2170. ret = i915_gem_evict_everything(dev, false);
  2171. if (ret) {
  2172. /* now try to shrink everyone else */
  2173. if (gfpmask) {
  2174. gfpmask = 0;
  2175. goto search_free;
  2176. }
  2177. return -ENOMEM;
  2178. }
  2179. goto search_free;
  2180. }
  2181. return ret;
  2182. }
  2183. ret = i915_gem_gtt_prepare_object(obj);
  2184. if (ret) {
  2185. i915_gem_object_put_pages_gtt(obj);
  2186. drm_mm_put_block(obj->gtt_space);
  2187. obj->gtt_space = NULL;
  2188. if (i915_gem_evict_everything(dev, false))
  2189. return ret;
  2190. goto search_free;
  2191. }
  2192. if (!dev_priv->mm.aliasing_ppgtt)
  2193. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2194. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2195. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2196. /* Assert that the object is not currently in any GPU domain. As it
  2197. * wasn't in the GTT, there shouldn't be any way it could have been in
  2198. * a GPU cache
  2199. */
  2200. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2201. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2202. obj->gtt_offset = obj->gtt_space->start;
  2203. fenceable =
  2204. obj->gtt_space->size == fence_size &&
  2205. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2206. mappable =
  2207. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2208. obj->map_and_fenceable = mappable && fenceable;
  2209. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2210. return 0;
  2211. }
  2212. void
  2213. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2214. {
  2215. /* If we don't have a page list set up, then we're not pinned
  2216. * to GPU, and we can ignore the cache flush because it'll happen
  2217. * again at bind time.
  2218. */
  2219. if (obj->pages == NULL)
  2220. return;
  2221. /* If the GPU is snooping the contents of the CPU cache,
  2222. * we do not need to manually clear the CPU cache lines. However,
  2223. * the caches are only snooped when the render cache is
  2224. * flushed/invalidated. As we always have to emit invalidations
  2225. * and flushes when moving into and out of the RENDER domain, correct
  2226. * snooping behaviour occurs naturally as the result of our domain
  2227. * tracking.
  2228. */
  2229. if (obj->cache_level != I915_CACHE_NONE)
  2230. return;
  2231. trace_i915_gem_object_clflush(obj);
  2232. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2233. }
  2234. /** Flushes any GPU write domain for the object if it's dirty. */
  2235. static int
  2236. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2237. {
  2238. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2239. return 0;
  2240. /* Queue the GPU write cache flushing we need. */
  2241. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2242. }
  2243. /** Flushes the GTT write domain for the object if it's dirty. */
  2244. static void
  2245. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2246. {
  2247. uint32_t old_write_domain;
  2248. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2249. return;
  2250. /* No actual flushing is required for the GTT write domain. Writes
  2251. * to it immediately go to main memory as far as we know, so there's
  2252. * no chipset flush. It also doesn't land in render cache.
  2253. *
  2254. * However, we do have to enforce the order so that all writes through
  2255. * the GTT land before any writes to the device, such as updates to
  2256. * the GATT itself.
  2257. */
  2258. wmb();
  2259. old_write_domain = obj->base.write_domain;
  2260. obj->base.write_domain = 0;
  2261. trace_i915_gem_object_change_domain(obj,
  2262. obj->base.read_domains,
  2263. old_write_domain);
  2264. }
  2265. /** Flushes the CPU write domain for the object if it's dirty. */
  2266. static void
  2267. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2268. {
  2269. uint32_t old_write_domain;
  2270. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2271. return;
  2272. i915_gem_clflush_object(obj);
  2273. intel_gtt_chipset_flush();
  2274. old_write_domain = obj->base.write_domain;
  2275. obj->base.write_domain = 0;
  2276. trace_i915_gem_object_change_domain(obj,
  2277. obj->base.read_domains,
  2278. old_write_domain);
  2279. }
  2280. /**
  2281. * Moves a single object to the GTT read, and possibly write domain.
  2282. *
  2283. * This function returns when the move is complete, including waiting on
  2284. * flushes to occur.
  2285. */
  2286. int
  2287. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2288. {
  2289. uint32_t old_write_domain, old_read_domains;
  2290. int ret;
  2291. /* Not valid to be called on unbound objects. */
  2292. if (obj->gtt_space == NULL)
  2293. return -EINVAL;
  2294. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2295. return 0;
  2296. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2297. if (ret)
  2298. return ret;
  2299. if (obj->pending_gpu_write || write) {
  2300. ret = i915_gem_object_wait_rendering(obj);
  2301. if (ret)
  2302. return ret;
  2303. }
  2304. i915_gem_object_flush_cpu_write_domain(obj);
  2305. old_write_domain = obj->base.write_domain;
  2306. old_read_domains = obj->base.read_domains;
  2307. /* It should now be out of any other write domains, and we can update
  2308. * the domain values for our changes.
  2309. */
  2310. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2311. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2312. if (write) {
  2313. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2314. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2315. obj->dirty = 1;
  2316. }
  2317. trace_i915_gem_object_change_domain(obj,
  2318. old_read_domains,
  2319. old_write_domain);
  2320. return 0;
  2321. }
  2322. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2323. enum i915_cache_level cache_level)
  2324. {
  2325. struct drm_device *dev = obj->base.dev;
  2326. drm_i915_private_t *dev_priv = dev->dev_private;
  2327. int ret;
  2328. if (obj->cache_level == cache_level)
  2329. return 0;
  2330. if (obj->pin_count) {
  2331. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2332. return -EBUSY;
  2333. }
  2334. if (obj->gtt_space) {
  2335. ret = i915_gem_object_finish_gpu(obj);
  2336. if (ret)
  2337. return ret;
  2338. i915_gem_object_finish_gtt(obj);
  2339. /* Before SandyBridge, you could not use tiling or fence
  2340. * registers with snooped memory, so relinquish any fences
  2341. * currently pointing to our region in the aperture.
  2342. */
  2343. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2344. ret = i915_gem_object_put_fence(obj);
  2345. if (ret)
  2346. return ret;
  2347. }
  2348. if (obj->has_global_gtt_mapping)
  2349. i915_gem_gtt_bind_object(obj, cache_level);
  2350. if (obj->has_aliasing_ppgtt_mapping)
  2351. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2352. obj, cache_level);
  2353. }
  2354. if (cache_level == I915_CACHE_NONE) {
  2355. u32 old_read_domains, old_write_domain;
  2356. /* If we're coming from LLC cached, then we haven't
  2357. * actually been tracking whether the data is in the
  2358. * CPU cache or not, since we only allow one bit set
  2359. * in obj->write_domain and have been skipping the clflushes.
  2360. * Just set it to the CPU cache for now.
  2361. */
  2362. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2363. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2364. old_read_domains = obj->base.read_domains;
  2365. old_write_domain = obj->base.write_domain;
  2366. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2367. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2368. trace_i915_gem_object_change_domain(obj,
  2369. old_read_domains,
  2370. old_write_domain);
  2371. }
  2372. obj->cache_level = cache_level;
  2373. return 0;
  2374. }
  2375. /*
  2376. * Prepare buffer for display plane (scanout, cursors, etc).
  2377. * Can be called from an uninterruptible phase (modesetting) and allows
  2378. * any flushes to be pipelined (for pageflips).
  2379. *
  2380. * For the display plane, we want to be in the GTT but out of any write
  2381. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2382. * ability to pipeline the waits, pinning and any additional subtleties
  2383. * that may differentiate the display plane from ordinary buffers.
  2384. */
  2385. int
  2386. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2387. u32 alignment,
  2388. struct intel_ring_buffer *pipelined)
  2389. {
  2390. u32 old_read_domains, old_write_domain;
  2391. int ret;
  2392. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2393. if (ret)
  2394. return ret;
  2395. if (pipelined != obj->ring) {
  2396. ret = i915_gem_object_wait_rendering(obj);
  2397. if (ret == -ERESTARTSYS)
  2398. return ret;
  2399. }
  2400. /* The display engine is not coherent with the LLC cache on gen6. As
  2401. * a result, we make sure that the pinning that is about to occur is
  2402. * done with uncached PTEs. This is lowest common denominator for all
  2403. * chipsets.
  2404. *
  2405. * However for gen6+, we could do better by using the GFDT bit instead
  2406. * of uncaching, which would allow us to flush all the LLC-cached data
  2407. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2408. */
  2409. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2410. if (ret)
  2411. return ret;
  2412. /* As the user may map the buffer once pinned in the display plane
  2413. * (e.g. libkms for the bootup splash), we have to ensure that we
  2414. * always use map_and_fenceable for all scanout buffers.
  2415. */
  2416. ret = i915_gem_object_pin(obj, alignment, true);
  2417. if (ret)
  2418. return ret;
  2419. i915_gem_object_flush_cpu_write_domain(obj);
  2420. old_write_domain = obj->base.write_domain;
  2421. old_read_domains = obj->base.read_domains;
  2422. /* It should now be out of any other write domains, and we can update
  2423. * the domain values for our changes.
  2424. */
  2425. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2426. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2427. trace_i915_gem_object_change_domain(obj,
  2428. old_read_domains,
  2429. old_write_domain);
  2430. return 0;
  2431. }
  2432. int
  2433. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2434. {
  2435. int ret;
  2436. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2437. return 0;
  2438. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2439. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2440. if (ret)
  2441. return ret;
  2442. }
  2443. ret = i915_gem_object_wait_rendering(obj);
  2444. if (ret)
  2445. return ret;
  2446. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2447. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2448. return 0;
  2449. }
  2450. /**
  2451. * Moves a single object to the CPU read, and possibly write domain.
  2452. *
  2453. * This function returns when the move is complete, including waiting on
  2454. * flushes to occur.
  2455. */
  2456. int
  2457. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2458. {
  2459. uint32_t old_write_domain, old_read_domains;
  2460. int ret;
  2461. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2462. return 0;
  2463. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2464. if (ret)
  2465. return ret;
  2466. ret = i915_gem_object_wait_rendering(obj);
  2467. if (ret)
  2468. return ret;
  2469. i915_gem_object_flush_gtt_write_domain(obj);
  2470. /* If we have a partially-valid cache of the object in the CPU,
  2471. * finish invalidating it and free the per-page flags.
  2472. */
  2473. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2474. old_write_domain = obj->base.write_domain;
  2475. old_read_domains = obj->base.read_domains;
  2476. /* Flush the CPU cache if it's still invalid. */
  2477. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2478. i915_gem_clflush_object(obj);
  2479. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2480. }
  2481. /* It should now be out of any other write domains, and we can update
  2482. * the domain values for our changes.
  2483. */
  2484. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2485. /* If we're writing through the CPU, then the GPU read domains will
  2486. * need to be invalidated at next use.
  2487. */
  2488. if (write) {
  2489. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2490. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2491. }
  2492. trace_i915_gem_object_change_domain(obj,
  2493. old_read_domains,
  2494. old_write_domain);
  2495. return 0;
  2496. }
  2497. /**
  2498. * Moves the object from a partially CPU read to a full one.
  2499. *
  2500. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2501. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2502. */
  2503. static void
  2504. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2505. {
  2506. if (!obj->page_cpu_valid)
  2507. return;
  2508. /* If we're partially in the CPU read domain, finish moving it in.
  2509. */
  2510. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2511. int i;
  2512. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2513. if (obj->page_cpu_valid[i])
  2514. continue;
  2515. drm_clflush_pages(obj->pages + i, 1);
  2516. }
  2517. }
  2518. /* Free the page_cpu_valid mappings which are now stale, whether
  2519. * or not we've got I915_GEM_DOMAIN_CPU.
  2520. */
  2521. kfree(obj->page_cpu_valid);
  2522. obj->page_cpu_valid = NULL;
  2523. }
  2524. /**
  2525. * Set the CPU read domain on a range of the object.
  2526. *
  2527. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2528. * not entirely valid. The page_cpu_valid member of the object flags which
  2529. * pages have been flushed, and will be respected by
  2530. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2531. * of the whole object.
  2532. *
  2533. * This function returns when the move is complete, including waiting on
  2534. * flushes to occur.
  2535. */
  2536. static int
  2537. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2538. uint64_t offset, uint64_t size)
  2539. {
  2540. uint32_t old_read_domains;
  2541. int i, ret;
  2542. if (offset == 0 && size == obj->base.size)
  2543. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2544. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2545. if (ret)
  2546. return ret;
  2547. ret = i915_gem_object_wait_rendering(obj);
  2548. if (ret)
  2549. return ret;
  2550. i915_gem_object_flush_gtt_write_domain(obj);
  2551. /* If we're already fully in the CPU read domain, we're done. */
  2552. if (obj->page_cpu_valid == NULL &&
  2553. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2554. return 0;
  2555. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2556. * newly adding I915_GEM_DOMAIN_CPU
  2557. */
  2558. if (obj->page_cpu_valid == NULL) {
  2559. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2560. GFP_KERNEL);
  2561. if (obj->page_cpu_valid == NULL)
  2562. return -ENOMEM;
  2563. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2564. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2565. /* Flush the cache on any pages that are still invalid from the CPU's
  2566. * perspective.
  2567. */
  2568. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2569. i++) {
  2570. if (obj->page_cpu_valid[i])
  2571. continue;
  2572. drm_clflush_pages(obj->pages + i, 1);
  2573. obj->page_cpu_valid[i] = 1;
  2574. }
  2575. /* It should now be out of any other write domains, and we can update
  2576. * the domain values for our changes.
  2577. */
  2578. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2579. old_read_domains = obj->base.read_domains;
  2580. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2581. trace_i915_gem_object_change_domain(obj,
  2582. old_read_domains,
  2583. obj->base.write_domain);
  2584. return 0;
  2585. }
  2586. /* Throttle our rendering by waiting until the ring has completed our requests
  2587. * emitted over 20 msec ago.
  2588. *
  2589. * Note that if we were to use the current jiffies each time around the loop,
  2590. * we wouldn't escape the function with any frames outstanding if the time to
  2591. * render a frame was over 20ms.
  2592. *
  2593. * This should get us reasonable parallelism between CPU and GPU but also
  2594. * relatively low latency when blocking on a particular request to finish.
  2595. */
  2596. static int
  2597. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2598. {
  2599. struct drm_i915_private *dev_priv = dev->dev_private;
  2600. struct drm_i915_file_private *file_priv = file->driver_priv;
  2601. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2602. struct drm_i915_gem_request *request;
  2603. struct intel_ring_buffer *ring = NULL;
  2604. u32 seqno = 0;
  2605. int ret;
  2606. if (atomic_read(&dev_priv->mm.wedged))
  2607. return -EIO;
  2608. spin_lock(&file_priv->mm.lock);
  2609. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2610. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2611. break;
  2612. ring = request->ring;
  2613. seqno = request->seqno;
  2614. }
  2615. spin_unlock(&file_priv->mm.lock);
  2616. if (seqno == 0)
  2617. return 0;
  2618. ret = 0;
  2619. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2620. /* And wait for the seqno passing without holding any locks and
  2621. * causing extra latency for others. This is safe as the irq
  2622. * generation is designed to be run atomically and so is
  2623. * lockless.
  2624. */
  2625. if (ring->irq_get(ring)) {
  2626. ret = wait_event_interruptible(ring->irq_queue,
  2627. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2628. || atomic_read(&dev_priv->mm.wedged));
  2629. ring->irq_put(ring);
  2630. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2631. ret = -EIO;
  2632. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2633. seqno) ||
  2634. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2635. ret = -EBUSY;
  2636. }
  2637. }
  2638. if (ret == 0)
  2639. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2640. return ret;
  2641. }
  2642. int
  2643. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2644. uint32_t alignment,
  2645. bool map_and_fenceable)
  2646. {
  2647. struct drm_device *dev = obj->base.dev;
  2648. struct drm_i915_private *dev_priv = dev->dev_private;
  2649. int ret;
  2650. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2651. WARN_ON(i915_verify_lists(dev));
  2652. if (obj->gtt_space != NULL) {
  2653. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2654. (map_and_fenceable && !obj->map_and_fenceable)) {
  2655. WARN(obj->pin_count,
  2656. "bo is already pinned with incorrect alignment:"
  2657. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2658. " obj->map_and_fenceable=%d\n",
  2659. obj->gtt_offset, alignment,
  2660. map_and_fenceable,
  2661. obj->map_and_fenceable);
  2662. ret = i915_gem_object_unbind(obj);
  2663. if (ret)
  2664. return ret;
  2665. }
  2666. }
  2667. if (obj->gtt_space == NULL) {
  2668. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2669. map_and_fenceable);
  2670. if (ret)
  2671. return ret;
  2672. }
  2673. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2674. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2675. if (obj->pin_count++ == 0) {
  2676. if (!obj->active)
  2677. list_move_tail(&obj->mm_list,
  2678. &dev_priv->mm.pinned_list);
  2679. }
  2680. obj->pin_mappable |= map_and_fenceable;
  2681. WARN_ON(i915_verify_lists(dev));
  2682. return 0;
  2683. }
  2684. void
  2685. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2686. {
  2687. struct drm_device *dev = obj->base.dev;
  2688. drm_i915_private_t *dev_priv = dev->dev_private;
  2689. WARN_ON(i915_verify_lists(dev));
  2690. BUG_ON(obj->pin_count == 0);
  2691. BUG_ON(obj->gtt_space == NULL);
  2692. if (--obj->pin_count == 0) {
  2693. if (!obj->active)
  2694. list_move_tail(&obj->mm_list,
  2695. &dev_priv->mm.inactive_list);
  2696. obj->pin_mappable = false;
  2697. }
  2698. WARN_ON(i915_verify_lists(dev));
  2699. }
  2700. int
  2701. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2702. struct drm_file *file)
  2703. {
  2704. struct drm_i915_gem_pin *args = data;
  2705. struct drm_i915_gem_object *obj;
  2706. int ret;
  2707. ret = i915_mutex_lock_interruptible(dev);
  2708. if (ret)
  2709. return ret;
  2710. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2711. if (&obj->base == NULL) {
  2712. ret = -ENOENT;
  2713. goto unlock;
  2714. }
  2715. if (obj->madv != I915_MADV_WILLNEED) {
  2716. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2717. ret = -EINVAL;
  2718. goto out;
  2719. }
  2720. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2721. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2722. args->handle);
  2723. ret = -EINVAL;
  2724. goto out;
  2725. }
  2726. obj->user_pin_count++;
  2727. obj->pin_filp = file;
  2728. if (obj->user_pin_count == 1) {
  2729. ret = i915_gem_object_pin(obj, args->alignment, true);
  2730. if (ret)
  2731. goto out;
  2732. }
  2733. /* XXX - flush the CPU caches for pinned objects
  2734. * as the X server doesn't manage domains yet
  2735. */
  2736. i915_gem_object_flush_cpu_write_domain(obj);
  2737. args->offset = obj->gtt_offset;
  2738. out:
  2739. drm_gem_object_unreference(&obj->base);
  2740. unlock:
  2741. mutex_unlock(&dev->struct_mutex);
  2742. return ret;
  2743. }
  2744. int
  2745. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2746. struct drm_file *file)
  2747. {
  2748. struct drm_i915_gem_pin *args = data;
  2749. struct drm_i915_gem_object *obj;
  2750. int ret;
  2751. ret = i915_mutex_lock_interruptible(dev);
  2752. if (ret)
  2753. return ret;
  2754. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2755. if (&obj->base == NULL) {
  2756. ret = -ENOENT;
  2757. goto unlock;
  2758. }
  2759. if (obj->pin_filp != file) {
  2760. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2761. args->handle);
  2762. ret = -EINVAL;
  2763. goto out;
  2764. }
  2765. obj->user_pin_count--;
  2766. if (obj->user_pin_count == 0) {
  2767. obj->pin_filp = NULL;
  2768. i915_gem_object_unpin(obj);
  2769. }
  2770. out:
  2771. drm_gem_object_unreference(&obj->base);
  2772. unlock:
  2773. mutex_unlock(&dev->struct_mutex);
  2774. return ret;
  2775. }
  2776. int
  2777. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2778. struct drm_file *file)
  2779. {
  2780. struct drm_i915_gem_busy *args = data;
  2781. struct drm_i915_gem_object *obj;
  2782. int ret;
  2783. ret = i915_mutex_lock_interruptible(dev);
  2784. if (ret)
  2785. return ret;
  2786. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2787. if (&obj->base == NULL) {
  2788. ret = -ENOENT;
  2789. goto unlock;
  2790. }
  2791. /* Count all active objects as busy, even if they are currently not used
  2792. * by the gpu. Users of this interface expect objects to eventually
  2793. * become non-busy without any further actions, therefore emit any
  2794. * necessary flushes here.
  2795. */
  2796. args->busy = obj->active;
  2797. if (args->busy) {
  2798. /* Unconditionally flush objects, even when the gpu still uses this
  2799. * object. Userspace calling this function indicates that it wants to
  2800. * use this buffer rather sooner than later, so issuing the required
  2801. * flush earlier is beneficial.
  2802. */
  2803. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2804. ret = i915_gem_flush_ring(obj->ring,
  2805. 0, obj->base.write_domain);
  2806. } else if (obj->ring->outstanding_lazy_request ==
  2807. obj->last_rendering_seqno) {
  2808. struct drm_i915_gem_request *request;
  2809. /* This ring is not being cleared by active usage,
  2810. * so emit a request to do so.
  2811. */
  2812. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2813. if (request) {
  2814. ret = i915_add_request(obj->ring, NULL, request);
  2815. if (ret)
  2816. kfree(request);
  2817. } else
  2818. ret = -ENOMEM;
  2819. }
  2820. /* Update the active list for the hardware's current position.
  2821. * Otherwise this only updates on a delayed timer or when irqs
  2822. * are actually unmasked, and our working set ends up being
  2823. * larger than required.
  2824. */
  2825. i915_gem_retire_requests_ring(obj->ring);
  2826. args->busy = obj->active;
  2827. }
  2828. drm_gem_object_unreference(&obj->base);
  2829. unlock:
  2830. mutex_unlock(&dev->struct_mutex);
  2831. return ret;
  2832. }
  2833. int
  2834. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2835. struct drm_file *file_priv)
  2836. {
  2837. return i915_gem_ring_throttle(dev, file_priv);
  2838. }
  2839. int
  2840. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2841. struct drm_file *file_priv)
  2842. {
  2843. struct drm_i915_gem_madvise *args = data;
  2844. struct drm_i915_gem_object *obj;
  2845. int ret;
  2846. switch (args->madv) {
  2847. case I915_MADV_DONTNEED:
  2848. case I915_MADV_WILLNEED:
  2849. break;
  2850. default:
  2851. return -EINVAL;
  2852. }
  2853. ret = i915_mutex_lock_interruptible(dev);
  2854. if (ret)
  2855. return ret;
  2856. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2857. if (&obj->base == NULL) {
  2858. ret = -ENOENT;
  2859. goto unlock;
  2860. }
  2861. if (obj->pin_count) {
  2862. ret = -EINVAL;
  2863. goto out;
  2864. }
  2865. if (obj->madv != __I915_MADV_PURGED)
  2866. obj->madv = args->madv;
  2867. /* if the object is no longer bound, discard its backing storage */
  2868. if (i915_gem_object_is_purgeable(obj) &&
  2869. obj->gtt_space == NULL)
  2870. i915_gem_object_truncate(obj);
  2871. args->retained = obj->madv != __I915_MADV_PURGED;
  2872. out:
  2873. drm_gem_object_unreference(&obj->base);
  2874. unlock:
  2875. mutex_unlock(&dev->struct_mutex);
  2876. return ret;
  2877. }
  2878. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2879. size_t size)
  2880. {
  2881. struct drm_i915_private *dev_priv = dev->dev_private;
  2882. struct drm_i915_gem_object *obj;
  2883. struct address_space *mapping;
  2884. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2885. if (obj == NULL)
  2886. return NULL;
  2887. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2888. kfree(obj);
  2889. return NULL;
  2890. }
  2891. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2892. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2893. i915_gem_info_add_obj(dev_priv, size);
  2894. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2895. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2896. if (HAS_LLC(dev)) {
  2897. /* On some devices, we can have the GPU use the LLC (the CPU
  2898. * cache) for about a 10% performance improvement
  2899. * compared to uncached. Graphics requests other than
  2900. * display scanout are coherent with the CPU in
  2901. * accessing this cache. This means in this mode we
  2902. * don't need to clflush on the CPU side, and on the
  2903. * GPU side we only need to flush internal caches to
  2904. * get data visible to the CPU.
  2905. *
  2906. * However, we maintain the display planes as UC, and so
  2907. * need to rebind when first used as such.
  2908. */
  2909. obj->cache_level = I915_CACHE_LLC;
  2910. } else
  2911. obj->cache_level = I915_CACHE_NONE;
  2912. obj->base.driver_private = NULL;
  2913. obj->fence_reg = I915_FENCE_REG_NONE;
  2914. INIT_LIST_HEAD(&obj->mm_list);
  2915. INIT_LIST_HEAD(&obj->gtt_list);
  2916. INIT_LIST_HEAD(&obj->ring_list);
  2917. INIT_LIST_HEAD(&obj->exec_list);
  2918. INIT_LIST_HEAD(&obj->gpu_write_list);
  2919. obj->madv = I915_MADV_WILLNEED;
  2920. /* Avoid an unnecessary call to unbind on the first bind. */
  2921. obj->map_and_fenceable = true;
  2922. return obj;
  2923. }
  2924. int i915_gem_init_object(struct drm_gem_object *obj)
  2925. {
  2926. BUG();
  2927. return 0;
  2928. }
  2929. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2930. {
  2931. struct drm_device *dev = obj->base.dev;
  2932. drm_i915_private_t *dev_priv = dev->dev_private;
  2933. int ret;
  2934. ret = i915_gem_object_unbind(obj);
  2935. if (ret == -ERESTARTSYS) {
  2936. list_move(&obj->mm_list,
  2937. &dev_priv->mm.deferred_free_list);
  2938. return;
  2939. }
  2940. trace_i915_gem_object_destroy(obj);
  2941. if (obj->base.map_list.map)
  2942. drm_gem_free_mmap_offset(&obj->base);
  2943. drm_gem_object_release(&obj->base);
  2944. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2945. kfree(obj->page_cpu_valid);
  2946. kfree(obj->bit_17);
  2947. kfree(obj);
  2948. }
  2949. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2950. {
  2951. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2952. struct drm_device *dev = obj->base.dev;
  2953. while (obj->pin_count > 0)
  2954. i915_gem_object_unpin(obj);
  2955. if (obj->phys_obj)
  2956. i915_gem_detach_phys_object(dev, obj);
  2957. i915_gem_free_object_tail(obj);
  2958. }
  2959. int
  2960. i915_gem_idle(struct drm_device *dev)
  2961. {
  2962. drm_i915_private_t *dev_priv = dev->dev_private;
  2963. int ret;
  2964. mutex_lock(&dev->struct_mutex);
  2965. if (dev_priv->mm.suspended) {
  2966. mutex_unlock(&dev->struct_mutex);
  2967. return 0;
  2968. }
  2969. ret = i915_gpu_idle(dev, true);
  2970. if (ret) {
  2971. mutex_unlock(&dev->struct_mutex);
  2972. return ret;
  2973. }
  2974. /* Under UMS, be paranoid and evict. */
  2975. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  2976. ret = i915_gem_evict_inactive(dev, false);
  2977. if (ret) {
  2978. mutex_unlock(&dev->struct_mutex);
  2979. return ret;
  2980. }
  2981. }
  2982. i915_gem_reset_fences(dev);
  2983. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2984. * We need to replace this with a semaphore, or something.
  2985. * And not confound mm.suspended!
  2986. */
  2987. dev_priv->mm.suspended = 1;
  2988. del_timer_sync(&dev_priv->hangcheck_timer);
  2989. i915_kernel_lost_context(dev);
  2990. i915_gem_cleanup_ringbuffer(dev);
  2991. mutex_unlock(&dev->struct_mutex);
  2992. /* Cancel the retire work handler, which should be idle now. */
  2993. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2994. return 0;
  2995. }
  2996. void i915_gem_init_swizzling(struct drm_device *dev)
  2997. {
  2998. drm_i915_private_t *dev_priv = dev->dev_private;
  2999. if (INTEL_INFO(dev)->gen < 5 ||
  3000. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3001. return;
  3002. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3003. DISP_TILE_SURFACE_SWIZZLING);
  3004. if (IS_GEN5(dev))
  3005. return;
  3006. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3007. if (IS_GEN6(dev))
  3008. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3009. else
  3010. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3011. }
  3012. void i915_gem_init_ppgtt(struct drm_device *dev)
  3013. {
  3014. drm_i915_private_t *dev_priv = dev->dev_private;
  3015. uint32_t pd_offset;
  3016. struct intel_ring_buffer *ring;
  3017. int i;
  3018. if (!dev_priv->mm.aliasing_ppgtt)
  3019. return;
  3020. pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
  3021. pd_offset /= 64; /* in cachelines, */
  3022. pd_offset <<= 16;
  3023. if (INTEL_INFO(dev)->gen == 6) {
  3024. uint32_t ecochk = I915_READ(GAM_ECOCHK);
  3025. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3026. ECOCHK_PPGTT_CACHE64B);
  3027. I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  3028. } else if (INTEL_INFO(dev)->gen >= 7) {
  3029. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3030. /* GFX_MODE is per-ring on gen7+ */
  3031. }
  3032. for (i = 0; i < I915_NUM_RINGS; i++) {
  3033. ring = &dev_priv->ring[i];
  3034. if (INTEL_INFO(dev)->gen >= 7)
  3035. I915_WRITE(RING_MODE_GEN7(ring),
  3036. GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  3037. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3038. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3039. }
  3040. }
  3041. int
  3042. i915_gem_init_hw(struct drm_device *dev)
  3043. {
  3044. drm_i915_private_t *dev_priv = dev->dev_private;
  3045. int ret;
  3046. i915_gem_init_swizzling(dev);
  3047. ret = intel_init_render_ring_buffer(dev);
  3048. if (ret)
  3049. return ret;
  3050. if (HAS_BSD(dev)) {
  3051. ret = intel_init_bsd_ring_buffer(dev);
  3052. if (ret)
  3053. goto cleanup_render_ring;
  3054. }
  3055. if (HAS_BLT(dev)) {
  3056. ret = intel_init_blt_ring_buffer(dev);
  3057. if (ret)
  3058. goto cleanup_bsd_ring;
  3059. }
  3060. dev_priv->next_seqno = 1;
  3061. i915_gem_init_ppgtt(dev);
  3062. return 0;
  3063. cleanup_bsd_ring:
  3064. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3065. cleanup_render_ring:
  3066. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3067. return ret;
  3068. }
  3069. void
  3070. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3071. {
  3072. drm_i915_private_t *dev_priv = dev->dev_private;
  3073. int i;
  3074. for (i = 0; i < I915_NUM_RINGS; i++)
  3075. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3076. }
  3077. int
  3078. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3079. struct drm_file *file_priv)
  3080. {
  3081. drm_i915_private_t *dev_priv = dev->dev_private;
  3082. int ret, i;
  3083. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3084. return 0;
  3085. if (atomic_read(&dev_priv->mm.wedged)) {
  3086. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3087. atomic_set(&dev_priv->mm.wedged, 0);
  3088. }
  3089. mutex_lock(&dev->struct_mutex);
  3090. dev_priv->mm.suspended = 0;
  3091. ret = i915_gem_init_hw(dev);
  3092. if (ret != 0) {
  3093. mutex_unlock(&dev->struct_mutex);
  3094. return ret;
  3095. }
  3096. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3097. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3098. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3099. for (i = 0; i < I915_NUM_RINGS; i++) {
  3100. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3101. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3102. }
  3103. mutex_unlock(&dev->struct_mutex);
  3104. ret = drm_irq_install(dev);
  3105. if (ret)
  3106. goto cleanup_ringbuffer;
  3107. return 0;
  3108. cleanup_ringbuffer:
  3109. mutex_lock(&dev->struct_mutex);
  3110. i915_gem_cleanup_ringbuffer(dev);
  3111. dev_priv->mm.suspended = 1;
  3112. mutex_unlock(&dev->struct_mutex);
  3113. return ret;
  3114. }
  3115. int
  3116. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3117. struct drm_file *file_priv)
  3118. {
  3119. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3120. return 0;
  3121. drm_irq_uninstall(dev);
  3122. return i915_gem_idle(dev);
  3123. }
  3124. void
  3125. i915_gem_lastclose(struct drm_device *dev)
  3126. {
  3127. int ret;
  3128. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3129. return;
  3130. ret = i915_gem_idle(dev);
  3131. if (ret)
  3132. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3133. }
  3134. static void
  3135. init_ring_lists(struct intel_ring_buffer *ring)
  3136. {
  3137. INIT_LIST_HEAD(&ring->active_list);
  3138. INIT_LIST_HEAD(&ring->request_list);
  3139. INIT_LIST_HEAD(&ring->gpu_write_list);
  3140. }
  3141. void
  3142. i915_gem_load(struct drm_device *dev)
  3143. {
  3144. int i;
  3145. drm_i915_private_t *dev_priv = dev->dev_private;
  3146. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3147. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3148. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3149. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3150. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3151. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3152. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3153. for (i = 0; i < I915_NUM_RINGS; i++)
  3154. init_ring_lists(&dev_priv->ring[i]);
  3155. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3156. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3157. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3158. i915_gem_retire_work_handler);
  3159. init_completion(&dev_priv->error_completion);
  3160. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3161. if (IS_GEN3(dev)) {
  3162. u32 tmp = I915_READ(MI_ARB_STATE);
  3163. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3164. /* arb state is a masked write, so set bit + bit in mask */
  3165. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3166. I915_WRITE(MI_ARB_STATE, tmp);
  3167. }
  3168. }
  3169. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3170. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3171. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3172. dev_priv->fence_reg_start = 3;
  3173. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3174. dev_priv->num_fence_regs = 16;
  3175. else
  3176. dev_priv->num_fence_regs = 8;
  3177. /* Initialize fence registers to zero */
  3178. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3179. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3180. }
  3181. i915_gem_detect_bit_6_swizzle(dev);
  3182. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3183. dev_priv->mm.interruptible = true;
  3184. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3185. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3186. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3187. }
  3188. /*
  3189. * Create a physically contiguous memory object for this object
  3190. * e.g. for cursor + overlay regs
  3191. */
  3192. static int i915_gem_init_phys_object(struct drm_device *dev,
  3193. int id, int size, int align)
  3194. {
  3195. drm_i915_private_t *dev_priv = dev->dev_private;
  3196. struct drm_i915_gem_phys_object *phys_obj;
  3197. int ret;
  3198. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3199. return 0;
  3200. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3201. if (!phys_obj)
  3202. return -ENOMEM;
  3203. phys_obj->id = id;
  3204. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3205. if (!phys_obj->handle) {
  3206. ret = -ENOMEM;
  3207. goto kfree_obj;
  3208. }
  3209. #ifdef CONFIG_X86
  3210. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3211. #endif
  3212. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3213. return 0;
  3214. kfree_obj:
  3215. kfree(phys_obj);
  3216. return ret;
  3217. }
  3218. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3219. {
  3220. drm_i915_private_t *dev_priv = dev->dev_private;
  3221. struct drm_i915_gem_phys_object *phys_obj;
  3222. if (!dev_priv->mm.phys_objs[id - 1])
  3223. return;
  3224. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3225. if (phys_obj->cur_obj) {
  3226. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3227. }
  3228. #ifdef CONFIG_X86
  3229. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3230. #endif
  3231. drm_pci_free(dev, phys_obj->handle);
  3232. kfree(phys_obj);
  3233. dev_priv->mm.phys_objs[id - 1] = NULL;
  3234. }
  3235. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3236. {
  3237. int i;
  3238. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3239. i915_gem_free_phys_object(dev, i);
  3240. }
  3241. void i915_gem_detach_phys_object(struct drm_device *dev,
  3242. struct drm_i915_gem_object *obj)
  3243. {
  3244. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3245. char *vaddr;
  3246. int i;
  3247. int page_count;
  3248. if (!obj->phys_obj)
  3249. return;
  3250. vaddr = obj->phys_obj->handle->vaddr;
  3251. page_count = obj->base.size / PAGE_SIZE;
  3252. for (i = 0; i < page_count; i++) {
  3253. struct page *page = shmem_read_mapping_page(mapping, i);
  3254. if (!IS_ERR(page)) {
  3255. char *dst = kmap_atomic(page);
  3256. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3257. kunmap_atomic(dst);
  3258. drm_clflush_pages(&page, 1);
  3259. set_page_dirty(page);
  3260. mark_page_accessed(page);
  3261. page_cache_release(page);
  3262. }
  3263. }
  3264. intel_gtt_chipset_flush();
  3265. obj->phys_obj->cur_obj = NULL;
  3266. obj->phys_obj = NULL;
  3267. }
  3268. int
  3269. i915_gem_attach_phys_object(struct drm_device *dev,
  3270. struct drm_i915_gem_object *obj,
  3271. int id,
  3272. int align)
  3273. {
  3274. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3275. drm_i915_private_t *dev_priv = dev->dev_private;
  3276. int ret = 0;
  3277. int page_count;
  3278. int i;
  3279. if (id > I915_MAX_PHYS_OBJECT)
  3280. return -EINVAL;
  3281. if (obj->phys_obj) {
  3282. if (obj->phys_obj->id == id)
  3283. return 0;
  3284. i915_gem_detach_phys_object(dev, obj);
  3285. }
  3286. /* create a new object */
  3287. if (!dev_priv->mm.phys_objs[id - 1]) {
  3288. ret = i915_gem_init_phys_object(dev, id,
  3289. obj->base.size, align);
  3290. if (ret) {
  3291. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3292. id, obj->base.size);
  3293. return ret;
  3294. }
  3295. }
  3296. /* bind to the object */
  3297. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3298. obj->phys_obj->cur_obj = obj;
  3299. page_count = obj->base.size / PAGE_SIZE;
  3300. for (i = 0; i < page_count; i++) {
  3301. struct page *page;
  3302. char *dst, *src;
  3303. page = shmem_read_mapping_page(mapping, i);
  3304. if (IS_ERR(page))
  3305. return PTR_ERR(page);
  3306. src = kmap_atomic(page);
  3307. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3308. memcpy(dst, src, PAGE_SIZE);
  3309. kunmap_atomic(src);
  3310. mark_page_accessed(page);
  3311. page_cache_release(page);
  3312. }
  3313. return 0;
  3314. }
  3315. static int
  3316. i915_gem_phys_pwrite(struct drm_device *dev,
  3317. struct drm_i915_gem_object *obj,
  3318. struct drm_i915_gem_pwrite *args,
  3319. struct drm_file *file_priv)
  3320. {
  3321. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3322. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3323. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3324. unsigned long unwritten;
  3325. /* The physical object once assigned is fixed for the lifetime
  3326. * of the obj, so we can safely drop the lock and continue
  3327. * to access vaddr.
  3328. */
  3329. mutex_unlock(&dev->struct_mutex);
  3330. unwritten = copy_from_user(vaddr, user_data, args->size);
  3331. mutex_lock(&dev->struct_mutex);
  3332. if (unwritten)
  3333. return -EFAULT;
  3334. }
  3335. intel_gtt_chipset_flush();
  3336. return 0;
  3337. }
  3338. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3339. {
  3340. struct drm_i915_file_private *file_priv = file->driver_priv;
  3341. /* Clean up our request list when the client is going away, so that
  3342. * later retire_requests won't dereference our soon-to-be-gone
  3343. * file_priv.
  3344. */
  3345. spin_lock(&file_priv->mm.lock);
  3346. while (!list_empty(&file_priv->mm.request_list)) {
  3347. struct drm_i915_gem_request *request;
  3348. request = list_first_entry(&file_priv->mm.request_list,
  3349. struct drm_i915_gem_request,
  3350. client_list);
  3351. list_del(&request->client_list);
  3352. request->file_priv = NULL;
  3353. }
  3354. spin_unlock(&file_priv->mm.lock);
  3355. }
  3356. static int
  3357. i915_gpu_is_active(struct drm_device *dev)
  3358. {
  3359. drm_i915_private_t *dev_priv = dev->dev_private;
  3360. int lists_empty;
  3361. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3362. list_empty(&dev_priv->mm.active_list);
  3363. return !lists_empty;
  3364. }
  3365. static int
  3366. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3367. {
  3368. struct drm_i915_private *dev_priv =
  3369. container_of(shrinker,
  3370. struct drm_i915_private,
  3371. mm.inactive_shrinker);
  3372. struct drm_device *dev = dev_priv->dev;
  3373. struct drm_i915_gem_object *obj, *next;
  3374. int nr_to_scan = sc->nr_to_scan;
  3375. int cnt;
  3376. if (!mutex_trylock(&dev->struct_mutex))
  3377. return 0;
  3378. /* "fast-path" to count number of available objects */
  3379. if (nr_to_scan == 0) {
  3380. cnt = 0;
  3381. list_for_each_entry(obj,
  3382. &dev_priv->mm.inactive_list,
  3383. mm_list)
  3384. cnt++;
  3385. mutex_unlock(&dev->struct_mutex);
  3386. return cnt / 100 * sysctl_vfs_cache_pressure;
  3387. }
  3388. rescan:
  3389. /* first scan for clean buffers */
  3390. i915_gem_retire_requests(dev);
  3391. list_for_each_entry_safe(obj, next,
  3392. &dev_priv->mm.inactive_list,
  3393. mm_list) {
  3394. if (i915_gem_object_is_purgeable(obj)) {
  3395. if (i915_gem_object_unbind(obj) == 0 &&
  3396. --nr_to_scan == 0)
  3397. break;
  3398. }
  3399. }
  3400. /* second pass, evict/count anything still on the inactive list */
  3401. cnt = 0;
  3402. list_for_each_entry_safe(obj, next,
  3403. &dev_priv->mm.inactive_list,
  3404. mm_list) {
  3405. if (nr_to_scan &&
  3406. i915_gem_object_unbind(obj) == 0)
  3407. nr_to_scan--;
  3408. else
  3409. cnt++;
  3410. }
  3411. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3412. /*
  3413. * We are desperate for pages, so as a last resort, wait
  3414. * for the GPU to finish and discard whatever we can.
  3415. * This has a dramatic impact to reduce the number of
  3416. * OOM-killer events whilst running the GPU aggressively.
  3417. */
  3418. if (i915_gpu_idle(dev, true) == 0)
  3419. goto rescan;
  3420. }
  3421. mutex_unlock(&dev->struct_mutex);
  3422. return cnt / 100 * sysctl_vfs_cache_pressure;
  3423. }