data.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/bio.h>
  19. #include <linux/prefetch.h>
  20. #include "f2fs.h"
  21. #include "node.h"
  22. #include "segment.h"
  23. #include <trace/events/f2fs.h>
  24. /*
  25. * Lock ordering for the change of data block address:
  26. * ->data_page
  27. * ->node_page
  28. * update block addresses in the node page
  29. */
  30. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  31. {
  32. struct f2fs_node *rn;
  33. __le32 *addr_array;
  34. struct page *node_page = dn->node_page;
  35. unsigned int ofs_in_node = dn->ofs_in_node;
  36. wait_on_page_writeback(node_page);
  37. rn = (struct f2fs_node *)page_address(node_page);
  38. /* Get physical address of data block */
  39. addr_array = blkaddr_in_node(rn);
  40. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  41. set_page_dirty(node_page);
  42. }
  43. int reserve_new_block(struct dnode_of_data *dn)
  44. {
  45. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  46. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  47. return -EPERM;
  48. if (!inc_valid_block_count(sbi, dn->inode, 1))
  49. return -ENOSPC;
  50. __set_data_blkaddr(dn, NEW_ADDR);
  51. dn->data_blkaddr = NEW_ADDR;
  52. sync_inode_page(dn);
  53. return 0;
  54. }
  55. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  56. struct buffer_head *bh_result)
  57. {
  58. struct f2fs_inode_info *fi = F2FS_I(inode);
  59. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  60. pgoff_t start_fofs, end_fofs;
  61. block_t start_blkaddr;
  62. read_lock(&fi->ext.ext_lock);
  63. if (fi->ext.len == 0) {
  64. read_unlock(&fi->ext.ext_lock);
  65. return 0;
  66. }
  67. sbi->total_hit_ext++;
  68. start_fofs = fi->ext.fofs;
  69. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  70. start_blkaddr = fi->ext.blk_addr;
  71. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  72. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  73. size_t count;
  74. clear_buffer_new(bh_result);
  75. map_bh(bh_result, inode->i_sb,
  76. start_blkaddr + pgofs - start_fofs);
  77. count = end_fofs - pgofs + 1;
  78. if (count < (UINT_MAX >> blkbits))
  79. bh_result->b_size = (count << blkbits);
  80. else
  81. bh_result->b_size = UINT_MAX;
  82. sbi->read_hit_ext++;
  83. read_unlock(&fi->ext.ext_lock);
  84. return 1;
  85. }
  86. read_unlock(&fi->ext.ext_lock);
  87. return 0;
  88. }
  89. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  90. {
  91. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  92. pgoff_t fofs, start_fofs, end_fofs;
  93. block_t start_blkaddr, end_blkaddr;
  94. BUG_ON(blk_addr == NEW_ADDR);
  95. fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
  96. /* Update the page address in the parent node */
  97. __set_data_blkaddr(dn, blk_addr);
  98. write_lock(&fi->ext.ext_lock);
  99. start_fofs = fi->ext.fofs;
  100. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  101. start_blkaddr = fi->ext.blk_addr;
  102. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  103. /* Drop and initialize the matched extent */
  104. if (fi->ext.len == 1 && fofs == start_fofs)
  105. fi->ext.len = 0;
  106. /* Initial extent */
  107. if (fi->ext.len == 0) {
  108. if (blk_addr != NULL_ADDR) {
  109. fi->ext.fofs = fofs;
  110. fi->ext.blk_addr = blk_addr;
  111. fi->ext.len = 1;
  112. }
  113. goto end_update;
  114. }
  115. /* Front merge */
  116. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  117. fi->ext.fofs--;
  118. fi->ext.blk_addr--;
  119. fi->ext.len++;
  120. goto end_update;
  121. }
  122. /* Back merge */
  123. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  124. fi->ext.len++;
  125. goto end_update;
  126. }
  127. /* Split the existing extent */
  128. if (fi->ext.len > 1 &&
  129. fofs >= start_fofs && fofs <= end_fofs) {
  130. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  131. fi->ext.len = fofs - start_fofs;
  132. } else {
  133. fi->ext.fofs = fofs + 1;
  134. fi->ext.blk_addr = start_blkaddr +
  135. fofs - start_fofs + 1;
  136. fi->ext.len -= fofs - start_fofs + 1;
  137. }
  138. goto end_update;
  139. }
  140. write_unlock(&fi->ext.ext_lock);
  141. return;
  142. end_update:
  143. write_unlock(&fi->ext.ext_lock);
  144. sync_inode_page(dn);
  145. return;
  146. }
  147. struct page *find_data_page(struct inode *inode, pgoff_t index)
  148. {
  149. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  150. struct address_space *mapping = inode->i_mapping;
  151. struct dnode_of_data dn;
  152. struct page *page;
  153. int err;
  154. page = find_get_page(mapping, index);
  155. if (page && PageUptodate(page))
  156. return page;
  157. f2fs_put_page(page, 0);
  158. set_new_dnode(&dn, inode, NULL, NULL, 0);
  159. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  160. if (err)
  161. return ERR_PTR(err);
  162. f2fs_put_dnode(&dn);
  163. if (dn.data_blkaddr == NULL_ADDR)
  164. return ERR_PTR(-ENOENT);
  165. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  166. if (dn.data_blkaddr == NEW_ADDR)
  167. return ERR_PTR(-EINVAL);
  168. page = grab_cache_page(mapping, index);
  169. if (!page)
  170. return ERR_PTR(-ENOMEM);
  171. if (PageUptodate(page)) {
  172. unlock_page(page);
  173. return page;
  174. }
  175. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  176. wait_on_page_locked(page);
  177. if (!PageUptodate(page)) {
  178. f2fs_put_page(page, 0);
  179. return ERR_PTR(-EIO);
  180. }
  181. return page;
  182. }
  183. /*
  184. * If it tries to access a hole, return an error.
  185. * Because, the callers, functions in dir.c and GC, should be able to know
  186. * whether this page exists or not.
  187. */
  188. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  189. {
  190. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  191. struct address_space *mapping = inode->i_mapping;
  192. struct dnode_of_data dn;
  193. struct page *page;
  194. int err;
  195. set_new_dnode(&dn, inode, NULL, NULL, 0);
  196. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  197. if (err)
  198. return ERR_PTR(err);
  199. f2fs_put_dnode(&dn);
  200. if (dn.data_blkaddr == NULL_ADDR)
  201. return ERR_PTR(-ENOENT);
  202. page = grab_cache_page(mapping, index);
  203. if (!page)
  204. return ERR_PTR(-ENOMEM);
  205. if (PageUptodate(page))
  206. return page;
  207. BUG_ON(dn.data_blkaddr == NEW_ADDR);
  208. BUG_ON(dn.data_blkaddr == NULL_ADDR);
  209. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  210. if (err)
  211. return ERR_PTR(err);
  212. lock_page(page);
  213. if (!PageUptodate(page)) {
  214. f2fs_put_page(page, 1);
  215. return ERR_PTR(-EIO);
  216. }
  217. return page;
  218. }
  219. /*
  220. * Caller ensures that this data page is never allocated.
  221. * A new zero-filled data page is allocated in the page cache.
  222. *
  223. * Also, caller should grab and release a mutex by calling mutex_lock_op() and
  224. * mutex_unlock_op().
  225. */
  226. struct page *get_new_data_page(struct inode *inode, pgoff_t index,
  227. bool new_i_size)
  228. {
  229. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  230. struct address_space *mapping = inode->i_mapping;
  231. struct page *page;
  232. struct dnode_of_data dn;
  233. int err;
  234. set_new_dnode(&dn, inode, NULL, NULL, 0);
  235. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  236. if (err)
  237. return ERR_PTR(err);
  238. if (dn.data_blkaddr == NULL_ADDR) {
  239. if (reserve_new_block(&dn)) {
  240. f2fs_put_dnode(&dn);
  241. return ERR_PTR(-ENOSPC);
  242. }
  243. }
  244. f2fs_put_dnode(&dn);
  245. page = grab_cache_page(mapping, index);
  246. if (!page)
  247. return ERR_PTR(-ENOMEM);
  248. if (PageUptodate(page))
  249. return page;
  250. if (dn.data_blkaddr == NEW_ADDR) {
  251. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  252. SetPageUptodate(page);
  253. } else {
  254. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  255. if (err)
  256. return ERR_PTR(err);
  257. lock_page(page);
  258. if (!PageUptodate(page)) {
  259. f2fs_put_page(page, 1);
  260. return ERR_PTR(-EIO);
  261. }
  262. }
  263. if (new_i_size &&
  264. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  265. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  266. mark_inode_dirty_sync(inode);
  267. }
  268. return page;
  269. }
  270. static void read_end_io(struct bio *bio, int err)
  271. {
  272. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  273. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  274. do {
  275. struct page *page = bvec->bv_page;
  276. if (--bvec >= bio->bi_io_vec)
  277. prefetchw(&bvec->bv_page->flags);
  278. if (uptodate) {
  279. SetPageUptodate(page);
  280. } else {
  281. ClearPageUptodate(page);
  282. SetPageError(page);
  283. }
  284. unlock_page(page);
  285. } while (bvec >= bio->bi_io_vec);
  286. kfree(bio->bi_private);
  287. bio_put(bio);
  288. }
  289. /*
  290. * Fill the locked page with data located in the block address.
  291. * Return unlocked page.
  292. */
  293. int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
  294. block_t blk_addr, int type)
  295. {
  296. struct block_device *bdev = sbi->sb->s_bdev;
  297. struct bio *bio;
  298. trace_f2fs_readpage(page, blk_addr, type);
  299. down_read(&sbi->bio_sem);
  300. /* Allocate a new bio */
  301. bio = f2fs_bio_alloc(bdev, 1);
  302. /* Initialize the bio */
  303. bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  304. bio->bi_end_io = read_end_io;
  305. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  306. kfree(bio->bi_private);
  307. bio_put(bio);
  308. up_read(&sbi->bio_sem);
  309. f2fs_put_page(page, 1);
  310. return -EFAULT;
  311. }
  312. submit_bio(type, bio);
  313. up_read(&sbi->bio_sem);
  314. return 0;
  315. }
  316. /*
  317. * This function should be used by the data read flow only where it
  318. * does not check the "create" flag that indicates block allocation.
  319. * The reason for this special functionality is to exploit VFS readahead
  320. * mechanism.
  321. */
  322. static int get_data_block_ro(struct inode *inode, sector_t iblock,
  323. struct buffer_head *bh_result, int create)
  324. {
  325. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  326. unsigned maxblocks = bh_result->b_size >> blkbits;
  327. struct dnode_of_data dn;
  328. pgoff_t pgofs;
  329. int err;
  330. /* Get the page offset from the block offset(iblock) */
  331. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  332. if (check_extent_cache(inode, pgofs, bh_result)) {
  333. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  334. return 0;
  335. }
  336. /* When reading holes, we need its node page */
  337. set_new_dnode(&dn, inode, NULL, NULL, 0);
  338. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  339. if (err) {
  340. trace_f2fs_get_data_block(inode, iblock, bh_result, err);
  341. return (err == -ENOENT) ? 0 : err;
  342. }
  343. /* It does not support data allocation */
  344. BUG_ON(create);
  345. if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
  346. int i;
  347. unsigned int end_offset;
  348. end_offset = IS_INODE(dn.node_page) ?
  349. ADDRS_PER_INODE :
  350. ADDRS_PER_BLOCK;
  351. clear_buffer_new(bh_result);
  352. /* Give more consecutive addresses for the read ahead */
  353. for (i = 0; i < end_offset - dn.ofs_in_node; i++)
  354. if (((datablock_addr(dn.node_page,
  355. dn.ofs_in_node + i))
  356. != (dn.data_blkaddr + i)) || maxblocks == i)
  357. break;
  358. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  359. bh_result->b_size = (i << blkbits);
  360. }
  361. f2fs_put_dnode(&dn);
  362. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  363. return 0;
  364. }
  365. static int f2fs_read_data_page(struct file *file, struct page *page)
  366. {
  367. return mpage_readpage(page, get_data_block_ro);
  368. }
  369. static int f2fs_read_data_pages(struct file *file,
  370. struct address_space *mapping,
  371. struct list_head *pages, unsigned nr_pages)
  372. {
  373. return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
  374. }
  375. int do_write_data_page(struct page *page)
  376. {
  377. struct inode *inode = page->mapping->host;
  378. block_t old_blk_addr, new_blk_addr;
  379. struct dnode_of_data dn;
  380. int err = 0;
  381. set_new_dnode(&dn, inode, NULL, NULL, 0);
  382. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  383. if (err)
  384. return err;
  385. old_blk_addr = dn.data_blkaddr;
  386. /* This page is already truncated */
  387. if (old_blk_addr == NULL_ADDR)
  388. goto out_writepage;
  389. set_page_writeback(page);
  390. /*
  391. * If current allocation needs SSR,
  392. * it had better in-place writes for updated data.
  393. */
  394. if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
  395. need_inplace_update(inode)) {
  396. rewrite_data_page(F2FS_SB(inode->i_sb), page,
  397. old_blk_addr);
  398. } else {
  399. write_data_page(inode, page, &dn,
  400. old_blk_addr, &new_blk_addr);
  401. update_extent_cache(new_blk_addr, &dn);
  402. }
  403. out_writepage:
  404. f2fs_put_dnode(&dn);
  405. return err;
  406. }
  407. static int f2fs_write_data_page(struct page *page,
  408. struct writeback_control *wbc)
  409. {
  410. struct inode *inode = page->mapping->host;
  411. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  412. loff_t i_size = i_size_read(inode);
  413. const pgoff_t end_index = ((unsigned long long) i_size)
  414. >> PAGE_CACHE_SHIFT;
  415. unsigned offset;
  416. bool need_balance_fs = false;
  417. int err = 0;
  418. if (page->index < end_index)
  419. goto write;
  420. /*
  421. * If the offset is out-of-range of file size,
  422. * this page does not have to be written to disk.
  423. */
  424. offset = i_size & (PAGE_CACHE_SIZE - 1);
  425. if ((page->index >= end_index + 1) || !offset) {
  426. if (S_ISDIR(inode->i_mode)) {
  427. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  428. inode_dec_dirty_dents(inode);
  429. }
  430. goto out;
  431. }
  432. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  433. write:
  434. if (sbi->por_doing) {
  435. err = AOP_WRITEPAGE_ACTIVATE;
  436. goto redirty_out;
  437. }
  438. /* Dentry blocks are controlled by checkpoint */
  439. if (S_ISDIR(inode->i_mode)) {
  440. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  441. inode_dec_dirty_dents(inode);
  442. err = do_write_data_page(page);
  443. } else {
  444. int ilock = mutex_lock_op(sbi);
  445. err = do_write_data_page(page);
  446. mutex_unlock_op(sbi, ilock);
  447. need_balance_fs = true;
  448. }
  449. if (err == -ENOENT)
  450. goto out;
  451. else if (err)
  452. goto redirty_out;
  453. if (wbc->for_reclaim)
  454. f2fs_submit_bio(sbi, DATA, true);
  455. clear_cold_data(page);
  456. out:
  457. unlock_page(page);
  458. if (need_balance_fs)
  459. f2fs_balance_fs(sbi);
  460. return 0;
  461. redirty_out:
  462. wbc->pages_skipped++;
  463. set_page_dirty(page);
  464. return err;
  465. }
  466. #define MAX_DESIRED_PAGES_WP 4096
  467. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  468. void *data)
  469. {
  470. struct address_space *mapping = data;
  471. int ret = mapping->a_ops->writepage(page, wbc);
  472. mapping_set_error(mapping, ret);
  473. return ret;
  474. }
  475. static int f2fs_write_data_pages(struct address_space *mapping,
  476. struct writeback_control *wbc)
  477. {
  478. struct inode *inode = mapping->host;
  479. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  480. int ret;
  481. long excess_nrtw = 0, desired_nrtw;
  482. /* deal with chardevs and other special file */
  483. if (!mapping->a_ops->writepage)
  484. return 0;
  485. if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
  486. desired_nrtw = MAX_DESIRED_PAGES_WP;
  487. excess_nrtw = desired_nrtw - wbc->nr_to_write;
  488. wbc->nr_to_write = desired_nrtw;
  489. }
  490. if (!S_ISDIR(inode->i_mode))
  491. mutex_lock(&sbi->writepages);
  492. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  493. if (!S_ISDIR(inode->i_mode))
  494. mutex_unlock(&sbi->writepages);
  495. f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
  496. remove_dirty_dir_inode(inode);
  497. wbc->nr_to_write -= excess_nrtw;
  498. return ret;
  499. }
  500. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  501. loff_t pos, unsigned len, unsigned flags,
  502. struct page **pagep, void **fsdata)
  503. {
  504. struct inode *inode = mapping->host;
  505. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  506. struct page *page;
  507. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  508. struct dnode_of_data dn;
  509. int err = 0;
  510. int ilock;
  511. /* for nobh_write_end */
  512. *fsdata = NULL;
  513. f2fs_balance_fs(sbi);
  514. page = grab_cache_page_write_begin(mapping, index, flags);
  515. if (!page)
  516. return -ENOMEM;
  517. *pagep = page;
  518. ilock = mutex_lock_op(sbi);
  519. set_new_dnode(&dn, inode, NULL, NULL, 0);
  520. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  521. if (err)
  522. goto err;
  523. if (dn.data_blkaddr == NULL_ADDR)
  524. err = reserve_new_block(&dn);
  525. f2fs_put_dnode(&dn);
  526. if (err)
  527. goto err;
  528. mutex_unlock_op(sbi, ilock);
  529. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  530. return 0;
  531. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  532. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  533. unsigned end = start + len;
  534. /* Reading beyond i_size is simple: memset to zero */
  535. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  536. goto out;
  537. }
  538. if (dn.data_blkaddr == NEW_ADDR) {
  539. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  540. } else {
  541. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  542. if (err)
  543. return err;
  544. lock_page(page);
  545. if (!PageUptodate(page)) {
  546. f2fs_put_page(page, 1);
  547. return -EIO;
  548. }
  549. }
  550. out:
  551. SetPageUptodate(page);
  552. clear_cold_data(page);
  553. return 0;
  554. err:
  555. mutex_unlock_op(sbi, ilock);
  556. f2fs_put_page(page, 1);
  557. return err;
  558. }
  559. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  560. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  561. {
  562. struct file *file = iocb->ki_filp;
  563. struct inode *inode = file->f_mapping->host;
  564. if (rw == WRITE)
  565. return 0;
  566. /* Needs synchronization with the cleaner */
  567. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  568. get_data_block_ro);
  569. }
  570. static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
  571. {
  572. struct inode *inode = page->mapping->host;
  573. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  574. if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
  575. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  576. inode_dec_dirty_dents(inode);
  577. }
  578. ClearPagePrivate(page);
  579. }
  580. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  581. {
  582. ClearPagePrivate(page);
  583. return 1;
  584. }
  585. static int f2fs_set_data_page_dirty(struct page *page)
  586. {
  587. struct address_space *mapping = page->mapping;
  588. struct inode *inode = mapping->host;
  589. SetPageUptodate(page);
  590. if (!PageDirty(page)) {
  591. __set_page_dirty_nobuffers(page);
  592. set_dirty_dir_page(inode, page);
  593. return 1;
  594. }
  595. return 0;
  596. }
  597. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  598. {
  599. return generic_block_bmap(mapping, block, get_data_block_ro);
  600. }
  601. const struct address_space_operations f2fs_dblock_aops = {
  602. .readpage = f2fs_read_data_page,
  603. .readpages = f2fs_read_data_pages,
  604. .writepage = f2fs_write_data_page,
  605. .writepages = f2fs_write_data_pages,
  606. .write_begin = f2fs_write_begin,
  607. .write_end = nobh_write_end,
  608. .set_page_dirty = f2fs_set_data_page_dirty,
  609. .invalidatepage = f2fs_invalidate_data_page,
  610. .releasepage = f2fs_release_data_page,
  611. .direct_IO = f2fs_direct_IO,
  612. .bmap = f2fs_bmap,
  613. };