intel_display.c 280 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. typedef struct {
  50. int min, max;
  51. } intel_range_t;
  52. typedef struct {
  53. int dot_limit;
  54. int p2_slow, p2_fast;
  55. } intel_p2_t;
  56. #define INTEL_P2_NUM 2
  57. typedef struct intel_limit intel_limit_t;
  58. struct intel_limit {
  59. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  60. intel_p2_t p2;
  61. };
  62. /* FDI */
  63. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  64. int
  65. intel_pch_rawclk(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. WARN_ON(!HAS_PCH_SPLIT(dev));
  69. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  70. }
  71. static inline u32 /* units of 100MHz */
  72. intel_fdi_link_freq(struct drm_device *dev)
  73. {
  74. if (IS_GEN5(dev)) {
  75. struct drm_i915_private *dev_priv = dev->dev_private;
  76. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  77. } else
  78. return 27;
  79. }
  80. static const intel_limit_t intel_limits_i8xx_dac = {
  81. .dot = { .min = 25000, .max = 350000 },
  82. .vco = { .min = 930000, .max = 1400000 },
  83. .n = { .min = 3, .max = 16 },
  84. .m = { .min = 96, .max = 140 },
  85. .m1 = { .min = 18, .max = 26 },
  86. .m2 = { .min = 6, .max = 16 },
  87. .p = { .min = 4, .max = 128 },
  88. .p1 = { .min = 2, .max = 33 },
  89. .p2 = { .dot_limit = 165000,
  90. .p2_slow = 4, .p2_fast = 2 },
  91. };
  92. static const intel_limit_t intel_limits_i8xx_dvo = {
  93. .dot = { .min = 25000, .max = 350000 },
  94. .vco = { .min = 930000, .max = 1400000 },
  95. .n = { .min = 3, .max = 16 },
  96. .m = { .min = 96, .max = 140 },
  97. .m1 = { .min = 18, .max = 26 },
  98. .m2 = { .min = 6, .max = 16 },
  99. .p = { .min = 4, .max = 128 },
  100. .p1 = { .min = 2, .max = 33 },
  101. .p2 = { .dot_limit = 165000,
  102. .p2_slow = 4, .p2_fast = 4 },
  103. };
  104. static const intel_limit_t intel_limits_i8xx_lvds = {
  105. .dot = { .min = 25000, .max = 350000 },
  106. .vco = { .min = 930000, .max = 1400000 },
  107. .n = { .min = 3, .max = 16 },
  108. .m = { .min = 96, .max = 140 },
  109. .m1 = { .min = 18, .max = 26 },
  110. .m2 = { .min = 6, .max = 16 },
  111. .p = { .min = 4, .max = 128 },
  112. .p1 = { .min = 1, .max = 6 },
  113. .p2 = { .dot_limit = 165000,
  114. .p2_slow = 14, .p2_fast = 7 },
  115. };
  116. static const intel_limit_t intel_limits_i9xx_sdvo = {
  117. .dot = { .min = 20000, .max = 400000 },
  118. .vco = { .min = 1400000, .max = 2800000 },
  119. .n = { .min = 1, .max = 6 },
  120. .m = { .min = 70, .max = 120 },
  121. .m1 = { .min = 8, .max = 18 },
  122. .m2 = { .min = 3, .max = 7 },
  123. .p = { .min = 5, .max = 80 },
  124. .p1 = { .min = 1, .max = 8 },
  125. .p2 = { .dot_limit = 200000,
  126. .p2_slow = 10, .p2_fast = 5 },
  127. };
  128. static const intel_limit_t intel_limits_i9xx_lvds = {
  129. .dot = { .min = 20000, .max = 400000 },
  130. .vco = { .min = 1400000, .max = 2800000 },
  131. .n = { .min = 1, .max = 6 },
  132. .m = { .min = 70, .max = 120 },
  133. .m1 = { .min = 8, .max = 18 },
  134. .m2 = { .min = 3, .max = 7 },
  135. .p = { .min = 7, .max = 98 },
  136. .p1 = { .min = 1, .max = 8 },
  137. .p2 = { .dot_limit = 112000,
  138. .p2_slow = 14, .p2_fast = 7 },
  139. };
  140. static const intel_limit_t intel_limits_g4x_sdvo = {
  141. .dot = { .min = 25000, .max = 270000 },
  142. .vco = { .min = 1750000, .max = 3500000},
  143. .n = { .min = 1, .max = 4 },
  144. .m = { .min = 104, .max = 138 },
  145. .m1 = { .min = 17, .max = 23 },
  146. .m2 = { .min = 5, .max = 11 },
  147. .p = { .min = 10, .max = 30 },
  148. .p1 = { .min = 1, .max = 3},
  149. .p2 = { .dot_limit = 270000,
  150. .p2_slow = 10,
  151. .p2_fast = 10
  152. },
  153. };
  154. static const intel_limit_t intel_limits_g4x_hdmi = {
  155. .dot = { .min = 22000, .max = 400000 },
  156. .vco = { .min = 1750000, .max = 3500000},
  157. .n = { .min = 1, .max = 4 },
  158. .m = { .min = 104, .max = 138 },
  159. .m1 = { .min = 16, .max = 23 },
  160. .m2 = { .min = 5, .max = 11 },
  161. .p = { .min = 5, .max = 80 },
  162. .p1 = { .min = 1, .max = 8},
  163. .p2 = { .dot_limit = 165000,
  164. .p2_slow = 10, .p2_fast = 5 },
  165. };
  166. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  167. .dot = { .min = 20000, .max = 115000 },
  168. .vco = { .min = 1750000, .max = 3500000 },
  169. .n = { .min = 1, .max = 3 },
  170. .m = { .min = 104, .max = 138 },
  171. .m1 = { .min = 17, .max = 23 },
  172. .m2 = { .min = 5, .max = 11 },
  173. .p = { .min = 28, .max = 112 },
  174. .p1 = { .min = 2, .max = 8 },
  175. .p2 = { .dot_limit = 0,
  176. .p2_slow = 14, .p2_fast = 14
  177. },
  178. };
  179. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  180. .dot = { .min = 80000, .max = 224000 },
  181. .vco = { .min = 1750000, .max = 3500000 },
  182. .n = { .min = 1, .max = 3 },
  183. .m = { .min = 104, .max = 138 },
  184. .m1 = { .min = 17, .max = 23 },
  185. .m2 = { .min = 5, .max = 11 },
  186. .p = { .min = 14, .max = 42 },
  187. .p1 = { .min = 2, .max = 6 },
  188. .p2 = { .dot_limit = 0,
  189. .p2_slow = 7, .p2_fast = 7
  190. },
  191. };
  192. static const intel_limit_t intel_limits_pineview_sdvo = {
  193. .dot = { .min = 20000, .max = 400000},
  194. .vco = { .min = 1700000, .max = 3500000 },
  195. /* Pineview's Ncounter is a ring counter */
  196. .n = { .min = 3, .max = 6 },
  197. .m = { .min = 2, .max = 256 },
  198. /* Pineview only has one combined m divider, which we treat as m2. */
  199. .m1 = { .min = 0, .max = 0 },
  200. .m2 = { .min = 0, .max = 254 },
  201. .p = { .min = 5, .max = 80 },
  202. .p1 = { .min = 1, .max = 8 },
  203. .p2 = { .dot_limit = 200000,
  204. .p2_slow = 10, .p2_fast = 5 },
  205. };
  206. static const intel_limit_t intel_limits_pineview_lvds = {
  207. .dot = { .min = 20000, .max = 400000 },
  208. .vco = { .min = 1700000, .max = 3500000 },
  209. .n = { .min = 3, .max = 6 },
  210. .m = { .min = 2, .max = 256 },
  211. .m1 = { .min = 0, .max = 0 },
  212. .m2 = { .min = 0, .max = 254 },
  213. .p = { .min = 7, .max = 112 },
  214. .p1 = { .min = 1, .max = 8 },
  215. .p2 = { .dot_limit = 112000,
  216. .p2_slow = 14, .p2_fast = 14 },
  217. };
  218. /* Ironlake / Sandybridge
  219. *
  220. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  221. * the range value for them is (actual_value - 2).
  222. */
  223. static const intel_limit_t intel_limits_ironlake_dac = {
  224. .dot = { .min = 25000, .max = 350000 },
  225. .vco = { .min = 1760000, .max = 3510000 },
  226. .n = { .min = 1, .max = 5 },
  227. .m = { .min = 79, .max = 127 },
  228. .m1 = { .min = 12, .max = 22 },
  229. .m2 = { .min = 5, .max = 9 },
  230. .p = { .min = 5, .max = 80 },
  231. .p1 = { .min = 1, .max = 8 },
  232. .p2 = { .dot_limit = 225000,
  233. .p2_slow = 10, .p2_fast = 5 },
  234. };
  235. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  236. .dot = { .min = 25000, .max = 350000 },
  237. .vco = { .min = 1760000, .max = 3510000 },
  238. .n = { .min = 1, .max = 3 },
  239. .m = { .min = 79, .max = 118 },
  240. .m1 = { .min = 12, .max = 22 },
  241. .m2 = { .min = 5, .max = 9 },
  242. .p = { .min = 28, .max = 112 },
  243. .p1 = { .min = 2, .max = 8 },
  244. .p2 = { .dot_limit = 225000,
  245. .p2_slow = 14, .p2_fast = 14 },
  246. };
  247. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  248. .dot = { .min = 25000, .max = 350000 },
  249. .vco = { .min = 1760000, .max = 3510000 },
  250. .n = { .min = 1, .max = 3 },
  251. .m = { .min = 79, .max = 127 },
  252. .m1 = { .min = 12, .max = 22 },
  253. .m2 = { .min = 5, .max = 9 },
  254. .p = { .min = 14, .max = 56 },
  255. .p1 = { .min = 2, .max = 8 },
  256. .p2 = { .dot_limit = 225000,
  257. .p2_slow = 7, .p2_fast = 7 },
  258. };
  259. /* LVDS 100mhz refclk limits. */
  260. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  261. .dot = { .min = 25000, .max = 350000 },
  262. .vco = { .min = 1760000, .max = 3510000 },
  263. .n = { .min = 1, .max = 2 },
  264. .m = { .min = 79, .max = 126 },
  265. .m1 = { .min = 12, .max = 22 },
  266. .m2 = { .min = 5, .max = 9 },
  267. .p = { .min = 28, .max = 112 },
  268. .p1 = { .min = 2, .max = 8 },
  269. .p2 = { .dot_limit = 225000,
  270. .p2_slow = 14, .p2_fast = 14 },
  271. };
  272. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  273. .dot = { .min = 25000, .max = 350000 },
  274. .vco = { .min = 1760000, .max = 3510000 },
  275. .n = { .min = 1, .max = 3 },
  276. .m = { .min = 79, .max = 126 },
  277. .m1 = { .min = 12, .max = 22 },
  278. .m2 = { .min = 5, .max = 9 },
  279. .p = { .min = 14, .max = 42 },
  280. .p1 = { .min = 2, .max = 6 },
  281. .p2 = { .dot_limit = 225000,
  282. .p2_slow = 7, .p2_fast = 7 },
  283. };
  284. static const intel_limit_t intel_limits_vlv_dac = {
  285. .dot = { .min = 25000, .max = 270000 },
  286. .vco = { .min = 4000000, .max = 6000000 },
  287. .n = { .min = 1, .max = 7 },
  288. .m = { .min = 22, .max = 450 }, /* guess */
  289. .m1 = { .min = 2, .max = 3 },
  290. .m2 = { .min = 11, .max = 156 },
  291. .p = { .min = 10, .max = 30 },
  292. .p1 = { .min = 1, .max = 3 },
  293. .p2 = { .dot_limit = 270000,
  294. .p2_slow = 2, .p2_fast = 20 },
  295. };
  296. static const intel_limit_t intel_limits_vlv_hdmi = {
  297. .dot = { .min = 25000, .max = 270000 },
  298. .vco = { .min = 4000000, .max = 6000000 },
  299. .n = { .min = 1, .max = 7 },
  300. .m = { .min = 60, .max = 300 }, /* guess */
  301. .m1 = { .min = 2, .max = 3 },
  302. .m2 = { .min = 11, .max = 156 },
  303. .p = { .min = 10, .max = 30 },
  304. .p1 = { .min = 2, .max = 3 },
  305. .p2 = { .dot_limit = 270000,
  306. .p2_slow = 2, .p2_fast = 20 },
  307. };
  308. static const intel_limit_t intel_limits_vlv_dp = {
  309. .dot = { .min = 25000, .max = 270000 },
  310. .vco = { .min = 4000000, .max = 6000000 },
  311. .n = { .min = 1, .max = 7 },
  312. .m = { .min = 22, .max = 450 },
  313. .m1 = { .min = 2, .max = 3 },
  314. .m2 = { .min = 11, .max = 156 },
  315. .p = { .min = 10, .max = 30 },
  316. .p1 = { .min = 1, .max = 3 },
  317. .p2 = { .dot_limit = 270000,
  318. .p2_slow = 2, .p2_fast = 20 },
  319. };
  320. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  321. int refclk)
  322. {
  323. struct drm_device *dev = crtc->dev;
  324. const intel_limit_t *limit;
  325. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  326. if (intel_is_dual_link_lvds(dev)) {
  327. if (refclk == 100000)
  328. limit = &intel_limits_ironlake_dual_lvds_100m;
  329. else
  330. limit = &intel_limits_ironlake_dual_lvds;
  331. } else {
  332. if (refclk == 100000)
  333. limit = &intel_limits_ironlake_single_lvds_100m;
  334. else
  335. limit = &intel_limits_ironlake_single_lvds;
  336. }
  337. } else
  338. limit = &intel_limits_ironlake_dac;
  339. return limit;
  340. }
  341. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  342. {
  343. struct drm_device *dev = crtc->dev;
  344. const intel_limit_t *limit;
  345. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  346. if (intel_is_dual_link_lvds(dev))
  347. limit = &intel_limits_g4x_dual_channel_lvds;
  348. else
  349. limit = &intel_limits_g4x_single_channel_lvds;
  350. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  351. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  352. limit = &intel_limits_g4x_hdmi;
  353. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  354. limit = &intel_limits_g4x_sdvo;
  355. } else /* The option is for other outputs */
  356. limit = &intel_limits_i9xx_sdvo;
  357. return limit;
  358. }
  359. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  360. {
  361. struct drm_device *dev = crtc->dev;
  362. const intel_limit_t *limit;
  363. if (HAS_PCH_SPLIT(dev))
  364. limit = intel_ironlake_limit(crtc, refclk);
  365. else if (IS_G4X(dev)) {
  366. limit = intel_g4x_limit(crtc);
  367. } else if (IS_PINEVIEW(dev)) {
  368. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  369. limit = &intel_limits_pineview_lvds;
  370. else
  371. limit = &intel_limits_pineview_sdvo;
  372. } else if (IS_VALLEYVIEW(dev)) {
  373. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  374. limit = &intel_limits_vlv_dac;
  375. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  376. limit = &intel_limits_vlv_hdmi;
  377. else
  378. limit = &intel_limits_vlv_dp;
  379. } else if (!IS_GEN2(dev)) {
  380. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  381. limit = &intel_limits_i9xx_lvds;
  382. else
  383. limit = &intel_limits_i9xx_sdvo;
  384. } else {
  385. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  386. limit = &intel_limits_i8xx_lvds;
  387. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  388. limit = &intel_limits_i8xx_dvo;
  389. else
  390. limit = &intel_limits_i8xx_dac;
  391. }
  392. return limit;
  393. }
  394. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  395. static void pineview_clock(int refclk, intel_clock_t *clock)
  396. {
  397. clock->m = clock->m2 + 2;
  398. clock->p = clock->p1 * clock->p2;
  399. clock->vco = refclk * clock->m / clock->n;
  400. clock->dot = clock->vco / clock->p;
  401. }
  402. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  403. {
  404. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  405. }
  406. static void i9xx_clock(int refclk, intel_clock_t *clock)
  407. {
  408. clock->m = i9xx_dpll_compute_m(clock);
  409. clock->p = clock->p1 * clock->p2;
  410. clock->vco = refclk * clock->m / (clock->n + 2);
  411. clock->dot = clock->vco / clock->p;
  412. }
  413. /**
  414. * Returns whether any output on the specified pipe is of the specified type
  415. */
  416. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  417. {
  418. struct drm_device *dev = crtc->dev;
  419. struct intel_encoder *encoder;
  420. for_each_encoder_on_crtc(dev, crtc, encoder)
  421. if (encoder->type == type)
  422. return true;
  423. return false;
  424. }
  425. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  426. /**
  427. * Returns whether the given set of divisors are valid for a given refclk with
  428. * the given connectors.
  429. */
  430. static bool intel_PLL_is_valid(struct drm_device *dev,
  431. const intel_limit_t *limit,
  432. const intel_clock_t *clock)
  433. {
  434. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  435. INTELPllInvalid("p1 out of range\n");
  436. if (clock->p < limit->p.min || limit->p.max < clock->p)
  437. INTELPllInvalid("p out of range\n");
  438. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  439. INTELPllInvalid("m2 out of range\n");
  440. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  441. INTELPllInvalid("m1 out of range\n");
  442. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  443. INTELPllInvalid("m1 <= m2\n");
  444. if (clock->m < limit->m.min || limit->m.max < clock->m)
  445. INTELPllInvalid("m out of range\n");
  446. if (clock->n < limit->n.min || limit->n.max < clock->n)
  447. INTELPllInvalid("n out of range\n");
  448. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  449. INTELPllInvalid("vco out of range\n");
  450. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  451. * connector, etc., rather than just a single range.
  452. */
  453. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  454. INTELPllInvalid("dot out of range\n");
  455. return true;
  456. }
  457. static bool
  458. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  459. int target, int refclk, intel_clock_t *match_clock,
  460. intel_clock_t *best_clock)
  461. {
  462. struct drm_device *dev = crtc->dev;
  463. intel_clock_t clock;
  464. int err = target;
  465. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  466. /*
  467. * For LVDS just rely on its current settings for dual-channel.
  468. * We haven't figured out how to reliably set up different
  469. * single/dual channel state, if we even can.
  470. */
  471. if (intel_is_dual_link_lvds(dev))
  472. clock.p2 = limit->p2.p2_fast;
  473. else
  474. clock.p2 = limit->p2.p2_slow;
  475. } else {
  476. if (target < limit->p2.dot_limit)
  477. clock.p2 = limit->p2.p2_slow;
  478. else
  479. clock.p2 = limit->p2.p2_fast;
  480. }
  481. memset(best_clock, 0, sizeof(*best_clock));
  482. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  483. clock.m1++) {
  484. for (clock.m2 = limit->m2.min;
  485. clock.m2 <= limit->m2.max; clock.m2++) {
  486. if (clock.m2 >= clock.m1)
  487. break;
  488. for (clock.n = limit->n.min;
  489. clock.n <= limit->n.max; clock.n++) {
  490. for (clock.p1 = limit->p1.min;
  491. clock.p1 <= limit->p1.max; clock.p1++) {
  492. int this_err;
  493. i9xx_clock(refclk, &clock);
  494. if (!intel_PLL_is_valid(dev, limit,
  495. &clock))
  496. continue;
  497. if (match_clock &&
  498. clock.p != match_clock->p)
  499. continue;
  500. this_err = abs(clock.dot - target);
  501. if (this_err < err) {
  502. *best_clock = clock;
  503. err = this_err;
  504. }
  505. }
  506. }
  507. }
  508. }
  509. return (err != target);
  510. }
  511. static bool
  512. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  513. int target, int refclk, intel_clock_t *match_clock,
  514. intel_clock_t *best_clock)
  515. {
  516. struct drm_device *dev = crtc->dev;
  517. intel_clock_t clock;
  518. int err = target;
  519. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  520. /*
  521. * For LVDS just rely on its current settings for dual-channel.
  522. * We haven't figured out how to reliably set up different
  523. * single/dual channel state, if we even can.
  524. */
  525. if (intel_is_dual_link_lvds(dev))
  526. clock.p2 = limit->p2.p2_fast;
  527. else
  528. clock.p2 = limit->p2.p2_slow;
  529. } else {
  530. if (target < limit->p2.dot_limit)
  531. clock.p2 = limit->p2.p2_slow;
  532. else
  533. clock.p2 = limit->p2.p2_fast;
  534. }
  535. memset(best_clock, 0, sizeof(*best_clock));
  536. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  537. clock.m1++) {
  538. for (clock.m2 = limit->m2.min;
  539. clock.m2 <= limit->m2.max; clock.m2++) {
  540. for (clock.n = limit->n.min;
  541. clock.n <= limit->n.max; clock.n++) {
  542. for (clock.p1 = limit->p1.min;
  543. clock.p1 <= limit->p1.max; clock.p1++) {
  544. int this_err;
  545. pineview_clock(refclk, &clock);
  546. if (!intel_PLL_is_valid(dev, limit,
  547. &clock))
  548. continue;
  549. if (match_clock &&
  550. clock.p != match_clock->p)
  551. continue;
  552. this_err = abs(clock.dot - target);
  553. if (this_err < err) {
  554. *best_clock = clock;
  555. err = this_err;
  556. }
  557. }
  558. }
  559. }
  560. }
  561. return (err != target);
  562. }
  563. static bool
  564. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  565. int target, int refclk, intel_clock_t *match_clock,
  566. intel_clock_t *best_clock)
  567. {
  568. struct drm_device *dev = crtc->dev;
  569. intel_clock_t clock;
  570. int max_n;
  571. bool found;
  572. /* approximately equals target * 0.00585 */
  573. int err_most = (target >> 8) + (target >> 9);
  574. found = false;
  575. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  576. if (intel_is_dual_link_lvds(dev))
  577. clock.p2 = limit->p2.p2_fast;
  578. else
  579. clock.p2 = limit->p2.p2_slow;
  580. } else {
  581. if (target < limit->p2.dot_limit)
  582. clock.p2 = limit->p2.p2_slow;
  583. else
  584. clock.p2 = limit->p2.p2_fast;
  585. }
  586. memset(best_clock, 0, sizeof(*best_clock));
  587. max_n = limit->n.max;
  588. /* based on hardware requirement, prefer smaller n to precision */
  589. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  590. /* based on hardware requirement, prefere larger m1,m2 */
  591. for (clock.m1 = limit->m1.max;
  592. clock.m1 >= limit->m1.min; clock.m1--) {
  593. for (clock.m2 = limit->m2.max;
  594. clock.m2 >= limit->m2.min; clock.m2--) {
  595. for (clock.p1 = limit->p1.max;
  596. clock.p1 >= limit->p1.min; clock.p1--) {
  597. int this_err;
  598. i9xx_clock(refclk, &clock);
  599. if (!intel_PLL_is_valid(dev, limit,
  600. &clock))
  601. continue;
  602. this_err = abs(clock.dot - target);
  603. if (this_err < err_most) {
  604. *best_clock = clock;
  605. err_most = this_err;
  606. max_n = clock.n;
  607. found = true;
  608. }
  609. }
  610. }
  611. }
  612. }
  613. return found;
  614. }
  615. static bool
  616. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  617. int target, int refclk, intel_clock_t *match_clock,
  618. intel_clock_t *best_clock)
  619. {
  620. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  621. u32 m, n, fastclk;
  622. u32 updrate, minupdate, fracbits, p;
  623. unsigned long bestppm, ppm, absppm;
  624. int dotclk, flag;
  625. flag = 0;
  626. dotclk = target * 1000;
  627. bestppm = 1000000;
  628. ppm = absppm = 0;
  629. fastclk = dotclk / (2*100);
  630. updrate = 0;
  631. minupdate = 19200;
  632. fracbits = 1;
  633. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  634. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  635. /* based on hardware requirement, prefer smaller n to precision */
  636. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  637. updrate = refclk / n;
  638. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  639. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  640. if (p2 > 10)
  641. p2 = p2 - 1;
  642. p = p1 * p2;
  643. /* based on hardware requirement, prefer bigger m1,m2 values */
  644. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  645. m2 = (((2*(fastclk * p * n / m1 )) +
  646. refclk) / (2*refclk));
  647. m = m1 * m2;
  648. vco = updrate * m;
  649. if (vco >= limit->vco.min && vco < limit->vco.max) {
  650. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  651. absppm = (ppm > 0) ? ppm : (-ppm);
  652. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  653. bestppm = 0;
  654. flag = 1;
  655. }
  656. if (absppm < bestppm - 10) {
  657. bestppm = absppm;
  658. flag = 1;
  659. }
  660. if (flag) {
  661. bestn = n;
  662. bestm1 = m1;
  663. bestm2 = m2;
  664. bestp1 = p1;
  665. bestp2 = p2;
  666. flag = 0;
  667. }
  668. }
  669. }
  670. }
  671. }
  672. }
  673. best_clock->n = bestn;
  674. best_clock->m1 = bestm1;
  675. best_clock->m2 = bestm2;
  676. best_clock->p1 = bestp1;
  677. best_clock->p2 = bestp2;
  678. return true;
  679. }
  680. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  681. enum pipe pipe)
  682. {
  683. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  684. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  685. return intel_crtc->config.cpu_transcoder;
  686. }
  687. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  688. {
  689. struct drm_i915_private *dev_priv = dev->dev_private;
  690. u32 frame, frame_reg = PIPEFRAME(pipe);
  691. frame = I915_READ(frame_reg);
  692. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  693. DRM_DEBUG_KMS("vblank wait timed out\n");
  694. }
  695. /**
  696. * intel_wait_for_vblank - wait for vblank on a given pipe
  697. * @dev: drm device
  698. * @pipe: pipe to wait for
  699. *
  700. * Wait for vblank to occur on a given pipe. Needed for various bits of
  701. * mode setting code.
  702. */
  703. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  704. {
  705. struct drm_i915_private *dev_priv = dev->dev_private;
  706. int pipestat_reg = PIPESTAT(pipe);
  707. if (INTEL_INFO(dev)->gen >= 5) {
  708. ironlake_wait_for_vblank(dev, pipe);
  709. return;
  710. }
  711. /* Clear existing vblank status. Note this will clear any other
  712. * sticky status fields as well.
  713. *
  714. * This races with i915_driver_irq_handler() with the result
  715. * that either function could miss a vblank event. Here it is not
  716. * fatal, as we will either wait upon the next vblank interrupt or
  717. * timeout. Generally speaking intel_wait_for_vblank() is only
  718. * called during modeset at which time the GPU should be idle and
  719. * should *not* be performing page flips and thus not waiting on
  720. * vblanks...
  721. * Currently, the result of us stealing a vblank from the irq
  722. * handler is that a single frame will be skipped during swapbuffers.
  723. */
  724. I915_WRITE(pipestat_reg,
  725. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  726. /* Wait for vblank interrupt bit to set */
  727. if (wait_for(I915_READ(pipestat_reg) &
  728. PIPE_VBLANK_INTERRUPT_STATUS,
  729. 50))
  730. DRM_DEBUG_KMS("vblank wait timed out\n");
  731. }
  732. /*
  733. * intel_wait_for_pipe_off - wait for pipe to turn off
  734. * @dev: drm device
  735. * @pipe: pipe to wait for
  736. *
  737. * After disabling a pipe, we can't wait for vblank in the usual way,
  738. * spinning on the vblank interrupt status bit, since we won't actually
  739. * see an interrupt when the pipe is disabled.
  740. *
  741. * On Gen4 and above:
  742. * wait for the pipe register state bit to turn off
  743. *
  744. * Otherwise:
  745. * wait for the display line value to settle (it usually
  746. * ends up stopping at the start of the next frame).
  747. *
  748. */
  749. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  750. {
  751. struct drm_i915_private *dev_priv = dev->dev_private;
  752. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  753. pipe);
  754. if (INTEL_INFO(dev)->gen >= 4) {
  755. int reg = PIPECONF(cpu_transcoder);
  756. /* Wait for the Pipe State to go off */
  757. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  758. 100))
  759. WARN(1, "pipe_off wait timed out\n");
  760. } else {
  761. u32 last_line, line_mask;
  762. int reg = PIPEDSL(pipe);
  763. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  764. if (IS_GEN2(dev))
  765. line_mask = DSL_LINEMASK_GEN2;
  766. else
  767. line_mask = DSL_LINEMASK_GEN3;
  768. /* Wait for the display line to settle */
  769. do {
  770. last_line = I915_READ(reg) & line_mask;
  771. mdelay(5);
  772. } while (((I915_READ(reg) & line_mask) != last_line) &&
  773. time_after(timeout, jiffies));
  774. if (time_after(jiffies, timeout))
  775. WARN(1, "pipe_off wait timed out\n");
  776. }
  777. }
  778. /*
  779. * ibx_digital_port_connected - is the specified port connected?
  780. * @dev_priv: i915 private structure
  781. * @port: the port to test
  782. *
  783. * Returns true if @port is connected, false otherwise.
  784. */
  785. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  786. struct intel_digital_port *port)
  787. {
  788. u32 bit;
  789. if (HAS_PCH_IBX(dev_priv->dev)) {
  790. switch(port->port) {
  791. case PORT_B:
  792. bit = SDE_PORTB_HOTPLUG;
  793. break;
  794. case PORT_C:
  795. bit = SDE_PORTC_HOTPLUG;
  796. break;
  797. case PORT_D:
  798. bit = SDE_PORTD_HOTPLUG;
  799. break;
  800. default:
  801. return true;
  802. }
  803. } else {
  804. switch(port->port) {
  805. case PORT_B:
  806. bit = SDE_PORTB_HOTPLUG_CPT;
  807. break;
  808. case PORT_C:
  809. bit = SDE_PORTC_HOTPLUG_CPT;
  810. break;
  811. case PORT_D:
  812. bit = SDE_PORTD_HOTPLUG_CPT;
  813. break;
  814. default:
  815. return true;
  816. }
  817. }
  818. return I915_READ(SDEISR) & bit;
  819. }
  820. static const char *state_string(bool enabled)
  821. {
  822. return enabled ? "on" : "off";
  823. }
  824. /* Only for pre-ILK configs */
  825. void assert_pll(struct drm_i915_private *dev_priv,
  826. enum pipe pipe, bool state)
  827. {
  828. int reg;
  829. u32 val;
  830. bool cur_state;
  831. reg = DPLL(pipe);
  832. val = I915_READ(reg);
  833. cur_state = !!(val & DPLL_VCO_ENABLE);
  834. WARN(cur_state != state,
  835. "PLL state assertion failure (expected %s, current %s)\n",
  836. state_string(state), state_string(cur_state));
  837. }
  838. struct intel_shared_dpll *
  839. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  840. {
  841. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  842. if (crtc->config.shared_dpll < 0)
  843. return NULL;
  844. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  845. }
  846. /* For ILK+ */
  847. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  848. struct intel_shared_dpll *pll,
  849. bool state)
  850. {
  851. bool cur_state;
  852. struct intel_dpll_hw_state hw_state;
  853. if (HAS_PCH_LPT(dev_priv->dev)) {
  854. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  855. return;
  856. }
  857. if (WARN (!pll,
  858. "asserting DPLL %s with no DPLL\n", state_string(state)))
  859. return;
  860. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  861. WARN(cur_state != state,
  862. "%s assertion failure (expected %s, current %s)\n",
  863. pll->name, state_string(state), state_string(cur_state));
  864. }
  865. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  866. enum pipe pipe, bool state)
  867. {
  868. int reg;
  869. u32 val;
  870. bool cur_state;
  871. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  872. pipe);
  873. if (HAS_DDI(dev_priv->dev)) {
  874. /* DDI does not have a specific FDI_TX register */
  875. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  876. val = I915_READ(reg);
  877. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  878. } else {
  879. reg = FDI_TX_CTL(pipe);
  880. val = I915_READ(reg);
  881. cur_state = !!(val & FDI_TX_ENABLE);
  882. }
  883. WARN(cur_state != state,
  884. "FDI TX state assertion failure (expected %s, current %s)\n",
  885. state_string(state), state_string(cur_state));
  886. }
  887. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  888. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  889. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  890. enum pipe pipe, bool state)
  891. {
  892. int reg;
  893. u32 val;
  894. bool cur_state;
  895. reg = FDI_RX_CTL(pipe);
  896. val = I915_READ(reg);
  897. cur_state = !!(val & FDI_RX_ENABLE);
  898. WARN(cur_state != state,
  899. "FDI RX state assertion failure (expected %s, current %s)\n",
  900. state_string(state), state_string(cur_state));
  901. }
  902. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  903. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  904. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  905. enum pipe pipe)
  906. {
  907. int reg;
  908. u32 val;
  909. /* ILK FDI PLL is always enabled */
  910. if (dev_priv->info->gen == 5)
  911. return;
  912. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  913. if (HAS_DDI(dev_priv->dev))
  914. return;
  915. reg = FDI_TX_CTL(pipe);
  916. val = I915_READ(reg);
  917. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  918. }
  919. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  920. enum pipe pipe, bool state)
  921. {
  922. int reg;
  923. u32 val;
  924. bool cur_state;
  925. reg = FDI_RX_CTL(pipe);
  926. val = I915_READ(reg);
  927. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  928. WARN(cur_state != state,
  929. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  930. state_string(state), state_string(cur_state));
  931. }
  932. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  933. enum pipe pipe)
  934. {
  935. int pp_reg, lvds_reg;
  936. u32 val;
  937. enum pipe panel_pipe = PIPE_A;
  938. bool locked = true;
  939. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  940. pp_reg = PCH_PP_CONTROL;
  941. lvds_reg = PCH_LVDS;
  942. } else {
  943. pp_reg = PP_CONTROL;
  944. lvds_reg = LVDS;
  945. }
  946. val = I915_READ(pp_reg);
  947. if (!(val & PANEL_POWER_ON) ||
  948. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  949. locked = false;
  950. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  951. panel_pipe = PIPE_B;
  952. WARN(panel_pipe == pipe && locked,
  953. "panel assertion failure, pipe %c regs locked\n",
  954. pipe_name(pipe));
  955. }
  956. void assert_pipe(struct drm_i915_private *dev_priv,
  957. enum pipe pipe, bool state)
  958. {
  959. int reg;
  960. u32 val;
  961. bool cur_state;
  962. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  963. pipe);
  964. /* if we need the pipe A quirk it must be always on */
  965. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  966. state = true;
  967. if (!intel_display_power_enabled(dev_priv->dev,
  968. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  969. cur_state = false;
  970. } else {
  971. reg = PIPECONF(cpu_transcoder);
  972. val = I915_READ(reg);
  973. cur_state = !!(val & PIPECONF_ENABLE);
  974. }
  975. WARN(cur_state != state,
  976. "pipe %c assertion failure (expected %s, current %s)\n",
  977. pipe_name(pipe), state_string(state), state_string(cur_state));
  978. }
  979. static void assert_plane(struct drm_i915_private *dev_priv,
  980. enum plane plane, bool state)
  981. {
  982. int reg;
  983. u32 val;
  984. bool cur_state;
  985. reg = DSPCNTR(plane);
  986. val = I915_READ(reg);
  987. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  988. WARN(cur_state != state,
  989. "plane %c assertion failure (expected %s, current %s)\n",
  990. plane_name(plane), state_string(state), state_string(cur_state));
  991. }
  992. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  993. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  994. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  995. enum pipe pipe)
  996. {
  997. struct drm_device *dev = dev_priv->dev;
  998. int reg, i;
  999. u32 val;
  1000. int cur_pipe;
  1001. /* Primary planes are fixed to pipes on gen4+ */
  1002. if (INTEL_INFO(dev)->gen >= 4) {
  1003. reg = DSPCNTR(pipe);
  1004. val = I915_READ(reg);
  1005. WARN((val & DISPLAY_PLANE_ENABLE),
  1006. "plane %c assertion failure, should be disabled but not\n",
  1007. plane_name(pipe));
  1008. return;
  1009. }
  1010. /* Need to check both planes against the pipe */
  1011. for_each_pipe(i) {
  1012. reg = DSPCNTR(i);
  1013. val = I915_READ(reg);
  1014. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1015. DISPPLANE_SEL_PIPE_SHIFT;
  1016. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1017. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1018. plane_name(i), pipe_name(pipe));
  1019. }
  1020. }
  1021. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1022. enum pipe pipe)
  1023. {
  1024. struct drm_device *dev = dev_priv->dev;
  1025. int reg, i;
  1026. u32 val;
  1027. if (IS_VALLEYVIEW(dev)) {
  1028. for (i = 0; i < dev_priv->num_plane; i++) {
  1029. reg = SPCNTR(pipe, i);
  1030. val = I915_READ(reg);
  1031. WARN((val & SP_ENABLE),
  1032. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1033. sprite_name(pipe, i), pipe_name(pipe));
  1034. }
  1035. } else if (INTEL_INFO(dev)->gen >= 7) {
  1036. reg = SPRCTL(pipe);
  1037. val = I915_READ(reg);
  1038. WARN((val & SPRITE_ENABLE),
  1039. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1040. plane_name(pipe), pipe_name(pipe));
  1041. } else if (INTEL_INFO(dev)->gen >= 5) {
  1042. reg = DVSCNTR(pipe);
  1043. val = I915_READ(reg);
  1044. WARN((val & DVS_ENABLE),
  1045. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1046. plane_name(pipe), pipe_name(pipe));
  1047. }
  1048. }
  1049. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1050. {
  1051. u32 val;
  1052. bool enabled;
  1053. if (HAS_PCH_LPT(dev_priv->dev)) {
  1054. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1055. return;
  1056. }
  1057. val = I915_READ(PCH_DREF_CONTROL);
  1058. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1059. DREF_SUPERSPREAD_SOURCE_MASK));
  1060. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1061. }
  1062. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1063. enum pipe pipe)
  1064. {
  1065. int reg;
  1066. u32 val;
  1067. bool enabled;
  1068. reg = PCH_TRANSCONF(pipe);
  1069. val = I915_READ(reg);
  1070. enabled = !!(val & TRANS_ENABLE);
  1071. WARN(enabled,
  1072. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1073. pipe_name(pipe));
  1074. }
  1075. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1076. enum pipe pipe, u32 port_sel, u32 val)
  1077. {
  1078. if ((val & DP_PORT_EN) == 0)
  1079. return false;
  1080. if (HAS_PCH_CPT(dev_priv->dev)) {
  1081. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1082. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1083. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1084. return false;
  1085. } else {
  1086. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1087. return false;
  1088. }
  1089. return true;
  1090. }
  1091. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1092. enum pipe pipe, u32 val)
  1093. {
  1094. if ((val & SDVO_ENABLE) == 0)
  1095. return false;
  1096. if (HAS_PCH_CPT(dev_priv->dev)) {
  1097. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1098. return false;
  1099. } else {
  1100. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1101. return false;
  1102. }
  1103. return true;
  1104. }
  1105. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1106. enum pipe pipe, u32 val)
  1107. {
  1108. if ((val & LVDS_PORT_EN) == 0)
  1109. return false;
  1110. if (HAS_PCH_CPT(dev_priv->dev)) {
  1111. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1112. return false;
  1113. } else {
  1114. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1115. return false;
  1116. }
  1117. return true;
  1118. }
  1119. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1120. enum pipe pipe, u32 val)
  1121. {
  1122. if ((val & ADPA_DAC_ENABLE) == 0)
  1123. return false;
  1124. if (HAS_PCH_CPT(dev_priv->dev)) {
  1125. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1126. return false;
  1127. } else {
  1128. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1129. return false;
  1130. }
  1131. return true;
  1132. }
  1133. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1134. enum pipe pipe, int reg, u32 port_sel)
  1135. {
  1136. u32 val = I915_READ(reg);
  1137. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1138. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1139. reg, pipe_name(pipe));
  1140. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1141. && (val & DP_PIPEB_SELECT),
  1142. "IBX PCH dp port still using transcoder B\n");
  1143. }
  1144. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1145. enum pipe pipe, int reg)
  1146. {
  1147. u32 val = I915_READ(reg);
  1148. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1149. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1150. reg, pipe_name(pipe));
  1151. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1152. && (val & SDVO_PIPE_B_SELECT),
  1153. "IBX PCH hdmi port still using transcoder B\n");
  1154. }
  1155. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1156. enum pipe pipe)
  1157. {
  1158. int reg;
  1159. u32 val;
  1160. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1161. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1162. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1163. reg = PCH_ADPA;
  1164. val = I915_READ(reg);
  1165. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1166. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1167. pipe_name(pipe));
  1168. reg = PCH_LVDS;
  1169. val = I915_READ(reg);
  1170. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1171. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1172. pipe_name(pipe));
  1173. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1174. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1175. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1176. }
  1177. static void vlv_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1178. {
  1179. int reg;
  1180. u32 val;
  1181. assert_pipe_disabled(dev_priv, pipe);
  1182. /* No really, not for ILK+ */
  1183. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1184. /* PLL is protected by panel, make sure we can write it */
  1185. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1186. assert_panel_unlocked(dev_priv, pipe);
  1187. reg = DPLL(pipe);
  1188. val = I915_READ(reg);
  1189. val |= DPLL_VCO_ENABLE;
  1190. /* We do this three times for luck */
  1191. I915_WRITE(reg, val);
  1192. POSTING_READ(reg);
  1193. udelay(150); /* wait for warmup */
  1194. I915_WRITE(reg, val);
  1195. POSTING_READ(reg);
  1196. udelay(150); /* wait for warmup */
  1197. I915_WRITE(reg, val);
  1198. POSTING_READ(reg);
  1199. udelay(150); /* wait for warmup */
  1200. }
  1201. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1202. {
  1203. struct drm_device *dev = crtc->base.dev;
  1204. struct drm_i915_private *dev_priv = dev->dev_private;
  1205. int reg = DPLL(crtc->pipe);
  1206. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1207. assert_pipe_disabled(dev_priv, crtc->pipe);
  1208. /* No really, not for ILK+ */
  1209. BUG_ON(dev_priv->info->gen >= 5);
  1210. /* PLL is protected by panel, make sure we can write it */
  1211. if (IS_MOBILE(dev) && !IS_I830(dev))
  1212. assert_panel_unlocked(dev_priv, crtc->pipe);
  1213. I915_WRITE(reg, dpll);
  1214. /* Wait for the clocks to stabilize. */
  1215. POSTING_READ(reg);
  1216. udelay(150);
  1217. if (INTEL_INFO(dev)->gen >= 4) {
  1218. I915_WRITE(DPLL_MD(crtc->pipe),
  1219. crtc->config.dpll_hw_state.dpll_md);
  1220. } else {
  1221. /* The pixel multiplier can only be updated once the
  1222. * DPLL is enabled and the clocks are stable.
  1223. *
  1224. * So write it again.
  1225. */
  1226. I915_WRITE(reg, dpll);
  1227. }
  1228. /* We do this three times for luck */
  1229. I915_WRITE(reg, dpll);
  1230. POSTING_READ(reg);
  1231. udelay(150); /* wait for warmup */
  1232. I915_WRITE(reg, dpll);
  1233. POSTING_READ(reg);
  1234. udelay(150); /* wait for warmup */
  1235. I915_WRITE(reg, dpll);
  1236. POSTING_READ(reg);
  1237. udelay(150); /* wait for warmup */
  1238. }
  1239. /**
  1240. * intel_disable_pll - disable a PLL
  1241. * @dev_priv: i915 private structure
  1242. * @pipe: pipe PLL to disable
  1243. *
  1244. * Disable the PLL for @pipe, making sure the pipe is off first.
  1245. *
  1246. * Note! This is for pre-ILK only.
  1247. */
  1248. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1249. {
  1250. int reg;
  1251. u32 val;
  1252. /* Don't disable pipe A or pipe A PLLs if needed */
  1253. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1254. return;
  1255. /* Make sure the pipe isn't still relying on us */
  1256. assert_pipe_disabled(dev_priv, pipe);
  1257. reg = DPLL(pipe);
  1258. val = I915_READ(reg);
  1259. val &= ~DPLL_VCO_ENABLE;
  1260. I915_WRITE(reg, val);
  1261. POSTING_READ(reg);
  1262. }
  1263. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1264. {
  1265. u32 port_mask;
  1266. if (!port)
  1267. port_mask = DPLL_PORTB_READY_MASK;
  1268. else
  1269. port_mask = DPLL_PORTC_READY_MASK;
  1270. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1271. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1272. 'B' + port, I915_READ(DPLL(0)));
  1273. }
  1274. /**
  1275. * ironlake_enable_shared_dpll - enable PCH PLL
  1276. * @dev_priv: i915 private structure
  1277. * @pipe: pipe PLL to enable
  1278. *
  1279. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1280. * drives the transcoder clock.
  1281. */
  1282. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1283. {
  1284. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1285. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1286. /* PCH PLLs only available on ILK, SNB and IVB */
  1287. BUG_ON(dev_priv->info->gen < 5);
  1288. if (WARN_ON(pll == NULL))
  1289. return;
  1290. if (WARN_ON(pll->refcount == 0))
  1291. return;
  1292. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1293. pll->name, pll->active, pll->on,
  1294. crtc->base.base.id);
  1295. if (pll->active++) {
  1296. WARN_ON(!pll->on);
  1297. assert_shared_dpll_enabled(dev_priv, pll);
  1298. return;
  1299. }
  1300. WARN_ON(pll->on);
  1301. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1302. pll->enable(dev_priv, pll);
  1303. pll->on = true;
  1304. }
  1305. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1306. {
  1307. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1308. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1309. /* PCH only available on ILK+ */
  1310. BUG_ON(dev_priv->info->gen < 5);
  1311. if (WARN_ON(pll == NULL))
  1312. return;
  1313. if (WARN_ON(pll->refcount == 0))
  1314. return;
  1315. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1316. pll->name, pll->active, pll->on,
  1317. crtc->base.base.id);
  1318. if (WARN_ON(pll->active == 0)) {
  1319. assert_shared_dpll_disabled(dev_priv, pll);
  1320. return;
  1321. }
  1322. assert_shared_dpll_enabled(dev_priv, pll);
  1323. WARN_ON(!pll->on);
  1324. if (--pll->active)
  1325. return;
  1326. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1327. pll->disable(dev_priv, pll);
  1328. pll->on = false;
  1329. }
  1330. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1331. enum pipe pipe)
  1332. {
  1333. struct drm_device *dev = dev_priv->dev;
  1334. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1335. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1336. uint32_t reg, val, pipeconf_val;
  1337. /* PCH only available on ILK+ */
  1338. BUG_ON(dev_priv->info->gen < 5);
  1339. /* Make sure PCH DPLL is enabled */
  1340. assert_shared_dpll_enabled(dev_priv,
  1341. intel_crtc_to_shared_dpll(intel_crtc));
  1342. /* FDI must be feeding us bits for PCH ports */
  1343. assert_fdi_tx_enabled(dev_priv, pipe);
  1344. assert_fdi_rx_enabled(dev_priv, pipe);
  1345. if (HAS_PCH_CPT(dev)) {
  1346. /* Workaround: Set the timing override bit before enabling the
  1347. * pch transcoder. */
  1348. reg = TRANS_CHICKEN2(pipe);
  1349. val = I915_READ(reg);
  1350. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1351. I915_WRITE(reg, val);
  1352. }
  1353. reg = PCH_TRANSCONF(pipe);
  1354. val = I915_READ(reg);
  1355. pipeconf_val = I915_READ(PIPECONF(pipe));
  1356. if (HAS_PCH_IBX(dev_priv->dev)) {
  1357. /*
  1358. * make the BPC in transcoder be consistent with
  1359. * that in pipeconf reg.
  1360. */
  1361. val &= ~PIPECONF_BPC_MASK;
  1362. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1363. }
  1364. val &= ~TRANS_INTERLACE_MASK;
  1365. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1366. if (HAS_PCH_IBX(dev_priv->dev) &&
  1367. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1368. val |= TRANS_LEGACY_INTERLACED_ILK;
  1369. else
  1370. val |= TRANS_INTERLACED;
  1371. else
  1372. val |= TRANS_PROGRESSIVE;
  1373. I915_WRITE(reg, val | TRANS_ENABLE);
  1374. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1375. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1376. }
  1377. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1378. enum transcoder cpu_transcoder)
  1379. {
  1380. u32 val, pipeconf_val;
  1381. /* PCH only available on ILK+ */
  1382. BUG_ON(dev_priv->info->gen < 5);
  1383. /* FDI must be feeding us bits for PCH ports */
  1384. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1385. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1386. /* Workaround: set timing override bit. */
  1387. val = I915_READ(_TRANSA_CHICKEN2);
  1388. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1389. I915_WRITE(_TRANSA_CHICKEN2, val);
  1390. val = TRANS_ENABLE;
  1391. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1392. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1393. PIPECONF_INTERLACED_ILK)
  1394. val |= TRANS_INTERLACED;
  1395. else
  1396. val |= TRANS_PROGRESSIVE;
  1397. I915_WRITE(LPT_TRANSCONF, val);
  1398. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1399. DRM_ERROR("Failed to enable PCH transcoder\n");
  1400. }
  1401. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1402. enum pipe pipe)
  1403. {
  1404. struct drm_device *dev = dev_priv->dev;
  1405. uint32_t reg, val;
  1406. /* FDI relies on the transcoder */
  1407. assert_fdi_tx_disabled(dev_priv, pipe);
  1408. assert_fdi_rx_disabled(dev_priv, pipe);
  1409. /* Ports must be off as well */
  1410. assert_pch_ports_disabled(dev_priv, pipe);
  1411. reg = PCH_TRANSCONF(pipe);
  1412. val = I915_READ(reg);
  1413. val &= ~TRANS_ENABLE;
  1414. I915_WRITE(reg, val);
  1415. /* wait for PCH transcoder off, transcoder state */
  1416. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1417. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1418. if (!HAS_PCH_IBX(dev)) {
  1419. /* Workaround: Clear the timing override chicken bit again. */
  1420. reg = TRANS_CHICKEN2(pipe);
  1421. val = I915_READ(reg);
  1422. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1423. I915_WRITE(reg, val);
  1424. }
  1425. }
  1426. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1427. {
  1428. u32 val;
  1429. val = I915_READ(LPT_TRANSCONF);
  1430. val &= ~TRANS_ENABLE;
  1431. I915_WRITE(LPT_TRANSCONF, val);
  1432. /* wait for PCH transcoder off, transcoder state */
  1433. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1434. DRM_ERROR("Failed to disable PCH transcoder\n");
  1435. /* Workaround: clear timing override bit. */
  1436. val = I915_READ(_TRANSA_CHICKEN2);
  1437. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1438. I915_WRITE(_TRANSA_CHICKEN2, val);
  1439. }
  1440. /**
  1441. * intel_enable_pipe - enable a pipe, asserting requirements
  1442. * @dev_priv: i915 private structure
  1443. * @pipe: pipe to enable
  1444. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1445. *
  1446. * Enable @pipe, making sure that various hardware specific requirements
  1447. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1448. *
  1449. * @pipe should be %PIPE_A or %PIPE_B.
  1450. *
  1451. * Will wait until the pipe is actually running (i.e. first vblank) before
  1452. * returning.
  1453. */
  1454. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1455. bool pch_port)
  1456. {
  1457. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1458. pipe);
  1459. enum pipe pch_transcoder;
  1460. int reg;
  1461. u32 val;
  1462. assert_planes_disabled(dev_priv, pipe);
  1463. assert_sprites_disabled(dev_priv, pipe);
  1464. if (HAS_PCH_LPT(dev_priv->dev))
  1465. pch_transcoder = TRANSCODER_A;
  1466. else
  1467. pch_transcoder = pipe;
  1468. /*
  1469. * A pipe without a PLL won't actually be able to drive bits from
  1470. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1471. * need the check.
  1472. */
  1473. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1474. assert_pll_enabled(dev_priv, pipe);
  1475. else {
  1476. if (pch_port) {
  1477. /* if driving the PCH, we need FDI enabled */
  1478. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1479. assert_fdi_tx_pll_enabled(dev_priv,
  1480. (enum pipe) cpu_transcoder);
  1481. }
  1482. /* FIXME: assert CPU port conditions for SNB+ */
  1483. }
  1484. reg = PIPECONF(cpu_transcoder);
  1485. val = I915_READ(reg);
  1486. if (val & PIPECONF_ENABLE)
  1487. return;
  1488. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1489. intel_wait_for_vblank(dev_priv->dev, pipe);
  1490. }
  1491. /**
  1492. * intel_disable_pipe - disable a pipe, asserting requirements
  1493. * @dev_priv: i915 private structure
  1494. * @pipe: pipe to disable
  1495. *
  1496. * Disable @pipe, making sure that various hardware specific requirements
  1497. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1498. *
  1499. * @pipe should be %PIPE_A or %PIPE_B.
  1500. *
  1501. * Will wait until the pipe has shut down before returning.
  1502. */
  1503. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1504. enum pipe pipe)
  1505. {
  1506. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1507. pipe);
  1508. int reg;
  1509. u32 val;
  1510. /*
  1511. * Make sure planes won't keep trying to pump pixels to us,
  1512. * or we might hang the display.
  1513. */
  1514. assert_planes_disabled(dev_priv, pipe);
  1515. assert_sprites_disabled(dev_priv, pipe);
  1516. /* Don't disable pipe A or pipe A PLLs if needed */
  1517. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1518. return;
  1519. reg = PIPECONF(cpu_transcoder);
  1520. val = I915_READ(reg);
  1521. if ((val & PIPECONF_ENABLE) == 0)
  1522. return;
  1523. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1524. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1525. }
  1526. /*
  1527. * Plane regs are double buffered, going from enabled->disabled needs a
  1528. * trigger in order to latch. The display address reg provides this.
  1529. */
  1530. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1531. enum plane plane)
  1532. {
  1533. if (dev_priv->info->gen >= 4)
  1534. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1535. else
  1536. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1537. }
  1538. /**
  1539. * intel_enable_plane - enable a display plane on a given pipe
  1540. * @dev_priv: i915 private structure
  1541. * @plane: plane to enable
  1542. * @pipe: pipe being fed
  1543. *
  1544. * Enable @plane on @pipe, making sure that @pipe is running first.
  1545. */
  1546. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1547. enum plane plane, enum pipe pipe)
  1548. {
  1549. int reg;
  1550. u32 val;
  1551. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1552. assert_pipe_enabled(dev_priv, pipe);
  1553. reg = DSPCNTR(plane);
  1554. val = I915_READ(reg);
  1555. if (val & DISPLAY_PLANE_ENABLE)
  1556. return;
  1557. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1558. intel_flush_display_plane(dev_priv, plane);
  1559. intel_wait_for_vblank(dev_priv->dev, pipe);
  1560. }
  1561. /**
  1562. * intel_disable_plane - disable a display plane
  1563. * @dev_priv: i915 private structure
  1564. * @plane: plane to disable
  1565. * @pipe: pipe consuming the data
  1566. *
  1567. * Disable @plane; should be an independent operation.
  1568. */
  1569. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1570. enum plane plane, enum pipe pipe)
  1571. {
  1572. int reg;
  1573. u32 val;
  1574. reg = DSPCNTR(plane);
  1575. val = I915_READ(reg);
  1576. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1577. return;
  1578. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1579. intel_flush_display_plane(dev_priv, plane);
  1580. intel_wait_for_vblank(dev_priv->dev, pipe);
  1581. }
  1582. static bool need_vtd_wa(struct drm_device *dev)
  1583. {
  1584. #ifdef CONFIG_INTEL_IOMMU
  1585. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1586. return true;
  1587. #endif
  1588. return false;
  1589. }
  1590. int
  1591. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1592. struct drm_i915_gem_object *obj,
  1593. struct intel_ring_buffer *pipelined)
  1594. {
  1595. struct drm_i915_private *dev_priv = dev->dev_private;
  1596. u32 alignment;
  1597. int ret;
  1598. switch (obj->tiling_mode) {
  1599. case I915_TILING_NONE:
  1600. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1601. alignment = 128 * 1024;
  1602. else if (INTEL_INFO(dev)->gen >= 4)
  1603. alignment = 4 * 1024;
  1604. else
  1605. alignment = 64 * 1024;
  1606. break;
  1607. case I915_TILING_X:
  1608. /* pin() will align the object as required by fence */
  1609. alignment = 0;
  1610. break;
  1611. case I915_TILING_Y:
  1612. /* Despite that we check this in framebuffer_init userspace can
  1613. * screw us over and change the tiling after the fact. Only
  1614. * pinned buffers can't change their tiling. */
  1615. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1616. return -EINVAL;
  1617. default:
  1618. BUG();
  1619. }
  1620. /* Note that the w/a also requires 64 PTE of padding following the
  1621. * bo. We currently fill all unused PTE with the shadow page and so
  1622. * we should always have valid PTE following the scanout preventing
  1623. * the VT-d warning.
  1624. */
  1625. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1626. alignment = 256 * 1024;
  1627. dev_priv->mm.interruptible = false;
  1628. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1629. if (ret)
  1630. goto err_interruptible;
  1631. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1632. * fence, whereas 965+ only requires a fence if using
  1633. * framebuffer compression. For simplicity, we always install
  1634. * a fence as the cost is not that onerous.
  1635. */
  1636. ret = i915_gem_object_get_fence(obj);
  1637. if (ret)
  1638. goto err_unpin;
  1639. i915_gem_object_pin_fence(obj);
  1640. dev_priv->mm.interruptible = true;
  1641. return 0;
  1642. err_unpin:
  1643. i915_gem_object_unpin(obj);
  1644. err_interruptible:
  1645. dev_priv->mm.interruptible = true;
  1646. return ret;
  1647. }
  1648. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1649. {
  1650. i915_gem_object_unpin_fence(obj);
  1651. i915_gem_object_unpin(obj);
  1652. }
  1653. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1654. * is assumed to be a power-of-two. */
  1655. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1656. unsigned int tiling_mode,
  1657. unsigned int cpp,
  1658. unsigned int pitch)
  1659. {
  1660. if (tiling_mode != I915_TILING_NONE) {
  1661. unsigned int tile_rows, tiles;
  1662. tile_rows = *y / 8;
  1663. *y %= 8;
  1664. tiles = *x / (512/cpp);
  1665. *x %= 512/cpp;
  1666. return tile_rows * pitch * 8 + tiles * 4096;
  1667. } else {
  1668. unsigned int offset;
  1669. offset = *y * pitch + *x * cpp;
  1670. *y = 0;
  1671. *x = (offset & 4095) / cpp;
  1672. return offset & -4096;
  1673. }
  1674. }
  1675. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1676. int x, int y)
  1677. {
  1678. struct drm_device *dev = crtc->dev;
  1679. struct drm_i915_private *dev_priv = dev->dev_private;
  1680. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1681. struct intel_framebuffer *intel_fb;
  1682. struct drm_i915_gem_object *obj;
  1683. int plane = intel_crtc->plane;
  1684. unsigned long linear_offset;
  1685. u32 dspcntr;
  1686. u32 reg;
  1687. switch (plane) {
  1688. case 0:
  1689. case 1:
  1690. break;
  1691. default:
  1692. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1693. return -EINVAL;
  1694. }
  1695. intel_fb = to_intel_framebuffer(fb);
  1696. obj = intel_fb->obj;
  1697. reg = DSPCNTR(plane);
  1698. dspcntr = I915_READ(reg);
  1699. /* Mask out pixel format bits in case we change it */
  1700. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1701. switch (fb->pixel_format) {
  1702. case DRM_FORMAT_C8:
  1703. dspcntr |= DISPPLANE_8BPP;
  1704. break;
  1705. case DRM_FORMAT_XRGB1555:
  1706. case DRM_FORMAT_ARGB1555:
  1707. dspcntr |= DISPPLANE_BGRX555;
  1708. break;
  1709. case DRM_FORMAT_RGB565:
  1710. dspcntr |= DISPPLANE_BGRX565;
  1711. break;
  1712. case DRM_FORMAT_XRGB8888:
  1713. case DRM_FORMAT_ARGB8888:
  1714. dspcntr |= DISPPLANE_BGRX888;
  1715. break;
  1716. case DRM_FORMAT_XBGR8888:
  1717. case DRM_FORMAT_ABGR8888:
  1718. dspcntr |= DISPPLANE_RGBX888;
  1719. break;
  1720. case DRM_FORMAT_XRGB2101010:
  1721. case DRM_FORMAT_ARGB2101010:
  1722. dspcntr |= DISPPLANE_BGRX101010;
  1723. break;
  1724. case DRM_FORMAT_XBGR2101010:
  1725. case DRM_FORMAT_ABGR2101010:
  1726. dspcntr |= DISPPLANE_RGBX101010;
  1727. break;
  1728. default:
  1729. BUG();
  1730. }
  1731. if (INTEL_INFO(dev)->gen >= 4) {
  1732. if (obj->tiling_mode != I915_TILING_NONE)
  1733. dspcntr |= DISPPLANE_TILED;
  1734. else
  1735. dspcntr &= ~DISPPLANE_TILED;
  1736. }
  1737. if (IS_G4X(dev))
  1738. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1739. I915_WRITE(reg, dspcntr);
  1740. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1741. if (INTEL_INFO(dev)->gen >= 4) {
  1742. intel_crtc->dspaddr_offset =
  1743. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1744. fb->bits_per_pixel / 8,
  1745. fb->pitches[0]);
  1746. linear_offset -= intel_crtc->dspaddr_offset;
  1747. } else {
  1748. intel_crtc->dspaddr_offset = linear_offset;
  1749. }
  1750. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1751. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1752. fb->pitches[0]);
  1753. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1754. if (INTEL_INFO(dev)->gen >= 4) {
  1755. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1756. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1757. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1758. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1759. } else
  1760. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1761. POSTING_READ(reg);
  1762. return 0;
  1763. }
  1764. static int ironlake_update_plane(struct drm_crtc *crtc,
  1765. struct drm_framebuffer *fb, int x, int y)
  1766. {
  1767. struct drm_device *dev = crtc->dev;
  1768. struct drm_i915_private *dev_priv = dev->dev_private;
  1769. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1770. struct intel_framebuffer *intel_fb;
  1771. struct drm_i915_gem_object *obj;
  1772. int plane = intel_crtc->plane;
  1773. unsigned long linear_offset;
  1774. u32 dspcntr;
  1775. u32 reg;
  1776. switch (plane) {
  1777. case 0:
  1778. case 1:
  1779. case 2:
  1780. break;
  1781. default:
  1782. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1783. return -EINVAL;
  1784. }
  1785. intel_fb = to_intel_framebuffer(fb);
  1786. obj = intel_fb->obj;
  1787. reg = DSPCNTR(plane);
  1788. dspcntr = I915_READ(reg);
  1789. /* Mask out pixel format bits in case we change it */
  1790. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1791. switch (fb->pixel_format) {
  1792. case DRM_FORMAT_C8:
  1793. dspcntr |= DISPPLANE_8BPP;
  1794. break;
  1795. case DRM_FORMAT_RGB565:
  1796. dspcntr |= DISPPLANE_BGRX565;
  1797. break;
  1798. case DRM_FORMAT_XRGB8888:
  1799. case DRM_FORMAT_ARGB8888:
  1800. dspcntr |= DISPPLANE_BGRX888;
  1801. break;
  1802. case DRM_FORMAT_XBGR8888:
  1803. case DRM_FORMAT_ABGR8888:
  1804. dspcntr |= DISPPLANE_RGBX888;
  1805. break;
  1806. case DRM_FORMAT_XRGB2101010:
  1807. case DRM_FORMAT_ARGB2101010:
  1808. dspcntr |= DISPPLANE_BGRX101010;
  1809. break;
  1810. case DRM_FORMAT_XBGR2101010:
  1811. case DRM_FORMAT_ABGR2101010:
  1812. dspcntr |= DISPPLANE_RGBX101010;
  1813. break;
  1814. default:
  1815. BUG();
  1816. }
  1817. if (obj->tiling_mode != I915_TILING_NONE)
  1818. dspcntr |= DISPPLANE_TILED;
  1819. else
  1820. dspcntr &= ~DISPPLANE_TILED;
  1821. /* must disable */
  1822. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1823. I915_WRITE(reg, dspcntr);
  1824. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1825. intel_crtc->dspaddr_offset =
  1826. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1827. fb->bits_per_pixel / 8,
  1828. fb->pitches[0]);
  1829. linear_offset -= intel_crtc->dspaddr_offset;
  1830. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1831. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1832. fb->pitches[0]);
  1833. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1834. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1835. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1836. if (IS_HASWELL(dev)) {
  1837. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1838. } else {
  1839. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1840. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1841. }
  1842. POSTING_READ(reg);
  1843. return 0;
  1844. }
  1845. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1846. static int
  1847. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1848. int x, int y, enum mode_set_atomic state)
  1849. {
  1850. struct drm_device *dev = crtc->dev;
  1851. struct drm_i915_private *dev_priv = dev->dev_private;
  1852. if (dev_priv->display.disable_fbc)
  1853. dev_priv->display.disable_fbc(dev);
  1854. intel_increase_pllclock(crtc);
  1855. return dev_priv->display.update_plane(crtc, fb, x, y);
  1856. }
  1857. void intel_display_handle_reset(struct drm_device *dev)
  1858. {
  1859. struct drm_i915_private *dev_priv = dev->dev_private;
  1860. struct drm_crtc *crtc;
  1861. /*
  1862. * Flips in the rings have been nuked by the reset,
  1863. * so complete all pending flips so that user space
  1864. * will get its events and not get stuck.
  1865. *
  1866. * Also update the base address of all primary
  1867. * planes to the the last fb to make sure we're
  1868. * showing the correct fb after a reset.
  1869. *
  1870. * Need to make two loops over the crtcs so that we
  1871. * don't try to grab a crtc mutex before the
  1872. * pending_flip_queue really got woken up.
  1873. */
  1874. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1875. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1876. enum plane plane = intel_crtc->plane;
  1877. intel_prepare_page_flip(dev, plane);
  1878. intel_finish_page_flip_plane(dev, plane);
  1879. }
  1880. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1881. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1882. mutex_lock(&crtc->mutex);
  1883. if (intel_crtc->active)
  1884. dev_priv->display.update_plane(crtc, crtc->fb,
  1885. crtc->x, crtc->y);
  1886. mutex_unlock(&crtc->mutex);
  1887. }
  1888. }
  1889. static int
  1890. intel_finish_fb(struct drm_framebuffer *old_fb)
  1891. {
  1892. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1893. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1894. bool was_interruptible = dev_priv->mm.interruptible;
  1895. int ret;
  1896. /* Big Hammer, we also need to ensure that any pending
  1897. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1898. * current scanout is retired before unpinning the old
  1899. * framebuffer.
  1900. *
  1901. * This should only fail upon a hung GPU, in which case we
  1902. * can safely continue.
  1903. */
  1904. dev_priv->mm.interruptible = false;
  1905. ret = i915_gem_object_finish_gpu(obj);
  1906. dev_priv->mm.interruptible = was_interruptible;
  1907. return ret;
  1908. }
  1909. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1910. {
  1911. struct drm_device *dev = crtc->dev;
  1912. struct drm_i915_master_private *master_priv;
  1913. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1914. if (!dev->primary->master)
  1915. return;
  1916. master_priv = dev->primary->master->driver_priv;
  1917. if (!master_priv->sarea_priv)
  1918. return;
  1919. switch (intel_crtc->pipe) {
  1920. case 0:
  1921. master_priv->sarea_priv->pipeA_x = x;
  1922. master_priv->sarea_priv->pipeA_y = y;
  1923. break;
  1924. case 1:
  1925. master_priv->sarea_priv->pipeB_x = x;
  1926. master_priv->sarea_priv->pipeB_y = y;
  1927. break;
  1928. default:
  1929. break;
  1930. }
  1931. }
  1932. static int
  1933. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1934. struct drm_framebuffer *fb)
  1935. {
  1936. struct drm_device *dev = crtc->dev;
  1937. struct drm_i915_private *dev_priv = dev->dev_private;
  1938. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1939. struct drm_framebuffer *old_fb;
  1940. int ret;
  1941. /* no fb bound */
  1942. if (!fb) {
  1943. DRM_ERROR("No FB bound\n");
  1944. return 0;
  1945. }
  1946. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1947. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1948. plane_name(intel_crtc->plane),
  1949. INTEL_INFO(dev)->num_pipes);
  1950. return -EINVAL;
  1951. }
  1952. mutex_lock(&dev->struct_mutex);
  1953. ret = intel_pin_and_fence_fb_obj(dev,
  1954. to_intel_framebuffer(fb)->obj,
  1955. NULL);
  1956. if (ret != 0) {
  1957. mutex_unlock(&dev->struct_mutex);
  1958. DRM_ERROR("pin & fence failed\n");
  1959. return ret;
  1960. }
  1961. /* Update pipe size and adjust fitter if needed */
  1962. if (i915_fastboot) {
  1963. I915_WRITE(PIPESRC(intel_crtc->pipe),
  1964. ((crtc->mode.hdisplay - 1) << 16) |
  1965. (crtc->mode.vdisplay - 1));
  1966. if (!intel_crtc->config.pch_pfit.size &&
  1967. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  1968. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  1969. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  1970. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  1971. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  1972. }
  1973. }
  1974. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1975. if (ret) {
  1976. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1977. mutex_unlock(&dev->struct_mutex);
  1978. DRM_ERROR("failed to update base address\n");
  1979. return ret;
  1980. }
  1981. old_fb = crtc->fb;
  1982. crtc->fb = fb;
  1983. crtc->x = x;
  1984. crtc->y = y;
  1985. if (old_fb) {
  1986. if (intel_crtc->active && old_fb != fb)
  1987. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1988. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1989. }
  1990. intel_update_fbc(dev);
  1991. mutex_unlock(&dev->struct_mutex);
  1992. intel_crtc_update_sarea_pos(crtc, x, y);
  1993. return 0;
  1994. }
  1995. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1996. {
  1997. struct drm_device *dev = crtc->dev;
  1998. struct drm_i915_private *dev_priv = dev->dev_private;
  1999. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2000. int pipe = intel_crtc->pipe;
  2001. u32 reg, temp;
  2002. /* enable normal train */
  2003. reg = FDI_TX_CTL(pipe);
  2004. temp = I915_READ(reg);
  2005. if (IS_IVYBRIDGE(dev)) {
  2006. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2007. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2008. } else {
  2009. temp &= ~FDI_LINK_TRAIN_NONE;
  2010. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2011. }
  2012. I915_WRITE(reg, temp);
  2013. reg = FDI_RX_CTL(pipe);
  2014. temp = I915_READ(reg);
  2015. if (HAS_PCH_CPT(dev)) {
  2016. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2017. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2018. } else {
  2019. temp &= ~FDI_LINK_TRAIN_NONE;
  2020. temp |= FDI_LINK_TRAIN_NONE;
  2021. }
  2022. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2023. /* wait one idle pattern time */
  2024. POSTING_READ(reg);
  2025. udelay(1000);
  2026. /* IVB wants error correction enabled */
  2027. if (IS_IVYBRIDGE(dev))
  2028. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2029. FDI_FE_ERRC_ENABLE);
  2030. }
  2031. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2032. {
  2033. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2034. }
  2035. static void ivb_modeset_global_resources(struct drm_device *dev)
  2036. {
  2037. struct drm_i915_private *dev_priv = dev->dev_private;
  2038. struct intel_crtc *pipe_B_crtc =
  2039. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2040. struct intel_crtc *pipe_C_crtc =
  2041. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2042. uint32_t temp;
  2043. /*
  2044. * When everything is off disable fdi C so that we could enable fdi B
  2045. * with all lanes. Note that we don't care about enabled pipes without
  2046. * an enabled pch encoder.
  2047. */
  2048. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2049. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2050. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2051. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2052. temp = I915_READ(SOUTH_CHICKEN1);
  2053. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2054. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2055. I915_WRITE(SOUTH_CHICKEN1, temp);
  2056. }
  2057. }
  2058. /* The FDI link training functions for ILK/Ibexpeak. */
  2059. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2060. {
  2061. struct drm_device *dev = crtc->dev;
  2062. struct drm_i915_private *dev_priv = dev->dev_private;
  2063. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2064. int pipe = intel_crtc->pipe;
  2065. int plane = intel_crtc->plane;
  2066. u32 reg, temp, tries;
  2067. /* FDI needs bits from pipe & plane first */
  2068. assert_pipe_enabled(dev_priv, pipe);
  2069. assert_plane_enabled(dev_priv, plane);
  2070. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2071. for train result */
  2072. reg = FDI_RX_IMR(pipe);
  2073. temp = I915_READ(reg);
  2074. temp &= ~FDI_RX_SYMBOL_LOCK;
  2075. temp &= ~FDI_RX_BIT_LOCK;
  2076. I915_WRITE(reg, temp);
  2077. I915_READ(reg);
  2078. udelay(150);
  2079. /* enable CPU FDI TX and PCH FDI RX */
  2080. reg = FDI_TX_CTL(pipe);
  2081. temp = I915_READ(reg);
  2082. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2083. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2084. temp &= ~FDI_LINK_TRAIN_NONE;
  2085. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2086. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2087. reg = FDI_RX_CTL(pipe);
  2088. temp = I915_READ(reg);
  2089. temp &= ~FDI_LINK_TRAIN_NONE;
  2090. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2091. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2092. POSTING_READ(reg);
  2093. udelay(150);
  2094. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2095. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2096. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2097. FDI_RX_PHASE_SYNC_POINTER_EN);
  2098. reg = FDI_RX_IIR(pipe);
  2099. for (tries = 0; tries < 5; tries++) {
  2100. temp = I915_READ(reg);
  2101. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2102. if ((temp & FDI_RX_BIT_LOCK)) {
  2103. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2104. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2105. break;
  2106. }
  2107. }
  2108. if (tries == 5)
  2109. DRM_ERROR("FDI train 1 fail!\n");
  2110. /* Train 2 */
  2111. reg = FDI_TX_CTL(pipe);
  2112. temp = I915_READ(reg);
  2113. temp &= ~FDI_LINK_TRAIN_NONE;
  2114. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2115. I915_WRITE(reg, temp);
  2116. reg = FDI_RX_CTL(pipe);
  2117. temp = I915_READ(reg);
  2118. temp &= ~FDI_LINK_TRAIN_NONE;
  2119. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2120. I915_WRITE(reg, temp);
  2121. POSTING_READ(reg);
  2122. udelay(150);
  2123. reg = FDI_RX_IIR(pipe);
  2124. for (tries = 0; tries < 5; tries++) {
  2125. temp = I915_READ(reg);
  2126. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2127. if (temp & FDI_RX_SYMBOL_LOCK) {
  2128. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2129. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2130. break;
  2131. }
  2132. }
  2133. if (tries == 5)
  2134. DRM_ERROR("FDI train 2 fail!\n");
  2135. DRM_DEBUG_KMS("FDI train done\n");
  2136. }
  2137. static const int snb_b_fdi_train_param[] = {
  2138. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2139. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2140. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2141. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2142. };
  2143. /* The FDI link training functions for SNB/Cougarpoint. */
  2144. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2145. {
  2146. struct drm_device *dev = crtc->dev;
  2147. struct drm_i915_private *dev_priv = dev->dev_private;
  2148. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2149. int pipe = intel_crtc->pipe;
  2150. u32 reg, temp, i, retry;
  2151. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2152. for train result */
  2153. reg = FDI_RX_IMR(pipe);
  2154. temp = I915_READ(reg);
  2155. temp &= ~FDI_RX_SYMBOL_LOCK;
  2156. temp &= ~FDI_RX_BIT_LOCK;
  2157. I915_WRITE(reg, temp);
  2158. POSTING_READ(reg);
  2159. udelay(150);
  2160. /* enable CPU FDI TX and PCH FDI RX */
  2161. reg = FDI_TX_CTL(pipe);
  2162. temp = I915_READ(reg);
  2163. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2164. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2165. temp &= ~FDI_LINK_TRAIN_NONE;
  2166. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2167. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2168. /* SNB-B */
  2169. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2170. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2171. I915_WRITE(FDI_RX_MISC(pipe),
  2172. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2173. reg = FDI_RX_CTL(pipe);
  2174. temp = I915_READ(reg);
  2175. if (HAS_PCH_CPT(dev)) {
  2176. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2177. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2178. } else {
  2179. temp &= ~FDI_LINK_TRAIN_NONE;
  2180. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2181. }
  2182. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2183. POSTING_READ(reg);
  2184. udelay(150);
  2185. for (i = 0; i < 4; i++) {
  2186. reg = FDI_TX_CTL(pipe);
  2187. temp = I915_READ(reg);
  2188. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2189. temp |= snb_b_fdi_train_param[i];
  2190. I915_WRITE(reg, temp);
  2191. POSTING_READ(reg);
  2192. udelay(500);
  2193. for (retry = 0; retry < 5; retry++) {
  2194. reg = FDI_RX_IIR(pipe);
  2195. temp = I915_READ(reg);
  2196. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2197. if (temp & FDI_RX_BIT_LOCK) {
  2198. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2199. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2200. break;
  2201. }
  2202. udelay(50);
  2203. }
  2204. if (retry < 5)
  2205. break;
  2206. }
  2207. if (i == 4)
  2208. DRM_ERROR("FDI train 1 fail!\n");
  2209. /* Train 2 */
  2210. reg = FDI_TX_CTL(pipe);
  2211. temp = I915_READ(reg);
  2212. temp &= ~FDI_LINK_TRAIN_NONE;
  2213. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2214. if (IS_GEN6(dev)) {
  2215. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2216. /* SNB-B */
  2217. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2218. }
  2219. I915_WRITE(reg, temp);
  2220. reg = FDI_RX_CTL(pipe);
  2221. temp = I915_READ(reg);
  2222. if (HAS_PCH_CPT(dev)) {
  2223. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2224. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2225. } else {
  2226. temp &= ~FDI_LINK_TRAIN_NONE;
  2227. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2228. }
  2229. I915_WRITE(reg, temp);
  2230. POSTING_READ(reg);
  2231. udelay(150);
  2232. for (i = 0; i < 4; i++) {
  2233. reg = FDI_TX_CTL(pipe);
  2234. temp = I915_READ(reg);
  2235. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2236. temp |= snb_b_fdi_train_param[i];
  2237. I915_WRITE(reg, temp);
  2238. POSTING_READ(reg);
  2239. udelay(500);
  2240. for (retry = 0; retry < 5; retry++) {
  2241. reg = FDI_RX_IIR(pipe);
  2242. temp = I915_READ(reg);
  2243. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2244. if (temp & FDI_RX_SYMBOL_LOCK) {
  2245. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2246. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2247. break;
  2248. }
  2249. udelay(50);
  2250. }
  2251. if (retry < 5)
  2252. break;
  2253. }
  2254. if (i == 4)
  2255. DRM_ERROR("FDI train 2 fail!\n");
  2256. DRM_DEBUG_KMS("FDI train done.\n");
  2257. }
  2258. /* Manual link training for Ivy Bridge A0 parts */
  2259. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2260. {
  2261. struct drm_device *dev = crtc->dev;
  2262. struct drm_i915_private *dev_priv = dev->dev_private;
  2263. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2264. int pipe = intel_crtc->pipe;
  2265. u32 reg, temp, i;
  2266. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2267. for train result */
  2268. reg = FDI_RX_IMR(pipe);
  2269. temp = I915_READ(reg);
  2270. temp &= ~FDI_RX_SYMBOL_LOCK;
  2271. temp &= ~FDI_RX_BIT_LOCK;
  2272. I915_WRITE(reg, temp);
  2273. POSTING_READ(reg);
  2274. udelay(150);
  2275. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2276. I915_READ(FDI_RX_IIR(pipe)));
  2277. /* enable CPU FDI TX and PCH FDI RX */
  2278. reg = FDI_TX_CTL(pipe);
  2279. temp = I915_READ(reg);
  2280. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2281. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2282. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2283. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2284. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2285. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2286. temp |= FDI_COMPOSITE_SYNC;
  2287. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2288. I915_WRITE(FDI_RX_MISC(pipe),
  2289. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2290. reg = FDI_RX_CTL(pipe);
  2291. temp = I915_READ(reg);
  2292. temp &= ~FDI_LINK_TRAIN_AUTO;
  2293. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2294. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2295. temp |= FDI_COMPOSITE_SYNC;
  2296. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2297. POSTING_READ(reg);
  2298. udelay(150);
  2299. for (i = 0; i < 4; i++) {
  2300. reg = FDI_TX_CTL(pipe);
  2301. temp = I915_READ(reg);
  2302. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2303. temp |= snb_b_fdi_train_param[i];
  2304. I915_WRITE(reg, temp);
  2305. POSTING_READ(reg);
  2306. udelay(500);
  2307. reg = FDI_RX_IIR(pipe);
  2308. temp = I915_READ(reg);
  2309. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2310. if (temp & FDI_RX_BIT_LOCK ||
  2311. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2312. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2313. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2314. break;
  2315. }
  2316. }
  2317. if (i == 4)
  2318. DRM_ERROR("FDI train 1 fail!\n");
  2319. /* Train 2 */
  2320. reg = FDI_TX_CTL(pipe);
  2321. temp = I915_READ(reg);
  2322. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2323. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2324. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2325. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2326. I915_WRITE(reg, temp);
  2327. reg = FDI_RX_CTL(pipe);
  2328. temp = I915_READ(reg);
  2329. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2330. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2331. I915_WRITE(reg, temp);
  2332. POSTING_READ(reg);
  2333. udelay(150);
  2334. for (i = 0; i < 4; i++) {
  2335. reg = FDI_TX_CTL(pipe);
  2336. temp = I915_READ(reg);
  2337. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2338. temp |= snb_b_fdi_train_param[i];
  2339. I915_WRITE(reg, temp);
  2340. POSTING_READ(reg);
  2341. udelay(500);
  2342. reg = FDI_RX_IIR(pipe);
  2343. temp = I915_READ(reg);
  2344. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2345. if (temp & FDI_RX_SYMBOL_LOCK) {
  2346. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2347. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2348. break;
  2349. }
  2350. }
  2351. if (i == 4)
  2352. DRM_ERROR("FDI train 2 fail!\n");
  2353. DRM_DEBUG_KMS("FDI train done.\n");
  2354. }
  2355. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2356. {
  2357. struct drm_device *dev = intel_crtc->base.dev;
  2358. struct drm_i915_private *dev_priv = dev->dev_private;
  2359. int pipe = intel_crtc->pipe;
  2360. u32 reg, temp;
  2361. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2362. reg = FDI_RX_CTL(pipe);
  2363. temp = I915_READ(reg);
  2364. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2365. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2366. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2367. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2368. POSTING_READ(reg);
  2369. udelay(200);
  2370. /* Switch from Rawclk to PCDclk */
  2371. temp = I915_READ(reg);
  2372. I915_WRITE(reg, temp | FDI_PCDCLK);
  2373. POSTING_READ(reg);
  2374. udelay(200);
  2375. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2376. reg = FDI_TX_CTL(pipe);
  2377. temp = I915_READ(reg);
  2378. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2379. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2380. POSTING_READ(reg);
  2381. udelay(100);
  2382. }
  2383. }
  2384. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2385. {
  2386. struct drm_device *dev = intel_crtc->base.dev;
  2387. struct drm_i915_private *dev_priv = dev->dev_private;
  2388. int pipe = intel_crtc->pipe;
  2389. u32 reg, temp;
  2390. /* Switch from PCDclk to Rawclk */
  2391. reg = FDI_RX_CTL(pipe);
  2392. temp = I915_READ(reg);
  2393. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2394. /* Disable CPU FDI TX PLL */
  2395. reg = FDI_TX_CTL(pipe);
  2396. temp = I915_READ(reg);
  2397. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2398. POSTING_READ(reg);
  2399. udelay(100);
  2400. reg = FDI_RX_CTL(pipe);
  2401. temp = I915_READ(reg);
  2402. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2403. /* Wait for the clocks to turn off. */
  2404. POSTING_READ(reg);
  2405. udelay(100);
  2406. }
  2407. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2408. {
  2409. struct drm_device *dev = crtc->dev;
  2410. struct drm_i915_private *dev_priv = dev->dev_private;
  2411. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2412. int pipe = intel_crtc->pipe;
  2413. u32 reg, temp;
  2414. /* disable CPU FDI tx and PCH FDI rx */
  2415. reg = FDI_TX_CTL(pipe);
  2416. temp = I915_READ(reg);
  2417. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2418. POSTING_READ(reg);
  2419. reg = FDI_RX_CTL(pipe);
  2420. temp = I915_READ(reg);
  2421. temp &= ~(0x7 << 16);
  2422. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2423. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2424. POSTING_READ(reg);
  2425. udelay(100);
  2426. /* Ironlake workaround, disable clock pointer after downing FDI */
  2427. if (HAS_PCH_IBX(dev)) {
  2428. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2429. }
  2430. /* still set train pattern 1 */
  2431. reg = FDI_TX_CTL(pipe);
  2432. temp = I915_READ(reg);
  2433. temp &= ~FDI_LINK_TRAIN_NONE;
  2434. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2435. I915_WRITE(reg, temp);
  2436. reg = FDI_RX_CTL(pipe);
  2437. temp = I915_READ(reg);
  2438. if (HAS_PCH_CPT(dev)) {
  2439. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2440. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2441. } else {
  2442. temp &= ~FDI_LINK_TRAIN_NONE;
  2443. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2444. }
  2445. /* BPC in FDI rx is consistent with that in PIPECONF */
  2446. temp &= ~(0x07 << 16);
  2447. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2448. I915_WRITE(reg, temp);
  2449. POSTING_READ(reg);
  2450. udelay(100);
  2451. }
  2452. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2453. {
  2454. struct drm_device *dev = crtc->dev;
  2455. struct drm_i915_private *dev_priv = dev->dev_private;
  2456. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2457. unsigned long flags;
  2458. bool pending;
  2459. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2460. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2461. return false;
  2462. spin_lock_irqsave(&dev->event_lock, flags);
  2463. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2464. spin_unlock_irqrestore(&dev->event_lock, flags);
  2465. return pending;
  2466. }
  2467. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2468. {
  2469. struct drm_device *dev = crtc->dev;
  2470. struct drm_i915_private *dev_priv = dev->dev_private;
  2471. if (crtc->fb == NULL)
  2472. return;
  2473. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2474. wait_event(dev_priv->pending_flip_queue,
  2475. !intel_crtc_has_pending_flip(crtc));
  2476. mutex_lock(&dev->struct_mutex);
  2477. intel_finish_fb(crtc->fb);
  2478. mutex_unlock(&dev->struct_mutex);
  2479. }
  2480. /* Program iCLKIP clock to the desired frequency */
  2481. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2482. {
  2483. struct drm_device *dev = crtc->dev;
  2484. struct drm_i915_private *dev_priv = dev->dev_private;
  2485. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2486. u32 temp;
  2487. mutex_lock(&dev_priv->dpio_lock);
  2488. /* It is necessary to ungate the pixclk gate prior to programming
  2489. * the divisors, and gate it back when it is done.
  2490. */
  2491. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2492. /* Disable SSCCTL */
  2493. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2494. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2495. SBI_SSCCTL_DISABLE,
  2496. SBI_ICLK);
  2497. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2498. if (crtc->mode.clock == 20000) {
  2499. auxdiv = 1;
  2500. divsel = 0x41;
  2501. phaseinc = 0x20;
  2502. } else {
  2503. /* The iCLK virtual clock root frequency is in MHz,
  2504. * but the crtc->mode.clock in in KHz. To get the divisors,
  2505. * it is necessary to divide one by another, so we
  2506. * convert the virtual clock precision to KHz here for higher
  2507. * precision.
  2508. */
  2509. u32 iclk_virtual_root_freq = 172800 * 1000;
  2510. u32 iclk_pi_range = 64;
  2511. u32 desired_divisor, msb_divisor_value, pi_value;
  2512. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2513. msb_divisor_value = desired_divisor / iclk_pi_range;
  2514. pi_value = desired_divisor % iclk_pi_range;
  2515. auxdiv = 0;
  2516. divsel = msb_divisor_value - 2;
  2517. phaseinc = pi_value;
  2518. }
  2519. /* This should not happen with any sane values */
  2520. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2521. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2522. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2523. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2524. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2525. crtc->mode.clock,
  2526. auxdiv,
  2527. divsel,
  2528. phasedir,
  2529. phaseinc);
  2530. /* Program SSCDIVINTPHASE6 */
  2531. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2532. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2533. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2534. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2535. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2536. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2537. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2538. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2539. /* Program SSCAUXDIV */
  2540. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2541. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2542. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2543. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2544. /* Enable modulator and associated divider */
  2545. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2546. temp &= ~SBI_SSCCTL_DISABLE;
  2547. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2548. /* Wait for initialization time */
  2549. udelay(24);
  2550. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2551. mutex_unlock(&dev_priv->dpio_lock);
  2552. }
  2553. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2554. enum pipe pch_transcoder)
  2555. {
  2556. struct drm_device *dev = crtc->base.dev;
  2557. struct drm_i915_private *dev_priv = dev->dev_private;
  2558. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2559. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2560. I915_READ(HTOTAL(cpu_transcoder)));
  2561. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2562. I915_READ(HBLANK(cpu_transcoder)));
  2563. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2564. I915_READ(HSYNC(cpu_transcoder)));
  2565. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2566. I915_READ(VTOTAL(cpu_transcoder)));
  2567. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2568. I915_READ(VBLANK(cpu_transcoder)));
  2569. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2570. I915_READ(VSYNC(cpu_transcoder)));
  2571. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2572. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2573. }
  2574. /*
  2575. * Enable PCH resources required for PCH ports:
  2576. * - PCH PLLs
  2577. * - FDI training & RX/TX
  2578. * - update transcoder timings
  2579. * - DP transcoding bits
  2580. * - transcoder
  2581. */
  2582. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2583. {
  2584. struct drm_device *dev = crtc->dev;
  2585. struct drm_i915_private *dev_priv = dev->dev_private;
  2586. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2587. int pipe = intel_crtc->pipe;
  2588. u32 reg, temp;
  2589. assert_pch_transcoder_disabled(dev_priv, pipe);
  2590. /* Write the TU size bits before fdi link training, so that error
  2591. * detection works. */
  2592. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2593. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2594. /* For PCH output, training FDI link */
  2595. dev_priv->display.fdi_link_train(crtc);
  2596. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2597. * transcoder, and we actually should do this to not upset any PCH
  2598. * transcoder that already use the clock when we share it.
  2599. *
  2600. * Note that enable_shared_dpll tries to do the right thing, but
  2601. * get_shared_dpll unconditionally resets the pll - we need that to have
  2602. * the right LVDS enable sequence. */
  2603. ironlake_enable_shared_dpll(intel_crtc);
  2604. if (HAS_PCH_CPT(dev)) {
  2605. u32 sel;
  2606. temp = I915_READ(PCH_DPLL_SEL);
  2607. temp |= TRANS_DPLL_ENABLE(pipe);
  2608. sel = TRANS_DPLLB_SEL(pipe);
  2609. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2610. temp |= sel;
  2611. else
  2612. temp &= ~sel;
  2613. I915_WRITE(PCH_DPLL_SEL, temp);
  2614. }
  2615. /* set transcoder timing, panel must allow it */
  2616. assert_panel_unlocked(dev_priv, pipe);
  2617. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2618. intel_fdi_normal_train(crtc);
  2619. /* For PCH DP, enable TRANS_DP_CTL */
  2620. if (HAS_PCH_CPT(dev) &&
  2621. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2622. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2623. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2624. reg = TRANS_DP_CTL(pipe);
  2625. temp = I915_READ(reg);
  2626. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2627. TRANS_DP_SYNC_MASK |
  2628. TRANS_DP_BPC_MASK);
  2629. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2630. TRANS_DP_ENH_FRAMING);
  2631. temp |= bpc << 9; /* same format but at 11:9 */
  2632. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2633. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2634. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2635. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2636. switch (intel_trans_dp_port_sel(crtc)) {
  2637. case PCH_DP_B:
  2638. temp |= TRANS_DP_PORT_SEL_B;
  2639. break;
  2640. case PCH_DP_C:
  2641. temp |= TRANS_DP_PORT_SEL_C;
  2642. break;
  2643. case PCH_DP_D:
  2644. temp |= TRANS_DP_PORT_SEL_D;
  2645. break;
  2646. default:
  2647. BUG();
  2648. }
  2649. I915_WRITE(reg, temp);
  2650. }
  2651. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2652. }
  2653. static void lpt_pch_enable(struct drm_crtc *crtc)
  2654. {
  2655. struct drm_device *dev = crtc->dev;
  2656. struct drm_i915_private *dev_priv = dev->dev_private;
  2657. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2658. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2659. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2660. lpt_program_iclkip(crtc);
  2661. /* Set transcoder timing. */
  2662. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2663. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2664. }
  2665. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2666. {
  2667. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2668. if (pll == NULL)
  2669. return;
  2670. if (pll->refcount == 0) {
  2671. WARN(1, "bad %s refcount\n", pll->name);
  2672. return;
  2673. }
  2674. if (--pll->refcount == 0) {
  2675. WARN_ON(pll->on);
  2676. WARN_ON(pll->active);
  2677. }
  2678. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2679. }
  2680. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2681. {
  2682. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2683. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2684. enum intel_dpll_id i;
  2685. if (pll) {
  2686. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2687. crtc->base.base.id, pll->name);
  2688. intel_put_shared_dpll(crtc);
  2689. }
  2690. if (HAS_PCH_IBX(dev_priv->dev)) {
  2691. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2692. i = (enum intel_dpll_id) crtc->pipe;
  2693. pll = &dev_priv->shared_dplls[i];
  2694. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2695. crtc->base.base.id, pll->name);
  2696. goto found;
  2697. }
  2698. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2699. pll = &dev_priv->shared_dplls[i];
  2700. /* Only want to check enabled timings first */
  2701. if (pll->refcount == 0)
  2702. continue;
  2703. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2704. sizeof(pll->hw_state)) == 0) {
  2705. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2706. crtc->base.base.id,
  2707. pll->name, pll->refcount, pll->active);
  2708. goto found;
  2709. }
  2710. }
  2711. /* Ok no matching timings, maybe there's a free one? */
  2712. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2713. pll = &dev_priv->shared_dplls[i];
  2714. if (pll->refcount == 0) {
  2715. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2716. crtc->base.base.id, pll->name);
  2717. goto found;
  2718. }
  2719. }
  2720. return NULL;
  2721. found:
  2722. crtc->config.shared_dpll = i;
  2723. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2724. pipe_name(crtc->pipe));
  2725. if (pll->active == 0) {
  2726. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2727. sizeof(pll->hw_state));
  2728. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2729. WARN_ON(pll->on);
  2730. assert_shared_dpll_disabled(dev_priv, pll);
  2731. pll->mode_set(dev_priv, pll);
  2732. }
  2733. pll->refcount++;
  2734. return pll;
  2735. }
  2736. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2737. {
  2738. struct drm_i915_private *dev_priv = dev->dev_private;
  2739. int dslreg = PIPEDSL(pipe);
  2740. u32 temp;
  2741. temp = I915_READ(dslreg);
  2742. udelay(500);
  2743. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2744. if (wait_for(I915_READ(dslreg) != temp, 5))
  2745. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2746. }
  2747. }
  2748. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2749. {
  2750. struct drm_device *dev = crtc->base.dev;
  2751. struct drm_i915_private *dev_priv = dev->dev_private;
  2752. int pipe = crtc->pipe;
  2753. if (crtc->config.pch_pfit.size) {
  2754. /* Force use of hard-coded filter coefficients
  2755. * as some pre-programmed values are broken,
  2756. * e.g. x201.
  2757. */
  2758. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2759. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2760. PF_PIPE_SEL_IVB(pipe));
  2761. else
  2762. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2763. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2764. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2765. }
  2766. }
  2767. static void intel_enable_planes(struct drm_crtc *crtc)
  2768. {
  2769. struct drm_device *dev = crtc->dev;
  2770. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2771. struct intel_plane *intel_plane;
  2772. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2773. if (intel_plane->pipe == pipe)
  2774. intel_plane_restore(&intel_plane->base);
  2775. }
  2776. static void intel_disable_planes(struct drm_crtc *crtc)
  2777. {
  2778. struct drm_device *dev = crtc->dev;
  2779. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2780. struct intel_plane *intel_plane;
  2781. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2782. if (intel_plane->pipe == pipe)
  2783. intel_plane_disable(&intel_plane->base);
  2784. }
  2785. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2786. {
  2787. struct drm_device *dev = crtc->dev;
  2788. struct drm_i915_private *dev_priv = dev->dev_private;
  2789. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2790. struct intel_encoder *encoder;
  2791. int pipe = intel_crtc->pipe;
  2792. int plane = intel_crtc->plane;
  2793. WARN_ON(!crtc->enabled);
  2794. if (intel_crtc->active)
  2795. return;
  2796. intel_crtc->active = true;
  2797. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2798. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2799. intel_update_watermarks(dev);
  2800. for_each_encoder_on_crtc(dev, crtc, encoder)
  2801. if (encoder->pre_enable)
  2802. encoder->pre_enable(encoder);
  2803. if (intel_crtc->config.has_pch_encoder) {
  2804. /* Note: FDI PLL enabling _must_ be done before we enable the
  2805. * cpu pipes, hence this is separate from all the other fdi/pch
  2806. * enabling. */
  2807. ironlake_fdi_pll_enable(intel_crtc);
  2808. } else {
  2809. assert_fdi_tx_disabled(dev_priv, pipe);
  2810. assert_fdi_rx_disabled(dev_priv, pipe);
  2811. }
  2812. ironlake_pfit_enable(intel_crtc);
  2813. /*
  2814. * On ILK+ LUT must be loaded before the pipe is running but with
  2815. * clocks enabled
  2816. */
  2817. intel_crtc_load_lut(crtc);
  2818. intel_enable_pipe(dev_priv, pipe,
  2819. intel_crtc->config.has_pch_encoder);
  2820. intel_enable_plane(dev_priv, plane, pipe);
  2821. intel_enable_planes(crtc);
  2822. intel_crtc_update_cursor(crtc, true);
  2823. if (intel_crtc->config.has_pch_encoder)
  2824. ironlake_pch_enable(crtc);
  2825. mutex_lock(&dev->struct_mutex);
  2826. intel_update_fbc(dev);
  2827. mutex_unlock(&dev->struct_mutex);
  2828. for_each_encoder_on_crtc(dev, crtc, encoder)
  2829. encoder->enable(encoder);
  2830. if (HAS_PCH_CPT(dev))
  2831. cpt_verify_modeset(dev, intel_crtc->pipe);
  2832. /*
  2833. * There seems to be a race in PCH platform hw (at least on some
  2834. * outputs) where an enabled pipe still completes any pageflip right
  2835. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2836. * as the first vblank happend, everything works as expected. Hence just
  2837. * wait for one vblank before returning to avoid strange things
  2838. * happening.
  2839. */
  2840. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2841. }
  2842. /* IPS only exists on ULT machines and is tied to pipe A. */
  2843. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2844. {
  2845. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2846. }
  2847. static void hsw_enable_ips(struct intel_crtc *crtc)
  2848. {
  2849. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2850. if (!crtc->config.ips_enabled)
  2851. return;
  2852. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2853. * We guarantee that the plane is enabled by calling intel_enable_ips
  2854. * only after intel_enable_plane. And intel_enable_plane already waits
  2855. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2856. assert_plane_enabled(dev_priv, crtc->plane);
  2857. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2858. }
  2859. static void hsw_disable_ips(struct intel_crtc *crtc)
  2860. {
  2861. struct drm_device *dev = crtc->base.dev;
  2862. struct drm_i915_private *dev_priv = dev->dev_private;
  2863. if (!crtc->config.ips_enabled)
  2864. return;
  2865. assert_plane_enabled(dev_priv, crtc->plane);
  2866. I915_WRITE(IPS_CTL, 0);
  2867. /* We need to wait for a vblank before we can disable the plane. */
  2868. intel_wait_for_vblank(dev, crtc->pipe);
  2869. }
  2870. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2871. {
  2872. struct drm_device *dev = crtc->dev;
  2873. struct drm_i915_private *dev_priv = dev->dev_private;
  2874. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2875. struct intel_encoder *encoder;
  2876. int pipe = intel_crtc->pipe;
  2877. int plane = intel_crtc->plane;
  2878. WARN_ON(!crtc->enabled);
  2879. if (intel_crtc->active)
  2880. return;
  2881. intel_crtc->active = true;
  2882. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2883. if (intel_crtc->config.has_pch_encoder)
  2884. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2885. intel_update_watermarks(dev);
  2886. if (intel_crtc->config.has_pch_encoder)
  2887. dev_priv->display.fdi_link_train(crtc);
  2888. for_each_encoder_on_crtc(dev, crtc, encoder)
  2889. if (encoder->pre_enable)
  2890. encoder->pre_enable(encoder);
  2891. intel_ddi_enable_pipe_clock(intel_crtc);
  2892. ironlake_pfit_enable(intel_crtc);
  2893. /*
  2894. * On ILK+ LUT must be loaded before the pipe is running but with
  2895. * clocks enabled
  2896. */
  2897. intel_crtc_load_lut(crtc);
  2898. intel_ddi_set_pipe_settings(crtc);
  2899. intel_ddi_enable_transcoder_func(crtc);
  2900. intel_enable_pipe(dev_priv, pipe,
  2901. intel_crtc->config.has_pch_encoder);
  2902. intel_enable_plane(dev_priv, plane, pipe);
  2903. intel_enable_planes(crtc);
  2904. intel_crtc_update_cursor(crtc, true);
  2905. hsw_enable_ips(intel_crtc);
  2906. if (intel_crtc->config.has_pch_encoder)
  2907. lpt_pch_enable(crtc);
  2908. mutex_lock(&dev->struct_mutex);
  2909. intel_update_fbc(dev);
  2910. mutex_unlock(&dev->struct_mutex);
  2911. for_each_encoder_on_crtc(dev, crtc, encoder)
  2912. encoder->enable(encoder);
  2913. /*
  2914. * There seems to be a race in PCH platform hw (at least on some
  2915. * outputs) where an enabled pipe still completes any pageflip right
  2916. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2917. * as the first vblank happend, everything works as expected. Hence just
  2918. * wait for one vblank before returning to avoid strange things
  2919. * happening.
  2920. */
  2921. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2922. }
  2923. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2924. {
  2925. struct drm_device *dev = crtc->base.dev;
  2926. struct drm_i915_private *dev_priv = dev->dev_private;
  2927. int pipe = crtc->pipe;
  2928. /* To avoid upsetting the power well on haswell only disable the pfit if
  2929. * it's in use. The hw state code will make sure we get this right. */
  2930. if (crtc->config.pch_pfit.size) {
  2931. I915_WRITE(PF_CTL(pipe), 0);
  2932. I915_WRITE(PF_WIN_POS(pipe), 0);
  2933. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2934. }
  2935. }
  2936. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2937. {
  2938. struct drm_device *dev = crtc->dev;
  2939. struct drm_i915_private *dev_priv = dev->dev_private;
  2940. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2941. struct intel_encoder *encoder;
  2942. int pipe = intel_crtc->pipe;
  2943. int plane = intel_crtc->plane;
  2944. u32 reg, temp;
  2945. if (!intel_crtc->active)
  2946. return;
  2947. for_each_encoder_on_crtc(dev, crtc, encoder)
  2948. encoder->disable(encoder);
  2949. intel_crtc_wait_for_pending_flips(crtc);
  2950. drm_vblank_off(dev, pipe);
  2951. if (dev_priv->fbc.plane == plane)
  2952. intel_disable_fbc(dev);
  2953. intel_crtc_update_cursor(crtc, false);
  2954. intel_disable_planes(crtc);
  2955. intel_disable_plane(dev_priv, plane, pipe);
  2956. if (intel_crtc->config.has_pch_encoder)
  2957. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2958. intel_disable_pipe(dev_priv, pipe);
  2959. ironlake_pfit_disable(intel_crtc);
  2960. for_each_encoder_on_crtc(dev, crtc, encoder)
  2961. if (encoder->post_disable)
  2962. encoder->post_disable(encoder);
  2963. if (intel_crtc->config.has_pch_encoder) {
  2964. ironlake_fdi_disable(crtc);
  2965. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2966. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2967. if (HAS_PCH_CPT(dev)) {
  2968. /* disable TRANS_DP_CTL */
  2969. reg = TRANS_DP_CTL(pipe);
  2970. temp = I915_READ(reg);
  2971. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2972. TRANS_DP_PORT_SEL_MASK);
  2973. temp |= TRANS_DP_PORT_SEL_NONE;
  2974. I915_WRITE(reg, temp);
  2975. /* disable DPLL_SEL */
  2976. temp = I915_READ(PCH_DPLL_SEL);
  2977. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2978. I915_WRITE(PCH_DPLL_SEL, temp);
  2979. }
  2980. /* disable PCH DPLL */
  2981. intel_disable_shared_dpll(intel_crtc);
  2982. ironlake_fdi_pll_disable(intel_crtc);
  2983. }
  2984. intel_crtc->active = false;
  2985. intel_update_watermarks(dev);
  2986. mutex_lock(&dev->struct_mutex);
  2987. intel_update_fbc(dev);
  2988. mutex_unlock(&dev->struct_mutex);
  2989. }
  2990. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2991. {
  2992. struct drm_device *dev = crtc->dev;
  2993. struct drm_i915_private *dev_priv = dev->dev_private;
  2994. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2995. struct intel_encoder *encoder;
  2996. int pipe = intel_crtc->pipe;
  2997. int plane = intel_crtc->plane;
  2998. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2999. if (!intel_crtc->active)
  3000. return;
  3001. for_each_encoder_on_crtc(dev, crtc, encoder)
  3002. encoder->disable(encoder);
  3003. intel_crtc_wait_for_pending_flips(crtc);
  3004. drm_vblank_off(dev, pipe);
  3005. /* FBC must be disabled before disabling the plane on HSW. */
  3006. if (dev_priv->fbc.plane == plane)
  3007. intel_disable_fbc(dev);
  3008. hsw_disable_ips(intel_crtc);
  3009. intel_crtc_update_cursor(crtc, false);
  3010. intel_disable_planes(crtc);
  3011. intel_disable_plane(dev_priv, plane, pipe);
  3012. if (intel_crtc->config.has_pch_encoder)
  3013. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3014. intel_disable_pipe(dev_priv, pipe);
  3015. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3016. ironlake_pfit_disable(intel_crtc);
  3017. intel_ddi_disable_pipe_clock(intel_crtc);
  3018. for_each_encoder_on_crtc(dev, crtc, encoder)
  3019. if (encoder->post_disable)
  3020. encoder->post_disable(encoder);
  3021. if (intel_crtc->config.has_pch_encoder) {
  3022. lpt_disable_pch_transcoder(dev_priv);
  3023. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3024. intel_ddi_fdi_disable(crtc);
  3025. }
  3026. intel_crtc->active = false;
  3027. intel_update_watermarks(dev);
  3028. mutex_lock(&dev->struct_mutex);
  3029. intel_update_fbc(dev);
  3030. mutex_unlock(&dev->struct_mutex);
  3031. }
  3032. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3033. {
  3034. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3035. intel_put_shared_dpll(intel_crtc);
  3036. }
  3037. static void haswell_crtc_off(struct drm_crtc *crtc)
  3038. {
  3039. intel_ddi_put_crtc_pll(crtc);
  3040. }
  3041. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3042. {
  3043. if (!enable && intel_crtc->overlay) {
  3044. struct drm_device *dev = intel_crtc->base.dev;
  3045. struct drm_i915_private *dev_priv = dev->dev_private;
  3046. mutex_lock(&dev->struct_mutex);
  3047. dev_priv->mm.interruptible = false;
  3048. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3049. dev_priv->mm.interruptible = true;
  3050. mutex_unlock(&dev->struct_mutex);
  3051. }
  3052. /* Let userspace switch the overlay on again. In most cases userspace
  3053. * has to recompute where to put it anyway.
  3054. */
  3055. }
  3056. /**
  3057. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3058. * cursor plane briefly if not already running after enabling the display
  3059. * plane.
  3060. * This workaround avoids occasional blank screens when self refresh is
  3061. * enabled.
  3062. */
  3063. static void
  3064. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3065. {
  3066. u32 cntl = I915_READ(CURCNTR(pipe));
  3067. if ((cntl & CURSOR_MODE) == 0) {
  3068. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3069. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3070. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3071. intel_wait_for_vblank(dev_priv->dev, pipe);
  3072. I915_WRITE(CURCNTR(pipe), cntl);
  3073. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3074. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3075. }
  3076. }
  3077. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3078. {
  3079. struct drm_device *dev = crtc->base.dev;
  3080. struct drm_i915_private *dev_priv = dev->dev_private;
  3081. struct intel_crtc_config *pipe_config = &crtc->config;
  3082. if (!crtc->config.gmch_pfit.control)
  3083. return;
  3084. /*
  3085. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3086. * according to register description and PRM.
  3087. */
  3088. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3089. assert_pipe_disabled(dev_priv, crtc->pipe);
  3090. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3091. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3092. /* Border color in case we don't scale up to the full screen. Black by
  3093. * default, change to something else for debugging. */
  3094. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3095. }
  3096. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3097. {
  3098. struct drm_device *dev = crtc->dev;
  3099. struct drm_i915_private *dev_priv = dev->dev_private;
  3100. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3101. struct intel_encoder *encoder;
  3102. int pipe = intel_crtc->pipe;
  3103. int plane = intel_crtc->plane;
  3104. WARN_ON(!crtc->enabled);
  3105. if (intel_crtc->active)
  3106. return;
  3107. intel_crtc->active = true;
  3108. intel_update_watermarks(dev);
  3109. mutex_lock(&dev_priv->dpio_lock);
  3110. for_each_encoder_on_crtc(dev, crtc, encoder)
  3111. if (encoder->pre_pll_enable)
  3112. encoder->pre_pll_enable(encoder);
  3113. vlv_enable_pll(dev_priv, pipe);
  3114. for_each_encoder_on_crtc(dev, crtc, encoder)
  3115. if (encoder->pre_enable)
  3116. encoder->pre_enable(encoder);
  3117. /* VLV wants encoder enabling _before_ the pipe is up. */
  3118. for_each_encoder_on_crtc(dev, crtc, encoder)
  3119. encoder->enable(encoder);
  3120. i9xx_pfit_enable(intel_crtc);
  3121. intel_crtc_load_lut(crtc);
  3122. intel_enable_pipe(dev_priv, pipe, false);
  3123. intel_enable_plane(dev_priv, plane, pipe);
  3124. intel_enable_planes(crtc);
  3125. intel_crtc_update_cursor(crtc, true);
  3126. intel_update_fbc(dev);
  3127. mutex_unlock(&dev_priv->dpio_lock);
  3128. }
  3129. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3130. {
  3131. struct drm_device *dev = crtc->dev;
  3132. struct drm_i915_private *dev_priv = dev->dev_private;
  3133. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3134. struct intel_encoder *encoder;
  3135. int pipe = intel_crtc->pipe;
  3136. int plane = intel_crtc->plane;
  3137. WARN_ON(!crtc->enabled);
  3138. if (intel_crtc->active)
  3139. return;
  3140. intel_crtc->active = true;
  3141. intel_update_watermarks(dev);
  3142. for_each_encoder_on_crtc(dev, crtc, encoder)
  3143. if (encoder->pre_enable)
  3144. encoder->pre_enable(encoder);
  3145. i9xx_enable_pll(intel_crtc);
  3146. i9xx_pfit_enable(intel_crtc);
  3147. intel_crtc_load_lut(crtc);
  3148. intel_enable_pipe(dev_priv, pipe, false);
  3149. intel_enable_plane(dev_priv, plane, pipe);
  3150. intel_enable_planes(crtc);
  3151. /* The fixup needs to happen before cursor is enabled */
  3152. if (IS_G4X(dev))
  3153. g4x_fixup_plane(dev_priv, pipe);
  3154. intel_crtc_update_cursor(crtc, true);
  3155. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3156. intel_crtc_dpms_overlay(intel_crtc, true);
  3157. intel_update_fbc(dev);
  3158. for_each_encoder_on_crtc(dev, crtc, encoder)
  3159. encoder->enable(encoder);
  3160. }
  3161. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3162. {
  3163. struct drm_device *dev = crtc->base.dev;
  3164. struct drm_i915_private *dev_priv = dev->dev_private;
  3165. if (!crtc->config.gmch_pfit.control)
  3166. return;
  3167. assert_pipe_disabled(dev_priv, crtc->pipe);
  3168. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3169. I915_READ(PFIT_CONTROL));
  3170. I915_WRITE(PFIT_CONTROL, 0);
  3171. }
  3172. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3173. {
  3174. struct drm_device *dev = crtc->dev;
  3175. struct drm_i915_private *dev_priv = dev->dev_private;
  3176. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3177. struct intel_encoder *encoder;
  3178. int pipe = intel_crtc->pipe;
  3179. int plane = intel_crtc->plane;
  3180. if (!intel_crtc->active)
  3181. return;
  3182. for_each_encoder_on_crtc(dev, crtc, encoder)
  3183. encoder->disable(encoder);
  3184. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3185. intel_crtc_wait_for_pending_flips(crtc);
  3186. drm_vblank_off(dev, pipe);
  3187. if (dev_priv->fbc.plane == plane)
  3188. intel_disable_fbc(dev);
  3189. intel_crtc_dpms_overlay(intel_crtc, false);
  3190. intel_crtc_update_cursor(crtc, false);
  3191. intel_disable_planes(crtc);
  3192. intel_disable_plane(dev_priv, plane, pipe);
  3193. intel_disable_pipe(dev_priv, pipe);
  3194. i9xx_pfit_disable(intel_crtc);
  3195. for_each_encoder_on_crtc(dev, crtc, encoder)
  3196. if (encoder->post_disable)
  3197. encoder->post_disable(encoder);
  3198. intel_disable_pll(dev_priv, pipe);
  3199. intel_crtc->active = false;
  3200. intel_update_fbc(dev);
  3201. intel_update_watermarks(dev);
  3202. }
  3203. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3204. {
  3205. }
  3206. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3207. bool enabled)
  3208. {
  3209. struct drm_device *dev = crtc->dev;
  3210. struct drm_i915_master_private *master_priv;
  3211. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3212. int pipe = intel_crtc->pipe;
  3213. if (!dev->primary->master)
  3214. return;
  3215. master_priv = dev->primary->master->driver_priv;
  3216. if (!master_priv->sarea_priv)
  3217. return;
  3218. switch (pipe) {
  3219. case 0:
  3220. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3221. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3222. break;
  3223. case 1:
  3224. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3225. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3226. break;
  3227. default:
  3228. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3229. break;
  3230. }
  3231. }
  3232. /**
  3233. * Sets the power management mode of the pipe and plane.
  3234. */
  3235. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3236. {
  3237. struct drm_device *dev = crtc->dev;
  3238. struct drm_i915_private *dev_priv = dev->dev_private;
  3239. struct intel_encoder *intel_encoder;
  3240. bool enable = false;
  3241. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3242. enable |= intel_encoder->connectors_active;
  3243. if (enable)
  3244. dev_priv->display.crtc_enable(crtc);
  3245. else
  3246. dev_priv->display.crtc_disable(crtc);
  3247. intel_crtc_update_sarea(crtc, enable);
  3248. }
  3249. static void intel_crtc_disable(struct drm_crtc *crtc)
  3250. {
  3251. struct drm_device *dev = crtc->dev;
  3252. struct drm_connector *connector;
  3253. struct drm_i915_private *dev_priv = dev->dev_private;
  3254. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3255. /* crtc should still be enabled when we disable it. */
  3256. WARN_ON(!crtc->enabled);
  3257. dev_priv->display.crtc_disable(crtc);
  3258. intel_crtc->eld_vld = false;
  3259. intel_crtc_update_sarea(crtc, false);
  3260. dev_priv->display.off(crtc);
  3261. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3262. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3263. if (crtc->fb) {
  3264. mutex_lock(&dev->struct_mutex);
  3265. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3266. mutex_unlock(&dev->struct_mutex);
  3267. crtc->fb = NULL;
  3268. }
  3269. /* Update computed state. */
  3270. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3271. if (!connector->encoder || !connector->encoder->crtc)
  3272. continue;
  3273. if (connector->encoder->crtc != crtc)
  3274. continue;
  3275. connector->dpms = DRM_MODE_DPMS_OFF;
  3276. to_intel_encoder(connector->encoder)->connectors_active = false;
  3277. }
  3278. }
  3279. void intel_modeset_disable(struct drm_device *dev)
  3280. {
  3281. struct drm_crtc *crtc;
  3282. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3283. if (crtc->enabled)
  3284. intel_crtc_disable(crtc);
  3285. }
  3286. }
  3287. void intel_encoder_destroy(struct drm_encoder *encoder)
  3288. {
  3289. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3290. drm_encoder_cleanup(encoder);
  3291. kfree(intel_encoder);
  3292. }
  3293. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3294. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3295. * state of the entire output pipe. */
  3296. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3297. {
  3298. if (mode == DRM_MODE_DPMS_ON) {
  3299. encoder->connectors_active = true;
  3300. intel_crtc_update_dpms(encoder->base.crtc);
  3301. } else {
  3302. encoder->connectors_active = false;
  3303. intel_crtc_update_dpms(encoder->base.crtc);
  3304. }
  3305. }
  3306. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3307. * internal consistency). */
  3308. static void intel_connector_check_state(struct intel_connector *connector)
  3309. {
  3310. if (connector->get_hw_state(connector)) {
  3311. struct intel_encoder *encoder = connector->encoder;
  3312. struct drm_crtc *crtc;
  3313. bool encoder_enabled;
  3314. enum pipe pipe;
  3315. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3316. connector->base.base.id,
  3317. drm_get_connector_name(&connector->base));
  3318. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3319. "wrong connector dpms state\n");
  3320. WARN(connector->base.encoder != &encoder->base,
  3321. "active connector not linked to encoder\n");
  3322. WARN(!encoder->connectors_active,
  3323. "encoder->connectors_active not set\n");
  3324. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3325. WARN(!encoder_enabled, "encoder not enabled\n");
  3326. if (WARN_ON(!encoder->base.crtc))
  3327. return;
  3328. crtc = encoder->base.crtc;
  3329. WARN(!crtc->enabled, "crtc not enabled\n");
  3330. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3331. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3332. "encoder active on the wrong pipe\n");
  3333. }
  3334. }
  3335. /* Even simpler default implementation, if there's really no special case to
  3336. * consider. */
  3337. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3338. {
  3339. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3340. /* All the simple cases only support two dpms states. */
  3341. if (mode != DRM_MODE_DPMS_ON)
  3342. mode = DRM_MODE_DPMS_OFF;
  3343. if (mode == connector->dpms)
  3344. return;
  3345. connector->dpms = mode;
  3346. /* Only need to change hw state when actually enabled */
  3347. if (encoder->base.crtc)
  3348. intel_encoder_dpms(encoder, mode);
  3349. else
  3350. WARN_ON(encoder->connectors_active != false);
  3351. intel_modeset_check_state(connector->dev);
  3352. }
  3353. /* Simple connector->get_hw_state implementation for encoders that support only
  3354. * one connector and no cloning and hence the encoder state determines the state
  3355. * of the connector. */
  3356. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3357. {
  3358. enum pipe pipe = 0;
  3359. struct intel_encoder *encoder = connector->encoder;
  3360. return encoder->get_hw_state(encoder, &pipe);
  3361. }
  3362. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3363. struct intel_crtc_config *pipe_config)
  3364. {
  3365. struct drm_i915_private *dev_priv = dev->dev_private;
  3366. struct intel_crtc *pipe_B_crtc =
  3367. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3368. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3369. pipe_name(pipe), pipe_config->fdi_lanes);
  3370. if (pipe_config->fdi_lanes > 4) {
  3371. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3372. pipe_name(pipe), pipe_config->fdi_lanes);
  3373. return false;
  3374. }
  3375. if (IS_HASWELL(dev)) {
  3376. if (pipe_config->fdi_lanes > 2) {
  3377. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3378. pipe_config->fdi_lanes);
  3379. return false;
  3380. } else {
  3381. return true;
  3382. }
  3383. }
  3384. if (INTEL_INFO(dev)->num_pipes == 2)
  3385. return true;
  3386. /* Ivybridge 3 pipe is really complicated */
  3387. switch (pipe) {
  3388. case PIPE_A:
  3389. return true;
  3390. case PIPE_B:
  3391. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3392. pipe_config->fdi_lanes > 2) {
  3393. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3394. pipe_name(pipe), pipe_config->fdi_lanes);
  3395. return false;
  3396. }
  3397. return true;
  3398. case PIPE_C:
  3399. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3400. pipe_B_crtc->config.fdi_lanes <= 2) {
  3401. if (pipe_config->fdi_lanes > 2) {
  3402. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3403. pipe_name(pipe), pipe_config->fdi_lanes);
  3404. return false;
  3405. }
  3406. } else {
  3407. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3408. return false;
  3409. }
  3410. return true;
  3411. default:
  3412. BUG();
  3413. }
  3414. }
  3415. #define RETRY 1
  3416. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3417. struct intel_crtc_config *pipe_config)
  3418. {
  3419. struct drm_device *dev = intel_crtc->base.dev;
  3420. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3421. int lane, link_bw, fdi_dotclock;
  3422. bool setup_ok, needs_recompute = false;
  3423. retry:
  3424. /* FDI is a binary signal running at ~2.7GHz, encoding
  3425. * each output octet as 10 bits. The actual frequency
  3426. * is stored as a divider into a 100MHz clock, and the
  3427. * mode pixel clock is stored in units of 1KHz.
  3428. * Hence the bw of each lane in terms of the mode signal
  3429. * is:
  3430. */
  3431. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3432. fdi_dotclock = adjusted_mode->clock;
  3433. fdi_dotclock /= pipe_config->pixel_multiplier;
  3434. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3435. pipe_config->pipe_bpp);
  3436. pipe_config->fdi_lanes = lane;
  3437. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3438. link_bw, &pipe_config->fdi_m_n);
  3439. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3440. intel_crtc->pipe, pipe_config);
  3441. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3442. pipe_config->pipe_bpp -= 2*3;
  3443. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3444. pipe_config->pipe_bpp);
  3445. needs_recompute = true;
  3446. pipe_config->bw_constrained = true;
  3447. goto retry;
  3448. }
  3449. if (needs_recompute)
  3450. return RETRY;
  3451. return setup_ok ? 0 : -EINVAL;
  3452. }
  3453. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3454. struct intel_crtc_config *pipe_config)
  3455. {
  3456. pipe_config->ips_enabled = i915_enable_ips &&
  3457. hsw_crtc_supports_ips(crtc) &&
  3458. pipe_config->pipe_bpp == 24;
  3459. }
  3460. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3461. struct intel_crtc_config *pipe_config)
  3462. {
  3463. struct drm_device *dev = crtc->base.dev;
  3464. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3465. if (HAS_PCH_SPLIT(dev)) {
  3466. /* FDI link clock is fixed at 2.7G */
  3467. if (pipe_config->requested_mode.clock * 3
  3468. > IRONLAKE_FDI_FREQ * 4)
  3469. return -EINVAL;
  3470. }
  3471. /* All interlaced capable intel hw wants timings in frames. Note though
  3472. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3473. * timings, so we need to be careful not to clobber these.*/
  3474. if (!pipe_config->timings_set)
  3475. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3476. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3477. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3478. */
  3479. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3480. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3481. return -EINVAL;
  3482. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3483. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3484. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3485. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3486. * for lvds. */
  3487. pipe_config->pipe_bpp = 8*3;
  3488. }
  3489. if (HAS_IPS(dev))
  3490. hsw_compute_ips_config(crtc, pipe_config);
  3491. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3492. * clock survives for now. */
  3493. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3494. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3495. if (pipe_config->has_pch_encoder)
  3496. return ironlake_fdi_compute_config(crtc, pipe_config);
  3497. return 0;
  3498. }
  3499. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3500. {
  3501. return 400000; /* FIXME */
  3502. }
  3503. static int i945_get_display_clock_speed(struct drm_device *dev)
  3504. {
  3505. return 400000;
  3506. }
  3507. static int i915_get_display_clock_speed(struct drm_device *dev)
  3508. {
  3509. return 333000;
  3510. }
  3511. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3512. {
  3513. return 200000;
  3514. }
  3515. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3516. {
  3517. u16 gcfgc = 0;
  3518. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3519. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3520. return 133000;
  3521. else {
  3522. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3523. case GC_DISPLAY_CLOCK_333_MHZ:
  3524. return 333000;
  3525. default:
  3526. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3527. return 190000;
  3528. }
  3529. }
  3530. }
  3531. static int i865_get_display_clock_speed(struct drm_device *dev)
  3532. {
  3533. return 266000;
  3534. }
  3535. static int i855_get_display_clock_speed(struct drm_device *dev)
  3536. {
  3537. u16 hpllcc = 0;
  3538. /* Assume that the hardware is in the high speed state. This
  3539. * should be the default.
  3540. */
  3541. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3542. case GC_CLOCK_133_200:
  3543. case GC_CLOCK_100_200:
  3544. return 200000;
  3545. case GC_CLOCK_166_250:
  3546. return 250000;
  3547. case GC_CLOCK_100_133:
  3548. return 133000;
  3549. }
  3550. /* Shouldn't happen */
  3551. return 0;
  3552. }
  3553. static int i830_get_display_clock_speed(struct drm_device *dev)
  3554. {
  3555. return 133000;
  3556. }
  3557. static void
  3558. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3559. {
  3560. while (*num > DATA_LINK_M_N_MASK ||
  3561. *den > DATA_LINK_M_N_MASK) {
  3562. *num >>= 1;
  3563. *den >>= 1;
  3564. }
  3565. }
  3566. static void compute_m_n(unsigned int m, unsigned int n,
  3567. uint32_t *ret_m, uint32_t *ret_n)
  3568. {
  3569. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3570. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3571. intel_reduce_m_n_ratio(ret_m, ret_n);
  3572. }
  3573. void
  3574. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3575. int pixel_clock, int link_clock,
  3576. struct intel_link_m_n *m_n)
  3577. {
  3578. m_n->tu = 64;
  3579. compute_m_n(bits_per_pixel * pixel_clock,
  3580. link_clock * nlanes * 8,
  3581. &m_n->gmch_m, &m_n->gmch_n);
  3582. compute_m_n(pixel_clock, link_clock,
  3583. &m_n->link_m, &m_n->link_n);
  3584. }
  3585. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3586. {
  3587. if (i915_panel_use_ssc >= 0)
  3588. return i915_panel_use_ssc != 0;
  3589. return dev_priv->vbt.lvds_use_ssc
  3590. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3591. }
  3592. static int vlv_get_refclk(struct drm_crtc *crtc)
  3593. {
  3594. struct drm_device *dev = crtc->dev;
  3595. struct drm_i915_private *dev_priv = dev->dev_private;
  3596. int refclk = 27000; /* for DP & HDMI */
  3597. return 100000; /* only one validated so far */
  3598. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3599. refclk = 96000;
  3600. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3601. if (intel_panel_use_ssc(dev_priv))
  3602. refclk = 100000;
  3603. else
  3604. refclk = 96000;
  3605. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3606. refclk = 100000;
  3607. }
  3608. return refclk;
  3609. }
  3610. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3611. {
  3612. struct drm_device *dev = crtc->dev;
  3613. struct drm_i915_private *dev_priv = dev->dev_private;
  3614. int refclk;
  3615. if (IS_VALLEYVIEW(dev)) {
  3616. refclk = vlv_get_refclk(crtc);
  3617. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3618. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3619. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3620. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3621. refclk / 1000);
  3622. } else if (!IS_GEN2(dev)) {
  3623. refclk = 96000;
  3624. } else {
  3625. refclk = 48000;
  3626. }
  3627. return refclk;
  3628. }
  3629. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3630. {
  3631. return (1 << dpll->n) << 16 | dpll->m2;
  3632. }
  3633. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3634. {
  3635. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3636. }
  3637. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3638. intel_clock_t *reduced_clock)
  3639. {
  3640. struct drm_device *dev = crtc->base.dev;
  3641. struct drm_i915_private *dev_priv = dev->dev_private;
  3642. int pipe = crtc->pipe;
  3643. u32 fp, fp2 = 0;
  3644. if (IS_PINEVIEW(dev)) {
  3645. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3646. if (reduced_clock)
  3647. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3648. } else {
  3649. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3650. if (reduced_clock)
  3651. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3652. }
  3653. I915_WRITE(FP0(pipe), fp);
  3654. crtc->config.dpll_hw_state.fp0 = fp;
  3655. crtc->lowfreq_avail = false;
  3656. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3657. reduced_clock && i915_powersave) {
  3658. I915_WRITE(FP1(pipe), fp2);
  3659. crtc->config.dpll_hw_state.fp1 = fp2;
  3660. crtc->lowfreq_avail = true;
  3661. } else {
  3662. I915_WRITE(FP1(pipe), fp);
  3663. crtc->config.dpll_hw_state.fp1 = fp;
  3664. }
  3665. }
  3666. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3667. {
  3668. u32 reg_val;
  3669. /*
  3670. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3671. * and set it to a reasonable value instead.
  3672. */
  3673. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3674. reg_val &= 0xffffff00;
  3675. reg_val |= 0x00000030;
  3676. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3677. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3678. reg_val &= 0x8cffffff;
  3679. reg_val = 0x8c000000;
  3680. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3681. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3682. reg_val &= 0xffffff00;
  3683. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3684. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3685. reg_val &= 0x00ffffff;
  3686. reg_val |= 0xb0000000;
  3687. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3688. }
  3689. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3690. struct intel_link_m_n *m_n)
  3691. {
  3692. struct drm_device *dev = crtc->base.dev;
  3693. struct drm_i915_private *dev_priv = dev->dev_private;
  3694. int pipe = crtc->pipe;
  3695. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3696. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3697. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3698. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3699. }
  3700. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3701. struct intel_link_m_n *m_n)
  3702. {
  3703. struct drm_device *dev = crtc->base.dev;
  3704. struct drm_i915_private *dev_priv = dev->dev_private;
  3705. int pipe = crtc->pipe;
  3706. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3707. if (INTEL_INFO(dev)->gen >= 5) {
  3708. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3709. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3710. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3711. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3712. } else {
  3713. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3714. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3715. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3716. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3717. }
  3718. }
  3719. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3720. {
  3721. if (crtc->config.has_pch_encoder)
  3722. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3723. else
  3724. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3725. }
  3726. static void vlv_update_pll(struct intel_crtc *crtc)
  3727. {
  3728. struct drm_device *dev = crtc->base.dev;
  3729. struct drm_i915_private *dev_priv = dev->dev_private;
  3730. struct intel_encoder *encoder;
  3731. int pipe = crtc->pipe;
  3732. u32 dpll, mdiv;
  3733. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3734. bool is_hdmi;
  3735. u32 coreclk, reg_val, dpll_md;
  3736. mutex_lock(&dev_priv->dpio_lock);
  3737. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3738. bestn = crtc->config.dpll.n;
  3739. bestm1 = crtc->config.dpll.m1;
  3740. bestm2 = crtc->config.dpll.m2;
  3741. bestp1 = crtc->config.dpll.p1;
  3742. bestp2 = crtc->config.dpll.p2;
  3743. /* See eDP HDMI DPIO driver vbios notes doc */
  3744. /* PLL B needs special handling */
  3745. if (pipe)
  3746. vlv_pllb_recal_opamp(dev_priv);
  3747. /* Set up Tx target for periodic Rcomp update */
  3748. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3749. /* Disable target IRef on PLL */
  3750. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3751. reg_val &= 0x00ffffff;
  3752. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3753. /* Disable fast lock */
  3754. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3755. /* Set idtafcrecal before PLL is enabled */
  3756. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3757. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3758. mdiv |= ((bestn << DPIO_N_SHIFT));
  3759. mdiv |= (1 << DPIO_K_SHIFT);
  3760. /*
  3761. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3762. * but we don't support that).
  3763. * Note: don't use the DAC post divider as it seems unstable.
  3764. */
  3765. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3766. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3767. mdiv |= DPIO_ENABLE_CALIBRATION;
  3768. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3769. /* Set HBR and RBR LPF coefficients */
  3770. if (crtc->config.port_clock == 162000 ||
  3771. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3772. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3773. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3774. 0x009f0003);
  3775. else
  3776. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3777. 0x00d0000f);
  3778. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3779. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3780. /* Use SSC source */
  3781. if (!pipe)
  3782. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3783. 0x0df40000);
  3784. else
  3785. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3786. 0x0df70000);
  3787. } else { /* HDMI or VGA */
  3788. /* Use bend source */
  3789. if (!pipe)
  3790. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3791. 0x0df70000);
  3792. else
  3793. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3794. 0x0df40000);
  3795. }
  3796. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3797. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3798. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3799. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3800. coreclk |= 0x01000000;
  3801. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3802. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3803. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3804. if (encoder->pre_pll_enable)
  3805. encoder->pre_pll_enable(encoder);
  3806. /* Enable DPIO clock input */
  3807. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3808. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3809. if (pipe)
  3810. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3811. dpll |= DPLL_VCO_ENABLE;
  3812. crtc->config.dpll_hw_state.dpll = dpll;
  3813. I915_WRITE(DPLL(pipe), dpll);
  3814. POSTING_READ(DPLL(pipe));
  3815. udelay(150);
  3816. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3817. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3818. dpll_md = (crtc->config.pixel_multiplier - 1)
  3819. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3820. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3821. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3822. POSTING_READ(DPLL_MD(pipe));
  3823. if (crtc->config.has_dp_encoder)
  3824. intel_dp_set_m_n(crtc);
  3825. mutex_unlock(&dev_priv->dpio_lock);
  3826. }
  3827. static void i9xx_update_pll(struct intel_crtc *crtc,
  3828. intel_clock_t *reduced_clock,
  3829. int num_connectors)
  3830. {
  3831. struct drm_device *dev = crtc->base.dev;
  3832. struct drm_i915_private *dev_priv = dev->dev_private;
  3833. u32 dpll;
  3834. bool is_sdvo;
  3835. struct dpll *clock = &crtc->config.dpll;
  3836. i9xx_update_pll_dividers(crtc, reduced_clock);
  3837. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3838. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3839. dpll = DPLL_VGA_MODE_DIS;
  3840. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3841. dpll |= DPLLB_MODE_LVDS;
  3842. else
  3843. dpll |= DPLLB_MODE_DAC_SERIAL;
  3844. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3845. dpll |= (crtc->config.pixel_multiplier - 1)
  3846. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3847. }
  3848. if (is_sdvo)
  3849. dpll |= DPLL_SDVO_HIGH_SPEED;
  3850. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3851. dpll |= DPLL_SDVO_HIGH_SPEED;
  3852. /* compute bitmask from p1 value */
  3853. if (IS_PINEVIEW(dev))
  3854. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3855. else {
  3856. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3857. if (IS_G4X(dev) && reduced_clock)
  3858. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3859. }
  3860. switch (clock->p2) {
  3861. case 5:
  3862. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3863. break;
  3864. case 7:
  3865. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3866. break;
  3867. case 10:
  3868. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3869. break;
  3870. case 14:
  3871. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3872. break;
  3873. }
  3874. if (INTEL_INFO(dev)->gen >= 4)
  3875. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3876. if (crtc->config.sdvo_tv_clock)
  3877. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3878. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3879. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3880. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3881. else
  3882. dpll |= PLL_REF_INPUT_DREFCLK;
  3883. dpll |= DPLL_VCO_ENABLE;
  3884. crtc->config.dpll_hw_state.dpll = dpll;
  3885. if (INTEL_INFO(dev)->gen >= 4) {
  3886. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3887. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3888. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3889. }
  3890. if (crtc->config.has_dp_encoder)
  3891. intel_dp_set_m_n(crtc);
  3892. }
  3893. static void i8xx_update_pll(struct intel_crtc *crtc,
  3894. intel_clock_t *reduced_clock,
  3895. int num_connectors)
  3896. {
  3897. struct drm_device *dev = crtc->base.dev;
  3898. struct drm_i915_private *dev_priv = dev->dev_private;
  3899. u32 dpll;
  3900. struct dpll *clock = &crtc->config.dpll;
  3901. i9xx_update_pll_dividers(crtc, reduced_clock);
  3902. dpll = DPLL_VGA_MODE_DIS;
  3903. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3904. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3905. } else {
  3906. if (clock->p1 == 2)
  3907. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3908. else
  3909. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3910. if (clock->p2 == 4)
  3911. dpll |= PLL_P2_DIVIDE_BY_4;
  3912. }
  3913. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  3914. dpll |= DPLL_DVO_2X_MODE;
  3915. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3916. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3917. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3918. else
  3919. dpll |= PLL_REF_INPUT_DREFCLK;
  3920. dpll |= DPLL_VCO_ENABLE;
  3921. crtc->config.dpll_hw_state.dpll = dpll;
  3922. }
  3923. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3924. {
  3925. struct drm_device *dev = intel_crtc->base.dev;
  3926. struct drm_i915_private *dev_priv = dev->dev_private;
  3927. enum pipe pipe = intel_crtc->pipe;
  3928. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3929. struct drm_display_mode *adjusted_mode =
  3930. &intel_crtc->config.adjusted_mode;
  3931. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3932. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3933. /* We need to be careful not to changed the adjusted mode, for otherwise
  3934. * the hw state checker will get angry at the mismatch. */
  3935. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3936. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3937. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3938. /* the chip adds 2 halflines automatically */
  3939. crtc_vtotal -= 1;
  3940. crtc_vblank_end -= 1;
  3941. vsyncshift = adjusted_mode->crtc_hsync_start
  3942. - adjusted_mode->crtc_htotal / 2;
  3943. } else {
  3944. vsyncshift = 0;
  3945. }
  3946. if (INTEL_INFO(dev)->gen > 3)
  3947. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3948. I915_WRITE(HTOTAL(cpu_transcoder),
  3949. (adjusted_mode->crtc_hdisplay - 1) |
  3950. ((adjusted_mode->crtc_htotal - 1) << 16));
  3951. I915_WRITE(HBLANK(cpu_transcoder),
  3952. (adjusted_mode->crtc_hblank_start - 1) |
  3953. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3954. I915_WRITE(HSYNC(cpu_transcoder),
  3955. (adjusted_mode->crtc_hsync_start - 1) |
  3956. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3957. I915_WRITE(VTOTAL(cpu_transcoder),
  3958. (adjusted_mode->crtc_vdisplay - 1) |
  3959. ((crtc_vtotal - 1) << 16));
  3960. I915_WRITE(VBLANK(cpu_transcoder),
  3961. (adjusted_mode->crtc_vblank_start - 1) |
  3962. ((crtc_vblank_end - 1) << 16));
  3963. I915_WRITE(VSYNC(cpu_transcoder),
  3964. (adjusted_mode->crtc_vsync_start - 1) |
  3965. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3966. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3967. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3968. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3969. * bits. */
  3970. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3971. (pipe == PIPE_B || pipe == PIPE_C))
  3972. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3973. /* pipesrc controls the size that is scaled from, which should
  3974. * always be the user's requested size.
  3975. */
  3976. I915_WRITE(PIPESRC(pipe),
  3977. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3978. }
  3979. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3980. struct intel_crtc_config *pipe_config)
  3981. {
  3982. struct drm_device *dev = crtc->base.dev;
  3983. struct drm_i915_private *dev_priv = dev->dev_private;
  3984. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3985. uint32_t tmp;
  3986. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3987. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3988. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3989. tmp = I915_READ(HBLANK(cpu_transcoder));
  3990. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3991. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3992. tmp = I915_READ(HSYNC(cpu_transcoder));
  3993. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3994. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3995. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3996. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3997. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  3998. tmp = I915_READ(VBLANK(cpu_transcoder));
  3999. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4000. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4001. tmp = I915_READ(VSYNC(cpu_transcoder));
  4002. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4003. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4004. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4005. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4006. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4007. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4008. }
  4009. tmp = I915_READ(PIPESRC(crtc->pipe));
  4010. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4011. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4012. }
  4013. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4014. struct intel_crtc_config *pipe_config)
  4015. {
  4016. struct drm_crtc *crtc = &intel_crtc->base;
  4017. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4018. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4019. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4020. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4021. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4022. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4023. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4024. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4025. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4026. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4027. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4028. }
  4029. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4030. {
  4031. struct drm_device *dev = intel_crtc->base.dev;
  4032. struct drm_i915_private *dev_priv = dev->dev_private;
  4033. uint32_t pipeconf;
  4034. pipeconf = 0;
  4035. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4036. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4037. * core speed.
  4038. *
  4039. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4040. * pipe == 0 check?
  4041. */
  4042. if (intel_crtc->config.requested_mode.clock >
  4043. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4044. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4045. }
  4046. /* only g4x and later have fancy bpc/dither controls */
  4047. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4048. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4049. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4050. pipeconf |= PIPECONF_DITHER_EN |
  4051. PIPECONF_DITHER_TYPE_SP;
  4052. switch (intel_crtc->config.pipe_bpp) {
  4053. case 18:
  4054. pipeconf |= PIPECONF_6BPC;
  4055. break;
  4056. case 24:
  4057. pipeconf |= PIPECONF_8BPC;
  4058. break;
  4059. case 30:
  4060. pipeconf |= PIPECONF_10BPC;
  4061. break;
  4062. default:
  4063. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4064. BUG();
  4065. }
  4066. }
  4067. if (HAS_PIPE_CXSR(dev)) {
  4068. if (intel_crtc->lowfreq_avail) {
  4069. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4070. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4071. } else {
  4072. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4073. }
  4074. }
  4075. if (!IS_GEN2(dev) &&
  4076. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4077. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4078. else
  4079. pipeconf |= PIPECONF_PROGRESSIVE;
  4080. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4081. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4082. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4083. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4084. }
  4085. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4086. int x, int y,
  4087. struct drm_framebuffer *fb)
  4088. {
  4089. struct drm_device *dev = crtc->dev;
  4090. struct drm_i915_private *dev_priv = dev->dev_private;
  4091. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4092. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4093. int pipe = intel_crtc->pipe;
  4094. int plane = intel_crtc->plane;
  4095. int refclk, num_connectors = 0;
  4096. intel_clock_t clock, reduced_clock;
  4097. u32 dspcntr;
  4098. bool ok, has_reduced_clock = false;
  4099. bool is_lvds = false;
  4100. struct intel_encoder *encoder;
  4101. const intel_limit_t *limit;
  4102. int ret;
  4103. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4104. switch (encoder->type) {
  4105. case INTEL_OUTPUT_LVDS:
  4106. is_lvds = true;
  4107. break;
  4108. }
  4109. num_connectors++;
  4110. }
  4111. refclk = i9xx_get_refclk(crtc, num_connectors);
  4112. /*
  4113. * Returns a set of divisors for the desired target clock with the given
  4114. * refclk, or FALSE. The returned values represent the clock equation:
  4115. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4116. */
  4117. limit = intel_limit(crtc, refclk);
  4118. ok = dev_priv->display.find_dpll(limit, crtc,
  4119. intel_crtc->config.port_clock,
  4120. refclk, NULL, &clock);
  4121. if (!ok && !intel_crtc->config.clock_set) {
  4122. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4123. return -EINVAL;
  4124. }
  4125. /* Ensure that the cursor is valid for the new mode before changing... */
  4126. intel_crtc_update_cursor(crtc, true);
  4127. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4128. /*
  4129. * Ensure we match the reduced clock's P to the target clock.
  4130. * If the clocks don't match, we can't switch the display clock
  4131. * by using the FP0/FP1. In such case we will disable the LVDS
  4132. * downclock feature.
  4133. */
  4134. has_reduced_clock =
  4135. dev_priv->display.find_dpll(limit, crtc,
  4136. dev_priv->lvds_downclock,
  4137. refclk, &clock,
  4138. &reduced_clock);
  4139. }
  4140. /* Compat-code for transition, will disappear. */
  4141. if (!intel_crtc->config.clock_set) {
  4142. intel_crtc->config.dpll.n = clock.n;
  4143. intel_crtc->config.dpll.m1 = clock.m1;
  4144. intel_crtc->config.dpll.m2 = clock.m2;
  4145. intel_crtc->config.dpll.p1 = clock.p1;
  4146. intel_crtc->config.dpll.p2 = clock.p2;
  4147. }
  4148. if (IS_GEN2(dev))
  4149. i8xx_update_pll(intel_crtc,
  4150. has_reduced_clock ? &reduced_clock : NULL,
  4151. num_connectors);
  4152. else if (IS_VALLEYVIEW(dev))
  4153. vlv_update_pll(intel_crtc);
  4154. else
  4155. i9xx_update_pll(intel_crtc,
  4156. has_reduced_clock ? &reduced_clock : NULL,
  4157. num_connectors);
  4158. /* Set up the display plane register */
  4159. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4160. if (!IS_VALLEYVIEW(dev)) {
  4161. if (pipe == 0)
  4162. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4163. else
  4164. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4165. }
  4166. intel_set_pipe_timings(intel_crtc);
  4167. /* pipesrc and dspsize control the size that is scaled from,
  4168. * which should always be the user's requested size.
  4169. */
  4170. I915_WRITE(DSPSIZE(plane),
  4171. ((mode->vdisplay - 1) << 16) |
  4172. (mode->hdisplay - 1));
  4173. I915_WRITE(DSPPOS(plane), 0);
  4174. i9xx_set_pipeconf(intel_crtc);
  4175. I915_WRITE(DSPCNTR(plane), dspcntr);
  4176. POSTING_READ(DSPCNTR(plane));
  4177. ret = intel_pipe_set_base(crtc, x, y, fb);
  4178. intel_update_watermarks(dev);
  4179. return ret;
  4180. }
  4181. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4182. struct intel_crtc_config *pipe_config)
  4183. {
  4184. struct drm_device *dev = crtc->base.dev;
  4185. struct drm_i915_private *dev_priv = dev->dev_private;
  4186. uint32_t tmp;
  4187. tmp = I915_READ(PFIT_CONTROL);
  4188. if (INTEL_INFO(dev)->gen < 4) {
  4189. if (crtc->pipe != PIPE_B)
  4190. return;
  4191. /* gen2/3 store dither state in pfit control, needs to match */
  4192. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4193. } else {
  4194. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4195. return;
  4196. }
  4197. if (!(tmp & PFIT_ENABLE))
  4198. return;
  4199. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4200. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4201. if (INTEL_INFO(dev)->gen < 5)
  4202. pipe_config->gmch_pfit.lvds_border_bits =
  4203. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4204. }
  4205. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4206. struct intel_crtc_config *pipe_config)
  4207. {
  4208. struct drm_device *dev = crtc->base.dev;
  4209. struct drm_i915_private *dev_priv = dev->dev_private;
  4210. uint32_t tmp;
  4211. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4212. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4213. tmp = I915_READ(PIPECONF(crtc->pipe));
  4214. if (!(tmp & PIPECONF_ENABLE))
  4215. return false;
  4216. intel_get_pipe_timings(crtc, pipe_config);
  4217. i9xx_get_pfit_config(crtc, pipe_config);
  4218. if (INTEL_INFO(dev)->gen >= 4) {
  4219. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4220. pipe_config->pixel_multiplier =
  4221. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4222. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4223. pipe_config->dpll_hw_state.dpll_md = tmp;
  4224. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4225. tmp = I915_READ(DPLL(crtc->pipe));
  4226. pipe_config->pixel_multiplier =
  4227. ((tmp & SDVO_MULTIPLIER_MASK)
  4228. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4229. } else {
  4230. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4231. * port and will be fixed up in the encoder->get_config
  4232. * function. */
  4233. pipe_config->pixel_multiplier = 1;
  4234. }
  4235. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4236. if (!IS_VALLEYVIEW(dev)) {
  4237. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4238. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4239. } else {
  4240. /* Mask out read-only status bits. */
  4241. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4242. DPLL_PORTC_READY_MASK |
  4243. DPLL_PORTB_READY_MASK);
  4244. }
  4245. return true;
  4246. }
  4247. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4248. {
  4249. struct drm_i915_private *dev_priv = dev->dev_private;
  4250. struct drm_mode_config *mode_config = &dev->mode_config;
  4251. struct intel_encoder *encoder;
  4252. u32 val, final;
  4253. bool has_lvds = false;
  4254. bool has_cpu_edp = false;
  4255. bool has_panel = false;
  4256. bool has_ck505 = false;
  4257. bool can_ssc = false;
  4258. /* We need to take the global config into account */
  4259. list_for_each_entry(encoder, &mode_config->encoder_list,
  4260. base.head) {
  4261. switch (encoder->type) {
  4262. case INTEL_OUTPUT_LVDS:
  4263. has_panel = true;
  4264. has_lvds = true;
  4265. break;
  4266. case INTEL_OUTPUT_EDP:
  4267. has_panel = true;
  4268. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4269. has_cpu_edp = true;
  4270. break;
  4271. }
  4272. }
  4273. if (HAS_PCH_IBX(dev)) {
  4274. has_ck505 = dev_priv->vbt.display_clock_mode;
  4275. can_ssc = has_ck505;
  4276. } else {
  4277. has_ck505 = false;
  4278. can_ssc = true;
  4279. }
  4280. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4281. has_panel, has_lvds, has_ck505);
  4282. /* Ironlake: try to setup display ref clock before DPLL
  4283. * enabling. This is only under driver's control after
  4284. * PCH B stepping, previous chipset stepping should be
  4285. * ignoring this setting.
  4286. */
  4287. val = I915_READ(PCH_DREF_CONTROL);
  4288. /* As we must carefully and slowly disable/enable each source in turn,
  4289. * compute the final state we want first and check if we need to
  4290. * make any changes at all.
  4291. */
  4292. final = val;
  4293. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4294. if (has_ck505)
  4295. final |= DREF_NONSPREAD_CK505_ENABLE;
  4296. else
  4297. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4298. final &= ~DREF_SSC_SOURCE_MASK;
  4299. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4300. final &= ~DREF_SSC1_ENABLE;
  4301. if (has_panel) {
  4302. final |= DREF_SSC_SOURCE_ENABLE;
  4303. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4304. final |= DREF_SSC1_ENABLE;
  4305. if (has_cpu_edp) {
  4306. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4307. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4308. else
  4309. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4310. } else
  4311. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4312. } else {
  4313. final |= DREF_SSC_SOURCE_DISABLE;
  4314. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4315. }
  4316. if (final == val)
  4317. return;
  4318. /* Always enable nonspread source */
  4319. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4320. if (has_ck505)
  4321. val |= DREF_NONSPREAD_CK505_ENABLE;
  4322. else
  4323. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4324. if (has_panel) {
  4325. val &= ~DREF_SSC_SOURCE_MASK;
  4326. val |= DREF_SSC_SOURCE_ENABLE;
  4327. /* SSC must be turned on before enabling the CPU output */
  4328. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4329. DRM_DEBUG_KMS("Using SSC on panel\n");
  4330. val |= DREF_SSC1_ENABLE;
  4331. } else
  4332. val &= ~DREF_SSC1_ENABLE;
  4333. /* Get SSC going before enabling the outputs */
  4334. I915_WRITE(PCH_DREF_CONTROL, val);
  4335. POSTING_READ(PCH_DREF_CONTROL);
  4336. udelay(200);
  4337. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4338. /* Enable CPU source on CPU attached eDP */
  4339. if (has_cpu_edp) {
  4340. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4341. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4342. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4343. }
  4344. else
  4345. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4346. } else
  4347. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4348. I915_WRITE(PCH_DREF_CONTROL, val);
  4349. POSTING_READ(PCH_DREF_CONTROL);
  4350. udelay(200);
  4351. } else {
  4352. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4353. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4354. /* Turn off CPU output */
  4355. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4356. I915_WRITE(PCH_DREF_CONTROL, val);
  4357. POSTING_READ(PCH_DREF_CONTROL);
  4358. udelay(200);
  4359. /* Turn off the SSC source */
  4360. val &= ~DREF_SSC_SOURCE_MASK;
  4361. val |= DREF_SSC_SOURCE_DISABLE;
  4362. /* Turn off SSC1 */
  4363. val &= ~DREF_SSC1_ENABLE;
  4364. I915_WRITE(PCH_DREF_CONTROL, val);
  4365. POSTING_READ(PCH_DREF_CONTROL);
  4366. udelay(200);
  4367. }
  4368. BUG_ON(val != final);
  4369. }
  4370. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4371. static void lpt_init_pch_refclk(struct drm_device *dev)
  4372. {
  4373. struct drm_i915_private *dev_priv = dev->dev_private;
  4374. struct drm_mode_config *mode_config = &dev->mode_config;
  4375. struct intel_encoder *encoder;
  4376. bool has_vga = false;
  4377. bool is_sdv = false;
  4378. u32 tmp;
  4379. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4380. switch (encoder->type) {
  4381. case INTEL_OUTPUT_ANALOG:
  4382. has_vga = true;
  4383. break;
  4384. }
  4385. }
  4386. if (!has_vga)
  4387. return;
  4388. mutex_lock(&dev_priv->dpio_lock);
  4389. /* XXX: Rip out SDV support once Haswell ships for real. */
  4390. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4391. is_sdv = true;
  4392. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4393. tmp &= ~SBI_SSCCTL_DISABLE;
  4394. tmp |= SBI_SSCCTL_PATHALT;
  4395. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4396. udelay(24);
  4397. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4398. tmp &= ~SBI_SSCCTL_PATHALT;
  4399. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4400. if (!is_sdv) {
  4401. tmp = I915_READ(SOUTH_CHICKEN2);
  4402. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4403. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4404. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4405. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4406. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4407. tmp = I915_READ(SOUTH_CHICKEN2);
  4408. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4409. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4410. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4411. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4412. 100))
  4413. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4414. }
  4415. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4416. tmp &= ~(0xFF << 24);
  4417. tmp |= (0x12 << 24);
  4418. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4419. if (is_sdv) {
  4420. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4421. tmp |= 0x7FFF;
  4422. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4423. }
  4424. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4425. tmp |= (1 << 11);
  4426. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4427. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4428. tmp |= (1 << 11);
  4429. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4430. if (is_sdv) {
  4431. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4432. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4433. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4434. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4435. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4436. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4437. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4438. tmp |= (0x3F << 8);
  4439. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4440. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4441. tmp |= (0x3F << 8);
  4442. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4443. }
  4444. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4445. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4446. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4447. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4448. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4449. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4450. if (!is_sdv) {
  4451. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4452. tmp &= ~(7 << 13);
  4453. tmp |= (5 << 13);
  4454. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4455. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4456. tmp &= ~(7 << 13);
  4457. tmp |= (5 << 13);
  4458. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4459. }
  4460. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4461. tmp &= ~0xFF;
  4462. tmp |= 0x1C;
  4463. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4464. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4465. tmp &= ~0xFF;
  4466. tmp |= 0x1C;
  4467. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4468. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4469. tmp &= ~(0xFF << 16);
  4470. tmp |= (0x1C << 16);
  4471. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4472. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4473. tmp &= ~(0xFF << 16);
  4474. tmp |= (0x1C << 16);
  4475. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4476. if (!is_sdv) {
  4477. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4478. tmp |= (1 << 27);
  4479. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4480. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4481. tmp |= (1 << 27);
  4482. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4483. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4484. tmp &= ~(0xF << 28);
  4485. tmp |= (4 << 28);
  4486. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4487. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4488. tmp &= ~(0xF << 28);
  4489. tmp |= (4 << 28);
  4490. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4491. }
  4492. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4493. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4494. tmp |= SBI_DBUFF0_ENABLE;
  4495. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4496. mutex_unlock(&dev_priv->dpio_lock);
  4497. }
  4498. /*
  4499. * Initialize reference clocks when the driver loads
  4500. */
  4501. void intel_init_pch_refclk(struct drm_device *dev)
  4502. {
  4503. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4504. ironlake_init_pch_refclk(dev);
  4505. else if (HAS_PCH_LPT(dev))
  4506. lpt_init_pch_refclk(dev);
  4507. }
  4508. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4509. {
  4510. struct drm_device *dev = crtc->dev;
  4511. struct drm_i915_private *dev_priv = dev->dev_private;
  4512. struct intel_encoder *encoder;
  4513. int num_connectors = 0;
  4514. bool is_lvds = false;
  4515. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4516. switch (encoder->type) {
  4517. case INTEL_OUTPUT_LVDS:
  4518. is_lvds = true;
  4519. break;
  4520. }
  4521. num_connectors++;
  4522. }
  4523. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4524. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4525. dev_priv->vbt.lvds_ssc_freq);
  4526. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4527. }
  4528. return 120000;
  4529. }
  4530. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4531. {
  4532. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4533. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4534. int pipe = intel_crtc->pipe;
  4535. uint32_t val;
  4536. val = 0;
  4537. switch (intel_crtc->config.pipe_bpp) {
  4538. case 18:
  4539. val |= PIPECONF_6BPC;
  4540. break;
  4541. case 24:
  4542. val |= PIPECONF_8BPC;
  4543. break;
  4544. case 30:
  4545. val |= PIPECONF_10BPC;
  4546. break;
  4547. case 36:
  4548. val |= PIPECONF_12BPC;
  4549. break;
  4550. default:
  4551. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4552. BUG();
  4553. }
  4554. if (intel_crtc->config.dither)
  4555. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4556. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4557. val |= PIPECONF_INTERLACED_ILK;
  4558. else
  4559. val |= PIPECONF_PROGRESSIVE;
  4560. if (intel_crtc->config.limited_color_range)
  4561. val |= PIPECONF_COLOR_RANGE_SELECT;
  4562. I915_WRITE(PIPECONF(pipe), val);
  4563. POSTING_READ(PIPECONF(pipe));
  4564. }
  4565. /*
  4566. * Set up the pipe CSC unit.
  4567. *
  4568. * Currently only full range RGB to limited range RGB conversion
  4569. * is supported, but eventually this should handle various
  4570. * RGB<->YCbCr scenarios as well.
  4571. */
  4572. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4573. {
  4574. struct drm_device *dev = crtc->dev;
  4575. struct drm_i915_private *dev_priv = dev->dev_private;
  4576. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4577. int pipe = intel_crtc->pipe;
  4578. uint16_t coeff = 0x7800; /* 1.0 */
  4579. /*
  4580. * TODO: Check what kind of values actually come out of the pipe
  4581. * with these coeff/postoff values and adjust to get the best
  4582. * accuracy. Perhaps we even need to take the bpc value into
  4583. * consideration.
  4584. */
  4585. if (intel_crtc->config.limited_color_range)
  4586. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4587. /*
  4588. * GY/GU and RY/RU should be the other way around according
  4589. * to BSpec, but reality doesn't agree. Just set them up in
  4590. * a way that results in the correct picture.
  4591. */
  4592. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4593. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4594. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4595. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4596. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4597. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4598. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4599. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4600. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4601. if (INTEL_INFO(dev)->gen > 6) {
  4602. uint16_t postoff = 0;
  4603. if (intel_crtc->config.limited_color_range)
  4604. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4605. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4606. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4607. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4608. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4609. } else {
  4610. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4611. if (intel_crtc->config.limited_color_range)
  4612. mode |= CSC_BLACK_SCREEN_OFFSET;
  4613. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4614. }
  4615. }
  4616. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4617. {
  4618. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4619. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4620. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4621. uint32_t val;
  4622. val = 0;
  4623. if (intel_crtc->config.dither)
  4624. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4625. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4626. val |= PIPECONF_INTERLACED_ILK;
  4627. else
  4628. val |= PIPECONF_PROGRESSIVE;
  4629. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4630. POSTING_READ(PIPECONF(cpu_transcoder));
  4631. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4632. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4633. }
  4634. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4635. intel_clock_t *clock,
  4636. bool *has_reduced_clock,
  4637. intel_clock_t *reduced_clock)
  4638. {
  4639. struct drm_device *dev = crtc->dev;
  4640. struct drm_i915_private *dev_priv = dev->dev_private;
  4641. struct intel_encoder *intel_encoder;
  4642. int refclk;
  4643. const intel_limit_t *limit;
  4644. bool ret, is_lvds = false;
  4645. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4646. switch (intel_encoder->type) {
  4647. case INTEL_OUTPUT_LVDS:
  4648. is_lvds = true;
  4649. break;
  4650. }
  4651. }
  4652. refclk = ironlake_get_refclk(crtc);
  4653. /*
  4654. * Returns a set of divisors for the desired target clock with the given
  4655. * refclk, or FALSE. The returned values represent the clock equation:
  4656. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4657. */
  4658. limit = intel_limit(crtc, refclk);
  4659. ret = dev_priv->display.find_dpll(limit, crtc,
  4660. to_intel_crtc(crtc)->config.port_clock,
  4661. refclk, NULL, clock);
  4662. if (!ret)
  4663. return false;
  4664. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4665. /*
  4666. * Ensure we match the reduced clock's P to the target clock.
  4667. * If the clocks don't match, we can't switch the display clock
  4668. * by using the FP0/FP1. In such case we will disable the LVDS
  4669. * downclock feature.
  4670. */
  4671. *has_reduced_clock =
  4672. dev_priv->display.find_dpll(limit, crtc,
  4673. dev_priv->lvds_downclock,
  4674. refclk, clock,
  4675. reduced_clock);
  4676. }
  4677. return true;
  4678. }
  4679. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4680. {
  4681. struct drm_i915_private *dev_priv = dev->dev_private;
  4682. uint32_t temp;
  4683. temp = I915_READ(SOUTH_CHICKEN1);
  4684. if (temp & FDI_BC_BIFURCATION_SELECT)
  4685. return;
  4686. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4687. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4688. temp |= FDI_BC_BIFURCATION_SELECT;
  4689. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4690. I915_WRITE(SOUTH_CHICKEN1, temp);
  4691. POSTING_READ(SOUTH_CHICKEN1);
  4692. }
  4693. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4694. {
  4695. struct drm_device *dev = intel_crtc->base.dev;
  4696. struct drm_i915_private *dev_priv = dev->dev_private;
  4697. switch (intel_crtc->pipe) {
  4698. case PIPE_A:
  4699. break;
  4700. case PIPE_B:
  4701. if (intel_crtc->config.fdi_lanes > 2)
  4702. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4703. else
  4704. cpt_enable_fdi_bc_bifurcation(dev);
  4705. break;
  4706. case PIPE_C:
  4707. cpt_enable_fdi_bc_bifurcation(dev);
  4708. break;
  4709. default:
  4710. BUG();
  4711. }
  4712. }
  4713. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4714. {
  4715. /*
  4716. * Account for spread spectrum to avoid
  4717. * oversubscribing the link. Max center spread
  4718. * is 2.5%; use 5% for safety's sake.
  4719. */
  4720. u32 bps = target_clock * bpp * 21 / 20;
  4721. return bps / (link_bw * 8) + 1;
  4722. }
  4723. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4724. {
  4725. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4726. }
  4727. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4728. u32 *fp,
  4729. intel_clock_t *reduced_clock, u32 *fp2)
  4730. {
  4731. struct drm_crtc *crtc = &intel_crtc->base;
  4732. struct drm_device *dev = crtc->dev;
  4733. struct drm_i915_private *dev_priv = dev->dev_private;
  4734. struct intel_encoder *intel_encoder;
  4735. uint32_t dpll;
  4736. int factor, num_connectors = 0;
  4737. bool is_lvds = false, is_sdvo = false;
  4738. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4739. switch (intel_encoder->type) {
  4740. case INTEL_OUTPUT_LVDS:
  4741. is_lvds = true;
  4742. break;
  4743. case INTEL_OUTPUT_SDVO:
  4744. case INTEL_OUTPUT_HDMI:
  4745. is_sdvo = true;
  4746. break;
  4747. }
  4748. num_connectors++;
  4749. }
  4750. /* Enable autotuning of the PLL clock (if permissible) */
  4751. factor = 21;
  4752. if (is_lvds) {
  4753. if ((intel_panel_use_ssc(dev_priv) &&
  4754. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4755. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4756. factor = 25;
  4757. } else if (intel_crtc->config.sdvo_tv_clock)
  4758. factor = 20;
  4759. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4760. *fp |= FP_CB_TUNE;
  4761. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4762. *fp2 |= FP_CB_TUNE;
  4763. dpll = 0;
  4764. if (is_lvds)
  4765. dpll |= DPLLB_MODE_LVDS;
  4766. else
  4767. dpll |= DPLLB_MODE_DAC_SERIAL;
  4768. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4769. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4770. if (is_sdvo)
  4771. dpll |= DPLL_SDVO_HIGH_SPEED;
  4772. if (intel_crtc->config.has_dp_encoder)
  4773. dpll |= DPLL_SDVO_HIGH_SPEED;
  4774. /* compute bitmask from p1 value */
  4775. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4776. /* also FPA1 */
  4777. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4778. switch (intel_crtc->config.dpll.p2) {
  4779. case 5:
  4780. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4781. break;
  4782. case 7:
  4783. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4784. break;
  4785. case 10:
  4786. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4787. break;
  4788. case 14:
  4789. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4790. break;
  4791. }
  4792. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4793. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4794. else
  4795. dpll |= PLL_REF_INPUT_DREFCLK;
  4796. return dpll | DPLL_VCO_ENABLE;
  4797. }
  4798. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4799. int x, int y,
  4800. struct drm_framebuffer *fb)
  4801. {
  4802. struct drm_device *dev = crtc->dev;
  4803. struct drm_i915_private *dev_priv = dev->dev_private;
  4804. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4805. int pipe = intel_crtc->pipe;
  4806. int plane = intel_crtc->plane;
  4807. int num_connectors = 0;
  4808. intel_clock_t clock, reduced_clock;
  4809. u32 dpll = 0, fp = 0, fp2 = 0;
  4810. bool ok, has_reduced_clock = false;
  4811. bool is_lvds = false;
  4812. struct intel_encoder *encoder;
  4813. struct intel_shared_dpll *pll;
  4814. int ret;
  4815. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4816. switch (encoder->type) {
  4817. case INTEL_OUTPUT_LVDS:
  4818. is_lvds = true;
  4819. break;
  4820. }
  4821. num_connectors++;
  4822. }
  4823. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4824. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4825. ok = ironlake_compute_clocks(crtc, &clock,
  4826. &has_reduced_clock, &reduced_clock);
  4827. if (!ok && !intel_crtc->config.clock_set) {
  4828. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4829. return -EINVAL;
  4830. }
  4831. /* Compat-code for transition, will disappear. */
  4832. if (!intel_crtc->config.clock_set) {
  4833. intel_crtc->config.dpll.n = clock.n;
  4834. intel_crtc->config.dpll.m1 = clock.m1;
  4835. intel_crtc->config.dpll.m2 = clock.m2;
  4836. intel_crtc->config.dpll.p1 = clock.p1;
  4837. intel_crtc->config.dpll.p2 = clock.p2;
  4838. }
  4839. /* Ensure that the cursor is valid for the new mode before changing... */
  4840. intel_crtc_update_cursor(crtc, true);
  4841. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4842. if (intel_crtc->config.has_pch_encoder) {
  4843. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4844. if (has_reduced_clock)
  4845. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4846. dpll = ironlake_compute_dpll(intel_crtc,
  4847. &fp, &reduced_clock,
  4848. has_reduced_clock ? &fp2 : NULL);
  4849. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4850. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4851. if (has_reduced_clock)
  4852. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4853. else
  4854. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4855. pll = intel_get_shared_dpll(intel_crtc);
  4856. if (pll == NULL) {
  4857. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4858. pipe_name(pipe));
  4859. return -EINVAL;
  4860. }
  4861. } else
  4862. intel_put_shared_dpll(intel_crtc);
  4863. if (intel_crtc->config.has_dp_encoder)
  4864. intel_dp_set_m_n(intel_crtc);
  4865. if (is_lvds && has_reduced_clock && i915_powersave)
  4866. intel_crtc->lowfreq_avail = true;
  4867. else
  4868. intel_crtc->lowfreq_avail = false;
  4869. if (intel_crtc->config.has_pch_encoder) {
  4870. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4871. }
  4872. intel_set_pipe_timings(intel_crtc);
  4873. if (intel_crtc->config.has_pch_encoder) {
  4874. intel_cpu_transcoder_set_m_n(intel_crtc,
  4875. &intel_crtc->config.fdi_m_n);
  4876. }
  4877. if (IS_IVYBRIDGE(dev))
  4878. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4879. ironlake_set_pipeconf(crtc);
  4880. /* Set up the display plane register */
  4881. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4882. POSTING_READ(DSPCNTR(plane));
  4883. ret = intel_pipe_set_base(crtc, x, y, fb);
  4884. intel_update_watermarks(dev);
  4885. return ret;
  4886. }
  4887. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4888. struct intel_crtc_config *pipe_config)
  4889. {
  4890. struct drm_device *dev = crtc->base.dev;
  4891. struct drm_i915_private *dev_priv = dev->dev_private;
  4892. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4893. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4894. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4895. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4896. & ~TU_SIZE_MASK;
  4897. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4898. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4899. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4900. }
  4901. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4902. struct intel_crtc_config *pipe_config)
  4903. {
  4904. struct drm_device *dev = crtc->base.dev;
  4905. struct drm_i915_private *dev_priv = dev->dev_private;
  4906. uint32_t tmp;
  4907. tmp = I915_READ(PF_CTL(crtc->pipe));
  4908. if (tmp & PF_ENABLE) {
  4909. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4910. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4911. /* We currently do not free assignements of panel fitters on
  4912. * ivb/hsw (since we don't use the higher upscaling modes which
  4913. * differentiates them) so just WARN about this case for now. */
  4914. if (IS_GEN7(dev)) {
  4915. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4916. PF_PIPE_SEL_IVB(crtc->pipe));
  4917. }
  4918. }
  4919. }
  4920. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4921. struct intel_crtc_config *pipe_config)
  4922. {
  4923. struct drm_device *dev = crtc->base.dev;
  4924. struct drm_i915_private *dev_priv = dev->dev_private;
  4925. uint32_t tmp;
  4926. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4927. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4928. tmp = I915_READ(PIPECONF(crtc->pipe));
  4929. if (!(tmp & PIPECONF_ENABLE))
  4930. return false;
  4931. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4932. struct intel_shared_dpll *pll;
  4933. pipe_config->has_pch_encoder = true;
  4934. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4935. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4936. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4937. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4938. if (HAS_PCH_IBX(dev_priv->dev)) {
  4939. pipe_config->shared_dpll =
  4940. (enum intel_dpll_id) crtc->pipe;
  4941. } else {
  4942. tmp = I915_READ(PCH_DPLL_SEL);
  4943. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  4944. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  4945. else
  4946. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  4947. }
  4948. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  4949. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  4950. &pipe_config->dpll_hw_state));
  4951. tmp = pipe_config->dpll_hw_state.dpll;
  4952. pipe_config->pixel_multiplier =
  4953. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  4954. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  4955. } else {
  4956. pipe_config->pixel_multiplier = 1;
  4957. }
  4958. intel_get_pipe_timings(crtc, pipe_config);
  4959. ironlake_get_pfit_config(crtc, pipe_config);
  4960. return true;
  4961. }
  4962. static void haswell_modeset_global_resources(struct drm_device *dev)
  4963. {
  4964. bool enable = false;
  4965. struct intel_crtc *crtc;
  4966. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4967. if (!crtc->base.enabled)
  4968. continue;
  4969. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4970. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4971. enable = true;
  4972. }
  4973. intel_set_power_well(dev, enable);
  4974. }
  4975. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4976. int x, int y,
  4977. struct drm_framebuffer *fb)
  4978. {
  4979. struct drm_device *dev = crtc->dev;
  4980. struct drm_i915_private *dev_priv = dev->dev_private;
  4981. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4982. int plane = intel_crtc->plane;
  4983. int ret;
  4984. if (!intel_ddi_pll_mode_set(crtc))
  4985. return -EINVAL;
  4986. /* Ensure that the cursor is valid for the new mode before changing... */
  4987. intel_crtc_update_cursor(crtc, true);
  4988. if (intel_crtc->config.has_dp_encoder)
  4989. intel_dp_set_m_n(intel_crtc);
  4990. intel_crtc->lowfreq_avail = false;
  4991. intel_set_pipe_timings(intel_crtc);
  4992. if (intel_crtc->config.has_pch_encoder) {
  4993. intel_cpu_transcoder_set_m_n(intel_crtc,
  4994. &intel_crtc->config.fdi_m_n);
  4995. }
  4996. haswell_set_pipeconf(crtc);
  4997. intel_set_pipe_csc(crtc);
  4998. /* Set up the display plane register */
  4999. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5000. POSTING_READ(DSPCNTR(plane));
  5001. ret = intel_pipe_set_base(crtc, x, y, fb);
  5002. intel_update_watermarks(dev);
  5003. return ret;
  5004. }
  5005. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5006. struct intel_crtc_config *pipe_config)
  5007. {
  5008. struct drm_device *dev = crtc->base.dev;
  5009. struct drm_i915_private *dev_priv = dev->dev_private;
  5010. enum intel_display_power_domain pfit_domain;
  5011. uint32_t tmp;
  5012. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5013. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5014. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5015. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5016. enum pipe trans_edp_pipe;
  5017. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5018. default:
  5019. WARN(1, "unknown pipe linked to edp transcoder\n");
  5020. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5021. case TRANS_DDI_EDP_INPUT_A_ON:
  5022. trans_edp_pipe = PIPE_A;
  5023. break;
  5024. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5025. trans_edp_pipe = PIPE_B;
  5026. break;
  5027. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5028. trans_edp_pipe = PIPE_C;
  5029. break;
  5030. }
  5031. if (trans_edp_pipe == crtc->pipe)
  5032. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5033. }
  5034. if (!intel_display_power_enabled(dev,
  5035. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5036. return false;
  5037. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5038. if (!(tmp & PIPECONF_ENABLE))
  5039. return false;
  5040. /*
  5041. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5042. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5043. * the PCH transcoder is on.
  5044. */
  5045. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5046. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5047. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5048. pipe_config->has_pch_encoder = true;
  5049. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5050. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5051. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5052. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5053. }
  5054. intel_get_pipe_timings(crtc, pipe_config);
  5055. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5056. if (intel_display_power_enabled(dev, pfit_domain))
  5057. ironlake_get_pfit_config(crtc, pipe_config);
  5058. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5059. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5060. pipe_config->pixel_multiplier = 1;
  5061. return true;
  5062. }
  5063. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5064. int x, int y,
  5065. struct drm_framebuffer *fb)
  5066. {
  5067. struct drm_device *dev = crtc->dev;
  5068. struct drm_i915_private *dev_priv = dev->dev_private;
  5069. struct drm_encoder_helper_funcs *encoder_funcs;
  5070. struct intel_encoder *encoder;
  5071. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5072. struct drm_display_mode *adjusted_mode =
  5073. &intel_crtc->config.adjusted_mode;
  5074. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5075. int pipe = intel_crtc->pipe;
  5076. int ret;
  5077. drm_vblank_pre_modeset(dev, pipe);
  5078. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5079. drm_vblank_post_modeset(dev, pipe);
  5080. if (ret != 0)
  5081. return ret;
  5082. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5083. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5084. encoder->base.base.id,
  5085. drm_get_encoder_name(&encoder->base),
  5086. mode->base.id, mode->name);
  5087. if (encoder->mode_set) {
  5088. encoder->mode_set(encoder);
  5089. } else {
  5090. encoder_funcs = encoder->base.helper_private;
  5091. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5092. }
  5093. }
  5094. return 0;
  5095. }
  5096. static bool intel_eld_uptodate(struct drm_connector *connector,
  5097. int reg_eldv, uint32_t bits_eldv,
  5098. int reg_elda, uint32_t bits_elda,
  5099. int reg_edid)
  5100. {
  5101. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5102. uint8_t *eld = connector->eld;
  5103. uint32_t i;
  5104. i = I915_READ(reg_eldv);
  5105. i &= bits_eldv;
  5106. if (!eld[0])
  5107. return !i;
  5108. if (!i)
  5109. return false;
  5110. i = I915_READ(reg_elda);
  5111. i &= ~bits_elda;
  5112. I915_WRITE(reg_elda, i);
  5113. for (i = 0; i < eld[2]; i++)
  5114. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5115. return false;
  5116. return true;
  5117. }
  5118. static void g4x_write_eld(struct drm_connector *connector,
  5119. struct drm_crtc *crtc)
  5120. {
  5121. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5122. uint8_t *eld = connector->eld;
  5123. uint32_t eldv;
  5124. uint32_t len;
  5125. uint32_t i;
  5126. i = I915_READ(G4X_AUD_VID_DID);
  5127. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5128. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5129. else
  5130. eldv = G4X_ELDV_DEVCTG;
  5131. if (intel_eld_uptodate(connector,
  5132. G4X_AUD_CNTL_ST, eldv,
  5133. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5134. G4X_HDMIW_HDMIEDID))
  5135. return;
  5136. i = I915_READ(G4X_AUD_CNTL_ST);
  5137. i &= ~(eldv | G4X_ELD_ADDR);
  5138. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5139. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5140. if (!eld[0])
  5141. return;
  5142. len = min_t(uint8_t, eld[2], len);
  5143. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5144. for (i = 0; i < len; i++)
  5145. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5146. i = I915_READ(G4X_AUD_CNTL_ST);
  5147. i |= eldv;
  5148. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5149. }
  5150. static void haswell_write_eld(struct drm_connector *connector,
  5151. struct drm_crtc *crtc)
  5152. {
  5153. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5154. uint8_t *eld = connector->eld;
  5155. struct drm_device *dev = crtc->dev;
  5156. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5157. uint32_t eldv;
  5158. uint32_t i;
  5159. int len;
  5160. int pipe = to_intel_crtc(crtc)->pipe;
  5161. int tmp;
  5162. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5163. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5164. int aud_config = HSW_AUD_CFG(pipe);
  5165. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5166. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5167. /* Audio output enable */
  5168. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5169. tmp = I915_READ(aud_cntrl_st2);
  5170. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5171. I915_WRITE(aud_cntrl_st2, tmp);
  5172. /* Wait for 1 vertical blank */
  5173. intel_wait_for_vblank(dev, pipe);
  5174. /* Set ELD valid state */
  5175. tmp = I915_READ(aud_cntrl_st2);
  5176. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5177. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5178. I915_WRITE(aud_cntrl_st2, tmp);
  5179. tmp = I915_READ(aud_cntrl_st2);
  5180. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5181. /* Enable HDMI mode */
  5182. tmp = I915_READ(aud_config);
  5183. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5184. /* clear N_programing_enable and N_value_index */
  5185. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5186. I915_WRITE(aud_config, tmp);
  5187. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5188. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5189. intel_crtc->eld_vld = true;
  5190. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5191. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5192. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5193. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5194. } else
  5195. I915_WRITE(aud_config, 0);
  5196. if (intel_eld_uptodate(connector,
  5197. aud_cntrl_st2, eldv,
  5198. aud_cntl_st, IBX_ELD_ADDRESS,
  5199. hdmiw_hdmiedid))
  5200. return;
  5201. i = I915_READ(aud_cntrl_st2);
  5202. i &= ~eldv;
  5203. I915_WRITE(aud_cntrl_st2, i);
  5204. if (!eld[0])
  5205. return;
  5206. i = I915_READ(aud_cntl_st);
  5207. i &= ~IBX_ELD_ADDRESS;
  5208. I915_WRITE(aud_cntl_st, i);
  5209. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5210. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5211. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5212. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5213. for (i = 0; i < len; i++)
  5214. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5215. i = I915_READ(aud_cntrl_st2);
  5216. i |= eldv;
  5217. I915_WRITE(aud_cntrl_st2, i);
  5218. }
  5219. static void ironlake_write_eld(struct drm_connector *connector,
  5220. struct drm_crtc *crtc)
  5221. {
  5222. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5223. uint8_t *eld = connector->eld;
  5224. uint32_t eldv;
  5225. uint32_t i;
  5226. int len;
  5227. int hdmiw_hdmiedid;
  5228. int aud_config;
  5229. int aud_cntl_st;
  5230. int aud_cntrl_st2;
  5231. int pipe = to_intel_crtc(crtc)->pipe;
  5232. if (HAS_PCH_IBX(connector->dev)) {
  5233. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5234. aud_config = IBX_AUD_CFG(pipe);
  5235. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5236. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5237. } else {
  5238. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5239. aud_config = CPT_AUD_CFG(pipe);
  5240. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5241. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5242. }
  5243. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5244. i = I915_READ(aud_cntl_st);
  5245. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5246. if (!i) {
  5247. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5248. /* operate blindly on all ports */
  5249. eldv = IBX_ELD_VALIDB;
  5250. eldv |= IBX_ELD_VALIDB << 4;
  5251. eldv |= IBX_ELD_VALIDB << 8;
  5252. } else {
  5253. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5254. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5255. }
  5256. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5257. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5258. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5259. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5260. } else
  5261. I915_WRITE(aud_config, 0);
  5262. if (intel_eld_uptodate(connector,
  5263. aud_cntrl_st2, eldv,
  5264. aud_cntl_st, IBX_ELD_ADDRESS,
  5265. hdmiw_hdmiedid))
  5266. return;
  5267. i = I915_READ(aud_cntrl_st2);
  5268. i &= ~eldv;
  5269. I915_WRITE(aud_cntrl_st2, i);
  5270. if (!eld[0])
  5271. return;
  5272. i = I915_READ(aud_cntl_st);
  5273. i &= ~IBX_ELD_ADDRESS;
  5274. I915_WRITE(aud_cntl_st, i);
  5275. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5276. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5277. for (i = 0; i < len; i++)
  5278. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5279. i = I915_READ(aud_cntrl_st2);
  5280. i |= eldv;
  5281. I915_WRITE(aud_cntrl_st2, i);
  5282. }
  5283. void intel_write_eld(struct drm_encoder *encoder,
  5284. struct drm_display_mode *mode)
  5285. {
  5286. struct drm_crtc *crtc = encoder->crtc;
  5287. struct drm_connector *connector;
  5288. struct drm_device *dev = encoder->dev;
  5289. struct drm_i915_private *dev_priv = dev->dev_private;
  5290. connector = drm_select_eld(encoder, mode);
  5291. if (!connector)
  5292. return;
  5293. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5294. connector->base.id,
  5295. drm_get_connector_name(connector),
  5296. connector->encoder->base.id,
  5297. drm_get_encoder_name(connector->encoder));
  5298. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5299. if (dev_priv->display.write_eld)
  5300. dev_priv->display.write_eld(connector, crtc);
  5301. }
  5302. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5303. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5304. {
  5305. struct drm_device *dev = crtc->dev;
  5306. struct drm_i915_private *dev_priv = dev->dev_private;
  5307. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5308. enum pipe pipe = intel_crtc->pipe;
  5309. int palreg = PALETTE(pipe);
  5310. int i;
  5311. bool reenable_ips = false;
  5312. /* The clocks have to be on to load the palette. */
  5313. if (!crtc->enabled || !intel_crtc->active)
  5314. return;
  5315. if (!HAS_PCH_SPLIT(dev_priv->dev))
  5316. assert_pll_enabled(dev_priv, pipe);
  5317. /* use legacy palette for Ironlake */
  5318. if (HAS_PCH_SPLIT(dev))
  5319. palreg = LGC_PALETTE(pipe);
  5320. /* Workaround : Do not read or write the pipe palette/gamma data while
  5321. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5322. */
  5323. if (intel_crtc->config.ips_enabled &&
  5324. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5325. GAMMA_MODE_MODE_SPLIT)) {
  5326. hsw_disable_ips(intel_crtc);
  5327. reenable_ips = true;
  5328. }
  5329. for (i = 0; i < 256; i++) {
  5330. I915_WRITE(palreg + 4 * i,
  5331. (intel_crtc->lut_r[i] << 16) |
  5332. (intel_crtc->lut_g[i] << 8) |
  5333. intel_crtc->lut_b[i]);
  5334. }
  5335. if (reenable_ips)
  5336. hsw_enable_ips(intel_crtc);
  5337. }
  5338. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5339. {
  5340. struct drm_device *dev = crtc->dev;
  5341. struct drm_i915_private *dev_priv = dev->dev_private;
  5342. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5343. bool visible = base != 0;
  5344. u32 cntl;
  5345. if (intel_crtc->cursor_visible == visible)
  5346. return;
  5347. cntl = I915_READ(_CURACNTR);
  5348. if (visible) {
  5349. /* On these chipsets we can only modify the base whilst
  5350. * the cursor is disabled.
  5351. */
  5352. I915_WRITE(_CURABASE, base);
  5353. cntl &= ~(CURSOR_FORMAT_MASK);
  5354. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5355. cntl |= CURSOR_ENABLE |
  5356. CURSOR_GAMMA_ENABLE |
  5357. CURSOR_FORMAT_ARGB;
  5358. } else
  5359. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5360. I915_WRITE(_CURACNTR, cntl);
  5361. intel_crtc->cursor_visible = visible;
  5362. }
  5363. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5364. {
  5365. struct drm_device *dev = crtc->dev;
  5366. struct drm_i915_private *dev_priv = dev->dev_private;
  5367. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5368. int pipe = intel_crtc->pipe;
  5369. bool visible = base != 0;
  5370. if (intel_crtc->cursor_visible != visible) {
  5371. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5372. if (base) {
  5373. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5374. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5375. cntl |= pipe << 28; /* Connect to correct pipe */
  5376. } else {
  5377. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5378. cntl |= CURSOR_MODE_DISABLE;
  5379. }
  5380. I915_WRITE(CURCNTR(pipe), cntl);
  5381. intel_crtc->cursor_visible = visible;
  5382. }
  5383. /* and commit changes on next vblank */
  5384. I915_WRITE(CURBASE(pipe), base);
  5385. }
  5386. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5387. {
  5388. struct drm_device *dev = crtc->dev;
  5389. struct drm_i915_private *dev_priv = dev->dev_private;
  5390. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5391. int pipe = intel_crtc->pipe;
  5392. bool visible = base != 0;
  5393. if (intel_crtc->cursor_visible != visible) {
  5394. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5395. if (base) {
  5396. cntl &= ~CURSOR_MODE;
  5397. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5398. } else {
  5399. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5400. cntl |= CURSOR_MODE_DISABLE;
  5401. }
  5402. if (IS_HASWELL(dev))
  5403. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5404. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5405. intel_crtc->cursor_visible = visible;
  5406. }
  5407. /* and commit changes on next vblank */
  5408. I915_WRITE(CURBASE_IVB(pipe), base);
  5409. }
  5410. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5411. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5412. bool on)
  5413. {
  5414. struct drm_device *dev = crtc->dev;
  5415. struct drm_i915_private *dev_priv = dev->dev_private;
  5416. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5417. int pipe = intel_crtc->pipe;
  5418. int x = intel_crtc->cursor_x;
  5419. int y = intel_crtc->cursor_y;
  5420. u32 base, pos;
  5421. bool visible;
  5422. pos = 0;
  5423. if (on && crtc->enabled && crtc->fb) {
  5424. base = intel_crtc->cursor_addr;
  5425. if (x > (int) crtc->fb->width)
  5426. base = 0;
  5427. if (y > (int) crtc->fb->height)
  5428. base = 0;
  5429. } else
  5430. base = 0;
  5431. if (x < 0) {
  5432. if (x + intel_crtc->cursor_width < 0)
  5433. base = 0;
  5434. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5435. x = -x;
  5436. }
  5437. pos |= x << CURSOR_X_SHIFT;
  5438. if (y < 0) {
  5439. if (y + intel_crtc->cursor_height < 0)
  5440. base = 0;
  5441. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5442. y = -y;
  5443. }
  5444. pos |= y << CURSOR_Y_SHIFT;
  5445. visible = base != 0;
  5446. if (!visible && !intel_crtc->cursor_visible)
  5447. return;
  5448. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5449. I915_WRITE(CURPOS_IVB(pipe), pos);
  5450. ivb_update_cursor(crtc, base);
  5451. } else {
  5452. I915_WRITE(CURPOS(pipe), pos);
  5453. if (IS_845G(dev) || IS_I865G(dev))
  5454. i845_update_cursor(crtc, base);
  5455. else
  5456. i9xx_update_cursor(crtc, base);
  5457. }
  5458. }
  5459. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5460. struct drm_file *file,
  5461. uint32_t handle,
  5462. uint32_t width, uint32_t height)
  5463. {
  5464. struct drm_device *dev = crtc->dev;
  5465. struct drm_i915_private *dev_priv = dev->dev_private;
  5466. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5467. struct drm_i915_gem_object *obj;
  5468. uint32_t addr;
  5469. int ret;
  5470. /* if we want to turn off the cursor ignore width and height */
  5471. if (!handle) {
  5472. DRM_DEBUG_KMS("cursor off\n");
  5473. addr = 0;
  5474. obj = NULL;
  5475. mutex_lock(&dev->struct_mutex);
  5476. goto finish;
  5477. }
  5478. /* Currently we only support 64x64 cursors */
  5479. if (width != 64 || height != 64) {
  5480. DRM_ERROR("we currently only support 64x64 cursors\n");
  5481. return -EINVAL;
  5482. }
  5483. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5484. if (&obj->base == NULL)
  5485. return -ENOENT;
  5486. if (obj->base.size < width * height * 4) {
  5487. DRM_ERROR("buffer is to small\n");
  5488. ret = -ENOMEM;
  5489. goto fail;
  5490. }
  5491. /* we only need to pin inside GTT if cursor is non-phy */
  5492. mutex_lock(&dev->struct_mutex);
  5493. if (!dev_priv->info->cursor_needs_physical) {
  5494. unsigned alignment;
  5495. if (obj->tiling_mode) {
  5496. DRM_ERROR("cursor cannot be tiled\n");
  5497. ret = -EINVAL;
  5498. goto fail_locked;
  5499. }
  5500. /* Note that the w/a also requires 2 PTE of padding following
  5501. * the bo. We currently fill all unused PTE with the shadow
  5502. * page and so we should always have valid PTE following the
  5503. * cursor preventing the VT-d warning.
  5504. */
  5505. alignment = 0;
  5506. if (need_vtd_wa(dev))
  5507. alignment = 64*1024;
  5508. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5509. if (ret) {
  5510. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5511. goto fail_locked;
  5512. }
  5513. ret = i915_gem_object_put_fence(obj);
  5514. if (ret) {
  5515. DRM_ERROR("failed to release fence for cursor");
  5516. goto fail_unpin;
  5517. }
  5518. addr = i915_gem_obj_ggtt_offset(obj);
  5519. } else {
  5520. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5521. ret = i915_gem_attach_phys_object(dev, obj,
  5522. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5523. align);
  5524. if (ret) {
  5525. DRM_ERROR("failed to attach phys object\n");
  5526. goto fail_locked;
  5527. }
  5528. addr = obj->phys_obj->handle->busaddr;
  5529. }
  5530. if (IS_GEN2(dev))
  5531. I915_WRITE(CURSIZE, (height << 12) | width);
  5532. finish:
  5533. if (intel_crtc->cursor_bo) {
  5534. if (dev_priv->info->cursor_needs_physical) {
  5535. if (intel_crtc->cursor_bo != obj)
  5536. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5537. } else
  5538. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5539. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5540. }
  5541. mutex_unlock(&dev->struct_mutex);
  5542. intel_crtc->cursor_addr = addr;
  5543. intel_crtc->cursor_bo = obj;
  5544. intel_crtc->cursor_width = width;
  5545. intel_crtc->cursor_height = height;
  5546. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5547. return 0;
  5548. fail_unpin:
  5549. i915_gem_object_unpin(obj);
  5550. fail_locked:
  5551. mutex_unlock(&dev->struct_mutex);
  5552. fail:
  5553. drm_gem_object_unreference_unlocked(&obj->base);
  5554. return ret;
  5555. }
  5556. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5557. {
  5558. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5559. intel_crtc->cursor_x = x;
  5560. intel_crtc->cursor_y = y;
  5561. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5562. return 0;
  5563. }
  5564. /** Sets the color ramps on behalf of RandR */
  5565. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5566. u16 blue, int regno)
  5567. {
  5568. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5569. intel_crtc->lut_r[regno] = red >> 8;
  5570. intel_crtc->lut_g[regno] = green >> 8;
  5571. intel_crtc->lut_b[regno] = blue >> 8;
  5572. }
  5573. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5574. u16 *blue, int regno)
  5575. {
  5576. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5577. *red = intel_crtc->lut_r[regno] << 8;
  5578. *green = intel_crtc->lut_g[regno] << 8;
  5579. *blue = intel_crtc->lut_b[regno] << 8;
  5580. }
  5581. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5582. u16 *blue, uint32_t start, uint32_t size)
  5583. {
  5584. int end = (start + size > 256) ? 256 : start + size, i;
  5585. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5586. for (i = start; i < end; i++) {
  5587. intel_crtc->lut_r[i] = red[i] >> 8;
  5588. intel_crtc->lut_g[i] = green[i] >> 8;
  5589. intel_crtc->lut_b[i] = blue[i] >> 8;
  5590. }
  5591. intel_crtc_load_lut(crtc);
  5592. }
  5593. /* VESA 640x480x72Hz mode to set on the pipe */
  5594. static struct drm_display_mode load_detect_mode = {
  5595. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5596. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5597. };
  5598. static struct drm_framebuffer *
  5599. intel_framebuffer_create(struct drm_device *dev,
  5600. struct drm_mode_fb_cmd2 *mode_cmd,
  5601. struct drm_i915_gem_object *obj)
  5602. {
  5603. struct intel_framebuffer *intel_fb;
  5604. int ret;
  5605. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5606. if (!intel_fb) {
  5607. drm_gem_object_unreference_unlocked(&obj->base);
  5608. return ERR_PTR(-ENOMEM);
  5609. }
  5610. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5611. if (ret) {
  5612. drm_gem_object_unreference_unlocked(&obj->base);
  5613. kfree(intel_fb);
  5614. return ERR_PTR(ret);
  5615. }
  5616. return &intel_fb->base;
  5617. }
  5618. static u32
  5619. intel_framebuffer_pitch_for_width(int width, int bpp)
  5620. {
  5621. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5622. return ALIGN(pitch, 64);
  5623. }
  5624. static u32
  5625. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5626. {
  5627. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5628. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5629. }
  5630. static struct drm_framebuffer *
  5631. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5632. struct drm_display_mode *mode,
  5633. int depth, int bpp)
  5634. {
  5635. struct drm_i915_gem_object *obj;
  5636. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5637. obj = i915_gem_alloc_object(dev,
  5638. intel_framebuffer_size_for_mode(mode, bpp));
  5639. if (obj == NULL)
  5640. return ERR_PTR(-ENOMEM);
  5641. mode_cmd.width = mode->hdisplay;
  5642. mode_cmd.height = mode->vdisplay;
  5643. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5644. bpp);
  5645. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5646. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5647. }
  5648. static struct drm_framebuffer *
  5649. mode_fits_in_fbdev(struct drm_device *dev,
  5650. struct drm_display_mode *mode)
  5651. {
  5652. struct drm_i915_private *dev_priv = dev->dev_private;
  5653. struct drm_i915_gem_object *obj;
  5654. struct drm_framebuffer *fb;
  5655. if (dev_priv->fbdev == NULL)
  5656. return NULL;
  5657. obj = dev_priv->fbdev->ifb.obj;
  5658. if (obj == NULL)
  5659. return NULL;
  5660. fb = &dev_priv->fbdev->ifb.base;
  5661. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5662. fb->bits_per_pixel))
  5663. return NULL;
  5664. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5665. return NULL;
  5666. return fb;
  5667. }
  5668. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5669. struct drm_display_mode *mode,
  5670. struct intel_load_detect_pipe *old)
  5671. {
  5672. struct intel_crtc *intel_crtc;
  5673. struct intel_encoder *intel_encoder =
  5674. intel_attached_encoder(connector);
  5675. struct drm_crtc *possible_crtc;
  5676. struct drm_encoder *encoder = &intel_encoder->base;
  5677. struct drm_crtc *crtc = NULL;
  5678. struct drm_device *dev = encoder->dev;
  5679. struct drm_framebuffer *fb;
  5680. int i = -1;
  5681. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5682. connector->base.id, drm_get_connector_name(connector),
  5683. encoder->base.id, drm_get_encoder_name(encoder));
  5684. /*
  5685. * Algorithm gets a little messy:
  5686. *
  5687. * - if the connector already has an assigned crtc, use it (but make
  5688. * sure it's on first)
  5689. *
  5690. * - try to find the first unused crtc that can drive this connector,
  5691. * and use that if we find one
  5692. */
  5693. /* See if we already have a CRTC for this connector */
  5694. if (encoder->crtc) {
  5695. crtc = encoder->crtc;
  5696. mutex_lock(&crtc->mutex);
  5697. old->dpms_mode = connector->dpms;
  5698. old->load_detect_temp = false;
  5699. /* Make sure the crtc and connector are running */
  5700. if (connector->dpms != DRM_MODE_DPMS_ON)
  5701. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5702. return true;
  5703. }
  5704. /* Find an unused one (if possible) */
  5705. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5706. i++;
  5707. if (!(encoder->possible_crtcs & (1 << i)))
  5708. continue;
  5709. if (!possible_crtc->enabled) {
  5710. crtc = possible_crtc;
  5711. break;
  5712. }
  5713. }
  5714. /*
  5715. * If we didn't find an unused CRTC, don't use any.
  5716. */
  5717. if (!crtc) {
  5718. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5719. return false;
  5720. }
  5721. mutex_lock(&crtc->mutex);
  5722. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5723. to_intel_connector(connector)->new_encoder = intel_encoder;
  5724. intel_crtc = to_intel_crtc(crtc);
  5725. old->dpms_mode = connector->dpms;
  5726. old->load_detect_temp = true;
  5727. old->release_fb = NULL;
  5728. if (!mode)
  5729. mode = &load_detect_mode;
  5730. /* We need a framebuffer large enough to accommodate all accesses
  5731. * that the plane may generate whilst we perform load detection.
  5732. * We can not rely on the fbcon either being present (we get called
  5733. * during its initialisation to detect all boot displays, or it may
  5734. * not even exist) or that it is large enough to satisfy the
  5735. * requested mode.
  5736. */
  5737. fb = mode_fits_in_fbdev(dev, mode);
  5738. if (fb == NULL) {
  5739. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5740. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5741. old->release_fb = fb;
  5742. } else
  5743. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5744. if (IS_ERR(fb)) {
  5745. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5746. mutex_unlock(&crtc->mutex);
  5747. return false;
  5748. }
  5749. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5750. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5751. if (old->release_fb)
  5752. old->release_fb->funcs->destroy(old->release_fb);
  5753. mutex_unlock(&crtc->mutex);
  5754. return false;
  5755. }
  5756. /* let the connector get through one full cycle before testing */
  5757. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5758. return true;
  5759. }
  5760. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5761. struct intel_load_detect_pipe *old)
  5762. {
  5763. struct intel_encoder *intel_encoder =
  5764. intel_attached_encoder(connector);
  5765. struct drm_encoder *encoder = &intel_encoder->base;
  5766. struct drm_crtc *crtc = encoder->crtc;
  5767. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5768. connector->base.id, drm_get_connector_name(connector),
  5769. encoder->base.id, drm_get_encoder_name(encoder));
  5770. if (old->load_detect_temp) {
  5771. to_intel_connector(connector)->new_encoder = NULL;
  5772. intel_encoder->new_crtc = NULL;
  5773. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5774. if (old->release_fb) {
  5775. drm_framebuffer_unregister_private(old->release_fb);
  5776. drm_framebuffer_unreference(old->release_fb);
  5777. }
  5778. mutex_unlock(&crtc->mutex);
  5779. return;
  5780. }
  5781. /* Switch crtc and encoder back off if necessary */
  5782. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5783. connector->funcs->dpms(connector, old->dpms_mode);
  5784. mutex_unlock(&crtc->mutex);
  5785. }
  5786. /* Returns the clock of the currently programmed mode of the given pipe. */
  5787. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  5788. struct intel_crtc_config *pipe_config)
  5789. {
  5790. struct drm_device *dev = crtc->base.dev;
  5791. struct drm_i915_private *dev_priv = dev->dev_private;
  5792. int pipe = pipe_config->cpu_transcoder;
  5793. u32 dpll = I915_READ(DPLL(pipe));
  5794. u32 fp;
  5795. intel_clock_t clock;
  5796. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5797. fp = I915_READ(FP0(pipe));
  5798. else
  5799. fp = I915_READ(FP1(pipe));
  5800. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5801. if (IS_PINEVIEW(dev)) {
  5802. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5803. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5804. } else {
  5805. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5806. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5807. }
  5808. if (!IS_GEN2(dev)) {
  5809. if (IS_PINEVIEW(dev))
  5810. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5811. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5812. else
  5813. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5814. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5815. switch (dpll & DPLL_MODE_MASK) {
  5816. case DPLLB_MODE_DAC_SERIAL:
  5817. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5818. 5 : 10;
  5819. break;
  5820. case DPLLB_MODE_LVDS:
  5821. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5822. 7 : 14;
  5823. break;
  5824. default:
  5825. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5826. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5827. pipe_config->adjusted_mode.clock = 0;
  5828. return;
  5829. }
  5830. if (IS_PINEVIEW(dev))
  5831. pineview_clock(96000, &clock);
  5832. else
  5833. i9xx_clock(96000, &clock);
  5834. } else {
  5835. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5836. if (is_lvds) {
  5837. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5838. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5839. clock.p2 = 14;
  5840. if ((dpll & PLL_REF_INPUT_MASK) ==
  5841. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5842. /* XXX: might not be 66MHz */
  5843. i9xx_clock(66000, &clock);
  5844. } else
  5845. i9xx_clock(48000, &clock);
  5846. } else {
  5847. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5848. clock.p1 = 2;
  5849. else {
  5850. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5851. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5852. }
  5853. if (dpll & PLL_P2_DIVIDE_BY_4)
  5854. clock.p2 = 4;
  5855. else
  5856. clock.p2 = 2;
  5857. i9xx_clock(48000, &clock);
  5858. }
  5859. }
  5860. pipe_config->adjusted_mode.clock = clock.dot *
  5861. pipe_config->pixel_multiplier;
  5862. }
  5863. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  5864. struct intel_crtc_config *pipe_config)
  5865. {
  5866. struct drm_device *dev = crtc->base.dev;
  5867. struct drm_i915_private *dev_priv = dev->dev_private;
  5868. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  5869. int link_freq, repeat;
  5870. u64 clock;
  5871. u32 link_m, link_n;
  5872. repeat = pipe_config->pixel_multiplier;
  5873. /*
  5874. * The calculation for the data clock is:
  5875. * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
  5876. * But we want to avoid losing precison if possible, so:
  5877. * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
  5878. *
  5879. * and the link clock is simpler:
  5880. * link_clock = (m * link_clock * repeat) / n
  5881. */
  5882. /*
  5883. * We need to get the FDI or DP link clock here to derive
  5884. * the M/N dividers.
  5885. *
  5886. * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
  5887. * For DP, it's either 1.62GHz or 2.7GHz.
  5888. * We do our calculations in 10*MHz since we don't need much precison.
  5889. */
  5890. if (pipe_config->has_pch_encoder)
  5891. link_freq = intel_fdi_link_freq(dev) * 10000;
  5892. else
  5893. link_freq = pipe_config->port_clock;
  5894. link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
  5895. link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
  5896. if (!link_m || !link_n)
  5897. return;
  5898. clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
  5899. do_div(clock, link_n);
  5900. pipe_config->adjusted_mode.clock = clock;
  5901. }
  5902. /** Returns the currently programmed mode of the given pipe. */
  5903. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5904. struct drm_crtc *crtc)
  5905. {
  5906. struct drm_i915_private *dev_priv = dev->dev_private;
  5907. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5908. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5909. struct drm_display_mode *mode;
  5910. struct intel_crtc_config pipe_config;
  5911. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5912. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5913. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5914. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5915. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5916. if (!mode)
  5917. return NULL;
  5918. /*
  5919. * Construct a pipe_config sufficient for getting the clock info
  5920. * back out of crtc_clock_get.
  5921. *
  5922. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  5923. * to use a real value here instead.
  5924. */
  5925. pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  5926. pipe_config.pixel_multiplier = 1;
  5927. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  5928. mode->clock = pipe_config.adjusted_mode.clock;
  5929. mode->hdisplay = (htot & 0xffff) + 1;
  5930. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5931. mode->hsync_start = (hsync & 0xffff) + 1;
  5932. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5933. mode->vdisplay = (vtot & 0xffff) + 1;
  5934. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5935. mode->vsync_start = (vsync & 0xffff) + 1;
  5936. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5937. drm_mode_set_name(mode);
  5938. return mode;
  5939. }
  5940. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5941. {
  5942. struct drm_device *dev = crtc->dev;
  5943. drm_i915_private_t *dev_priv = dev->dev_private;
  5944. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5945. int pipe = intel_crtc->pipe;
  5946. int dpll_reg = DPLL(pipe);
  5947. int dpll;
  5948. if (HAS_PCH_SPLIT(dev))
  5949. return;
  5950. if (!dev_priv->lvds_downclock_avail)
  5951. return;
  5952. dpll = I915_READ(dpll_reg);
  5953. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5954. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5955. assert_panel_unlocked(dev_priv, pipe);
  5956. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5957. I915_WRITE(dpll_reg, dpll);
  5958. intel_wait_for_vblank(dev, pipe);
  5959. dpll = I915_READ(dpll_reg);
  5960. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5961. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5962. }
  5963. }
  5964. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5965. {
  5966. struct drm_device *dev = crtc->dev;
  5967. drm_i915_private_t *dev_priv = dev->dev_private;
  5968. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5969. if (HAS_PCH_SPLIT(dev))
  5970. return;
  5971. if (!dev_priv->lvds_downclock_avail)
  5972. return;
  5973. /*
  5974. * Since this is called by a timer, we should never get here in
  5975. * the manual case.
  5976. */
  5977. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5978. int pipe = intel_crtc->pipe;
  5979. int dpll_reg = DPLL(pipe);
  5980. int dpll;
  5981. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5982. assert_panel_unlocked(dev_priv, pipe);
  5983. dpll = I915_READ(dpll_reg);
  5984. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5985. I915_WRITE(dpll_reg, dpll);
  5986. intel_wait_for_vblank(dev, pipe);
  5987. dpll = I915_READ(dpll_reg);
  5988. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5989. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5990. }
  5991. }
  5992. void intel_mark_busy(struct drm_device *dev)
  5993. {
  5994. i915_update_gfx_val(dev->dev_private);
  5995. }
  5996. void intel_mark_idle(struct drm_device *dev)
  5997. {
  5998. struct drm_crtc *crtc;
  5999. if (!i915_powersave)
  6000. return;
  6001. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6002. if (!crtc->fb)
  6003. continue;
  6004. intel_decrease_pllclock(crtc);
  6005. }
  6006. }
  6007. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6008. struct intel_ring_buffer *ring)
  6009. {
  6010. struct drm_device *dev = obj->base.dev;
  6011. struct drm_crtc *crtc;
  6012. if (!i915_powersave)
  6013. return;
  6014. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6015. if (!crtc->fb)
  6016. continue;
  6017. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6018. continue;
  6019. intel_increase_pllclock(crtc);
  6020. if (ring && intel_fbc_enabled(dev))
  6021. ring->fbc_dirty = true;
  6022. }
  6023. }
  6024. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6025. {
  6026. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6027. struct drm_device *dev = crtc->dev;
  6028. struct intel_unpin_work *work;
  6029. unsigned long flags;
  6030. spin_lock_irqsave(&dev->event_lock, flags);
  6031. work = intel_crtc->unpin_work;
  6032. intel_crtc->unpin_work = NULL;
  6033. spin_unlock_irqrestore(&dev->event_lock, flags);
  6034. if (work) {
  6035. cancel_work_sync(&work->work);
  6036. kfree(work);
  6037. }
  6038. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6039. drm_crtc_cleanup(crtc);
  6040. kfree(intel_crtc);
  6041. }
  6042. static void intel_unpin_work_fn(struct work_struct *__work)
  6043. {
  6044. struct intel_unpin_work *work =
  6045. container_of(__work, struct intel_unpin_work, work);
  6046. struct drm_device *dev = work->crtc->dev;
  6047. mutex_lock(&dev->struct_mutex);
  6048. intel_unpin_fb_obj(work->old_fb_obj);
  6049. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6050. drm_gem_object_unreference(&work->old_fb_obj->base);
  6051. intel_update_fbc(dev);
  6052. mutex_unlock(&dev->struct_mutex);
  6053. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6054. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6055. kfree(work);
  6056. }
  6057. static void do_intel_finish_page_flip(struct drm_device *dev,
  6058. struct drm_crtc *crtc)
  6059. {
  6060. drm_i915_private_t *dev_priv = dev->dev_private;
  6061. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6062. struct intel_unpin_work *work;
  6063. unsigned long flags;
  6064. /* Ignore early vblank irqs */
  6065. if (intel_crtc == NULL)
  6066. return;
  6067. spin_lock_irqsave(&dev->event_lock, flags);
  6068. work = intel_crtc->unpin_work;
  6069. /* Ensure we don't miss a work->pending update ... */
  6070. smp_rmb();
  6071. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6072. spin_unlock_irqrestore(&dev->event_lock, flags);
  6073. return;
  6074. }
  6075. /* and that the unpin work is consistent wrt ->pending. */
  6076. smp_rmb();
  6077. intel_crtc->unpin_work = NULL;
  6078. if (work->event)
  6079. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6080. drm_vblank_put(dev, intel_crtc->pipe);
  6081. spin_unlock_irqrestore(&dev->event_lock, flags);
  6082. wake_up_all(&dev_priv->pending_flip_queue);
  6083. queue_work(dev_priv->wq, &work->work);
  6084. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6085. }
  6086. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6087. {
  6088. drm_i915_private_t *dev_priv = dev->dev_private;
  6089. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6090. do_intel_finish_page_flip(dev, crtc);
  6091. }
  6092. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6093. {
  6094. drm_i915_private_t *dev_priv = dev->dev_private;
  6095. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6096. do_intel_finish_page_flip(dev, crtc);
  6097. }
  6098. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6099. {
  6100. drm_i915_private_t *dev_priv = dev->dev_private;
  6101. struct intel_crtc *intel_crtc =
  6102. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6103. unsigned long flags;
  6104. /* NB: An MMIO update of the plane base pointer will also
  6105. * generate a page-flip completion irq, i.e. every modeset
  6106. * is also accompanied by a spurious intel_prepare_page_flip().
  6107. */
  6108. spin_lock_irqsave(&dev->event_lock, flags);
  6109. if (intel_crtc->unpin_work)
  6110. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6111. spin_unlock_irqrestore(&dev->event_lock, flags);
  6112. }
  6113. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6114. {
  6115. /* Ensure that the work item is consistent when activating it ... */
  6116. smp_wmb();
  6117. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6118. /* and that it is marked active as soon as the irq could fire. */
  6119. smp_wmb();
  6120. }
  6121. static int intel_gen2_queue_flip(struct drm_device *dev,
  6122. struct drm_crtc *crtc,
  6123. struct drm_framebuffer *fb,
  6124. struct drm_i915_gem_object *obj)
  6125. {
  6126. struct drm_i915_private *dev_priv = dev->dev_private;
  6127. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6128. u32 flip_mask;
  6129. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6130. int ret;
  6131. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6132. if (ret)
  6133. goto err;
  6134. ret = intel_ring_begin(ring, 6);
  6135. if (ret)
  6136. goto err_unpin;
  6137. /* Can't queue multiple flips, so wait for the previous
  6138. * one to finish before executing the next.
  6139. */
  6140. if (intel_crtc->plane)
  6141. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6142. else
  6143. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6144. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6145. intel_ring_emit(ring, MI_NOOP);
  6146. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6147. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6148. intel_ring_emit(ring, fb->pitches[0]);
  6149. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6150. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6151. intel_mark_page_flip_active(intel_crtc);
  6152. intel_ring_advance(ring);
  6153. return 0;
  6154. err_unpin:
  6155. intel_unpin_fb_obj(obj);
  6156. err:
  6157. return ret;
  6158. }
  6159. static int intel_gen3_queue_flip(struct drm_device *dev,
  6160. struct drm_crtc *crtc,
  6161. struct drm_framebuffer *fb,
  6162. struct drm_i915_gem_object *obj)
  6163. {
  6164. struct drm_i915_private *dev_priv = dev->dev_private;
  6165. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6166. u32 flip_mask;
  6167. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6168. int ret;
  6169. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6170. if (ret)
  6171. goto err;
  6172. ret = intel_ring_begin(ring, 6);
  6173. if (ret)
  6174. goto err_unpin;
  6175. if (intel_crtc->plane)
  6176. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6177. else
  6178. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6179. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6180. intel_ring_emit(ring, MI_NOOP);
  6181. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6182. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6183. intel_ring_emit(ring, fb->pitches[0]);
  6184. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6185. intel_ring_emit(ring, MI_NOOP);
  6186. intel_mark_page_flip_active(intel_crtc);
  6187. intel_ring_advance(ring);
  6188. return 0;
  6189. err_unpin:
  6190. intel_unpin_fb_obj(obj);
  6191. err:
  6192. return ret;
  6193. }
  6194. static int intel_gen4_queue_flip(struct drm_device *dev,
  6195. struct drm_crtc *crtc,
  6196. struct drm_framebuffer *fb,
  6197. struct drm_i915_gem_object *obj)
  6198. {
  6199. struct drm_i915_private *dev_priv = dev->dev_private;
  6200. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6201. uint32_t pf, pipesrc;
  6202. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6203. int ret;
  6204. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6205. if (ret)
  6206. goto err;
  6207. ret = intel_ring_begin(ring, 4);
  6208. if (ret)
  6209. goto err_unpin;
  6210. /* i965+ uses the linear or tiled offsets from the
  6211. * Display Registers (which do not change across a page-flip)
  6212. * so we need only reprogram the base address.
  6213. */
  6214. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6215. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6216. intel_ring_emit(ring, fb->pitches[0]);
  6217. intel_ring_emit(ring,
  6218. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6219. obj->tiling_mode);
  6220. /* XXX Enabling the panel-fitter across page-flip is so far
  6221. * untested on non-native modes, so ignore it for now.
  6222. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6223. */
  6224. pf = 0;
  6225. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6226. intel_ring_emit(ring, pf | pipesrc);
  6227. intel_mark_page_flip_active(intel_crtc);
  6228. intel_ring_advance(ring);
  6229. return 0;
  6230. err_unpin:
  6231. intel_unpin_fb_obj(obj);
  6232. err:
  6233. return ret;
  6234. }
  6235. static int intel_gen6_queue_flip(struct drm_device *dev,
  6236. struct drm_crtc *crtc,
  6237. struct drm_framebuffer *fb,
  6238. struct drm_i915_gem_object *obj)
  6239. {
  6240. struct drm_i915_private *dev_priv = dev->dev_private;
  6241. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6242. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6243. uint32_t pf, pipesrc;
  6244. int ret;
  6245. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6246. if (ret)
  6247. goto err;
  6248. ret = intel_ring_begin(ring, 4);
  6249. if (ret)
  6250. goto err_unpin;
  6251. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6252. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6253. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6254. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6255. /* Contrary to the suggestions in the documentation,
  6256. * "Enable Panel Fitter" does not seem to be required when page
  6257. * flipping with a non-native mode, and worse causes a normal
  6258. * modeset to fail.
  6259. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6260. */
  6261. pf = 0;
  6262. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6263. intel_ring_emit(ring, pf | pipesrc);
  6264. intel_mark_page_flip_active(intel_crtc);
  6265. intel_ring_advance(ring);
  6266. return 0;
  6267. err_unpin:
  6268. intel_unpin_fb_obj(obj);
  6269. err:
  6270. return ret;
  6271. }
  6272. /*
  6273. * On gen7 we currently use the blit ring because (in early silicon at least)
  6274. * the render ring doesn't give us interrpts for page flip completion, which
  6275. * means clients will hang after the first flip is queued. Fortunately the
  6276. * blit ring generates interrupts properly, so use it instead.
  6277. */
  6278. static int intel_gen7_queue_flip(struct drm_device *dev,
  6279. struct drm_crtc *crtc,
  6280. struct drm_framebuffer *fb,
  6281. struct drm_i915_gem_object *obj)
  6282. {
  6283. struct drm_i915_private *dev_priv = dev->dev_private;
  6284. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6285. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6286. uint32_t plane_bit = 0;
  6287. int ret;
  6288. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6289. if (ret)
  6290. goto err;
  6291. switch(intel_crtc->plane) {
  6292. case PLANE_A:
  6293. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6294. break;
  6295. case PLANE_B:
  6296. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6297. break;
  6298. case PLANE_C:
  6299. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6300. break;
  6301. default:
  6302. WARN_ONCE(1, "unknown plane in flip command\n");
  6303. ret = -ENODEV;
  6304. goto err_unpin;
  6305. }
  6306. ret = intel_ring_begin(ring, 4);
  6307. if (ret)
  6308. goto err_unpin;
  6309. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6310. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6311. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6312. intel_ring_emit(ring, (MI_NOOP));
  6313. intel_mark_page_flip_active(intel_crtc);
  6314. intel_ring_advance(ring);
  6315. return 0;
  6316. err_unpin:
  6317. intel_unpin_fb_obj(obj);
  6318. err:
  6319. return ret;
  6320. }
  6321. static int intel_default_queue_flip(struct drm_device *dev,
  6322. struct drm_crtc *crtc,
  6323. struct drm_framebuffer *fb,
  6324. struct drm_i915_gem_object *obj)
  6325. {
  6326. return -ENODEV;
  6327. }
  6328. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6329. struct drm_framebuffer *fb,
  6330. struct drm_pending_vblank_event *event)
  6331. {
  6332. struct drm_device *dev = crtc->dev;
  6333. struct drm_i915_private *dev_priv = dev->dev_private;
  6334. struct drm_framebuffer *old_fb = crtc->fb;
  6335. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6336. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6337. struct intel_unpin_work *work;
  6338. unsigned long flags;
  6339. int ret;
  6340. /* Can't change pixel format via MI display flips. */
  6341. if (fb->pixel_format != crtc->fb->pixel_format)
  6342. return -EINVAL;
  6343. /*
  6344. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6345. * Note that pitch changes could also affect these register.
  6346. */
  6347. if (INTEL_INFO(dev)->gen > 3 &&
  6348. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6349. fb->pitches[0] != crtc->fb->pitches[0]))
  6350. return -EINVAL;
  6351. work = kzalloc(sizeof *work, GFP_KERNEL);
  6352. if (work == NULL)
  6353. return -ENOMEM;
  6354. work->event = event;
  6355. work->crtc = crtc;
  6356. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6357. INIT_WORK(&work->work, intel_unpin_work_fn);
  6358. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6359. if (ret)
  6360. goto free_work;
  6361. /* We borrow the event spin lock for protecting unpin_work */
  6362. spin_lock_irqsave(&dev->event_lock, flags);
  6363. if (intel_crtc->unpin_work) {
  6364. spin_unlock_irqrestore(&dev->event_lock, flags);
  6365. kfree(work);
  6366. drm_vblank_put(dev, intel_crtc->pipe);
  6367. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6368. return -EBUSY;
  6369. }
  6370. intel_crtc->unpin_work = work;
  6371. spin_unlock_irqrestore(&dev->event_lock, flags);
  6372. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6373. flush_workqueue(dev_priv->wq);
  6374. ret = i915_mutex_lock_interruptible(dev);
  6375. if (ret)
  6376. goto cleanup;
  6377. /* Reference the objects for the scheduled work. */
  6378. drm_gem_object_reference(&work->old_fb_obj->base);
  6379. drm_gem_object_reference(&obj->base);
  6380. crtc->fb = fb;
  6381. work->pending_flip_obj = obj;
  6382. work->enable_stall_check = true;
  6383. atomic_inc(&intel_crtc->unpin_work_count);
  6384. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6385. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6386. if (ret)
  6387. goto cleanup_pending;
  6388. intel_disable_fbc(dev);
  6389. intel_mark_fb_busy(obj, NULL);
  6390. mutex_unlock(&dev->struct_mutex);
  6391. trace_i915_flip_request(intel_crtc->plane, obj);
  6392. return 0;
  6393. cleanup_pending:
  6394. atomic_dec(&intel_crtc->unpin_work_count);
  6395. crtc->fb = old_fb;
  6396. drm_gem_object_unreference(&work->old_fb_obj->base);
  6397. drm_gem_object_unreference(&obj->base);
  6398. mutex_unlock(&dev->struct_mutex);
  6399. cleanup:
  6400. spin_lock_irqsave(&dev->event_lock, flags);
  6401. intel_crtc->unpin_work = NULL;
  6402. spin_unlock_irqrestore(&dev->event_lock, flags);
  6403. drm_vblank_put(dev, intel_crtc->pipe);
  6404. free_work:
  6405. kfree(work);
  6406. return ret;
  6407. }
  6408. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6409. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6410. .load_lut = intel_crtc_load_lut,
  6411. };
  6412. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6413. struct drm_crtc *crtc)
  6414. {
  6415. struct drm_device *dev;
  6416. struct drm_crtc *tmp;
  6417. int crtc_mask = 1;
  6418. WARN(!crtc, "checking null crtc?\n");
  6419. dev = crtc->dev;
  6420. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6421. if (tmp == crtc)
  6422. break;
  6423. crtc_mask <<= 1;
  6424. }
  6425. if (encoder->possible_crtcs & crtc_mask)
  6426. return true;
  6427. return false;
  6428. }
  6429. /**
  6430. * intel_modeset_update_staged_output_state
  6431. *
  6432. * Updates the staged output configuration state, e.g. after we've read out the
  6433. * current hw state.
  6434. */
  6435. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6436. {
  6437. struct intel_encoder *encoder;
  6438. struct intel_connector *connector;
  6439. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6440. base.head) {
  6441. connector->new_encoder =
  6442. to_intel_encoder(connector->base.encoder);
  6443. }
  6444. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6445. base.head) {
  6446. encoder->new_crtc =
  6447. to_intel_crtc(encoder->base.crtc);
  6448. }
  6449. }
  6450. /**
  6451. * intel_modeset_commit_output_state
  6452. *
  6453. * This function copies the stage display pipe configuration to the real one.
  6454. */
  6455. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6456. {
  6457. struct intel_encoder *encoder;
  6458. struct intel_connector *connector;
  6459. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6460. base.head) {
  6461. connector->base.encoder = &connector->new_encoder->base;
  6462. }
  6463. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6464. base.head) {
  6465. encoder->base.crtc = &encoder->new_crtc->base;
  6466. }
  6467. }
  6468. static void
  6469. connected_sink_compute_bpp(struct intel_connector * connector,
  6470. struct intel_crtc_config *pipe_config)
  6471. {
  6472. int bpp = pipe_config->pipe_bpp;
  6473. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6474. connector->base.base.id,
  6475. drm_get_connector_name(&connector->base));
  6476. /* Don't use an invalid EDID bpc value */
  6477. if (connector->base.display_info.bpc &&
  6478. connector->base.display_info.bpc * 3 < bpp) {
  6479. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6480. bpp, connector->base.display_info.bpc*3);
  6481. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6482. }
  6483. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6484. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6485. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6486. bpp);
  6487. pipe_config->pipe_bpp = 24;
  6488. }
  6489. }
  6490. static int
  6491. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6492. struct drm_framebuffer *fb,
  6493. struct intel_crtc_config *pipe_config)
  6494. {
  6495. struct drm_device *dev = crtc->base.dev;
  6496. struct intel_connector *connector;
  6497. int bpp;
  6498. switch (fb->pixel_format) {
  6499. case DRM_FORMAT_C8:
  6500. bpp = 8*3; /* since we go through a colormap */
  6501. break;
  6502. case DRM_FORMAT_XRGB1555:
  6503. case DRM_FORMAT_ARGB1555:
  6504. /* checked in intel_framebuffer_init already */
  6505. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6506. return -EINVAL;
  6507. case DRM_FORMAT_RGB565:
  6508. bpp = 6*3; /* min is 18bpp */
  6509. break;
  6510. case DRM_FORMAT_XBGR8888:
  6511. case DRM_FORMAT_ABGR8888:
  6512. /* checked in intel_framebuffer_init already */
  6513. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6514. return -EINVAL;
  6515. case DRM_FORMAT_XRGB8888:
  6516. case DRM_FORMAT_ARGB8888:
  6517. bpp = 8*3;
  6518. break;
  6519. case DRM_FORMAT_XRGB2101010:
  6520. case DRM_FORMAT_ARGB2101010:
  6521. case DRM_FORMAT_XBGR2101010:
  6522. case DRM_FORMAT_ABGR2101010:
  6523. /* checked in intel_framebuffer_init already */
  6524. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6525. return -EINVAL;
  6526. bpp = 10*3;
  6527. break;
  6528. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6529. default:
  6530. DRM_DEBUG_KMS("unsupported depth\n");
  6531. return -EINVAL;
  6532. }
  6533. pipe_config->pipe_bpp = bpp;
  6534. /* Clamp display bpp to EDID value */
  6535. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6536. base.head) {
  6537. if (!connector->new_encoder ||
  6538. connector->new_encoder->new_crtc != crtc)
  6539. continue;
  6540. connected_sink_compute_bpp(connector, pipe_config);
  6541. }
  6542. return bpp;
  6543. }
  6544. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6545. struct intel_crtc_config *pipe_config,
  6546. const char *context)
  6547. {
  6548. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6549. context, pipe_name(crtc->pipe));
  6550. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6551. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6552. pipe_config->pipe_bpp, pipe_config->dither);
  6553. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6554. pipe_config->has_pch_encoder,
  6555. pipe_config->fdi_lanes,
  6556. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6557. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6558. pipe_config->fdi_m_n.tu);
  6559. DRM_DEBUG_KMS("requested mode:\n");
  6560. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6561. DRM_DEBUG_KMS("adjusted mode:\n");
  6562. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6563. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6564. pipe_config->gmch_pfit.control,
  6565. pipe_config->gmch_pfit.pgm_ratios,
  6566. pipe_config->gmch_pfit.lvds_border_bits);
  6567. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6568. pipe_config->pch_pfit.pos,
  6569. pipe_config->pch_pfit.size);
  6570. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6571. }
  6572. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6573. {
  6574. int num_encoders = 0;
  6575. bool uncloneable_encoders = false;
  6576. struct intel_encoder *encoder;
  6577. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6578. base.head) {
  6579. if (&encoder->new_crtc->base != crtc)
  6580. continue;
  6581. num_encoders++;
  6582. if (!encoder->cloneable)
  6583. uncloneable_encoders = true;
  6584. }
  6585. return !(num_encoders > 1 && uncloneable_encoders);
  6586. }
  6587. static struct intel_crtc_config *
  6588. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6589. struct drm_framebuffer *fb,
  6590. struct drm_display_mode *mode)
  6591. {
  6592. struct drm_device *dev = crtc->dev;
  6593. struct drm_encoder_helper_funcs *encoder_funcs;
  6594. struct intel_encoder *encoder;
  6595. struct intel_crtc_config *pipe_config;
  6596. int plane_bpp, ret = -EINVAL;
  6597. bool retry = true;
  6598. if (!check_encoder_cloning(crtc)) {
  6599. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6600. return ERR_PTR(-EINVAL);
  6601. }
  6602. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6603. if (!pipe_config)
  6604. return ERR_PTR(-ENOMEM);
  6605. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6606. drm_mode_copy(&pipe_config->requested_mode, mode);
  6607. pipe_config->cpu_transcoder =
  6608. (enum transcoder) to_intel_crtc(crtc)->pipe;
  6609. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6610. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6611. * plane pixel format and any sink constraints into account. Returns the
  6612. * source plane bpp so that dithering can be selected on mismatches
  6613. * after encoders and crtc also have had their say. */
  6614. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6615. fb, pipe_config);
  6616. if (plane_bpp < 0)
  6617. goto fail;
  6618. encoder_retry:
  6619. /* Ensure the port clock defaults are reset when retrying. */
  6620. pipe_config->port_clock = 0;
  6621. pipe_config->pixel_multiplier = 1;
  6622. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6623. * adjust it according to limitations or connector properties, and also
  6624. * a chance to reject the mode entirely.
  6625. */
  6626. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6627. base.head) {
  6628. if (&encoder->new_crtc->base != crtc)
  6629. continue;
  6630. if (encoder->compute_config) {
  6631. if (!(encoder->compute_config(encoder, pipe_config))) {
  6632. DRM_DEBUG_KMS("Encoder config failure\n");
  6633. goto fail;
  6634. }
  6635. continue;
  6636. }
  6637. encoder_funcs = encoder->base.helper_private;
  6638. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6639. &pipe_config->requested_mode,
  6640. &pipe_config->adjusted_mode))) {
  6641. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6642. goto fail;
  6643. }
  6644. }
  6645. /* Set default port clock if not overwritten by the encoder. Needs to be
  6646. * done afterwards in case the encoder adjusts the mode. */
  6647. if (!pipe_config->port_clock)
  6648. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6649. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6650. if (ret < 0) {
  6651. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6652. goto fail;
  6653. }
  6654. if (ret == RETRY) {
  6655. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6656. ret = -EINVAL;
  6657. goto fail;
  6658. }
  6659. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6660. retry = false;
  6661. goto encoder_retry;
  6662. }
  6663. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6664. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6665. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6666. return pipe_config;
  6667. fail:
  6668. kfree(pipe_config);
  6669. return ERR_PTR(ret);
  6670. }
  6671. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6672. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6673. static void
  6674. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6675. unsigned *prepare_pipes, unsigned *disable_pipes)
  6676. {
  6677. struct intel_crtc *intel_crtc;
  6678. struct drm_device *dev = crtc->dev;
  6679. struct intel_encoder *encoder;
  6680. struct intel_connector *connector;
  6681. struct drm_crtc *tmp_crtc;
  6682. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6683. /* Check which crtcs have changed outputs connected to them, these need
  6684. * to be part of the prepare_pipes mask. We don't (yet) support global
  6685. * modeset across multiple crtcs, so modeset_pipes will only have one
  6686. * bit set at most. */
  6687. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6688. base.head) {
  6689. if (connector->base.encoder == &connector->new_encoder->base)
  6690. continue;
  6691. if (connector->base.encoder) {
  6692. tmp_crtc = connector->base.encoder->crtc;
  6693. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6694. }
  6695. if (connector->new_encoder)
  6696. *prepare_pipes |=
  6697. 1 << connector->new_encoder->new_crtc->pipe;
  6698. }
  6699. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6700. base.head) {
  6701. if (encoder->base.crtc == &encoder->new_crtc->base)
  6702. continue;
  6703. if (encoder->base.crtc) {
  6704. tmp_crtc = encoder->base.crtc;
  6705. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6706. }
  6707. if (encoder->new_crtc)
  6708. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6709. }
  6710. /* Check for any pipes that will be fully disabled ... */
  6711. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6712. base.head) {
  6713. bool used = false;
  6714. /* Don't try to disable disabled crtcs. */
  6715. if (!intel_crtc->base.enabled)
  6716. continue;
  6717. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6718. base.head) {
  6719. if (encoder->new_crtc == intel_crtc)
  6720. used = true;
  6721. }
  6722. if (!used)
  6723. *disable_pipes |= 1 << intel_crtc->pipe;
  6724. }
  6725. /* set_mode is also used to update properties on life display pipes. */
  6726. intel_crtc = to_intel_crtc(crtc);
  6727. if (crtc->enabled)
  6728. *prepare_pipes |= 1 << intel_crtc->pipe;
  6729. /*
  6730. * For simplicity do a full modeset on any pipe where the output routing
  6731. * changed. We could be more clever, but that would require us to be
  6732. * more careful with calling the relevant encoder->mode_set functions.
  6733. */
  6734. if (*prepare_pipes)
  6735. *modeset_pipes = *prepare_pipes;
  6736. /* ... and mask these out. */
  6737. *modeset_pipes &= ~(*disable_pipes);
  6738. *prepare_pipes &= ~(*disable_pipes);
  6739. /*
  6740. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6741. * obies this rule, but the modeset restore mode of
  6742. * intel_modeset_setup_hw_state does not.
  6743. */
  6744. *modeset_pipes &= 1 << intel_crtc->pipe;
  6745. *prepare_pipes &= 1 << intel_crtc->pipe;
  6746. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6747. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6748. }
  6749. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6750. {
  6751. struct drm_encoder *encoder;
  6752. struct drm_device *dev = crtc->dev;
  6753. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6754. if (encoder->crtc == crtc)
  6755. return true;
  6756. return false;
  6757. }
  6758. static void
  6759. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6760. {
  6761. struct intel_encoder *intel_encoder;
  6762. struct intel_crtc *intel_crtc;
  6763. struct drm_connector *connector;
  6764. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6765. base.head) {
  6766. if (!intel_encoder->base.crtc)
  6767. continue;
  6768. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6769. if (prepare_pipes & (1 << intel_crtc->pipe))
  6770. intel_encoder->connectors_active = false;
  6771. }
  6772. intel_modeset_commit_output_state(dev);
  6773. /* Update computed state. */
  6774. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6775. base.head) {
  6776. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6777. }
  6778. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6779. if (!connector->encoder || !connector->encoder->crtc)
  6780. continue;
  6781. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6782. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6783. struct drm_property *dpms_property =
  6784. dev->mode_config.dpms_property;
  6785. connector->dpms = DRM_MODE_DPMS_ON;
  6786. drm_object_property_set_value(&connector->base,
  6787. dpms_property,
  6788. DRM_MODE_DPMS_ON);
  6789. intel_encoder = to_intel_encoder(connector->encoder);
  6790. intel_encoder->connectors_active = true;
  6791. }
  6792. }
  6793. }
  6794. static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
  6795. struct intel_crtc_config *new)
  6796. {
  6797. int clock1, clock2, diff;
  6798. clock1 = cur->adjusted_mode.clock;
  6799. clock2 = new->adjusted_mode.clock;
  6800. if (clock1 == clock2)
  6801. return true;
  6802. if (!clock1 || !clock2)
  6803. return false;
  6804. diff = abs(clock1 - clock2);
  6805. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  6806. return true;
  6807. return false;
  6808. }
  6809. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6810. list_for_each_entry((intel_crtc), \
  6811. &(dev)->mode_config.crtc_list, \
  6812. base.head) \
  6813. if (mask & (1 <<(intel_crtc)->pipe))
  6814. static bool
  6815. intel_pipe_config_compare(struct drm_device *dev,
  6816. struct intel_crtc_config *current_config,
  6817. struct intel_crtc_config *pipe_config)
  6818. {
  6819. #define PIPE_CONF_CHECK_X(name) \
  6820. if (current_config->name != pipe_config->name) { \
  6821. DRM_ERROR("mismatch in " #name " " \
  6822. "(expected 0x%08x, found 0x%08x)\n", \
  6823. current_config->name, \
  6824. pipe_config->name); \
  6825. return false; \
  6826. }
  6827. #define PIPE_CONF_CHECK_I(name) \
  6828. if (current_config->name != pipe_config->name) { \
  6829. DRM_ERROR("mismatch in " #name " " \
  6830. "(expected %i, found %i)\n", \
  6831. current_config->name, \
  6832. pipe_config->name); \
  6833. return false; \
  6834. }
  6835. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6836. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6837. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  6838. "(expected %i, found %i)\n", \
  6839. current_config->name & (mask), \
  6840. pipe_config->name & (mask)); \
  6841. return false; \
  6842. }
  6843. #define PIPE_CONF_QUIRK(quirk) \
  6844. ((current_config->quirks | pipe_config->quirks) & (quirk))
  6845. PIPE_CONF_CHECK_I(cpu_transcoder);
  6846. PIPE_CONF_CHECK_I(has_pch_encoder);
  6847. PIPE_CONF_CHECK_I(fdi_lanes);
  6848. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6849. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6850. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6851. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6852. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6853. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6854. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6855. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6856. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6857. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6858. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6859. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6860. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6861. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6862. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6863. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6864. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6865. PIPE_CONF_CHECK_I(pixel_multiplier);
  6866. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6867. DRM_MODE_FLAG_INTERLACE);
  6868. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  6869. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6870. DRM_MODE_FLAG_PHSYNC);
  6871. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6872. DRM_MODE_FLAG_NHSYNC);
  6873. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6874. DRM_MODE_FLAG_PVSYNC);
  6875. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6876. DRM_MODE_FLAG_NVSYNC);
  6877. }
  6878. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6879. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6880. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6881. /* pfit ratios are autocomputed by the hw on gen4+ */
  6882. if (INTEL_INFO(dev)->gen < 4)
  6883. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6884. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6885. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6886. PIPE_CONF_CHECK_I(pch_pfit.size);
  6887. PIPE_CONF_CHECK_I(ips_enabled);
  6888. PIPE_CONF_CHECK_I(shared_dpll);
  6889. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  6890. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  6891. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  6892. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  6893. #undef PIPE_CONF_CHECK_X
  6894. #undef PIPE_CONF_CHECK_I
  6895. #undef PIPE_CONF_CHECK_FLAGS
  6896. #undef PIPE_CONF_QUIRK
  6897. if (!IS_HASWELL(dev)) {
  6898. if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
  6899. DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
  6900. current_config->adjusted_mode.clock,
  6901. pipe_config->adjusted_mode.clock);
  6902. return false;
  6903. }
  6904. }
  6905. return true;
  6906. }
  6907. static void
  6908. check_connector_state(struct drm_device *dev)
  6909. {
  6910. struct intel_connector *connector;
  6911. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6912. base.head) {
  6913. /* This also checks the encoder/connector hw state with the
  6914. * ->get_hw_state callbacks. */
  6915. intel_connector_check_state(connector);
  6916. WARN(&connector->new_encoder->base != connector->base.encoder,
  6917. "connector's staged encoder doesn't match current encoder\n");
  6918. }
  6919. }
  6920. static void
  6921. check_encoder_state(struct drm_device *dev)
  6922. {
  6923. struct intel_encoder *encoder;
  6924. struct intel_connector *connector;
  6925. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6926. base.head) {
  6927. bool enabled = false;
  6928. bool active = false;
  6929. enum pipe pipe, tracked_pipe;
  6930. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6931. encoder->base.base.id,
  6932. drm_get_encoder_name(&encoder->base));
  6933. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6934. "encoder's stage crtc doesn't match current crtc\n");
  6935. WARN(encoder->connectors_active && !encoder->base.crtc,
  6936. "encoder's active_connectors set, but no crtc\n");
  6937. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6938. base.head) {
  6939. if (connector->base.encoder != &encoder->base)
  6940. continue;
  6941. enabled = true;
  6942. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6943. active = true;
  6944. }
  6945. WARN(!!encoder->base.crtc != enabled,
  6946. "encoder's enabled state mismatch "
  6947. "(expected %i, found %i)\n",
  6948. !!encoder->base.crtc, enabled);
  6949. WARN(active && !encoder->base.crtc,
  6950. "active encoder with no crtc\n");
  6951. WARN(encoder->connectors_active != active,
  6952. "encoder's computed active state doesn't match tracked active state "
  6953. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6954. active = encoder->get_hw_state(encoder, &pipe);
  6955. WARN(active != encoder->connectors_active,
  6956. "encoder's hw state doesn't match sw tracking "
  6957. "(expected %i, found %i)\n",
  6958. encoder->connectors_active, active);
  6959. if (!encoder->base.crtc)
  6960. continue;
  6961. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6962. WARN(active && pipe != tracked_pipe,
  6963. "active encoder's pipe doesn't match"
  6964. "(expected %i, found %i)\n",
  6965. tracked_pipe, pipe);
  6966. }
  6967. }
  6968. static void
  6969. check_crtc_state(struct drm_device *dev)
  6970. {
  6971. drm_i915_private_t *dev_priv = dev->dev_private;
  6972. struct intel_crtc *crtc;
  6973. struct intel_encoder *encoder;
  6974. struct intel_crtc_config pipe_config;
  6975. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6976. base.head) {
  6977. bool enabled = false;
  6978. bool active = false;
  6979. memset(&pipe_config, 0, sizeof(pipe_config));
  6980. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6981. crtc->base.base.id);
  6982. WARN(crtc->active && !crtc->base.enabled,
  6983. "active crtc, but not enabled in sw tracking\n");
  6984. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6985. base.head) {
  6986. if (encoder->base.crtc != &crtc->base)
  6987. continue;
  6988. enabled = true;
  6989. if (encoder->connectors_active)
  6990. active = true;
  6991. }
  6992. WARN(active != crtc->active,
  6993. "crtc's computed active state doesn't match tracked active state "
  6994. "(expected %i, found %i)\n", active, crtc->active);
  6995. WARN(enabled != crtc->base.enabled,
  6996. "crtc's computed enabled state doesn't match tracked enabled state "
  6997. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6998. active = dev_priv->display.get_pipe_config(crtc,
  6999. &pipe_config);
  7000. /* hw state is inconsistent with the pipe A quirk */
  7001. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7002. active = crtc->active;
  7003. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7004. base.head) {
  7005. if (encoder->base.crtc != &crtc->base)
  7006. continue;
  7007. if (encoder->get_config)
  7008. encoder->get_config(encoder, &pipe_config);
  7009. }
  7010. if (dev_priv->display.get_clock)
  7011. dev_priv->display.get_clock(crtc, &pipe_config);
  7012. WARN(crtc->active != active,
  7013. "crtc active state doesn't match with hw state "
  7014. "(expected %i, found %i)\n", crtc->active, active);
  7015. if (active &&
  7016. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7017. WARN(1, "pipe state doesn't match!\n");
  7018. intel_dump_pipe_config(crtc, &pipe_config,
  7019. "[hw state]");
  7020. intel_dump_pipe_config(crtc, &crtc->config,
  7021. "[sw state]");
  7022. }
  7023. }
  7024. }
  7025. static void
  7026. check_shared_dpll_state(struct drm_device *dev)
  7027. {
  7028. drm_i915_private_t *dev_priv = dev->dev_private;
  7029. struct intel_crtc *crtc;
  7030. struct intel_dpll_hw_state dpll_hw_state;
  7031. int i;
  7032. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7033. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7034. int enabled_crtcs = 0, active_crtcs = 0;
  7035. bool active;
  7036. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7037. DRM_DEBUG_KMS("%s\n", pll->name);
  7038. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7039. WARN(pll->active > pll->refcount,
  7040. "more active pll users than references: %i vs %i\n",
  7041. pll->active, pll->refcount);
  7042. WARN(pll->active && !pll->on,
  7043. "pll in active use but not on in sw tracking\n");
  7044. WARN(pll->on != active,
  7045. "pll on state mismatch (expected %i, found %i)\n",
  7046. pll->on, active);
  7047. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7048. base.head) {
  7049. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7050. enabled_crtcs++;
  7051. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7052. active_crtcs++;
  7053. }
  7054. WARN(pll->active != active_crtcs,
  7055. "pll active crtcs mismatch (expected %i, found %i)\n",
  7056. pll->active, active_crtcs);
  7057. WARN(pll->refcount != enabled_crtcs,
  7058. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7059. pll->refcount, enabled_crtcs);
  7060. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7061. sizeof(dpll_hw_state)),
  7062. "pll hw state mismatch\n");
  7063. }
  7064. }
  7065. void
  7066. intel_modeset_check_state(struct drm_device *dev)
  7067. {
  7068. check_connector_state(dev);
  7069. check_encoder_state(dev);
  7070. check_crtc_state(dev);
  7071. check_shared_dpll_state(dev);
  7072. }
  7073. static int __intel_set_mode(struct drm_crtc *crtc,
  7074. struct drm_display_mode *mode,
  7075. int x, int y, struct drm_framebuffer *fb)
  7076. {
  7077. struct drm_device *dev = crtc->dev;
  7078. drm_i915_private_t *dev_priv = dev->dev_private;
  7079. struct drm_display_mode *saved_mode, *saved_hwmode;
  7080. struct intel_crtc_config *pipe_config = NULL;
  7081. struct intel_crtc *intel_crtc;
  7082. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7083. int ret = 0;
  7084. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7085. if (!saved_mode)
  7086. return -ENOMEM;
  7087. saved_hwmode = saved_mode + 1;
  7088. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7089. &prepare_pipes, &disable_pipes);
  7090. *saved_hwmode = crtc->hwmode;
  7091. *saved_mode = crtc->mode;
  7092. /* Hack: Because we don't (yet) support global modeset on multiple
  7093. * crtcs, we don't keep track of the new mode for more than one crtc.
  7094. * Hence simply check whether any bit is set in modeset_pipes in all the
  7095. * pieces of code that are not yet converted to deal with mutliple crtcs
  7096. * changing their mode at the same time. */
  7097. if (modeset_pipes) {
  7098. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7099. if (IS_ERR(pipe_config)) {
  7100. ret = PTR_ERR(pipe_config);
  7101. pipe_config = NULL;
  7102. goto out;
  7103. }
  7104. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7105. "[modeset]");
  7106. }
  7107. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7108. intel_crtc_disable(&intel_crtc->base);
  7109. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7110. if (intel_crtc->base.enabled)
  7111. dev_priv->display.crtc_disable(&intel_crtc->base);
  7112. }
  7113. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7114. * to set it here already despite that we pass it down the callchain.
  7115. */
  7116. if (modeset_pipes) {
  7117. crtc->mode = *mode;
  7118. /* mode_set/enable/disable functions rely on a correct pipe
  7119. * config. */
  7120. to_intel_crtc(crtc)->config = *pipe_config;
  7121. }
  7122. /* Only after disabling all output pipelines that will be changed can we
  7123. * update the the output configuration. */
  7124. intel_modeset_update_state(dev, prepare_pipes);
  7125. if (dev_priv->display.modeset_global_resources)
  7126. dev_priv->display.modeset_global_resources(dev);
  7127. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7128. * on the DPLL.
  7129. */
  7130. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7131. ret = intel_crtc_mode_set(&intel_crtc->base,
  7132. x, y, fb);
  7133. if (ret)
  7134. goto done;
  7135. }
  7136. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7137. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7138. dev_priv->display.crtc_enable(&intel_crtc->base);
  7139. if (modeset_pipes) {
  7140. /* Store real post-adjustment hardware mode. */
  7141. crtc->hwmode = pipe_config->adjusted_mode;
  7142. /* Calculate and store various constants which
  7143. * are later needed by vblank and swap-completion
  7144. * timestamping. They are derived from true hwmode.
  7145. */
  7146. drm_calc_timestamping_constants(crtc);
  7147. }
  7148. /* FIXME: add subpixel order */
  7149. done:
  7150. if (ret && crtc->enabled) {
  7151. crtc->hwmode = *saved_hwmode;
  7152. crtc->mode = *saved_mode;
  7153. }
  7154. out:
  7155. kfree(pipe_config);
  7156. kfree(saved_mode);
  7157. return ret;
  7158. }
  7159. int intel_set_mode(struct drm_crtc *crtc,
  7160. struct drm_display_mode *mode,
  7161. int x, int y, struct drm_framebuffer *fb)
  7162. {
  7163. int ret;
  7164. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7165. if (ret == 0)
  7166. intel_modeset_check_state(crtc->dev);
  7167. return ret;
  7168. }
  7169. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7170. {
  7171. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7172. }
  7173. #undef for_each_intel_crtc_masked
  7174. static void intel_set_config_free(struct intel_set_config *config)
  7175. {
  7176. if (!config)
  7177. return;
  7178. kfree(config->save_connector_encoders);
  7179. kfree(config->save_encoder_crtcs);
  7180. kfree(config);
  7181. }
  7182. static int intel_set_config_save_state(struct drm_device *dev,
  7183. struct intel_set_config *config)
  7184. {
  7185. struct drm_encoder *encoder;
  7186. struct drm_connector *connector;
  7187. int count;
  7188. config->save_encoder_crtcs =
  7189. kcalloc(dev->mode_config.num_encoder,
  7190. sizeof(struct drm_crtc *), GFP_KERNEL);
  7191. if (!config->save_encoder_crtcs)
  7192. return -ENOMEM;
  7193. config->save_connector_encoders =
  7194. kcalloc(dev->mode_config.num_connector,
  7195. sizeof(struct drm_encoder *), GFP_KERNEL);
  7196. if (!config->save_connector_encoders)
  7197. return -ENOMEM;
  7198. /* Copy data. Note that driver private data is not affected.
  7199. * Should anything bad happen only the expected state is
  7200. * restored, not the drivers personal bookkeeping.
  7201. */
  7202. count = 0;
  7203. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7204. config->save_encoder_crtcs[count++] = encoder->crtc;
  7205. }
  7206. count = 0;
  7207. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7208. config->save_connector_encoders[count++] = connector->encoder;
  7209. }
  7210. return 0;
  7211. }
  7212. static void intel_set_config_restore_state(struct drm_device *dev,
  7213. struct intel_set_config *config)
  7214. {
  7215. struct intel_encoder *encoder;
  7216. struct intel_connector *connector;
  7217. int count;
  7218. count = 0;
  7219. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7220. encoder->new_crtc =
  7221. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7222. }
  7223. count = 0;
  7224. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7225. connector->new_encoder =
  7226. to_intel_encoder(config->save_connector_encoders[count++]);
  7227. }
  7228. }
  7229. static bool
  7230. is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
  7231. int num_connectors)
  7232. {
  7233. int i;
  7234. for (i = 0; i < num_connectors; i++)
  7235. if (connectors[i].encoder &&
  7236. connectors[i].encoder->crtc == crtc &&
  7237. connectors[i].dpms != DRM_MODE_DPMS_ON)
  7238. return true;
  7239. return false;
  7240. }
  7241. static void
  7242. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7243. struct intel_set_config *config)
  7244. {
  7245. /* We should be able to check here if the fb has the same properties
  7246. * and then just flip_or_move it */
  7247. if (set->connectors != NULL &&
  7248. is_crtc_connector_off(set->crtc, *set->connectors,
  7249. set->num_connectors)) {
  7250. config->mode_changed = true;
  7251. } else if (set->crtc->fb != set->fb) {
  7252. /* If we have no fb then treat it as a full mode set */
  7253. if (set->crtc->fb == NULL) {
  7254. struct intel_crtc *intel_crtc =
  7255. to_intel_crtc(set->crtc);
  7256. if (intel_crtc->active && i915_fastboot) {
  7257. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7258. config->fb_changed = true;
  7259. } else {
  7260. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7261. config->mode_changed = true;
  7262. }
  7263. } else if (set->fb == NULL) {
  7264. config->mode_changed = true;
  7265. } else if (set->fb->pixel_format !=
  7266. set->crtc->fb->pixel_format) {
  7267. config->mode_changed = true;
  7268. } else {
  7269. config->fb_changed = true;
  7270. }
  7271. }
  7272. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7273. config->fb_changed = true;
  7274. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7275. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7276. drm_mode_debug_printmodeline(&set->crtc->mode);
  7277. drm_mode_debug_printmodeline(set->mode);
  7278. config->mode_changed = true;
  7279. }
  7280. }
  7281. static int
  7282. intel_modeset_stage_output_state(struct drm_device *dev,
  7283. struct drm_mode_set *set,
  7284. struct intel_set_config *config)
  7285. {
  7286. struct drm_crtc *new_crtc;
  7287. struct intel_connector *connector;
  7288. struct intel_encoder *encoder;
  7289. int count, ro;
  7290. /* The upper layers ensure that we either disable a crtc or have a list
  7291. * of connectors. For paranoia, double-check this. */
  7292. WARN_ON(!set->fb && (set->num_connectors != 0));
  7293. WARN_ON(set->fb && (set->num_connectors == 0));
  7294. count = 0;
  7295. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7296. base.head) {
  7297. /* Otherwise traverse passed in connector list and get encoders
  7298. * for them. */
  7299. for (ro = 0; ro < set->num_connectors; ro++) {
  7300. if (set->connectors[ro] == &connector->base) {
  7301. connector->new_encoder = connector->encoder;
  7302. break;
  7303. }
  7304. }
  7305. /* If we disable the crtc, disable all its connectors. Also, if
  7306. * the connector is on the changing crtc but not on the new
  7307. * connector list, disable it. */
  7308. if ((!set->fb || ro == set->num_connectors) &&
  7309. connector->base.encoder &&
  7310. connector->base.encoder->crtc == set->crtc) {
  7311. connector->new_encoder = NULL;
  7312. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7313. connector->base.base.id,
  7314. drm_get_connector_name(&connector->base));
  7315. }
  7316. if (&connector->new_encoder->base != connector->base.encoder) {
  7317. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7318. config->mode_changed = true;
  7319. }
  7320. }
  7321. /* connector->new_encoder is now updated for all connectors. */
  7322. /* Update crtc of enabled connectors. */
  7323. count = 0;
  7324. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7325. base.head) {
  7326. if (!connector->new_encoder)
  7327. continue;
  7328. new_crtc = connector->new_encoder->base.crtc;
  7329. for (ro = 0; ro < set->num_connectors; ro++) {
  7330. if (set->connectors[ro] == &connector->base)
  7331. new_crtc = set->crtc;
  7332. }
  7333. /* Make sure the new CRTC will work with the encoder */
  7334. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7335. new_crtc)) {
  7336. return -EINVAL;
  7337. }
  7338. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7339. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7340. connector->base.base.id,
  7341. drm_get_connector_name(&connector->base),
  7342. new_crtc->base.id);
  7343. }
  7344. /* Check for any encoders that needs to be disabled. */
  7345. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7346. base.head) {
  7347. list_for_each_entry(connector,
  7348. &dev->mode_config.connector_list,
  7349. base.head) {
  7350. if (connector->new_encoder == encoder) {
  7351. WARN_ON(!connector->new_encoder->new_crtc);
  7352. goto next_encoder;
  7353. }
  7354. }
  7355. encoder->new_crtc = NULL;
  7356. next_encoder:
  7357. /* Only now check for crtc changes so we don't miss encoders
  7358. * that will be disabled. */
  7359. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7360. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7361. config->mode_changed = true;
  7362. }
  7363. }
  7364. /* Now we've also updated encoder->new_crtc for all encoders. */
  7365. return 0;
  7366. }
  7367. static int intel_crtc_set_config(struct drm_mode_set *set)
  7368. {
  7369. struct drm_device *dev;
  7370. struct drm_mode_set save_set;
  7371. struct intel_set_config *config;
  7372. int ret;
  7373. BUG_ON(!set);
  7374. BUG_ON(!set->crtc);
  7375. BUG_ON(!set->crtc->helper_private);
  7376. /* Enforce sane interface api - has been abused by the fb helper. */
  7377. BUG_ON(!set->mode && set->fb);
  7378. BUG_ON(set->fb && set->num_connectors == 0);
  7379. if (set->fb) {
  7380. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7381. set->crtc->base.id, set->fb->base.id,
  7382. (int)set->num_connectors, set->x, set->y);
  7383. } else {
  7384. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7385. }
  7386. dev = set->crtc->dev;
  7387. ret = -ENOMEM;
  7388. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7389. if (!config)
  7390. goto out_config;
  7391. ret = intel_set_config_save_state(dev, config);
  7392. if (ret)
  7393. goto out_config;
  7394. save_set.crtc = set->crtc;
  7395. save_set.mode = &set->crtc->mode;
  7396. save_set.x = set->crtc->x;
  7397. save_set.y = set->crtc->y;
  7398. save_set.fb = set->crtc->fb;
  7399. /* Compute whether we need a full modeset, only an fb base update or no
  7400. * change at all. In the future we might also check whether only the
  7401. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7402. * such cases. */
  7403. intel_set_config_compute_mode_changes(set, config);
  7404. ret = intel_modeset_stage_output_state(dev, set, config);
  7405. if (ret)
  7406. goto fail;
  7407. if (config->mode_changed) {
  7408. ret = intel_set_mode(set->crtc, set->mode,
  7409. set->x, set->y, set->fb);
  7410. } else if (config->fb_changed) {
  7411. intel_crtc_wait_for_pending_flips(set->crtc);
  7412. ret = intel_pipe_set_base(set->crtc,
  7413. set->x, set->y, set->fb);
  7414. }
  7415. if (ret) {
  7416. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7417. set->crtc->base.id, ret);
  7418. fail:
  7419. intel_set_config_restore_state(dev, config);
  7420. /* Try to restore the config */
  7421. if (config->mode_changed &&
  7422. intel_set_mode(save_set.crtc, save_set.mode,
  7423. save_set.x, save_set.y, save_set.fb))
  7424. DRM_ERROR("failed to restore config after modeset failure\n");
  7425. }
  7426. out_config:
  7427. intel_set_config_free(config);
  7428. return ret;
  7429. }
  7430. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7431. .cursor_set = intel_crtc_cursor_set,
  7432. .cursor_move = intel_crtc_cursor_move,
  7433. .gamma_set = intel_crtc_gamma_set,
  7434. .set_config = intel_crtc_set_config,
  7435. .destroy = intel_crtc_destroy,
  7436. .page_flip = intel_crtc_page_flip,
  7437. };
  7438. static void intel_cpu_pll_init(struct drm_device *dev)
  7439. {
  7440. if (HAS_DDI(dev))
  7441. intel_ddi_pll_init(dev);
  7442. }
  7443. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7444. struct intel_shared_dpll *pll,
  7445. struct intel_dpll_hw_state *hw_state)
  7446. {
  7447. uint32_t val;
  7448. val = I915_READ(PCH_DPLL(pll->id));
  7449. hw_state->dpll = val;
  7450. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7451. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7452. return val & DPLL_VCO_ENABLE;
  7453. }
  7454. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7455. struct intel_shared_dpll *pll)
  7456. {
  7457. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7458. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7459. }
  7460. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7461. struct intel_shared_dpll *pll)
  7462. {
  7463. /* PCH refclock must be enabled first */
  7464. assert_pch_refclk_enabled(dev_priv);
  7465. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7466. /* Wait for the clocks to stabilize. */
  7467. POSTING_READ(PCH_DPLL(pll->id));
  7468. udelay(150);
  7469. /* The pixel multiplier can only be updated once the
  7470. * DPLL is enabled and the clocks are stable.
  7471. *
  7472. * So write it again.
  7473. */
  7474. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7475. POSTING_READ(PCH_DPLL(pll->id));
  7476. udelay(200);
  7477. }
  7478. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7479. struct intel_shared_dpll *pll)
  7480. {
  7481. struct drm_device *dev = dev_priv->dev;
  7482. struct intel_crtc *crtc;
  7483. /* Make sure no transcoder isn't still depending on us. */
  7484. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7485. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7486. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7487. }
  7488. I915_WRITE(PCH_DPLL(pll->id), 0);
  7489. POSTING_READ(PCH_DPLL(pll->id));
  7490. udelay(200);
  7491. }
  7492. static char *ibx_pch_dpll_names[] = {
  7493. "PCH DPLL A",
  7494. "PCH DPLL B",
  7495. };
  7496. static void ibx_pch_dpll_init(struct drm_device *dev)
  7497. {
  7498. struct drm_i915_private *dev_priv = dev->dev_private;
  7499. int i;
  7500. dev_priv->num_shared_dpll = 2;
  7501. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7502. dev_priv->shared_dplls[i].id = i;
  7503. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7504. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7505. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7506. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7507. dev_priv->shared_dplls[i].get_hw_state =
  7508. ibx_pch_dpll_get_hw_state;
  7509. }
  7510. }
  7511. static void intel_shared_dpll_init(struct drm_device *dev)
  7512. {
  7513. struct drm_i915_private *dev_priv = dev->dev_private;
  7514. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7515. ibx_pch_dpll_init(dev);
  7516. else
  7517. dev_priv->num_shared_dpll = 0;
  7518. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7519. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7520. dev_priv->num_shared_dpll);
  7521. }
  7522. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7523. {
  7524. drm_i915_private_t *dev_priv = dev->dev_private;
  7525. struct intel_crtc *intel_crtc;
  7526. int i;
  7527. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7528. if (intel_crtc == NULL)
  7529. return;
  7530. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7531. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7532. for (i = 0; i < 256; i++) {
  7533. intel_crtc->lut_r[i] = i;
  7534. intel_crtc->lut_g[i] = i;
  7535. intel_crtc->lut_b[i] = i;
  7536. }
  7537. /* Swap pipes & planes for FBC on pre-965 */
  7538. intel_crtc->pipe = pipe;
  7539. intel_crtc->plane = pipe;
  7540. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7541. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7542. intel_crtc->plane = !pipe;
  7543. }
  7544. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7545. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7546. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7547. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7548. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7549. }
  7550. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7551. struct drm_file *file)
  7552. {
  7553. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7554. struct drm_mode_object *drmmode_obj;
  7555. struct intel_crtc *crtc;
  7556. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7557. return -ENODEV;
  7558. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7559. DRM_MODE_OBJECT_CRTC);
  7560. if (!drmmode_obj) {
  7561. DRM_ERROR("no such CRTC id\n");
  7562. return -EINVAL;
  7563. }
  7564. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7565. pipe_from_crtc_id->pipe = crtc->pipe;
  7566. return 0;
  7567. }
  7568. static int intel_encoder_clones(struct intel_encoder *encoder)
  7569. {
  7570. struct drm_device *dev = encoder->base.dev;
  7571. struct intel_encoder *source_encoder;
  7572. int index_mask = 0;
  7573. int entry = 0;
  7574. list_for_each_entry(source_encoder,
  7575. &dev->mode_config.encoder_list, base.head) {
  7576. if (encoder == source_encoder)
  7577. index_mask |= (1 << entry);
  7578. /* Intel hw has only one MUX where enocoders could be cloned. */
  7579. if (encoder->cloneable && source_encoder->cloneable)
  7580. index_mask |= (1 << entry);
  7581. entry++;
  7582. }
  7583. return index_mask;
  7584. }
  7585. static bool has_edp_a(struct drm_device *dev)
  7586. {
  7587. struct drm_i915_private *dev_priv = dev->dev_private;
  7588. if (!IS_MOBILE(dev))
  7589. return false;
  7590. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7591. return false;
  7592. if (IS_GEN5(dev) &&
  7593. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7594. return false;
  7595. return true;
  7596. }
  7597. static void intel_setup_outputs(struct drm_device *dev)
  7598. {
  7599. struct drm_i915_private *dev_priv = dev->dev_private;
  7600. struct intel_encoder *encoder;
  7601. bool dpd_is_edp = false;
  7602. intel_lvds_init(dev);
  7603. if (!IS_ULT(dev))
  7604. intel_crt_init(dev);
  7605. if (HAS_DDI(dev)) {
  7606. int found;
  7607. /* Haswell uses DDI functions to detect digital outputs */
  7608. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7609. /* DDI A only supports eDP */
  7610. if (found)
  7611. intel_ddi_init(dev, PORT_A);
  7612. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7613. * register */
  7614. found = I915_READ(SFUSE_STRAP);
  7615. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7616. intel_ddi_init(dev, PORT_B);
  7617. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7618. intel_ddi_init(dev, PORT_C);
  7619. if (found & SFUSE_STRAP_DDID_DETECTED)
  7620. intel_ddi_init(dev, PORT_D);
  7621. } else if (HAS_PCH_SPLIT(dev)) {
  7622. int found;
  7623. dpd_is_edp = intel_dpd_is_edp(dev);
  7624. if (has_edp_a(dev))
  7625. intel_dp_init(dev, DP_A, PORT_A);
  7626. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7627. /* PCH SDVOB multiplex with HDMIB */
  7628. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7629. if (!found)
  7630. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7631. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7632. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7633. }
  7634. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7635. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7636. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7637. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7638. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7639. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7640. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7641. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7642. } else if (IS_VALLEYVIEW(dev)) {
  7643. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7644. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7645. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7646. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7647. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7648. PORT_B);
  7649. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7650. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7651. }
  7652. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7653. bool found = false;
  7654. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7655. DRM_DEBUG_KMS("probing SDVOB\n");
  7656. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7657. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7658. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7659. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7660. }
  7661. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7662. intel_dp_init(dev, DP_B, PORT_B);
  7663. }
  7664. /* Before G4X SDVOC doesn't have its own detect register */
  7665. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7666. DRM_DEBUG_KMS("probing SDVOC\n");
  7667. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7668. }
  7669. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7670. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7671. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7672. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7673. }
  7674. if (SUPPORTS_INTEGRATED_DP(dev))
  7675. intel_dp_init(dev, DP_C, PORT_C);
  7676. }
  7677. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7678. (I915_READ(DP_D) & DP_DETECTED))
  7679. intel_dp_init(dev, DP_D, PORT_D);
  7680. } else if (IS_GEN2(dev))
  7681. intel_dvo_init(dev);
  7682. if (SUPPORTS_TV(dev))
  7683. intel_tv_init(dev);
  7684. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7685. encoder->base.possible_crtcs = encoder->crtc_mask;
  7686. encoder->base.possible_clones =
  7687. intel_encoder_clones(encoder);
  7688. }
  7689. intel_init_pch_refclk(dev);
  7690. drm_helper_move_panel_connectors_to_head(dev);
  7691. }
  7692. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7693. {
  7694. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7695. drm_framebuffer_cleanup(fb);
  7696. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7697. kfree(intel_fb);
  7698. }
  7699. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7700. struct drm_file *file,
  7701. unsigned int *handle)
  7702. {
  7703. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7704. struct drm_i915_gem_object *obj = intel_fb->obj;
  7705. return drm_gem_handle_create(file, &obj->base, handle);
  7706. }
  7707. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7708. .destroy = intel_user_framebuffer_destroy,
  7709. .create_handle = intel_user_framebuffer_create_handle,
  7710. };
  7711. int intel_framebuffer_init(struct drm_device *dev,
  7712. struct intel_framebuffer *intel_fb,
  7713. struct drm_mode_fb_cmd2 *mode_cmd,
  7714. struct drm_i915_gem_object *obj)
  7715. {
  7716. int pitch_limit;
  7717. int ret;
  7718. if (obj->tiling_mode == I915_TILING_Y) {
  7719. DRM_DEBUG("hardware does not support tiling Y\n");
  7720. return -EINVAL;
  7721. }
  7722. if (mode_cmd->pitches[0] & 63) {
  7723. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7724. mode_cmd->pitches[0]);
  7725. return -EINVAL;
  7726. }
  7727. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  7728. pitch_limit = 32*1024;
  7729. } else if (INTEL_INFO(dev)->gen >= 4) {
  7730. if (obj->tiling_mode)
  7731. pitch_limit = 16*1024;
  7732. else
  7733. pitch_limit = 32*1024;
  7734. } else if (INTEL_INFO(dev)->gen >= 3) {
  7735. if (obj->tiling_mode)
  7736. pitch_limit = 8*1024;
  7737. else
  7738. pitch_limit = 16*1024;
  7739. } else
  7740. /* XXX DSPC is limited to 4k tiled */
  7741. pitch_limit = 8*1024;
  7742. if (mode_cmd->pitches[0] > pitch_limit) {
  7743. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  7744. obj->tiling_mode ? "tiled" : "linear",
  7745. mode_cmd->pitches[0], pitch_limit);
  7746. return -EINVAL;
  7747. }
  7748. if (obj->tiling_mode != I915_TILING_NONE &&
  7749. mode_cmd->pitches[0] != obj->stride) {
  7750. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7751. mode_cmd->pitches[0], obj->stride);
  7752. return -EINVAL;
  7753. }
  7754. /* Reject formats not supported by any plane early. */
  7755. switch (mode_cmd->pixel_format) {
  7756. case DRM_FORMAT_C8:
  7757. case DRM_FORMAT_RGB565:
  7758. case DRM_FORMAT_XRGB8888:
  7759. case DRM_FORMAT_ARGB8888:
  7760. break;
  7761. case DRM_FORMAT_XRGB1555:
  7762. case DRM_FORMAT_ARGB1555:
  7763. if (INTEL_INFO(dev)->gen > 3) {
  7764. DRM_DEBUG("unsupported pixel format: %s\n",
  7765. drm_get_format_name(mode_cmd->pixel_format));
  7766. return -EINVAL;
  7767. }
  7768. break;
  7769. case DRM_FORMAT_XBGR8888:
  7770. case DRM_FORMAT_ABGR8888:
  7771. case DRM_FORMAT_XRGB2101010:
  7772. case DRM_FORMAT_ARGB2101010:
  7773. case DRM_FORMAT_XBGR2101010:
  7774. case DRM_FORMAT_ABGR2101010:
  7775. if (INTEL_INFO(dev)->gen < 4) {
  7776. DRM_DEBUG("unsupported pixel format: %s\n",
  7777. drm_get_format_name(mode_cmd->pixel_format));
  7778. return -EINVAL;
  7779. }
  7780. break;
  7781. case DRM_FORMAT_YUYV:
  7782. case DRM_FORMAT_UYVY:
  7783. case DRM_FORMAT_YVYU:
  7784. case DRM_FORMAT_VYUY:
  7785. if (INTEL_INFO(dev)->gen < 5) {
  7786. DRM_DEBUG("unsupported pixel format: %s\n",
  7787. drm_get_format_name(mode_cmd->pixel_format));
  7788. return -EINVAL;
  7789. }
  7790. break;
  7791. default:
  7792. DRM_DEBUG("unsupported pixel format: %s\n",
  7793. drm_get_format_name(mode_cmd->pixel_format));
  7794. return -EINVAL;
  7795. }
  7796. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7797. if (mode_cmd->offsets[0] != 0)
  7798. return -EINVAL;
  7799. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7800. intel_fb->obj = obj;
  7801. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7802. if (ret) {
  7803. DRM_ERROR("framebuffer init failed %d\n", ret);
  7804. return ret;
  7805. }
  7806. return 0;
  7807. }
  7808. static struct drm_framebuffer *
  7809. intel_user_framebuffer_create(struct drm_device *dev,
  7810. struct drm_file *filp,
  7811. struct drm_mode_fb_cmd2 *mode_cmd)
  7812. {
  7813. struct drm_i915_gem_object *obj;
  7814. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7815. mode_cmd->handles[0]));
  7816. if (&obj->base == NULL)
  7817. return ERR_PTR(-ENOENT);
  7818. return intel_framebuffer_create(dev, mode_cmd, obj);
  7819. }
  7820. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7821. .fb_create = intel_user_framebuffer_create,
  7822. .output_poll_changed = intel_fb_output_poll_changed,
  7823. };
  7824. /* Set up chip specific display functions */
  7825. static void intel_init_display(struct drm_device *dev)
  7826. {
  7827. struct drm_i915_private *dev_priv = dev->dev_private;
  7828. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  7829. dev_priv->display.find_dpll = g4x_find_best_dpll;
  7830. else if (IS_VALLEYVIEW(dev))
  7831. dev_priv->display.find_dpll = vlv_find_best_dpll;
  7832. else if (IS_PINEVIEW(dev))
  7833. dev_priv->display.find_dpll = pnv_find_best_dpll;
  7834. else
  7835. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  7836. if (HAS_DDI(dev)) {
  7837. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7838. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7839. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7840. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7841. dev_priv->display.off = haswell_crtc_off;
  7842. dev_priv->display.update_plane = ironlake_update_plane;
  7843. } else if (HAS_PCH_SPLIT(dev)) {
  7844. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7845. dev_priv->display.get_clock = ironlake_crtc_clock_get;
  7846. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7847. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7848. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7849. dev_priv->display.off = ironlake_crtc_off;
  7850. dev_priv->display.update_plane = ironlake_update_plane;
  7851. } else if (IS_VALLEYVIEW(dev)) {
  7852. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7853. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  7854. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7855. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7856. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7857. dev_priv->display.off = i9xx_crtc_off;
  7858. dev_priv->display.update_plane = i9xx_update_plane;
  7859. } else {
  7860. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7861. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  7862. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7863. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7864. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7865. dev_priv->display.off = i9xx_crtc_off;
  7866. dev_priv->display.update_plane = i9xx_update_plane;
  7867. }
  7868. /* Returns the core display clock speed */
  7869. if (IS_VALLEYVIEW(dev))
  7870. dev_priv->display.get_display_clock_speed =
  7871. valleyview_get_display_clock_speed;
  7872. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7873. dev_priv->display.get_display_clock_speed =
  7874. i945_get_display_clock_speed;
  7875. else if (IS_I915G(dev))
  7876. dev_priv->display.get_display_clock_speed =
  7877. i915_get_display_clock_speed;
  7878. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7879. dev_priv->display.get_display_clock_speed =
  7880. i9xx_misc_get_display_clock_speed;
  7881. else if (IS_I915GM(dev))
  7882. dev_priv->display.get_display_clock_speed =
  7883. i915gm_get_display_clock_speed;
  7884. else if (IS_I865G(dev))
  7885. dev_priv->display.get_display_clock_speed =
  7886. i865_get_display_clock_speed;
  7887. else if (IS_I85X(dev))
  7888. dev_priv->display.get_display_clock_speed =
  7889. i855_get_display_clock_speed;
  7890. else /* 852, 830 */
  7891. dev_priv->display.get_display_clock_speed =
  7892. i830_get_display_clock_speed;
  7893. if (HAS_PCH_SPLIT(dev)) {
  7894. if (IS_GEN5(dev)) {
  7895. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7896. dev_priv->display.write_eld = ironlake_write_eld;
  7897. } else if (IS_GEN6(dev)) {
  7898. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7899. dev_priv->display.write_eld = ironlake_write_eld;
  7900. } else if (IS_IVYBRIDGE(dev)) {
  7901. /* FIXME: detect B0+ stepping and use auto training */
  7902. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7903. dev_priv->display.write_eld = ironlake_write_eld;
  7904. dev_priv->display.modeset_global_resources =
  7905. ivb_modeset_global_resources;
  7906. } else if (IS_HASWELL(dev)) {
  7907. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7908. dev_priv->display.write_eld = haswell_write_eld;
  7909. dev_priv->display.modeset_global_resources =
  7910. haswell_modeset_global_resources;
  7911. }
  7912. } else if (IS_G4X(dev)) {
  7913. dev_priv->display.write_eld = g4x_write_eld;
  7914. }
  7915. /* Default just returns -ENODEV to indicate unsupported */
  7916. dev_priv->display.queue_flip = intel_default_queue_flip;
  7917. switch (INTEL_INFO(dev)->gen) {
  7918. case 2:
  7919. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7920. break;
  7921. case 3:
  7922. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7923. break;
  7924. case 4:
  7925. case 5:
  7926. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7927. break;
  7928. case 6:
  7929. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7930. break;
  7931. case 7:
  7932. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7933. break;
  7934. }
  7935. }
  7936. /*
  7937. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7938. * resume, or other times. This quirk makes sure that's the case for
  7939. * affected systems.
  7940. */
  7941. static void quirk_pipea_force(struct drm_device *dev)
  7942. {
  7943. struct drm_i915_private *dev_priv = dev->dev_private;
  7944. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7945. DRM_INFO("applying pipe a force quirk\n");
  7946. }
  7947. /*
  7948. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7949. */
  7950. static void quirk_ssc_force_disable(struct drm_device *dev)
  7951. {
  7952. struct drm_i915_private *dev_priv = dev->dev_private;
  7953. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7954. DRM_INFO("applying lvds SSC disable quirk\n");
  7955. }
  7956. /*
  7957. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7958. * brightness value
  7959. */
  7960. static void quirk_invert_brightness(struct drm_device *dev)
  7961. {
  7962. struct drm_i915_private *dev_priv = dev->dev_private;
  7963. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7964. DRM_INFO("applying inverted panel brightness quirk\n");
  7965. }
  7966. struct intel_quirk {
  7967. int device;
  7968. int subsystem_vendor;
  7969. int subsystem_device;
  7970. void (*hook)(struct drm_device *dev);
  7971. };
  7972. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7973. struct intel_dmi_quirk {
  7974. void (*hook)(struct drm_device *dev);
  7975. const struct dmi_system_id (*dmi_id_list)[];
  7976. };
  7977. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7978. {
  7979. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7980. return 1;
  7981. }
  7982. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7983. {
  7984. .dmi_id_list = &(const struct dmi_system_id[]) {
  7985. {
  7986. .callback = intel_dmi_reverse_brightness,
  7987. .ident = "NCR Corporation",
  7988. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7989. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7990. },
  7991. },
  7992. { } /* terminating entry */
  7993. },
  7994. .hook = quirk_invert_brightness,
  7995. },
  7996. };
  7997. static struct intel_quirk intel_quirks[] = {
  7998. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7999. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8000. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8001. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8002. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8003. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8004. /* 830/845 need to leave pipe A & dpll A up */
  8005. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8006. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8007. /* Lenovo U160 cannot use SSC on LVDS */
  8008. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8009. /* Sony Vaio Y cannot use SSC on LVDS */
  8010. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8011. /* Acer Aspire 5734Z must invert backlight brightness */
  8012. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8013. /* Acer/eMachines G725 */
  8014. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  8015. /* Acer/eMachines e725 */
  8016. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8017. /* Acer/Packard Bell NCL20 */
  8018. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8019. /* Acer Aspire 4736Z */
  8020. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8021. };
  8022. static void intel_init_quirks(struct drm_device *dev)
  8023. {
  8024. struct pci_dev *d = dev->pdev;
  8025. int i;
  8026. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8027. struct intel_quirk *q = &intel_quirks[i];
  8028. if (d->device == q->device &&
  8029. (d->subsystem_vendor == q->subsystem_vendor ||
  8030. q->subsystem_vendor == PCI_ANY_ID) &&
  8031. (d->subsystem_device == q->subsystem_device ||
  8032. q->subsystem_device == PCI_ANY_ID))
  8033. q->hook(dev);
  8034. }
  8035. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8036. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8037. intel_dmi_quirks[i].hook(dev);
  8038. }
  8039. }
  8040. /* Disable the VGA plane that we never use */
  8041. static void i915_disable_vga(struct drm_device *dev)
  8042. {
  8043. struct drm_i915_private *dev_priv = dev->dev_private;
  8044. u8 sr1;
  8045. u32 vga_reg = i915_vgacntrl_reg(dev);
  8046. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8047. outb(SR01, VGA_SR_INDEX);
  8048. sr1 = inb(VGA_SR_DATA);
  8049. outb(sr1 | 1<<5, VGA_SR_DATA);
  8050. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8051. udelay(300);
  8052. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8053. POSTING_READ(vga_reg);
  8054. }
  8055. void intel_modeset_init_hw(struct drm_device *dev)
  8056. {
  8057. intel_init_power_well(dev);
  8058. intel_prepare_ddi(dev);
  8059. intel_init_clock_gating(dev);
  8060. mutex_lock(&dev->struct_mutex);
  8061. intel_enable_gt_powersave(dev);
  8062. mutex_unlock(&dev->struct_mutex);
  8063. }
  8064. void intel_modeset_suspend_hw(struct drm_device *dev)
  8065. {
  8066. intel_suspend_hw(dev);
  8067. }
  8068. void intel_modeset_init(struct drm_device *dev)
  8069. {
  8070. struct drm_i915_private *dev_priv = dev->dev_private;
  8071. int i, j, ret;
  8072. drm_mode_config_init(dev);
  8073. dev->mode_config.min_width = 0;
  8074. dev->mode_config.min_height = 0;
  8075. dev->mode_config.preferred_depth = 24;
  8076. dev->mode_config.prefer_shadow = 1;
  8077. dev->mode_config.funcs = &intel_mode_funcs;
  8078. intel_init_quirks(dev);
  8079. intel_init_pm(dev);
  8080. if (INTEL_INFO(dev)->num_pipes == 0)
  8081. return;
  8082. intel_init_display(dev);
  8083. if (IS_GEN2(dev)) {
  8084. dev->mode_config.max_width = 2048;
  8085. dev->mode_config.max_height = 2048;
  8086. } else if (IS_GEN3(dev)) {
  8087. dev->mode_config.max_width = 4096;
  8088. dev->mode_config.max_height = 4096;
  8089. } else {
  8090. dev->mode_config.max_width = 8192;
  8091. dev->mode_config.max_height = 8192;
  8092. }
  8093. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8094. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8095. INTEL_INFO(dev)->num_pipes,
  8096. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8097. for_each_pipe(i) {
  8098. intel_crtc_init(dev, i);
  8099. for (j = 0; j < dev_priv->num_plane; j++) {
  8100. ret = intel_plane_init(dev, i, j);
  8101. if (ret)
  8102. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8103. pipe_name(i), sprite_name(i, j), ret);
  8104. }
  8105. }
  8106. intel_cpu_pll_init(dev);
  8107. intel_shared_dpll_init(dev);
  8108. /* Just disable it once at startup */
  8109. i915_disable_vga(dev);
  8110. intel_setup_outputs(dev);
  8111. /* Just in case the BIOS is doing something questionable. */
  8112. intel_disable_fbc(dev);
  8113. }
  8114. static void
  8115. intel_connector_break_all_links(struct intel_connector *connector)
  8116. {
  8117. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8118. connector->base.encoder = NULL;
  8119. connector->encoder->connectors_active = false;
  8120. connector->encoder->base.crtc = NULL;
  8121. }
  8122. static void intel_enable_pipe_a(struct drm_device *dev)
  8123. {
  8124. struct intel_connector *connector;
  8125. struct drm_connector *crt = NULL;
  8126. struct intel_load_detect_pipe load_detect_temp;
  8127. /* We can't just switch on the pipe A, we need to set things up with a
  8128. * proper mode and output configuration. As a gross hack, enable pipe A
  8129. * by enabling the load detect pipe once. */
  8130. list_for_each_entry(connector,
  8131. &dev->mode_config.connector_list,
  8132. base.head) {
  8133. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8134. crt = &connector->base;
  8135. break;
  8136. }
  8137. }
  8138. if (!crt)
  8139. return;
  8140. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8141. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8142. }
  8143. static bool
  8144. intel_check_plane_mapping(struct intel_crtc *crtc)
  8145. {
  8146. struct drm_device *dev = crtc->base.dev;
  8147. struct drm_i915_private *dev_priv = dev->dev_private;
  8148. u32 reg, val;
  8149. if (INTEL_INFO(dev)->num_pipes == 1)
  8150. return true;
  8151. reg = DSPCNTR(!crtc->plane);
  8152. val = I915_READ(reg);
  8153. if ((val & DISPLAY_PLANE_ENABLE) &&
  8154. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8155. return false;
  8156. return true;
  8157. }
  8158. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8159. {
  8160. struct drm_device *dev = crtc->base.dev;
  8161. struct drm_i915_private *dev_priv = dev->dev_private;
  8162. u32 reg;
  8163. /* Clear any frame start delays used for debugging left by the BIOS */
  8164. reg = PIPECONF(crtc->config.cpu_transcoder);
  8165. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8166. /* We need to sanitize the plane -> pipe mapping first because this will
  8167. * disable the crtc (and hence change the state) if it is wrong. Note
  8168. * that gen4+ has a fixed plane -> pipe mapping. */
  8169. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8170. struct intel_connector *connector;
  8171. bool plane;
  8172. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8173. crtc->base.base.id);
  8174. /* Pipe has the wrong plane attached and the plane is active.
  8175. * Temporarily change the plane mapping and disable everything
  8176. * ... */
  8177. plane = crtc->plane;
  8178. crtc->plane = !plane;
  8179. dev_priv->display.crtc_disable(&crtc->base);
  8180. crtc->plane = plane;
  8181. /* ... and break all links. */
  8182. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8183. base.head) {
  8184. if (connector->encoder->base.crtc != &crtc->base)
  8185. continue;
  8186. intel_connector_break_all_links(connector);
  8187. }
  8188. WARN_ON(crtc->active);
  8189. crtc->base.enabled = false;
  8190. }
  8191. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8192. crtc->pipe == PIPE_A && !crtc->active) {
  8193. /* BIOS forgot to enable pipe A, this mostly happens after
  8194. * resume. Force-enable the pipe to fix this, the update_dpms
  8195. * call below we restore the pipe to the right state, but leave
  8196. * the required bits on. */
  8197. intel_enable_pipe_a(dev);
  8198. }
  8199. /* Adjust the state of the output pipe according to whether we
  8200. * have active connectors/encoders. */
  8201. intel_crtc_update_dpms(&crtc->base);
  8202. if (crtc->active != crtc->base.enabled) {
  8203. struct intel_encoder *encoder;
  8204. /* This can happen either due to bugs in the get_hw_state
  8205. * functions or because the pipe is force-enabled due to the
  8206. * pipe A quirk. */
  8207. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8208. crtc->base.base.id,
  8209. crtc->base.enabled ? "enabled" : "disabled",
  8210. crtc->active ? "enabled" : "disabled");
  8211. crtc->base.enabled = crtc->active;
  8212. /* Because we only establish the connector -> encoder ->
  8213. * crtc links if something is active, this means the
  8214. * crtc is now deactivated. Break the links. connector
  8215. * -> encoder links are only establish when things are
  8216. * actually up, hence no need to break them. */
  8217. WARN_ON(crtc->active);
  8218. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8219. WARN_ON(encoder->connectors_active);
  8220. encoder->base.crtc = NULL;
  8221. }
  8222. }
  8223. }
  8224. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8225. {
  8226. struct intel_connector *connector;
  8227. struct drm_device *dev = encoder->base.dev;
  8228. /* We need to check both for a crtc link (meaning that the
  8229. * encoder is active and trying to read from a pipe) and the
  8230. * pipe itself being active. */
  8231. bool has_active_crtc = encoder->base.crtc &&
  8232. to_intel_crtc(encoder->base.crtc)->active;
  8233. if (encoder->connectors_active && !has_active_crtc) {
  8234. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8235. encoder->base.base.id,
  8236. drm_get_encoder_name(&encoder->base));
  8237. /* Connector is active, but has no active pipe. This is
  8238. * fallout from our resume register restoring. Disable
  8239. * the encoder manually again. */
  8240. if (encoder->base.crtc) {
  8241. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8242. encoder->base.base.id,
  8243. drm_get_encoder_name(&encoder->base));
  8244. encoder->disable(encoder);
  8245. }
  8246. /* Inconsistent output/port/pipe state happens presumably due to
  8247. * a bug in one of the get_hw_state functions. Or someplace else
  8248. * in our code, like the register restore mess on resume. Clamp
  8249. * things to off as a safer default. */
  8250. list_for_each_entry(connector,
  8251. &dev->mode_config.connector_list,
  8252. base.head) {
  8253. if (connector->encoder != encoder)
  8254. continue;
  8255. intel_connector_break_all_links(connector);
  8256. }
  8257. }
  8258. /* Enabled encoders without active connectors will be fixed in
  8259. * the crtc fixup. */
  8260. }
  8261. void i915_redisable_vga(struct drm_device *dev)
  8262. {
  8263. struct drm_i915_private *dev_priv = dev->dev_private;
  8264. u32 vga_reg = i915_vgacntrl_reg(dev);
  8265. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8266. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8267. i915_disable_vga(dev);
  8268. }
  8269. }
  8270. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8271. {
  8272. struct drm_i915_private *dev_priv = dev->dev_private;
  8273. enum pipe pipe;
  8274. struct intel_crtc *crtc;
  8275. struct intel_encoder *encoder;
  8276. struct intel_connector *connector;
  8277. int i;
  8278. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8279. base.head) {
  8280. memset(&crtc->config, 0, sizeof(crtc->config));
  8281. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8282. &crtc->config);
  8283. crtc->base.enabled = crtc->active;
  8284. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8285. crtc->base.base.id,
  8286. crtc->active ? "enabled" : "disabled");
  8287. }
  8288. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8289. if (HAS_DDI(dev))
  8290. intel_ddi_setup_hw_pll_state(dev);
  8291. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8292. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8293. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8294. pll->active = 0;
  8295. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8296. base.head) {
  8297. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8298. pll->active++;
  8299. }
  8300. pll->refcount = pll->active;
  8301. DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
  8302. pll->name, pll->refcount);
  8303. }
  8304. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8305. base.head) {
  8306. pipe = 0;
  8307. if (encoder->get_hw_state(encoder, &pipe)) {
  8308. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8309. encoder->base.crtc = &crtc->base;
  8310. if (encoder->get_config)
  8311. encoder->get_config(encoder, &crtc->config);
  8312. } else {
  8313. encoder->base.crtc = NULL;
  8314. }
  8315. encoder->connectors_active = false;
  8316. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8317. encoder->base.base.id,
  8318. drm_get_encoder_name(&encoder->base),
  8319. encoder->base.crtc ? "enabled" : "disabled",
  8320. pipe);
  8321. }
  8322. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8323. base.head) {
  8324. if (!crtc->active)
  8325. continue;
  8326. if (dev_priv->display.get_clock)
  8327. dev_priv->display.get_clock(crtc,
  8328. &crtc->config);
  8329. }
  8330. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8331. base.head) {
  8332. if (connector->get_hw_state(connector)) {
  8333. connector->base.dpms = DRM_MODE_DPMS_ON;
  8334. connector->encoder->connectors_active = true;
  8335. connector->base.encoder = &connector->encoder->base;
  8336. } else {
  8337. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8338. connector->base.encoder = NULL;
  8339. }
  8340. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8341. connector->base.base.id,
  8342. drm_get_connector_name(&connector->base),
  8343. connector->base.encoder ? "enabled" : "disabled");
  8344. }
  8345. }
  8346. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8347. * and i915 state tracking structures. */
  8348. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8349. bool force_restore)
  8350. {
  8351. struct drm_i915_private *dev_priv = dev->dev_private;
  8352. enum pipe pipe;
  8353. struct drm_plane *plane;
  8354. struct intel_crtc *crtc;
  8355. struct intel_encoder *encoder;
  8356. intel_modeset_readout_hw_state(dev);
  8357. /*
  8358. * Now that we have the config, copy it to each CRTC struct
  8359. * Note that this could go away if we move to using crtc_config
  8360. * checking everywhere.
  8361. */
  8362. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8363. base.head) {
  8364. if (crtc->active && i915_fastboot) {
  8365. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8366. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8367. crtc->base.base.id);
  8368. drm_mode_debug_printmodeline(&crtc->base.mode);
  8369. }
  8370. }
  8371. /* HW state is read out, now we need to sanitize this mess. */
  8372. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8373. base.head) {
  8374. intel_sanitize_encoder(encoder);
  8375. }
  8376. for_each_pipe(pipe) {
  8377. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8378. intel_sanitize_crtc(crtc);
  8379. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8380. }
  8381. if (force_restore) {
  8382. /*
  8383. * We need to use raw interfaces for restoring state to avoid
  8384. * checking (bogus) intermediate states.
  8385. */
  8386. for_each_pipe(pipe) {
  8387. struct drm_crtc *crtc =
  8388. dev_priv->pipe_to_crtc_mapping[pipe];
  8389. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8390. crtc->fb);
  8391. }
  8392. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8393. intel_plane_restore(plane);
  8394. i915_redisable_vga(dev);
  8395. } else {
  8396. intel_modeset_update_staged_output_state(dev);
  8397. }
  8398. intel_modeset_check_state(dev);
  8399. drm_mode_config_reset(dev);
  8400. }
  8401. void intel_modeset_gem_init(struct drm_device *dev)
  8402. {
  8403. intel_modeset_init_hw(dev);
  8404. intel_setup_overlay(dev);
  8405. intel_modeset_setup_hw_state(dev, false);
  8406. }
  8407. void intel_modeset_cleanup(struct drm_device *dev)
  8408. {
  8409. struct drm_i915_private *dev_priv = dev->dev_private;
  8410. struct drm_crtc *crtc;
  8411. struct intel_crtc *intel_crtc;
  8412. /*
  8413. * Interrupts and polling as the first thing to avoid creating havoc.
  8414. * Too much stuff here (turning of rps, connectors, ...) would
  8415. * experience fancy races otherwise.
  8416. */
  8417. drm_irq_uninstall(dev);
  8418. cancel_work_sync(&dev_priv->hotplug_work);
  8419. /*
  8420. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8421. * poll handlers. Hence disable polling after hpd handling is shut down.
  8422. */
  8423. drm_kms_helper_poll_fini(dev);
  8424. mutex_lock(&dev->struct_mutex);
  8425. intel_unregister_dsm_handler();
  8426. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8427. /* Skip inactive CRTCs */
  8428. if (!crtc->fb)
  8429. continue;
  8430. intel_crtc = to_intel_crtc(crtc);
  8431. intel_increase_pllclock(crtc);
  8432. }
  8433. intel_disable_fbc(dev);
  8434. intel_disable_gt_powersave(dev);
  8435. ironlake_teardown_rc6(dev);
  8436. mutex_unlock(&dev->struct_mutex);
  8437. /* flush any delayed tasks or pending work */
  8438. flush_scheduled_work();
  8439. /* destroy backlight, if any, before the connectors */
  8440. intel_panel_destroy_backlight(dev);
  8441. drm_mode_config_cleanup(dev);
  8442. intel_cleanup_overlay(dev);
  8443. }
  8444. /*
  8445. * Return which encoder is currently attached for connector.
  8446. */
  8447. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8448. {
  8449. return &intel_attached_encoder(connector)->base;
  8450. }
  8451. void intel_connector_attach_encoder(struct intel_connector *connector,
  8452. struct intel_encoder *encoder)
  8453. {
  8454. connector->encoder = encoder;
  8455. drm_mode_connector_attach_encoder(&connector->base,
  8456. &encoder->base);
  8457. }
  8458. /*
  8459. * set vga decode state - true == enable VGA decode
  8460. */
  8461. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8462. {
  8463. struct drm_i915_private *dev_priv = dev->dev_private;
  8464. u16 gmch_ctrl;
  8465. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8466. if (state)
  8467. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8468. else
  8469. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8470. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8471. return 0;
  8472. }
  8473. struct intel_display_error_state {
  8474. u32 power_well_driver;
  8475. struct intel_cursor_error_state {
  8476. u32 control;
  8477. u32 position;
  8478. u32 base;
  8479. u32 size;
  8480. } cursor[I915_MAX_PIPES];
  8481. struct intel_pipe_error_state {
  8482. enum transcoder cpu_transcoder;
  8483. u32 conf;
  8484. u32 source;
  8485. u32 htotal;
  8486. u32 hblank;
  8487. u32 hsync;
  8488. u32 vtotal;
  8489. u32 vblank;
  8490. u32 vsync;
  8491. } pipe[I915_MAX_PIPES];
  8492. struct intel_plane_error_state {
  8493. u32 control;
  8494. u32 stride;
  8495. u32 size;
  8496. u32 pos;
  8497. u32 addr;
  8498. u32 surface;
  8499. u32 tile_offset;
  8500. } plane[I915_MAX_PIPES];
  8501. };
  8502. struct intel_display_error_state *
  8503. intel_display_capture_error_state(struct drm_device *dev)
  8504. {
  8505. drm_i915_private_t *dev_priv = dev->dev_private;
  8506. struct intel_display_error_state *error;
  8507. enum transcoder cpu_transcoder;
  8508. int i;
  8509. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8510. if (error == NULL)
  8511. return NULL;
  8512. if (HAS_POWER_WELL(dev))
  8513. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8514. for_each_pipe(i) {
  8515. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8516. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8517. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8518. error->cursor[i].control = I915_READ(CURCNTR(i));
  8519. error->cursor[i].position = I915_READ(CURPOS(i));
  8520. error->cursor[i].base = I915_READ(CURBASE(i));
  8521. } else {
  8522. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8523. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8524. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8525. }
  8526. error->plane[i].control = I915_READ(DSPCNTR(i));
  8527. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8528. if (INTEL_INFO(dev)->gen <= 3) {
  8529. error->plane[i].size = I915_READ(DSPSIZE(i));
  8530. error->plane[i].pos = I915_READ(DSPPOS(i));
  8531. }
  8532. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8533. error->plane[i].addr = I915_READ(DSPADDR(i));
  8534. if (INTEL_INFO(dev)->gen >= 4) {
  8535. error->plane[i].surface = I915_READ(DSPSURF(i));
  8536. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8537. }
  8538. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8539. error->pipe[i].source = I915_READ(PIPESRC(i));
  8540. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8541. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8542. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8543. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8544. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8545. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8546. }
  8547. /* In the code above we read the registers without checking if the power
  8548. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8549. * prevent the next I915_WRITE from detecting it and printing an error
  8550. * message. */
  8551. if (HAS_POWER_WELL(dev))
  8552. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8553. return error;
  8554. }
  8555. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8556. void
  8557. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8558. struct drm_device *dev,
  8559. struct intel_display_error_state *error)
  8560. {
  8561. int i;
  8562. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8563. if (HAS_POWER_WELL(dev))
  8564. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8565. error->power_well_driver);
  8566. for_each_pipe(i) {
  8567. err_printf(m, "Pipe [%d]:\n", i);
  8568. err_printf(m, " CPU transcoder: %c\n",
  8569. transcoder_name(error->pipe[i].cpu_transcoder));
  8570. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8571. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8572. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8573. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8574. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8575. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8576. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8577. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8578. err_printf(m, "Plane [%d]:\n", i);
  8579. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8580. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8581. if (INTEL_INFO(dev)->gen <= 3) {
  8582. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8583. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8584. }
  8585. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8586. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8587. if (INTEL_INFO(dev)->gen >= 4) {
  8588. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8589. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8590. }
  8591. err_printf(m, "Cursor [%d]:\n", i);
  8592. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8593. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8594. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8595. }
  8596. }