tsc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896
  1. #include <linux/kernel.h>
  2. #include <linux/sched.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/timer.h>
  6. #include <linux/acpi_pmtmr.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/dmi.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <asm/hpet.h>
  13. #include <asm/timer.h>
  14. #include <asm/vgtod.h>
  15. #include <asm/time.h>
  16. #include <asm/delay.h>
  17. #include <asm/hypervisor.h>
  18. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  19. EXPORT_SYMBOL(cpu_khz);
  20. unsigned int __read_mostly tsc_khz;
  21. EXPORT_SYMBOL(tsc_khz);
  22. /*
  23. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  24. */
  25. static int __read_mostly tsc_unstable;
  26. /* native_sched_clock() is called before tsc_init(), so
  27. we must start with the TSC soft disabled to prevent
  28. erroneous rdtsc usage on !cpu_has_tsc processors */
  29. static int __read_mostly tsc_disabled = -1;
  30. static int tsc_clocksource_reliable;
  31. /*
  32. * Scheduler clock - returns current time in nanosec units.
  33. */
  34. u64 native_sched_clock(void)
  35. {
  36. u64 this_offset;
  37. /*
  38. * Fall back to jiffies if there's no TSC available:
  39. * ( But note that we still use it if the TSC is marked
  40. * unstable. We do this because unlike Time Of Day,
  41. * the scheduler clock tolerates small errors and it's
  42. * very important for it to be as fast as the platform
  43. * can achive it. )
  44. */
  45. if (unlikely(tsc_disabled)) {
  46. /* No locking but a rare wrong value is not a big deal: */
  47. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  48. }
  49. /* read the Time Stamp Counter: */
  50. rdtscll(this_offset);
  51. /* return the value in ns */
  52. return __cycles_2_ns(this_offset);
  53. }
  54. /* We need to define a real function for sched_clock, to override the
  55. weak default version */
  56. #ifdef CONFIG_PARAVIRT
  57. unsigned long long sched_clock(void)
  58. {
  59. return paravirt_sched_clock();
  60. }
  61. #else
  62. unsigned long long
  63. sched_clock(void) __attribute__((alias("native_sched_clock")));
  64. #endif
  65. int check_tsc_unstable(void)
  66. {
  67. return tsc_unstable;
  68. }
  69. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  70. #ifdef CONFIG_X86_TSC
  71. int __init notsc_setup(char *str)
  72. {
  73. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  74. "cannot disable TSC completely.\n");
  75. tsc_disabled = 1;
  76. return 1;
  77. }
  78. #else
  79. /*
  80. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  81. * in cpu/common.c
  82. */
  83. int __init notsc_setup(char *str)
  84. {
  85. setup_clear_cpu_cap(X86_FEATURE_TSC);
  86. return 1;
  87. }
  88. #endif
  89. __setup("notsc", notsc_setup);
  90. static int __init tsc_setup(char *str)
  91. {
  92. if (!strcmp(str, "reliable"))
  93. tsc_clocksource_reliable = 1;
  94. return 1;
  95. }
  96. __setup("tsc=", tsc_setup);
  97. #define MAX_RETRIES 5
  98. #define SMI_TRESHOLD 50000
  99. /*
  100. * Read TSC and the reference counters. Take care of SMI disturbance
  101. */
  102. static u64 tsc_read_refs(u64 *p, int hpet)
  103. {
  104. u64 t1, t2;
  105. int i;
  106. for (i = 0; i < MAX_RETRIES; i++) {
  107. t1 = get_cycles();
  108. if (hpet)
  109. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  110. else
  111. *p = acpi_pm_read_early();
  112. t2 = get_cycles();
  113. if ((t2 - t1) < SMI_TRESHOLD)
  114. return t2;
  115. }
  116. return ULLONG_MAX;
  117. }
  118. /*
  119. * Calculate the TSC frequency from HPET reference
  120. */
  121. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  122. {
  123. u64 tmp;
  124. if (hpet2 < hpet1)
  125. hpet2 += 0x100000000ULL;
  126. hpet2 -= hpet1;
  127. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  128. do_div(tmp, 1000000);
  129. do_div(deltatsc, tmp);
  130. return (unsigned long) deltatsc;
  131. }
  132. /*
  133. * Calculate the TSC frequency from PMTimer reference
  134. */
  135. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  136. {
  137. u64 tmp;
  138. if (!pm1 && !pm2)
  139. return ULONG_MAX;
  140. if (pm2 < pm1)
  141. pm2 += (u64)ACPI_PM_OVRRUN;
  142. pm2 -= pm1;
  143. tmp = pm2 * 1000000000LL;
  144. do_div(tmp, PMTMR_TICKS_PER_SEC);
  145. do_div(deltatsc, tmp);
  146. return (unsigned long) deltatsc;
  147. }
  148. #define CAL_MS 10
  149. #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
  150. #define CAL_PIT_LOOPS 1000
  151. #define CAL2_MS 50
  152. #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
  153. #define CAL2_PIT_LOOPS 5000
  154. /*
  155. * Try to calibrate the TSC against the Programmable
  156. * Interrupt Timer and return the frequency of the TSC
  157. * in kHz.
  158. *
  159. * Return ULONG_MAX on failure to calibrate.
  160. */
  161. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  162. {
  163. u64 tsc, t1, t2, delta;
  164. unsigned long tscmin, tscmax;
  165. int pitcnt;
  166. /* Set the Gate high, disable speaker */
  167. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  168. /*
  169. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  170. * count mode), binary count. Set the latch register to 50ms
  171. * (LSB then MSB) to begin countdown.
  172. */
  173. outb(0xb0, 0x43);
  174. outb(latch & 0xff, 0x42);
  175. outb(latch >> 8, 0x42);
  176. tsc = t1 = t2 = get_cycles();
  177. pitcnt = 0;
  178. tscmax = 0;
  179. tscmin = ULONG_MAX;
  180. while ((inb(0x61) & 0x20) == 0) {
  181. t2 = get_cycles();
  182. delta = t2 - tsc;
  183. tsc = t2;
  184. if ((unsigned long) delta < tscmin)
  185. tscmin = (unsigned int) delta;
  186. if ((unsigned long) delta > tscmax)
  187. tscmax = (unsigned int) delta;
  188. pitcnt++;
  189. }
  190. /*
  191. * Sanity checks:
  192. *
  193. * If we were not able to read the PIT more than loopmin
  194. * times, then we have been hit by a massive SMI
  195. *
  196. * If the maximum is 10 times larger than the minimum,
  197. * then we got hit by an SMI as well.
  198. */
  199. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  200. return ULONG_MAX;
  201. /* Calculate the PIT value */
  202. delta = t2 - t1;
  203. do_div(delta, ms);
  204. return delta;
  205. }
  206. /*
  207. * This reads the current MSB of the PIT counter, and
  208. * checks if we are running on sufficiently fast and
  209. * non-virtualized hardware.
  210. *
  211. * Our expectations are:
  212. *
  213. * - the PIT is running at roughly 1.19MHz
  214. *
  215. * - each IO is going to take about 1us on real hardware,
  216. * but we allow it to be much faster (by a factor of 10) or
  217. * _slightly_ slower (ie we allow up to a 2us read+counter
  218. * update - anything else implies a unacceptably slow CPU
  219. * or PIT for the fast calibration to work.
  220. *
  221. * - with 256 PIT ticks to read the value, we have 214us to
  222. * see the same MSB (and overhead like doing a single TSC
  223. * read per MSB value etc).
  224. *
  225. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  226. * them each to take about a microsecond on real hardware.
  227. * So we expect a count value of around 100. But we'll be
  228. * generous, and accept anything over 50.
  229. *
  230. * - if the PIT is stuck, and we see *many* more reads, we
  231. * return early (and the next caller of pit_expect_msb()
  232. * then consider it a failure when they don't see the
  233. * next expected value).
  234. *
  235. * These expectations mean that we know that we have seen the
  236. * transition from one expected value to another with a fairly
  237. * high accuracy, and we didn't miss any events. We can thus
  238. * use the TSC value at the transitions to calculate a pretty
  239. * good value for the TSC frequencty.
  240. */
  241. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  242. {
  243. int count;
  244. u64 tsc = 0;
  245. for (count = 0; count < 50000; count++) {
  246. /* Ignore LSB */
  247. inb(0x42);
  248. if (inb(0x42) != val)
  249. break;
  250. tsc = get_cycles();
  251. }
  252. *deltap = get_cycles() - tsc;
  253. *tscp = tsc;
  254. /*
  255. * We require _some_ success, but the quality control
  256. * will be based on the error terms on the TSC values.
  257. */
  258. return count > 5;
  259. }
  260. /*
  261. * How many MSB values do we want to see? We aim for
  262. * a maximum error rate of 500ppm (in practice the
  263. * real error is much smaller), but refuse to spend
  264. * more than 25ms on it.
  265. */
  266. #define MAX_QUICK_PIT_MS 25
  267. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  268. static unsigned long quick_pit_calibrate(void)
  269. {
  270. int i;
  271. u64 tsc, delta;
  272. unsigned long d1, d2;
  273. /* Set the Gate high, disable speaker */
  274. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  275. /*
  276. * Counter 2, mode 0 (one-shot), binary count
  277. *
  278. * NOTE! Mode 2 decrements by two (and then the
  279. * output is flipped each time, giving the same
  280. * final output frequency as a decrement-by-one),
  281. * so mode 0 is much better when looking at the
  282. * individual counts.
  283. */
  284. outb(0xb0, 0x43);
  285. /* Start at 0xffff */
  286. outb(0xff, 0x42);
  287. outb(0xff, 0x42);
  288. /*
  289. * The PIT starts counting at the next edge, so we
  290. * need to delay for a microsecond. The easiest way
  291. * to do that is to just read back the 16-bit counter
  292. * once from the PIT.
  293. */
  294. inb(0x42);
  295. inb(0x42);
  296. if (pit_expect_msb(0xff, &tsc, &d1)) {
  297. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  298. if (!pit_expect_msb(0xff-i, &delta, &d2))
  299. break;
  300. /*
  301. * Iterate until the error is less than 500 ppm
  302. */
  303. delta -= tsc;
  304. if (d1+d2 < delta >> 11)
  305. goto success;
  306. }
  307. }
  308. printk("Fast TSC calibration failed\n");
  309. return 0;
  310. success:
  311. /*
  312. * Ok, if we get here, then we've seen the
  313. * MSB of the PIT decrement 'i' times, and the
  314. * error has shrunk to less than 500 ppm.
  315. *
  316. * As a result, we can depend on there not being
  317. * any odd delays anywhere, and the TSC reads are
  318. * reliable (within the error). We also adjust the
  319. * delta to the middle of the error bars, just
  320. * because it looks nicer.
  321. *
  322. * kHz = ticks / time-in-seconds / 1000;
  323. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  324. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  325. */
  326. delta += (long)(d2 - d1)/2;
  327. delta *= PIT_TICK_RATE;
  328. do_div(delta, i*256*1000);
  329. printk("Fast TSC calibration using PIT\n");
  330. return delta;
  331. }
  332. /**
  333. * native_calibrate_tsc - calibrate the tsc on boot
  334. */
  335. unsigned long native_calibrate_tsc(void)
  336. {
  337. u64 tsc1, tsc2, delta, ref1, ref2;
  338. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  339. unsigned long flags, latch, ms, fast_calibrate, hv_tsc_khz;
  340. int hpet = is_hpet_enabled(), i, loopmin;
  341. hv_tsc_khz = get_hypervisor_tsc_freq();
  342. if (hv_tsc_khz) {
  343. printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
  344. return hv_tsc_khz;
  345. }
  346. local_irq_save(flags);
  347. fast_calibrate = quick_pit_calibrate();
  348. local_irq_restore(flags);
  349. if (fast_calibrate)
  350. return fast_calibrate;
  351. /*
  352. * Run 5 calibration loops to get the lowest frequency value
  353. * (the best estimate). We use two different calibration modes
  354. * here:
  355. *
  356. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  357. * load a timeout of 50ms. We read the time right after we
  358. * started the timer and wait until the PIT count down reaches
  359. * zero. In each wait loop iteration we read the TSC and check
  360. * the delta to the previous read. We keep track of the min
  361. * and max values of that delta. The delta is mostly defined
  362. * by the IO time of the PIT access, so we can detect when a
  363. * SMI/SMM disturbance happend between the two reads. If the
  364. * maximum time is significantly larger than the minimum time,
  365. * then we discard the result and have another try.
  366. *
  367. * 2) Reference counter. If available we use the HPET or the
  368. * PMTIMER as a reference to check the sanity of that value.
  369. * We use separate TSC readouts and check inside of the
  370. * reference read for a SMI/SMM disturbance. We dicard
  371. * disturbed values here as well. We do that around the PIT
  372. * calibration delay loop as we have to wait for a certain
  373. * amount of time anyway.
  374. */
  375. /* Preset PIT loop values */
  376. latch = CAL_LATCH;
  377. ms = CAL_MS;
  378. loopmin = CAL_PIT_LOOPS;
  379. for (i = 0; i < 3; i++) {
  380. unsigned long tsc_pit_khz;
  381. /*
  382. * Read the start value and the reference count of
  383. * hpet/pmtimer when available. Then do the PIT
  384. * calibration, which will take at least 50ms, and
  385. * read the end value.
  386. */
  387. local_irq_save(flags);
  388. tsc1 = tsc_read_refs(&ref1, hpet);
  389. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  390. tsc2 = tsc_read_refs(&ref2, hpet);
  391. local_irq_restore(flags);
  392. /* Pick the lowest PIT TSC calibration so far */
  393. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  394. /* hpet or pmtimer available ? */
  395. if (!hpet && !ref1 && !ref2)
  396. continue;
  397. /* Check, whether the sampling was disturbed by an SMI */
  398. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  399. continue;
  400. tsc2 = (tsc2 - tsc1) * 1000000LL;
  401. if (hpet)
  402. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  403. else
  404. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  405. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  406. /* Check the reference deviation */
  407. delta = ((u64) tsc_pit_min) * 100;
  408. do_div(delta, tsc_ref_min);
  409. /*
  410. * If both calibration results are inside a 10% window
  411. * then we can be sure, that the calibration
  412. * succeeded. We break out of the loop right away. We
  413. * use the reference value, as it is more precise.
  414. */
  415. if (delta >= 90 && delta <= 110) {
  416. printk(KERN_INFO
  417. "TSC: PIT calibration matches %s. %d loops\n",
  418. hpet ? "HPET" : "PMTIMER", i + 1);
  419. return tsc_ref_min;
  420. }
  421. /*
  422. * Check whether PIT failed more than once. This
  423. * happens in virtualized environments. We need to
  424. * give the virtual PC a slightly longer timeframe for
  425. * the HPET/PMTIMER to make the result precise.
  426. */
  427. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  428. latch = CAL2_LATCH;
  429. ms = CAL2_MS;
  430. loopmin = CAL2_PIT_LOOPS;
  431. }
  432. }
  433. /*
  434. * Now check the results.
  435. */
  436. if (tsc_pit_min == ULONG_MAX) {
  437. /* PIT gave no useful value */
  438. printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
  439. /* We don't have an alternative source, disable TSC */
  440. if (!hpet && !ref1 && !ref2) {
  441. printk("TSC: No reference (HPET/PMTIMER) available\n");
  442. return 0;
  443. }
  444. /* The alternative source failed as well, disable TSC */
  445. if (tsc_ref_min == ULONG_MAX) {
  446. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
  447. "failed.\n");
  448. return 0;
  449. }
  450. /* Use the alternative source */
  451. printk(KERN_INFO "TSC: using %s reference calibration\n",
  452. hpet ? "HPET" : "PMTIMER");
  453. return tsc_ref_min;
  454. }
  455. /* We don't have an alternative source, use the PIT calibration value */
  456. if (!hpet && !ref1 && !ref2) {
  457. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  458. return tsc_pit_min;
  459. }
  460. /* The alternative source failed, use the PIT calibration value */
  461. if (tsc_ref_min == ULONG_MAX) {
  462. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
  463. "Using PIT calibration\n");
  464. return tsc_pit_min;
  465. }
  466. /*
  467. * The calibration values differ too much. In doubt, we use
  468. * the PIT value as we know that there are PMTIMERs around
  469. * running at double speed. At least we let the user know:
  470. */
  471. printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
  472. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  473. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  474. return tsc_pit_min;
  475. }
  476. int recalibrate_cpu_khz(void)
  477. {
  478. #ifndef CONFIG_SMP
  479. unsigned long cpu_khz_old = cpu_khz;
  480. if (cpu_has_tsc) {
  481. tsc_khz = calibrate_tsc();
  482. cpu_khz = tsc_khz;
  483. cpu_data(0).loops_per_jiffy =
  484. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  485. cpu_khz_old, cpu_khz);
  486. return 0;
  487. } else
  488. return -ENODEV;
  489. #else
  490. return -ENODEV;
  491. #endif
  492. }
  493. EXPORT_SYMBOL(recalibrate_cpu_khz);
  494. /* Accelerators for sched_clock()
  495. * convert from cycles(64bits) => nanoseconds (64bits)
  496. * basic equation:
  497. * ns = cycles / (freq / ns_per_sec)
  498. * ns = cycles * (ns_per_sec / freq)
  499. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  500. * ns = cycles * (10^6 / cpu_khz)
  501. *
  502. * Then we use scaling math (suggested by george@mvista.com) to get:
  503. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  504. * ns = cycles * cyc2ns_scale / SC
  505. *
  506. * And since SC is a constant power of two, we can convert the div
  507. * into a shift.
  508. *
  509. * We can use khz divisor instead of mhz to keep a better precision, since
  510. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  511. * (mathieu.desnoyers@polymtl.ca)
  512. *
  513. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  514. */
  515. DEFINE_PER_CPU(unsigned long, cyc2ns);
  516. DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
  517. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  518. {
  519. unsigned long long tsc_now, ns_now, *offset;
  520. unsigned long flags, *scale;
  521. local_irq_save(flags);
  522. sched_clock_idle_sleep_event();
  523. scale = &per_cpu(cyc2ns, cpu);
  524. offset = &per_cpu(cyc2ns_offset, cpu);
  525. rdtscll(tsc_now);
  526. ns_now = __cycles_2_ns(tsc_now);
  527. if (cpu_khz) {
  528. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  529. *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
  530. }
  531. sched_clock_idle_wakeup_event(0);
  532. local_irq_restore(flags);
  533. }
  534. #ifdef CONFIG_CPU_FREQ
  535. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  536. * changes.
  537. *
  538. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  539. * not that important because current Opteron setups do not support
  540. * scaling on SMP anyroads.
  541. *
  542. * Should fix up last_tsc too. Currently gettimeofday in the
  543. * first tick after the change will be slightly wrong.
  544. */
  545. static unsigned int ref_freq;
  546. static unsigned long loops_per_jiffy_ref;
  547. static unsigned long tsc_khz_ref;
  548. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  549. void *data)
  550. {
  551. struct cpufreq_freqs *freq = data;
  552. unsigned long *lpj, dummy;
  553. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  554. return 0;
  555. lpj = &dummy;
  556. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  557. #ifdef CONFIG_SMP
  558. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  559. #else
  560. lpj = &boot_cpu_data.loops_per_jiffy;
  561. #endif
  562. if (!ref_freq) {
  563. ref_freq = freq->old;
  564. loops_per_jiffy_ref = *lpj;
  565. tsc_khz_ref = tsc_khz;
  566. }
  567. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  568. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  569. (val == CPUFREQ_RESUMECHANGE)) {
  570. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  571. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  572. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  573. mark_tsc_unstable("cpufreq changes");
  574. }
  575. set_cyc2ns_scale(tsc_khz, freq->cpu);
  576. return 0;
  577. }
  578. static struct notifier_block time_cpufreq_notifier_block = {
  579. .notifier_call = time_cpufreq_notifier
  580. };
  581. static int __init cpufreq_tsc(void)
  582. {
  583. if (!cpu_has_tsc)
  584. return 0;
  585. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  586. return 0;
  587. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  588. CPUFREQ_TRANSITION_NOTIFIER);
  589. return 0;
  590. }
  591. core_initcall(cpufreq_tsc);
  592. #endif /* CONFIG_CPU_FREQ */
  593. /* clocksource code */
  594. static struct clocksource clocksource_tsc;
  595. /*
  596. * We compare the TSC to the cycle_last value in the clocksource
  597. * structure to avoid a nasty time-warp. This can be observed in a
  598. * very small window right after one CPU updated cycle_last under
  599. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  600. * is smaller than the cycle_last reference value due to a TSC which
  601. * is slighty behind. This delta is nowhere else observable, but in
  602. * that case it results in a forward time jump in the range of hours
  603. * due to the unsigned delta calculation of the time keeping core
  604. * code, which is necessary to support wrapping clocksources like pm
  605. * timer.
  606. */
  607. static cycle_t read_tsc(struct clocksource *cs)
  608. {
  609. cycle_t ret = (cycle_t)get_cycles();
  610. return ret >= clocksource_tsc.cycle_last ?
  611. ret : clocksource_tsc.cycle_last;
  612. }
  613. #ifdef CONFIG_X86_64
  614. static cycle_t __vsyscall_fn vread_tsc(void)
  615. {
  616. cycle_t ret;
  617. /*
  618. * Surround the RDTSC by barriers, to make sure it's not
  619. * speculated to outside the seqlock critical section and
  620. * does not cause time warps:
  621. */
  622. rdtsc_barrier();
  623. ret = (cycle_t)vget_cycles();
  624. rdtsc_barrier();
  625. return ret >= __vsyscall_gtod_data.clock.cycle_last ?
  626. ret : __vsyscall_gtod_data.clock.cycle_last;
  627. }
  628. #endif
  629. static struct clocksource clocksource_tsc = {
  630. .name = "tsc",
  631. .rating = 300,
  632. .read = read_tsc,
  633. .mask = CLOCKSOURCE_MASK(64),
  634. .shift = 22,
  635. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  636. CLOCK_SOURCE_MUST_VERIFY,
  637. #ifdef CONFIG_X86_64
  638. .vread = vread_tsc,
  639. #endif
  640. };
  641. void mark_tsc_unstable(char *reason)
  642. {
  643. if (!tsc_unstable) {
  644. tsc_unstable = 1;
  645. printk("Marking TSC unstable due to %s\n", reason);
  646. /* Change only the rating, when not registered */
  647. if (clocksource_tsc.mult)
  648. clocksource_change_rating(&clocksource_tsc, 0);
  649. else
  650. clocksource_tsc.rating = 0;
  651. }
  652. }
  653. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  654. static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
  655. {
  656. printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
  657. d->ident);
  658. tsc_unstable = 1;
  659. return 0;
  660. }
  661. /* List of systems that have known TSC problems */
  662. static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
  663. {
  664. .callback = dmi_mark_tsc_unstable,
  665. .ident = "IBM Thinkpad 380XD",
  666. .matches = {
  667. DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
  668. DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
  669. },
  670. },
  671. {}
  672. };
  673. static void __init check_system_tsc_reliable(void)
  674. {
  675. #ifdef CONFIG_MGEODE_LX
  676. /* RTSC counts during suspend */
  677. #define RTSC_SUSP 0x100
  678. unsigned long res_low, res_high;
  679. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  680. /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
  681. if (res_low & RTSC_SUSP)
  682. tsc_clocksource_reliable = 1;
  683. #endif
  684. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  685. tsc_clocksource_reliable = 1;
  686. }
  687. /*
  688. * Make an educated guess if the TSC is trustworthy and synchronized
  689. * over all CPUs.
  690. */
  691. __cpuinit int unsynchronized_tsc(void)
  692. {
  693. if (!cpu_has_tsc || tsc_unstable)
  694. return 1;
  695. #ifdef CONFIG_SMP
  696. if (apic_is_clustered_box())
  697. return 1;
  698. #endif
  699. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  700. return 0;
  701. /*
  702. * Intel systems are normally all synchronized.
  703. * Exceptions must mark TSC as unstable:
  704. */
  705. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  706. /* assume multi socket systems are not synchronized: */
  707. if (num_possible_cpus() > 1)
  708. tsc_unstable = 1;
  709. }
  710. return tsc_unstable;
  711. }
  712. static void __init init_tsc_clocksource(void)
  713. {
  714. clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
  715. clocksource_tsc.shift);
  716. if (tsc_clocksource_reliable)
  717. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  718. /* lower the rating if we already know its unstable: */
  719. if (check_tsc_unstable()) {
  720. clocksource_tsc.rating = 0;
  721. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  722. }
  723. clocksource_register(&clocksource_tsc);
  724. }
  725. void __init tsc_init(void)
  726. {
  727. u64 lpj;
  728. int cpu;
  729. if (!cpu_has_tsc)
  730. return;
  731. tsc_khz = calibrate_tsc();
  732. cpu_khz = tsc_khz;
  733. if (!tsc_khz) {
  734. mark_tsc_unstable("could not calculate TSC khz");
  735. return;
  736. }
  737. #ifdef CONFIG_X86_64
  738. if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
  739. (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
  740. cpu_khz = calibrate_cpu();
  741. #endif
  742. printk("Detected %lu.%03lu MHz processor.\n",
  743. (unsigned long)cpu_khz / 1000,
  744. (unsigned long)cpu_khz % 1000);
  745. /*
  746. * Secondary CPUs do not run through tsc_init(), so set up
  747. * all the scale factors for all CPUs, assuming the same
  748. * speed as the bootup CPU. (cpufreq notifiers will fix this
  749. * up if their speed diverges)
  750. */
  751. for_each_possible_cpu(cpu)
  752. set_cyc2ns_scale(cpu_khz, cpu);
  753. if (tsc_disabled > 0)
  754. return;
  755. /* now allow native_sched_clock() to use rdtsc */
  756. tsc_disabled = 0;
  757. lpj = ((u64)tsc_khz * 1000);
  758. do_div(lpj, HZ);
  759. lpj_fine = lpj;
  760. use_tsc_delay();
  761. /* Check and install the TSC clocksource */
  762. dmi_check_system(bad_tsc_dmi_table);
  763. if (unsynchronized_tsc())
  764. mark_tsc_unstable("TSCs unsynchronized");
  765. check_system_tsc_reliable();
  766. init_tsc_clocksource();
  767. }