mmu.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  161. trace_mark_mmio_spte(sptep, gfn, access);
  162. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  163. }
  164. static bool is_mmio_spte(u64 spte)
  165. {
  166. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  167. }
  168. static gfn_t get_mmio_spte_gfn(u64 spte)
  169. {
  170. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  171. }
  172. static unsigned get_mmio_spte_access(u64 spte)
  173. {
  174. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  175. }
  176. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  177. {
  178. if (unlikely(is_noslot_pfn(pfn))) {
  179. mark_mmio_spte(sptep, gfn, access);
  180. return true;
  181. }
  182. return false;
  183. }
  184. static inline u64 rsvd_bits(int s, int e)
  185. {
  186. return ((1ULL << (e - s + 1)) - 1) << s;
  187. }
  188. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  189. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  190. {
  191. shadow_user_mask = user_mask;
  192. shadow_accessed_mask = accessed_mask;
  193. shadow_dirty_mask = dirty_mask;
  194. shadow_nx_mask = nx_mask;
  195. shadow_x_mask = x_mask;
  196. }
  197. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  198. static int is_cpuid_PSE36(void)
  199. {
  200. return 1;
  201. }
  202. static int is_nx(struct kvm_vcpu *vcpu)
  203. {
  204. return vcpu->arch.efer & EFER_NX;
  205. }
  206. static int is_shadow_present_pte(u64 pte)
  207. {
  208. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  209. }
  210. static int is_large_pte(u64 pte)
  211. {
  212. return pte & PT_PAGE_SIZE_MASK;
  213. }
  214. static int is_dirty_gpte(unsigned long pte)
  215. {
  216. return pte & PT_DIRTY_MASK;
  217. }
  218. static int is_rmap_spte(u64 pte)
  219. {
  220. return is_shadow_present_pte(pte);
  221. }
  222. static int is_last_spte(u64 pte, int level)
  223. {
  224. if (level == PT_PAGE_TABLE_LEVEL)
  225. return 1;
  226. if (is_large_pte(pte))
  227. return 1;
  228. return 0;
  229. }
  230. static pfn_t spte_to_pfn(u64 pte)
  231. {
  232. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  233. }
  234. static gfn_t pse36_gfn_delta(u32 gpte)
  235. {
  236. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  237. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  238. }
  239. #ifdef CONFIG_X86_64
  240. static void __set_spte(u64 *sptep, u64 spte)
  241. {
  242. *sptep = spte;
  243. }
  244. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  245. {
  246. *sptep = spte;
  247. }
  248. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  249. {
  250. return xchg(sptep, spte);
  251. }
  252. static u64 __get_spte_lockless(u64 *sptep)
  253. {
  254. return ACCESS_ONCE(*sptep);
  255. }
  256. static bool __check_direct_spte_mmio_pf(u64 spte)
  257. {
  258. /* It is valid if the spte is zapped. */
  259. return spte == 0ull;
  260. }
  261. #else
  262. union split_spte {
  263. struct {
  264. u32 spte_low;
  265. u32 spte_high;
  266. };
  267. u64 spte;
  268. };
  269. static void count_spte_clear(u64 *sptep, u64 spte)
  270. {
  271. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  272. if (is_shadow_present_pte(spte))
  273. return;
  274. /* Ensure the spte is completely set before we increase the count */
  275. smp_wmb();
  276. sp->clear_spte_count++;
  277. }
  278. static void __set_spte(u64 *sptep, u64 spte)
  279. {
  280. union split_spte *ssptep, sspte;
  281. ssptep = (union split_spte *)sptep;
  282. sspte = (union split_spte)spte;
  283. ssptep->spte_high = sspte.spte_high;
  284. /*
  285. * If we map the spte from nonpresent to present, We should store
  286. * the high bits firstly, then set present bit, so cpu can not
  287. * fetch this spte while we are setting the spte.
  288. */
  289. smp_wmb();
  290. ssptep->spte_low = sspte.spte_low;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. union split_spte *ssptep, sspte;
  295. ssptep = (union split_spte *)sptep;
  296. sspte = (union split_spte)spte;
  297. ssptep->spte_low = sspte.spte_low;
  298. /*
  299. * If we map the spte from present to nonpresent, we should clear
  300. * present bit firstly to avoid vcpu fetch the old high bits.
  301. */
  302. smp_wmb();
  303. ssptep->spte_high = sspte.spte_high;
  304. count_spte_clear(sptep, spte);
  305. }
  306. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  307. {
  308. union split_spte *ssptep, sspte, orig;
  309. ssptep = (union split_spte *)sptep;
  310. sspte = (union split_spte)spte;
  311. /* xchg acts as a barrier before the setting of the high bits */
  312. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  313. orig.spte_high = ssptep->spte_high;
  314. ssptep->spte_high = sspte.spte_high;
  315. count_spte_clear(sptep, spte);
  316. return orig.spte;
  317. }
  318. /*
  319. * The idea using the light way get the spte on x86_32 guest is from
  320. * gup_get_pte(arch/x86/mm/gup.c).
  321. * The difference is we can not catch the spte tlb flush if we leave
  322. * guest mode, so we emulate it by increase clear_spte_count when spte
  323. * is cleared.
  324. */
  325. static u64 __get_spte_lockless(u64 *sptep)
  326. {
  327. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  328. union split_spte spte, *orig = (union split_spte *)sptep;
  329. int count;
  330. retry:
  331. count = sp->clear_spte_count;
  332. smp_rmb();
  333. spte.spte_low = orig->spte_low;
  334. smp_rmb();
  335. spte.spte_high = orig->spte_high;
  336. smp_rmb();
  337. if (unlikely(spte.spte_low != orig->spte_low ||
  338. count != sp->clear_spte_count))
  339. goto retry;
  340. return spte.spte;
  341. }
  342. static bool __check_direct_spte_mmio_pf(u64 spte)
  343. {
  344. union split_spte sspte = (union split_spte)spte;
  345. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  346. /* It is valid if the spte is zapped. */
  347. if (spte == 0ull)
  348. return true;
  349. /* It is valid if the spte is being zapped. */
  350. if (sspte.spte_low == 0ull &&
  351. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  352. return true;
  353. return false;
  354. }
  355. #endif
  356. static bool spte_is_locklessly_modifiable(u64 spte)
  357. {
  358. return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
  359. }
  360. static bool spte_has_volatile_bits(u64 spte)
  361. {
  362. /*
  363. * Always atomicly update spte if it can be updated
  364. * out of mmu-lock, it can ensure dirty bit is not lost,
  365. * also, it can help us to get a stable is_writable_pte()
  366. * to ensure tlb flush is not missed.
  367. */
  368. if (spte_is_locklessly_modifiable(spte))
  369. return true;
  370. if (!shadow_accessed_mask)
  371. return false;
  372. if (!is_shadow_present_pte(spte))
  373. return false;
  374. if ((spte & shadow_accessed_mask) &&
  375. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  376. return false;
  377. return true;
  378. }
  379. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  380. {
  381. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  382. }
  383. /* Rules for using mmu_spte_set:
  384. * Set the sptep from nonpresent to present.
  385. * Note: the sptep being assigned *must* be either not present
  386. * or in a state where the hardware will not attempt to update
  387. * the spte.
  388. */
  389. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  390. {
  391. WARN_ON(is_shadow_present_pte(*sptep));
  392. __set_spte(sptep, new_spte);
  393. }
  394. /* Rules for using mmu_spte_update:
  395. * Update the state bits, it means the mapped pfn is not changged.
  396. *
  397. * Whenever we overwrite a writable spte with a read-only one we
  398. * should flush remote TLBs. Otherwise rmap_write_protect
  399. * will find a read-only spte, even though the writable spte
  400. * might be cached on a CPU's TLB, the return value indicates this
  401. * case.
  402. */
  403. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  404. {
  405. u64 old_spte = *sptep;
  406. bool ret = false;
  407. WARN_ON(!is_rmap_spte(new_spte));
  408. if (!is_shadow_present_pte(old_spte)) {
  409. mmu_spte_set(sptep, new_spte);
  410. return ret;
  411. }
  412. if (!spte_has_volatile_bits(old_spte))
  413. __update_clear_spte_fast(sptep, new_spte);
  414. else
  415. old_spte = __update_clear_spte_slow(sptep, new_spte);
  416. /*
  417. * For the spte updated out of mmu-lock is safe, since
  418. * we always atomicly update it, see the comments in
  419. * spte_has_volatile_bits().
  420. */
  421. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  422. ret = true;
  423. if (!shadow_accessed_mask)
  424. return ret;
  425. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  426. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  427. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  428. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  429. return ret;
  430. }
  431. /*
  432. * Rules for using mmu_spte_clear_track_bits:
  433. * It sets the sptep from present to nonpresent, and track the
  434. * state bits, it is used to clear the last level sptep.
  435. */
  436. static int mmu_spte_clear_track_bits(u64 *sptep)
  437. {
  438. pfn_t pfn;
  439. u64 old_spte = *sptep;
  440. if (!spte_has_volatile_bits(old_spte))
  441. __update_clear_spte_fast(sptep, 0ull);
  442. else
  443. old_spte = __update_clear_spte_slow(sptep, 0ull);
  444. if (!is_rmap_spte(old_spte))
  445. return 0;
  446. pfn = spte_to_pfn(old_spte);
  447. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  448. kvm_set_pfn_accessed(pfn);
  449. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  450. kvm_set_pfn_dirty(pfn);
  451. return 1;
  452. }
  453. /*
  454. * Rules for using mmu_spte_clear_no_track:
  455. * Directly clear spte without caring the state bits of sptep,
  456. * it is used to set the upper level spte.
  457. */
  458. static void mmu_spte_clear_no_track(u64 *sptep)
  459. {
  460. __update_clear_spte_fast(sptep, 0ull);
  461. }
  462. static u64 mmu_spte_get_lockless(u64 *sptep)
  463. {
  464. return __get_spte_lockless(sptep);
  465. }
  466. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  467. {
  468. /*
  469. * Prevent page table teardown by making any free-er wait during
  470. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  471. */
  472. local_irq_disable();
  473. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  474. /*
  475. * Make sure a following spte read is not reordered ahead of the write
  476. * to vcpu->mode.
  477. */
  478. smp_mb();
  479. }
  480. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  481. {
  482. /*
  483. * Make sure the write to vcpu->mode is not reordered in front of
  484. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  485. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  486. */
  487. smp_mb();
  488. vcpu->mode = OUTSIDE_GUEST_MODE;
  489. local_irq_enable();
  490. }
  491. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  492. struct kmem_cache *base_cache, int min)
  493. {
  494. void *obj;
  495. if (cache->nobjs >= min)
  496. return 0;
  497. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  498. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  499. if (!obj)
  500. return -ENOMEM;
  501. cache->objects[cache->nobjs++] = obj;
  502. }
  503. return 0;
  504. }
  505. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  506. {
  507. return cache->nobjs;
  508. }
  509. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  510. struct kmem_cache *cache)
  511. {
  512. while (mc->nobjs)
  513. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  514. }
  515. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  516. int min)
  517. {
  518. void *page;
  519. if (cache->nobjs >= min)
  520. return 0;
  521. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  522. page = (void *)__get_free_page(GFP_KERNEL);
  523. if (!page)
  524. return -ENOMEM;
  525. cache->objects[cache->nobjs++] = page;
  526. }
  527. return 0;
  528. }
  529. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  530. {
  531. while (mc->nobjs)
  532. free_page((unsigned long)mc->objects[--mc->nobjs]);
  533. }
  534. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  535. {
  536. int r;
  537. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  538. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  539. if (r)
  540. goto out;
  541. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  542. if (r)
  543. goto out;
  544. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  545. mmu_page_header_cache, 4);
  546. out:
  547. return r;
  548. }
  549. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  550. {
  551. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  552. pte_list_desc_cache);
  553. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  554. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  555. mmu_page_header_cache);
  556. }
  557. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  558. {
  559. void *p;
  560. BUG_ON(!mc->nobjs);
  561. p = mc->objects[--mc->nobjs];
  562. return p;
  563. }
  564. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  565. {
  566. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  567. }
  568. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  569. {
  570. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  571. }
  572. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  573. {
  574. if (!sp->role.direct)
  575. return sp->gfns[index];
  576. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  577. }
  578. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  579. {
  580. if (sp->role.direct)
  581. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  582. else
  583. sp->gfns[index] = gfn;
  584. }
  585. /*
  586. * Return the pointer to the large page information for a given gfn,
  587. * handling slots that are not large page aligned.
  588. */
  589. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  590. struct kvm_memory_slot *slot,
  591. int level)
  592. {
  593. unsigned long idx;
  594. idx = gfn_to_index(gfn, slot->base_gfn, level);
  595. return &slot->arch.lpage_info[level - 2][idx];
  596. }
  597. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  598. {
  599. struct kvm_memory_slot *slot;
  600. struct kvm_lpage_info *linfo;
  601. int i;
  602. slot = gfn_to_memslot(kvm, gfn);
  603. for (i = PT_DIRECTORY_LEVEL;
  604. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  605. linfo = lpage_info_slot(gfn, slot, i);
  606. linfo->write_count += 1;
  607. }
  608. kvm->arch.indirect_shadow_pages++;
  609. }
  610. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  611. {
  612. struct kvm_memory_slot *slot;
  613. struct kvm_lpage_info *linfo;
  614. int i;
  615. slot = gfn_to_memslot(kvm, gfn);
  616. for (i = PT_DIRECTORY_LEVEL;
  617. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  618. linfo = lpage_info_slot(gfn, slot, i);
  619. linfo->write_count -= 1;
  620. WARN_ON(linfo->write_count < 0);
  621. }
  622. kvm->arch.indirect_shadow_pages--;
  623. }
  624. static int has_wrprotected_page(struct kvm *kvm,
  625. gfn_t gfn,
  626. int level)
  627. {
  628. struct kvm_memory_slot *slot;
  629. struct kvm_lpage_info *linfo;
  630. slot = gfn_to_memslot(kvm, gfn);
  631. if (slot) {
  632. linfo = lpage_info_slot(gfn, slot, level);
  633. return linfo->write_count;
  634. }
  635. return 1;
  636. }
  637. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  638. {
  639. unsigned long page_size;
  640. int i, ret = 0;
  641. page_size = kvm_host_page_size(kvm, gfn);
  642. for (i = PT_PAGE_TABLE_LEVEL;
  643. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  644. if (page_size >= KVM_HPAGE_SIZE(i))
  645. ret = i;
  646. else
  647. break;
  648. }
  649. return ret;
  650. }
  651. static struct kvm_memory_slot *
  652. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  653. bool no_dirty_log)
  654. {
  655. struct kvm_memory_slot *slot;
  656. slot = gfn_to_memslot(vcpu->kvm, gfn);
  657. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  658. (no_dirty_log && slot->dirty_bitmap))
  659. slot = NULL;
  660. return slot;
  661. }
  662. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  663. {
  664. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  665. }
  666. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  667. {
  668. int host_level, level, max_level;
  669. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  670. if (host_level == PT_PAGE_TABLE_LEVEL)
  671. return host_level;
  672. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  673. kvm_x86_ops->get_lpage_level() : host_level;
  674. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  675. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  676. break;
  677. return level - 1;
  678. }
  679. /*
  680. * Pte mapping structures:
  681. *
  682. * If pte_list bit zero is zero, then pte_list point to the spte.
  683. *
  684. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  685. * pte_list_desc containing more mappings.
  686. *
  687. * Returns the number of pte entries before the spte was added or zero if
  688. * the spte was not added.
  689. *
  690. */
  691. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  692. unsigned long *pte_list)
  693. {
  694. struct pte_list_desc *desc;
  695. int i, count = 0;
  696. if (!*pte_list) {
  697. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  698. *pte_list = (unsigned long)spte;
  699. } else if (!(*pte_list & 1)) {
  700. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  701. desc = mmu_alloc_pte_list_desc(vcpu);
  702. desc->sptes[0] = (u64 *)*pte_list;
  703. desc->sptes[1] = spte;
  704. *pte_list = (unsigned long)desc | 1;
  705. ++count;
  706. } else {
  707. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  708. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  709. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  710. desc = desc->more;
  711. count += PTE_LIST_EXT;
  712. }
  713. if (desc->sptes[PTE_LIST_EXT-1]) {
  714. desc->more = mmu_alloc_pte_list_desc(vcpu);
  715. desc = desc->more;
  716. }
  717. for (i = 0; desc->sptes[i]; ++i)
  718. ++count;
  719. desc->sptes[i] = spte;
  720. }
  721. return count;
  722. }
  723. static void
  724. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  725. int i, struct pte_list_desc *prev_desc)
  726. {
  727. int j;
  728. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  729. ;
  730. desc->sptes[i] = desc->sptes[j];
  731. desc->sptes[j] = NULL;
  732. if (j != 0)
  733. return;
  734. if (!prev_desc && !desc->more)
  735. *pte_list = (unsigned long)desc->sptes[0];
  736. else
  737. if (prev_desc)
  738. prev_desc->more = desc->more;
  739. else
  740. *pte_list = (unsigned long)desc->more | 1;
  741. mmu_free_pte_list_desc(desc);
  742. }
  743. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  744. {
  745. struct pte_list_desc *desc;
  746. struct pte_list_desc *prev_desc;
  747. int i;
  748. if (!*pte_list) {
  749. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  750. BUG();
  751. } else if (!(*pte_list & 1)) {
  752. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  753. if ((u64 *)*pte_list != spte) {
  754. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  755. BUG();
  756. }
  757. *pte_list = 0;
  758. } else {
  759. rmap_printk("pte_list_remove: %p many->many\n", spte);
  760. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  761. prev_desc = NULL;
  762. while (desc) {
  763. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  764. if (desc->sptes[i] == spte) {
  765. pte_list_desc_remove_entry(pte_list,
  766. desc, i,
  767. prev_desc);
  768. return;
  769. }
  770. prev_desc = desc;
  771. desc = desc->more;
  772. }
  773. pr_err("pte_list_remove: %p many->many\n", spte);
  774. BUG();
  775. }
  776. }
  777. typedef void (*pte_list_walk_fn) (u64 *spte);
  778. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  779. {
  780. struct pte_list_desc *desc;
  781. int i;
  782. if (!*pte_list)
  783. return;
  784. if (!(*pte_list & 1))
  785. return fn((u64 *)*pte_list);
  786. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  787. while (desc) {
  788. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  789. fn(desc->sptes[i]);
  790. desc = desc->more;
  791. }
  792. }
  793. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  794. struct kvm_memory_slot *slot)
  795. {
  796. struct kvm_lpage_info *linfo;
  797. if (likely(level == PT_PAGE_TABLE_LEVEL))
  798. return &slot->rmap[gfn - slot->base_gfn];
  799. linfo = lpage_info_slot(gfn, slot, level);
  800. return &linfo->rmap_pde;
  801. }
  802. /*
  803. * Take gfn and return the reverse mapping to it.
  804. */
  805. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  806. {
  807. struct kvm_memory_slot *slot;
  808. slot = gfn_to_memslot(kvm, gfn);
  809. return __gfn_to_rmap(gfn, level, slot);
  810. }
  811. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  812. {
  813. struct kvm_mmu_memory_cache *cache;
  814. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  815. return mmu_memory_cache_free_objects(cache);
  816. }
  817. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  818. {
  819. struct kvm_mmu_page *sp;
  820. unsigned long *rmapp;
  821. sp = page_header(__pa(spte));
  822. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  823. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  824. return pte_list_add(vcpu, spte, rmapp);
  825. }
  826. static void rmap_remove(struct kvm *kvm, u64 *spte)
  827. {
  828. struct kvm_mmu_page *sp;
  829. gfn_t gfn;
  830. unsigned long *rmapp;
  831. sp = page_header(__pa(spte));
  832. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  833. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  834. pte_list_remove(spte, rmapp);
  835. }
  836. /*
  837. * Used by the following functions to iterate through the sptes linked by a
  838. * rmap. All fields are private and not assumed to be used outside.
  839. */
  840. struct rmap_iterator {
  841. /* private fields */
  842. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  843. int pos; /* index of the sptep */
  844. };
  845. /*
  846. * Iteration must be started by this function. This should also be used after
  847. * removing/dropping sptes from the rmap link because in such cases the
  848. * information in the itererator may not be valid.
  849. *
  850. * Returns sptep if found, NULL otherwise.
  851. */
  852. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  853. {
  854. if (!rmap)
  855. return NULL;
  856. if (!(rmap & 1)) {
  857. iter->desc = NULL;
  858. return (u64 *)rmap;
  859. }
  860. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  861. iter->pos = 0;
  862. return iter->desc->sptes[iter->pos];
  863. }
  864. /*
  865. * Must be used with a valid iterator: e.g. after rmap_get_first().
  866. *
  867. * Returns sptep if found, NULL otherwise.
  868. */
  869. static u64 *rmap_get_next(struct rmap_iterator *iter)
  870. {
  871. if (iter->desc) {
  872. if (iter->pos < PTE_LIST_EXT - 1) {
  873. u64 *sptep;
  874. ++iter->pos;
  875. sptep = iter->desc->sptes[iter->pos];
  876. if (sptep)
  877. return sptep;
  878. }
  879. iter->desc = iter->desc->more;
  880. if (iter->desc) {
  881. iter->pos = 0;
  882. /* desc->sptes[0] cannot be NULL */
  883. return iter->desc->sptes[iter->pos];
  884. }
  885. }
  886. return NULL;
  887. }
  888. static void drop_spte(struct kvm *kvm, u64 *sptep)
  889. {
  890. if (mmu_spte_clear_track_bits(sptep))
  891. rmap_remove(kvm, sptep);
  892. }
  893. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  894. {
  895. if (is_large_pte(*sptep)) {
  896. WARN_ON(page_header(__pa(sptep))->role.level ==
  897. PT_PAGE_TABLE_LEVEL);
  898. drop_spte(kvm, sptep);
  899. --kvm->stat.lpages;
  900. return true;
  901. }
  902. return false;
  903. }
  904. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  905. {
  906. if (__drop_large_spte(vcpu->kvm, sptep))
  907. kvm_flush_remote_tlbs(vcpu->kvm);
  908. }
  909. /*
  910. * Write-protect on the specified @sptep, @pt_protect indicates whether
  911. * spte writ-protection is caused by protecting shadow page table.
  912. * @flush indicates whether tlb need be flushed.
  913. *
  914. * Note: write protection is difference between drity logging and spte
  915. * protection:
  916. * - for dirty logging, the spte can be set to writable at anytime if
  917. * its dirty bitmap is properly set.
  918. * - for spte protection, the spte can be writable only after unsync-ing
  919. * shadow page.
  920. *
  921. * Return true if the spte is dropped.
  922. */
  923. static bool
  924. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  925. {
  926. u64 spte = *sptep;
  927. if (!is_writable_pte(spte) &&
  928. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  929. return false;
  930. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  931. if (__drop_large_spte(kvm, sptep)) {
  932. *flush |= true;
  933. return true;
  934. }
  935. if (pt_protect)
  936. spte &= ~SPTE_MMU_WRITEABLE;
  937. spte = spte & ~PT_WRITABLE_MASK;
  938. *flush |= mmu_spte_update(sptep, spte);
  939. return false;
  940. }
  941. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  942. int level, bool pt_protect)
  943. {
  944. u64 *sptep;
  945. struct rmap_iterator iter;
  946. bool flush = false;
  947. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  948. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  949. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  950. sptep = rmap_get_first(*rmapp, &iter);
  951. continue;
  952. }
  953. sptep = rmap_get_next(&iter);
  954. }
  955. return flush;
  956. }
  957. /**
  958. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  959. * @kvm: kvm instance
  960. * @slot: slot to protect
  961. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  962. * @mask: indicates which pages we should protect
  963. *
  964. * Used when we do not need to care about huge page mappings: e.g. during dirty
  965. * logging we do not have any such mappings.
  966. */
  967. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  968. struct kvm_memory_slot *slot,
  969. gfn_t gfn_offset, unsigned long mask)
  970. {
  971. unsigned long *rmapp;
  972. while (mask) {
  973. rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
  974. __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
  975. /* clear the first set bit */
  976. mask &= mask - 1;
  977. }
  978. }
  979. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  980. {
  981. struct kvm_memory_slot *slot;
  982. unsigned long *rmapp;
  983. int i;
  984. bool write_protected = false;
  985. slot = gfn_to_memslot(kvm, gfn);
  986. for (i = PT_PAGE_TABLE_LEVEL;
  987. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  988. rmapp = __gfn_to_rmap(gfn, i, slot);
  989. write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
  990. }
  991. return write_protected;
  992. }
  993. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  994. unsigned long data)
  995. {
  996. u64 *sptep;
  997. struct rmap_iterator iter;
  998. int need_tlb_flush = 0;
  999. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1000. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1001. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1002. drop_spte(kvm, sptep);
  1003. need_tlb_flush = 1;
  1004. }
  1005. return need_tlb_flush;
  1006. }
  1007. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1008. unsigned long data)
  1009. {
  1010. u64 *sptep;
  1011. struct rmap_iterator iter;
  1012. int need_flush = 0;
  1013. u64 new_spte;
  1014. pte_t *ptep = (pte_t *)data;
  1015. pfn_t new_pfn;
  1016. WARN_ON(pte_huge(*ptep));
  1017. new_pfn = pte_pfn(*ptep);
  1018. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1019. BUG_ON(!is_shadow_present_pte(*sptep));
  1020. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1021. need_flush = 1;
  1022. if (pte_write(*ptep)) {
  1023. drop_spte(kvm, sptep);
  1024. sptep = rmap_get_first(*rmapp, &iter);
  1025. } else {
  1026. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1027. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1028. new_spte &= ~PT_WRITABLE_MASK;
  1029. new_spte &= ~SPTE_HOST_WRITEABLE;
  1030. new_spte &= ~shadow_accessed_mask;
  1031. mmu_spte_clear_track_bits(sptep);
  1032. mmu_spte_set(sptep, new_spte);
  1033. sptep = rmap_get_next(&iter);
  1034. }
  1035. }
  1036. if (need_flush)
  1037. kvm_flush_remote_tlbs(kvm);
  1038. return 0;
  1039. }
  1040. static int kvm_handle_hva_range(struct kvm *kvm,
  1041. unsigned long start,
  1042. unsigned long end,
  1043. unsigned long data,
  1044. int (*handler)(struct kvm *kvm,
  1045. unsigned long *rmapp,
  1046. unsigned long data))
  1047. {
  1048. int j;
  1049. int ret;
  1050. int retval = 0;
  1051. struct kvm_memslots *slots;
  1052. struct kvm_memory_slot *memslot;
  1053. slots = kvm_memslots(kvm);
  1054. kvm_for_each_memslot(memslot, slots) {
  1055. unsigned long hva_start, hva_end;
  1056. gfn_t gfn, gfn_end;
  1057. hva_start = max(start, memslot->userspace_addr);
  1058. hva_end = min(end, memslot->userspace_addr +
  1059. (memslot->npages << PAGE_SHIFT));
  1060. if (hva_start >= hva_end)
  1061. continue;
  1062. /*
  1063. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1064. * {gfn, gfn+1, ..., gfn_end-1}.
  1065. */
  1066. gfn = hva_to_gfn_memslot(hva_start, memslot);
  1067. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1068. for (; gfn < gfn_end; ++gfn) {
  1069. ret = 0;
  1070. for (j = PT_PAGE_TABLE_LEVEL;
  1071. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1072. unsigned long *rmapp;
  1073. rmapp = __gfn_to_rmap(gfn, j, memslot);
  1074. ret |= handler(kvm, rmapp, data);
  1075. }
  1076. trace_kvm_age_page(memslot->userspace_addr +
  1077. (gfn - memslot->base_gfn) * PAGE_SIZE,
  1078. memslot, ret);
  1079. retval |= ret;
  1080. }
  1081. }
  1082. return retval;
  1083. }
  1084. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1085. unsigned long data,
  1086. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1087. unsigned long data))
  1088. {
  1089. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1090. }
  1091. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1092. {
  1093. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1094. }
  1095. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1096. {
  1097. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1098. }
  1099. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1100. unsigned long data)
  1101. {
  1102. u64 *sptep;
  1103. struct rmap_iterator uninitialized_var(iter);
  1104. int young = 0;
  1105. /*
  1106. * In case of absence of EPT Access and Dirty Bits supports,
  1107. * emulate the accessed bit for EPT, by checking if this page has
  1108. * an EPT mapping, and clearing it if it does. On the next access,
  1109. * a new EPT mapping will be established.
  1110. * This has some overhead, but not as much as the cost of swapping
  1111. * out actively used pages or breaking up actively used hugepages.
  1112. */
  1113. if (!shadow_accessed_mask)
  1114. return kvm_unmap_rmapp(kvm, rmapp, data);
  1115. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1116. sptep = rmap_get_next(&iter)) {
  1117. BUG_ON(!is_shadow_present_pte(*sptep));
  1118. if (*sptep & shadow_accessed_mask) {
  1119. young = 1;
  1120. clear_bit((ffs(shadow_accessed_mask) - 1),
  1121. (unsigned long *)sptep);
  1122. }
  1123. }
  1124. return young;
  1125. }
  1126. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1127. unsigned long data)
  1128. {
  1129. u64 *sptep;
  1130. struct rmap_iterator iter;
  1131. int young = 0;
  1132. /*
  1133. * If there's no access bit in the secondary pte set by the
  1134. * hardware it's up to gup-fast/gup to set the access bit in
  1135. * the primary pte or in the page structure.
  1136. */
  1137. if (!shadow_accessed_mask)
  1138. goto out;
  1139. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1140. sptep = rmap_get_next(&iter)) {
  1141. BUG_ON(!is_shadow_present_pte(*sptep));
  1142. if (*sptep & shadow_accessed_mask) {
  1143. young = 1;
  1144. break;
  1145. }
  1146. }
  1147. out:
  1148. return young;
  1149. }
  1150. #define RMAP_RECYCLE_THRESHOLD 1000
  1151. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1152. {
  1153. unsigned long *rmapp;
  1154. struct kvm_mmu_page *sp;
  1155. sp = page_header(__pa(spte));
  1156. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1157. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  1158. kvm_flush_remote_tlbs(vcpu->kvm);
  1159. }
  1160. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1161. {
  1162. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  1163. }
  1164. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1165. {
  1166. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1167. }
  1168. #ifdef MMU_DEBUG
  1169. static int is_empty_shadow_page(u64 *spt)
  1170. {
  1171. u64 *pos;
  1172. u64 *end;
  1173. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1174. if (is_shadow_present_pte(*pos)) {
  1175. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1176. pos, *pos);
  1177. return 0;
  1178. }
  1179. return 1;
  1180. }
  1181. #endif
  1182. /*
  1183. * This value is the sum of all of the kvm instances's
  1184. * kvm->arch.n_used_mmu_pages values. We need a global,
  1185. * aggregate version in order to make the slab shrinker
  1186. * faster
  1187. */
  1188. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1189. {
  1190. kvm->arch.n_used_mmu_pages += nr;
  1191. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1192. }
  1193. /*
  1194. * Remove the sp from shadow page cache, after call it,
  1195. * we can not find this sp from the cache, and the shadow
  1196. * page table is still valid.
  1197. * It should be under the protection of mmu lock.
  1198. */
  1199. static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
  1200. {
  1201. ASSERT(is_empty_shadow_page(sp->spt));
  1202. hlist_del(&sp->hash_link);
  1203. if (!sp->role.direct)
  1204. free_page((unsigned long)sp->gfns);
  1205. }
  1206. /*
  1207. * Free the shadow page table and the sp, we can do it
  1208. * out of the protection of mmu lock.
  1209. */
  1210. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1211. {
  1212. list_del(&sp->link);
  1213. free_page((unsigned long)sp->spt);
  1214. kmem_cache_free(mmu_page_header_cache, sp);
  1215. }
  1216. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1217. {
  1218. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1219. }
  1220. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1221. struct kvm_mmu_page *sp, u64 *parent_pte)
  1222. {
  1223. if (!parent_pte)
  1224. return;
  1225. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1226. }
  1227. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1228. u64 *parent_pte)
  1229. {
  1230. pte_list_remove(parent_pte, &sp->parent_ptes);
  1231. }
  1232. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1233. u64 *parent_pte)
  1234. {
  1235. mmu_page_remove_parent_pte(sp, parent_pte);
  1236. mmu_spte_clear_no_track(parent_pte);
  1237. }
  1238. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1239. u64 *parent_pte, int direct)
  1240. {
  1241. struct kvm_mmu_page *sp;
  1242. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1243. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1244. if (!direct)
  1245. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1246. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1247. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1248. bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
  1249. sp->parent_ptes = 0;
  1250. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1251. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1252. return sp;
  1253. }
  1254. static void mark_unsync(u64 *spte);
  1255. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1256. {
  1257. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1258. }
  1259. static void mark_unsync(u64 *spte)
  1260. {
  1261. struct kvm_mmu_page *sp;
  1262. unsigned int index;
  1263. sp = page_header(__pa(spte));
  1264. index = spte - sp->spt;
  1265. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1266. return;
  1267. if (sp->unsync_children++)
  1268. return;
  1269. kvm_mmu_mark_parents_unsync(sp);
  1270. }
  1271. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1272. struct kvm_mmu_page *sp)
  1273. {
  1274. return 1;
  1275. }
  1276. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1277. {
  1278. }
  1279. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1280. struct kvm_mmu_page *sp, u64 *spte,
  1281. const void *pte)
  1282. {
  1283. WARN_ON(1);
  1284. }
  1285. #define KVM_PAGE_ARRAY_NR 16
  1286. struct kvm_mmu_pages {
  1287. struct mmu_page_and_offset {
  1288. struct kvm_mmu_page *sp;
  1289. unsigned int idx;
  1290. } page[KVM_PAGE_ARRAY_NR];
  1291. unsigned int nr;
  1292. };
  1293. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1294. int idx)
  1295. {
  1296. int i;
  1297. if (sp->unsync)
  1298. for (i=0; i < pvec->nr; i++)
  1299. if (pvec->page[i].sp == sp)
  1300. return 0;
  1301. pvec->page[pvec->nr].sp = sp;
  1302. pvec->page[pvec->nr].idx = idx;
  1303. pvec->nr++;
  1304. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1305. }
  1306. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1307. struct kvm_mmu_pages *pvec)
  1308. {
  1309. int i, ret, nr_unsync_leaf = 0;
  1310. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1311. struct kvm_mmu_page *child;
  1312. u64 ent = sp->spt[i];
  1313. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1314. goto clear_child_bitmap;
  1315. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1316. if (child->unsync_children) {
  1317. if (mmu_pages_add(pvec, child, i))
  1318. return -ENOSPC;
  1319. ret = __mmu_unsync_walk(child, pvec);
  1320. if (!ret)
  1321. goto clear_child_bitmap;
  1322. else if (ret > 0)
  1323. nr_unsync_leaf += ret;
  1324. else
  1325. return ret;
  1326. } else if (child->unsync) {
  1327. nr_unsync_leaf++;
  1328. if (mmu_pages_add(pvec, child, i))
  1329. return -ENOSPC;
  1330. } else
  1331. goto clear_child_bitmap;
  1332. continue;
  1333. clear_child_bitmap:
  1334. __clear_bit(i, sp->unsync_child_bitmap);
  1335. sp->unsync_children--;
  1336. WARN_ON((int)sp->unsync_children < 0);
  1337. }
  1338. return nr_unsync_leaf;
  1339. }
  1340. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1341. struct kvm_mmu_pages *pvec)
  1342. {
  1343. if (!sp->unsync_children)
  1344. return 0;
  1345. mmu_pages_add(pvec, sp, 0);
  1346. return __mmu_unsync_walk(sp, pvec);
  1347. }
  1348. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1349. {
  1350. WARN_ON(!sp->unsync);
  1351. trace_kvm_mmu_sync_page(sp);
  1352. sp->unsync = 0;
  1353. --kvm->stat.mmu_unsync;
  1354. }
  1355. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1356. struct list_head *invalid_list);
  1357. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1358. struct list_head *invalid_list);
  1359. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1360. hlist_for_each_entry(sp, pos, \
  1361. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1362. if ((sp)->gfn != (gfn)) {} else
  1363. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1364. hlist_for_each_entry(sp, pos, \
  1365. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1366. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1367. (sp)->role.invalid) {} else
  1368. /* @sp->gfn should be write-protected at the call site */
  1369. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1370. struct list_head *invalid_list, bool clear_unsync)
  1371. {
  1372. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1373. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1374. return 1;
  1375. }
  1376. if (clear_unsync)
  1377. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1378. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1379. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1380. return 1;
  1381. }
  1382. kvm_mmu_flush_tlb(vcpu);
  1383. return 0;
  1384. }
  1385. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1386. struct kvm_mmu_page *sp)
  1387. {
  1388. LIST_HEAD(invalid_list);
  1389. int ret;
  1390. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1391. if (ret)
  1392. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1393. return ret;
  1394. }
  1395. #ifdef CONFIG_KVM_MMU_AUDIT
  1396. #include "mmu_audit.c"
  1397. #else
  1398. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1399. static void mmu_audit_disable(void) { }
  1400. #endif
  1401. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1402. struct list_head *invalid_list)
  1403. {
  1404. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1405. }
  1406. /* @gfn should be write-protected at the call site */
  1407. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1408. {
  1409. struct kvm_mmu_page *s;
  1410. struct hlist_node *node;
  1411. LIST_HEAD(invalid_list);
  1412. bool flush = false;
  1413. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1414. if (!s->unsync)
  1415. continue;
  1416. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1417. kvm_unlink_unsync_page(vcpu->kvm, s);
  1418. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1419. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1420. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1421. continue;
  1422. }
  1423. flush = true;
  1424. }
  1425. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1426. if (flush)
  1427. kvm_mmu_flush_tlb(vcpu);
  1428. }
  1429. struct mmu_page_path {
  1430. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1431. unsigned int idx[PT64_ROOT_LEVEL-1];
  1432. };
  1433. #define for_each_sp(pvec, sp, parents, i) \
  1434. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1435. sp = pvec.page[i].sp; \
  1436. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1437. i = mmu_pages_next(&pvec, &parents, i))
  1438. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1439. struct mmu_page_path *parents,
  1440. int i)
  1441. {
  1442. int n;
  1443. for (n = i+1; n < pvec->nr; n++) {
  1444. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1445. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1446. parents->idx[0] = pvec->page[n].idx;
  1447. return n;
  1448. }
  1449. parents->parent[sp->role.level-2] = sp;
  1450. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1451. }
  1452. return n;
  1453. }
  1454. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1455. {
  1456. struct kvm_mmu_page *sp;
  1457. unsigned int level = 0;
  1458. do {
  1459. unsigned int idx = parents->idx[level];
  1460. sp = parents->parent[level];
  1461. if (!sp)
  1462. return;
  1463. --sp->unsync_children;
  1464. WARN_ON((int)sp->unsync_children < 0);
  1465. __clear_bit(idx, sp->unsync_child_bitmap);
  1466. level++;
  1467. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1468. }
  1469. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1470. struct mmu_page_path *parents,
  1471. struct kvm_mmu_pages *pvec)
  1472. {
  1473. parents->parent[parent->role.level-1] = NULL;
  1474. pvec->nr = 0;
  1475. }
  1476. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1477. struct kvm_mmu_page *parent)
  1478. {
  1479. int i;
  1480. struct kvm_mmu_page *sp;
  1481. struct mmu_page_path parents;
  1482. struct kvm_mmu_pages pages;
  1483. LIST_HEAD(invalid_list);
  1484. kvm_mmu_pages_init(parent, &parents, &pages);
  1485. while (mmu_unsync_walk(parent, &pages)) {
  1486. bool protected = false;
  1487. for_each_sp(pages, sp, parents, i)
  1488. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1489. if (protected)
  1490. kvm_flush_remote_tlbs(vcpu->kvm);
  1491. for_each_sp(pages, sp, parents, i) {
  1492. kvm_sync_page(vcpu, sp, &invalid_list);
  1493. mmu_pages_clear_parents(&parents);
  1494. }
  1495. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1496. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1497. kvm_mmu_pages_init(parent, &parents, &pages);
  1498. }
  1499. }
  1500. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1501. {
  1502. int i;
  1503. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1504. sp->spt[i] = 0ull;
  1505. }
  1506. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1507. {
  1508. sp->write_flooding_count = 0;
  1509. }
  1510. static void clear_sp_write_flooding_count(u64 *spte)
  1511. {
  1512. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1513. __clear_sp_write_flooding_count(sp);
  1514. }
  1515. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1516. gfn_t gfn,
  1517. gva_t gaddr,
  1518. unsigned level,
  1519. int direct,
  1520. unsigned access,
  1521. u64 *parent_pte)
  1522. {
  1523. union kvm_mmu_page_role role;
  1524. unsigned quadrant;
  1525. struct kvm_mmu_page *sp;
  1526. struct hlist_node *node;
  1527. bool need_sync = false;
  1528. role = vcpu->arch.mmu.base_role;
  1529. role.level = level;
  1530. role.direct = direct;
  1531. if (role.direct)
  1532. role.cr4_pae = 0;
  1533. role.access = access;
  1534. if (!vcpu->arch.mmu.direct_map
  1535. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1536. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1537. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1538. role.quadrant = quadrant;
  1539. }
  1540. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1541. if (!need_sync && sp->unsync)
  1542. need_sync = true;
  1543. if (sp->role.word != role.word)
  1544. continue;
  1545. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1546. break;
  1547. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1548. if (sp->unsync_children) {
  1549. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1550. kvm_mmu_mark_parents_unsync(sp);
  1551. } else if (sp->unsync)
  1552. kvm_mmu_mark_parents_unsync(sp);
  1553. __clear_sp_write_flooding_count(sp);
  1554. trace_kvm_mmu_get_page(sp, false);
  1555. return sp;
  1556. }
  1557. ++vcpu->kvm->stat.mmu_cache_miss;
  1558. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1559. if (!sp)
  1560. return sp;
  1561. sp->gfn = gfn;
  1562. sp->role = role;
  1563. hlist_add_head(&sp->hash_link,
  1564. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1565. if (!direct) {
  1566. if (rmap_write_protect(vcpu->kvm, gfn))
  1567. kvm_flush_remote_tlbs(vcpu->kvm);
  1568. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1569. kvm_sync_pages(vcpu, gfn);
  1570. account_shadowed(vcpu->kvm, gfn);
  1571. }
  1572. init_shadow_page_table(sp);
  1573. trace_kvm_mmu_get_page(sp, true);
  1574. return sp;
  1575. }
  1576. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1577. struct kvm_vcpu *vcpu, u64 addr)
  1578. {
  1579. iterator->addr = addr;
  1580. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1581. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1582. if (iterator->level == PT64_ROOT_LEVEL &&
  1583. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1584. !vcpu->arch.mmu.direct_map)
  1585. --iterator->level;
  1586. if (iterator->level == PT32E_ROOT_LEVEL) {
  1587. iterator->shadow_addr
  1588. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1589. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1590. --iterator->level;
  1591. if (!iterator->shadow_addr)
  1592. iterator->level = 0;
  1593. }
  1594. }
  1595. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1596. {
  1597. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1598. return false;
  1599. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1600. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1601. return true;
  1602. }
  1603. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1604. u64 spte)
  1605. {
  1606. if (is_last_spte(spte, iterator->level)) {
  1607. iterator->level = 0;
  1608. return;
  1609. }
  1610. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1611. --iterator->level;
  1612. }
  1613. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1614. {
  1615. return __shadow_walk_next(iterator, *iterator->sptep);
  1616. }
  1617. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1618. {
  1619. u64 spte;
  1620. spte = __pa(sp->spt)
  1621. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1622. | PT_WRITABLE_MASK | PT_USER_MASK;
  1623. mmu_spte_set(sptep, spte);
  1624. }
  1625. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1626. unsigned direct_access)
  1627. {
  1628. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1629. struct kvm_mmu_page *child;
  1630. /*
  1631. * For the direct sp, if the guest pte's dirty bit
  1632. * changed form clean to dirty, it will corrupt the
  1633. * sp's access: allow writable in the read-only sp,
  1634. * so we should update the spte at this point to get
  1635. * a new sp with the correct access.
  1636. */
  1637. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1638. if (child->role.access == direct_access)
  1639. return;
  1640. drop_parent_pte(child, sptep);
  1641. kvm_flush_remote_tlbs(vcpu->kvm);
  1642. }
  1643. }
  1644. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1645. u64 *spte)
  1646. {
  1647. u64 pte;
  1648. struct kvm_mmu_page *child;
  1649. pte = *spte;
  1650. if (is_shadow_present_pte(pte)) {
  1651. if (is_last_spte(pte, sp->role.level)) {
  1652. drop_spte(kvm, spte);
  1653. if (is_large_pte(pte))
  1654. --kvm->stat.lpages;
  1655. } else {
  1656. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1657. drop_parent_pte(child, spte);
  1658. }
  1659. return true;
  1660. }
  1661. if (is_mmio_spte(pte))
  1662. mmu_spte_clear_no_track(spte);
  1663. return false;
  1664. }
  1665. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1666. struct kvm_mmu_page *sp)
  1667. {
  1668. unsigned i;
  1669. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1670. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1671. }
  1672. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1673. {
  1674. mmu_page_remove_parent_pte(sp, parent_pte);
  1675. }
  1676. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1677. {
  1678. u64 *sptep;
  1679. struct rmap_iterator iter;
  1680. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1681. drop_parent_pte(sp, sptep);
  1682. }
  1683. static int mmu_zap_unsync_children(struct kvm *kvm,
  1684. struct kvm_mmu_page *parent,
  1685. struct list_head *invalid_list)
  1686. {
  1687. int i, zapped = 0;
  1688. struct mmu_page_path parents;
  1689. struct kvm_mmu_pages pages;
  1690. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1691. return 0;
  1692. kvm_mmu_pages_init(parent, &parents, &pages);
  1693. while (mmu_unsync_walk(parent, &pages)) {
  1694. struct kvm_mmu_page *sp;
  1695. for_each_sp(pages, sp, parents, i) {
  1696. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1697. mmu_pages_clear_parents(&parents);
  1698. zapped++;
  1699. }
  1700. kvm_mmu_pages_init(parent, &parents, &pages);
  1701. }
  1702. return zapped;
  1703. }
  1704. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1705. struct list_head *invalid_list)
  1706. {
  1707. int ret;
  1708. trace_kvm_mmu_prepare_zap_page(sp);
  1709. ++kvm->stat.mmu_shadow_zapped;
  1710. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1711. kvm_mmu_page_unlink_children(kvm, sp);
  1712. kvm_mmu_unlink_parents(kvm, sp);
  1713. if (!sp->role.invalid && !sp->role.direct)
  1714. unaccount_shadowed(kvm, sp->gfn);
  1715. if (sp->unsync)
  1716. kvm_unlink_unsync_page(kvm, sp);
  1717. if (!sp->root_count) {
  1718. /* Count self */
  1719. ret++;
  1720. list_move(&sp->link, invalid_list);
  1721. kvm_mod_used_mmu_pages(kvm, -1);
  1722. } else {
  1723. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1724. kvm_reload_remote_mmus(kvm);
  1725. }
  1726. sp->role.invalid = 1;
  1727. return ret;
  1728. }
  1729. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1730. struct list_head *invalid_list)
  1731. {
  1732. struct kvm_mmu_page *sp;
  1733. if (list_empty(invalid_list))
  1734. return;
  1735. /*
  1736. * wmb: make sure everyone sees our modifications to the page tables
  1737. * rmb: make sure we see changes to vcpu->mode
  1738. */
  1739. smp_mb();
  1740. /*
  1741. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1742. * page table walks.
  1743. */
  1744. kvm_flush_remote_tlbs(kvm);
  1745. do {
  1746. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1747. WARN_ON(!sp->role.invalid || sp->root_count);
  1748. kvm_mmu_isolate_page(sp);
  1749. kvm_mmu_free_page(sp);
  1750. } while (!list_empty(invalid_list));
  1751. }
  1752. /*
  1753. * Changing the number of mmu pages allocated to the vm
  1754. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1755. */
  1756. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1757. {
  1758. LIST_HEAD(invalid_list);
  1759. /*
  1760. * If we set the number of mmu pages to be smaller be than the
  1761. * number of actived pages , we must to free some mmu pages before we
  1762. * change the value
  1763. */
  1764. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1765. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1766. !list_empty(&kvm->arch.active_mmu_pages)) {
  1767. struct kvm_mmu_page *page;
  1768. page = container_of(kvm->arch.active_mmu_pages.prev,
  1769. struct kvm_mmu_page, link);
  1770. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1771. }
  1772. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1773. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1774. }
  1775. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1776. }
  1777. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1778. {
  1779. struct kvm_mmu_page *sp;
  1780. struct hlist_node *node;
  1781. LIST_HEAD(invalid_list);
  1782. int r;
  1783. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1784. r = 0;
  1785. spin_lock(&kvm->mmu_lock);
  1786. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1787. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1788. sp->role.word);
  1789. r = 1;
  1790. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1791. }
  1792. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1793. spin_unlock(&kvm->mmu_lock);
  1794. return r;
  1795. }
  1796. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1797. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1798. {
  1799. int slot = memslot_id(kvm, gfn);
  1800. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1801. __set_bit(slot, sp->slot_bitmap);
  1802. }
  1803. /*
  1804. * The function is based on mtrr_type_lookup() in
  1805. * arch/x86/kernel/cpu/mtrr/generic.c
  1806. */
  1807. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1808. u64 start, u64 end)
  1809. {
  1810. int i;
  1811. u64 base, mask;
  1812. u8 prev_match, curr_match;
  1813. int num_var_ranges = KVM_NR_VAR_MTRR;
  1814. if (!mtrr_state->enabled)
  1815. return 0xFF;
  1816. /* Make end inclusive end, instead of exclusive */
  1817. end--;
  1818. /* Look in fixed ranges. Just return the type as per start */
  1819. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1820. int idx;
  1821. if (start < 0x80000) {
  1822. idx = 0;
  1823. idx += (start >> 16);
  1824. return mtrr_state->fixed_ranges[idx];
  1825. } else if (start < 0xC0000) {
  1826. idx = 1 * 8;
  1827. idx += ((start - 0x80000) >> 14);
  1828. return mtrr_state->fixed_ranges[idx];
  1829. } else if (start < 0x1000000) {
  1830. idx = 3 * 8;
  1831. idx += ((start - 0xC0000) >> 12);
  1832. return mtrr_state->fixed_ranges[idx];
  1833. }
  1834. }
  1835. /*
  1836. * Look in variable ranges
  1837. * Look of multiple ranges matching this address and pick type
  1838. * as per MTRR precedence
  1839. */
  1840. if (!(mtrr_state->enabled & 2))
  1841. return mtrr_state->def_type;
  1842. prev_match = 0xFF;
  1843. for (i = 0; i < num_var_ranges; ++i) {
  1844. unsigned short start_state, end_state;
  1845. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1846. continue;
  1847. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1848. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1849. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1850. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1851. start_state = ((start & mask) == (base & mask));
  1852. end_state = ((end & mask) == (base & mask));
  1853. if (start_state != end_state)
  1854. return 0xFE;
  1855. if ((start & mask) != (base & mask))
  1856. continue;
  1857. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1858. if (prev_match == 0xFF) {
  1859. prev_match = curr_match;
  1860. continue;
  1861. }
  1862. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1863. curr_match == MTRR_TYPE_UNCACHABLE)
  1864. return MTRR_TYPE_UNCACHABLE;
  1865. if ((prev_match == MTRR_TYPE_WRBACK &&
  1866. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1867. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1868. curr_match == MTRR_TYPE_WRBACK)) {
  1869. prev_match = MTRR_TYPE_WRTHROUGH;
  1870. curr_match = MTRR_TYPE_WRTHROUGH;
  1871. }
  1872. if (prev_match != curr_match)
  1873. return MTRR_TYPE_UNCACHABLE;
  1874. }
  1875. if (prev_match != 0xFF)
  1876. return prev_match;
  1877. return mtrr_state->def_type;
  1878. }
  1879. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1880. {
  1881. u8 mtrr;
  1882. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1883. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1884. if (mtrr == 0xfe || mtrr == 0xff)
  1885. mtrr = MTRR_TYPE_WRBACK;
  1886. return mtrr;
  1887. }
  1888. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1889. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1890. {
  1891. trace_kvm_mmu_unsync_page(sp);
  1892. ++vcpu->kvm->stat.mmu_unsync;
  1893. sp->unsync = 1;
  1894. kvm_mmu_mark_parents_unsync(sp);
  1895. }
  1896. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1897. {
  1898. struct kvm_mmu_page *s;
  1899. struct hlist_node *node;
  1900. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1901. if (s->unsync)
  1902. continue;
  1903. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1904. __kvm_unsync_page(vcpu, s);
  1905. }
  1906. }
  1907. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1908. bool can_unsync)
  1909. {
  1910. struct kvm_mmu_page *s;
  1911. struct hlist_node *node;
  1912. bool need_unsync = false;
  1913. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1914. if (!can_unsync)
  1915. return 1;
  1916. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1917. return 1;
  1918. if (!need_unsync && !s->unsync) {
  1919. need_unsync = true;
  1920. }
  1921. }
  1922. if (need_unsync)
  1923. kvm_unsync_pages(vcpu, gfn);
  1924. return 0;
  1925. }
  1926. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1927. unsigned pte_access, int user_fault,
  1928. int write_fault, int level,
  1929. gfn_t gfn, pfn_t pfn, bool speculative,
  1930. bool can_unsync, bool host_writable)
  1931. {
  1932. u64 spte;
  1933. int ret = 0;
  1934. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1935. return 0;
  1936. spte = PT_PRESENT_MASK;
  1937. if (!speculative)
  1938. spte |= shadow_accessed_mask;
  1939. if (pte_access & ACC_EXEC_MASK)
  1940. spte |= shadow_x_mask;
  1941. else
  1942. spte |= shadow_nx_mask;
  1943. if (pte_access & ACC_USER_MASK)
  1944. spte |= shadow_user_mask;
  1945. if (level > PT_PAGE_TABLE_LEVEL)
  1946. spte |= PT_PAGE_SIZE_MASK;
  1947. if (tdp_enabled)
  1948. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1949. kvm_is_mmio_pfn(pfn));
  1950. if (host_writable)
  1951. spte |= SPTE_HOST_WRITEABLE;
  1952. else
  1953. pte_access &= ~ACC_WRITE_MASK;
  1954. spte |= (u64)pfn << PAGE_SHIFT;
  1955. if ((pte_access & ACC_WRITE_MASK)
  1956. || (!vcpu->arch.mmu.direct_map && write_fault
  1957. && !is_write_protection(vcpu) && !user_fault)) {
  1958. if (level > PT_PAGE_TABLE_LEVEL &&
  1959. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1960. ret = 1;
  1961. drop_spte(vcpu->kvm, sptep);
  1962. goto done;
  1963. }
  1964. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1965. if (!vcpu->arch.mmu.direct_map
  1966. && !(pte_access & ACC_WRITE_MASK)) {
  1967. spte &= ~PT_USER_MASK;
  1968. /*
  1969. * If we converted a user page to a kernel page,
  1970. * so that the kernel can write to it when cr0.wp=0,
  1971. * then we should prevent the kernel from executing it
  1972. * if SMEP is enabled.
  1973. */
  1974. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1975. spte |= PT64_NX_MASK;
  1976. }
  1977. /*
  1978. * Optimization: for pte sync, if spte was writable the hash
  1979. * lookup is unnecessary (and expensive). Write protection
  1980. * is responsibility of mmu_get_page / kvm_sync_page.
  1981. * Same reasoning can be applied to dirty page accounting.
  1982. */
  1983. if (!can_unsync && is_writable_pte(*sptep))
  1984. goto set_pte;
  1985. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1986. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1987. __func__, gfn);
  1988. ret = 1;
  1989. pte_access &= ~ACC_WRITE_MASK;
  1990. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  1991. }
  1992. }
  1993. if (pte_access & ACC_WRITE_MASK)
  1994. mark_page_dirty(vcpu->kvm, gfn);
  1995. set_pte:
  1996. if (mmu_spte_update(sptep, spte))
  1997. kvm_flush_remote_tlbs(vcpu->kvm);
  1998. done:
  1999. return ret;
  2000. }
  2001. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2002. unsigned pt_access, unsigned pte_access,
  2003. int user_fault, int write_fault,
  2004. int *emulate, int level, gfn_t gfn,
  2005. pfn_t pfn, bool speculative,
  2006. bool host_writable)
  2007. {
  2008. int was_rmapped = 0;
  2009. int rmap_count;
  2010. pgprintk("%s: spte %llx access %x write_fault %d"
  2011. " user_fault %d gfn %llx\n",
  2012. __func__, *sptep, pt_access,
  2013. write_fault, user_fault, gfn);
  2014. if (is_rmap_spte(*sptep)) {
  2015. /*
  2016. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2017. * the parent of the now unreachable PTE.
  2018. */
  2019. if (level > PT_PAGE_TABLE_LEVEL &&
  2020. !is_large_pte(*sptep)) {
  2021. struct kvm_mmu_page *child;
  2022. u64 pte = *sptep;
  2023. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2024. drop_parent_pte(child, sptep);
  2025. kvm_flush_remote_tlbs(vcpu->kvm);
  2026. } else if (pfn != spte_to_pfn(*sptep)) {
  2027. pgprintk("hfn old %llx new %llx\n",
  2028. spte_to_pfn(*sptep), pfn);
  2029. drop_spte(vcpu->kvm, sptep);
  2030. kvm_flush_remote_tlbs(vcpu->kvm);
  2031. } else
  2032. was_rmapped = 1;
  2033. }
  2034. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  2035. level, gfn, pfn, speculative, true,
  2036. host_writable)) {
  2037. if (write_fault)
  2038. *emulate = 1;
  2039. kvm_mmu_flush_tlb(vcpu);
  2040. }
  2041. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2042. *emulate = 1;
  2043. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2044. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2045. is_large_pte(*sptep)? "2MB" : "4kB",
  2046. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2047. *sptep, sptep);
  2048. if (!was_rmapped && is_large_pte(*sptep))
  2049. ++vcpu->kvm->stat.lpages;
  2050. if (is_shadow_present_pte(*sptep)) {
  2051. page_header_update_slot(vcpu->kvm, sptep, gfn);
  2052. if (!was_rmapped) {
  2053. rmap_count = rmap_add(vcpu, sptep, gfn);
  2054. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2055. rmap_recycle(vcpu, sptep, gfn);
  2056. }
  2057. }
  2058. kvm_release_pfn_clean(pfn);
  2059. }
  2060. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2061. {
  2062. mmu_free_roots(vcpu);
  2063. }
  2064. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2065. bool no_dirty_log)
  2066. {
  2067. struct kvm_memory_slot *slot;
  2068. unsigned long hva;
  2069. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2070. if (!slot) {
  2071. get_page(fault_page);
  2072. return page_to_pfn(fault_page);
  2073. }
  2074. hva = gfn_to_hva_memslot(slot, gfn);
  2075. return hva_to_pfn_atomic(vcpu->kvm, hva);
  2076. }
  2077. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2078. struct kvm_mmu_page *sp,
  2079. u64 *start, u64 *end)
  2080. {
  2081. struct page *pages[PTE_PREFETCH_NUM];
  2082. unsigned access = sp->role.access;
  2083. int i, ret;
  2084. gfn_t gfn;
  2085. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2086. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2087. return -1;
  2088. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2089. if (ret <= 0)
  2090. return -1;
  2091. for (i = 0; i < ret; i++, gfn++, start++)
  2092. mmu_set_spte(vcpu, start, ACC_ALL,
  2093. access, 0, 0, NULL,
  2094. sp->role.level, gfn,
  2095. page_to_pfn(pages[i]), true, true);
  2096. return 0;
  2097. }
  2098. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2099. struct kvm_mmu_page *sp, u64 *sptep)
  2100. {
  2101. u64 *spte, *start = NULL;
  2102. int i;
  2103. WARN_ON(!sp->role.direct);
  2104. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2105. spte = sp->spt + i;
  2106. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2107. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2108. if (!start)
  2109. continue;
  2110. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2111. break;
  2112. start = NULL;
  2113. } else if (!start)
  2114. start = spte;
  2115. }
  2116. }
  2117. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2118. {
  2119. struct kvm_mmu_page *sp;
  2120. /*
  2121. * Since it's no accessed bit on EPT, it's no way to
  2122. * distinguish between actually accessed translations
  2123. * and prefetched, so disable pte prefetch if EPT is
  2124. * enabled.
  2125. */
  2126. if (!shadow_accessed_mask)
  2127. return;
  2128. sp = page_header(__pa(sptep));
  2129. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2130. return;
  2131. __direct_pte_prefetch(vcpu, sp, sptep);
  2132. }
  2133. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2134. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2135. bool prefault)
  2136. {
  2137. struct kvm_shadow_walk_iterator iterator;
  2138. struct kvm_mmu_page *sp;
  2139. int emulate = 0;
  2140. gfn_t pseudo_gfn;
  2141. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2142. if (iterator.level == level) {
  2143. unsigned pte_access = ACC_ALL;
  2144. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  2145. 0, write, &emulate,
  2146. level, gfn, pfn, prefault, map_writable);
  2147. direct_pte_prefetch(vcpu, iterator.sptep);
  2148. ++vcpu->stat.pf_fixed;
  2149. break;
  2150. }
  2151. if (!is_shadow_present_pte(*iterator.sptep)) {
  2152. u64 base_addr = iterator.addr;
  2153. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2154. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2155. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2156. iterator.level - 1,
  2157. 1, ACC_ALL, iterator.sptep);
  2158. if (!sp) {
  2159. pgprintk("nonpaging_map: ENOMEM\n");
  2160. kvm_release_pfn_clean(pfn);
  2161. return -ENOMEM;
  2162. }
  2163. mmu_spte_set(iterator.sptep,
  2164. __pa(sp->spt)
  2165. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  2166. | shadow_user_mask | shadow_x_mask
  2167. | shadow_accessed_mask);
  2168. }
  2169. }
  2170. return emulate;
  2171. }
  2172. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2173. {
  2174. siginfo_t info;
  2175. info.si_signo = SIGBUS;
  2176. info.si_errno = 0;
  2177. info.si_code = BUS_MCEERR_AR;
  2178. info.si_addr = (void __user *)address;
  2179. info.si_addr_lsb = PAGE_SHIFT;
  2180. send_sig_info(SIGBUS, &info, tsk);
  2181. }
  2182. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2183. {
  2184. kvm_release_pfn_clean(pfn);
  2185. if (is_hwpoison_pfn(pfn)) {
  2186. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2187. return 0;
  2188. }
  2189. return -EFAULT;
  2190. }
  2191. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2192. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2193. {
  2194. pfn_t pfn = *pfnp;
  2195. gfn_t gfn = *gfnp;
  2196. int level = *levelp;
  2197. /*
  2198. * Check if it's a transparent hugepage. If this would be an
  2199. * hugetlbfs page, level wouldn't be set to
  2200. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2201. * here.
  2202. */
  2203. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2204. level == PT_PAGE_TABLE_LEVEL &&
  2205. PageTransCompound(pfn_to_page(pfn)) &&
  2206. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2207. unsigned long mask;
  2208. /*
  2209. * mmu_notifier_retry was successful and we hold the
  2210. * mmu_lock here, so the pmd can't become splitting
  2211. * from under us, and in turn
  2212. * __split_huge_page_refcount() can't run from under
  2213. * us and we can safely transfer the refcount from
  2214. * PG_tail to PG_head as we switch the pfn to tail to
  2215. * head.
  2216. */
  2217. *levelp = level = PT_DIRECTORY_LEVEL;
  2218. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2219. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2220. if (pfn & mask) {
  2221. gfn &= ~mask;
  2222. *gfnp = gfn;
  2223. kvm_release_pfn_clean(pfn);
  2224. pfn &= ~mask;
  2225. kvm_get_pfn(pfn);
  2226. *pfnp = pfn;
  2227. }
  2228. }
  2229. }
  2230. static bool mmu_invalid_pfn(pfn_t pfn)
  2231. {
  2232. return unlikely(is_invalid_pfn(pfn));
  2233. }
  2234. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2235. pfn_t pfn, unsigned access, int *ret_val)
  2236. {
  2237. bool ret = true;
  2238. /* The pfn is invalid, report the error! */
  2239. if (unlikely(is_invalid_pfn(pfn))) {
  2240. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2241. goto exit;
  2242. }
  2243. if (unlikely(is_noslot_pfn(pfn)))
  2244. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2245. ret = false;
  2246. exit:
  2247. return ret;
  2248. }
  2249. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2250. {
  2251. /*
  2252. * #PF can be fast only if the shadow page table is present and it
  2253. * is caused by write-protect, that means we just need change the
  2254. * W bit of the spte which can be done out of mmu-lock.
  2255. */
  2256. if (!(error_code & PFERR_PRESENT_MASK) ||
  2257. !(error_code & PFERR_WRITE_MASK))
  2258. return false;
  2259. return true;
  2260. }
  2261. static bool
  2262. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2263. {
  2264. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2265. gfn_t gfn;
  2266. WARN_ON(!sp->role.direct);
  2267. /*
  2268. * The gfn of direct spte is stable since it is calculated
  2269. * by sp->gfn.
  2270. */
  2271. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2272. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2273. mark_page_dirty(vcpu->kvm, gfn);
  2274. return true;
  2275. }
  2276. /*
  2277. * Return value:
  2278. * - true: let the vcpu to access on the same address again.
  2279. * - false: let the real page fault path to fix it.
  2280. */
  2281. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2282. u32 error_code)
  2283. {
  2284. struct kvm_shadow_walk_iterator iterator;
  2285. bool ret = false;
  2286. u64 spte = 0ull;
  2287. if (!page_fault_can_be_fast(vcpu, error_code))
  2288. return false;
  2289. walk_shadow_page_lockless_begin(vcpu);
  2290. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2291. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2292. break;
  2293. /*
  2294. * If the mapping has been changed, let the vcpu fault on the
  2295. * same address again.
  2296. */
  2297. if (!is_rmap_spte(spte)) {
  2298. ret = true;
  2299. goto exit;
  2300. }
  2301. if (!is_last_spte(spte, level))
  2302. goto exit;
  2303. /*
  2304. * Check if it is a spurious fault caused by TLB lazily flushed.
  2305. *
  2306. * Need not check the access of upper level table entries since
  2307. * they are always ACC_ALL.
  2308. */
  2309. if (is_writable_pte(spte)) {
  2310. ret = true;
  2311. goto exit;
  2312. }
  2313. /*
  2314. * Currently, to simplify the code, only the spte write-protected
  2315. * by dirty-log can be fast fixed.
  2316. */
  2317. if (!spte_is_locklessly_modifiable(spte))
  2318. goto exit;
  2319. /*
  2320. * Currently, fast page fault only works for direct mapping since
  2321. * the gfn is not stable for indirect shadow page.
  2322. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2323. */
  2324. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2325. exit:
  2326. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2327. spte, ret);
  2328. walk_shadow_page_lockless_end(vcpu);
  2329. return ret;
  2330. }
  2331. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2332. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2333. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2334. gfn_t gfn, bool prefault)
  2335. {
  2336. int r;
  2337. int level;
  2338. int force_pt_level;
  2339. pfn_t pfn;
  2340. unsigned long mmu_seq;
  2341. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2342. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2343. if (likely(!force_pt_level)) {
  2344. level = mapping_level(vcpu, gfn);
  2345. /*
  2346. * This path builds a PAE pagetable - so we can map
  2347. * 2mb pages at maximum. Therefore check if the level
  2348. * is larger than that.
  2349. */
  2350. if (level > PT_DIRECTORY_LEVEL)
  2351. level = PT_DIRECTORY_LEVEL;
  2352. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2353. } else
  2354. level = PT_PAGE_TABLE_LEVEL;
  2355. if (fast_page_fault(vcpu, v, level, error_code))
  2356. return 0;
  2357. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2358. smp_rmb();
  2359. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2360. return 0;
  2361. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2362. return r;
  2363. spin_lock(&vcpu->kvm->mmu_lock);
  2364. if (mmu_notifier_retry(vcpu, mmu_seq))
  2365. goto out_unlock;
  2366. kvm_mmu_free_some_pages(vcpu);
  2367. if (likely(!force_pt_level))
  2368. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2369. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2370. prefault);
  2371. spin_unlock(&vcpu->kvm->mmu_lock);
  2372. return r;
  2373. out_unlock:
  2374. spin_unlock(&vcpu->kvm->mmu_lock);
  2375. kvm_release_pfn_clean(pfn);
  2376. return 0;
  2377. }
  2378. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2379. {
  2380. int i;
  2381. struct kvm_mmu_page *sp;
  2382. LIST_HEAD(invalid_list);
  2383. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2384. return;
  2385. spin_lock(&vcpu->kvm->mmu_lock);
  2386. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2387. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2388. vcpu->arch.mmu.direct_map)) {
  2389. hpa_t root = vcpu->arch.mmu.root_hpa;
  2390. sp = page_header(root);
  2391. --sp->root_count;
  2392. if (!sp->root_count && sp->role.invalid) {
  2393. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2394. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2395. }
  2396. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2397. spin_unlock(&vcpu->kvm->mmu_lock);
  2398. return;
  2399. }
  2400. for (i = 0; i < 4; ++i) {
  2401. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2402. if (root) {
  2403. root &= PT64_BASE_ADDR_MASK;
  2404. sp = page_header(root);
  2405. --sp->root_count;
  2406. if (!sp->root_count && sp->role.invalid)
  2407. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2408. &invalid_list);
  2409. }
  2410. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2411. }
  2412. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2413. spin_unlock(&vcpu->kvm->mmu_lock);
  2414. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2415. }
  2416. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2417. {
  2418. int ret = 0;
  2419. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2420. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2421. ret = 1;
  2422. }
  2423. return ret;
  2424. }
  2425. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2426. {
  2427. struct kvm_mmu_page *sp;
  2428. unsigned i;
  2429. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2430. spin_lock(&vcpu->kvm->mmu_lock);
  2431. kvm_mmu_free_some_pages(vcpu);
  2432. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2433. 1, ACC_ALL, NULL);
  2434. ++sp->root_count;
  2435. spin_unlock(&vcpu->kvm->mmu_lock);
  2436. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2437. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2438. for (i = 0; i < 4; ++i) {
  2439. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2440. ASSERT(!VALID_PAGE(root));
  2441. spin_lock(&vcpu->kvm->mmu_lock);
  2442. kvm_mmu_free_some_pages(vcpu);
  2443. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2444. i << 30,
  2445. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2446. NULL);
  2447. root = __pa(sp->spt);
  2448. ++sp->root_count;
  2449. spin_unlock(&vcpu->kvm->mmu_lock);
  2450. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2451. }
  2452. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2453. } else
  2454. BUG();
  2455. return 0;
  2456. }
  2457. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2458. {
  2459. struct kvm_mmu_page *sp;
  2460. u64 pdptr, pm_mask;
  2461. gfn_t root_gfn;
  2462. int i;
  2463. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2464. if (mmu_check_root(vcpu, root_gfn))
  2465. return 1;
  2466. /*
  2467. * Do we shadow a long mode page table? If so we need to
  2468. * write-protect the guests page table root.
  2469. */
  2470. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2471. hpa_t root = vcpu->arch.mmu.root_hpa;
  2472. ASSERT(!VALID_PAGE(root));
  2473. spin_lock(&vcpu->kvm->mmu_lock);
  2474. kvm_mmu_free_some_pages(vcpu);
  2475. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2476. 0, ACC_ALL, NULL);
  2477. root = __pa(sp->spt);
  2478. ++sp->root_count;
  2479. spin_unlock(&vcpu->kvm->mmu_lock);
  2480. vcpu->arch.mmu.root_hpa = root;
  2481. return 0;
  2482. }
  2483. /*
  2484. * We shadow a 32 bit page table. This may be a legacy 2-level
  2485. * or a PAE 3-level page table. In either case we need to be aware that
  2486. * the shadow page table may be a PAE or a long mode page table.
  2487. */
  2488. pm_mask = PT_PRESENT_MASK;
  2489. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2490. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2491. for (i = 0; i < 4; ++i) {
  2492. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2493. ASSERT(!VALID_PAGE(root));
  2494. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2495. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2496. if (!is_present_gpte(pdptr)) {
  2497. vcpu->arch.mmu.pae_root[i] = 0;
  2498. continue;
  2499. }
  2500. root_gfn = pdptr >> PAGE_SHIFT;
  2501. if (mmu_check_root(vcpu, root_gfn))
  2502. return 1;
  2503. }
  2504. spin_lock(&vcpu->kvm->mmu_lock);
  2505. kvm_mmu_free_some_pages(vcpu);
  2506. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2507. PT32_ROOT_LEVEL, 0,
  2508. ACC_ALL, NULL);
  2509. root = __pa(sp->spt);
  2510. ++sp->root_count;
  2511. spin_unlock(&vcpu->kvm->mmu_lock);
  2512. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2513. }
  2514. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2515. /*
  2516. * If we shadow a 32 bit page table with a long mode page
  2517. * table we enter this path.
  2518. */
  2519. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2520. if (vcpu->arch.mmu.lm_root == NULL) {
  2521. /*
  2522. * The additional page necessary for this is only
  2523. * allocated on demand.
  2524. */
  2525. u64 *lm_root;
  2526. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2527. if (lm_root == NULL)
  2528. return 1;
  2529. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2530. vcpu->arch.mmu.lm_root = lm_root;
  2531. }
  2532. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2533. }
  2534. return 0;
  2535. }
  2536. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2537. {
  2538. if (vcpu->arch.mmu.direct_map)
  2539. return mmu_alloc_direct_roots(vcpu);
  2540. else
  2541. return mmu_alloc_shadow_roots(vcpu);
  2542. }
  2543. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2544. {
  2545. int i;
  2546. struct kvm_mmu_page *sp;
  2547. if (vcpu->arch.mmu.direct_map)
  2548. return;
  2549. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2550. return;
  2551. vcpu_clear_mmio_info(vcpu, ~0ul);
  2552. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2553. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2554. hpa_t root = vcpu->arch.mmu.root_hpa;
  2555. sp = page_header(root);
  2556. mmu_sync_children(vcpu, sp);
  2557. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2558. return;
  2559. }
  2560. for (i = 0; i < 4; ++i) {
  2561. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2562. if (root && VALID_PAGE(root)) {
  2563. root &= PT64_BASE_ADDR_MASK;
  2564. sp = page_header(root);
  2565. mmu_sync_children(vcpu, sp);
  2566. }
  2567. }
  2568. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2569. }
  2570. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2571. {
  2572. spin_lock(&vcpu->kvm->mmu_lock);
  2573. mmu_sync_roots(vcpu);
  2574. spin_unlock(&vcpu->kvm->mmu_lock);
  2575. }
  2576. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2577. u32 access, struct x86_exception *exception)
  2578. {
  2579. if (exception)
  2580. exception->error_code = 0;
  2581. return vaddr;
  2582. }
  2583. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2584. u32 access,
  2585. struct x86_exception *exception)
  2586. {
  2587. if (exception)
  2588. exception->error_code = 0;
  2589. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2590. }
  2591. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2592. {
  2593. if (direct)
  2594. return vcpu_match_mmio_gpa(vcpu, addr);
  2595. return vcpu_match_mmio_gva(vcpu, addr);
  2596. }
  2597. /*
  2598. * On direct hosts, the last spte is only allows two states
  2599. * for mmio page fault:
  2600. * - It is the mmio spte
  2601. * - It is zapped or it is being zapped.
  2602. *
  2603. * This function completely checks the spte when the last spte
  2604. * is not the mmio spte.
  2605. */
  2606. static bool check_direct_spte_mmio_pf(u64 spte)
  2607. {
  2608. return __check_direct_spte_mmio_pf(spte);
  2609. }
  2610. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2611. {
  2612. struct kvm_shadow_walk_iterator iterator;
  2613. u64 spte = 0ull;
  2614. walk_shadow_page_lockless_begin(vcpu);
  2615. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2616. if (!is_shadow_present_pte(spte))
  2617. break;
  2618. walk_shadow_page_lockless_end(vcpu);
  2619. return spte;
  2620. }
  2621. /*
  2622. * If it is a real mmio page fault, return 1 and emulat the instruction
  2623. * directly, return 0 to let CPU fault again on the address, -1 is
  2624. * returned if bug is detected.
  2625. */
  2626. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2627. {
  2628. u64 spte;
  2629. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2630. return 1;
  2631. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2632. if (is_mmio_spte(spte)) {
  2633. gfn_t gfn = get_mmio_spte_gfn(spte);
  2634. unsigned access = get_mmio_spte_access(spte);
  2635. if (direct)
  2636. addr = 0;
  2637. trace_handle_mmio_page_fault(addr, gfn, access);
  2638. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2639. return 1;
  2640. }
  2641. /*
  2642. * It's ok if the gva is remapped by other cpus on shadow guest,
  2643. * it's a BUG if the gfn is not a mmio page.
  2644. */
  2645. if (direct && !check_direct_spte_mmio_pf(spte))
  2646. return -1;
  2647. /*
  2648. * If the page table is zapped by other cpus, let CPU fault again on
  2649. * the address.
  2650. */
  2651. return 0;
  2652. }
  2653. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2654. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2655. u32 error_code, bool direct)
  2656. {
  2657. int ret;
  2658. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2659. WARN_ON(ret < 0);
  2660. return ret;
  2661. }
  2662. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2663. u32 error_code, bool prefault)
  2664. {
  2665. gfn_t gfn;
  2666. int r;
  2667. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2668. if (unlikely(error_code & PFERR_RSVD_MASK))
  2669. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2670. r = mmu_topup_memory_caches(vcpu);
  2671. if (r)
  2672. return r;
  2673. ASSERT(vcpu);
  2674. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2675. gfn = gva >> PAGE_SHIFT;
  2676. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2677. error_code, gfn, prefault);
  2678. }
  2679. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2680. {
  2681. struct kvm_arch_async_pf arch;
  2682. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2683. arch.gfn = gfn;
  2684. arch.direct_map = vcpu->arch.mmu.direct_map;
  2685. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2686. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2687. }
  2688. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2689. {
  2690. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2691. kvm_event_needs_reinjection(vcpu)))
  2692. return false;
  2693. return kvm_x86_ops->interrupt_allowed(vcpu);
  2694. }
  2695. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2696. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2697. {
  2698. bool async;
  2699. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2700. if (!async)
  2701. return false; /* *pfn has correct page already */
  2702. put_page(pfn_to_page(*pfn));
  2703. if (!prefault && can_do_async_pf(vcpu)) {
  2704. trace_kvm_try_async_get_page(gva, gfn);
  2705. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2706. trace_kvm_async_pf_doublefault(gva, gfn);
  2707. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2708. return true;
  2709. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2710. return true;
  2711. }
  2712. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2713. return false;
  2714. }
  2715. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2716. bool prefault)
  2717. {
  2718. pfn_t pfn;
  2719. int r;
  2720. int level;
  2721. int force_pt_level;
  2722. gfn_t gfn = gpa >> PAGE_SHIFT;
  2723. unsigned long mmu_seq;
  2724. int write = error_code & PFERR_WRITE_MASK;
  2725. bool map_writable;
  2726. ASSERT(vcpu);
  2727. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2728. if (unlikely(error_code & PFERR_RSVD_MASK))
  2729. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2730. r = mmu_topup_memory_caches(vcpu);
  2731. if (r)
  2732. return r;
  2733. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2734. if (likely(!force_pt_level)) {
  2735. level = mapping_level(vcpu, gfn);
  2736. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2737. } else
  2738. level = PT_PAGE_TABLE_LEVEL;
  2739. if (fast_page_fault(vcpu, gpa, level, error_code))
  2740. return 0;
  2741. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2742. smp_rmb();
  2743. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2744. return 0;
  2745. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2746. return r;
  2747. spin_lock(&vcpu->kvm->mmu_lock);
  2748. if (mmu_notifier_retry(vcpu, mmu_seq))
  2749. goto out_unlock;
  2750. kvm_mmu_free_some_pages(vcpu);
  2751. if (likely(!force_pt_level))
  2752. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2753. r = __direct_map(vcpu, gpa, write, map_writable,
  2754. level, gfn, pfn, prefault);
  2755. spin_unlock(&vcpu->kvm->mmu_lock);
  2756. return r;
  2757. out_unlock:
  2758. spin_unlock(&vcpu->kvm->mmu_lock);
  2759. kvm_release_pfn_clean(pfn);
  2760. return 0;
  2761. }
  2762. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2763. {
  2764. mmu_free_roots(vcpu);
  2765. }
  2766. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2767. struct kvm_mmu *context)
  2768. {
  2769. context->new_cr3 = nonpaging_new_cr3;
  2770. context->page_fault = nonpaging_page_fault;
  2771. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2772. context->free = nonpaging_free;
  2773. context->sync_page = nonpaging_sync_page;
  2774. context->invlpg = nonpaging_invlpg;
  2775. context->update_pte = nonpaging_update_pte;
  2776. context->root_level = 0;
  2777. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2778. context->root_hpa = INVALID_PAGE;
  2779. context->direct_map = true;
  2780. context->nx = false;
  2781. return 0;
  2782. }
  2783. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2784. {
  2785. ++vcpu->stat.tlb_flush;
  2786. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2787. }
  2788. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2789. {
  2790. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2791. mmu_free_roots(vcpu);
  2792. }
  2793. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2794. {
  2795. return kvm_read_cr3(vcpu);
  2796. }
  2797. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2798. struct x86_exception *fault)
  2799. {
  2800. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2801. }
  2802. static void paging_free(struct kvm_vcpu *vcpu)
  2803. {
  2804. nonpaging_free(vcpu);
  2805. }
  2806. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2807. {
  2808. int bit7;
  2809. bit7 = (gpte >> 7) & 1;
  2810. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2811. }
  2812. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2813. int *nr_present)
  2814. {
  2815. if (unlikely(is_mmio_spte(*sptep))) {
  2816. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2817. mmu_spte_clear_no_track(sptep);
  2818. return true;
  2819. }
  2820. (*nr_present)++;
  2821. mark_mmio_spte(sptep, gfn, access);
  2822. return true;
  2823. }
  2824. return false;
  2825. }
  2826. #define PTTYPE 64
  2827. #include "paging_tmpl.h"
  2828. #undef PTTYPE
  2829. #define PTTYPE 32
  2830. #include "paging_tmpl.h"
  2831. #undef PTTYPE
  2832. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2833. struct kvm_mmu *context)
  2834. {
  2835. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2836. u64 exb_bit_rsvd = 0;
  2837. if (!context->nx)
  2838. exb_bit_rsvd = rsvd_bits(63, 63);
  2839. switch (context->root_level) {
  2840. case PT32_ROOT_LEVEL:
  2841. /* no rsvd bits for 2 level 4K page table entries */
  2842. context->rsvd_bits_mask[0][1] = 0;
  2843. context->rsvd_bits_mask[0][0] = 0;
  2844. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2845. if (!is_pse(vcpu)) {
  2846. context->rsvd_bits_mask[1][1] = 0;
  2847. break;
  2848. }
  2849. if (is_cpuid_PSE36())
  2850. /* 36bits PSE 4MB page */
  2851. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2852. else
  2853. /* 32 bits PSE 4MB page */
  2854. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2855. break;
  2856. case PT32E_ROOT_LEVEL:
  2857. context->rsvd_bits_mask[0][2] =
  2858. rsvd_bits(maxphyaddr, 63) |
  2859. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2860. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2861. rsvd_bits(maxphyaddr, 62); /* PDE */
  2862. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2863. rsvd_bits(maxphyaddr, 62); /* PTE */
  2864. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2865. rsvd_bits(maxphyaddr, 62) |
  2866. rsvd_bits(13, 20); /* large page */
  2867. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2868. break;
  2869. case PT64_ROOT_LEVEL:
  2870. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2871. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2872. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2873. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2874. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2875. rsvd_bits(maxphyaddr, 51);
  2876. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2877. rsvd_bits(maxphyaddr, 51);
  2878. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2879. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2880. rsvd_bits(maxphyaddr, 51) |
  2881. rsvd_bits(13, 29);
  2882. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2883. rsvd_bits(maxphyaddr, 51) |
  2884. rsvd_bits(13, 20); /* large page */
  2885. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2886. break;
  2887. }
  2888. }
  2889. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2890. struct kvm_mmu *context,
  2891. int level)
  2892. {
  2893. context->nx = is_nx(vcpu);
  2894. context->root_level = level;
  2895. reset_rsvds_bits_mask(vcpu, context);
  2896. ASSERT(is_pae(vcpu));
  2897. context->new_cr3 = paging_new_cr3;
  2898. context->page_fault = paging64_page_fault;
  2899. context->gva_to_gpa = paging64_gva_to_gpa;
  2900. context->sync_page = paging64_sync_page;
  2901. context->invlpg = paging64_invlpg;
  2902. context->update_pte = paging64_update_pte;
  2903. context->free = paging_free;
  2904. context->shadow_root_level = level;
  2905. context->root_hpa = INVALID_PAGE;
  2906. context->direct_map = false;
  2907. return 0;
  2908. }
  2909. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2910. struct kvm_mmu *context)
  2911. {
  2912. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2913. }
  2914. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2915. struct kvm_mmu *context)
  2916. {
  2917. context->nx = false;
  2918. context->root_level = PT32_ROOT_LEVEL;
  2919. reset_rsvds_bits_mask(vcpu, context);
  2920. context->new_cr3 = paging_new_cr3;
  2921. context->page_fault = paging32_page_fault;
  2922. context->gva_to_gpa = paging32_gva_to_gpa;
  2923. context->free = paging_free;
  2924. context->sync_page = paging32_sync_page;
  2925. context->invlpg = paging32_invlpg;
  2926. context->update_pte = paging32_update_pte;
  2927. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2928. context->root_hpa = INVALID_PAGE;
  2929. context->direct_map = false;
  2930. return 0;
  2931. }
  2932. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2933. struct kvm_mmu *context)
  2934. {
  2935. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2936. }
  2937. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2938. {
  2939. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2940. context->base_role.word = 0;
  2941. context->new_cr3 = nonpaging_new_cr3;
  2942. context->page_fault = tdp_page_fault;
  2943. context->free = nonpaging_free;
  2944. context->sync_page = nonpaging_sync_page;
  2945. context->invlpg = nonpaging_invlpg;
  2946. context->update_pte = nonpaging_update_pte;
  2947. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2948. context->root_hpa = INVALID_PAGE;
  2949. context->direct_map = true;
  2950. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2951. context->get_cr3 = get_cr3;
  2952. context->get_pdptr = kvm_pdptr_read;
  2953. context->inject_page_fault = kvm_inject_page_fault;
  2954. if (!is_paging(vcpu)) {
  2955. context->nx = false;
  2956. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2957. context->root_level = 0;
  2958. } else if (is_long_mode(vcpu)) {
  2959. context->nx = is_nx(vcpu);
  2960. context->root_level = PT64_ROOT_LEVEL;
  2961. reset_rsvds_bits_mask(vcpu, context);
  2962. context->gva_to_gpa = paging64_gva_to_gpa;
  2963. } else if (is_pae(vcpu)) {
  2964. context->nx = is_nx(vcpu);
  2965. context->root_level = PT32E_ROOT_LEVEL;
  2966. reset_rsvds_bits_mask(vcpu, context);
  2967. context->gva_to_gpa = paging64_gva_to_gpa;
  2968. } else {
  2969. context->nx = false;
  2970. context->root_level = PT32_ROOT_LEVEL;
  2971. reset_rsvds_bits_mask(vcpu, context);
  2972. context->gva_to_gpa = paging32_gva_to_gpa;
  2973. }
  2974. return 0;
  2975. }
  2976. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2977. {
  2978. int r;
  2979. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2980. ASSERT(vcpu);
  2981. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2982. if (!is_paging(vcpu))
  2983. r = nonpaging_init_context(vcpu, context);
  2984. else if (is_long_mode(vcpu))
  2985. r = paging64_init_context(vcpu, context);
  2986. else if (is_pae(vcpu))
  2987. r = paging32E_init_context(vcpu, context);
  2988. else
  2989. r = paging32_init_context(vcpu, context);
  2990. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2991. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2992. vcpu->arch.mmu.base_role.smep_andnot_wp
  2993. = smep && !is_write_protection(vcpu);
  2994. return r;
  2995. }
  2996. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2997. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2998. {
  2999. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3000. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3001. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3002. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3003. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3004. return r;
  3005. }
  3006. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3007. {
  3008. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3009. g_context->get_cr3 = get_cr3;
  3010. g_context->get_pdptr = kvm_pdptr_read;
  3011. g_context->inject_page_fault = kvm_inject_page_fault;
  3012. /*
  3013. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3014. * translation of l2_gpa to l1_gpa addresses is done using the
  3015. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3016. * functions between mmu and nested_mmu are swapped.
  3017. */
  3018. if (!is_paging(vcpu)) {
  3019. g_context->nx = false;
  3020. g_context->root_level = 0;
  3021. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3022. } else if (is_long_mode(vcpu)) {
  3023. g_context->nx = is_nx(vcpu);
  3024. g_context->root_level = PT64_ROOT_LEVEL;
  3025. reset_rsvds_bits_mask(vcpu, g_context);
  3026. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3027. } else if (is_pae(vcpu)) {
  3028. g_context->nx = is_nx(vcpu);
  3029. g_context->root_level = PT32E_ROOT_LEVEL;
  3030. reset_rsvds_bits_mask(vcpu, g_context);
  3031. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3032. } else {
  3033. g_context->nx = false;
  3034. g_context->root_level = PT32_ROOT_LEVEL;
  3035. reset_rsvds_bits_mask(vcpu, g_context);
  3036. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3037. }
  3038. return 0;
  3039. }
  3040. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3041. {
  3042. if (mmu_is_nested(vcpu))
  3043. return init_kvm_nested_mmu(vcpu);
  3044. else if (tdp_enabled)
  3045. return init_kvm_tdp_mmu(vcpu);
  3046. else
  3047. return init_kvm_softmmu(vcpu);
  3048. }
  3049. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3050. {
  3051. ASSERT(vcpu);
  3052. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3053. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3054. vcpu->arch.mmu.free(vcpu);
  3055. }
  3056. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3057. {
  3058. destroy_kvm_mmu(vcpu);
  3059. return init_kvm_mmu(vcpu);
  3060. }
  3061. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3062. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3063. {
  3064. int r;
  3065. r = mmu_topup_memory_caches(vcpu);
  3066. if (r)
  3067. goto out;
  3068. r = mmu_alloc_roots(vcpu);
  3069. spin_lock(&vcpu->kvm->mmu_lock);
  3070. mmu_sync_roots(vcpu);
  3071. spin_unlock(&vcpu->kvm->mmu_lock);
  3072. if (r)
  3073. goto out;
  3074. /* set_cr3() should ensure TLB has been flushed */
  3075. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3076. out:
  3077. return r;
  3078. }
  3079. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3080. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3081. {
  3082. mmu_free_roots(vcpu);
  3083. }
  3084. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3085. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3086. struct kvm_mmu_page *sp, u64 *spte,
  3087. const void *new)
  3088. {
  3089. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3090. ++vcpu->kvm->stat.mmu_pde_zapped;
  3091. return;
  3092. }
  3093. ++vcpu->kvm->stat.mmu_pte_updated;
  3094. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3095. }
  3096. static bool need_remote_flush(u64 old, u64 new)
  3097. {
  3098. if (!is_shadow_present_pte(old))
  3099. return false;
  3100. if (!is_shadow_present_pte(new))
  3101. return true;
  3102. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3103. return true;
  3104. old ^= PT64_NX_MASK;
  3105. new ^= PT64_NX_MASK;
  3106. return (old & ~new & PT64_PERM_MASK) != 0;
  3107. }
  3108. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3109. bool remote_flush, bool local_flush)
  3110. {
  3111. if (zap_page)
  3112. return;
  3113. if (remote_flush)
  3114. kvm_flush_remote_tlbs(vcpu->kvm);
  3115. else if (local_flush)
  3116. kvm_mmu_flush_tlb(vcpu);
  3117. }
  3118. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3119. const u8 *new, int *bytes)
  3120. {
  3121. u64 gentry;
  3122. int r;
  3123. /*
  3124. * Assume that the pte write on a page table of the same type
  3125. * as the current vcpu paging mode since we update the sptes only
  3126. * when they have the same mode.
  3127. */
  3128. if (is_pae(vcpu) && *bytes == 4) {
  3129. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3130. *gpa &= ~(gpa_t)7;
  3131. *bytes = 8;
  3132. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
  3133. if (r)
  3134. gentry = 0;
  3135. new = (const u8 *)&gentry;
  3136. }
  3137. switch (*bytes) {
  3138. case 4:
  3139. gentry = *(const u32 *)new;
  3140. break;
  3141. case 8:
  3142. gentry = *(const u64 *)new;
  3143. break;
  3144. default:
  3145. gentry = 0;
  3146. break;
  3147. }
  3148. return gentry;
  3149. }
  3150. /*
  3151. * If we're seeing too many writes to a page, it may no longer be a page table,
  3152. * or we may be forking, in which case it is better to unmap the page.
  3153. */
  3154. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3155. {
  3156. /*
  3157. * Skip write-flooding detected for the sp whose level is 1, because
  3158. * it can become unsync, then the guest page is not write-protected.
  3159. */
  3160. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3161. return false;
  3162. return ++sp->write_flooding_count >= 3;
  3163. }
  3164. /*
  3165. * Misaligned accesses are too much trouble to fix up; also, they usually
  3166. * indicate a page is not used as a page table.
  3167. */
  3168. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3169. int bytes)
  3170. {
  3171. unsigned offset, pte_size, misaligned;
  3172. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3173. gpa, bytes, sp->role.word);
  3174. offset = offset_in_page(gpa);
  3175. pte_size = sp->role.cr4_pae ? 8 : 4;
  3176. /*
  3177. * Sometimes, the OS only writes the last one bytes to update status
  3178. * bits, for example, in linux, andb instruction is used in clear_bit().
  3179. */
  3180. if (!(offset & (pte_size - 1)) && bytes == 1)
  3181. return false;
  3182. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3183. misaligned |= bytes < 4;
  3184. return misaligned;
  3185. }
  3186. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3187. {
  3188. unsigned page_offset, quadrant;
  3189. u64 *spte;
  3190. int level;
  3191. page_offset = offset_in_page(gpa);
  3192. level = sp->role.level;
  3193. *nspte = 1;
  3194. if (!sp->role.cr4_pae) {
  3195. page_offset <<= 1; /* 32->64 */
  3196. /*
  3197. * A 32-bit pde maps 4MB while the shadow pdes map
  3198. * only 2MB. So we need to double the offset again
  3199. * and zap two pdes instead of one.
  3200. */
  3201. if (level == PT32_ROOT_LEVEL) {
  3202. page_offset &= ~7; /* kill rounding error */
  3203. page_offset <<= 1;
  3204. *nspte = 2;
  3205. }
  3206. quadrant = page_offset >> PAGE_SHIFT;
  3207. page_offset &= ~PAGE_MASK;
  3208. if (quadrant != sp->role.quadrant)
  3209. return NULL;
  3210. }
  3211. spte = &sp->spt[page_offset / sizeof(*spte)];
  3212. return spte;
  3213. }
  3214. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3215. const u8 *new, int bytes)
  3216. {
  3217. gfn_t gfn = gpa >> PAGE_SHIFT;
  3218. union kvm_mmu_page_role mask = { .word = 0 };
  3219. struct kvm_mmu_page *sp;
  3220. struct hlist_node *node;
  3221. LIST_HEAD(invalid_list);
  3222. u64 entry, gentry, *spte;
  3223. int npte;
  3224. bool remote_flush, local_flush, zap_page;
  3225. /*
  3226. * If we don't have indirect shadow pages, it means no page is
  3227. * write-protected, so we can exit simply.
  3228. */
  3229. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3230. return;
  3231. zap_page = remote_flush = local_flush = false;
  3232. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3233. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3234. /*
  3235. * No need to care whether allocation memory is successful
  3236. * or not since pte prefetch is skiped if it does not have
  3237. * enough objects in the cache.
  3238. */
  3239. mmu_topup_memory_caches(vcpu);
  3240. spin_lock(&vcpu->kvm->mmu_lock);
  3241. ++vcpu->kvm->stat.mmu_pte_write;
  3242. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3243. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3244. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3245. if (detect_write_misaligned(sp, gpa, bytes) ||
  3246. detect_write_flooding(sp)) {
  3247. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3248. &invalid_list);
  3249. ++vcpu->kvm->stat.mmu_flooded;
  3250. continue;
  3251. }
  3252. spte = get_written_sptes(sp, gpa, &npte);
  3253. if (!spte)
  3254. continue;
  3255. local_flush = true;
  3256. while (npte--) {
  3257. entry = *spte;
  3258. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3259. if (gentry &&
  3260. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3261. & mask.word) && rmap_can_add(vcpu))
  3262. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3263. if (!remote_flush && need_remote_flush(entry, *spte))
  3264. remote_flush = true;
  3265. ++spte;
  3266. }
  3267. }
  3268. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3269. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3270. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3271. spin_unlock(&vcpu->kvm->mmu_lock);
  3272. }
  3273. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3274. {
  3275. gpa_t gpa;
  3276. int r;
  3277. if (vcpu->arch.mmu.direct_map)
  3278. return 0;
  3279. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3280. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3281. return r;
  3282. }
  3283. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3284. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3285. {
  3286. LIST_HEAD(invalid_list);
  3287. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3288. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3289. struct kvm_mmu_page *sp;
  3290. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3291. struct kvm_mmu_page, link);
  3292. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3293. ++vcpu->kvm->stat.mmu_recycled;
  3294. }
  3295. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3296. }
  3297. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3298. {
  3299. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3300. return vcpu_match_mmio_gpa(vcpu, addr);
  3301. return vcpu_match_mmio_gva(vcpu, addr);
  3302. }
  3303. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3304. void *insn, int insn_len)
  3305. {
  3306. int r, emulation_type = EMULTYPE_RETRY;
  3307. enum emulation_result er;
  3308. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3309. if (r < 0)
  3310. goto out;
  3311. if (!r) {
  3312. r = 1;
  3313. goto out;
  3314. }
  3315. if (is_mmio_page_fault(vcpu, cr2))
  3316. emulation_type = 0;
  3317. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3318. switch (er) {
  3319. case EMULATE_DONE:
  3320. return 1;
  3321. case EMULATE_DO_MMIO:
  3322. ++vcpu->stat.mmio_exits;
  3323. /* fall through */
  3324. case EMULATE_FAIL:
  3325. return 0;
  3326. default:
  3327. BUG();
  3328. }
  3329. out:
  3330. return r;
  3331. }
  3332. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3333. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3334. {
  3335. vcpu->arch.mmu.invlpg(vcpu, gva);
  3336. kvm_mmu_flush_tlb(vcpu);
  3337. ++vcpu->stat.invlpg;
  3338. }
  3339. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3340. void kvm_enable_tdp(void)
  3341. {
  3342. tdp_enabled = true;
  3343. }
  3344. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3345. void kvm_disable_tdp(void)
  3346. {
  3347. tdp_enabled = false;
  3348. }
  3349. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3350. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3351. {
  3352. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3353. if (vcpu->arch.mmu.lm_root != NULL)
  3354. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3355. }
  3356. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3357. {
  3358. struct page *page;
  3359. int i;
  3360. ASSERT(vcpu);
  3361. /*
  3362. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3363. * Therefore we need to allocate shadow page tables in the first
  3364. * 4GB of memory, which happens to fit the DMA32 zone.
  3365. */
  3366. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3367. if (!page)
  3368. return -ENOMEM;
  3369. vcpu->arch.mmu.pae_root = page_address(page);
  3370. for (i = 0; i < 4; ++i)
  3371. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3372. return 0;
  3373. }
  3374. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3375. {
  3376. ASSERT(vcpu);
  3377. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3378. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3379. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3380. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3381. return alloc_mmu_pages(vcpu);
  3382. }
  3383. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3384. {
  3385. ASSERT(vcpu);
  3386. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3387. return init_kvm_mmu(vcpu);
  3388. }
  3389. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3390. {
  3391. struct kvm_mmu_page *sp;
  3392. bool flush = false;
  3393. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  3394. int i;
  3395. u64 *pt;
  3396. if (!test_bit(slot, sp->slot_bitmap))
  3397. continue;
  3398. pt = sp->spt;
  3399. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3400. if (!is_shadow_present_pte(pt[i]) ||
  3401. !is_last_spte(pt[i], sp->role.level))
  3402. continue;
  3403. spte_write_protect(kvm, &pt[i], &flush, false);
  3404. }
  3405. }
  3406. kvm_flush_remote_tlbs(kvm);
  3407. }
  3408. void kvm_mmu_zap_all(struct kvm *kvm)
  3409. {
  3410. struct kvm_mmu_page *sp, *node;
  3411. LIST_HEAD(invalid_list);
  3412. spin_lock(&kvm->mmu_lock);
  3413. restart:
  3414. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3415. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3416. goto restart;
  3417. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3418. spin_unlock(&kvm->mmu_lock);
  3419. }
  3420. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3421. struct list_head *invalid_list)
  3422. {
  3423. struct kvm_mmu_page *page;
  3424. page = container_of(kvm->arch.active_mmu_pages.prev,
  3425. struct kvm_mmu_page, link);
  3426. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3427. }
  3428. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3429. {
  3430. struct kvm *kvm;
  3431. int nr_to_scan = sc->nr_to_scan;
  3432. if (nr_to_scan == 0)
  3433. goto out;
  3434. raw_spin_lock(&kvm_lock);
  3435. list_for_each_entry(kvm, &vm_list, vm_list) {
  3436. int idx;
  3437. LIST_HEAD(invalid_list);
  3438. /*
  3439. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3440. * here. We may skip a VM instance errorneosly, but we do not
  3441. * want to shrink a VM that only started to populate its MMU
  3442. * anyway.
  3443. */
  3444. if (kvm->arch.n_used_mmu_pages > 0) {
  3445. if (!nr_to_scan--)
  3446. break;
  3447. continue;
  3448. }
  3449. idx = srcu_read_lock(&kvm->srcu);
  3450. spin_lock(&kvm->mmu_lock);
  3451. kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
  3452. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3453. spin_unlock(&kvm->mmu_lock);
  3454. srcu_read_unlock(&kvm->srcu, idx);
  3455. list_move_tail(&kvm->vm_list, &vm_list);
  3456. break;
  3457. }
  3458. raw_spin_unlock(&kvm_lock);
  3459. out:
  3460. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3461. }
  3462. static struct shrinker mmu_shrinker = {
  3463. .shrink = mmu_shrink,
  3464. .seeks = DEFAULT_SEEKS * 10,
  3465. };
  3466. static void mmu_destroy_caches(void)
  3467. {
  3468. if (pte_list_desc_cache)
  3469. kmem_cache_destroy(pte_list_desc_cache);
  3470. if (mmu_page_header_cache)
  3471. kmem_cache_destroy(mmu_page_header_cache);
  3472. }
  3473. int kvm_mmu_module_init(void)
  3474. {
  3475. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3476. sizeof(struct pte_list_desc),
  3477. 0, 0, NULL);
  3478. if (!pte_list_desc_cache)
  3479. goto nomem;
  3480. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3481. sizeof(struct kvm_mmu_page),
  3482. 0, 0, NULL);
  3483. if (!mmu_page_header_cache)
  3484. goto nomem;
  3485. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3486. goto nomem;
  3487. register_shrinker(&mmu_shrinker);
  3488. return 0;
  3489. nomem:
  3490. mmu_destroy_caches();
  3491. return -ENOMEM;
  3492. }
  3493. /*
  3494. * Caculate mmu pages needed for kvm.
  3495. */
  3496. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3497. {
  3498. unsigned int nr_mmu_pages;
  3499. unsigned int nr_pages = 0;
  3500. struct kvm_memslots *slots;
  3501. struct kvm_memory_slot *memslot;
  3502. slots = kvm_memslots(kvm);
  3503. kvm_for_each_memslot(memslot, slots)
  3504. nr_pages += memslot->npages;
  3505. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3506. nr_mmu_pages = max(nr_mmu_pages,
  3507. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3508. return nr_mmu_pages;
  3509. }
  3510. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3511. {
  3512. struct kvm_shadow_walk_iterator iterator;
  3513. u64 spte;
  3514. int nr_sptes = 0;
  3515. walk_shadow_page_lockless_begin(vcpu);
  3516. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3517. sptes[iterator.level-1] = spte;
  3518. nr_sptes++;
  3519. if (!is_shadow_present_pte(spte))
  3520. break;
  3521. }
  3522. walk_shadow_page_lockless_end(vcpu);
  3523. return nr_sptes;
  3524. }
  3525. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3526. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3527. {
  3528. ASSERT(vcpu);
  3529. destroy_kvm_mmu(vcpu);
  3530. free_mmu_pages(vcpu);
  3531. mmu_free_memory_caches(vcpu);
  3532. }
  3533. void kvm_mmu_module_exit(void)
  3534. {
  3535. mmu_destroy_caches();
  3536. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3537. unregister_shrinker(&mmu_shrinker);
  3538. mmu_audit_disable();
  3539. }