skbuff.h 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/compiler.h>
  17. #include <linux/time.h>
  18. #include <linux/cache.h>
  19. #include <asm/atomic.h>
  20. #include <asm/types.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/net.h>
  23. #include <linux/textsearch.h>
  24. #include <net/checksum.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/hrtimer.h>
  28. /* Don't change this without changing skb_csum_unnecessary! */
  29. #define CHECKSUM_NONE 0
  30. #define CHECKSUM_UNNECESSARY 1
  31. #define CHECKSUM_COMPLETE 2
  32. #define CHECKSUM_PARTIAL 3
  33. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  34. ~(SMP_CACHE_BYTES - 1))
  35. #define SKB_WITH_OVERHEAD(X) \
  36. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  37. #define SKB_MAX_ORDER(X, ORDER) \
  38. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  39. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  40. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  41. /* A. Checksumming of received packets by device.
  42. *
  43. * NONE: device failed to checksum this packet.
  44. * skb->csum is undefined.
  45. *
  46. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  47. * skb->csum is undefined.
  48. * It is bad option, but, unfortunately, many of vendors do this.
  49. * Apparently with secret goal to sell you new device, when you
  50. * will add new protocol to your host. F.e. IPv6. 8)
  51. *
  52. * COMPLETE: the most generic way. Device supplied checksum of _all_
  53. * the packet as seen by netif_rx in skb->csum.
  54. * NOTE: Even if device supports only some protocols, but
  55. * is able to produce some skb->csum, it MUST use COMPLETE,
  56. * not UNNECESSARY.
  57. *
  58. * PARTIAL: identical to the case for output below. This may occur
  59. * on a packet received directly from another Linux OS, e.g.,
  60. * a virtualised Linux kernel on the same host. The packet can
  61. * be treated in the same way as UNNECESSARY except that on
  62. * output (i.e., forwarding) the checksum must be filled in
  63. * by the OS or the hardware.
  64. *
  65. * B. Checksumming on output.
  66. *
  67. * NONE: skb is checksummed by protocol or csum is not required.
  68. *
  69. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  70. * from skb->csum_start to the end and to record the checksum
  71. * at skb->csum_start + skb->csum_offset.
  72. *
  73. * Device must show its capabilities in dev->features, set
  74. * at device setup time.
  75. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  76. * everything.
  77. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  78. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  79. * TCP/UDP over IPv4. Sigh. Vendors like this
  80. * way by an unknown reason. Though, see comment above
  81. * about CHECKSUM_UNNECESSARY. 8)
  82. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  83. *
  84. * Any questions? No questions, good. --ANK
  85. */
  86. struct net_device;
  87. struct scatterlist;
  88. struct pipe_inode_info;
  89. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  90. struct nf_conntrack {
  91. atomic_t use;
  92. };
  93. #endif
  94. #ifdef CONFIG_BRIDGE_NETFILTER
  95. struct nf_bridge_info {
  96. atomic_t use;
  97. struct net_device *physindev;
  98. struct net_device *physoutdev;
  99. unsigned int mask;
  100. unsigned long data[32 / sizeof(unsigned long)];
  101. };
  102. #endif
  103. struct sk_buff_head {
  104. /* These two members must be first. */
  105. struct sk_buff *next;
  106. struct sk_buff *prev;
  107. __u32 qlen;
  108. spinlock_t lock;
  109. };
  110. struct sk_buff;
  111. /* To allow 64K frame to be packed as single skb without frag_list */
  112. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  113. typedef struct skb_frag_struct skb_frag_t;
  114. struct skb_frag_struct {
  115. struct page *page;
  116. __u32 page_offset;
  117. __u32 size;
  118. };
  119. #define HAVE_HW_TIME_STAMP
  120. /**
  121. * struct skb_shared_hwtstamps - hardware time stamps
  122. * @hwtstamp: hardware time stamp transformed into duration
  123. * since arbitrary point in time
  124. * @syststamp: hwtstamp transformed to system time base
  125. *
  126. * Software time stamps generated by ktime_get_real() are stored in
  127. * skb->tstamp. The relation between the different kinds of time
  128. * stamps is as follows:
  129. *
  130. * syststamp and tstamp can be compared against each other in
  131. * arbitrary combinations. The accuracy of a
  132. * syststamp/tstamp/"syststamp from other device" comparison is
  133. * limited by the accuracy of the transformation into system time
  134. * base. This depends on the device driver and its underlying
  135. * hardware.
  136. *
  137. * hwtstamps can only be compared against other hwtstamps from
  138. * the same device.
  139. *
  140. * This structure is attached to packets as part of the
  141. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  142. */
  143. struct skb_shared_hwtstamps {
  144. ktime_t hwtstamp;
  145. ktime_t syststamp;
  146. };
  147. /**
  148. * struct skb_shared_tx - instructions for time stamping of outgoing packets
  149. * @hardware: generate hardware time stamp
  150. * @software: generate software time stamp
  151. * @in_progress: device driver is going to provide
  152. * hardware time stamp
  153. * @flags: all shared_tx flags
  154. *
  155. * These flags are attached to packets as part of the
  156. * &skb_shared_info. Use skb_tx() to get a pointer.
  157. */
  158. union skb_shared_tx {
  159. struct {
  160. __u8 hardware:1,
  161. software:1,
  162. in_progress:1;
  163. };
  164. __u8 flags;
  165. };
  166. /* This data is invariant across clones and lives at
  167. * the end of the header data, ie. at skb->end.
  168. */
  169. struct skb_shared_info {
  170. atomic_t dataref;
  171. unsigned short nr_frags;
  172. unsigned short gso_size;
  173. #ifdef CONFIG_HAS_DMA
  174. dma_addr_t dma_head;
  175. #endif
  176. /* Warning: this field is not always filled in (UFO)! */
  177. unsigned short gso_segs;
  178. unsigned short gso_type;
  179. __be32 ip6_frag_id;
  180. union skb_shared_tx tx_flags;
  181. struct sk_buff *frag_list;
  182. struct skb_shared_hwtstamps hwtstamps;
  183. skb_frag_t frags[MAX_SKB_FRAGS];
  184. #ifdef CONFIG_HAS_DMA
  185. dma_addr_t dma_maps[MAX_SKB_FRAGS];
  186. #endif
  187. /* Intermediate layers must ensure that destructor_arg
  188. * remains valid until skb destructor */
  189. void * destructor_arg;
  190. };
  191. /* We divide dataref into two halves. The higher 16 bits hold references
  192. * to the payload part of skb->data. The lower 16 bits hold references to
  193. * the entire skb->data. A clone of a headerless skb holds the length of
  194. * the header in skb->hdr_len.
  195. *
  196. * All users must obey the rule that the skb->data reference count must be
  197. * greater than or equal to the payload reference count.
  198. *
  199. * Holding a reference to the payload part means that the user does not
  200. * care about modifications to the header part of skb->data.
  201. */
  202. #define SKB_DATAREF_SHIFT 16
  203. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  204. enum {
  205. SKB_FCLONE_UNAVAILABLE,
  206. SKB_FCLONE_ORIG,
  207. SKB_FCLONE_CLONE,
  208. };
  209. enum {
  210. SKB_GSO_TCPV4 = 1 << 0,
  211. SKB_GSO_UDP = 1 << 1,
  212. /* This indicates the skb is from an untrusted source. */
  213. SKB_GSO_DODGY = 1 << 2,
  214. /* This indicates the tcp segment has CWR set. */
  215. SKB_GSO_TCP_ECN = 1 << 3,
  216. SKB_GSO_TCPV6 = 1 << 4,
  217. SKB_GSO_FCOE = 1 << 5,
  218. };
  219. #if BITS_PER_LONG > 32
  220. #define NET_SKBUFF_DATA_USES_OFFSET 1
  221. #endif
  222. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  223. typedef unsigned int sk_buff_data_t;
  224. #else
  225. typedef unsigned char *sk_buff_data_t;
  226. #endif
  227. /**
  228. * struct sk_buff - socket buffer
  229. * @next: Next buffer in list
  230. * @prev: Previous buffer in list
  231. * @sk: Socket we are owned by
  232. * @tstamp: Time we arrived
  233. * @dev: Device we arrived on/are leaving by
  234. * @transport_header: Transport layer header
  235. * @network_header: Network layer header
  236. * @mac_header: Link layer header
  237. * @dst: destination entry
  238. * @sp: the security path, used for xfrm
  239. * @cb: Control buffer. Free for use by every layer. Put private vars here
  240. * @len: Length of actual data
  241. * @data_len: Data length
  242. * @mac_len: Length of link layer header
  243. * @hdr_len: writable header length of cloned skb
  244. * @csum: Checksum (must include start/offset pair)
  245. * @csum_start: Offset from skb->head where checksumming should start
  246. * @csum_offset: Offset from csum_start where checksum should be stored
  247. * @local_df: allow local fragmentation
  248. * @cloned: Head may be cloned (check refcnt to be sure)
  249. * @nohdr: Payload reference only, must not modify header
  250. * @pkt_type: Packet class
  251. * @fclone: skbuff clone status
  252. * @ip_summed: Driver fed us an IP checksum
  253. * @priority: Packet queueing priority
  254. * @users: User count - see {datagram,tcp}.c
  255. * @protocol: Packet protocol from driver
  256. * @truesize: Buffer size
  257. * @head: Head of buffer
  258. * @data: Data head pointer
  259. * @tail: Tail pointer
  260. * @end: End pointer
  261. * @destructor: Destruct function
  262. * @mark: Generic packet mark
  263. * @nfct: Associated connection, if any
  264. * @ipvs_property: skbuff is owned by ipvs
  265. * @peeked: this packet has been seen already, so stats have been
  266. * done for it, don't do them again
  267. * @nf_trace: netfilter packet trace flag
  268. * @nfctinfo: Relationship of this skb to the connection
  269. * @nfct_reasm: netfilter conntrack re-assembly pointer
  270. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  271. * @iif: ifindex of device we arrived on
  272. * @queue_mapping: Queue mapping for multiqueue devices
  273. * @tc_index: Traffic control index
  274. * @tc_verd: traffic control verdict
  275. * @ndisc_nodetype: router type (from link layer)
  276. * @do_not_encrypt: set to prevent encryption of this frame
  277. * @dma_cookie: a cookie to one of several possible DMA operations
  278. * done by skb DMA functions
  279. * @secmark: security marking
  280. * @vlan_tci: vlan tag control information
  281. */
  282. struct sk_buff {
  283. /* These two members must be first. */
  284. struct sk_buff *next;
  285. struct sk_buff *prev;
  286. struct sock *sk;
  287. ktime_t tstamp;
  288. struct net_device *dev;
  289. unsigned long _skb_dst;
  290. #ifdef CONFIG_XFRM
  291. struct sec_path *sp;
  292. #endif
  293. /*
  294. * This is the control buffer. It is free to use for every
  295. * layer. Please put your private variables there. If you
  296. * want to keep them across layers you have to do a skb_clone()
  297. * first. This is owned by whoever has the skb queued ATM.
  298. */
  299. char cb[48];
  300. unsigned int len,
  301. data_len;
  302. __u16 mac_len,
  303. hdr_len;
  304. union {
  305. __wsum csum;
  306. struct {
  307. __u16 csum_start;
  308. __u16 csum_offset;
  309. };
  310. };
  311. __u32 priority;
  312. __u8 local_df:1,
  313. cloned:1,
  314. ip_summed:2,
  315. nohdr:1,
  316. nfctinfo:3;
  317. __u8 pkt_type:3,
  318. fclone:2,
  319. ipvs_property:1,
  320. peeked:1,
  321. nf_trace:1;
  322. __be16 protocol;
  323. void (*destructor)(struct sk_buff *skb);
  324. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  325. struct nf_conntrack *nfct;
  326. struct sk_buff *nfct_reasm;
  327. #endif
  328. #ifdef CONFIG_BRIDGE_NETFILTER
  329. struct nf_bridge_info *nf_bridge;
  330. #endif
  331. int iif;
  332. __u16 queue_mapping;
  333. #ifdef CONFIG_NET_SCHED
  334. __u16 tc_index; /* traffic control index */
  335. #ifdef CONFIG_NET_CLS_ACT
  336. __u16 tc_verd; /* traffic control verdict */
  337. #endif
  338. #endif
  339. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  340. __u8 ndisc_nodetype:2;
  341. #endif
  342. #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
  343. __u8 do_not_encrypt:1;
  344. #endif
  345. /* 0/13/14 bit hole */
  346. #ifdef CONFIG_NET_DMA
  347. dma_cookie_t dma_cookie;
  348. #endif
  349. #ifdef CONFIG_NETWORK_SECMARK
  350. __u32 secmark;
  351. #endif
  352. __u32 mark;
  353. __u16 vlan_tci;
  354. sk_buff_data_t transport_header;
  355. sk_buff_data_t network_header;
  356. sk_buff_data_t mac_header;
  357. /* These elements must be at the end, see alloc_skb() for details. */
  358. sk_buff_data_t tail;
  359. sk_buff_data_t end;
  360. unsigned char *head,
  361. *data;
  362. unsigned int truesize;
  363. atomic_t users;
  364. };
  365. #ifdef __KERNEL__
  366. /*
  367. * Handling routines are only of interest to the kernel
  368. */
  369. #include <linux/slab.h>
  370. #include <asm/system.h>
  371. #ifdef CONFIG_HAS_DMA
  372. #include <linux/dma-mapping.h>
  373. extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
  374. enum dma_data_direction dir);
  375. extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
  376. enum dma_data_direction dir);
  377. #endif
  378. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  379. {
  380. return (struct dst_entry *)skb->_skb_dst;
  381. }
  382. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  383. {
  384. skb->_skb_dst = (unsigned long)dst;
  385. }
  386. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  387. {
  388. return (struct rtable *)skb_dst(skb);
  389. }
  390. extern void kfree_skb(struct sk_buff *skb);
  391. extern void consume_skb(struct sk_buff *skb);
  392. extern void __kfree_skb(struct sk_buff *skb);
  393. extern struct sk_buff *__alloc_skb(unsigned int size,
  394. gfp_t priority, int fclone, int node);
  395. static inline struct sk_buff *alloc_skb(unsigned int size,
  396. gfp_t priority)
  397. {
  398. return __alloc_skb(size, priority, 0, -1);
  399. }
  400. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  401. gfp_t priority)
  402. {
  403. return __alloc_skb(size, priority, 1, -1);
  404. }
  405. extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
  406. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  407. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  408. gfp_t priority);
  409. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  410. gfp_t priority);
  411. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  412. gfp_t gfp_mask);
  413. extern int pskb_expand_head(struct sk_buff *skb,
  414. int nhead, int ntail,
  415. gfp_t gfp_mask);
  416. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  417. unsigned int headroom);
  418. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  419. int newheadroom, int newtailroom,
  420. gfp_t priority);
  421. extern int skb_to_sgvec(struct sk_buff *skb,
  422. struct scatterlist *sg, int offset,
  423. int len);
  424. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  425. struct sk_buff **trailer);
  426. extern int skb_pad(struct sk_buff *skb, int pad);
  427. #define dev_kfree_skb(a) consume_skb(a)
  428. #define dev_consume_skb(a) kfree_skb_clean(a)
  429. extern void skb_over_panic(struct sk_buff *skb, int len,
  430. void *here);
  431. extern void skb_under_panic(struct sk_buff *skb, int len,
  432. void *here);
  433. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  434. int getfrag(void *from, char *to, int offset,
  435. int len,int odd, struct sk_buff *skb),
  436. void *from, int length);
  437. struct skb_seq_state
  438. {
  439. __u32 lower_offset;
  440. __u32 upper_offset;
  441. __u32 frag_idx;
  442. __u32 stepped_offset;
  443. struct sk_buff *root_skb;
  444. struct sk_buff *cur_skb;
  445. __u8 *frag_data;
  446. };
  447. extern void skb_prepare_seq_read(struct sk_buff *skb,
  448. unsigned int from, unsigned int to,
  449. struct skb_seq_state *st);
  450. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  451. struct skb_seq_state *st);
  452. extern void skb_abort_seq_read(struct skb_seq_state *st);
  453. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  454. unsigned int to, struct ts_config *config,
  455. struct ts_state *state);
  456. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  457. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  458. {
  459. return skb->head + skb->end;
  460. }
  461. #else
  462. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  463. {
  464. return skb->end;
  465. }
  466. #endif
  467. /* Internal */
  468. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  469. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  470. {
  471. return &skb_shinfo(skb)->hwtstamps;
  472. }
  473. static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
  474. {
  475. return &skb_shinfo(skb)->tx_flags;
  476. }
  477. /**
  478. * skb_queue_empty - check if a queue is empty
  479. * @list: queue head
  480. *
  481. * Returns true if the queue is empty, false otherwise.
  482. */
  483. static inline int skb_queue_empty(const struct sk_buff_head *list)
  484. {
  485. return list->next == (struct sk_buff *)list;
  486. }
  487. /**
  488. * skb_queue_is_last - check if skb is the last entry in the queue
  489. * @list: queue head
  490. * @skb: buffer
  491. *
  492. * Returns true if @skb is the last buffer on the list.
  493. */
  494. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  495. const struct sk_buff *skb)
  496. {
  497. return (skb->next == (struct sk_buff *) list);
  498. }
  499. /**
  500. * skb_queue_is_first - check if skb is the first entry in the queue
  501. * @list: queue head
  502. * @skb: buffer
  503. *
  504. * Returns true if @skb is the first buffer on the list.
  505. */
  506. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  507. const struct sk_buff *skb)
  508. {
  509. return (skb->prev == (struct sk_buff *) list);
  510. }
  511. /**
  512. * skb_queue_next - return the next packet in the queue
  513. * @list: queue head
  514. * @skb: current buffer
  515. *
  516. * Return the next packet in @list after @skb. It is only valid to
  517. * call this if skb_queue_is_last() evaluates to false.
  518. */
  519. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  520. const struct sk_buff *skb)
  521. {
  522. /* This BUG_ON may seem severe, but if we just return then we
  523. * are going to dereference garbage.
  524. */
  525. BUG_ON(skb_queue_is_last(list, skb));
  526. return skb->next;
  527. }
  528. /**
  529. * skb_queue_prev - return the prev packet in the queue
  530. * @list: queue head
  531. * @skb: current buffer
  532. *
  533. * Return the prev packet in @list before @skb. It is only valid to
  534. * call this if skb_queue_is_first() evaluates to false.
  535. */
  536. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  537. const struct sk_buff *skb)
  538. {
  539. /* This BUG_ON may seem severe, but if we just return then we
  540. * are going to dereference garbage.
  541. */
  542. BUG_ON(skb_queue_is_first(list, skb));
  543. return skb->prev;
  544. }
  545. /**
  546. * skb_get - reference buffer
  547. * @skb: buffer to reference
  548. *
  549. * Makes another reference to a socket buffer and returns a pointer
  550. * to the buffer.
  551. */
  552. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  553. {
  554. atomic_inc(&skb->users);
  555. return skb;
  556. }
  557. /*
  558. * If users == 1, we are the only owner and are can avoid redundant
  559. * atomic change.
  560. */
  561. /**
  562. * skb_cloned - is the buffer a clone
  563. * @skb: buffer to check
  564. *
  565. * Returns true if the buffer was generated with skb_clone() and is
  566. * one of multiple shared copies of the buffer. Cloned buffers are
  567. * shared data so must not be written to under normal circumstances.
  568. */
  569. static inline int skb_cloned(const struct sk_buff *skb)
  570. {
  571. return skb->cloned &&
  572. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  573. }
  574. /**
  575. * skb_header_cloned - is the header a clone
  576. * @skb: buffer to check
  577. *
  578. * Returns true if modifying the header part of the buffer requires
  579. * the data to be copied.
  580. */
  581. static inline int skb_header_cloned(const struct sk_buff *skb)
  582. {
  583. int dataref;
  584. if (!skb->cloned)
  585. return 0;
  586. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  587. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  588. return dataref != 1;
  589. }
  590. /**
  591. * skb_header_release - release reference to header
  592. * @skb: buffer to operate on
  593. *
  594. * Drop a reference to the header part of the buffer. This is done
  595. * by acquiring a payload reference. You must not read from the header
  596. * part of skb->data after this.
  597. */
  598. static inline void skb_header_release(struct sk_buff *skb)
  599. {
  600. BUG_ON(skb->nohdr);
  601. skb->nohdr = 1;
  602. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  603. }
  604. /**
  605. * skb_shared - is the buffer shared
  606. * @skb: buffer to check
  607. *
  608. * Returns true if more than one person has a reference to this
  609. * buffer.
  610. */
  611. static inline int skb_shared(const struct sk_buff *skb)
  612. {
  613. return atomic_read(&skb->users) != 1;
  614. }
  615. /**
  616. * skb_share_check - check if buffer is shared and if so clone it
  617. * @skb: buffer to check
  618. * @pri: priority for memory allocation
  619. *
  620. * If the buffer is shared the buffer is cloned and the old copy
  621. * drops a reference. A new clone with a single reference is returned.
  622. * If the buffer is not shared the original buffer is returned. When
  623. * being called from interrupt status or with spinlocks held pri must
  624. * be GFP_ATOMIC.
  625. *
  626. * NULL is returned on a memory allocation failure.
  627. */
  628. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  629. gfp_t pri)
  630. {
  631. might_sleep_if(pri & __GFP_WAIT);
  632. if (skb_shared(skb)) {
  633. struct sk_buff *nskb = skb_clone(skb, pri);
  634. kfree_skb(skb);
  635. skb = nskb;
  636. }
  637. return skb;
  638. }
  639. /*
  640. * Copy shared buffers into a new sk_buff. We effectively do COW on
  641. * packets to handle cases where we have a local reader and forward
  642. * and a couple of other messy ones. The normal one is tcpdumping
  643. * a packet thats being forwarded.
  644. */
  645. /**
  646. * skb_unshare - make a copy of a shared buffer
  647. * @skb: buffer to check
  648. * @pri: priority for memory allocation
  649. *
  650. * If the socket buffer is a clone then this function creates a new
  651. * copy of the data, drops a reference count on the old copy and returns
  652. * the new copy with the reference count at 1. If the buffer is not a clone
  653. * the original buffer is returned. When called with a spinlock held or
  654. * from interrupt state @pri must be %GFP_ATOMIC
  655. *
  656. * %NULL is returned on a memory allocation failure.
  657. */
  658. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  659. gfp_t pri)
  660. {
  661. might_sleep_if(pri & __GFP_WAIT);
  662. if (skb_cloned(skb)) {
  663. struct sk_buff *nskb = skb_copy(skb, pri);
  664. kfree_skb(skb); /* Free our shared copy */
  665. skb = nskb;
  666. }
  667. return skb;
  668. }
  669. /**
  670. * skb_peek
  671. * @list_: list to peek at
  672. *
  673. * Peek an &sk_buff. Unlike most other operations you _MUST_
  674. * be careful with this one. A peek leaves the buffer on the
  675. * list and someone else may run off with it. You must hold
  676. * the appropriate locks or have a private queue to do this.
  677. *
  678. * Returns %NULL for an empty list or a pointer to the head element.
  679. * The reference count is not incremented and the reference is therefore
  680. * volatile. Use with caution.
  681. */
  682. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  683. {
  684. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  685. if (list == (struct sk_buff *)list_)
  686. list = NULL;
  687. return list;
  688. }
  689. /**
  690. * skb_peek_tail
  691. * @list_: list to peek at
  692. *
  693. * Peek an &sk_buff. Unlike most other operations you _MUST_
  694. * be careful with this one. A peek leaves the buffer on the
  695. * list and someone else may run off with it. You must hold
  696. * the appropriate locks or have a private queue to do this.
  697. *
  698. * Returns %NULL for an empty list or a pointer to the tail element.
  699. * The reference count is not incremented and the reference is therefore
  700. * volatile. Use with caution.
  701. */
  702. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  703. {
  704. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  705. if (list == (struct sk_buff *)list_)
  706. list = NULL;
  707. return list;
  708. }
  709. /**
  710. * skb_queue_len - get queue length
  711. * @list_: list to measure
  712. *
  713. * Return the length of an &sk_buff queue.
  714. */
  715. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  716. {
  717. return list_->qlen;
  718. }
  719. /**
  720. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  721. * @list: queue to initialize
  722. *
  723. * This initializes only the list and queue length aspects of
  724. * an sk_buff_head object. This allows to initialize the list
  725. * aspects of an sk_buff_head without reinitializing things like
  726. * the spinlock. It can also be used for on-stack sk_buff_head
  727. * objects where the spinlock is known to not be used.
  728. */
  729. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  730. {
  731. list->prev = list->next = (struct sk_buff *)list;
  732. list->qlen = 0;
  733. }
  734. /*
  735. * This function creates a split out lock class for each invocation;
  736. * this is needed for now since a whole lot of users of the skb-queue
  737. * infrastructure in drivers have different locking usage (in hardirq)
  738. * than the networking core (in softirq only). In the long run either the
  739. * network layer or drivers should need annotation to consolidate the
  740. * main types of usage into 3 classes.
  741. */
  742. static inline void skb_queue_head_init(struct sk_buff_head *list)
  743. {
  744. spin_lock_init(&list->lock);
  745. __skb_queue_head_init(list);
  746. }
  747. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  748. struct lock_class_key *class)
  749. {
  750. skb_queue_head_init(list);
  751. lockdep_set_class(&list->lock, class);
  752. }
  753. /*
  754. * Insert an sk_buff on a list.
  755. *
  756. * The "__skb_xxxx()" functions are the non-atomic ones that
  757. * can only be called with interrupts disabled.
  758. */
  759. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  760. static inline void __skb_insert(struct sk_buff *newsk,
  761. struct sk_buff *prev, struct sk_buff *next,
  762. struct sk_buff_head *list)
  763. {
  764. newsk->next = next;
  765. newsk->prev = prev;
  766. next->prev = prev->next = newsk;
  767. list->qlen++;
  768. }
  769. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  770. struct sk_buff *prev,
  771. struct sk_buff *next)
  772. {
  773. struct sk_buff *first = list->next;
  774. struct sk_buff *last = list->prev;
  775. first->prev = prev;
  776. prev->next = first;
  777. last->next = next;
  778. next->prev = last;
  779. }
  780. /**
  781. * skb_queue_splice - join two skb lists, this is designed for stacks
  782. * @list: the new list to add
  783. * @head: the place to add it in the first list
  784. */
  785. static inline void skb_queue_splice(const struct sk_buff_head *list,
  786. struct sk_buff_head *head)
  787. {
  788. if (!skb_queue_empty(list)) {
  789. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  790. head->qlen += list->qlen;
  791. }
  792. }
  793. /**
  794. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  795. * @list: the new list to add
  796. * @head: the place to add it in the first list
  797. *
  798. * The list at @list is reinitialised
  799. */
  800. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  801. struct sk_buff_head *head)
  802. {
  803. if (!skb_queue_empty(list)) {
  804. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  805. head->qlen += list->qlen;
  806. __skb_queue_head_init(list);
  807. }
  808. }
  809. /**
  810. * skb_queue_splice_tail - join two skb lists, each list being a queue
  811. * @list: the new list to add
  812. * @head: the place to add it in the first list
  813. */
  814. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  815. struct sk_buff_head *head)
  816. {
  817. if (!skb_queue_empty(list)) {
  818. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  819. head->qlen += list->qlen;
  820. }
  821. }
  822. /**
  823. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  824. * @list: the new list to add
  825. * @head: the place to add it in the first list
  826. *
  827. * Each of the lists is a queue.
  828. * The list at @list is reinitialised
  829. */
  830. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  831. struct sk_buff_head *head)
  832. {
  833. if (!skb_queue_empty(list)) {
  834. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  835. head->qlen += list->qlen;
  836. __skb_queue_head_init(list);
  837. }
  838. }
  839. /**
  840. * __skb_queue_after - queue a buffer at the list head
  841. * @list: list to use
  842. * @prev: place after this buffer
  843. * @newsk: buffer to queue
  844. *
  845. * Queue a buffer int the middle of a list. This function takes no locks
  846. * and you must therefore hold required locks before calling it.
  847. *
  848. * A buffer cannot be placed on two lists at the same time.
  849. */
  850. static inline void __skb_queue_after(struct sk_buff_head *list,
  851. struct sk_buff *prev,
  852. struct sk_buff *newsk)
  853. {
  854. __skb_insert(newsk, prev, prev->next, list);
  855. }
  856. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  857. struct sk_buff_head *list);
  858. static inline void __skb_queue_before(struct sk_buff_head *list,
  859. struct sk_buff *next,
  860. struct sk_buff *newsk)
  861. {
  862. __skb_insert(newsk, next->prev, next, list);
  863. }
  864. /**
  865. * __skb_queue_head - queue a buffer at the list head
  866. * @list: list to use
  867. * @newsk: buffer to queue
  868. *
  869. * Queue a buffer at the start of a list. This function takes no locks
  870. * and you must therefore hold required locks before calling it.
  871. *
  872. * A buffer cannot be placed on two lists at the same time.
  873. */
  874. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  875. static inline void __skb_queue_head(struct sk_buff_head *list,
  876. struct sk_buff *newsk)
  877. {
  878. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  879. }
  880. /**
  881. * __skb_queue_tail - queue a buffer at the list tail
  882. * @list: list to use
  883. * @newsk: buffer to queue
  884. *
  885. * Queue a buffer at the end of a list. This function takes no locks
  886. * and you must therefore hold required locks before calling it.
  887. *
  888. * A buffer cannot be placed on two lists at the same time.
  889. */
  890. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  891. static inline void __skb_queue_tail(struct sk_buff_head *list,
  892. struct sk_buff *newsk)
  893. {
  894. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  895. }
  896. /*
  897. * remove sk_buff from list. _Must_ be called atomically, and with
  898. * the list known..
  899. */
  900. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  901. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  902. {
  903. struct sk_buff *next, *prev;
  904. list->qlen--;
  905. next = skb->next;
  906. prev = skb->prev;
  907. skb->next = skb->prev = NULL;
  908. next->prev = prev;
  909. prev->next = next;
  910. }
  911. /**
  912. * __skb_dequeue - remove from the head of the queue
  913. * @list: list to dequeue from
  914. *
  915. * Remove the head of the list. This function does not take any locks
  916. * so must be used with appropriate locks held only. The head item is
  917. * returned or %NULL if the list is empty.
  918. */
  919. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  920. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  921. {
  922. struct sk_buff *skb = skb_peek(list);
  923. if (skb)
  924. __skb_unlink(skb, list);
  925. return skb;
  926. }
  927. /**
  928. * __skb_dequeue_tail - remove from the tail of the queue
  929. * @list: list to dequeue from
  930. *
  931. * Remove the tail of the list. This function does not take any locks
  932. * so must be used with appropriate locks held only. The tail item is
  933. * returned or %NULL if the list is empty.
  934. */
  935. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  936. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  937. {
  938. struct sk_buff *skb = skb_peek_tail(list);
  939. if (skb)
  940. __skb_unlink(skb, list);
  941. return skb;
  942. }
  943. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  944. {
  945. return skb->data_len;
  946. }
  947. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  948. {
  949. return skb->len - skb->data_len;
  950. }
  951. static inline int skb_pagelen(const struct sk_buff *skb)
  952. {
  953. int i, len = 0;
  954. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  955. len += skb_shinfo(skb)->frags[i].size;
  956. return len + skb_headlen(skb);
  957. }
  958. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  959. struct page *page, int off, int size)
  960. {
  961. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  962. frag->page = page;
  963. frag->page_offset = off;
  964. frag->size = size;
  965. skb_shinfo(skb)->nr_frags = i + 1;
  966. }
  967. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  968. int off, int size);
  969. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  970. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb))
  971. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  972. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  973. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  974. {
  975. return skb->head + skb->tail;
  976. }
  977. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  978. {
  979. skb->tail = skb->data - skb->head;
  980. }
  981. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  982. {
  983. skb_reset_tail_pointer(skb);
  984. skb->tail += offset;
  985. }
  986. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  987. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  988. {
  989. return skb->tail;
  990. }
  991. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  992. {
  993. skb->tail = skb->data;
  994. }
  995. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  996. {
  997. skb->tail = skb->data + offset;
  998. }
  999. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1000. /*
  1001. * Add data to an sk_buff
  1002. */
  1003. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1004. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1005. {
  1006. unsigned char *tmp = skb_tail_pointer(skb);
  1007. SKB_LINEAR_ASSERT(skb);
  1008. skb->tail += len;
  1009. skb->len += len;
  1010. return tmp;
  1011. }
  1012. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1013. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1014. {
  1015. skb->data -= len;
  1016. skb->len += len;
  1017. return skb->data;
  1018. }
  1019. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1020. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1021. {
  1022. skb->len -= len;
  1023. BUG_ON(skb->len < skb->data_len);
  1024. return skb->data += len;
  1025. }
  1026. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1027. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1028. {
  1029. if (len > skb_headlen(skb) &&
  1030. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1031. return NULL;
  1032. skb->len -= len;
  1033. return skb->data += len;
  1034. }
  1035. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1036. {
  1037. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1038. }
  1039. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1040. {
  1041. if (likely(len <= skb_headlen(skb)))
  1042. return 1;
  1043. if (unlikely(len > skb->len))
  1044. return 0;
  1045. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1046. }
  1047. /**
  1048. * skb_headroom - bytes at buffer head
  1049. * @skb: buffer to check
  1050. *
  1051. * Return the number of bytes of free space at the head of an &sk_buff.
  1052. */
  1053. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1054. {
  1055. return skb->data - skb->head;
  1056. }
  1057. /**
  1058. * skb_tailroom - bytes at buffer end
  1059. * @skb: buffer to check
  1060. *
  1061. * Return the number of bytes of free space at the tail of an sk_buff
  1062. */
  1063. static inline int skb_tailroom(const struct sk_buff *skb)
  1064. {
  1065. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1066. }
  1067. /**
  1068. * skb_reserve - adjust headroom
  1069. * @skb: buffer to alter
  1070. * @len: bytes to move
  1071. *
  1072. * Increase the headroom of an empty &sk_buff by reducing the tail
  1073. * room. This is only allowed for an empty buffer.
  1074. */
  1075. static inline void skb_reserve(struct sk_buff *skb, int len)
  1076. {
  1077. skb->data += len;
  1078. skb->tail += len;
  1079. }
  1080. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1081. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1082. {
  1083. return skb->head + skb->transport_header;
  1084. }
  1085. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1086. {
  1087. skb->transport_header = skb->data - skb->head;
  1088. }
  1089. static inline void skb_set_transport_header(struct sk_buff *skb,
  1090. const int offset)
  1091. {
  1092. skb_reset_transport_header(skb);
  1093. skb->transport_header += offset;
  1094. }
  1095. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1096. {
  1097. return skb->head + skb->network_header;
  1098. }
  1099. static inline void skb_reset_network_header(struct sk_buff *skb)
  1100. {
  1101. skb->network_header = skb->data - skb->head;
  1102. }
  1103. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1104. {
  1105. skb_reset_network_header(skb);
  1106. skb->network_header += offset;
  1107. }
  1108. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1109. {
  1110. return skb->head + skb->mac_header;
  1111. }
  1112. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1113. {
  1114. return skb->mac_header != ~0U;
  1115. }
  1116. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1117. {
  1118. skb->mac_header = skb->data - skb->head;
  1119. }
  1120. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1121. {
  1122. skb_reset_mac_header(skb);
  1123. skb->mac_header += offset;
  1124. }
  1125. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1126. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1127. {
  1128. return skb->transport_header;
  1129. }
  1130. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1131. {
  1132. skb->transport_header = skb->data;
  1133. }
  1134. static inline void skb_set_transport_header(struct sk_buff *skb,
  1135. const int offset)
  1136. {
  1137. skb->transport_header = skb->data + offset;
  1138. }
  1139. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1140. {
  1141. return skb->network_header;
  1142. }
  1143. static inline void skb_reset_network_header(struct sk_buff *skb)
  1144. {
  1145. skb->network_header = skb->data;
  1146. }
  1147. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1148. {
  1149. skb->network_header = skb->data + offset;
  1150. }
  1151. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1152. {
  1153. return skb->mac_header;
  1154. }
  1155. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1156. {
  1157. return skb->mac_header != NULL;
  1158. }
  1159. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1160. {
  1161. skb->mac_header = skb->data;
  1162. }
  1163. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1164. {
  1165. skb->mac_header = skb->data + offset;
  1166. }
  1167. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1168. static inline int skb_transport_offset(const struct sk_buff *skb)
  1169. {
  1170. return skb_transport_header(skb) - skb->data;
  1171. }
  1172. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1173. {
  1174. return skb->transport_header - skb->network_header;
  1175. }
  1176. static inline int skb_network_offset(const struct sk_buff *skb)
  1177. {
  1178. return skb_network_header(skb) - skb->data;
  1179. }
  1180. /*
  1181. * CPUs often take a performance hit when accessing unaligned memory
  1182. * locations. The actual performance hit varies, it can be small if the
  1183. * hardware handles it or large if we have to take an exception and fix it
  1184. * in software.
  1185. *
  1186. * Since an ethernet header is 14 bytes network drivers often end up with
  1187. * the IP header at an unaligned offset. The IP header can be aligned by
  1188. * shifting the start of the packet by 2 bytes. Drivers should do this
  1189. * with:
  1190. *
  1191. * skb_reserve(NET_IP_ALIGN);
  1192. *
  1193. * The downside to this alignment of the IP header is that the DMA is now
  1194. * unaligned. On some architectures the cost of an unaligned DMA is high
  1195. * and this cost outweighs the gains made by aligning the IP header.
  1196. *
  1197. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1198. * to be overridden.
  1199. */
  1200. #ifndef NET_IP_ALIGN
  1201. #define NET_IP_ALIGN 2
  1202. #endif
  1203. /*
  1204. * The networking layer reserves some headroom in skb data (via
  1205. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1206. * the header has to grow. In the default case, if the header has to grow
  1207. * 32 bytes or less we avoid the reallocation.
  1208. *
  1209. * Unfortunately this headroom changes the DMA alignment of the resulting
  1210. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1211. * on some architectures. An architecture can override this value,
  1212. * perhaps setting it to a cacheline in size (since that will maintain
  1213. * cacheline alignment of the DMA). It must be a power of 2.
  1214. *
  1215. * Various parts of the networking layer expect at least 32 bytes of
  1216. * headroom, you should not reduce this.
  1217. */
  1218. #ifndef NET_SKB_PAD
  1219. #define NET_SKB_PAD 32
  1220. #endif
  1221. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1222. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1223. {
  1224. if (unlikely(skb->data_len)) {
  1225. WARN_ON(1);
  1226. return;
  1227. }
  1228. skb->len = len;
  1229. skb_set_tail_pointer(skb, len);
  1230. }
  1231. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1232. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1233. {
  1234. if (skb->data_len)
  1235. return ___pskb_trim(skb, len);
  1236. __skb_trim(skb, len);
  1237. return 0;
  1238. }
  1239. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1240. {
  1241. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1242. }
  1243. /**
  1244. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1245. * @skb: buffer to alter
  1246. * @len: new length
  1247. *
  1248. * This is identical to pskb_trim except that the caller knows that
  1249. * the skb is not cloned so we should never get an error due to out-
  1250. * of-memory.
  1251. */
  1252. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1253. {
  1254. int err = pskb_trim(skb, len);
  1255. BUG_ON(err);
  1256. }
  1257. /**
  1258. * skb_orphan - orphan a buffer
  1259. * @skb: buffer to orphan
  1260. *
  1261. * If a buffer currently has an owner then we call the owner's
  1262. * destructor function and make the @skb unowned. The buffer continues
  1263. * to exist but is no longer charged to its former owner.
  1264. */
  1265. static inline void skb_orphan(struct sk_buff *skb)
  1266. {
  1267. if (skb->destructor)
  1268. skb->destructor(skb);
  1269. skb->destructor = NULL;
  1270. skb->sk = NULL;
  1271. }
  1272. /**
  1273. * __skb_queue_purge - empty a list
  1274. * @list: list to empty
  1275. *
  1276. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1277. * the list and one reference dropped. This function does not take the
  1278. * list lock and the caller must hold the relevant locks to use it.
  1279. */
  1280. extern void skb_queue_purge(struct sk_buff_head *list);
  1281. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1282. {
  1283. struct sk_buff *skb;
  1284. while ((skb = __skb_dequeue(list)) != NULL)
  1285. kfree_skb(skb);
  1286. }
  1287. /**
  1288. * __dev_alloc_skb - allocate an skbuff for receiving
  1289. * @length: length to allocate
  1290. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1291. *
  1292. * Allocate a new &sk_buff and assign it a usage count of one. The
  1293. * buffer has unspecified headroom built in. Users should allocate
  1294. * the headroom they think they need without accounting for the
  1295. * built in space. The built in space is used for optimisations.
  1296. *
  1297. * %NULL is returned if there is no free memory.
  1298. */
  1299. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1300. gfp_t gfp_mask)
  1301. {
  1302. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1303. if (likely(skb))
  1304. skb_reserve(skb, NET_SKB_PAD);
  1305. return skb;
  1306. }
  1307. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1308. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1309. unsigned int length, gfp_t gfp_mask);
  1310. /**
  1311. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1312. * @dev: network device to receive on
  1313. * @length: length to allocate
  1314. *
  1315. * Allocate a new &sk_buff and assign it a usage count of one. The
  1316. * buffer has unspecified headroom built in. Users should allocate
  1317. * the headroom they think they need without accounting for the
  1318. * built in space. The built in space is used for optimisations.
  1319. *
  1320. * %NULL is returned if there is no free memory. Although this function
  1321. * allocates memory it can be called from an interrupt.
  1322. */
  1323. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1324. unsigned int length)
  1325. {
  1326. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1327. }
  1328. extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
  1329. /**
  1330. * netdev_alloc_page - allocate a page for ps-rx on a specific device
  1331. * @dev: network device to receive on
  1332. *
  1333. * Allocate a new page node local to the specified device.
  1334. *
  1335. * %NULL is returned if there is no free memory.
  1336. */
  1337. static inline struct page *netdev_alloc_page(struct net_device *dev)
  1338. {
  1339. return __netdev_alloc_page(dev, GFP_ATOMIC);
  1340. }
  1341. static inline void netdev_free_page(struct net_device *dev, struct page *page)
  1342. {
  1343. __free_page(page);
  1344. }
  1345. /**
  1346. * skb_clone_writable - is the header of a clone writable
  1347. * @skb: buffer to check
  1348. * @len: length up to which to write
  1349. *
  1350. * Returns true if modifying the header part of the cloned buffer
  1351. * does not requires the data to be copied.
  1352. */
  1353. static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
  1354. {
  1355. return !skb_header_cloned(skb) &&
  1356. skb_headroom(skb) + len <= skb->hdr_len;
  1357. }
  1358. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1359. int cloned)
  1360. {
  1361. int delta = 0;
  1362. if (headroom < NET_SKB_PAD)
  1363. headroom = NET_SKB_PAD;
  1364. if (headroom > skb_headroom(skb))
  1365. delta = headroom - skb_headroom(skb);
  1366. if (delta || cloned)
  1367. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1368. GFP_ATOMIC);
  1369. return 0;
  1370. }
  1371. /**
  1372. * skb_cow - copy header of skb when it is required
  1373. * @skb: buffer to cow
  1374. * @headroom: needed headroom
  1375. *
  1376. * If the skb passed lacks sufficient headroom or its data part
  1377. * is shared, data is reallocated. If reallocation fails, an error
  1378. * is returned and original skb is not changed.
  1379. *
  1380. * The result is skb with writable area skb->head...skb->tail
  1381. * and at least @headroom of space at head.
  1382. */
  1383. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1384. {
  1385. return __skb_cow(skb, headroom, skb_cloned(skb));
  1386. }
  1387. /**
  1388. * skb_cow_head - skb_cow but only making the head writable
  1389. * @skb: buffer to cow
  1390. * @headroom: needed headroom
  1391. *
  1392. * This function is identical to skb_cow except that we replace the
  1393. * skb_cloned check by skb_header_cloned. It should be used when
  1394. * you only need to push on some header and do not need to modify
  1395. * the data.
  1396. */
  1397. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1398. {
  1399. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1400. }
  1401. /**
  1402. * skb_padto - pad an skbuff up to a minimal size
  1403. * @skb: buffer to pad
  1404. * @len: minimal length
  1405. *
  1406. * Pads up a buffer to ensure the trailing bytes exist and are
  1407. * blanked. If the buffer already contains sufficient data it
  1408. * is untouched. Otherwise it is extended. Returns zero on
  1409. * success. The skb is freed on error.
  1410. */
  1411. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1412. {
  1413. unsigned int size = skb->len;
  1414. if (likely(size >= len))
  1415. return 0;
  1416. return skb_pad(skb, len - size);
  1417. }
  1418. static inline int skb_add_data(struct sk_buff *skb,
  1419. char __user *from, int copy)
  1420. {
  1421. const int off = skb->len;
  1422. if (skb->ip_summed == CHECKSUM_NONE) {
  1423. int err = 0;
  1424. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1425. copy, 0, &err);
  1426. if (!err) {
  1427. skb->csum = csum_block_add(skb->csum, csum, off);
  1428. return 0;
  1429. }
  1430. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1431. return 0;
  1432. __skb_trim(skb, off);
  1433. return -EFAULT;
  1434. }
  1435. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1436. struct page *page, int off)
  1437. {
  1438. if (i) {
  1439. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1440. return page == frag->page &&
  1441. off == frag->page_offset + frag->size;
  1442. }
  1443. return 0;
  1444. }
  1445. static inline int __skb_linearize(struct sk_buff *skb)
  1446. {
  1447. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1448. }
  1449. /**
  1450. * skb_linearize - convert paged skb to linear one
  1451. * @skb: buffer to linarize
  1452. *
  1453. * If there is no free memory -ENOMEM is returned, otherwise zero
  1454. * is returned and the old skb data released.
  1455. */
  1456. static inline int skb_linearize(struct sk_buff *skb)
  1457. {
  1458. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1459. }
  1460. /**
  1461. * skb_linearize_cow - make sure skb is linear and writable
  1462. * @skb: buffer to process
  1463. *
  1464. * If there is no free memory -ENOMEM is returned, otherwise zero
  1465. * is returned and the old skb data released.
  1466. */
  1467. static inline int skb_linearize_cow(struct sk_buff *skb)
  1468. {
  1469. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1470. __skb_linearize(skb) : 0;
  1471. }
  1472. /**
  1473. * skb_postpull_rcsum - update checksum for received skb after pull
  1474. * @skb: buffer to update
  1475. * @start: start of data before pull
  1476. * @len: length of data pulled
  1477. *
  1478. * After doing a pull on a received packet, you need to call this to
  1479. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1480. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1481. */
  1482. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1483. const void *start, unsigned int len)
  1484. {
  1485. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1486. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1487. }
  1488. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1489. /**
  1490. * pskb_trim_rcsum - trim received skb and update checksum
  1491. * @skb: buffer to trim
  1492. * @len: new length
  1493. *
  1494. * This is exactly the same as pskb_trim except that it ensures the
  1495. * checksum of received packets are still valid after the operation.
  1496. */
  1497. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1498. {
  1499. if (likely(len >= skb->len))
  1500. return 0;
  1501. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1502. skb->ip_summed = CHECKSUM_NONE;
  1503. return __pskb_trim(skb, len);
  1504. }
  1505. #define skb_queue_walk(queue, skb) \
  1506. for (skb = (queue)->next; \
  1507. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1508. skb = skb->next)
  1509. #define skb_queue_walk_safe(queue, skb, tmp) \
  1510. for (skb = (queue)->next, tmp = skb->next; \
  1511. skb != (struct sk_buff *)(queue); \
  1512. skb = tmp, tmp = skb->next)
  1513. #define skb_queue_walk_from(queue, skb) \
  1514. for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1515. skb = skb->next)
  1516. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1517. for (tmp = skb->next; \
  1518. skb != (struct sk_buff *)(queue); \
  1519. skb = tmp, tmp = skb->next)
  1520. #define skb_queue_reverse_walk(queue, skb) \
  1521. for (skb = (queue)->prev; \
  1522. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1523. skb = skb->prev)
  1524. static inline bool skb_has_frags(const struct sk_buff *skb)
  1525. {
  1526. return skb_shinfo(skb)->frag_list != NULL;
  1527. }
  1528. static inline void skb_frag_list_init(struct sk_buff *skb)
  1529. {
  1530. skb_shinfo(skb)->frag_list = NULL;
  1531. }
  1532. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1533. {
  1534. frag->next = skb_shinfo(skb)->frag_list;
  1535. skb_shinfo(skb)->frag_list = frag;
  1536. }
  1537. #define skb_walk_frags(skb, iter) \
  1538. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1539. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1540. int *peeked, int *err);
  1541. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1542. int noblock, int *err);
  1543. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1544. struct poll_table_struct *wait);
  1545. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1546. int offset, struct iovec *to,
  1547. int size);
  1548. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1549. int hlen,
  1550. struct iovec *iov);
  1551. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1552. int offset,
  1553. const struct iovec *from,
  1554. int from_offset,
  1555. int len);
  1556. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1557. int offset,
  1558. const struct iovec *to,
  1559. int to_offset,
  1560. int size);
  1561. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1562. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1563. unsigned int flags);
  1564. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1565. int len, __wsum csum);
  1566. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1567. void *to, int len);
  1568. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1569. const void *from, int len);
  1570. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1571. int offset, u8 *to, int len,
  1572. __wsum csum);
  1573. extern int skb_splice_bits(struct sk_buff *skb,
  1574. unsigned int offset,
  1575. struct pipe_inode_info *pipe,
  1576. unsigned int len,
  1577. unsigned int flags);
  1578. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1579. extern void skb_split(struct sk_buff *skb,
  1580. struct sk_buff *skb1, const u32 len);
  1581. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1582. int shiftlen);
  1583. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1584. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1585. int len, void *buffer)
  1586. {
  1587. int hlen = skb_headlen(skb);
  1588. if (hlen - offset >= len)
  1589. return skb->data + offset;
  1590. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1591. return NULL;
  1592. return buffer;
  1593. }
  1594. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1595. void *to,
  1596. const unsigned int len)
  1597. {
  1598. memcpy(to, skb->data, len);
  1599. }
  1600. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1601. const int offset, void *to,
  1602. const unsigned int len)
  1603. {
  1604. memcpy(to, skb->data + offset, len);
  1605. }
  1606. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1607. const void *from,
  1608. const unsigned int len)
  1609. {
  1610. memcpy(skb->data, from, len);
  1611. }
  1612. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1613. const int offset,
  1614. const void *from,
  1615. const unsigned int len)
  1616. {
  1617. memcpy(skb->data + offset, from, len);
  1618. }
  1619. extern void skb_init(void);
  1620. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1621. {
  1622. return skb->tstamp;
  1623. }
  1624. /**
  1625. * skb_get_timestamp - get timestamp from a skb
  1626. * @skb: skb to get stamp from
  1627. * @stamp: pointer to struct timeval to store stamp in
  1628. *
  1629. * Timestamps are stored in the skb as offsets to a base timestamp.
  1630. * This function converts the offset back to a struct timeval and stores
  1631. * it in stamp.
  1632. */
  1633. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1634. struct timeval *stamp)
  1635. {
  1636. *stamp = ktime_to_timeval(skb->tstamp);
  1637. }
  1638. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1639. struct timespec *stamp)
  1640. {
  1641. *stamp = ktime_to_timespec(skb->tstamp);
  1642. }
  1643. static inline void __net_timestamp(struct sk_buff *skb)
  1644. {
  1645. skb->tstamp = ktime_get_real();
  1646. }
  1647. static inline ktime_t net_timedelta(ktime_t t)
  1648. {
  1649. return ktime_sub(ktime_get_real(), t);
  1650. }
  1651. static inline ktime_t net_invalid_timestamp(void)
  1652. {
  1653. return ktime_set(0, 0);
  1654. }
  1655. /**
  1656. * skb_tstamp_tx - queue clone of skb with send time stamps
  1657. * @orig_skb: the original outgoing packet
  1658. * @hwtstamps: hardware time stamps, may be NULL if not available
  1659. *
  1660. * If the skb has a socket associated, then this function clones the
  1661. * skb (thus sharing the actual data and optional structures), stores
  1662. * the optional hardware time stamping information (if non NULL) or
  1663. * generates a software time stamp (otherwise), then queues the clone
  1664. * to the error queue of the socket. Errors are silently ignored.
  1665. */
  1666. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  1667. struct skb_shared_hwtstamps *hwtstamps);
  1668. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1669. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1670. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1671. {
  1672. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1673. }
  1674. /**
  1675. * skb_checksum_complete - Calculate checksum of an entire packet
  1676. * @skb: packet to process
  1677. *
  1678. * This function calculates the checksum over the entire packet plus
  1679. * the value of skb->csum. The latter can be used to supply the
  1680. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1681. * checksum.
  1682. *
  1683. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1684. * this function can be used to verify that checksum on received
  1685. * packets. In that case the function should return zero if the
  1686. * checksum is correct. In particular, this function will return zero
  1687. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1688. * hardware has already verified the correctness of the checksum.
  1689. */
  1690. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  1691. {
  1692. return skb_csum_unnecessary(skb) ?
  1693. 0 : __skb_checksum_complete(skb);
  1694. }
  1695. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1696. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  1697. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1698. {
  1699. if (nfct && atomic_dec_and_test(&nfct->use))
  1700. nf_conntrack_destroy(nfct);
  1701. }
  1702. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1703. {
  1704. if (nfct)
  1705. atomic_inc(&nfct->use);
  1706. }
  1707. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1708. {
  1709. if (skb)
  1710. atomic_inc(&skb->users);
  1711. }
  1712. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1713. {
  1714. if (skb)
  1715. kfree_skb(skb);
  1716. }
  1717. #endif
  1718. #ifdef CONFIG_BRIDGE_NETFILTER
  1719. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1720. {
  1721. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1722. kfree(nf_bridge);
  1723. }
  1724. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1725. {
  1726. if (nf_bridge)
  1727. atomic_inc(&nf_bridge->use);
  1728. }
  1729. #endif /* CONFIG_BRIDGE_NETFILTER */
  1730. static inline void nf_reset(struct sk_buff *skb)
  1731. {
  1732. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1733. nf_conntrack_put(skb->nfct);
  1734. skb->nfct = NULL;
  1735. nf_conntrack_put_reasm(skb->nfct_reasm);
  1736. skb->nfct_reasm = NULL;
  1737. #endif
  1738. #ifdef CONFIG_BRIDGE_NETFILTER
  1739. nf_bridge_put(skb->nf_bridge);
  1740. skb->nf_bridge = NULL;
  1741. #endif
  1742. }
  1743. /* Note: This doesn't put any conntrack and bridge info in dst. */
  1744. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1745. {
  1746. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1747. dst->nfct = src->nfct;
  1748. nf_conntrack_get(src->nfct);
  1749. dst->nfctinfo = src->nfctinfo;
  1750. dst->nfct_reasm = src->nfct_reasm;
  1751. nf_conntrack_get_reasm(src->nfct_reasm);
  1752. #endif
  1753. #ifdef CONFIG_BRIDGE_NETFILTER
  1754. dst->nf_bridge = src->nf_bridge;
  1755. nf_bridge_get(src->nf_bridge);
  1756. #endif
  1757. }
  1758. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1759. {
  1760. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1761. nf_conntrack_put(dst->nfct);
  1762. nf_conntrack_put_reasm(dst->nfct_reasm);
  1763. #endif
  1764. #ifdef CONFIG_BRIDGE_NETFILTER
  1765. nf_bridge_put(dst->nf_bridge);
  1766. #endif
  1767. __nf_copy(dst, src);
  1768. }
  1769. #ifdef CONFIG_NETWORK_SECMARK
  1770. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1771. {
  1772. to->secmark = from->secmark;
  1773. }
  1774. static inline void skb_init_secmark(struct sk_buff *skb)
  1775. {
  1776. skb->secmark = 0;
  1777. }
  1778. #else
  1779. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1780. { }
  1781. static inline void skb_init_secmark(struct sk_buff *skb)
  1782. { }
  1783. #endif
  1784. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  1785. {
  1786. skb->queue_mapping = queue_mapping;
  1787. }
  1788. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  1789. {
  1790. return skb->queue_mapping;
  1791. }
  1792. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  1793. {
  1794. to->queue_mapping = from->queue_mapping;
  1795. }
  1796. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  1797. {
  1798. skb->queue_mapping = rx_queue + 1;
  1799. }
  1800. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  1801. {
  1802. return skb->queue_mapping - 1;
  1803. }
  1804. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  1805. {
  1806. return (skb->queue_mapping != 0);
  1807. }
  1808. extern u16 skb_tx_hash(const struct net_device *dev,
  1809. const struct sk_buff *skb);
  1810. #ifdef CONFIG_XFRM
  1811. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  1812. {
  1813. return skb->sp;
  1814. }
  1815. #else
  1816. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  1817. {
  1818. return NULL;
  1819. }
  1820. #endif
  1821. static inline int skb_is_gso(const struct sk_buff *skb)
  1822. {
  1823. return skb_shinfo(skb)->gso_size;
  1824. }
  1825. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  1826. {
  1827. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  1828. }
  1829. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  1830. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  1831. {
  1832. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  1833. * wanted then gso_type will be set. */
  1834. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1835. if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
  1836. __skb_warn_lro_forwarding(skb);
  1837. return true;
  1838. }
  1839. return false;
  1840. }
  1841. static inline void skb_forward_csum(struct sk_buff *skb)
  1842. {
  1843. /* Unfortunately we don't support this one. Any brave souls? */
  1844. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1845. skb->ip_summed = CHECKSUM_NONE;
  1846. }
  1847. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  1848. #endif /* __KERNEL__ */
  1849. #endif /* _LINUX_SKBUFF_H */