slub.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <trace/kmemtrace.h>
  19. #include <linux/cpu.h>
  20. #include <linux/cpuset.h>
  21. #include <linux/mempolicy.h>
  22. #include <linux/ctype.h>
  23. #include <linux/debugobjects.h>
  24. #include <linux/kallsyms.h>
  25. #include <linux/memory.h>
  26. #include <linux/math64.h>
  27. #include <linux/fault-inject.h>
  28. /*
  29. * Lock order:
  30. * 1. slab_lock(page)
  31. * 2. slab->list_lock
  32. *
  33. * The slab_lock protects operations on the object of a particular
  34. * slab and its metadata in the page struct. If the slab lock
  35. * has been taken then no allocations nor frees can be performed
  36. * on the objects in the slab nor can the slab be added or removed
  37. * from the partial or full lists since this would mean modifying
  38. * the page_struct of the slab.
  39. *
  40. * The list_lock protects the partial and full list on each node and
  41. * the partial slab counter. If taken then no new slabs may be added or
  42. * removed from the lists nor make the number of partial slabs be modified.
  43. * (Note that the total number of slabs is an atomic value that may be
  44. * modified without taking the list lock).
  45. *
  46. * The list_lock is a centralized lock and thus we avoid taking it as
  47. * much as possible. As long as SLUB does not have to handle partial
  48. * slabs, operations can continue without any centralized lock. F.e.
  49. * allocating a long series of objects that fill up slabs does not require
  50. * the list lock.
  51. *
  52. * The lock order is sometimes inverted when we are trying to get a slab
  53. * off a list. We take the list_lock and then look for a page on the list
  54. * to use. While we do that objects in the slabs may be freed. We can
  55. * only operate on the slab if we have also taken the slab_lock. So we use
  56. * a slab_trylock() on the slab. If trylock was successful then no frees
  57. * can occur anymore and we can use the slab for allocations etc. If the
  58. * slab_trylock() does not succeed then frees are in progress in the slab and
  59. * we must stay away from it for a while since we may cause a bouncing
  60. * cacheline if we try to acquire the lock. So go onto the next slab.
  61. * If all pages are busy then we may allocate a new slab instead of reusing
  62. * a partial slab. A new slab has noone operating on it and thus there is
  63. * no danger of cacheline contention.
  64. *
  65. * Interrupts are disabled during allocation and deallocation in order to
  66. * make the slab allocator safe to use in the context of an irq. In addition
  67. * interrupts are disabled to ensure that the processor does not change
  68. * while handling per_cpu slabs, due to kernel preemption.
  69. *
  70. * SLUB assigns one slab for allocation to each processor.
  71. * Allocations only occur from these slabs called cpu slabs.
  72. *
  73. * Slabs with free elements are kept on a partial list and during regular
  74. * operations no list for full slabs is used. If an object in a full slab is
  75. * freed then the slab will show up again on the partial lists.
  76. * We track full slabs for debugging purposes though because otherwise we
  77. * cannot scan all objects.
  78. *
  79. * Slabs are freed when they become empty. Teardown and setup is
  80. * minimal so we rely on the page allocators per cpu caches for
  81. * fast frees and allocs.
  82. *
  83. * Overloading of page flags that are otherwise used for LRU management.
  84. *
  85. * PageActive The slab is frozen and exempt from list processing.
  86. * This means that the slab is dedicated to a purpose
  87. * such as satisfying allocations for a specific
  88. * processor. Objects may be freed in the slab while
  89. * it is frozen but slab_free will then skip the usual
  90. * list operations. It is up to the processor holding
  91. * the slab to integrate the slab into the slab lists
  92. * when the slab is no longer needed.
  93. *
  94. * One use of this flag is to mark slabs that are
  95. * used for allocations. Then such a slab becomes a cpu
  96. * slab. The cpu slab may be equipped with an additional
  97. * freelist that allows lockless access to
  98. * free objects in addition to the regular freelist
  99. * that requires the slab lock.
  100. *
  101. * PageError Slab requires special handling due to debug
  102. * options set. This moves slab handling out of
  103. * the fast path and disables lockless freelists.
  104. */
  105. #ifdef CONFIG_SLUB_DEBUG
  106. #define SLABDEBUG 1
  107. #else
  108. #define SLABDEBUG 0
  109. #endif
  110. /*
  111. * Issues still to be resolved:
  112. *
  113. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  114. *
  115. * - Variable sizing of the per node arrays
  116. */
  117. /* Enable to test recovery from slab corruption on boot */
  118. #undef SLUB_RESILIENCY_TEST
  119. /*
  120. * Mininum number of partial slabs. These will be left on the partial
  121. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  122. */
  123. #define MIN_PARTIAL 5
  124. /*
  125. * Maximum number of desirable partial slabs.
  126. * The existence of more partial slabs makes kmem_cache_shrink
  127. * sort the partial list by the number of objects in the.
  128. */
  129. #define MAX_PARTIAL 10
  130. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  131. SLAB_POISON | SLAB_STORE_USER)
  132. /*
  133. * Set of flags that will prevent slab merging
  134. */
  135. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  136. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  137. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  138. SLAB_CACHE_DMA)
  139. #ifndef ARCH_KMALLOC_MINALIGN
  140. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  141. #endif
  142. #ifndef ARCH_SLAB_MINALIGN
  143. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  144. #endif
  145. #define OO_SHIFT 16
  146. #define OO_MASK ((1 << OO_SHIFT) - 1)
  147. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  148. /* Internal SLUB flags */
  149. #define __OBJECT_POISON 0x80000000 /* Poison object */
  150. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  151. static int kmem_size = sizeof(struct kmem_cache);
  152. #ifdef CONFIG_SMP
  153. static struct notifier_block slab_notifier;
  154. #endif
  155. static enum {
  156. DOWN, /* No slab functionality available */
  157. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  158. UP, /* Everything works but does not show up in sysfs */
  159. SYSFS /* Sysfs up */
  160. } slab_state = DOWN;
  161. /* A list of all slab caches on the system */
  162. static DECLARE_RWSEM(slub_lock);
  163. static LIST_HEAD(slab_caches);
  164. /*
  165. * Tracking user of a slab.
  166. */
  167. struct track {
  168. unsigned long addr; /* Called from address */
  169. int cpu; /* Was running on cpu */
  170. int pid; /* Pid context */
  171. unsigned long when; /* When did the operation occur */
  172. };
  173. enum track_item { TRACK_ALLOC, TRACK_FREE };
  174. #ifdef CONFIG_SLUB_DEBUG
  175. static int sysfs_slab_add(struct kmem_cache *);
  176. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  177. static void sysfs_slab_remove(struct kmem_cache *);
  178. #else
  179. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  180. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  181. { return 0; }
  182. static inline void sysfs_slab_remove(struct kmem_cache *s)
  183. {
  184. kfree(s);
  185. }
  186. #endif
  187. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  188. {
  189. #ifdef CONFIG_SLUB_STATS
  190. c->stat[si]++;
  191. #endif
  192. }
  193. /********************************************************************
  194. * Core slab cache functions
  195. *******************************************************************/
  196. int slab_is_available(void)
  197. {
  198. return slab_state >= UP;
  199. }
  200. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  201. {
  202. #ifdef CONFIG_NUMA
  203. return s->node[node];
  204. #else
  205. return &s->local_node;
  206. #endif
  207. }
  208. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  209. {
  210. #ifdef CONFIG_SMP
  211. return s->cpu_slab[cpu];
  212. #else
  213. return &s->cpu_slab;
  214. #endif
  215. }
  216. /* Verify that a pointer has an address that is valid within a slab page */
  217. static inline int check_valid_pointer(struct kmem_cache *s,
  218. struct page *page, const void *object)
  219. {
  220. void *base;
  221. if (!object)
  222. return 1;
  223. base = page_address(page);
  224. if (object < base || object >= base + page->objects * s->size ||
  225. (object - base) % s->size) {
  226. return 0;
  227. }
  228. return 1;
  229. }
  230. /*
  231. * Slow version of get and set free pointer.
  232. *
  233. * This version requires touching the cache lines of kmem_cache which
  234. * we avoid to do in the fast alloc free paths. There we obtain the offset
  235. * from the page struct.
  236. */
  237. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  238. {
  239. return *(void **)(object + s->offset);
  240. }
  241. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  242. {
  243. *(void **)(object + s->offset) = fp;
  244. }
  245. /* Loop over all objects in a slab */
  246. #define for_each_object(__p, __s, __addr, __objects) \
  247. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  248. __p += (__s)->size)
  249. /* Scan freelist */
  250. #define for_each_free_object(__p, __s, __free) \
  251. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  252. /* Determine object index from a given position */
  253. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  254. {
  255. return (p - addr) / s->size;
  256. }
  257. static inline struct kmem_cache_order_objects oo_make(int order,
  258. unsigned long size)
  259. {
  260. struct kmem_cache_order_objects x = {
  261. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  262. };
  263. return x;
  264. }
  265. static inline int oo_order(struct kmem_cache_order_objects x)
  266. {
  267. return x.x >> OO_SHIFT;
  268. }
  269. static inline int oo_objects(struct kmem_cache_order_objects x)
  270. {
  271. return x.x & OO_MASK;
  272. }
  273. #ifdef CONFIG_SLUB_DEBUG
  274. /*
  275. * Debug settings:
  276. */
  277. #ifdef CONFIG_SLUB_DEBUG_ON
  278. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  279. #else
  280. static int slub_debug;
  281. #endif
  282. static char *slub_debug_slabs;
  283. /*
  284. * Object debugging
  285. */
  286. static void print_section(char *text, u8 *addr, unsigned int length)
  287. {
  288. int i, offset;
  289. int newline = 1;
  290. char ascii[17];
  291. ascii[16] = 0;
  292. for (i = 0; i < length; i++) {
  293. if (newline) {
  294. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  295. newline = 0;
  296. }
  297. printk(KERN_CONT " %02x", addr[i]);
  298. offset = i % 16;
  299. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  300. if (offset == 15) {
  301. printk(KERN_CONT " %s\n", ascii);
  302. newline = 1;
  303. }
  304. }
  305. if (!newline) {
  306. i %= 16;
  307. while (i < 16) {
  308. printk(KERN_CONT " ");
  309. ascii[i] = ' ';
  310. i++;
  311. }
  312. printk(KERN_CONT " %s\n", ascii);
  313. }
  314. }
  315. static struct track *get_track(struct kmem_cache *s, void *object,
  316. enum track_item alloc)
  317. {
  318. struct track *p;
  319. if (s->offset)
  320. p = object + s->offset + sizeof(void *);
  321. else
  322. p = object + s->inuse;
  323. return p + alloc;
  324. }
  325. static void set_track(struct kmem_cache *s, void *object,
  326. enum track_item alloc, unsigned long addr)
  327. {
  328. struct track *p;
  329. if (s->offset)
  330. p = object + s->offset + sizeof(void *);
  331. else
  332. p = object + s->inuse;
  333. p += alloc;
  334. if (addr) {
  335. p->addr = addr;
  336. p->cpu = smp_processor_id();
  337. p->pid = current->pid;
  338. p->when = jiffies;
  339. } else
  340. memset(p, 0, sizeof(struct track));
  341. }
  342. static void init_tracking(struct kmem_cache *s, void *object)
  343. {
  344. if (!(s->flags & SLAB_STORE_USER))
  345. return;
  346. set_track(s, object, TRACK_FREE, 0UL);
  347. set_track(s, object, TRACK_ALLOC, 0UL);
  348. }
  349. static void print_track(const char *s, struct track *t)
  350. {
  351. if (!t->addr)
  352. return;
  353. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  354. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  355. }
  356. static void print_tracking(struct kmem_cache *s, void *object)
  357. {
  358. if (!(s->flags & SLAB_STORE_USER))
  359. return;
  360. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  361. print_track("Freed", get_track(s, object, TRACK_FREE));
  362. }
  363. static void print_page_info(struct page *page)
  364. {
  365. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  366. page, page->objects, page->inuse, page->freelist, page->flags);
  367. }
  368. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  369. {
  370. va_list args;
  371. char buf[100];
  372. va_start(args, fmt);
  373. vsnprintf(buf, sizeof(buf), fmt, args);
  374. va_end(args);
  375. printk(KERN_ERR "========================================"
  376. "=====================================\n");
  377. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  378. printk(KERN_ERR "----------------------------------------"
  379. "-------------------------------------\n\n");
  380. }
  381. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  382. {
  383. va_list args;
  384. char buf[100];
  385. va_start(args, fmt);
  386. vsnprintf(buf, sizeof(buf), fmt, args);
  387. va_end(args);
  388. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  389. }
  390. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  391. {
  392. unsigned int off; /* Offset of last byte */
  393. u8 *addr = page_address(page);
  394. print_tracking(s, p);
  395. print_page_info(page);
  396. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  397. p, p - addr, get_freepointer(s, p));
  398. if (p > addr + 16)
  399. print_section("Bytes b4", p - 16, 16);
  400. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  401. if (s->flags & SLAB_RED_ZONE)
  402. print_section("Redzone", p + s->objsize,
  403. s->inuse - s->objsize);
  404. if (s->offset)
  405. off = s->offset + sizeof(void *);
  406. else
  407. off = s->inuse;
  408. if (s->flags & SLAB_STORE_USER)
  409. off += 2 * sizeof(struct track);
  410. if (off != s->size)
  411. /* Beginning of the filler is the free pointer */
  412. print_section("Padding", p + off, s->size - off);
  413. dump_stack();
  414. }
  415. static void object_err(struct kmem_cache *s, struct page *page,
  416. u8 *object, char *reason)
  417. {
  418. slab_bug(s, "%s", reason);
  419. print_trailer(s, page, object);
  420. }
  421. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  422. {
  423. va_list args;
  424. char buf[100];
  425. va_start(args, fmt);
  426. vsnprintf(buf, sizeof(buf), fmt, args);
  427. va_end(args);
  428. slab_bug(s, "%s", buf);
  429. print_page_info(page);
  430. dump_stack();
  431. }
  432. static void init_object(struct kmem_cache *s, void *object, int active)
  433. {
  434. u8 *p = object;
  435. if (s->flags & __OBJECT_POISON) {
  436. memset(p, POISON_FREE, s->objsize - 1);
  437. p[s->objsize - 1] = POISON_END;
  438. }
  439. if (s->flags & SLAB_RED_ZONE)
  440. memset(p + s->objsize,
  441. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  442. s->inuse - s->objsize);
  443. }
  444. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  445. {
  446. while (bytes) {
  447. if (*start != (u8)value)
  448. return start;
  449. start++;
  450. bytes--;
  451. }
  452. return NULL;
  453. }
  454. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  455. void *from, void *to)
  456. {
  457. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  458. memset(from, data, to - from);
  459. }
  460. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  461. u8 *object, char *what,
  462. u8 *start, unsigned int value, unsigned int bytes)
  463. {
  464. u8 *fault;
  465. u8 *end;
  466. fault = check_bytes(start, value, bytes);
  467. if (!fault)
  468. return 1;
  469. end = start + bytes;
  470. while (end > fault && end[-1] == value)
  471. end--;
  472. slab_bug(s, "%s overwritten", what);
  473. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  474. fault, end - 1, fault[0], value);
  475. print_trailer(s, page, object);
  476. restore_bytes(s, what, value, fault, end);
  477. return 0;
  478. }
  479. /*
  480. * Object layout:
  481. *
  482. * object address
  483. * Bytes of the object to be managed.
  484. * If the freepointer may overlay the object then the free
  485. * pointer is the first word of the object.
  486. *
  487. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  488. * 0xa5 (POISON_END)
  489. *
  490. * object + s->objsize
  491. * Padding to reach word boundary. This is also used for Redzoning.
  492. * Padding is extended by another word if Redzoning is enabled and
  493. * objsize == inuse.
  494. *
  495. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  496. * 0xcc (RED_ACTIVE) for objects in use.
  497. *
  498. * object + s->inuse
  499. * Meta data starts here.
  500. *
  501. * A. Free pointer (if we cannot overwrite object on free)
  502. * B. Tracking data for SLAB_STORE_USER
  503. * C. Padding to reach required alignment boundary or at mininum
  504. * one word if debugging is on to be able to detect writes
  505. * before the word boundary.
  506. *
  507. * Padding is done using 0x5a (POISON_INUSE)
  508. *
  509. * object + s->size
  510. * Nothing is used beyond s->size.
  511. *
  512. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  513. * ignored. And therefore no slab options that rely on these boundaries
  514. * may be used with merged slabcaches.
  515. */
  516. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  517. {
  518. unsigned long off = s->inuse; /* The end of info */
  519. if (s->offset)
  520. /* Freepointer is placed after the object. */
  521. off += sizeof(void *);
  522. if (s->flags & SLAB_STORE_USER)
  523. /* We also have user information there */
  524. off += 2 * sizeof(struct track);
  525. if (s->size == off)
  526. return 1;
  527. return check_bytes_and_report(s, page, p, "Object padding",
  528. p + off, POISON_INUSE, s->size - off);
  529. }
  530. /* Check the pad bytes at the end of a slab page */
  531. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  532. {
  533. u8 *start;
  534. u8 *fault;
  535. u8 *end;
  536. int length;
  537. int remainder;
  538. if (!(s->flags & SLAB_POISON))
  539. return 1;
  540. start = page_address(page);
  541. length = (PAGE_SIZE << compound_order(page));
  542. end = start + length;
  543. remainder = length % s->size;
  544. if (!remainder)
  545. return 1;
  546. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  547. if (!fault)
  548. return 1;
  549. while (end > fault && end[-1] == POISON_INUSE)
  550. end--;
  551. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  552. print_section("Padding", end - remainder, remainder);
  553. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  554. return 0;
  555. }
  556. static int check_object(struct kmem_cache *s, struct page *page,
  557. void *object, int active)
  558. {
  559. u8 *p = object;
  560. u8 *endobject = object + s->objsize;
  561. if (s->flags & SLAB_RED_ZONE) {
  562. unsigned int red =
  563. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  564. if (!check_bytes_and_report(s, page, object, "Redzone",
  565. endobject, red, s->inuse - s->objsize))
  566. return 0;
  567. } else {
  568. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  569. check_bytes_and_report(s, page, p, "Alignment padding",
  570. endobject, POISON_INUSE, s->inuse - s->objsize);
  571. }
  572. }
  573. if (s->flags & SLAB_POISON) {
  574. if (!active && (s->flags & __OBJECT_POISON) &&
  575. (!check_bytes_and_report(s, page, p, "Poison", p,
  576. POISON_FREE, s->objsize - 1) ||
  577. !check_bytes_and_report(s, page, p, "Poison",
  578. p + s->objsize - 1, POISON_END, 1)))
  579. return 0;
  580. /*
  581. * check_pad_bytes cleans up on its own.
  582. */
  583. check_pad_bytes(s, page, p);
  584. }
  585. if (!s->offset && active)
  586. /*
  587. * Object and freepointer overlap. Cannot check
  588. * freepointer while object is allocated.
  589. */
  590. return 1;
  591. /* Check free pointer validity */
  592. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  593. object_err(s, page, p, "Freepointer corrupt");
  594. /*
  595. * No choice but to zap it and thus lose the remainder
  596. * of the free objects in this slab. May cause
  597. * another error because the object count is now wrong.
  598. */
  599. set_freepointer(s, p, NULL);
  600. return 0;
  601. }
  602. return 1;
  603. }
  604. static int check_slab(struct kmem_cache *s, struct page *page)
  605. {
  606. int maxobj;
  607. VM_BUG_ON(!irqs_disabled());
  608. if (!PageSlab(page)) {
  609. slab_err(s, page, "Not a valid slab page");
  610. return 0;
  611. }
  612. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  613. if (page->objects > maxobj) {
  614. slab_err(s, page, "objects %u > max %u",
  615. s->name, page->objects, maxobj);
  616. return 0;
  617. }
  618. if (page->inuse > page->objects) {
  619. slab_err(s, page, "inuse %u > max %u",
  620. s->name, page->inuse, page->objects);
  621. return 0;
  622. }
  623. /* Slab_pad_check fixes things up after itself */
  624. slab_pad_check(s, page);
  625. return 1;
  626. }
  627. /*
  628. * Determine if a certain object on a page is on the freelist. Must hold the
  629. * slab lock to guarantee that the chains are in a consistent state.
  630. */
  631. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  632. {
  633. int nr = 0;
  634. void *fp = page->freelist;
  635. void *object = NULL;
  636. unsigned long max_objects;
  637. while (fp && nr <= page->objects) {
  638. if (fp == search)
  639. return 1;
  640. if (!check_valid_pointer(s, page, fp)) {
  641. if (object) {
  642. object_err(s, page, object,
  643. "Freechain corrupt");
  644. set_freepointer(s, object, NULL);
  645. break;
  646. } else {
  647. slab_err(s, page, "Freepointer corrupt");
  648. page->freelist = NULL;
  649. page->inuse = page->objects;
  650. slab_fix(s, "Freelist cleared");
  651. return 0;
  652. }
  653. break;
  654. }
  655. object = fp;
  656. fp = get_freepointer(s, object);
  657. nr++;
  658. }
  659. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  660. if (max_objects > MAX_OBJS_PER_PAGE)
  661. max_objects = MAX_OBJS_PER_PAGE;
  662. if (page->objects != max_objects) {
  663. slab_err(s, page, "Wrong number of objects. Found %d but "
  664. "should be %d", page->objects, max_objects);
  665. page->objects = max_objects;
  666. slab_fix(s, "Number of objects adjusted.");
  667. }
  668. if (page->inuse != page->objects - nr) {
  669. slab_err(s, page, "Wrong object count. Counter is %d but "
  670. "counted were %d", page->inuse, page->objects - nr);
  671. page->inuse = page->objects - nr;
  672. slab_fix(s, "Object count adjusted.");
  673. }
  674. return search == NULL;
  675. }
  676. static void trace(struct kmem_cache *s, struct page *page, void *object,
  677. int alloc)
  678. {
  679. if (s->flags & SLAB_TRACE) {
  680. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  681. s->name,
  682. alloc ? "alloc" : "free",
  683. object, page->inuse,
  684. page->freelist);
  685. if (!alloc)
  686. print_section("Object", (void *)object, s->objsize);
  687. dump_stack();
  688. }
  689. }
  690. /*
  691. * Tracking of fully allocated slabs for debugging purposes.
  692. */
  693. static void add_full(struct kmem_cache_node *n, struct page *page)
  694. {
  695. spin_lock(&n->list_lock);
  696. list_add(&page->lru, &n->full);
  697. spin_unlock(&n->list_lock);
  698. }
  699. static void remove_full(struct kmem_cache *s, struct page *page)
  700. {
  701. struct kmem_cache_node *n;
  702. if (!(s->flags & SLAB_STORE_USER))
  703. return;
  704. n = get_node(s, page_to_nid(page));
  705. spin_lock(&n->list_lock);
  706. list_del(&page->lru);
  707. spin_unlock(&n->list_lock);
  708. }
  709. /* Tracking of the number of slabs for debugging purposes */
  710. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  711. {
  712. struct kmem_cache_node *n = get_node(s, node);
  713. return atomic_long_read(&n->nr_slabs);
  714. }
  715. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  716. {
  717. struct kmem_cache_node *n = get_node(s, node);
  718. /*
  719. * May be called early in order to allocate a slab for the
  720. * kmem_cache_node structure. Solve the chicken-egg
  721. * dilemma by deferring the increment of the count during
  722. * bootstrap (see early_kmem_cache_node_alloc).
  723. */
  724. if (!NUMA_BUILD || n) {
  725. atomic_long_inc(&n->nr_slabs);
  726. atomic_long_add(objects, &n->total_objects);
  727. }
  728. }
  729. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  730. {
  731. struct kmem_cache_node *n = get_node(s, node);
  732. atomic_long_dec(&n->nr_slabs);
  733. atomic_long_sub(objects, &n->total_objects);
  734. }
  735. /* Object debug checks for alloc/free paths */
  736. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  737. void *object)
  738. {
  739. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  740. return;
  741. init_object(s, object, 0);
  742. init_tracking(s, object);
  743. }
  744. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  745. void *object, unsigned long addr)
  746. {
  747. if (!check_slab(s, page))
  748. goto bad;
  749. if (!on_freelist(s, page, object)) {
  750. object_err(s, page, object, "Object already allocated");
  751. goto bad;
  752. }
  753. if (!check_valid_pointer(s, page, object)) {
  754. object_err(s, page, object, "Freelist Pointer check fails");
  755. goto bad;
  756. }
  757. if (!check_object(s, page, object, 0))
  758. goto bad;
  759. /* Success perform special debug activities for allocs */
  760. if (s->flags & SLAB_STORE_USER)
  761. set_track(s, object, TRACK_ALLOC, addr);
  762. trace(s, page, object, 1);
  763. init_object(s, object, 1);
  764. return 1;
  765. bad:
  766. if (PageSlab(page)) {
  767. /*
  768. * If this is a slab page then lets do the best we can
  769. * to avoid issues in the future. Marking all objects
  770. * as used avoids touching the remaining objects.
  771. */
  772. slab_fix(s, "Marking all objects used");
  773. page->inuse = page->objects;
  774. page->freelist = NULL;
  775. }
  776. return 0;
  777. }
  778. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  779. void *object, unsigned long addr)
  780. {
  781. if (!check_slab(s, page))
  782. goto fail;
  783. if (!check_valid_pointer(s, page, object)) {
  784. slab_err(s, page, "Invalid object pointer 0x%p", object);
  785. goto fail;
  786. }
  787. if (on_freelist(s, page, object)) {
  788. object_err(s, page, object, "Object already free");
  789. goto fail;
  790. }
  791. if (!check_object(s, page, object, 1))
  792. return 0;
  793. if (unlikely(s != page->slab)) {
  794. if (!PageSlab(page)) {
  795. slab_err(s, page, "Attempt to free object(0x%p) "
  796. "outside of slab", object);
  797. } else if (!page->slab) {
  798. printk(KERN_ERR
  799. "SLUB <none>: no slab for object 0x%p.\n",
  800. object);
  801. dump_stack();
  802. } else
  803. object_err(s, page, object,
  804. "page slab pointer corrupt.");
  805. goto fail;
  806. }
  807. /* Special debug activities for freeing objects */
  808. if (!PageSlubFrozen(page) && !page->freelist)
  809. remove_full(s, page);
  810. if (s->flags & SLAB_STORE_USER)
  811. set_track(s, object, TRACK_FREE, addr);
  812. trace(s, page, object, 0);
  813. init_object(s, object, 0);
  814. return 1;
  815. fail:
  816. slab_fix(s, "Object at 0x%p not freed", object);
  817. return 0;
  818. }
  819. static int __init setup_slub_debug(char *str)
  820. {
  821. slub_debug = DEBUG_DEFAULT_FLAGS;
  822. if (*str++ != '=' || !*str)
  823. /*
  824. * No options specified. Switch on full debugging.
  825. */
  826. goto out;
  827. if (*str == ',')
  828. /*
  829. * No options but restriction on slabs. This means full
  830. * debugging for slabs matching a pattern.
  831. */
  832. goto check_slabs;
  833. slub_debug = 0;
  834. if (*str == '-')
  835. /*
  836. * Switch off all debugging measures.
  837. */
  838. goto out;
  839. /*
  840. * Determine which debug features should be switched on
  841. */
  842. for (; *str && *str != ','; str++) {
  843. switch (tolower(*str)) {
  844. case 'f':
  845. slub_debug |= SLAB_DEBUG_FREE;
  846. break;
  847. case 'z':
  848. slub_debug |= SLAB_RED_ZONE;
  849. break;
  850. case 'p':
  851. slub_debug |= SLAB_POISON;
  852. break;
  853. case 'u':
  854. slub_debug |= SLAB_STORE_USER;
  855. break;
  856. case 't':
  857. slub_debug |= SLAB_TRACE;
  858. break;
  859. default:
  860. printk(KERN_ERR "slub_debug option '%c' "
  861. "unknown. skipped\n", *str);
  862. }
  863. }
  864. check_slabs:
  865. if (*str == ',')
  866. slub_debug_slabs = str + 1;
  867. out:
  868. return 1;
  869. }
  870. __setup("slub_debug", setup_slub_debug);
  871. static unsigned long kmem_cache_flags(unsigned long objsize,
  872. unsigned long flags, const char *name,
  873. void (*ctor)(void *))
  874. {
  875. /*
  876. * Enable debugging if selected on the kernel commandline.
  877. */
  878. if (slub_debug && (!slub_debug_slabs ||
  879. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  880. flags |= slub_debug;
  881. return flags;
  882. }
  883. #else
  884. static inline void setup_object_debug(struct kmem_cache *s,
  885. struct page *page, void *object) {}
  886. static inline int alloc_debug_processing(struct kmem_cache *s,
  887. struct page *page, void *object, unsigned long addr) { return 0; }
  888. static inline int free_debug_processing(struct kmem_cache *s,
  889. struct page *page, void *object, unsigned long addr) { return 0; }
  890. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  891. { return 1; }
  892. static inline int check_object(struct kmem_cache *s, struct page *page,
  893. void *object, int active) { return 1; }
  894. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  895. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  896. unsigned long flags, const char *name,
  897. void (*ctor)(void *))
  898. {
  899. return flags;
  900. }
  901. #define slub_debug 0
  902. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  903. { return 0; }
  904. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  905. int objects) {}
  906. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  907. int objects) {}
  908. #endif
  909. /*
  910. * Slab allocation and freeing
  911. */
  912. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  913. struct kmem_cache_order_objects oo)
  914. {
  915. int order = oo_order(oo);
  916. if (node == -1)
  917. return alloc_pages(flags, order);
  918. else
  919. return alloc_pages_node(node, flags, order);
  920. }
  921. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  922. {
  923. struct page *page;
  924. struct kmem_cache_order_objects oo = s->oo;
  925. flags |= s->allocflags;
  926. page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
  927. oo);
  928. if (unlikely(!page)) {
  929. oo = s->min;
  930. /*
  931. * Allocation may have failed due to fragmentation.
  932. * Try a lower order alloc if possible
  933. */
  934. page = alloc_slab_page(flags, node, oo);
  935. if (!page)
  936. return NULL;
  937. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  938. }
  939. page->objects = oo_objects(oo);
  940. mod_zone_page_state(page_zone(page),
  941. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  942. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  943. 1 << oo_order(oo));
  944. return page;
  945. }
  946. static void setup_object(struct kmem_cache *s, struct page *page,
  947. void *object)
  948. {
  949. setup_object_debug(s, page, object);
  950. if (unlikely(s->ctor))
  951. s->ctor(object);
  952. }
  953. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  954. {
  955. struct page *page;
  956. void *start;
  957. void *last;
  958. void *p;
  959. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  960. page = allocate_slab(s,
  961. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  962. if (!page)
  963. goto out;
  964. inc_slabs_node(s, page_to_nid(page), page->objects);
  965. page->slab = s;
  966. page->flags |= 1 << PG_slab;
  967. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  968. SLAB_STORE_USER | SLAB_TRACE))
  969. __SetPageSlubDebug(page);
  970. start = page_address(page);
  971. if (unlikely(s->flags & SLAB_POISON))
  972. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  973. last = start;
  974. for_each_object(p, s, start, page->objects) {
  975. setup_object(s, page, last);
  976. set_freepointer(s, last, p);
  977. last = p;
  978. }
  979. setup_object(s, page, last);
  980. set_freepointer(s, last, NULL);
  981. page->freelist = start;
  982. page->inuse = 0;
  983. out:
  984. return page;
  985. }
  986. static void __free_slab(struct kmem_cache *s, struct page *page)
  987. {
  988. int order = compound_order(page);
  989. int pages = 1 << order;
  990. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  991. void *p;
  992. slab_pad_check(s, page);
  993. for_each_object(p, s, page_address(page),
  994. page->objects)
  995. check_object(s, page, p, 0);
  996. __ClearPageSlubDebug(page);
  997. }
  998. mod_zone_page_state(page_zone(page),
  999. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1000. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1001. -pages);
  1002. __ClearPageSlab(page);
  1003. reset_page_mapcount(page);
  1004. __free_pages(page, order);
  1005. }
  1006. static void rcu_free_slab(struct rcu_head *h)
  1007. {
  1008. struct page *page;
  1009. page = container_of((struct list_head *)h, struct page, lru);
  1010. __free_slab(page->slab, page);
  1011. }
  1012. static void free_slab(struct kmem_cache *s, struct page *page)
  1013. {
  1014. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1015. /*
  1016. * RCU free overloads the RCU head over the LRU
  1017. */
  1018. struct rcu_head *head = (void *)&page->lru;
  1019. call_rcu(head, rcu_free_slab);
  1020. } else
  1021. __free_slab(s, page);
  1022. }
  1023. static void discard_slab(struct kmem_cache *s, struct page *page)
  1024. {
  1025. dec_slabs_node(s, page_to_nid(page), page->objects);
  1026. free_slab(s, page);
  1027. }
  1028. /*
  1029. * Per slab locking using the pagelock
  1030. */
  1031. static __always_inline void slab_lock(struct page *page)
  1032. {
  1033. bit_spin_lock(PG_locked, &page->flags);
  1034. }
  1035. static __always_inline void slab_unlock(struct page *page)
  1036. {
  1037. __bit_spin_unlock(PG_locked, &page->flags);
  1038. }
  1039. static __always_inline int slab_trylock(struct page *page)
  1040. {
  1041. int rc = 1;
  1042. rc = bit_spin_trylock(PG_locked, &page->flags);
  1043. return rc;
  1044. }
  1045. /*
  1046. * Management of partially allocated slabs
  1047. */
  1048. static void add_partial(struct kmem_cache_node *n,
  1049. struct page *page, int tail)
  1050. {
  1051. spin_lock(&n->list_lock);
  1052. n->nr_partial++;
  1053. if (tail)
  1054. list_add_tail(&page->lru, &n->partial);
  1055. else
  1056. list_add(&page->lru, &n->partial);
  1057. spin_unlock(&n->list_lock);
  1058. }
  1059. static void remove_partial(struct kmem_cache *s, struct page *page)
  1060. {
  1061. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1062. spin_lock(&n->list_lock);
  1063. list_del(&page->lru);
  1064. n->nr_partial--;
  1065. spin_unlock(&n->list_lock);
  1066. }
  1067. /*
  1068. * Lock slab and remove from the partial list.
  1069. *
  1070. * Must hold list_lock.
  1071. */
  1072. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1073. struct page *page)
  1074. {
  1075. if (slab_trylock(page)) {
  1076. list_del(&page->lru);
  1077. n->nr_partial--;
  1078. __SetPageSlubFrozen(page);
  1079. return 1;
  1080. }
  1081. return 0;
  1082. }
  1083. /*
  1084. * Try to allocate a partial slab from a specific node.
  1085. */
  1086. static struct page *get_partial_node(struct kmem_cache_node *n)
  1087. {
  1088. struct page *page;
  1089. /*
  1090. * Racy check. If we mistakenly see no partial slabs then we
  1091. * just allocate an empty slab. If we mistakenly try to get a
  1092. * partial slab and there is none available then get_partials()
  1093. * will return NULL.
  1094. */
  1095. if (!n || !n->nr_partial)
  1096. return NULL;
  1097. spin_lock(&n->list_lock);
  1098. list_for_each_entry(page, &n->partial, lru)
  1099. if (lock_and_freeze_slab(n, page))
  1100. goto out;
  1101. page = NULL;
  1102. out:
  1103. spin_unlock(&n->list_lock);
  1104. return page;
  1105. }
  1106. /*
  1107. * Get a page from somewhere. Search in increasing NUMA distances.
  1108. */
  1109. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1110. {
  1111. #ifdef CONFIG_NUMA
  1112. struct zonelist *zonelist;
  1113. struct zoneref *z;
  1114. struct zone *zone;
  1115. enum zone_type high_zoneidx = gfp_zone(flags);
  1116. struct page *page;
  1117. /*
  1118. * The defrag ratio allows a configuration of the tradeoffs between
  1119. * inter node defragmentation and node local allocations. A lower
  1120. * defrag_ratio increases the tendency to do local allocations
  1121. * instead of attempting to obtain partial slabs from other nodes.
  1122. *
  1123. * If the defrag_ratio is set to 0 then kmalloc() always
  1124. * returns node local objects. If the ratio is higher then kmalloc()
  1125. * may return off node objects because partial slabs are obtained
  1126. * from other nodes and filled up.
  1127. *
  1128. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1129. * defrag_ratio = 1000) then every (well almost) allocation will
  1130. * first attempt to defrag slab caches on other nodes. This means
  1131. * scanning over all nodes to look for partial slabs which may be
  1132. * expensive if we do it every time we are trying to find a slab
  1133. * with available objects.
  1134. */
  1135. if (!s->remote_node_defrag_ratio ||
  1136. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1137. return NULL;
  1138. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1139. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1140. struct kmem_cache_node *n;
  1141. n = get_node(s, zone_to_nid(zone));
  1142. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1143. n->nr_partial > n->min_partial) {
  1144. page = get_partial_node(n);
  1145. if (page)
  1146. return page;
  1147. }
  1148. }
  1149. #endif
  1150. return NULL;
  1151. }
  1152. /*
  1153. * Get a partial page, lock it and return it.
  1154. */
  1155. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1156. {
  1157. struct page *page;
  1158. int searchnode = (node == -1) ? numa_node_id() : node;
  1159. page = get_partial_node(get_node(s, searchnode));
  1160. if (page || (flags & __GFP_THISNODE))
  1161. return page;
  1162. return get_any_partial(s, flags);
  1163. }
  1164. /*
  1165. * Move a page back to the lists.
  1166. *
  1167. * Must be called with the slab lock held.
  1168. *
  1169. * On exit the slab lock will have been dropped.
  1170. */
  1171. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1172. {
  1173. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1174. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1175. __ClearPageSlubFrozen(page);
  1176. if (page->inuse) {
  1177. if (page->freelist) {
  1178. add_partial(n, page, tail);
  1179. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1180. } else {
  1181. stat(c, DEACTIVATE_FULL);
  1182. if (SLABDEBUG && PageSlubDebug(page) &&
  1183. (s->flags & SLAB_STORE_USER))
  1184. add_full(n, page);
  1185. }
  1186. slab_unlock(page);
  1187. } else {
  1188. stat(c, DEACTIVATE_EMPTY);
  1189. if (n->nr_partial < n->min_partial) {
  1190. /*
  1191. * Adding an empty slab to the partial slabs in order
  1192. * to avoid page allocator overhead. This slab needs
  1193. * to come after the other slabs with objects in
  1194. * so that the others get filled first. That way the
  1195. * size of the partial list stays small.
  1196. *
  1197. * kmem_cache_shrink can reclaim any empty slabs from
  1198. * the partial list.
  1199. */
  1200. add_partial(n, page, 1);
  1201. slab_unlock(page);
  1202. } else {
  1203. slab_unlock(page);
  1204. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1205. discard_slab(s, page);
  1206. }
  1207. }
  1208. }
  1209. /*
  1210. * Remove the cpu slab
  1211. */
  1212. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1213. {
  1214. struct page *page = c->page;
  1215. int tail = 1;
  1216. if (page->freelist)
  1217. stat(c, DEACTIVATE_REMOTE_FREES);
  1218. /*
  1219. * Merge cpu freelist into slab freelist. Typically we get here
  1220. * because both freelists are empty. So this is unlikely
  1221. * to occur.
  1222. */
  1223. while (unlikely(c->freelist)) {
  1224. void **object;
  1225. tail = 0; /* Hot objects. Put the slab first */
  1226. /* Retrieve object from cpu_freelist */
  1227. object = c->freelist;
  1228. c->freelist = c->freelist[c->offset];
  1229. /* And put onto the regular freelist */
  1230. object[c->offset] = page->freelist;
  1231. page->freelist = object;
  1232. page->inuse--;
  1233. }
  1234. c->page = NULL;
  1235. unfreeze_slab(s, page, tail);
  1236. }
  1237. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1238. {
  1239. stat(c, CPUSLAB_FLUSH);
  1240. slab_lock(c->page);
  1241. deactivate_slab(s, c);
  1242. }
  1243. /*
  1244. * Flush cpu slab.
  1245. *
  1246. * Called from IPI handler with interrupts disabled.
  1247. */
  1248. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1249. {
  1250. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1251. if (likely(c && c->page))
  1252. flush_slab(s, c);
  1253. }
  1254. static void flush_cpu_slab(void *d)
  1255. {
  1256. struct kmem_cache *s = d;
  1257. __flush_cpu_slab(s, smp_processor_id());
  1258. }
  1259. static void flush_all(struct kmem_cache *s)
  1260. {
  1261. on_each_cpu(flush_cpu_slab, s, 1);
  1262. }
  1263. /*
  1264. * Check if the objects in a per cpu structure fit numa
  1265. * locality expectations.
  1266. */
  1267. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1268. {
  1269. #ifdef CONFIG_NUMA
  1270. if (node != -1 && c->node != node)
  1271. return 0;
  1272. #endif
  1273. return 1;
  1274. }
  1275. /*
  1276. * Slow path. The lockless freelist is empty or we need to perform
  1277. * debugging duties.
  1278. *
  1279. * Interrupts are disabled.
  1280. *
  1281. * Processing is still very fast if new objects have been freed to the
  1282. * regular freelist. In that case we simply take over the regular freelist
  1283. * as the lockless freelist and zap the regular freelist.
  1284. *
  1285. * If that is not working then we fall back to the partial lists. We take the
  1286. * first element of the freelist as the object to allocate now and move the
  1287. * rest of the freelist to the lockless freelist.
  1288. *
  1289. * And if we were unable to get a new slab from the partial slab lists then
  1290. * we need to allocate a new slab. This is the slowest path since it involves
  1291. * a call to the page allocator and the setup of a new slab.
  1292. */
  1293. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1294. unsigned long addr, struct kmem_cache_cpu *c)
  1295. {
  1296. void **object;
  1297. struct page *new;
  1298. /* We handle __GFP_ZERO in the caller */
  1299. gfpflags &= ~__GFP_ZERO;
  1300. if (!c->page)
  1301. goto new_slab;
  1302. slab_lock(c->page);
  1303. if (unlikely(!node_match(c, node)))
  1304. goto another_slab;
  1305. stat(c, ALLOC_REFILL);
  1306. load_freelist:
  1307. object = c->page->freelist;
  1308. if (unlikely(!object))
  1309. goto another_slab;
  1310. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1311. goto debug;
  1312. c->freelist = object[c->offset];
  1313. c->page->inuse = c->page->objects;
  1314. c->page->freelist = NULL;
  1315. c->node = page_to_nid(c->page);
  1316. unlock_out:
  1317. slab_unlock(c->page);
  1318. stat(c, ALLOC_SLOWPATH);
  1319. return object;
  1320. another_slab:
  1321. deactivate_slab(s, c);
  1322. new_slab:
  1323. new = get_partial(s, gfpflags, node);
  1324. if (new) {
  1325. c->page = new;
  1326. stat(c, ALLOC_FROM_PARTIAL);
  1327. goto load_freelist;
  1328. }
  1329. if (gfpflags & __GFP_WAIT)
  1330. local_irq_enable();
  1331. new = new_slab(s, gfpflags, node);
  1332. if (gfpflags & __GFP_WAIT)
  1333. local_irq_disable();
  1334. if (new) {
  1335. c = get_cpu_slab(s, smp_processor_id());
  1336. stat(c, ALLOC_SLAB);
  1337. if (c->page)
  1338. flush_slab(s, c);
  1339. slab_lock(new);
  1340. __SetPageSlubFrozen(new);
  1341. c->page = new;
  1342. goto load_freelist;
  1343. }
  1344. return NULL;
  1345. debug:
  1346. if (!alloc_debug_processing(s, c->page, object, addr))
  1347. goto another_slab;
  1348. c->page->inuse++;
  1349. c->page->freelist = object[c->offset];
  1350. c->node = -1;
  1351. goto unlock_out;
  1352. }
  1353. /*
  1354. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1355. * have the fastpath folded into their functions. So no function call
  1356. * overhead for requests that can be satisfied on the fastpath.
  1357. *
  1358. * The fastpath works by first checking if the lockless freelist can be used.
  1359. * If not then __slab_alloc is called for slow processing.
  1360. *
  1361. * Otherwise we can simply pick the next object from the lockless free list.
  1362. */
  1363. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1364. gfp_t gfpflags, int node, unsigned long addr)
  1365. {
  1366. void **object;
  1367. struct kmem_cache_cpu *c;
  1368. unsigned long flags;
  1369. unsigned int objsize;
  1370. might_sleep_if(gfpflags & __GFP_WAIT);
  1371. if (should_failslab(s->objsize, gfpflags))
  1372. return NULL;
  1373. local_irq_save(flags);
  1374. c = get_cpu_slab(s, smp_processor_id());
  1375. objsize = c->objsize;
  1376. if (unlikely(!c->freelist || !node_match(c, node)))
  1377. object = __slab_alloc(s, gfpflags, node, addr, c);
  1378. else {
  1379. object = c->freelist;
  1380. c->freelist = object[c->offset];
  1381. stat(c, ALLOC_FASTPATH);
  1382. }
  1383. local_irq_restore(flags);
  1384. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1385. memset(object, 0, objsize);
  1386. return object;
  1387. }
  1388. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1389. {
  1390. void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
  1391. kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
  1392. s->objsize, s->size, gfpflags);
  1393. return ret;
  1394. }
  1395. EXPORT_SYMBOL(kmem_cache_alloc);
  1396. #ifdef CONFIG_KMEMTRACE
  1397. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1398. {
  1399. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1400. }
  1401. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1402. #endif
  1403. #ifdef CONFIG_NUMA
  1404. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1405. {
  1406. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1407. kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
  1408. s->objsize, s->size, gfpflags, node);
  1409. return ret;
  1410. }
  1411. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1412. #endif
  1413. #ifdef CONFIG_KMEMTRACE
  1414. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1415. gfp_t gfpflags,
  1416. int node)
  1417. {
  1418. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1419. }
  1420. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1421. #endif
  1422. /*
  1423. * Slow patch handling. This may still be called frequently since objects
  1424. * have a longer lifetime than the cpu slabs in most processing loads.
  1425. *
  1426. * So we still attempt to reduce cache line usage. Just take the slab
  1427. * lock and free the item. If there is no additional partial page
  1428. * handling required then we can return immediately.
  1429. */
  1430. static void __slab_free(struct kmem_cache *s, struct page *page,
  1431. void *x, unsigned long addr, unsigned int offset)
  1432. {
  1433. void *prior;
  1434. void **object = (void *)x;
  1435. struct kmem_cache_cpu *c;
  1436. c = get_cpu_slab(s, raw_smp_processor_id());
  1437. stat(c, FREE_SLOWPATH);
  1438. slab_lock(page);
  1439. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1440. goto debug;
  1441. checks_ok:
  1442. prior = object[offset] = page->freelist;
  1443. page->freelist = object;
  1444. page->inuse--;
  1445. if (unlikely(PageSlubFrozen(page))) {
  1446. stat(c, FREE_FROZEN);
  1447. goto out_unlock;
  1448. }
  1449. if (unlikely(!page->inuse))
  1450. goto slab_empty;
  1451. /*
  1452. * Objects left in the slab. If it was not on the partial list before
  1453. * then add it.
  1454. */
  1455. if (unlikely(!prior)) {
  1456. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1457. stat(c, FREE_ADD_PARTIAL);
  1458. }
  1459. out_unlock:
  1460. slab_unlock(page);
  1461. return;
  1462. slab_empty:
  1463. if (prior) {
  1464. /*
  1465. * Slab still on the partial list.
  1466. */
  1467. remove_partial(s, page);
  1468. stat(c, FREE_REMOVE_PARTIAL);
  1469. }
  1470. slab_unlock(page);
  1471. stat(c, FREE_SLAB);
  1472. discard_slab(s, page);
  1473. return;
  1474. debug:
  1475. if (!free_debug_processing(s, page, x, addr))
  1476. goto out_unlock;
  1477. goto checks_ok;
  1478. }
  1479. /*
  1480. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1481. * can perform fastpath freeing without additional function calls.
  1482. *
  1483. * The fastpath is only possible if we are freeing to the current cpu slab
  1484. * of this processor. This typically the case if we have just allocated
  1485. * the item before.
  1486. *
  1487. * If fastpath is not possible then fall back to __slab_free where we deal
  1488. * with all sorts of special processing.
  1489. */
  1490. static __always_inline void slab_free(struct kmem_cache *s,
  1491. struct page *page, void *x, unsigned long addr)
  1492. {
  1493. void **object = (void *)x;
  1494. struct kmem_cache_cpu *c;
  1495. unsigned long flags;
  1496. local_irq_save(flags);
  1497. c = get_cpu_slab(s, smp_processor_id());
  1498. debug_check_no_locks_freed(object, c->objsize);
  1499. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1500. debug_check_no_obj_freed(object, s->objsize);
  1501. if (likely(page == c->page && c->node >= 0)) {
  1502. object[c->offset] = c->freelist;
  1503. c->freelist = object;
  1504. stat(c, FREE_FASTPATH);
  1505. } else
  1506. __slab_free(s, page, x, addr, c->offset);
  1507. local_irq_restore(flags);
  1508. }
  1509. void kmem_cache_free(struct kmem_cache *s, void *x)
  1510. {
  1511. struct page *page;
  1512. page = virt_to_head_page(x);
  1513. slab_free(s, page, x, _RET_IP_);
  1514. kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, x);
  1515. }
  1516. EXPORT_SYMBOL(kmem_cache_free);
  1517. /* Figure out on which slab page the object resides */
  1518. static struct page *get_object_page(const void *x)
  1519. {
  1520. struct page *page = virt_to_head_page(x);
  1521. if (!PageSlab(page))
  1522. return NULL;
  1523. return page;
  1524. }
  1525. /*
  1526. * Object placement in a slab is made very easy because we always start at
  1527. * offset 0. If we tune the size of the object to the alignment then we can
  1528. * get the required alignment by putting one properly sized object after
  1529. * another.
  1530. *
  1531. * Notice that the allocation order determines the sizes of the per cpu
  1532. * caches. Each processor has always one slab available for allocations.
  1533. * Increasing the allocation order reduces the number of times that slabs
  1534. * must be moved on and off the partial lists and is therefore a factor in
  1535. * locking overhead.
  1536. */
  1537. /*
  1538. * Mininum / Maximum order of slab pages. This influences locking overhead
  1539. * and slab fragmentation. A higher order reduces the number of partial slabs
  1540. * and increases the number of allocations possible without having to
  1541. * take the list_lock.
  1542. */
  1543. static int slub_min_order;
  1544. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1545. static int slub_min_objects;
  1546. /*
  1547. * Merge control. If this is set then no merging of slab caches will occur.
  1548. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1549. */
  1550. static int slub_nomerge;
  1551. /*
  1552. * Calculate the order of allocation given an slab object size.
  1553. *
  1554. * The order of allocation has significant impact on performance and other
  1555. * system components. Generally order 0 allocations should be preferred since
  1556. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1557. * be problematic to put into order 0 slabs because there may be too much
  1558. * unused space left. We go to a higher order if more than 1/16th of the slab
  1559. * would be wasted.
  1560. *
  1561. * In order to reach satisfactory performance we must ensure that a minimum
  1562. * number of objects is in one slab. Otherwise we may generate too much
  1563. * activity on the partial lists which requires taking the list_lock. This is
  1564. * less a concern for large slabs though which are rarely used.
  1565. *
  1566. * slub_max_order specifies the order where we begin to stop considering the
  1567. * number of objects in a slab as critical. If we reach slub_max_order then
  1568. * we try to keep the page order as low as possible. So we accept more waste
  1569. * of space in favor of a small page order.
  1570. *
  1571. * Higher order allocations also allow the placement of more objects in a
  1572. * slab and thereby reduce object handling overhead. If the user has
  1573. * requested a higher mininum order then we start with that one instead of
  1574. * the smallest order which will fit the object.
  1575. */
  1576. static inline int slab_order(int size, int min_objects,
  1577. int max_order, int fract_leftover)
  1578. {
  1579. int order;
  1580. int rem;
  1581. int min_order = slub_min_order;
  1582. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1583. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1584. for (order = max(min_order,
  1585. fls(min_objects * size - 1) - PAGE_SHIFT);
  1586. order <= max_order; order++) {
  1587. unsigned long slab_size = PAGE_SIZE << order;
  1588. if (slab_size < min_objects * size)
  1589. continue;
  1590. rem = slab_size % size;
  1591. if (rem <= slab_size / fract_leftover)
  1592. break;
  1593. }
  1594. return order;
  1595. }
  1596. static inline int calculate_order(int size)
  1597. {
  1598. int order;
  1599. int min_objects;
  1600. int fraction;
  1601. /*
  1602. * Attempt to find best configuration for a slab. This
  1603. * works by first attempting to generate a layout with
  1604. * the best configuration and backing off gradually.
  1605. *
  1606. * First we reduce the acceptable waste in a slab. Then
  1607. * we reduce the minimum objects required in a slab.
  1608. */
  1609. min_objects = slub_min_objects;
  1610. if (!min_objects)
  1611. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1612. while (min_objects > 1) {
  1613. fraction = 16;
  1614. while (fraction >= 4) {
  1615. order = slab_order(size, min_objects,
  1616. slub_max_order, fraction);
  1617. if (order <= slub_max_order)
  1618. return order;
  1619. fraction /= 2;
  1620. }
  1621. min_objects /= 2;
  1622. }
  1623. /*
  1624. * We were unable to place multiple objects in a slab. Now
  1625. * lets see if we can place a single object there.
  1626. */
  1627. order = slab_order(size, 1, slub_max_order, 1);
  1628. if (order <= slub_max_order)
  1629. return order;
  1630. /*
  1631. * Doh this slab cannot be placed using slub_max_order.
  1632. */
  1633. order = slab_order(size, 1, MAX_ORDER, 1);
  1634. if (order <= MAX_ORDER)
  1635. return order;
  1636. return -ENOSYS;
  1637. }
  1638. /*
  1639. * Figure out what the alignment of the objects will be.
  1640. */
  1641. static unsigned long calculate_alignment(unsigned long flags,
  1642. unsigned long align, unsigned long size)
  1643. {
  1644. /*
  1645. * If the user wants hardware cache aligned objects then follow that
  1646. * suggestion if the object is sufficiently large.
  1647. *
  1648. * The hardware cache alignment cannot override the specified
  1649. * alignment though. If that is greater then use it.
  1650. */
  1651. if (flags & SLAB_HWCACHE_ALIGN) {
  1652. unsigned long ralign = cache_line_size();
  1653. while (size <= ralign / 2)
  1654. ralign /= 2;
  1655. align = max(align, ralign);
  1656. }
  1657. if (align < ARCH_SLAB_MINALIGN)
  1658. align = ARCH_SLAB_MINALIGN;
  1659. return ALIGN(align, sizeof(void *));
  1660. }
  1661. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1662. struct kmem_cache_cpu *c)
  1663. {
  1664. c->page = NULL;
  1665. c->freelist = NULL;
  1666. c->node = 0;
  1667. c->offset = s->offset / sizeof(void *);
  1668. c->objsize = s->objsize;
  1669. #ifdef CONFIG_SLUB_STATS
  1670. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1671. #endif
  1672. }
  1673. static void
  1674. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1675. {
  1676. n->nr_partial = 0;
  1677. /*
  1678. * The larger the object size is, the more pages we want on the partial
  1679. * list to avoid pounding the page allocator excessively.
  1680. */
  1681. n->min_partial = ilog2(s->size);
  1682. if (n->min_partial < MIN_PARTIAL)
  1683. n->min_partial = MIN_PARTIAL;
  1684. else if (n->min_partial > MAX_PARTIAL)
  1685. n->min_partial = MAX_PARTIAL;
  1686. spin_lock_init(&n->list_lock);
  1687. INIT_LIST_HEAD(&n->partial);
  1688. #ifdef CONFIG_SLUB_DEBUG
  1689. atomic_long_set(&n->nr_slabs, 0);
  1690. atomic_long_set(&n->total_objects, 0);
  1691. INIT_LIST_HEAD(&n->full);
  1692. #endif
  1693. }
  1694. #ifdef CONFIG_SMP
  1695. /*
  1696. * Per cpu array for per cpu structures.
  1697. *
  1698. * The per cpu array places all kmem_cache_cpu structures from one processor
  1699. * close together meaning that it becomes possible that multiple per cpu
  1700. * structures are contained in one cacheline. This may be particularly
  1701. * beneficial for the kmalloc caches.
  1702. *
  1703. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1704. * likely able to get per cpu structures for all caches from the array defined
  1705. * here. We must be able to cover all kmalloc caches during bootstrap.
  1706. *
  1707. * If the per cpu array is exhausted then fall back to kmalloc
  1708. * of individual cachelines. No sharing is possible then.
  1709. */
  1710. #define NR_KMEM_CACHE_CPU 100
  1711. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1712. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1713. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1714. static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
  1715. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1716. int cpu, gfp_t flags)
  1717. {
  1718. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1719. if (c)
  1720. per_cpu(kmem_cache_cpu_free, cpu) =
  1721. (void *)c->freelist;
  1722. else {
  1723. /* Table overflow: So allocate ourselves */
  1724. c = kmalloc_node(
  1725. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1726. flags, cpu_to_node(cpu));
  1727. if (!c)
  1728. return NULL;
  1729. }
  1730. init_kmem_cache_cpu(s, c);
  1731. return c;
  1732. }
  1733. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1734. {
  1735. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1736. c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1737. kfree(c);
  1738. return;
  1739. }
  1740. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1741. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1742. }
  1743. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1744. {
  1745. int cpu;
  1746. for_each_online_cpu(cpu) {
  1747. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1748. if (c) {
  1749. s->cpu_slab[cpu] = NULL;
  1750. free_kmem_cache_cpu(c, cpu);
  1751. }
  1752. }
  1753. }
  1754. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1755. {
  1756. int cpu;
  1757. for_each_online_cpu(cpu) {
  1758. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1759. if (c)
  1760. continue;
  1761. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1762. if (!c) {
  1763. free_kmem_cache_cpus(s);
  1764. return 0;
  1765. }
  1766. s->cpu_slab[cpu] = c;
  1767. }
  1768. return 1;
  1769. }
  1770. /*
  1771. * Initialize the per cpu array.
  1772. */
  1773. static void init_alloc_cpu_cpu(int cpu)
  1774. {
  1775. int i;
  1776. if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
  1777. return;
  1778. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1779. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1780. cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
  1781. }
  1782. static void __init init_alloc_cpu(void)
  1783. {
  1784. int cpu;
  1785. for_each_online_cpu(cpu)
  1786. init_alloc_cpu_cpu(cpu);
  1787. }
  1788. #else
  1789. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1790. static inline void init_alloc_cpu(void) {}
  1791. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1792. {
  1793. init_kmem_cache_cpu(s, &s->cpu_slab);
  1794. return 1;
  1795. }
  1796. #endif
  1797. #ifdef CONFIG_NUMA
  1798. /*
  1799. * No kmalloc_node yet so do it by hand. We know that this is the first
  1800. * slab on the node for this slabcache. There are no concurrent accesses
  1801. * possible.
  1802. *
  1803. * Note that this function only works on the kmalloc_node_cache
  1804. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1805. * memory on a fresh node that has no slab structures yet.
  1806. */
  1807. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1808. {
  1809. struct page *page;
  1810. struct kmem_cache_node *n;
  1811. unsigned long flags;
  1812. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1813. page = new_slab(kmalloc_caches, gfpflags, node);
  1814. BUG_ON(!page);
  1815. if (page_to_nid(page) != node) {
  1816. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1817. "node %d\n", node);
  1818. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1819. "in order to be able to continue\n");
  1820. }
  1821. n = page->freelist;
  1822. BUG_ON(!n);
  1823. page->freelist = get_freepointer(kmalloc_caches, n);
  1824. page->inuse++;
  1825. kmalloc_caches->node[node] = n;
  1826. #ifdef CONFIG_SLUB_DEBUG
  1827. init_object(kmalloc_caches, n, 1);
  1828. init_tracking(kmalloc_caches, n);
  1829. #endif
  1830. init_kmem_cache_node(n, kmalloc_caches);
  1831. inc_slabs_node(kmalloc_caches, node, page->objects);
  1832. /*
  1833. * lockdep requires consistent irq usage for each lock
  1834. * so even though there cannot be a race this early in
  1835. * the boot sequence, we still disable irqs.
  1836. */
  1837. local_irq_save(flags);
  1838. add_partial(n, page, 0);
  1839. local_irq_restore(flags);
  1840. }
  1841. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1842. {
  1843. int node;
  1844. for_each_node_state(node, N_NORMAL_MEMORY) {
  1845. struct kmem_cache_node *n = s->node[node];
  1846. if (n && n != &s->local_node)
  1847. kmem_cache_free(kmalloc_caches, n);
  1848. s->node[node] = NULL;
  1849. }
  1850. }
  1851. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1852. {
  1853. int node;
  1854. int local_node;
  1855. if (slab_state >= UP)
  1856. local_node = page_to_nid(virt_to_page(s));
  1857. else
  1858. local_node = 0;
  1859. for_each_node_state(node, N_NORMAL_MEMORY) {
  1860. struct kmem_cache_node *n;
  1861. if (local_node == node)
  1862. n = &s->local_node;
  1863. else {
  1864. if (slab_state == DOWN) {
  1865. early_kmem_cache_node_alloc(gfpflags, node);
  1866. continue;
  1867. }
  1868. n = kmem_cache_alloc_node(kmalloc_caches,
  1869. gfpflags, node);
  1870. if (!n) {
  1871. free_kmem_cache_nodes(s);
  1872. return 0;
  1873. }
  1874. }
  1875. s->node[node] = n;
  1876. init_kmem_cache_node(n, s);
  1877. }
  1878. return 1;
  1879. }
  1880. #else
  1881. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1882. {
  1883. }
  1884. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1885. {
  1886. init_kmem_cache_node(&s->local_node, s);
  1887. return 1;
  1888. }
  1889. #endif
  1890. /*
  1891. * calculate_sizes() determines the order and the distribution of data within
  1892. * a slab object.
  1893. */
  1894. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1895. {
  1896. unsigned long flags = s->flags;
  1897. unsigned long size = s->objsize;
  1898. unsigned long align = s->align;
  1899. int order;
  1900. /*
  1901. * Round up object size to the next word boundary. We can only
  1902. * place the free pointer at word boundaries and this determines
  1903. * the possible location of the free pointer.
  1904. */
  1905. size = ALIGN(size, sizeof(void *));
  1906. #ifdef CONFIG_SLUB_DEBUG
  1907. /*
  1908. * Determine if we can poison the object itself. If the user of
  1909. * the slab may touch the object after free or before allocation
  1910. * then we should never poison the object itself.
  1911. */
  1912. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1913. !s->ctor)
  1914. s->flags |= __OBJECT_POISON;
  1915. else
  1916. s->flags &= ~__OBJECT_POISON;
  1917. /*
  1918. * If we are Redzoning then check if there is some space between the
  1919. * end of the object and the free pointer. If not then add an
  1920. * additional word to have some bytes to store Redzone information.
  1921. */
  1922. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1923. size += sizeof(void *);
  1924. #endif
  1925. /*
  1926. * With that we have determined the number of bytes in actual use
  1927. * by the object. This is the potential offset to the free pointer.
  1928. */
  1929. s->inuse = size;
  1930. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1931. s->ctor)) {
  1932. /*
  1933. * Relocate free pointer after the object if it is not
  1934. * permitted to overwrite the first word of the object on
  1935. * kmem_cache_free.
  1936. *
  1937. * This is the case if we do RCU, have a constructor or
  1938. * destructor or are poisoning the objects.
  1939. */
  1940. s->offset = size;
  1941. size += sizeof(void *);
  1942. }
  1943. #ifdef CONFIG_SLUB_DEBUG
  1944. if (flags & SLAB_STORE_USER)
  1945. /*
  1946. * Need to store information about allocs and frees after
  1947. * the object.
  1948. */
  1949. size += 2 * sizeof(struct track);
  1950. if (flags & SLAB_RED_ZONE)
  1951. /*
  1952. * Add some empty padding so that we can catch
  1953. * overwrites from earlier objects rather than let
  1954. * tracking information or the free pointer be
  1955. * corrupted if a user writes before the start
  1956. * of the object.
  1957. */
  1958. size += sizeof(void *);
  1959. #endif
  1960. /*
  1961. * Determine the alignment based on various parameters that the
  1962. * user specified and the dynamic determination of cache line size
  1963. * on bootup.
  1964. */
  1965. align = calculate_alignment(flags, align, s->objsize);
  1966. /*
  1967. * SLUB stores one object immediately after another beginning from
  1968. * offset 0. In order to align the objects we have to simply size
  1969. * each object to conform to the alignment.
  1970. */
  1971. size = ALIGN(size, align);
  1972. s->size = size;
  1973. if (forced_order >= 0)
  1974. order = forced_order;
  1975. else
  1976. order = calculate_order(size);
  1977. if (order < 0)
  1978. return 0;
  1979. s->allocflags = 0;
  1980. if (order)
  1981. s->allocflags |= __GFP_COMP;
  1982. if (s->flags & SLAB_CACHE_DMA)
  1983. s->allocflags |= SLUB_DMA;
  1984. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1985. s->allocflags |= __GFP_RECLAIMABLE;
  1986. /*
  1987. * Determine the number of objects per slab
  1988. */
  1989. s->oo = oo_make(order, size);
  1990. s->min = oo_make(get_order(size), size);
  1991. if (oo_objects(s->oo) > oo_objects(s->max))
  1992. s->max = s->oo;
  1993. return !!oo_objects(s->oo);
  1994. }
  1995. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1996. const char *name, size_t size,
  1997. size_t align, unsigned long flags,
  1998. void (*ctor)(void *))
  1999. {
  2000. memset(s, 0, kmem_size);
  2001. s->name = name;
  2002. s->ctor = ctor;
  2003. s->objsize = size;
  2004. s->align = align;
  2005. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2006. if (!calculate_sizes(s, -1))
  2007. goto error;
  2008. s->refcount = 1;
  2009. #ifdef CONFIG_NUMA
  2010. s->remote_node_defrag_ratio = 1000;
  2011. #endif
  2012. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2013. goto error;
  2014. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2015. return 1;
  2016. free_kmem_cache_nodes(s);
  2017. error:
  2018. if (flags & SLAB_PANIC)
  2019. panic("Cannot create slab %s size=%lu realsize=%u "
  2020. "order=%u offset=%u flags=%lx\n",
  2021. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2022. s->offset, flags);
  2023. return 0;
  2024. }
  2025. /*
  2026. * Check if a given pointer is valid
  2027. */
  2028. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2029. {
  2030. struct page *page;
  2031. page = get_object_page(object);
  2032. if (!page || s != page->slab)
  2033. /* No slab or wrong slab */
  2034. return 0;
  2035. if (!check_valid_pointer(s, page, object))
  2036. return 0;
  2037. /*
  2038. * We could also check if the object is on the slabs freelist.
  2039. * But this would be too expensive and it seems that the main
  2040. * purpose of kmem_ptr_valid() is to check if the object belongs
  2041. * to a certain slab.
  2042. */
  2043. return 1;
  2044. }
  2045. EXPORT_SYMBOL(kmem_ptr_validate);
  2046. /*
  2047. * Determine the size of a slab object
  2048. */
  2049. unsigned int kmem_cache_size(struct kmem_cache *s)
  2050. {
  2051. return s->objsize;
  2052. }
  2053. EXPORT_SYMBOL(kmem_cache_size);
  2054. const char *kmem_cache_name(struct kmem_cache *s)
  2055. {
  2056. return s->name;
  2057. }
  2058. EXPORT_SYMBOL(kmem_cache_name);
  2059. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2060. const char *text)
  2061. {
  2062. #ifdef CONFIG_SLUB_DEBUG
  2063. void *addr = page_address(page);
  2064. void *p;
  2065. DECLARE_BITMAP(map, page->objects);
  2066. bitmap_zero(map, page->objects);
  2067. slab_err(s, page, "%s", text);
  2068. slab_lock(page);
  2069. for_each_free_object(p, s, page->freelist)
  2070. set_bit(slab_index(p, s, addr), map);
  2071. for_each_object(p, s, addr, page->objects) {
  2072. if (!test_bit(slab_index(p, s, addr), map)) {
  2073. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2074. p, p - addr);
  2075. print_tracking(s, p);
  2076. }
  2077. }
  2078. slab_unlock(page);
  2079. #endif
  2080. }
  2081. /*
  2082. * Attempt to free all partial slabs on a node.
  2083. */
  2084. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2085. {
  2086. unsigned long flags;
  2087. struct page *page, *h;
  2088. spin_lock_irqsave(&n->list_lock, flags);
  2089. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2090. if (!page->inuse) {
  2091. list_del(&page->lru);
  2092. discard_slab(s, page);
  2093. n->nr_partial--;
  2094. } else {
  2095. list_slab_objects(s, page,
  2096. "Objects remaining on kmem_cache_close()");
  2097. }
  2098. }
  2099. spin_unlock_irqrestore(&n->list_lock, flags);
  2100. }
  2101. /*
  2102. * Release all resources used by a slab cache.
  2103. */
  2104. static inline int kmem_cache_close(struct kmem_cache *s)
  2105. {
  2106. int node;
  2107. flush_all(s);
  2108. /* Attempt to free all objects */
  2109. free_kmem_cache_cpus(s);
  2110. for_each_node_state(node, N_NORMAL_MEMORY) {
  2111. struct kmem_cache_node *n = get_node(s, node);
  2112. free_partial(s, n);
  2113. if (n->nr_partial || slabs_node(s, node))
  2114. return 1;
  2115. }
  2116. free_kmem_cache_nodes(s);
  2117. return 0;
  2118. }
  2119. /*
  2120. * Close a cache and release the kmem_cache structure
  2121. * (must be used for caches created using kmem_cache_create)
  2122. */
  2123. void kmem_cache_destroy(struct kmem_cache *s)
  2124. {
  2125. down_write(&slub_lock);
  2126. s->refcount--;
  2127. if (!s->refcount) {
  2128. list_del(&s->list);
  2129. up_write(&slub_lock);
  2130. if (kmem_cache_close(s)) {
  2131. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2132. "still has objects.\n", s->name, __func__);
  2133. dump_stack();
  2134. }
  2135. sysfs_slab_remove(s);
  2136. } else
  2137. up_write(&slub_lock);
  2138. }
  2139. EXPORT_SYMBOL(kmem_cache_destroy);
  2140. /********************************************************************
  2141. * Kmalloc subsystem
  2142. *******************************************************************/
  2143. struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
  2144. EXPORT_SYMBOL(kmalloc_caches);
  2145. static int __init setup_slub_min_order(char *str)
  2146. {
  2147. get_option(&str, &slub_min_order);
  2148. return 1;
  2149. }
  2150. __setup("slub_min_order=", setup_slub_min_order);
  2151. static int __init setup_slub_max_order(char *str)
  2152. {
  2153. get_option(&str, &slub_max_order);
  2154. return 1;
  2155. }
  2156. __setup("slub_max_order=", setup_slub_max_order);
  2157. static int __init setup_slub_min_objects(char *str)
  2158. {
  2159. get_option(&str, &slub_min_objects);
  2160. return 1;
  2161. }
  2162. __setup("slub_min_objects=", setup_slub_min_objects);
  2163. static int __init setup_slub_nomerge(char *str)
  2164. {
  2165. slub_nomerge = 1;
  2166. return 1;
  2167. }
  2168. __setup("slub_nomerge", setup_slub_nomerge);
  2169. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2170. const char *name, int size, gfp_t gfp_flags)
  2171. {
  2172. unsigned int flags = 0;
  2173. if (gfp_flags & SLUB_DMA)
  2174. flags = SLAB_CACHE_DMA;
  2175. down_write(&slub_lock);
  2176. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2177. flags, NULL))
  2178. goto panic;
  2179. list_add(&s->list, &slab_caches);
  2180. up_write(&slub_lock);
  2181. if (sysfs_slab_add(s))
  2182. goto panic;
  2183. return s;
  2184. panic:
  2185. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2186. }
  2187. #ifdef CONFIG_ZONE_DMA
  2188. static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
  2189. static void sysfs_add_func(struct work_struct *w)
  2190. {
  2191. struct kmem_cache *s;
  2192. down_write(&slub_lock);
  2193. list_for_each_entry(s, &slab_caches, list) {
  2194. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2195. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2196. sysfs_slab_add(s);
  2197. }
  2198. }
  2199. up_write(&slub_lock);
  2200. }
  2201. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2202. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2203. {
  2204. struct kmem_cache *s;
  2205. char *text;
  2206. size_t realsize;
  2207. s = kmalloc_caches_dma[index];
  2208. if (s)
  2209. return s;
  2210. /* Dynamically create dma cache */
  2211. if (flags & __GFP_WAIT)
  2212. down_write(&slub_lock);
  2213. else {
  2214. if (!down_write_trylock(&slub_lock))
  2215. goto out;
  2216. }
  2217. if (kmalloc_caches_dma[index])
  2218. goto unlock_out;
  2219. realsize = kmalloc_caches[index].objsize;
  2220. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2221. (unsigned int)realsize);
  2222. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2223. if (!s || !text || !kmem_cache_open(s, flags, text,
  2224. realsize, ARCH_KMALLOC_MINALIGN,
  2225. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2226. kfree(s);
  2227. kfree(text);
  2228. goto unlock_out;
  2229. }
  2230. list_add(&s->list, &slab_caches);
  2231. kmalloc_caches_dma[index] = s;
  2232. schedule_work(&sysfs_add_work);
  2233. unlock_out:
  2234. up_write(&slub_lock);
  2235. out:
  2236. return kmalloc_caches_dma[index];
  2237. }
  2238. #endif
  2239. /*
  2240. * Conversion table for small slabs sizes / 8 to the index in the
  2241. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2242. * of two cache sizes there. The size of larger slabs can be determined using
  2243. * fls.
  2244. */
  2245. static s8 size_index[24] = {
  2246. 3, /* 8 */
  2247. 4, /* 16 */
  2248. 5, /* 24 */
  2249. 5, /* 32 */
  2250. 6, /* 40 */
  2251. 6, /* 48 */
  2252. 6, /* 56 */
  2253. 6, /* 64 */
  2254. 1, /* 72 */
  2255. 1, /* 80 */
  2256. 1, /* 88 */
  2257. 1, /* 96 */
  2258. 7, /* 104 */
  2259. 7, /* 112 */
  2260. 7, /* 120 */
  2261. 7, /* 128 */
  2262. 2, /* 136 */
  2263. 2, /* 144 */
  2264. 2, /* 152 */
  2265. 2, /* 160 */
  2266. 2, /* 168 */
  2267. 2, /* 176 */
  2268. 2, /* 184 */
  2269. 2 /* 192 */
  2270. };
  2271. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2272. {
  2273. int index;
  2274. if (size <= 192) {
  2275. if (!size)
  2276. return ZERO_SIZE_PTR;
  2277. index = size_index[(size - 1) / 8];
  2278. } else
  2279. index = fls(size - 1);
  2280. #ifdef CONFIG_ZONE_DMA
  2281. if (unlikely((flags & SLUB_DMA)))
  2282. return dma_kmalloc_cache(index, flags);
  2283. #endif
  2284. return &kmalloc_caches[index];
  2285. }
  2286. void *__kmalloc(size_t size, gfp_t flags)
  2287. {
  2288. struct kmem_cache *s;
  2289. void *ret;
  2290. if (unlikely(size > SLUB_MAX_SIZE))
  2291. return kmalloc_large(size, flags);
  2292. s = get_slab(size, flags);
  2293. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2294. return s;
  2295. ret = slab_alloc(s, flags, -1, _RET_IP_);
  2296. kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret,
  2297. size, s->size, flags);
  2298. return ret;
  2299. }
  2300. EXPORT_SYMBOL(__kmalloc);
  2301. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2302. {
  2303. struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
  2304. get_order(size));
  2305. if (page)
  2306. return page_address(page);
  2307. else
  2308. return NULL;
  2309. }
  2310. #ifdef CONFIG_NUMA
  2311. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2312. {
  2313. struct kmem_cache *s;
  2314. void *ret;
  2315. if (unlikely(size > SLUB_MAX_SIZE)) {
  2316. ret = kmalloc_large_node(size, flags, node);
  2317. kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC,
  2318. _RET_IP_, ret,
  2319. size, PAGE_SIZE << get_order(size),
  2320. flags, node);
  2321. return ret;
  2322. }
  2323. s = get_slab(size, flags);
  2324. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2325. return s;
  2326. ret = slab_alloc(s, flags, node, _RET_IP_);
  2327. kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret,
  2328. size, s->size, flags, node);
  2329. return ret;
  2330. }
  2331. EXPORT_SYMBOL(__kmalloc_node);
  2332. #endif
  2333. size_t ksize(const void *object)
  2334. {
  2335. struct page *page;
  2336. struct kmem_cache *s;
  2337. if (unlikely(object == ZERO_SIZE_PTR))
  2338. return 0;
  2339. page = virt_to_head_page(object);
  2340. if (unlikely(!PageSlab(page))) {
  2341. WARN_ON(!PageCompound(page));
  2342. return PAGE_SIZE << compound_order(page);
  2343. }
  2344. s = page->slab;
  2345. #ifdef CONFIG_SLUB_DEBUG
  2346. /*
  2347. * Debugging requires use of the padding between object
  2348. * and whatever may come after it.
  2349. */
  2350. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2351. return s->objsize;
  2352. #endif
  2353. /*
  2354. * If we have the need to store the freelist pointer
  2355. * back there or track user information then we can
  2356. * only use the space before that information.
  2357. */
  2358. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2359. return s->inuse;
  2360. /*
  2361. * Else we can use all the padding etc for the allocation
  2362. */
  2363. return s->size;
  2364. }
  2365. EXPORT_SYMBOL(ksize);
  2366. void kfree(const void *x)
  2367. {
  2368. struct page *page;
  2369. void *object = (void *)x;
  2370. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2371. return;
  2372. page = virt_to_head_page(x);
  2373. if (unlikely(!PageSlab(page))) {
  2374. BUG_ON(!PageCompound(page));
  2375. put_page(page);
  2376. return;
  2377. }
  2378. slab_free(page->slab, page, object, _RET_IP_);
  2379. kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, x);
  2380. }
  2381. EXPORT_SYMBOL(kfree);
  2382. /*
  2383. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2384. * the remaining slabs by the number of items in use. The slabs with the
  2385. * most items in use come first. New allocations will then fill those up
  2386. * and thus they can be removed from the partial lists.
  2387. *
  2388. * The slabs with the least items are placed last. This results in them
  2389. * being allocated from last increasing the chance that the last objects
  2390. * are freed in them.
  2391. */
  2392. int kmem_cache_shrink(struct kmem_cache *s)
  2393. {
  2394. int node;
  2395. int i;
  2396. struct kmem_cache_node *n;
  2397. struct page *page;
  2398. struct page *t;
  2399. int objects = oo_objects(s->max);
  2400. struct list_head *slabs_by_inuse =
  2401. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2402. unsigned long flags;
  2403. if (!slabs_by_inuse)
  2404. return -ENOMEM;
  2405. flush_all(s);
  2406. for_each_node_state(node, N_NORMAL_MEMORY) {
  2407. n = get_node(s, node);
  2408. if (!n->nr_partial)
  2409. continue;
  2410. for (i = 0; i < objects; i++)
  2411. INIT_LIST_HEAD(slabs_by_inuse + i);
  2412. spin_lock_irqsave(&n->list_lock, flags);
  2413. /*
  2414. * Build lists indexed by the items in use in each slab.
  2415. *
  2416. * Note that concurrent frees may occur while we hold the
  2417. * list_lock. page->inuse here is the upper limit.
  2418. */
  2419. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2420. if (!page->inuse && slab_trylock(page)) {
  2421. /*
  2422. * Must hold slab lock here because slab_free
  2423. * may have freed the last object and be
  2424. * waiting to release the slab.
  2425. */
  2426. list_del(&page->lru);
  2427. n->nr_partial--;
  2428. slab_unlock(page);
  2429. discard_slab(s, page);
  2430. } else {
  2431. list_move(&page->lru,
  2432. slabs_by_inuse + page->inuse);
  2433. }
  2434. }
  2435. /*
  2436. * Rebuild the partial list with the slabs filled up most
  2437. * first and the least used slabs at the end.
  2438. */
  2439. for (i = objects - 1; i >= 0; i--)
  2440. list_splice(slabs_by_inuse + i, n->partial.prev);
  2441. spin_unlock_irqrestore(&n->list_lock, flags);
  2442. }
  2443. kfree(slabs_by_inuse);
  2444. return 0;
  2445. }
  2446. EXPORT_SYMBOL(kmem_cache_shrink);
  2447. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2448. static int slab_mem_going_offline_callback(void *arg)
  2449. {
  2450. struct kmem_cache *s;
  2451. down_read(&slub_lock);
  2452. list_for_each_entry(s, &slab_caches, list)
  2453. kmem_cache_shrink(s);
  2454. up_read(&slub_lock);
  2455. return 0;
  2456. }
  2457. static void slab_mem_offline_callback(void *arg)
  2458. {
  2459. struct kmem_cache_node *n;
  2460. struct kmem_cache *s;
  2461. struct memory_notify *marg = arg;
  2462. int offline_node;
  2463. offline_node = marg->status_change_nid;
  2464. /*
  2465. * If the node still has available memory. we need kmem_cache_node
  2466. * for it yet.
  2467. */
  2468. if (offline_node < 0)
  2469. return;
  2470. down_read(&slub_lock);
  2471. list_for_each_entry(s, &slab_caches, list) {
  2472. n = get_node(s, offline_node);
  2473. if (n) {
  2474. /*
  2475. * if n->nr_slabs > 0, slabs still exist on the node
  2476. * that is going down. We were unable to free them,
  2477. * and offline_pages() function shoudn't call this
  2478. * callback. So, we must fail.
  2479. */
  2480. BUG_ON(slabs_node(s, offline_node));
  2481. s->node[offline_node] = NULL;
  2482. kmem_cache_free(kmalloc_caches, n);
  2483. }
  2484. }
  2485. up_read(&slub_lock);
  2486. }
  2487. static int slab_mem_going_online_callback(void *arg)
  2488. {
  2489. struct kmem_cache_node *n;
  2490. struct kmem_cache *s;
  2491. struct memory_notify *marg = arg;
  2492. int nid = marg->status_change_nid;
  2493. int ret = 0;
  2494. /*
  2495. * If the node's memory is already available, then kmem_cache_node is
  2496. * already created. Nothing to do.
  2497. */
  2498. if (nid < 0)
  2499. return 0;
  2500. /*
  2501. * We are bringing a node online. No memory is available yet. We must
  2502. * allocate a kmem_cache_node structure in order to bring the node
  2503. * online.
  2504. */
  2505. down_read(&slub_lock);
  2506. list_for_each_entry(s, &slab_caches, list) {
  2507. /*
  2508. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2509. * since memory is not yet available from the node that
  2510. * is brought up.
  2511. */
  2512. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2513. if (!n) {
  2514. ret = -ENOMEM;
  2515. goto out;
  2516. }
  2517. init_kmem_cache_node(n, s);
  2518. s->node[nid] = n;
  2519. }
  2520. out:
  2521. up_read(&slub_lock);
  2522. return ret;
  2523. }
  2524. static int slab_memory_callback(struct notifier_block *self,
  2525. unsigned long action, void *arg)
  2526. {
  2527. int ret = 0;
  2528. switch (action) {
  2529. case MEM_GOING_ONLINE:
  2530. ret = slab_mem_going_online_callback(arg);
  2531. break;
  2532. case MEM_GOING_OFFLINE:
  2533. ret = slab_mem_going_offline_callback(arg);
  2534. break;
  2535. case MEM_OFFLINE:
  2536. case MEM_CANCEL_ONLINE:
  2537. slab_mem_offline_callback(arg);
  2538. break;
  2539. case MEM_ONLINE:
  2540. case MEM_CANCEL_OFFLINE:
  2541. break;
  2542. }
  2543. if (ret)
  2544. ret = notifier_from_errno(ret);
  2545. else
  2546. ret = NOTIFY_OK;
  2547. return ret;
  2548. }
  2549. #endif /* CONFIG_MEMORY_HOTPLUG */
  2550. /********************************************************************
  2551. * Basic setup of slabs
  2552. *******************************************************************/
  2553. void __init kmem_cache_init(void)
  2554. {
  2555. int i;
  2556. int caches = 0;
  2557. init_alloc_cpu();
  2558. #ifdef CONFIG_NUMA
  2559. /*
  2560. * Must first have the slab cache available for the allocations of the
  2561. * struct kmem_cache_node's. There is special bootstrap code in
  2562. * kmem_cache_open for slab_state == DOWN.
  2563. */
  2564. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2565. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2566. kmalloc_caches[0].refcount = -1;
  2567. caches++;
  2568. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2569. #endif
  2570. /* Able to allocate the per node structures */
  2571. slab_state = PARTIAL;
  2572. /* Caches that are not of the two-to-the-power-of size */
  2573. if (KMALLOC_MIN_SIZE <= 64) {
  2574. create_kmalloc_cache(&kmalloc_caches[1],
  2575. "kmalloc-96", 96, GFP_KERNEL);
  2576. caches++;
  2577. create_kmalloc_cache(&kmalloc_caches[2],
  2578. "kmalloc-192", 192, GFP_KERNEL);
  2579. caches++;
  2580. }
  2581. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2582. create_kmalloc_cache(&kmalloc_caches[i],
  2583. "kmalloc", 1 << i, GFP_KERNEL);
  2584. caches++;
  2585. }
  2586. /*
  2587. * Patch up the size_index table if we have strange large alignment
  2588. * requirements for the kmalloc array. This is only the case for
  2589. * MIPS it seems. The standard arches will not generate any code here.
  2590. *
  2591. * Largest permitted alignment is 256 bytes due to the way we
  2592. * handle the index determination for the smaller caches.
  2593. *
  2594. * Make sure that nothing crazy happens if someone starts tinkering
  2595. * around with ARCH_KMALLOC_MINALIGN
  2596. */
  2597. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2598. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2599. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2600. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2601. if (KMALLOC_MIN_SIZE == 128) {
  2602. /*
  2603. * The 192 byte sized cache is not used if the alignment
  2604. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2605. * instead.
  2606. */
  2607. for (i = 128 + 8; i <= 192; i += 8)
  2608. size_index[(i - 1) / 8] = 8;
  2609. }
  2610. slab_state = UP;
  2611. /* Provide the correct kmalloc names now that the caches are up */
  2612. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
  2613. kmalloc_caches[i]. name =
  2614. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2615. #ifdef CONFIG_SMP
  2616. register_cpu_notifier(&slab_notifier);
  2617. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2618. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2619. #else
  2620. kmem_size = sizeof(struct kmem_cache);
  2621. #endif
  2622. printk(KERN_INFO
  2623. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2624. " CPUs=%d, Nodes=%d\n",
  2625. caches, cache_line_size(),
  2626. slub_min_order, slub_max_order, slub_min_objects,
  2627. nr_cpu_ids, nr_node_ids);
  2628. }
  2629. /*
  2630. * Find a mergeable slab cache
  2631. */
  2632. static int slab_unmergeable(struct kmem_cache *s)
  2633. {
  2634. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2635. return 1;
  2636. if (s->ctor)
  2637. return 1;
  2638. /*
  2639. * We may have set a slab to be unmergeable during bootstrap.
  2640. */
  2641. if (s->refcount < 0)
  2642. return 1;
  2643. return 0;
  2644. }
  2645. static struct kmem_cache *find_mergeable(size_t size,
  2646. size_t align, unsigned long flags, const char *name,
  2647. void (*ctor)(void *))
  2648. {
  2649. struct kmem_cache *s;
  2650. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2651. return NULL;
  2652. if (ctor)
  2653. return NULL;
  2654. size = ALIGN(size, sizeof(void *));
  2655. align = calculate_alignment(flags, align, size);
  2656. size = ALIGN(size, align);
  2657. flags = kmem_cache_flags(size, flags, name, NULL);
  2658. list_for_each_entry(s, &slab_caches, list) {
  2659. if (slab_unmergeable(s))
  2660. continue;
  2661. if (size > s->size)
  2662. continue;
  2663. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2664. continue;
  2665. /*
  2666. * Check if alignment is compatible.
  2667. * Courtesy of Adrian Drzewiecki
  2668. */
  2669. if ((s->size & ~(align - 1)) != s->size)
  2670. continue;
  2671. if (s->size - size >= sizeof(void *))
  2672. continue;
  2673. return s;
  2674. }
  2675. return NULL;
  2676. }
  2677. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2678. size_t align, unsigned long flags, void (*ctor)(void *))
  2679. {
  2680. struct kmem_cache *s;
  2681. down_write(&slub_lock);
  2682. s = find_mergeable(size, align, flags, name, ctor);
  2683. if (s) {
  2684. int cpu;
  2685. s->refcount++;
  2686. /*
  2687. * Adjust the object sizes so that we clear
  2688. * the complete object on kzalloc.
  2689. */
  2690. s->objsize = max(s->objsize, (int)size);
  2691. /*
  2692. * And then we need to update the object size in the
  2693. * per cpu structures
  2694. */
  2695. for_each_online_cpu(cpu)
  2696. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2697. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2698. up_write(&slub_lock);
  2699. if (sysfs_slab_alias(s, name)) {
  2700. down_write(&slub_lock);
  2701. s->refcount--;
  2702. up_write(&slub_lock);
  2703. goto err;
  2704. }
  2705. return s;
  2706. }
  2707. s = kmalloc(kmem_size, GFP_KERNEL);
  2708. if (s) {
  2709. if (kmem_cache_open(s, GFP_KERNEL, name,
  2710. size, align, flags, ctor)) {
  2711. list_add(&s->list, &slab_caches);
  2712. up_write(&slub_lock);
  2713. if (sysfs_slab_add(s)) {
  2714. down_write(&slub_lock);
  2715. list_del(&s->list);
  2716. up_write(&slub_lock);
  2717. kfree(s);
  2718. goto err;
  2719. }
  2720. return s;
  2721. }
  2722. kfree(s);
  2723. }
  2724. up_write(&slub_lock);
  2725. err:
  2726. if (flags & SLAB_PANIC)
  2727. panic("Cannot create slabcache %s\n", name);
  2728. else
  2729. s = NULL;
  2730. return s;
  2731. }
  2732. EXPORT_SYMBOL(kmem_cache_create);
  2733. #ifdef CONFIG_SMP
  2734. /*
  2735. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2736. * necessary.
  2737. */
  2738. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2739. unsigned long action, void *hcpu)
  2740. {
  2741. long cpu = (long)hcpu;
  2742. struct kmem_cache *s;
  2743. unsigned long flags;
  2744. switch (action) {
  2745. case CPU_UP_PREPARE:
  2746. case CPU_UP_PREPARE_FROZEN:
  2747. init_alloc_cpu_cpu(cpu);
  2748. down_read(&slub_lock);
  2749. list_for_each_entry(s, &slab_caches, list)
  2750. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2751. GFP_KERNEL);
  2752. up_read(&slub_lock);
  2753. break;
  2754. case CPU_UP_CANCELED:
  2755. case CPU_UP_CANCELED_FROZEN:
  2756. case CPU_DEAD:
  2757. case CPU_DEAD_FROZEN:
  2758. down_read(&slub_lock);
  2759. list_for_each_entry(s, &slab_caches, list) {
  2760. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2761. local_irq_save(flags);
  2762. __flush_cpu_slab(s, cpu);
  2763. local_irq_restore(flags);
  2764. free_kmem_cache_cpu(c, cpu);
  2765. s->cpu_slab[cpu] = NULL;
  2766. }
  2767. up_read(&slub_lock);
  2768. break;
  2769. default:
  2770. break;
  2771. }
  2772. return NOTIFY_OK;
  2773. }
  2774. static struct notifier_block __cpuinitdata slab_notifier = {
  2775. .notifier_call = slab_cpuup_callback
  2776. };
  2777. #endif
  2778. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2779. {
  2780. struct kmem_cache *s;
  2781. void *ret;
  2782. if (unlikely(size > SLUB_MAX_SIZE))
  2783. return kmalloc_large(size, gfpflags);
  2784. s = get_slab(size, gfpflags);
  2785. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2786. return s;
  2787. ret = slab_alloc(s, gfpflags, -1, caller);
  2788. /* Honor the call site pointer we recieved. */
  2789. kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, caller, ret, size,
  2790. s->size, gfpflags);
  2791. return ret;
  2792. }
  2793. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2794. int node, unsigned long caller)
  2795. {
  2796. struct kmem_cache *s;
  2797. void *ret;
  2798. if (unlikely(size > SLUB_MAX_SIZE))
  2799. return kmalloc_large_node(size, gfpflags, node);
  2800. s = get_slab(size, gfpflags);
  2801. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2802. return s;
  2803. ret = slab_alloc(s, gfpflags, node, caller);
  2804. /* Honor the call site pointer we recieved. */
  2805. kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, caller, ret,
  2806. size, s->size, gfpflags, node);
  2807. return ret;
  2808. }
  2809. #ifdef CONFIG_SLUB_DEBUG
  2810. static unsigned long count_partial(struct kmem_cache_node *n,
  2811. int (*get_count)(struct page *))
  2812. {
  2813. unsigned long flags;
  2814. unsigned long x = 0;
  2815. struct page *page;
  2816. spin_lock_irqsave(&n->list_lock, flags);
  2817. list_for_each_entry(page, &n->partial, lru)
  2818. x += get_count(page);
  2819. spin_unlock_irqrestore(&n->list_lock, flags);
  2820. return x;
  2821. }
  2822. static int count_inuse(struct page *page)
  2823. {
  2824. return page->inuse;
  2825. }
  2826. static int count_total(struct page *page)
  2827. {
  2828. return page->objects;
  2829. }
  2830. static int count_free(struct page *page)
  2831. {
  2832. return page->objects - page->inuse;
  2833. }
  2834. static int validate_slab(struct kmem_cache *s, struct page *page,
  2835. unsigned long *map)
  2836. {
  2837. void *p;
  2838. void *addr = page_address(page);
  2839. if (!check_slab(s, page) ||
  2840. !on_freelist(s, page, NULL))
  2841. return 0;
  2842. /* Now we know that a valid freelist exists */
  2843. bitmap_zero(map, page->objects);
  2844. for_each_free_object(p, s, page->freelist) {
  2845. set_bit(slab_index(p, s, addr), map);
  2846. if (!check_object(s, page, p, 0))
  2847. return 0;
  2848. }
  2849. for_each_object(p, s, addr, page->objects)
  2850. if (!test_bit(slab_index(p, s, addr), map))
  2851. if (!check_object(s, page, p, 1))
  2852. return 0;
  2853. return 1;
  2854. }
  2855. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2856. unsigned long *map)
  2857. {
  2858. if (slab_trylock(page)) {
  2859. validate_slab(s, page, map);
  2860. slab_unlock(page);
  2861. } else
  2862. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2863. s->name, page);
  2864. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2865. if (!PageSlubDebug(page))
  2866. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2867. "on slab 0x%p\n", s->name, page);
  2868. } else {
  2869. if (PageSlubDebug(page))
  2870. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2871. "slab 0x%p\n", s->name, page);
  2872. }
  2873. }
  2874. static int validate_slab_node(struct kmem_cache *s,
  2875. struct kmem_cache_node *n, unsigned long *map)
  2876. {
  2877. unsigned long count = 0;
  2878. struct page *page;
  2879. unsigned long flags;
  2880. spin_lock_irqsave(&n->list_lock, flags);
  2881. list_for_each_entry(page, &n->partial, lru) {
  2882. validate_slab_slab(s, page, map);
  2883. count++;
  2884. }
  2885. if (count != n->nr_partial)
  2886. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2887. "counter=%ld\n", s->name, count, n->nr_partial);
  2888. if (!(s->flags & SLAB_STORE_USER))
  2889. goto out;
  2890. list_for_each_entry(page, &n->full, lru) {
  2891. validate_slab_slab(s, page, map);
  2892. count++;
  2893. }
  2894. if (count != atomic_long_read(&n->nr_slabs))
  2895. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2896. "counter=%ld\n", s->name, count,
  2897. atomic_long_read(&n->nr_slabs));
  2898. out:
  2899. spin_unlock_irqrestore(&n->list_lock, flags);
  2900. return count;
  2901. }
  2902. static long validate_slab_cache(struct kmem_cache *s)
  2903. {
  2904. int node;
  2905. unsigned long count = 0;
  2906. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2907. sizeof(unsigned long), GFP_KERNEL);
  2908. if (!map)
  2909. return -ENOMEM;
  2910. flush_all(s);
  2911. for_each_node_state(node, N_NORMAL_MEMORY) {
  2912. struct kmem_cache_node *n = get_node(s, node);
  2913. count += validate_slab_node(s, n, map);
  2914. }
  2915. kfree(map);
  2916. return count;
  2917. }
  2918. #ifdef SLUB_RESILIENCY_TEST
  2919. static void resiliency_test(void)
  2920. {
  2921. u8 *p;
  2922. printk(KERN_ERR "SLUB resiliency testing\n");
  2923. printk(KERN_ERR "-----------------------\n");
  2924. printk(KERN_ERR "A. Corruption after allocation\n");
  2925. p = kzalloc(16, GFP_KERNEL);
  2926. p[16] = 0x12;
  2927. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2928. " 0x12->0x%p\n\n", p + 16);
  2929. validate_slab_cache(kmalloc_caches + 4);
  2930. /* Hmmm... The next two are dangerous */
  2931. p = kzalloc(32, GFP_KERNEL);
  2932. p[32 + sizeof(void *)] = 0x34;
  2933. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2934. " 0x34 -> -0x%p\n", p);
  2935. printk(KERN_ERR
  2936. "If allocated object is overwritten then not detectable\n\n");
  2937. validate_slab_cache(kmalloc_caches + 5);
  2938. p = kzalloc(64, GFP_KERNEL);
  2939. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2940. *p = 0x56;
  2941. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2942. p);
  2943. printk(KERN_ERR
  2944. "If allocated object is overwritten then not detectable\n\n");
  2945. validate_slab_cache(kmalloc_caches + 6);
  2946. printk(KERN_ERR "\nB. Corruption after free\n");
  2947. p = kzalloc(128, GFP_KERNEL);
  2948. kfree(p);
  2949. *p = 0x78;
  2950. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2951. validate_slab_cache(kmalloc_caches + 7);
  2952. p = kzalloc(256, GFP_KERNEL);
  2953. kfree(p);
  2954. p[50] = 0x9a;
  2955. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2956. p);
  2957. validate_slab_cache(kmalloc_caches + 8);
  2958. p = kzalloc(512, GFP_KERNEL);
  2959. kfree(p);
  2960. p[512] = 0xab;
  2961. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2962. validate_slab_cache(kmalloc_caches + 9);
  2963. }
  2964. #else
  2965. static void resiliency_test(void) {};
  2966. #endif
  2967. /*
  2968. * Generate lists of code addresses where slabcache objects are allocated
  2969. * and freed.
  2970. */
  2971. struct location {
  2972. unsigned long count;
  2973. unsigned long addr;
  2974. long long sum_time;
  2975. long min_time;
  2976. long max_time;
  2977. long min_pid;
  2978. long max_pid;
  2979. DECLARE_BITMAP(cpus, NR_CPUS);
  2980. nodemask_t nodes;
  2981. };
  2982. struct loc_track {
  2983. unsigned long max;
  2984. unsigned long count;
  2985. struct location *loc;
  2986. };
  2987. static void free_loc_track(struct loc_track *t)
  2988. {
  2989. if (t->max)
  2990. free_pages((unsigned long)t->loc,
  2991. get_order(sizeof(struct location) * t->max));
  2992. }
  2993. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2994. {
  2995. struct location *l;
  2996. int order;
  2997. order = get_order(sizeof(struct location) * max);
  2998. l = (void *)__get_free_pages(flags, order);
  2999. if (!l)
  3000. return 0;
  3001. if (t->count) {
  3002. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3003. free_loc_track(t);
  3004. }
  3005. t->max = max;
  3006. t->loc = l;
  3007. return 1;
  3008. }
  3009. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3010. const struct track *track)
  3011. {
  3012. long start, end, pos;
  3013. struct location *l;
  3014. unsigned long caddr;
  3015. unsigned long age = jiffies - track->when;
  3016. start = -1;
  3017. end = t->count;
  3018. for ( ; ; ) {
  3019. pos = start + (end - start + 1) / 2;
  3020. /*
  3021. * There is nothing at "end". If we end up there
  3022. * we need to add something to before end.
  3023. */
  3024. if (pos == end)
  3025. break;
  3026. caddr = t->loc[pos].addr;
  3027. if (track->addr == caddr) {
  3028. l = &t->loc[pos];
  3029. l->count++;
  3030. if (track->when) {
  3031. l->sum_time += age;
  3032. if (age < l->min_time)
  3033. l->min_time = age;
  3034. if (age > l->max_time)
  3035. l->max_time = age;
  3036. if (track->pid < l->min_pid)
  3037. l->min_pid = track->pid;
  3038. if (track->pid > l->max_pid)
  3039. l->max_pid = track->pid;
  3040. cpumask_set_cpu(track->cpu,
  3041. to_cpumask(l->cpus));
  3042. }
  3043. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3044. return 1;
  3045. }
  3046. if (track->addr < caddr)
  3047. end = pos;
  3048. else
  3049. start = pos;
  3050. }
  3051. /*
  3052. * Not found. Insert new tracking element.
  3053. */
  3054. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3055. return 0;
  3056. l = t->loc + pos;
  3057. if (pos < t->count)
  3058. memmove(l + 1, l,
  3059. (t->count - pos) * sizeof(struct location));
  3060. t->count++;
  3061. l->count = 1;
  3062. l->addr = track->addr;
  3063. l->sum_time = age;
  3064. l->min_time = age;
  3065. l->max_time = age;
  3066. l->min_pid = track->pid;
  3067. l->max_pid = track->pid;
  3068. cpumask_clear(to_cpumask(l->cpus));
  3069. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3070. nodes_clear(l->nodes);
  3071. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3072. return 1;
  3073. }
  3074. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3075. struct page *page, enum track_item alloc)
  3076. {
  3077. void *addr = page_address(page);
  3078. DECLARE_BITMAP(map, page->objects);
  3079. void *p;
  3080. bitmap_zero(map, page->objects);
  3081. for_each_free_object(p, s, page->freelist)
  3082. set_bit(slab_index(p, s, addr), map);
  3083. for_each_object(p, s, addr, page->objects)
  3084. if (!test_bit(slab_index(p, s, addr), map))
  3085. add_location(t, s, get_track(s, p, alloc));
  3086. }
  3087. static int list_locations(struct kmem_cache *s, char *buf,
  3088. enum track_item alloc)
  3089. {
  3090. int len = 0;
  3091. unsigned long i;
  3092. struct loc_track t = { 0, 0, NULL };
  3093. int node;
  3094. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3095. GFP_TEMPORARY))
  3096. return sprintf(buf, "Out of memory\n");
  3097. /* Push back cpu slabs */
  3098. flush_all(s);
  3099. for_each_node_state(node, N_NORMAL_MEMORY) {
  3100. struct kmem_cache_node *n = get_node(s, node);
  3101. unsigned long flags;
  3102. struct page *page;
  3103. if (!atomic_long_read(&n->nr_slabs))
  3104. continue;
  3105. spin_lock_irqsave(&n->list_lock, flags);
  3106. list_for_each_entry(page, &n->partial, lru)
  3107. process_slab(&t, s, page, alloc);
  3108. list_for_each_entry(page, &n->full, lru)
  3109. process_slab(&t, s, page, alloc);
  3110. spin_unlock_irqrestore(&n->list_lock, flags);
  3111. }
  3112. for (i = 0; i < t.count; i++) {
  3113. struct location *l = &t.loc[i];
  3114. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3115. break;
  3116. len += sprintf(buf + len, "%7ld ", l->count);
  3117. if (l->addr)
  3118. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3119. else
  3120. len += sprintf(buf + len, "<not-available>");
  3121. if (l->sum_time != l->min_time) {
  3122. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3123. l->min_time,
  3124. (long)div_u64(l->sum_time, l->count),
  3125. l->max_time);
  3126. } else
  3127. len += sprintf(buf + len, " age=%ld",
  3128. l->min_time);
  3129. if (l->min_pid != l->max_pid)
  3130. len += sprintf(buf + len, " pid=%ld-%ld",
  3131. l->min_pid, l->max_pid);
  3132. else
  3133. len += sprintf(buf + len, " pid=%ld",
  3134. l->min_pid);
  3135. if (num_online_cpus() > 1 &&
  3136. !cpumask_empty(to_cpumask(l->cpus)) &&
  3137. len < PAGE_SIZE - 60) {
  3138. len += sprintf(buf + len, " cpus=");
  3139. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3140. to_cpumask(l->cpus));
  3141. }
  3142. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  3143. len < PAGE_SIZE - 60) {
  3144. len += sprintf(buf + len, " nodes=");
  3145. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3146. l->nodes);
  3147. }
  3148. len += sprintf(buf + len, "\n");
  3149. }
  3150. free_loc_track(&t);
  3151. if (!t.count)
  3152. len += sprintf(buf, "No data\n");
  3153. return len;
  3154. }
  3155. enum slab_stat_type {
  3156. SL_ALL, /* All slabs */
  3157. SL_PARTIAL, /* Only partially allocated slabs */
  3158. SL_CPU, /* Only slabs used for cpu caches */
  3159. SL_OBJECTS, /* Determine allocated objects not slabs */
  3160. SL_TOTAL /* Determine object capacity not slabs */
  3161. };
  3162. #define SO_ALL (1 << SL_ALL)
  3163. #define SO_PARTIAL (1 << SL_PARTIAL)
  3164. #define SO_CPU (1 << SL_CPU)
  3165. #define SO_OBJECTS (1 << SL_OBJECTS)
  3166. #define SO_TOTAL (1 << SL_TOTAL)
  3167. static ssize_t show_slab_objects(struct kmem_cache *s,
  3168. char *buf, unsigned long flags)
  3169. {
  3170. unsigned long total = 0;
  3171. int node;
  3172. int x;
  3173. unsigned long *nodes;
  3174. unsigned long *per_cpu;
  3175. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3176. if (!nodes)
  3177. return -ENOMEM;
  3178. per_cpu = nodes + nr_node_ids;
  3179. if (flags & SO_CPU) {
  3180. int cpu;
  3181. for_each_possible_cpu(cpu) {
  3182. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3183. if (!c || c->node < 0)
  3184. continue;
  3185. if (c->page) {
  3186. if (flags & SO_TOTAL)
  3187. x = c->page->objects;
  3188. else if (flags & SO_OBJECTS)
  3189. x = c->page->inuse;
  3190. else
  3191. x = 1;
  3192. total += x;
  3193. nodes[c->node] += x;
  3194. }
  3195. per_cpu[c->node]++;
  3196. }
  3197. }
  3198. if (flags & SO_ALL) {
  3199. for_each_node_state(node, N_NORMAL_MEMORY) {
  3200. struct kmem_cache_node *n = get_node(s, node);
  3201. if (flags & SO_TOTAL)
  3202. x = atomic_long_read(&n->total_objects);
  3203. else if (flags & SO_OBJECTS)
  3204. x = atomic_long_read(&n->total_objects) -
  3205. count_partial(n, count_free);
  3206. else
  3207. x = atomic_long_read(&n->nr_slabs);
  3208. total += x;
  3209. nodes[node] += x;
  3210. }
  3211. } else if (flags & SO_PARTIAL) {
  3212. for_each_node_state(node, N_NORMAL_MEMORY) {
  3213. struct kmem_cache_node *n = get_node(s, node);
  3214. if (flags & SO_TOTAL)
  3215. x = count_partial(n, count_total);
  3216. else if (flags & SO_OBJECTS)
  3217. x = count_partial(n, count_inuse);
  3218. else
  3219. x = n->nr_partial;
  3220. total += x;
  3221. nodes[node] += x;
  3222. }
  3223. }
  3224. x = sprintf(buf, "%lu", total);
  3225. #ifdef CONFIG_NUMA
  3226. for_each_node_state(node, N_NORMAL_MEMORY)
  3227. if (nodes[node])
  3228. x += sprintf(buf + x, " N%d=%lu",
  3229. node, nodes[node]);
  3230. #endif
  3231. kfree(nodes);
  3232. return x + sprintf(buf + x, "\n");
  3233. }
  3234. static int any_slab_objects(struct kmem_cache *s)
  3235. {
  3236. int node;
  3237. for_each_online_node(node) {
  3238. struct kmem_cache_node *n = get_node(s, node);
  3239. if (!n)
  3240. continue;
  3241. if (atomic_long_read(&n->total_objects))
  3242. return 1;
  3243. }
  3244. return 0;
  3245. }
  3246. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3247. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3248. struct slab_attribute {
  3249. struct attribute attr;
  3250. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3251. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3252. };
  3253. #define SLAB_ATTR_RO(_name) \
  3254. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3255. #define SLAB_ATTR(_name) \
  3256. static struct slab_attribute _name##_attr = \
  3257. __ATTR(_name, 0644, _name##_show, _name##_store)
  3258. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3259. {
  3260. return sprintf(buf, "%d\n", s->size);
  3261. }
  3262. SLAB_ATTR_RO(slab_size);
  3263. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3264. {
  3265. return sprintf(buf, "%d\n", s->align);
  3266. }
  3267. SLAB_ATTR_RO(align);
  3268. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3269. {
  3270. return sprintf(buf, "%d\n", s->objsize);
  3271. }
  3272. SLAB_ATTR_RO(object_size);
  3273. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3274. {
  3275. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3276. }
  3277. SLAB_ATTR_RO(objs_per_slab);
  3278. static ssize_t order_store(struct kmem_cache *s,
  3279. const char *buf, size_t length)
  3280. {
  3281. unsigned long order;
  3282. int err;
  3283. err = strict_strtoul(buf, 10, &order);
  3284. if (err)
  3285. return err;
  3286. if (order > slub_max_order || order < slub_min_order)
  3287. return -EINVAL;
  3288. calculate_sizes(s, order);
  3289. return length;
  3290. }
  3291. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3292. {
  3293. return sprintf(buf, "%d\n", oo_order(s->oo));
  3294. }
  3295. SLAB_ATTR(order);
  3296. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3297. {
  3298. if (s->ctor) {
  3299. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3300. return n + sprintf(buf + n, "\n");
  3301. }
  3302. return 0;
  3303. }
  3304. SLAB_ATTR_RO(ctor);
  3305. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3306. {
  3307. return sprintf(buf, "%d\n", s->refcount - 1);
  3308. }
  3309. SLAB_ATTR_RO(aliases);
  3310. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3311. {
  3312. return show_slab_objects(s, buf, SO_ALL);
  3313. }
  3314. SLAB_ATTR_RO(slabs);
  3315. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3316. {
  3317. return show_slab_objects(s, buf, SO_PARTIAL);
  3318. }
  3319. SLAB_ATTR_RO(partial);
  3320. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3321. {
  3322. return show_slab_objects(s, buf, SO_CPU);
  3323. }
  3324. SLAB_ATTR_RO(cpu_slabs);
  3325. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3326. {
  3327. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3328. }
  3329. SLAB_ATTR_RO(objects);
  3330. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3331. {
  3332. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3333. }
  3334. SLAB_ATTR_RO(objects_partial);
  3335. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3336. {
  3337. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3338. }
  3339. SLAB_ATTR_RO(total_objects);
  3340. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3341. {
  3342. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3343. }
  3344. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3345. const char *buf, size_t length)
  3346. {
  3347. s->flags &= ~SLAB_DEBUG_FREE;
  3348. if (buf[0] == '1')
  3349. s->flags |= SLAB_DEBUG_FREE;
  3350. return length;
  3351. }
  3352. SLAB_ATTR(sanity_checks);
  3353. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3354. {
  3355. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3356. }
  3357. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3358. size_t length)
  3359. {
  3360. s->flags &= ~SLAB_TRACE;
  3361. if (buf[0] == '1')
  3362. s->flags |= SLAB_TRACE;
  3363. return length;
  3364. }
  3365. SLAB_ATTR(trace);
  3366. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3367. {
  3368. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3369. }
  3370. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3371. const char *buf, size_t length)
  3372. {
  3373. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3374. if (buf[0] == '1')
  3375. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3376. return length;
  3377. }
  3378. SLAB_ATTR(reclaim_account);
  3379. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3380. {
  3381. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3382. }
  3383. SLAB_ATTR_RO(hwcache_align);
  3384. #ifdef CONFIG_ZONE_DMA
  3385. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3386. {
  3387. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3388. }
  3389. SLAB_ATTR_RO(cache_dma);
  3390. #endif
  3391. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3392. {
  3393. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3394. }
  3395. SLAB_ATTR_RO(destroy_by_rcu);
  3396. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3397. {
  3398. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3399. }
  3400. static ssize_t red_zone_store(struct kmem_cache *s,
  3401. const char *buf, size_t length)
  3402. {
  3403. if (any_slab_objects(s))
  3404. return -EBUSY;
  3405. s->flags &= ~SLAB_RED_ZONE;
  3406. if (buf[0] == '1')
  3407. s->flags |= SLAB_RED_ZONE;
  3408. calculate_sizes(s, -1);
  3409. return length;
  3410. }
  3411. SLAB_ATTR(red_zone);
  3412. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3413. {
  3414. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3415. }
  3416. static ssize_t poison_store(struct kmem_cache *s,
  3417. const char *buf, size_t length)
  3418. {
  3419. if (any_slab_objects(s))
  3420. return -EBUSY;
  3421. s->flags &= ~SLAB_POISON;
  3422. if (buf[0] == '1')
  3423. s->flags |= SLAB_POISON;
  3424. calculate_sizes(s, -1);
  3425. return length;
  3426. }
  3427. SLAB_ATTR(poison);
  3428. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3429. {
  3430. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3431. }
  3432. static ssize_t store_user_store(struct kmem_cache *s,
  3433. const char *buf, size_t length)
  3434. {
  3435. if (any_slab_objects(s))
  3436. return -EBUSY;
  3437. s->flags &= ~SLAB_STORE_USER;
  3438. if (buf[0] == '1')
  3439. s->flags |= SLAB_STORE_USER;
  3440. calculate_sizes(s, -1);
  3441. return length;
  3442. }
  3443. SLAB_ATTR(store_user);
  3444. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3445. {
  3446. return 0;
  3447. }
  3448. static ssize_t validate_store(struct kmem_cache *s,
  3449. const char *buf, size_t length)
  3450. {
  3451. int ret = -EINVAL;
  3452. if (buf[0] == '1') {
  3453. ret = validate_slab_cache(s);
  3454. if (ret >= 0)
  3455. ret = length;
  3456. }
  3457. return ret;
  3458. }
  3459. SLAB_ATTR(validate);
  3460. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3461. {
  3462. return 0;
  3463. }
  3464. static ssize_t shrink_store(struct kmem_cache *s,
  3465. const char *buf, size_t length)
  3466. {
  3467. if (buf[0] == '1') {
  3468. int rc = kmem_cache_shrink(s);
  3469. if (rc)
  3470. return rc;
  3471. } else
  3472. return -EINVAL;
  3473. return length;
  3474. }
  3475. SLAB_ATTR(shrink);
  3476. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3477. {
  3478. if (!(s->flags & SLAB_STORE_USER))
  3479. return -ENOSYS;
  3480. return list_locations(s, buf, TRACK_ALLOC);
  3481. }
  3482. SLAB_ATTR_RO(alloc_calls);
  3483. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3484. {
  3485. if (!(s->flags & SLAB_STORE_USER))
  3486. return -ENOSYS;
  3487. return list_locations(s, buf, TRACK_FREE);
  3488. }
  3489. SLAB_ATTR_RO(free_calls);
  3490. #ifdef CONFIG_NUMA
  3491. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3492. {
  3493. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3494. }
  3495. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3496. const char *buf, size_t length)
  3497. {
  3498. unsigned long ratio;
  3499. int err;
  3500. err = strict_strtoul(buf, 10, &ratio);
  3501. if (err)
  3502. return err;
  3503. if (ratio <= 100)
  3504. s->remote_node_defrag_ratio = ratio * 10;
  3505. return length;
  3506. }
  3507. SLAB_ATTR(remote_node_defrag_ratio);
  3508. #endif
  3509. #ifdef CONFIG_SLUB_STATS
  3510. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3511. {
  3512. unsigned long sum = 0;
  3513. int cpu;
  3514. int len;
  3515. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3516. if (!data)
  3517. return -ENOMEM;
  3518. for_each_online_cpu(cpu) {
  3519. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3520. data[cpu] = x;
  3521. sum += x;
  3522. }
  3523. len = sprintf(buf, "%lu", sum);
  3524. #ifdef CONFIG_SMP
  3525. for_each_online_cpu(cpu) {
  3526. if (data[cpu] && len < PAGE_SIZE - 20)
  3527. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3528. }
  3529. #endif
  3530. kfree(data);
  3531. return len + sprintf(buf + len, "\n");
  3532. }
  3533. #define STAT_ATTR(si, text) \
  3534. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3535. { \
  3536. return show_stat(s, buf, si); \
  3537. } \
  3538. SLAB_ATTR_RO(text); \
  3539. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3540. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3541. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3542. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3543. STAT_ATTR(FREE_FROZEN, free_frozen);
  3544. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3545. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3546. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3547. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3548. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3549. STAT_ATTR(FREE_SLAB, free_slab);
  3550. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3551. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3552. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3553. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3554. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3555. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3556. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3557. #endif
  3558. static struct attribute *slab_attrs[] = {
  3559. &slab_size_attr.attr,
  3560. &object_size_attr.attr,
  3561. &objs_per_slab_attr.attr,
  3562. &order_attr.attr,
  3563. &objects_attr.attr,
  3564. &objects_partial_attr.attr,
  3565. &total_objects_attr.attr,
  3566. &slabs_attr.attr,
  3567. &partial_attr.attr,
  3568. &cpu_slabs_attr.attr,
  3569. &ctor_attr.attr,
  3570. &aliases_attr.attr,
  3571. &align_attr.attr,
  3572. &sanity_checks_attr.attr,
  3573. &trace_attr.attr,
  3574. &hwcache_align_attr.attr,
  3575. &reclaim_account_attr.attr,
  3576. &destroy_by_rcu_attr.attr,
  3577. &red_zone_attr.attr,
  3578. &poison_attr.attr,
  3579. &store_user_attr.attr,
  3580. &validate_attr.attr,
  3581. &shrink_attr.attr,
  3582. &alloc_calls_attr.attr,
  3583. &free_calls_attr.attr,
  3584. #ifdef CONFIG_ZONE_DMA
  3585. &cache_dma_attr.attr,
  3586. #endif
  3587. #ifdef CONFIG_NUMA
  3588. &remote_node_defrag_ratio_attr.attr,
  3589. #endif
  3590. #ifdef CONFIG_SLUB_STATS
  3591. &alloc_fastpath_attr.attr,
  3592. &alloc_slowpath_attr.attr,
  3593. &free_fastpath_attr.attr,
  3594. &free_slowpath_attr.attr,
  3595. &free_frozen_attr.attr,
  3596. &free_add_partial_attr.attr,
  3597. &free_remove_partial_attr.attr,
  3598. &alloc_from_partial_attr.attr,
  3599. &alloc_slab_attr.attr,
  3600. &alloc_refill_attr.attr,
  3601. &free_slab_attr.attr,
  3602. &cpuslab_flush_attr.attr,
  3603. &deactivate_full_attr.attr,
  3604. &deactivate_empty_attr.attr,
  3605. &deactivate_to_head_attr.attr,
  3606. &deactivate_to_tail_attr.attr,
  3607. &deactivate_remote_frees_attr.attr,
  3608. &order_fallback_attr.attr,
  3609. #endif
  3610. NULL
  3611. };
  3612. static struct attribute_group slab_attr_group = {
  3613. .attrs = slab_attrs,
  3614. };
  3615. static ssize_t slab_attr_show(struct kobject *kobj,
  3616. struct attribute *attr,
  3617. char *buf)
  3618. {
  3619. struct slab_attribute *attribute;
  3620. struct kmem_cache *s;
  3621. int err;
  3622. attribute = to_slab_attr(attr);
  3623. s = to_slab(kobj);
  3624. if (!attribute->show)
  3625. return -EIO;
  3626. err = attribute->show(s, buf);
  3627. return err;
  3628. }
  3629. static ssize_t slab_attr_store(struct kobject *kobj,
  3630. struct attribute *attr,
  3631. const char *buf, size_t len)
  3632. {
  3633. struct slab_attribute *attribute;
  3634. struct kmem_cache *s;
  3635. int err;
  3636. attribute = to_slab_attr(attr);
  3637. s = to_slab(kobj);
  3638. if (!attribute->store)
  3639. return -EIO;
  3640. err = attribute->store(s, buf, len);
  3641. return err;
  3642. }
  3643. static void kmem_cache_release(struct kobject *kobj)
  3644. {
  3645. struct kmem_cache *s = to_slab(kobj);
  3646. kfree(s);
  3647. }
  3648. static struct sysfs_ops slab_sysfs_ops = {
  3649. .show = slab_attr_show,
  3650. .store = slab_attr_store,
  3651. };
  3652. static struct kobj_type slab_ktype = {
  3653. .sysfs_ops = &slab_sysfs_ops,
  3654. .release = kmem_cache_release
  3655. };
  3656. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3657. {
  3658. struct kobj_type *ktype = get_ktype(kobj);
  3659. if (ktype == &slab_ktype)
  3660. return 1;
  3661. return 0;
  3662. }
  3663. static struct kset_uevent_ops slab_uevent_ops = {
  3664. .filter = uevent_filter,
  3665. };
  3666. static struct kset *slab_kset;
  3667. #define ID_STR_LENGTH 64
  3668. /* Create a unique string id for a slab cache:
  3669. *
  3670. * Format :[flags-]size
  3671. */
  3672. static char *create_unique_id(struct kmem_cache *s)
  3673. {
  3674. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3675. char *p = name;
  3676. BUG_ON(!name);
  3677. *p++ = ':';
  3678. /*
  3679. * First flags affecting slabcache operations. We will only
  3680. * get here for aliasable slabs so we do not need to support
  3681. * too many flags. The flags here must cover all flags that
  3682. * are matched during merging to guarantee that the id is
  3683. * unique.
  3684. */
  3685. if (s->flags & SLAB_CACHE_DMA)
  3686. *p++ = 'd';
  3687. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3688. *p++ = 'a';
  3689. if (s->flags & SLAB_DEBUG_FREE)
  3690. *p++ = 'F';
  3691. if (p != name + 1)
  3692. *p++ = '-';
  3693. p += sprintf(p, "%07d", s->size);
  3694. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3695. return name;
  3696. }
  3697. static int sysfs_slab_add(struct kmem_cache *s)
  3698. {
  3699. int err;
  3700. const char *name;
  3701. int unmergeable;
  3702. if (slab_state < SYSFS)
  3703. /* Defer until later */
  3704. return 0;
  3705. unmergeable = slab_unmergeable(s);
  3706. if (unmergeable) {
  3707. /*
  3708. * Slabcache can never be merged so we can use the name proper.
  3709. * This is typically the case for debug situations. In that
  3710. * case we can catch duplicate names easily.
  3711. */
  3712. sysfs_remove_link(&slab_kset->kobj, s->name);
  3713. name = s->name;
  3714. } else {
  3715. /*
  3716. * Create a unique name for the slab as a target
  3717. * for the symlinks.
  3718. */
  3719. name = create_unique_id(s);
  3720. }
  3721. s->kobj.kset = slab_kset;
  3722. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3723. if (err) {
  3724. kobject_put(&s->kobj);
  3725. return err;
  3726. }
  3727. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3728. if (err)
  3729. return err;
  3730. kobject_uevent(&s->kobj, KOBJ_ADD);
  3731. if (!unmergeable) {
  3732. /* Setup first alias */
  3733. sysfs_slab_alias(s, s->name);
  3734. kfree(name);
  3735. }
  3736. return 0;
  3737. }
  3738. static void sysfs_slab_remove(struct kmem_cache *s)
  3739. {
  3740. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3741. kobject_del(&s->kobj);
  3742. kobject_put(&s->kobj);
  3743. }
  3744. /*
  3745. * Need to buffer aliases during bootup until sysfs becomes
  3746. * available lest we lose that information.
  3747. */
  3748. struct saved_alias {
  3749. struct kmem_cache *s;
  3750. const char *name;
  3751. struct saved_alias *next;
  3752. };
  3753. static struct saved_alias *alias_list;
  3754. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3755. {
  3756. struct saved_alias *al;
  3757. if (slab_state == SYSFS) {
  3758. /*
  3759. * If we have a leftover link then remove it.
  3760. */
  3761. sysfs_remove_link(&slab_kset->kobj, name);
  3762. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3763. }
  3764. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3765. if (!al)
  3766. return -ENOMEM;
  3767. al->s = s;
  3768. al->name = name;
  3769. al->next = alias_list;
  3770. alias_list = al;
  3771. return 0;
  3772. }
  3773. static int __init slab_sysfs_init(void)
  3774. {
  3775. struct kmem_cache *s;
  3776. int err;
  3777. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3778. if (!slab_kset) {
  3779. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3780. return -ENOSYS;
  3781. }
  3782. slab_state = SYSFS;
  3783. list_for_each_entry(s, &slab_caches, list) {
  3784. err = sysfs_slab_add(s);
  3785. if (err)
  3786. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3787. " to sysfs\n", s->name);
  3788. }
  3789. while (alias_list) {
  3790. struct saved_alias *al = alias_list;
  3791. alias_list = alias_list->next;
  3792. err = sysfs_slab_alias(al->s, al->name);
  3793. if (err)
  3794. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3795. " %s to sysfs\n", s->name);
  3796. kfree(al);
  3797. }
  3798. resiliency_test();
  3799. return 0;
  3800. }
  3801. __initcall(slab_sysfs_init);
  3802. #endif
  3803. /*
  3804. * The /proc/slabinfo ABI
  3805. */
  3806. #ifdef CONFIG_SLABINFO
  3807. static void print_slabinfo_header(struct seq_file *m)
  3808. {
  3809. seq_puts(m, "slabinfo - version: 2.1\n");
  3810. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3811. "<objperslab> <pagesperslab>");
  3812. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3813. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3814. seq_putc(m, '\n');
  3815. }
  3816. static void *s_start(struct seq_file *m, loff_t *pos)
  3817. {
  3818. loff_t n = *pos;
  3819. down_read(&slub_lock);
  3820. if (!n)
  3821. print_slabinfo_header(m);
  3822. return seq_list_start(&slab_caches, *pos);
  3823. }
  3824. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3825. {
  3826. return seq_list_next(p, &slab_caches, pos);
  3827. }
  3828. static void s_stop(struct seq_file *m, void *p)
  3829. {
  3830. up_read(&slub_lock);
  3831. }
  3832. static int s_show(struct seq_file *m, void *p)
  3833. {
  3834. unsigned long nr_partials = 0;
  3835. unsigned long nr_slabs = 0;
  3836. unsigned long nr_inuse = 0;
  3837. unsigned long nr_objs = 0;
  3838. unsigned long nr_free = 0;
  3839. struct kmem_cache *s;
  3840. int node;
  3841. s = list_entry(p, struct kmem_cache, list);
  3842. for_each_online_node(node) {
  3843. struct kmem_cache_node *n = get_node(s, node);
  3844. if (!n)
  3845. continue;
  3846. nr_partials += n->nr_partial;
  3847. nr_slabs += atomic_long_read(&n->nr_slabs);
  3848. nr_objs += atomic_long_read(&n->total_objects);
  3849. nr_free += count_partial(n, count_free);
  3850. }
  3851. nr_inuse = nr_objs - nr_free;
  3852. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3853. nr_objs, s->size, oo_objects(s->oo),
  3854. (1 << oo_order(s->oo)));
  3855. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3856. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3857. 0UL);
  3858. seq_putc(m, '\n');
  3859. return 0;
  3860. }
  3861. static const struct seq_operations slabinfo_op = {
  3862. .start = s_start,
  3863. .next = s_next,
  3864. .stop = s_stop,
  3865. .show = s_show,
  3866. };
  3867. static int slabinfo_open(struct inode *inode, struct file *file)
  3868. {
  3869. return seq_open(file, &slabinfo_op);
  3870. }
  3871. static const struct file_operations proc_slabinfo_operations = {
  3872. .open = slabinfo_open,
  3873. .read = seq_read,
  3874. .llseek = seq_lseek,
  3875. .release = seq_release,
  3876. };
  3877. static int __init slab_proc_init(void)
  3878. {
  3879. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3880. return 0;
  3881. }
  3882. module_init(slab_proc_init);
  3883. #endif /* CONFIG_SLABINFO */