ieee80211_sta.c 119 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/rtnetlink.h>
  27. #include <net/iw_handler.h>
  28. #include <asm/types.h>
  29. #include <net/mac80211.h>
  30. #include "ieee80211_i.h"
  31. #include "ieee80211_rate.h"
  32. #include "ieee80211_led.h"
  33. #include "mesh.h"
  34. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  35. #define IEEE80211_AUTH_MAX_TRIES 3
  36. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  37. #define IEEE80211_ASSOC_MAX_TRIES 3
  38. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  39. #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
  40. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  41. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  42. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  43. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  44. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  45. #define IEEE80211_PROBE_DELAY (HZ / 33)
  46. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  47. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  48. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  49. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  50. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  51. #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
  52. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  53. #define ERP_INFO_USE_PROTECTION BIT(1)
  54. /* mgmt header + 1 byte action code */
  55. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  56. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  57. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  58. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  59. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  60. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  61. /* next values represent the buffer size for A-MPDU frame.
  62. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  63. #define IEEE80211_MIN_AMPDU_BUF 0x8
  64. #define IEEE80211_MAX_AMPDU_BUF 0x40
  65. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  66. u8 *ssid, size_t ssid_len);
  67. static struct ieee80211_sta_bss *
  68. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  69. u8 *ssid, u8 ssid_len);
  70. static void ieee80211_rx_bss_put(struct net_device *dev,
  71. struct ieee80211_sta_bss *bss);
  72. static int ieee80211_sta_find_ibss(struct net_device *dev,
  73. struct ieee80211_if_sta *ifsta);
  74. static int ieee80211_sta_wep_configured(struct net_device *dev);
  75. static int ieee80211_sta_start_scan(struct net_device *dev,
  76. u8 *ssid, size_t ssid_len);
  77. static int ieee80211_sta_config_auth(struct net_device *dev,
  78. struct ieee80211_if_sta *ifsta);
  79. void ieee802_11_parse_elems(u8 *start, size_t len,
  80. struct ieee802_11_elems *elems)
  81. {
  82. size_t left = len;
  83. u8 *pos = start;
  84. memset(elems, 0, sizeof(*elems));
  85. while (left >= 2) {
  86. u8 id, elen;
  87. id = *pos++;
  88. elen = *pos++;
  89. left -= 2;
  90. if (elen > left)
  91. return;
  92. switch (id) {
  93. case WLAN_EID_SSID:
  94. elems->ssid = pos;
  95. elems->ssid_len = elen;
  96. break;
  97. case WLAN_EID_SUPP_RATES:
  98. elems->supp_rates = pos;
  99. elems->supp_rates_len = elen;
  100. break;
  101. case WLAN_EID_FH_PARAMS:
  102. elems->fh_params = pos;
  103. elems->fh_params_len = elen;
  104. break;
  105. case WLAN_EID_DS_PARAMS:
  106. elems->ds_params = pos;
  107. elems->ds_params_len = elen;
  108. break;
  109. case WLAN_EID_CF_PARAMS:
  110. elems->cf_params = pos;
  111. elems->cf_params_len = elen;
  112. break;
  113. case WLAN_EID_TIM:
  114. elems->tim = pos;
  115. elems->tim_len = elen;
  116. break;
  117. case WLAN_EID_IBSS_PARAMS:
  118. elems->ibss_params = pos;
  119. elems->ibss_params_len = elen;
  120. break;
  121. case WLAN_EID_CHALLENGE:
  122. elems->challenge = pos;
  123. elems->challenge_len = elen;
  124. break;
  125. case WLAN_EID_WPA:
  126. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  127. pos[2] == 0xf2) {
  128. /* Microsoft OUI (00:50:F2) */
  129. if (pos[3] == 1) {
  130. /* OUI Type 1 - WPA IE */
  131. elems->wpa = pos;
  132. elems->wpa_len = elen;
  133. } else if (elen >= 5 && pos[3] == 2) {
  134. if (pos[4] == 0) {
  135. elems->wmm_info = pos;
  136. elems->wmm_info_len = elen;
  137. } else if (pos[4] == 1) {
  138. elems->wmm_param = pos;
  139. elems->wmm_param_len = elen;
  140. }
  141. }
  142. }
  143. break;
  144. case WLAN_EID_RSN:
  145. elems->rsn = pos;
  146. elems->rsn_len = elen;
  147. break;
  148. case WLAN_EID_ERP_INFO:
  149. elems->erp_info = pos;
  150. elems->erp_info_len = elen;
  151. break;
  152. case WLAN_EID_EXT_SUPP_RATES:
  153. elems->ext_supp_rates = pos;
  154. elems->ext_supp_rates_len = elen;
  155. break;
  156. case WLAN_EID_HT_CAPABILITY:
  157. elems->ht_cap_elem = pos;
  158. elems->ht_cap_elem_len = elen;
  159. break;
  160. case WLAN_EID_HT_EXTRA_INFO:
  161. elems->ht_info_elem = pos;
  162. elems->ht_info_elem_len = elen;
  163. break;
  164. case WLAN_EID_MESH_ID:
  165. elems->mesh_id = pos;
  166. elems->mesh_id_len = elen;
  167. break;
  168. case WLAN_EID_MESH_CONFIG:
  169. elems->mesh_config = pos;
  170. elems->mesh_config_len = elen;
  171. break;
  172. case WLAN_EID_PEER_LINK:
  173. elems->peer_link = pos;
  174. elems->peer_link_len = elen;
  175. break;
  176. case WLAN_EID_PREQ:
  177. elems->preq = pos;
  178. elems->preq_len = elen;
  179. break;
  180. case WLAN_EID_PREP:
  181. elems->prep = pos;
  182. elems->prep_len = elen;
  183. break;
  184. case WLAN_EID_PERR:
  185. elems->perr = pos;
  186. elems->perr_len = elen;
  187. break;
  188. default:
  189. break;
  190. }
  191. left -= elen;
  192. pos += elen;
  193. }
  194. }
  195. static int ecw2cw(int ecw)
  196. {
  197. return (1 << ecw) - 1;
  198. }
  199. static void ieee80211_sta_def_wmm_params(struct net_device *dev,
  200. struct ieee80211_sta_bss *bss,
  201. int ibss)
  202. {
  203. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  204. struct ieee80211_local *local = sdata->local;
  205. int i, have_higher_than_11mbit = 0;
  206. /* cf. IEEE 802.11 9.2.12 */
  207. for (i = 0; i < bss->supp_rates_len; i++)
  208. if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
  209. have_higher_than_11mbit = 1;
  210. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  211. have_higher_than_11mbit)
  212. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  213. else
  214. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  215. if (local->ops->conf_tx) {
  216. struct ieee80211_tx_queue_params qparam;
  217. memset(&qparam, 0, sizeof(qparam));
  218. qparam.aifs = 2;
  219. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  220. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  221. qparam.cw_min = 31;
  222. else
  223. qparam.cw_min = 15;
  224. qparam.cw_max = 1023;
  225. qparam.txop = 0;
  226. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  227. local->ops->conf_tx(local_to_hw(local),
  228. i + IEEE80211_TX_QUEUE_DATA0,
  229. &qparam);
  230. if (ibss) {
  231. /* IBSS uses different parameters for Beacon sending */
  232. qparam.cw_min++;
  233. qparam.cw_min *= 2;
  234. qparam.cw_min--;
  235. local->ops->conf_tx(local_to_hw(local),
  236. IEEE80211_TX_QUEUE_BEACON, &qparam);
  237. }
  238. }
  239. }
  240. static void ieee80211_sta_wmm_params(struct net_device *dev,
  241. struct ieee80211_if_sta *ifsta,
  242. u8 *wmm_param, size_t wmm_param_len)
  243. {
  244. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  245. struct ieee80211_tx_queue_params params;
  246. size_t left;
  247. int count;
  248. u8 *pos;
  249. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  250. return;
  251. count = wmm_param[6] & 0x0f;
  252. if (count == ifsta->wmm_last_param_set)
  253. return;
  254. ifsta->wmm_last_param_set = count;
  255. pos = wmm_param + 8;
  256. left = wmm_param_len - 8;
  257. memset(&params, 0, sizeof(params));
  258. if (!local->ops->conf_tx)
  259. return;
  260. local->wmm_acm = 0;
  261. for (; left >= 4; left -= 4, pos += 4) {
  262. int aci = (pos[0] >> 5) & 0x03;
  263. int acm = (pos[0] >> 4) & 0x01;
  264. int queue;
  265. switch (aci) {
  266. case 1:
  267. queue = IEEE80211_TX_QUEUE_DATA3;
  268. if (acm) {
  269. local->wmm_acm |= BIT(0) | BIT(3);
  270. }
  271. break;
  272. case 2:
  273. queue = IEEE80211_TX_QUEUE_DATA1;
  274. if (acm) {
  275. local->wmm_acm |= BIT(4) | BIT(5);
  276. }
  277. break;
  278. case 3:
  279. queue = IEEE80211_TX_QUEUE_DATA0;
  280. if (acm) {
  281. local->wmm_acm |= BIT(6) | BIT(7);
  282. }
  283. break;
  284. case 0:
  285. default:
  286. queue = IEEE80211_TX_QUEUE_DATA2;
  287. if (acm) {
  288. local->wmm_acm |= BIT(1) | BIT(2);
  289. }
  290. break;
  291. }
  292. params.aifs = pos[0] & 0x0f;
  293. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  294. params.cw_min = ecw2cw(pos[1] & 0x0f);
  295. params.txop = pos[2] | (pos[3] << 8);
  296. #ifdef CONFIG_MAC80211_DEBUG
  297. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  298. "cWmin=%d cWmax=%d txop=%d\n",
  299. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  300. params.cw_max, params.txop);
  301. #endif
  302. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  303. * AC for now) */
  304. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  305. printk(KERN_DEBUG "%s: failed to set TX queue "
  306. "parameters for queue %d\n", dev->name, queue);
  307. }
  308. }
  309. }
  310. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  311. u8 erp_value)
  312. {
  313. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  314. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  315. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  316. bool use_short_preamble = (erp_value & WLAN_ERP_BARKER_PREAMBLE) == 0;
  317. DECLARE_MAC_BUF(mac);
  318. u32 changed = 0;
  319. if (use_protection != bss_conf->use_cts_prot) {
  320. if (net_ratelimit()) {
  321. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  322. "%s)\n",
  323. sdata->dev->name,
  324. use_protection ? "enabled" : "disabled",
  325. print_mac(mac, ifsta->bssid));
  326. }
  327. bss_conf->use_cts_prot = use_protection;
  328. changed |= BSS_CHANGED_ERP_CTS_PROT;
  329. }
  330. if (use_short_preamble != bss_conf->use_short_preamble) {
  331. if (net_ratelimit()) {
  332. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  333. " (BSSID=%s)\n",
  334. sdata->dev->name,
  335. use_short_preamble ? "short" : "long",
  336. print_mac(mac, ifsta->bssid));
  337. }
  338. bss_conf->use_short_preamble = use_short_preamble;
  339. changed |= BSS_CHANGED_ERP_PREAMBLE;
  340. }
  341. return changed;
  342. }
  343. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  344. struct ieee80211_ht_info *ht_info)
  345. {
  346. if (ht_info == NULL)
  347. return -EINVAL;
  348. memset(ht_info, 0, sizeof(*ht_info));
  349. if (ht_cap_ie) {
  350. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  351. ht_info->ht_supported = 1;
  352. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  353. ht_info->ampdu_factor =
  354. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  355. ht_info->ampdu_density =
  356. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  357. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  358. } else
  359. ht_info->ht_supported = 0;
  360. return 0;
  361. }
  362. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  363. struct ieee80211_ht_addt_info *ht_add_info_ie,
  364. struct ieee80211_ht_bss_info *bss_info)
  365. {
  366. if (bss_info == NULL)
  367. return -EINVAL;
  368. memset(bss_info, 0, sizeof(*bss_info));
  369. if (ht_add_info_ie) {
  370. u16 op_mode;
  371. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  372. bss_info->primary_channel = ht_add_info_ie->control_chan;
  373. bss_info->bss_cap = ht_add_info_ie->ht_param;
  374. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  375. }
  376. return 0;
  377. }
  378. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  379. struct ieee80211_if_sta *ifsta)
  380. {
  381. char *buf;
  382. size_t len;
  383. int i;
  384. union iwreq_data wrqu;
  385. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  386. return;
  387. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  388. ifsta->assocresp_ies_len), GFP_KERNEL);
  389. if (!buf)
  390. return;
  391. len = sprintf(buf, "ASSOCINFO(");
  392. if (ifsta->assocreq_ies) {
  393. len += sprintf(buf + len, "ReqIEs=");
  394. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  395. len += sprintf(buf + len, "%02x",
  396. ifsta->assocreq_ies[i]);
  397. }
  398. }
  399. if (ifsta->assocresp_ies) {
  400. if (ifsta->assocreq_ies)
  401. len += sprintf(buf + len, " ");
  402. len += sprintf(buf + len, "RespIEs=");
  403. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  404. len += sprintf(buf + len, "%02x",
  405. ifsta->assocresp_ies[i]);
  406. }
  407. }
  408. len += sprintf(buf + len, ")");
  409. if (len > IW_CUSTOM_MAX) {
  410. len = sprintf(buf, "ASSOCRESPIE=");
  411. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  412. len += sprintf(buf + len, "%02x",
  413. ifsta->assocresp_ies[i]);
  414. }
  415. }
  416. memset(&wrqu, 0, sizeof(wrqu));
  417. wrqu.data.length = len;
  418. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  419. kfree(buf);
  420. }
  421. static void ieee80211_set_associated(struct net_device *dev,
  422. struct ieee80211_if_sta *ifsta,
  423. bool assoc)
  424. {
  425. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  426. struct ieee80211_local *local = sdata->local;
  427. struct ieee80211_conf *conf = &local_to_hw(local)->conf;
  428. union iwreq_data wrqu;
  429. u32 changed = BSS_CHANGED_ASSOC;
  430. if (assoc) {
  431. struct ieee80211_sta_bss *bss;
  432. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  433. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  434. return;
  435. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  436. conf->channel->center_freq,
  437. ifsta->ssid, ifsta->ssid_len);
  438. if (bss) {
  439. /* set timing information */
  440. sdata->bss_conf.beacon_int = bss->beacon_int;
  441. sdata->bss_conf.timestamp = bss->timestamp;
  442. if (bss->has_erp_value)
  443. changed |= ieee80211_handle_erp_ie(
  444. sdata, bss->erp_value);
  445. ieee80211_rx_bss_put(dev, bss);
  446. }
  447. if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  448. changed |= BSS_CHANGED_HT;
  449. sdata->bss_conf.assoc_ht = 1;
  450. sdata->bss_conf.ht_conf = &conf->ht_conf;
  451. sdata->bss_conf.ht_bss_conf = &conf->ht_bss_conf;
  452. }
  453. netif_carrier_on(dev);
  454. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  455. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  456. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  457. ieee80211_sta_send_associnfo(dev, ifsta);
  458. } else {
  459. ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
  460. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  461. netif_carrier_off(dev);
  462. ieee80211_reset_erp_info(dev);
  463. sdata->bss_conf.assoc_ht = 0;
  464. sdata->bss_conf.ht_conf = NULL;
  465. sdata->bss_conf.ht_bss_conf = NULL;
  466. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  467. }
  468. ifsta->last_probe = jiffies;
  469. ieee80211_led_assoc(local, assoc);
  470. sdata->bss_conf.assoc = assoc;
  471. ieee80211_bss_info_change_notify(sdata, changed);
  472. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  473. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  474. }
  475. static void ieee80211_set_disassoc(struct net_device *dev,
  476. struct ieee80211_if_sta *ifsta, int deauth)
  477. {
  478. if (deauth)
  479. ifsta->auth_tries = 0;
  480. ifsta->assoc_tries = 0;
  481. ieee80211_set_associated(dev, ifsta, 0);
  482. }
  483. void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  484. int encrypt)
  485. {
  486. struct ieee80211_sub_if_data *sdata;
  487. struct ieee80211_tx_packet_data *pkt_data;
  488. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  489. skb->dev = sdata->local->mdev;
  490. skb_set_mac_header(skb, 0);
  491. skb_set_network_header(skb, 0);
  492. skb_set_transport_header(skb, 0);
  493. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  494. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  495. pkt_data->ifindex = sdata->dev->ifindex;
  496. if (!encrypt)
  497. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  498. dev_queue_xmit(skb);
  499. }
  500. static void ieee80211_send_auth(struct net_device *dev,
  501. struct ieee80211_if_sta *ifsta,
  502. int transaction, u8 *extra, size_t extra_len,
  503. int encrypt)
  504. {
  505. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  506. struct sk_buff *skb;
  507. struct ieee80211_mgmt *mgmt;
  508. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  509. sizeof(*mgmt) + 6 + extra_len);
  510. if (!skb) {
  511. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  512. "frame\n", dev->name);
  513. return;
  514. }
  515. skb_reserve(skb, local->hw.extra_tx_headroom);
  516. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  517. memset(mgmt, 0, 24 + 6);
  518. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  519. IEEE80211_STYPE_AUTH);
  520. if (encrypt)
  521. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  522. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  523. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  524. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  525. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  526. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  527. ifsta->auth_transaction = transaction + 1;
  528. mgmt->u.auth.status_code = cpu_to_le16(0);
  529. if (extra)
  530. memcpy(skb_put(skb, extra_len), extra, extra_len);
  531. ieee80211_sta_tx(dev, skb, encrypt);
  532. }
  533. static void ieee80211_authenticate(struct net_device *dev,
  534. struct ieee80211_if_sta *ifsta)
  535. {
  536. DECLARE_MAC_BUF(mac);
  537. ifsta->auth_tries++;
  538. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  539. printk(KERN_DEBUG "%s: authentication with AP %s"
  540. " timed out\n",
  541. dev->name, print_mac(mac, ifsta->bssid));
  542. ifsta->state = IEEE80211_DISABLED;
  543. return;
  544. }
  545. ifsta->state = IEEE80211_AUTHENTICATE;
  546. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  547. dev->name, print_mac(mac, ifsta->bssid));
  548. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  549. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  550. }
  551. static void ieee80211_send_assoc(struct net_device *dev,
  552. struct ieee80211_if_sta *ifsta)
  553. {
  554. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  555. struct sk_buff *skb;
  556. struct ieee80211_mgmt *mgmt;
  557. u8 *pos, *ies;
  558. int i, len;
  559. u16 capab;
  560. struct ieee80211_sta_bss *bss;
  561. int wmm = 0;
  562. struct ieee80211_supported_band *sband;
  563. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  564. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  565. ifsta->ssid_len);
  566. if (!skb) {
  567. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  568. "frame\n", dev->name);
  569. return;
  570. }
  571. skb_reserve(skb, local->hw.extra_tx_headroom);
  572. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  573. capab = ifsta->capab;
  574. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  575. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  576. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  577. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  578. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  579. }
  580. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  581. local->hw.conf.channel->center_freq,
  582. ifsta->ssid, ifsta->ssid_len);
  583. if (bss) {
  584. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  585. capab |= WLAN_CAPABILITY_PRIVACY;
  586. if (bss->wmm_ie) {
  587. wmm = 1;
  588. }
  589. ieee80211_rx_bss_put(dev, bss);
  590. }
  591. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  592. memset(mgmt, 0, 24);
  593. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  594. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  595. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  596. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  597. skb_put(skb, 10);
  598. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  599. IEEE80211_STYPE_REASSOC_REQ);
  600. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  601. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  602. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  603. ETH_ALEN);
  604. } else {
  605. skb_put(skb, 4);
  606. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  607. IEEE80211_STYPE_ASSOC_REQ);
  608. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  609. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  610. }
  611. /* SSID */
  612. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  613. *pos++ = WLAN_EID_SSID;
  614. *pos++ = ifsta->ssid_len;
  615. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  616. len = sband->n_bitrates;
  617. if (len > 8)
  618. len = 8;
  619. pos = skb_put(skb, len + 2);
  620. *pos++ = WLAN_EID_SUPP_RATES;
  621. *pos++ = len;
  622. for (i = 0; i < len; i++) {
  623. int rate = sband->bitrates[i].bitrate;
  624. *pos++ = (u8) (rate / 5);
  625. }
  626. if (sband->n_bitrates > len) {
  627. pos = skb_put(skb, sband->n_bitrates - len + 2);
  628. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  629. *pos++ = sband->n_bitrates - len;
  630. for (i = len; i < sband->n_bitrates; i++) {
  631. int rate = sband->bitrates[i].bitrate;
  632. *pos++ = (u8) (rate / 5);
  633. }
  634. }
  635. if (ifsta->extra_ie) {
  636. pos = skb_put(skb, ifsta->extra_ie_len);
  637. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  638. }
  639. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  640. pos = skb_put(skb, 9);
  641. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  642. *pos++ = 7; /* len */
  643. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  644. *pos++ = 0x50;
  645. *pos++ = 0xf2;
  646. *pos++ = 2; /* WME */
  647. *pos++ = 0; /* WME info */
  648. *pos++ = 1; /* WME ver */
  649. *pos++ = 0;
  650. }
  651. /* wmm support is a must to HT */
  652. if (wmm && sband->ht_info.ht_supported) {
  653. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  654. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  655. *pos++ = WLAN_EID_HT_CAPABILITY;
  656. *pos++ = sizeof(struct ieee80211_ht_cap);
  657. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  658. memcpy(pos, &tmp, sizeof(u16));
  659. pos += sizeof(u16);
  660. /* TODO: needs a define here for << 2 */
  661. *pos++ = sband->ht_info.ampdu_factor |
  662. (sband->ht_info.ampdu_density << 2);
  663. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  664. }
  665. kfree(ifsta->assocreq_ies);
  666. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  667. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  668. if (ifsta->assocreq_ies)
  669. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  670. ieee80211_sta_tx(dev, skb, 0);
  671. }
  672. static void ieee80211_send_deauth(struct net_device *dev,
  673. struct ieee80211_if_sta *ifsta, u16 reason)
  674. {
  675. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  676. struct sk_buff *skb;
  677. struct ieee80211_mgmt *mgmt;
  678. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  679. if (!skb) {
  680. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  681. "frame\n", dev->name);
  682. return;
  683. }
  684. skb_reserve(skb, local->hw.extra_tx_headroom);
  685. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  686. memset(mgmt, 0, 24);
  687. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  688. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  689. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  690. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  691. IEEE80211_STYPE_DEAUTH);
  692. skb_put(skb, 2);
  693. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  694. ieee80211_sta_tx(dev, skb, 0);
  695. }
  696. static void ieee80211_send_disassoc(struct net_device *dev,
  697. struct ieee80211_if_sta *ifsta, u16 reason)
  698. {
  699. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  700. struct sk_buff *skb;
  701. struct ieee80211_mgmt *mgmt;
  702. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  703. if (!skb) {
  704. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  705. "frame\n", dev->name);
  706. return;
  707. }
  708. skb_reserve(skb, local->hw.extra_tx_headroom);
  709. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  710. memset(mgmt, 0, 24);
  711. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  712. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  713. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  714. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  715. IEEE80211_STYPE_DISASSOC);
  716. skb_put(skb, 2);
  717. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  718. ieee80211_sta_tx(dev, skb, 0);
  719. }
  720. static int ieee80211_privacy_mismatch(struct net_device *dev,
  721. struct ieee80211_if_sta *ifsta)
  722. {
  723. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  724. struct ieee80211_sta_bss *bss;
  725. int bss_privacy;
  726. int wep_privacy;
  727. int privacy_invoked;
  728. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  729. return 0;
  730. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  731. local->hw.conf.channel->center_freq,
  732. ifsta->ssid, ifsta->ssid_len);
  733. if (!bss)
  734. return 0;
  735. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  736. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  737. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  738. ieee80211_rx_bss_put(dev, bss);
  739. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  740. return 0;
  741. return 1;
  742. }
  743. static void ieee80211_associate(struct net_device *dev,
  744. struct ieee80211_if_sta *ifsta)
  745. {
  746. DECLARE_MAC_BUF(mac);
  747. ifsta->assoc_tries++;
  748. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  749. printk(KERN_DEBUG "%s: association with AP %s"
  750. " timed out\n",
  751. dev->name, print_mac(mac, ifsta->bssid));
  752. ifsta->state = IEEE80211_DISABLED;
  753. return;
  754. }
  755. ifsta->state = IEEE80211_ASSOCIATE;
  756. printk(KERN_DEBUG "%s: associate with AP %s\n",
  757. dev->name, print_mac(mac, ifsta->bssid));
  758. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  759. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  760. "mixed-cell disabled - abort association\n", dev->name);
  761. ifsta->state = IEEE80211_DISABLED;
  762. return;
  763. }
  764. ieee80211_send_assoc(dev, ifsta);
  765. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  766. }
  767. static void ieee80211_associated(struct net_device *dev,
  768. struct ieee80211_if_sta *ifsta)
  769. {
  770. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  771. struct sta_info *sta;
  772. int disassoc;
  773. DECLARE_MAC_BUF(mac);
  774. /* TODO: start monitoring current AP signal quality and number of
  775. * missed beacons. Scan other channels every now and then and search
  776. * for better APs. */
  777. /* TODO: remove expired BSSes */
  778. ifsta->state = IEEE80211_ASSOCIATED;
  779. rcu_read_lock();
  780. sta = sta_info_get(local, ifsta->bssid);
  781. if (!sta) {
  782. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  783. dev->name, print_mac(mac, ifsta->bssid));
  784. disassoc = 1;
  785. } else {
  786. disassoc = 0;
  787. if (time_after(jiffies,
  788. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  789. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  790. printk(KERN_DEBUG "%s: No ProbeResp from "
  791. "current AP %s - assume out of "
  792. "range\n",
  793. dev->name, print_mac(mac, ifsta->bssid));
  794. disassoc = 1;
  795. sta_info_unlink(&sta);
  796. } else
  797. ieee80211_send_probe_req(dev, ifsta->bssid,
  798. local->scan_ssid,
  799. local->scan_ssid_len);
  800. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  801. } else {
  802. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  803. if (time_after(jiffies, ifsta->last_probe +
  804. IEEE80211_PROBE_INTERVAL)) {
  805. ifsta->last_probe = jiffies;
  806. ieee80211_send_probe_req(dev, ifsta->bssid,
  807. ifsta->ssid,
  808. ifsta->ssid_len);
  809. }
  810. }
  811. }
  812. rcu_read_unlock();
  813. if (disassoc && sta) {
  814. rtnl_lock();
  815. sta_info_destroy(sta);
  816. rtnl_unlock();
  817. }
  818. if (disassoc) {
  819. ifsta->state = IEEE80211_DISABLED;
  820. ieee80211_set_associated(dev, ifsta, 0);
  821. } else {
  822. mod_timer(&ifsta->timer, jiffies +
  823. IEEE80211_MONITORING_INTERVAL);
  824. }
  825. }
  826. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  827. u8 *ssid, size_t ssid_len)
  828. {
  829. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  830. struct ieee80211_supported_band *sband;
  831. struct sk_buff *skb;
  832. struct ieee80211_mgmt *mgmt;
  833. u8 *pos, *supp_rates, *esupp_rates = NULL;
  834. int i;
  835. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  836. if (!skb) {
  837. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  838. "request\n", dev->name);
  839. return;
  840. }
  841. skb_reserve(skb, local->hw.extra_tx_headroom);
  842. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  843. memset(mgmt, 0, 24);
  844. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  845. IEEE80211_STYPE_PROBE_REQ);
  846. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  847. if (dst) {
  848. memcpy(mgmt->da, dst, ETH_ALEN);
  849. memcpy(mgmt->bssid, dst, ETH_ALEN);
  850. } else {
  851. memset(mgmt->da, 0xff, ETH_ALEN);
  852. memset(mgmt->bssid, 0xff, ETH_ALEN);
  853. }
  854. pos = skb_put(skb, 2 + ssid_len);
  855. *pos++ = WLAN_EID_SSID;
  856. *pos++ = ssid_len;
  857. memcpy(pos, ssid, ssid_len);
  858. supp_rates = skb_put(skb, 2);
  859. supp_rates[0] = WLAN_EID_SUPP_RATES;
  860. supp_rates[1] = 0;
  861. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  862. for (i = 0; i < sband->n_bitrates; i++) {
  863. struct ieee80211_rate *rate = &sband->bitrates[i];
  864. if (esupp_rates) {
  865. pos = skb_put(skb, 1);
  866. esupp_rates[1]++;
  867. } else if (supp_rates[1] == 8) {
  868. esupp_rates = skb_put(skb, 3);
  869. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  870. esupp_rates[1] = 1;
  871. pos = &esupp_rates[2];
  872. } else {
  873. pos = skb_put(skb, 1);
  874. supp_rates[1]++;
  875. }
  876. *pos = rate->bitrate / 5;
  877. }
  878. ieee80211_sta_tx(dev, skb, 0);
  879. }
  880. static int ieee80211_sta_wep_configured(struct net_device *dev)
  881. {
  882. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  883. if (!sdata || !sdata->default_key ||
  884. sdata->default_key->conf.alg != ALG_WEP)
  885. return 0;
  886. return 1;
  887. }
  888. static void ieee80211_auth_completed(struct net_device *dev,
  889. struct ieee80211_if_sta *ifsta)
  890. {
  891. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  892. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  893. ieee80211_associate(dev, ifsta);
  894. }
  895. static void ieee80211_auth_challenge(struct net_device *dev,
  896. struct ieee80211_if_sta *ifsta,
  897. struct ieee80211_mgmt *mgmt,
  898. size_t len)
  899. {
  900. u8 *pos;
  901. struct ieee802_11_elems elems;
  902. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  903. pos = mgmt->u.auth.variable;
  904. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  905. if (!elems.challenge) {
  906. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  907. "frame\n", dev->name);
  908. return;
  909. }
  910. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  911. elems.challenge_len + 2, 1);
  912. }
  913. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  914. u8 dialog_token, u16 status, u16 policy,
  915. u16 buf_size, u16 timeout)
  916. {
  917. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  918. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  919. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  920. struct sk_buff *skb;
  921. struct ieee80211_mgmt *mgmt;
  922. u16 capab;
  923. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  924. sizeof(mgmt->u.action.u.addba_resp));
  925. if (!skb) {
  926. printk(KERN_DEBUG "%s: failed to allocate buffer "
  927. "for addba resp frame\n", dev->name);
  928. return;
  929. }
  930. skb_reserve(skb, local->hw.extra_tx_headroom);
  931. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  932. memset(mgmt, 0, 24);
  933. memcpy(mgmt->da, da, ETH_ALEN);
  934. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  935. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  936. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  937. else
  938. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  939. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  940. IEEE80211_STYPE_ACTION);
  941. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  942. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  943. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  944. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  945. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  946. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  947. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  948. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  949. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  950. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  951. ieee80211_sta_tx(dev, skb, 0);
  952. return;
  953. }
  954. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  955. u16 tid, u8 dialog_token, u16 start_seq_num,
  956. u16 agg_size, u16 timeout)
  957. {
  958. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  959. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  960. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  961. struct sk_buff *skb;
  962. struct ieee80211_mgmt *mgmt;
  963. u16 capab;
  964. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  965. sizeof(mgmt->u.action.u.addba_req));
  966. if (!skb) {
  967. printk(KERN_ERR "%s: failed to allocate buffer "
  968. "for addba request frame\n", dev->name);
  969. return;
  970. }
  971. skb_reserve(skb, local->hw.extra_tx_headroom);
  972. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  973. memset(mgmt, 0, 24);
  974. memcpy(mgmt->da, da, ETH_ALEN);
  975. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  976. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  977. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  978. else
  979. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  980. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  981. IEEE80211_STYPE_ACTION);
  982. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  983. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  984. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  985. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  986. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  987. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  988. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  989. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  990. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  991. mgmt->u.action.u.addba_req.start_seq_num =
  992. cpu_to_le16(start_seq_num << 4);
  993. ieee80211_sta_tx(dev, skb, 0);
  994. }
  995. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  996. struct ieee80211_mgmt *mgmt,
  997. size_t len)
  998. {
  999. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1000. struct ieee80211_hw *hw = &local->hw;
  1001. struct ieee80211_conf *conf = &hw->conf;
  1002. struct sta_info *sta;
  1003. struct tid_ampdu_rx *tid_agg_rx;
  1004. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  1005. u8 dialog_token;
  1006. int ret = -EOPNOTSUPP;
  1007. DECLARE_MAC_BUF(mac);
  1008. rcu_read_lock();
  1009. sta = sta_info_get(local, mgmt->sa);
  1010. if (!sta) {
  1011. rcu_read_unlock();
  1012. return;
  1013. }
  1014. /* extract session parameters from addba request frame */
  1015. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  1016. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  1017. start_seq_num =
  1018. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  1019. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  1020. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  1021. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1022. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  1023. status = WLAN_STATUS_REQUEST_DECLINED;
  1024. /* sanity check for incoming parameters:
  1025. * check if configuration can support the BA policy
  1026. * and if buffer size does not exceeds max value */
  1027. if (((ba_policy != 1)
  1028. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  1029. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  1030. status = WLAN_STATUS_INVALID_QOS_PARAM;
  1031. #ifdef CONFIG_MAC80211_HT_DEBUG
  1032. if (net_ratelimit())
  1033. printk(KERN_DEBUG "AddBA Req with bad params from "
  1034. "%s on tid %u. policy %d, buffer size %d\n",
  1035. print_mac(mac, mgmt->sa), tid, ba_policy,
  1036. buf_size);
  1037. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1038. goto end_no_lock;
  1039. }
  1040. /* determine default buffer size */
  1041. if (buf_size == 0) {
  1042. struct ieee80211_supported_band *sband;
  1043. sband = local->hw.wiphy->bands[conf->channel->band];
  1044. buf_size = IEEE80211_MIN_AMPDU_BUF;
  1045. buf_size = buf_size << sband->ht_info.ampdu_factor;
  1046. }
  1047. /* examine state machine */
  1048. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1049. if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) {
  1050. #ifdef CONFIG_MAC80211_HT_DEBUG
  1051. if (net_ratelimit())
  1052. printk(KERN_DEBUG "unexpected AddBA Req from "
  1053. "%s on tid %u\n",
  1054. print_mac(mac, mgmt->sa), tid);
  1055. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1056. goto end;
  1057. }
  1058. /* prepare A-MPDU MLME for Rx aggregation */
  1059. sta->ampdu_mlme.tid_rx[tid] =
  1060. kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC);
  1061. if (!sta->ampdu_mlme.tid_rx[tid]) {
  1062. if (net_ratelimit())
  1063. printk(KERN_ERR "allocate rx mlme to tid %d failed\n",
  1064. tid);
  1065. goto end;
  1066. }
  1067. /* rx timer */
  1068. sta->ampdu_mlme.tid_rx[tid]->session_timer.function =
  1069. sta_rx_agg_session_timer_expired;
  1070. sta->ampdu_mlme.tid_rx[tid]->session_timer.data =
  1071. (unsigned long)&sta->timer_to_tid[tid];
  1072. init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1073. tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
  1074. /* prepare reordering buffer */
  1075. tid_agg_rx->reorder_buf =
  1076. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  1077. if (!tid_agg_rx->reorder_buf) {
  1078. if (net_ratelimit())
  1079. printk(KERN_ERR "can not allocate reordering buffer "
  1080. "to tid %d\n", tid);
  1081. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1082. goto end;
  1083. }
  1084. memset(tid_agg_rx->reorder_buf, 0,
  1085. buf_size * sizeof(struct sk_buf *));
  1086. if (local->ops->ampdu_action)
  1087. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1088. sta->addr, tid, &start_seq_num);
  1089. #ifdef CONFIG_MAC80211_HT_DEBUG
  1090. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  1091. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1092. if (ret) {
  1093. kfree(tid_agg_rx->reorder_buf);
  1094. kfree(tid_agg_rx);
  1095. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1096. goto end;
  1097. }
  1098. /* change state and send addba resp */
  1099. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL;
  1100. tid_agg_rx->dialog_token = dialog_token;
  1101. tid_agg_rx->ssn = start_seq_num;
  1102. tid_agg_rx->head_seq_num = start_seq_num;
  1103. tid_agg_rx->buf_size = buf_size;
  1104. tid_agg_rx->timeout = timeout;
  1105. tid_agg_rx->stored_mpdu_num = 0;
  1106. status = WLAN_STATUS_SUCCESS;
  1107. end:
  1108. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1109. end_no_lock:
  1110. ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
  1111. dialog_token, status, 1, buf_size, timeout);
  1112. rcu_read_unlock();
  1113. }
  1114. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1115. struct ieee80211_mgmt *mgmt,
  1116. size_t len)
  1117. {
  1118. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1119. struct ieee80211_hw *hw = &local->hw;
  1120. struct sta_info *sta;
  1121. u16 capab;
  1122. u16 tid;
  1123. u8 *state;
  1124. rcu_read_lock();
  1125. sta = sta_info_get(local, mgmt->sa);
  1126. if (!sta) {
  1127. rcu_read_unlock();
  1128. return;
  1129. }
  1130. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1131. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1132. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1133. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1134. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1135. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1136. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1137. "%d\n", *state);
  1138. goto addba_resp_exit;
  1139. }
  1140. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1141. sta->ampdu_mlme.tid_tx[tid]->dialog_token) {
  1142. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1143. #ifdef CONFIG_MAC80211_HT_DEBUG
  1144. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1145. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1146. goto addba_resp_exit;
  1147. }
  1148. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer);
  1149. #ifdef CONFIG_MAC80211_HT_DEBUG
  1150. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1151. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1152. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1153. == WLAN_STATUS_SUCCESS) {
  1154. if (*state & HT_ADDBA_RECEIVED_MSK)
  1155. printk(KERN_DEBUG "double addBA response\n");
  1156. *state |= HT_ADDBA_RECEIVED_MSK;
  1157. sta->ampdu_mlme.addba_req_num[tid] = 0;
  1158. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1159. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1160. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1161. }
  1162. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1163. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1164. } else {
  1165. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1166. sta->ampdu_mlme.addba_req_num[tid]++;
  1167. /* this will allow the state check in stop_BA_session */
  1168. *state = HT_AGG_STATE_OPERATIONAL;
  1169. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1170. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1171. WLAN_BACK_INITIATOR);
  1172. }
  1173. addba_resp_exit:
  1174. rcu_read_unlock();
  1175. }
  1176. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1177. u16 initiator, u16 reason_code)
  1178. {
  1179. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1180. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1181. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1182. struct sk_buff *skb;
  1183. struct ieee80211_mgmt *mgmt;
  1184. u16 params;
  1185. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1186. sizeof(mgmt->u.action.u.delba));
  1187. if (!skb) {
  1188. printk(KERN_ERR "%s: failed to allocate buffer "
  1189. "for delba frame\n", dev->name);
  1190. return;
  1191. }
  1192. skb_reserve(skb, local->hw.extra_tx_headroom);
  1193. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1194. memset(mgmt, 0, 24);
  1195. memcpy(mgmt->da, da, ETH_ALEN);
  1196. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1197. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1198. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1199. else
  1200. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1201. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1202. IEEE80211_STYPE_ACTION);
  1203. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1204. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1205. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1206. params = (u16)(initiator << 11); /* bit 11 initiator */
  1207. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1208. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1209. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1210. ieee80211_sta_tx(dev, skb, 0);
  1211. }
  1212. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1213. u16 initiator, u16 reason)
  1214. {
  1215. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1216. struct ieee80211_hw *hw = &local->hw;
  1217. struct sta_info *sta;
  1218. int ret, i;
  1219. rcu_read_lock();
  1220. sta = sta_info_get(local, ra);
  1221. if (!sta) {
  1222. rcu_read_unlock();
  1223. return;
  1224. }
  1225. /* check if TID is in operational state */
  1226. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1227. if (sta->ampdu_mlme.tid_state_rx[tid]
  1228. != HT_AGG_STATE_OPERATIONAL) {
  1229. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1230. rcu_read_unlock();
  1231. return;
  1232. }
  1233. sta->ampdu_mlme.tid_state_rx[tid] =
  1234. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1235. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1236. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1237. /* stop HW Rx aggregation. ampdu_action existence
  1238. * already verified in session init so we add the BUG_ON */
  1239. BUG_ON(!local->ops->ampdu_action);
  1240. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1241. ra, tid, NULL);
  1242. if (ret)
  1243. printk(KERN_DEBUG "HW problem - can not stop rx "
  1244. "aggergation for tid %d\n", tid);
  1245. /* shutdown timer has not expired */
  1246. if (initiator != WLAN_BACK_TIMER)
  1247. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1248. /* check if this is a self generated aggregation halt */
  1249. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1250. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1251. /* free the reordering buffer */
  1252. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid]->buf_size; i++) {
  1253. if (sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]) {
  1254. /* release the reordered frames */
  1255. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]);
  1256. sta->ampdu_mlme.tid_rx[tid]->stored_mpdu_num--;
  1257. sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i] = NULL;
  1258. }
  1259. }
  1260. /* free resources */
  1261. kfree(sta->ampdu_mlme.tid_rx[tid]->reorder_buf);
  1262. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1263. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1264. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_IDLE;
  1265. rcu_read_unlock();
  1266. }
  1267. static void ieee80211_sta_process_delba(struct net_device *dev,
  1268. struct ieee80211_mgmt *mgmt, size_t len)
  1269. {
  1270. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1271. struct sta_info *sta;
  1272. u16 tid, params;
  1273. u16 initiator;
  1274. DECLARE_MAC_BUF(mac);
  1275. rcu_read_lock();
  1276. sta = sta_info_get(local, mgmt->sa);
  1277. if (!sta) {
  1278. rcu_read_unlock();
  1279. return;
  1280. }
  1281. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1282. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1283. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1284. #ifdef CONFIG_MAC80211_HT_DEBUG
  1285. if (net_ratelimit())
  1286. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1287. print_mac(mac, mgmt->sa),
  1288. initiator ? "initiator" : "recipient", tid,
  1289. mgmt->u.action.u.delba.reason_code);
  1290. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1291. if (initiator == WLAN_BACK_INITIATOR)
  1292. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1293. WLAN_BACK_INITIATOR, 0);
  1294. else { /* WLAN_BACK_RECIPIENT */
  1295. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1296. sta->ampdu_mlme.tid_state_tx[tid] =
  1297. HT_AGG_STATE_OPERATIONAL;
  1298. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1299. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1300. WLAN_BACK_RECIPIENT);
  1301. }
  1302. rcu_read_unlock();
  1303. }
  1304. /*
  1305. * After sending add Block Ack request we activated a timer until
  1306. * add Block Ack response will arrive from the recipient.
  1307. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1308. */
  1309. void sta_addba_resp_timer_expired(unsigned long data)
  1310. {
  1311. /* not an elegant detour, but there is no choice as the timer passes
  1312. * only one argument, and both sta_info and TID are needed, so init
  1313. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1314. * array gives the sta through container_of */
  1315. u16 tid = *(int *)data;
  1316. struct sta_info *temp_sta = container_of((void *)data,
  1317. struct sta_info, timer_to_tid[tid]);
  1318. struct ieee80211_local *local = temp_sta->local;
  1319. struct ieee80211_hw *hw = &local->hw;
  1320. struct sta_info *sta;
  1321. u8 *state;
  1322. rcu_read_lock();
  1323. sta = sta_info_get(local, temp_sta->addr);
  1324. if (!sta) {
  1325. rcu_read_unlock();
  1326. return;
  1327. }
  1328. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1329. /* check if the TID waits for addBA response */
  1330. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1331. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1332. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1333. *state = HT_AGG_STATE_IDLE;
  1334. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1335. "expecting addBA response there", tid);
  1336. goto timer_expired_exit;
  1337. }
  1338. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1339. /* go through the state check in stop_BA_session */
  1340. *state = HT_AGG_STATE_OPERATIONAL;
  1341. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1342. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1343. WLAN_BACK_INITIATOR);
  1344. timer_expired_exit:
  1345. rcu_read_unlock();
  1346. }
  1347. /*
  1348. * After accepting the AddBA Request we activated a timer,
  1349. * resetting it after each frame that arrives from the originator.
  1350. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1351. */
  1352. void sta_rx_agg_session_timer_expired(unsigned long data)
  1353. {
  1354. /* not an elegant detour, but there is no choice as the timer passes
  1355. * only one argument, and verious sta_info are needed here, so init
  1356. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1357. * array gives the sta through container_of */
  1358. u8 *ptid = (u8 *)data;
  1359. u8 *timer_to_id = ptid - *ptid;
  1360. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1361. timer_to_tid[0]);
  1362. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1363. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1364. (u16)*ptid, WLAN_BACK_TIMER,
  1365. WLAN_REASON_QSTA_TIMEOUT);
  1366. }
  1367. void ieee80211_sta_tear_down_BA_sessions(struct net_device *dev, u8 *addr)
  1368. {
  1369. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1370. int i;
  1371. for (i = 0; i < STA_TID_NUM; i++) {
  1372. ieee80211_stop_tx_ba_session(&local->hw, addr, i,
  1373. WLAN_BACK_INITIATOR);
  1374. ieee80211_sta_stop_rx_ba_session(dev, addr, i,
  1375. WLAN_BACK_RECIPIENT,
  1376. WLAN_REASON_QSTA_LEAVE_QBSS);
  1377. }
  1378. }
  1379. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1380. struct ieee80211_if_sta *ifsta,
  1381. struct ieee80211_mgmt *mgmt,
  1382. size_t len)
  1383. {
  1384. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1385. u16 auth_alg, auth_transaction, status_code;
  1386. DECLARE_MAC_BUF(mac);
  1387. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1388. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1389. printk(KERN_DEBUG "%s: authentication frame received from "
  1390. "%s, but not in authenticate state - ignored\n",
  1391. dev->name, print_mac(mac, mgmt->sa));
  1392. return;
  1393. }
  1394. if (len < 24 + 6) {
  1395. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1396. "received from %s - ignored\n",
  1397. dev->name, len, print_mac(mac, mgmt->sa));
  1398. return;
  1399. }
  1400. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1401. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1402. printk(KERN_DEBUG "%s: authentication frame received from "
  1403. "unknown AP (SA=%s BSSID=%s) - "
  1404. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1405. print_mac(mac, mgmt->bssid));
  1406. return;
  1407. }
  1408. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1409. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1410. printk(KERN_DEBUG "%s: authentication frame received from "
  1411. "unknown BSSID (SA=%s BSSID=%s) - "
  1412. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1413. print_mac(mac, mgmt->bssid));
  1414. return;
  1415. }
  1416. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1417. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1418. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1419. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1420. "transaction=%d status=%d)\n",
  1421. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1422. auth_transaction, status_code);
  1423. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1424. /* IEEE 802.11 standard does not require authentication in IBSS
  1425. * networks and most implementations do not seem to use it.
  1426. * However, try to reply to authentication attempts if someone
  1427. * has actually implemented this.
  1428. * TODO: Could implement shared key authentication. */
  1429. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1430. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1431. "frame (alg=%d transaction=%d)\n",
  1432. dev->name, auth_alg, auth_transaction);
  1433. return;
  1434. }
  1435. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1436. }
  1437. if (auth_alg != ifsta->auth_alg ||
  1438. auth_transaction != ifsta->auth_transaction) {
  1439. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1440. "(alg=%d transaction=%d)\n",
  1441. dev->name, auth_alg, auth_transaction);
  1442. return;
  1443. }
  1444. if (status_code != WLAN_STATUS_SUCCESS) {
  1445. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1446. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1447. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1448. u8 algs[3];
  1449. const int num_algs = ARRAY_SIZE(algs);
  1450. int i, pos;
  1451. algs[0] = algs[1] = algs[2] = 0xff;
  1452. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1453. algs[0] = WLAN_AUTH_OPEN;
  1454. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1455. algs[1] = WLAN_AUTH_SHARED_KEY;
  1456. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1457. algs[2] = WLAN_AUTH_LEAP;
  1458. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1459. pos = 0;
  1460. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1461. pos = 1;
  1462. else
  1463. pos = 2;
  1464. for (i = 0; i < num_algs; i++) {
  1465. pos++;
  1466. if (pos >= num_algs)
  1467. pos = 0;
  1468. if (algs[pos] == ifsta->auth_alg ||
  1469. algs[pos] == 0xff)
  1470. continue;
  1471. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1472. !ieee80211_sta_wep_configured(dev))
  1473. continue;
  1474. ifsta->auth_alg = algs[pos];
  1475. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1476. "next try\n",
  1477. dev->name, ifsta->auth_alg);
  1478. break;
  1479. }
  1480. }
  1481. return;
  1482. }
  1483. switch (ifsta->auth_alg) {
  1484. case WLAN_AUTH_OPEN:
  1485. case WLAN_AUTH_LEAP:
  1486. ieee80211_auth_completed(dev, ifsta);
  1487. break;
  1488. case WLAN_AUTH_SHARED_KEY:
  1489. if (ifsta->auth_transaction == 4)
  1490. ieee80211_auth_completed(dev, ifsta);
  1491. else
  1492. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1493. break;
  1494. }
  1495. }
  1496. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1497. struct ieee80211_if_sta *ifsta,
  1498. struct ieee80211_mgmt *mgmt,
  1499. size_t len)
  1500. {
  1501. u16 reason_code;
  1502. DECLARE_MAC_BUF(mac);
  1503. if (len < 24 + 2) {
  1504. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1505. "received from %s - ignored\n",
  1506. dev->name, len, print_mac(mac, mgmt->sa));
  1507. return;
  1508. }
  1509. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1510. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1511. "unknown AP (SA=%s BSSID=%s) - "
  1512. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1513. print_mac(mac, mgmt->bssid));
  1514. return;
  1515. }
  1516. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1517. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1518. " (reason=%d)\n",
  1519. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1520. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1521. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1522. }
  1523. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1524. ifsta->state == IEEE80211_ASSOCIATE ||
  1525. ifsta->state == IEEE80211_ASSOCIATED) {
  1526. ifsta->state = IEEE80211_AUTHENTICATE;
  1527. mod_timer(&ifsta->timer, jiffies +
  1528. IEEE80211_RETRY_AUTH_INTERVAL);
  1529. }
  1530. ieee80211_set_disassoc(dev, ifsta, 1);
  1531. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1532. }
  1533. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1534. struct ieee80211_if_sta *ifsta,
  1535. struct ieee80211_mgmt *mgmt,
  1536. size_t len)
  1537. {
  1538. u16 reason_code;
  1539. DECLARE_MAC_BUF(mac);
  1540. if (len < 24 + 2) {
  1541. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1542. "received from %s - ignored\n",
  1543. dev->name, len, print_mac(mac, mgmt->sa));
  1544. return;
  1545. }
  1546. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1547. printk(KERN_DEBUG "%s: disassociation frame received from "
  1548. "unknown AP (SA=%s BSSID=%s) - "
  1549. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1550. print_mac(mac, mgmt->bssid));
  1551. return;
  1552. }
  1553. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1554. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1555. " (reason=%d)\n",
  1556. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1557. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1558. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1559. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1560. ifsta->state = IEEE80211_ASSOCIATE;
  1561. mod_timer(&ifsta->timer, jiffies +
  1562. IEEE80211_RETRY_AUTH_INTERVAL);
  1563. }
  1564. ieee80211_set_disassoc(dev, ifsta, 0);
  1565. }
  1566. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1567. struct ieee80211_if_sta *ifsta,
  1568. struct ieee80211_mgmt *mgmt,
  1569. size_t len,
  1570. int reassoc)
  1571. {
  1572. struct ieee80211_local *local = sdata->local;
  1573. struct net_device *dev = sdata->dev;
  1574. struct ieee80211_supported_band *sband;
  1575. struct sta_info *sta;
  1576. u64 rates, basic_rates;
  1577. u16 capab_info, status_code, aid;
  1578. struct ieee802_11_elems elems;
  1579. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1580. u8 *pos;
  1581. int i, j;
  1582. DECLARE_MAC_BUF(mac);
  1583. bool have_higher_than_11mbit = false;
  1584. /* AssocResp and ReassocResp have identical structure, so process both
  1585. * of them in this function. */
  1586. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1587. printk(KERN_DEBUG "%s: association frame received from "
  1588. "%s, but not in associate state - ignored\n",
  1589. dev->name, print_mac(mac, mgmt->sa));
  1590. return;
  1591. }
  1592. if (len < 24 + 6) {
  1593. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1594. "received from %s - ignored\n",
  1595. dev->name, len, print_mac(mac, mgmt->sa));
  1596. return;
  1597. }
  1598. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1599. printk(KERN_DEBUG "%s: association frame received from "
  1600. "unknown AP (SA=%s BSSID=%s) - "
  1601. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1602. print_mac(mac, mgmt->bssid));
  1603. return;
  1604. }
  1605. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1606. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1607. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1608. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1609. "status=%d aid=%d)\n",
  1610. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1611. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1612. if (status_code != WLAN_STATUS_SUCCESS) {
  1613. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1614. dev->name, status_code);
  1615. /* if this was a reassociation, ensure we try a "full"
  1616. * association next time. This works around some broken APs
  1617. * which do not correctly reject reassociation requests. */
  1618. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1619. return;
  1620. }
  1621. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1622. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1623. "set\n", dev->name, aid);
  1624. aid &= ~(BIT(15) | BIT(14));
  1625. pos = mgmt->u.assoc_resp.variable;
  1626. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1627. if (!elems.supp_rates) {
  1628. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1629. dev->name);
  1630. return;
  1631. }
  1632. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1633. ifsta->aid = aid;
  1634. ifsta->ap_capab = capab_info;
  1635. kfree(ifsta->assocresp_ies);
  1636. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1637. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1638. if (ifsta->assocresp_ies)
  1639. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1640. rcu_read_lock();
  1641. /* Add STA entry for the AP */
  1642. sta = sta_info_get(local, ifsta->bssid);
  1643. if (!sta) {
  1644. struct ieee80211_sta_bss *bss;
  1645. int err;
  1646. sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
  1647. if (!sta) {
  1648. printk(KERN_DEBUG "%s: failed to alloc STA entry for"
  1649. " the AP\n", dev->name);
  1650. rcu_read_unlock();
  1651. return;
  1652. }
  1653. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1654. local->hw.conf.channel->center_freq,
  1655. ifsta->ssid, ifsta->ssid_len);
  1656. if (bss) {
  1657. sta->last_rssi = bss->rssi;
  1658. sta->last_signal = bss->signal;
  1659. sta->last_noise = bss->noise;
  1660. ieee80211_rx_bss_put(dev, bss);
  1661. }
  1662. err = sta_info_insert(sta);
  1663. if (err) {
  1664. printk(KERN_DEBUG "%s: failed to insert STA entry for"
  1665. " the AP (error %d)\n", dev->name, err);
  1666. rcu_read_unlock();
  1667. return;
  1668. }
  1669. }
  1670. /*
  1671. * FIXME: Do we really need to update the sta_info's information here?
  1672. * We already know about the AP (we found it in our list) so it
  1673. * should already be filled with the right info, no?
  1674. * As is stands, all this is racy because typically we assume
  1675. * the information that is filled in here (except flags) doesn't
  1676. * change while a STA structure is alive. As such, it should move
  1677. * to between the sta_info_alloc() and sta_info_insert() above.
  1678. */
  1679. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1680. WLAN_STA_AUTHORIZED;
  1681. rates = 0;
  1682. basic_rates = 0;
  1683. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1684. for (i = 0; i < elems.supp_rates_len; i++) {
  1685. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1686. if (rate > 110)
  1687. have_higher_than_11mbit = true;
  1688. for (j = 0; j < sband->n_bitrates; j++) {
  1689. if (sband->bitrates[j].bitrate == rate)
  1690. rates |= BIT(j);
  1691. if (elems.supp_rates[i] & 0x80)
  1692. basic_rates |= BIT(j);
  1693. }
  1694. }
  1695. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1696. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1697. if (rate > 110)
  1698. have_higher_than_11mbit = true;
  1699. for (j = 0; j < sband->n_bitrates; j++) {
  1700. if (sband->bitrates[j].bitrate == rate)
  1701. rates |= BIT(j);
  1702. if (elems.ext_supp_rates[i] & 0x80)
  1703. basic_rates |= BIT(j);
  1704. }
  1705. }
  1706. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1707. sdata->basic_rates = basic_rates;
  1708. /* cf. IEEE 802.11 9.2.12 */
  1709. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1710. have_higher_than_11mbit)
  1711. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1712. else
  1713. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1714. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param) {
  1715. struct ieee80211_ht_bss_info bss_info;
  1716. ieee80211_ht_cap_ie_to_ht_info(
  1717. (struct ieee80211_ht_cap *)
  1718. elems.ht_cap_elem, &sta->ht_info);
  1719. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1720. (struct ieee80211_ht_addt_info *)
  1721. elems.ht_info_elem, &bss_info);
  1722. ieee80211_handle_ht(local, 1, &sta->ht_info, &bss_info);
  1723. }
  1724. rate_control_rate_init(sta, local);
  1725. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1726. sta->flags |= WLAN_STA_WME;
  1727. rcu_read_unlock();
  1728. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1729. elems.wmm_param_len);
  1730. } else
  1731. rcu_read_unlock();
  1732. /* set AID and assoc capability,
  1733. * ieee80211_set_associated() will tell the driver */
  1734. bss_conf->aid = aid;
  1735. bss_conf->assoc_capability = capab_info;
  1736. ieee80211_set_associated(dev, ifsta, 1);
  1737. ieee80211_associated(dev, ifsta);
  1738. }
  1739. /* Caller must hold local->sta_bss_lock */
  1740. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1741. struct ieee80211_sta_bss *bss)
  1742. {
  1743. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1744. u8 hash_idx;
  1745. if (bss_mesh_cfg(bss))
  1746. hash_idx = mesh_id_hash(bss_mesh_id(bss),
  1747. bss_mesh_id_len(bss));
  1748. else
  1749. hash_idx = STA_HASH(bss->bssid);
  1750. bss->hnext = local->sta_bss_hash[hash_idx];
  1751. local->sta_bss_hash[hash_idx] = bss;
  1752. }
  1753. /* Caller must hold local->sta_bss_lock */
  1754. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1755. struct ieee80211_sta_bss *bss)
  1756. {
  1757. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1758. struct ieee80211_sta_bss *b, *prev = NULL;
  1759. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1760. while (b) {
  1761. if (b == bss) {
  1762. if (!prev)
  1763. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1764. bss->hnext;
  1765. else
  1766. prev->hnext = bss->hnext;
  1767. break;
  1768. }
  1769. prev = b;
  1770. b = b->hnext;
  1771. }
  1772. }
  1773. static struct ieee80211_sta_bss *
  1774. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1775. u8 *ssid, u8 ssid_len)
  1776. {
  1777. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1778. struct ieee80211_sta_bss *bss;
  1779. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1780. if (!bss)
  1781. return NULL;
  1782. atomic_inc(&bss->users);
  1783. atomic_inc(&bss->users);
  1784. memcpy(bss->bssid, bssid, ETH_ALEN);
  1785. bss->freq = freq;
  1786. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1787. memcpy(bss->ssid, ssid, ssid_len);
  1788. bss->ssid_len = ssid_len;
  1789. }
  1790. spin_lock_bh(&local->sta_bss_lock);
  1791. /* TODO: order by RSSI? */
  1792. list_add_tail(&bss->list, &local->sta_bss_list);
  1793. __ieee80211_rx_bss_hash_add(dev, bss);
  1794. spin_unlock_bh(&local->sta_bss_lock);
  1795. return bss;
  1796. }
  1797. static struct ieee80211_sta_bss *
  1798. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1799. u8 *ssid, u8 ssid_len)
  1800. {
  1801. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1802. struct ieee80211_sta_bss *bss;
  1803. spin_lock_bh(&local->sta_bss_lock);
  1804. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1805. while (bss) {
  1806. if (!bss_mesh_cfg(bss) &&
  1807. !memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1808. bss->freq == freq &&
  1809. bss->ssid_len == ssid_len &&
  1810. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1811. atomic_inc(&bss->users);
  1812. break;
  1813. }
  1814. bss = bss->hnext;
  1815. }
  1816. spin_unlock_bh(&local->sta_bss_lock);
  1817. return bss;
  1818. }
  1819. #ifdef CONFIG_MAC80211_MESH
  1820. static struct ieee80211_sta_bss *
  1821. ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1822. u8 *mesh_cfg, int freq)
  1823. {
  1824. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1825. struct ieee80211_sta_bss *bss;
  1826. spin_lock_bh(&local->sta_bss_lock);
  1827. bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
  1828. while (bss) {
  1829. if (bss_mesh_cfg(bss) &&
  1830. !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
  1831. bss->freq == freq &&
  1832. mesh_id_len == bss->mesh_id_len &&
  1833. (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
  1834. mesh_id_len))) {
  1835. atomic_inc(&bss->users);
  1836. break;
  1837. }
  1838. bss = bss->hnext;
  1839. }
  1840. spin_unlock_bh(&local->sta_bss_lock);
  1841. return bss;
  1842. }
  1843. static struct ieee80211_sta_bss *
  1844. ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1845. u8 *mesh_cfg, int mesh_config_len, int freq)
  1846. {
  1847. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1848. struct ieee80211_sta_bss *bss;
  1849. if (mesh_config_len != MESH_CFG_LEN)
  1850. return NULL;
  1851. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1852. if (!bss)
  1853. return NULL;
  1854. bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
  1855. if (!bss->mesh_cfg) {
  1856. kfree(bss);
  1857. return NULL;
  1858. }
  1859. if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
  1860. bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
  1861. if (!bss->mesh_id) {
  1862. kfree(bss->mesh_cfg);
  1863. kfree(bss);
  1864. return NULL;
  1865. }
  1866. memcpy(bss->mesh_id, mesh_id, mesh_id_len);
  1867. }
  1868. atomic_inc(&bss->users);
  1869. atomic_inc(&bss->users);
  1870. memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
  1871. bss->mesh_id_len = mesh_id_len;
  1872. bss->freq = freq;
  1873. spin_lock_bh(&local->sta_bss_lock);
  1874. /* TODO: order by RSSI? */
  1875. list_add_tail(&bss->list, &local->sta_bss_list);
  1876. __ieee80211_rx_bss_hash_add(dev, bss);
  1877. spin_unlock_bh(&local->sta_bss_lock);
  1878. return bss;
  1879. }
  1880. #endif
  1881. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1882. {
  1883. kfree(bss->wpa_ie);
  1884. kfree(bss->rsn_ie);
  1885. kfree(bss->wmm_ie);
  1886. kfree(bss->ht_ie);
  1887. kfree(bss_mesh_id(bss));
  1888. kfree(bss_mesh_cfg(bss));
  1889. kfree(bss);
  1890. }
  1891. static void ieee80211_rx_bss_put(struct net_device *dev,
  1892. struct ieee80211_sta_bss *bss)
  1893. {
  1894. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1895. if (!atomic_dec_and_test(&bss->users))
  1896. return;
  1897. spin_lock_bh(&local->sta_bss_lock);
  1898. __ieee80211_rx_bss_hash_del(dev, bss);
  1899. list_del(&bss->list);
  1900. spin_unlock_bh(&local->sta_bss_lock);
  1901. ieee80211_rx_bss_free(bss);
  1902. }
  1903. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1904. {
  1905. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1906. spin_lock_init(&local->sta_bss_lock);
  1907. INIT_LIST_HEAD(&local->sta_bss_list);
  1908. }
  1909. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1910. {
  1911. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1912. struct ieee80211_sta_bss *bss, *tmp;
  1913. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1914. ieee80211_rx_bss_put(dev, bss);
  1915. }
  1916. static int ieee80211_sta_join_ibss(struct net_device *dev,
  1917. struct ieee80211_if_sta *ifsta,
  1918. struct ieee80211_sta_bss *bss)
  1919. {
  1920. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1921. int res, rates, i, j;
  1922. struct sk_buff *skb;
  1923. struct ieee80211_mgmt *mgmt;
  1924. struct ieee80211_tx_control control;
  1925. struct rate_selection ratesel;
  1926. u8 *pos;
  1927. struct ieee80211_sub_if_data *sdata;
  1928. struct ieee80211_supported_band *sband;
  1929. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1930. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1931. /* Remove possible STA entries from other IBSS networks. */
  1932. sta_info_flush_delayed(sdata);
  1933. if (local->ops->reset_tsf) {
  1934. /* Reset own TSF to allow time synchronization work. */
  1935. local->ops->reset_tsf(local_to_hw(local));
  1936. }
  1937. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  1938. res = ieee80211_if_config(dev);
  1939. if (res)
  1940. return res;
  1941. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  1942. sdata->drop_unencrypted = bss->capability &
  1943. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  1944. res = ieee80211_set_freq(local, bss->freq);
  1945. if (local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS) {
  1946. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  1947. "%d MHz\n", dev->name, local->oper_channel->center_freq);
  1948. return -1;
  1949. }
  1950. /* Set beacon template */
  1951. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  1952. do {
  1953. if (!skb)
  1954. break;
  1955. skb_reserve(skb, local->hw.extra_tx_headroom);
  1956. mgmt = (struct ieee80211_mgmt *)
  1957. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  1958. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  1959. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1960. IEEE80211_STYPE_BEACON);
  1961. memset(mgmt->da, 0xff, ETH_ALEN);
  1962. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1963. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1964. mgmt->u.beacon.beacon_int =
  1965. cpu_to_le16(local->hw.conf.beacon_int);
  1966. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  1967. pos = skb_put(skb, 2 + ifsta->ssid_len);
  1968. *pos++ = WLAN_EID_SSID;
  1969. *pos++ = ifsta->ssid_len;
  1970. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  1971. rates = bss->supp_rates_len;
  1972. if (rates > 8)
  1973. rates = 8;
  1974. pos = skb_put(skb, 2 + rates);
  1975. *pos++ = WLAN_EID_SUPP_RATES;
  1976. *pos++ = rates;
  1977. memcpy(pos, bss->supp_rates, rates);
  1978. if (bss->band == IEEE80211_BAND_2GHZ) {
  1979. pos = skb_put(skb, 2 + 1);
  1980. *pos++ = WLAN_EID_DS_PARAMS;
  1981. *pos++ = 1;
  1982. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  1983. }
  1984. pos = skb_put(skb, 2 + 2);
  1985. *pos++ = WLAN_EID_IBSS_PARAMS;
  1986. *pos++ = 2;
  1987. /* FIX: set ATIM window based on scan results */
  1988. *pos++ = 0;
  1989. *pos++ = 0;
  1990. if (bss->supp_rates_len > 8) {
  1991. rates = bss->supp_rates_len - 8;
  1992. pos = skb_put(skb, 2 + rates);
  1993. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  1994. *pos++ = rates;
  1995. memcpy(pos, &bss->supp_rates[8], rates);
  1996. }
  1997. memset(&control, 0, sizeof(control));
  1998. rate_control_get_rate(dev, sband, skb, &ratesel);
  1999. if (!ratesel.rate) {
  2000. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  2001. "for IBSS beacon\n", dev->name);
  2002. break;
  2003. }
  2004. control.vif = &sdata->vif;
  2005. control.tx_rate = ratesel.rate;
  2006. if (sdata->bss_conf.use_short_preamble &&
  2007. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  2008. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  2009. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  2010. control.flags |= IEEE80211_TXCTL_NO_ACK;
  2011. control.retry_limit = 1;
  2012. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2013. if (ifsta->probe_resp) {
  2014. mgmt = (struct ieee80211_mgmt *)
  2015. ifsta->probe_resp->data;
  2016. mgmt->frame_control =
  2017. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2018. IEEE80211_STYPE_PROBE_RESP);
  2019. } else {
  2020. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2021. "template for IBSS\n", dev->name);
  2022. }
  2023. if (local->ops->beacon_update &&
  2024. local->ops->beacon_update(local_to_hw(local),
  2025. skb, &control) == 0) {
  2026. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2027. "template\n", dev->name);
  2028. skb = NULL;
  2029. }
  2030. rates = 0;
  2031. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2032. for (i = 0; i < bss->supp_rates_len; i++) {
  2033. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2034. for (j = 0; j < sband->n_bitrates; j++)
  2035. if (sband->bitrates[j].bitrate == bitrate)
  2036. rates |= BIT(j);
  2037. }
  2038. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  2039. ieee80211_sta_def_wmm_params(dev, bss, 1);
  2040. } while (0);
  2041. if (skb) {
  2042. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2043. "template\n", dev->name);
  2044. dev_kfree_skb(skb);
  2045. }
  2046. ifsta->state = IEEE80211_IBSS_JOINED;
  2047. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2048. ieee80211_rx_bss_put(dev, bss);
  2049. return res;
  2050. }
  2051. u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
  2052. struct ieee802_11_elems *elems,
  2053. enum ieee80211_band band)
  2054. {
  2055. struct ieee80211_supported_band *sband;
  2056. struct ieee80211_rate *bitrates;
  2057. size_t num_rates;
  2058. u64 supp_rates;
  2059. int i, j;
  2060. sband = local->hw.wiphy->bands[band];
  2061. if (!sband) {
  2062. WARN_ON(1);
  2063. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2064. }
  2065. bitrates = sband->bitrates;
  2066. num_rates = sband->n_bitrates;
  2067. supp_rates = 0;
  2068. for (i = 0; i < elems->supp_rates_len +
  2069. elems->ext_supp_rates_len; i++) {
  2070. u8 rate = 0;
  2071. int own_rate;
  2072. if (i < elems->supp_rates_len)
  2073. rate = elems->supp_rates[i];
  2074. else if (elems->ext_supp_rates)
  2075. rate = elems->ext_supp_rates
  2076. [i - elems->supp_rates_len];
  2077. own_rate = 5 * (rate & 0x7f);
  2078. for (j = 0; j < num_rates; j++)
  2079. if (bitrates[j].bitrate == own_rate)
  2080. supp_rates |= BIT(j);
  2081. }
  2082. return supp_rates;
  2083. }
  2084. static void ieee80211_rx_bss_info(struct net_device *dev,
  2085. struct ieee80211_mgmt *mgmt,
  2086. size_t len,
  2087. struct ieee80211_rx_status *rx_status,
  2088. int beacon)
  2089. {
  2090. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2091. struct ieee802_11_elems elems;
  2092. size_t baselen;
  2093. int freq, clen;
  2094. struct ieee80211_sta_bss *bss;
  2095. struct sta_info *sta;
  2096. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2097. u64 beacon_timestamp, rx_timestamp;
  2098. struct ieee80211_channel *channel;
  2099. DECLARE_MAC_BUF(mac);
  2100. DECLARE_MAC_BUF(mac2);
  2101. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  2102. return; /* ignore ProbeResp to foreign address */
  2103. #if 0
  2104. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  2105. dev->name, beacon ? "Beacon" : "Probe Response",
  2106. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  2107. #endif
  2108. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2109. if (baselen > len)
  2110. return;
  2111. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  2112. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2113. if (ieee80211_vif_is_mesh(&sdata->vif) && elems.mesh_id &&
  2114. elems.mesh_config && mesh_matches_local(&elems, dev)) {
  2115. u64 rates = ieee80211_sta_get_rates(local, &elems,
  2116. rx_status->band);
  2117. mesh_neighbour_update(mgmt->sa, rates, dev,
  2118. mesh_peer_accepts_plinks(&elems, dev));
  2119. }
  2120. rcu_read_lock();
  2121. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  2122. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  2123. (sta = sta_info_get(local, mgmt->sa))) {
  2124. u64 prev_rates;
  2125. u64 supp_rates = ieee80211_sta_get_rates(local, &elems,
  2126. rx_status->band);
  2127. prev_rates = sta->supp_rates[rx_status->band];
  2128. sta->supp_rates[rx_status->band] &= supp_rates;
  2129. if (sta->supp_rates[rx_status->band] == 0) {
  2130. /* No matching rates - this should not really happen.
  2131. * Make sure that at least one rate is marked
  2132. * supported to avoid issues with TX rate ctrl. */
  2133. sta->supp_rates[rx_status->band] =
  2134. sdata->u.sta.supp_rates_bits[rx_status->band];
  2135. }
  2136. if (sta->supp_rates[rx_status->band] != prev_rates) {
  2137. printk(KERN_DEBUG "%s: updated supp_rates set for "
  2138. "%s based on beacon info (0x%llx & 0x%llx -> "
  2139. "0x%llx)\n",
  2140. dev->name, print_mac(mac, sta->addr),
  2141. (unsigned long long) prev_rates,
  2142. (unsigned long long) supp_rates,
  2143. (unsigned long long) sta->supp_rates[rx_status->band]);
  2144. }
  2145. }
  2146. rcu_read_unlock();
  2147. if (elems.ds_params && elems.ds_params_len == 1)
  2148. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  2149. else
  2150. freq = rx_status->freq;
  2151. channel = ieee80211_get_channel(local->hw.wiphy, freq);
  2152. if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
  2153. return;
  2154. #ifdef CONFIG_MAC80211_MESH
  2155. if (elems.mesh_config)
  2156. bss = ieee80211_rx_mesh_bss_get(dev, elems.mesh_id,
  2157. elems.mesh_id_len, elems.mesh_config, freq);
  2158. else
  2159. #endif
  2160. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  2161. elems.ssid, elems.ssid_len);
  2162. if (!bss) {
  2163. #ifdef CONFIG_MAC80211_MESH
  2164. if (elems.mesh_config)
  2165. bss = ieee80211_rx_mesh_bss_add(dev, elems.mesh_id,
  2166. elems.mesh_id_len, elems.mesh_config,
  2167. elems.mesh_config_len, freq);
  2168. else
  2169. #endif
  2170. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  2171. elems.ssid, elems.ssid_len);
  2172. if (!bss)
  2173. return;
  2174. } else {
  2175. #if 0
  2176. /* TODO: order by RSSI? */
  2177. spin_lock_bh(&local->sta_bss_lock);
  2178. list_move_tail(&bss->list, &local->sta_bss_list);
  2179. spin_unlock_bh(&local->sta_bss_lock);
  2180. #endif
  2181. }
  2182. bss->band = rx_status->band;
  2183. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2184. bss->probe_resp && beacon) {
  2185. /* STA mode:
  2186. * Do not allow beacon to override data from Probe Response. */
  2187. ieee80211_rx_bss_put(dev, bss);
  2188. return;
  2189. }
  2190. /* save the ERP value so that it is available at association time */
  2191. if (elems.erp_info && elems.erp_info_len >= 1) {
  2192. bss->erp_value = elems.erp_info[0];
  2193. bss->has_erp_value = 1;
  2194. }
  2195. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  2196. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  2197. bss->supp_rates_len = 0;
  2198. if (elems.supp_rates) {
  2199. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2200. if (clen > elems.supp_rates_len)
  2201. clen = elems.supp_rates_len;
  2202. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  2203. clen);
  2204. bss->supp_rates_len += clen;
  2205. }
  2206. if (elems.ext_supp_rates) {
  2207. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2208. if (clen > elems.ext_supp_rates_len)
  2209. clen = elems.ext_supp_rates_len;
  2210. memcpy(&bss->supp_rates[bss->supp_rates_len],
  2211. elems.ext_supp_rates, clen);
  2212. bss->supp_rates_len += clen;
  2213. }
  2214. if (elems.wpa &&
  2215. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  2216. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  2217. kfree(bss->wpa_ie);
  2218. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  2219. if (bss->wpa_ie) {
  2220. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  2221. bss->wpa_ie_len = elems.wpa_len + 2;
  2222. } else
  2223. bss->wpa_ie_len = 0;
  2224. } else if (!elems.wpa && bss->wpa_ie) {
  2225. kfree(bss->wpa_ie);
  2226. bss->wpa_ie = NULL;
  2227. bss->wpa_ie_len = 0;
  2228. }
  2229. if (elems.rsn &&
  2230. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  2231. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  2232. kfree(bss->rsn_ie);
  2233. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  2234. if (bss->rsn_ie) {
  2235. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  2236. bss->rsn_ie_len = elems.rsn_len + 2;
  2237. } else
  2238. bss->rsn_ie_len = 0;
  2239. } else if (!elems.rsn && bss->rsn_ie) {
  2240. kfree(bss->rsn_ie);
  2241. bss->rsn_ie = NULL;
  2242. bss->rsn_ie_len = 0;
  2243. }
  2244. if (elems.wmm_param &&
  2245. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  2246. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  2247. kfree(bss->wmm_ie);
  2248. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  2249. if (bss->wmm_ie) {
  2250. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  2251. elems.wmm_param_len + 2);
  2252. bss->wmm_ie_len = elems.wmm_param_len + 2;
  2253. } else
  2254. bss->wmm_ie_len = 0;
  2255. } else if (!elems.wmm_param && bss->wmm_ie) {
  2256. kfree(bss->wmm_ie);
  2257. bss->wmm_ie = NULL;
  2258. bss->wmm_ie_len = 0;
  2259. }
  2260. if (elems.ht_cap_elem &&
  2261. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  2262. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  2263. kfree(bss->ht_ie);
  2264. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  2265. if (bss->ht_ie) {
  2266. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  2267. elems.ht_cap_elem_len + 2);
  2268. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  2269. } else
  2270. bss->ht_ie_len = 0;
  2271. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  2272. kfree(bss->ht_ie);
  2273. bss->ht_ie = NULL;
  2274. bss->ht_ie_len = 0;
  2275. }
  2276. bss->timestamp = beacon_timestamp;
  2277. bss->last_update = jiffies;
  2278. bss->rssi = rx_status->ssi;
  2279. bss->signal = rx_status->signal;
  2280. bss->noise = rx_status->noise;
  2281. if (!beacon)
  2282. bss->probe_resp++;
  2283. /* check if we need to merge IBSS */
  2284. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2285. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2286. bss->capability & WLAN_CAPABILITY_IBSS &&
  2287. bss->freq == local->oper_channel->center_freq &&
  2288. elems.ssid_len == sdata->u.sta.ssid_len &&
  2289. memcmp(elems.ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) {
  2290. if (rx_status->flag & RX_FLAG_TSFT) {
  2291. /* in order for correct IBSS merging we need mactime
  2292. *
  2293. * since mactime is defined as the time the first data
  2294. * symbol of the frame hits the PHY, and the timestamp
  2295. * of the beacon is defined as "the time that the data
  2296. * symbol containing the first bit of the timestamp is
  2297. * transmitted to the PHY plus the transmitting STA’s
  2298. * delays through its local PHY from the MAC-PHY
  2299. * interface to its interface with the WM"
  2300. * (802.11 11.1.2) - equals the time this bit arrives at
  2301. * the receiver - we have to take into account the
  2302. * offset between the two.
  2303. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2304. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2305. */
  2306. int rate = local->hw.wiphy->bands[rx_status->band]->
  2307. bitrates[rx_status->rate_idx].bitrate;
  2308. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2309. } else if (local && local->ops && local->ops->get_tsf)
  2310. /* second best option: get current TSF */
  2311. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2312. else
  2313. /* can't merge without knowing the TSF */
  2314. rx_timestamp = -1LLU;
  2315. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2316. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2317. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2318. print_mac(mac, mgmt->sa),
  2319. print_mac(mac2, mgmt->bssid),
  2320. (unsigned long long)rx_timestamp,
  2321. (unsigned long long)beacon_timestamp,
  2322. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2323. jiffies);
  2324. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2325. if (beacon_timestamp > rx_timestamp) {
  2326. #ifndef CONFIG_MAC80211_IBSS_DEBUG
  2327. if (net_ratelimit())
  2328. #endif
  2329. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2330. "local TSF - IBSS merge with BSSID %s\n",
  2331. dev->name, print_mac(mac, mgmt->bssid));
  2332. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2333. ieee80211_ibss_add_sta(dev, NULL,
  2334. mgmt->bssid, mgmt->sa);
  2335. }
  2336. }
  2337. ieee80211_rx_bss_put(dev, bss);
  2338. }
  2339. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2340. struct ieee80211_mgmt *mgmt,
  2341. size_t len,
  2342. struct ieee80211_rx_status *rx_status)
  2343. {
  2344. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  2345. }
  2346. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2347. struct ieee80211_mgmt *mgmt,
  2348. size_t len,
  2349. struct ieee80211_rx_status *rx_status)
  2350. {
  2351. struct ieee80211_sub_if_data *sdata;
  2352. struct ieee80211_if_sta *ifsta;
  2353. size_t baselen;
  2354. struct ieee802_11_elems elems;
  2355. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2356. struct ieee80211_conf *conf = &local->hw.conf;
  2357. u32 changed = 0;
  2358. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  2359. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2360. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2361. return;
  2362. ifsta = &sdata->u.sta;
  2363. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2364. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2365. return;
  2366. /* Process beacon from the current BSS */
  2367. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2368. if (baselen > len)
  2369. return;
  2370. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2371. if (elems.erp_info && elems.erp_info_len >= 1)
  2372. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2373. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2374. elems.wmm_param && conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2375. struct ieee80211_ht_bss_info bss_info;
  2376. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2377. (struct ieee80211_ht_addt_info *)
  2378. elems.ht_info_elem, &bss_info);
  2379. changed |= ieee80211_handle_ht(local, 1, &conf->ht_conf,
  2380. &bss_info);
  2381. }
  2382. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2383. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2384. elems.wmm_param_len);
  2385. }
  2386. ieee80211_bss_info_change_notify(sdata, changed);
  2387. }
  2388. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2389. struct ieee80211_if_sta *ifsta,
  2390. struct ieee80211_mgmt *mgmt,
  2391. size_t len,
  2392. struct ieee80211_rx_status *rx_status)
  2393. {
  2394. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2395. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2396. int tx_last_beacon;
  2397. struct sk_buff *skb;
  2398. struct ieee80211_mgmt *resp;
  2399. u8 *pos, *end;
  2400. DECLARE_MAC_BUF(mac);
  2401. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2402. DECLARE_MAC_BUF(mac2);
  2403. DECLARE_MAC_BUF(mac3);
  2404. #endif
  2405. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2406. ifsta->state != IEEE80211_IBSS_JOINED ||
  2407. len < 24 + 2 || !ifsta->probe_resp)
  2408. return;
  2409. if (local->ops->tx_last_beacon)
  2410. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2411. else
  2412. tx_last_beacon = 1;
  2413. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2414. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2415. "%s (tx_last_beacon=%d)\n",
  2416. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2417. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2418. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2419. if (!tx_last_beacon)
  2420. return;
  2421. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2422. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2423. return;
  2424. end = ((u8 *) mgmt) + len;
  2425. pos = mgmt->u.probe_req.variable;
  2426. if (pos[0] != WLAN_EID_SSID ||
  2427. pos + 2 + pos[1] > end) {
  2428. if (net_ratelimit()) {
  2429. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2430. "from %s\n",
  2431. dev->name, print_mac(mac, mgmt->sa));
  2432. }
  2433. return;
  2434. }
  2435. if (pos[1] != 0 &&
  2436. (pos[1] != ifsta->ssid_len ||
  2437. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2438. /* Ignore ProbeReq for foreign SSID */
  2439. return;
  2440. }
  2441. /* Reply with ProbeResp */
  2442. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2443. if (!skb)
  2444. return;
  2445. resp = (struct ieee80211_mgmt *) skb->data;
  2446. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2447. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2448. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2449. dev->name, print_mac(mac, resp->da));
  2450. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2451. ieee80211_sta_tx(dev, skb, 0);
  2452. }
  2453. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2454. struct ieee80211_if_sta *ifsta,
  2455. struct ieee80211_mgmt *mgmt,
  2456. size_t len,
  2457. struct ieee80211_rx_status *rx_status)
  2458. {
  2459. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2460. if (len < IEEE80211_MIN_ACTION_SIZE)
  2461. return;
  2462. switch (mgmt->u.action.category) {
  2463. case WLAN_CATEGORY_BACK:
  2464. switch (mgmt->u.action.u.addba_req.action_code) {
  2465. case WLAN_ACTION_ADDBA_REQ:
  2466. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2467. sizeof(mgmt->u.action.u.addba_req)))
  2468. break;
  2469. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2470. break;
  2471. case WLAN_ACTION_ADDBA_RESP:
  2472. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2473. sizeof(mgmt->u.action.u.addba_resp)))
  2474. break;
  2475. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2476. break;
  2477. case WLAN_ACTION_DELBA:
  2478. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2479. sizeof(mgmt->u.action.u.delba)))
  2480. break;
  2481. ieee80211_sta_process_delba(dev, mgmt, len);
  2482. break;
  2483. default:
  2484. if (net_ratelimit())
  2485. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2486. dev->name);
  2487. break;
  2488. }
  2489. break;
  2490. case PLINK_CATEGORY:
  2491. if (ieee80211_vif_is_mesh(&sdata->vif))
  2492. mesh_rx_plink_frame(dev, mgmt, len, rx_status);
  2493. break;
  2494. case MESH_PATH_SEL_CATEGORY:
  2495. if (ieee80211_vif_is_mesh(&sdata->vif))
  2496. mesh_rx_path_sel_frame(dev, mgmt, len);
  2497. break;
  2498. default:
  2499. if (net_ratelimit())
  2500. printk(KERN_DEBUG "%s: Rx unknown action frame - "
  2501. "category=%d\n", dev->name, mgmt->u.action.category);
  2502. break;
  2503. }
  2504. }
  2505. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2506. struct ieee80211_rx_status *rx_status)
  2507. {
  2508. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2509. struct ieee80211_sub_if_data *sdata;
  2510. struct ieee80211_if_sta *ifsta;
  2511. struct ieee80211_mgmt *mgmt;
  2512. u16 fc;
  2513. if (skb->len < 24)
  2514. goto fail;
  2515. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2516. ifsta = &sdata->u.sta;
  2517. mgmt = (struct ieee80211_mgmt *) skb->data;
  2518. fc = le16_to_cpu(mgmt->frame_control);
  2519. switch (fc & IEEE80211_FCTL_STYPE) {
  2520. case IEEE80211_STYPE_PROBE_REQ:
  2521. case IEEE80211_STYPE_PROBE_RESP:
  2522. case IEEE80211_STYPE_BEACON:
  2523. case IEEE80211_STYPE_ACTION:
  2524. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2525. case IEEE80211_STYPE_AUTH:
  2526. case IEEE80211_STYPE_ASSOC_RESP:
  2527. case IEEE80211_STYPE_REASSOC_RESP:
  2528. case IEEE80211_STYPE_DEAUTH:
  2529. case IEEE80211_STYPE_DISASSOC:
  2530. skb_queue_tail(&ifsta->skb_queue, skb);
  2531. queue_work(local->hw.workqueue, &ifsta->work);
  2532. return;
  2533. default:
  2534. printk(KERN_DEBUG "%s: received unknown management frame - "
  2535. "stype=%d\n", dev->name,
  2536. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2537. break;
  2538. }
  2539. fail:
  2540. kfree_skb(skb);
  2541. }
  2542. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2543. struct sk_buff *skb)
  2544. {
  2545. struct ieee80211_rx_status *rx_status;
  2546. struct ieee80211_sub_if_data *sdata;
  2547. struct ieee80211_if_sta *ifsta;
  2548. struct ieee80211_mgmt *mgmt;
  2549. u16 fc;
  2550. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2551. ifsta = &sdata->u.sta;
  2552. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2553. mgmt = (struct ieee80211_mgmt *) skb->data;
  2554. fc = le16_to_cpu(mgmt->frame_control);
  2555. switch (fc & IEEE80211_FCTL_STYPE) {
  2556. case IEEE80211_STYPE_PROBE_REQ:
  2557. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2558. rx_status);
  2559. break;
  2560. case IEEE80211_STYPE_PROBE_RESP:
  2561. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2562. break;
  2563. case IEEE80211_STYPE_BEACON:
  2564. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2565. break;
  2566. case IEEE80211_STYPE_AUTH:
  2567. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2568. break;
  2569. case IEEE80211_STYPE_ASSOC_RESP:
  2570. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2571. break;
  2572. case IEEE80211_STYPE_REASSOC_RESP:
  2573. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2574. break;
  2575. case IEEE80211_STYPE_DEAUTH:
  2576. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2577. break;
  2578. case IEEE80211_STYPE_DISASSOC:
  2579. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2580. break;
  2581. case IEEE80211_STYPE_ACTION:
  2582. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
  2583. break;
  2584. }
  2585. kfree_skb(skb);
  2586. }
  2587. ieee80211_rx_result
  2588. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2589. struct ieee80211_rx_status *rx_status)
  2590. {
  2591. struct ieee80211_mgmt *mgmt;
  2592. u16 fc;
  2593. if (skb->len < 2)
  2594. return RX_DROP_UNUSABLE;
  2595. mgmt = (struct ieee80211_mgmt *) skb->data;
  2596. fc = le16_to_cpu(mgmt->frame_control);
  2597. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2598. return RX_CONTINUE;
  2599. if (skb->len < 24)
  2600. return RX_DROP_MONITOR;
  2601. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2602. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2603. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2604. skb->len, rx_status);
  2605. dev_kfree_skb(skb);
  2606. return RX_QUEUED;
  2607. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2608. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2609. rx_status);
  2610. dev_kfree_skb(skb);
  2611. return RX_QUEUED;
  2612. }
  2613. }
  2614. return RX_CONTINUE;
  2615. }
  2616. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2617. {
  2618. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2619. int active = 0;
  2620. struct sta_info *sta;
  2621. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2622. rcu_read_lock();
  2623. list_for_each_entry_rcu(sta, &local->sta_list, list) {
  2624. if (sta->sdata == sdata &&
  2625. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2626. jiffies)) {
  2627. active++;
  2628. break;
  2629. }
  2630. }
  2631. rcu_read_unlock();
  2632. return active;
  2633. }
  2634. static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
  2635. {
  2636. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2637. struct sta_info *sta, *tmp;
  2638. LIST_HEAD(tmp_list);
  2639. DECLARE_MAC_BUF(mac);
  2640. unsigned long flags;
  2641. spin_lock_irqsave(&local->sta_lock, flags);
  2642. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2643. if (time_after(jiffies, sta->last_rx + exp_time)) {
  2644. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2645. dev->name, print_mac(mac, sta->addr));
  2646. __sta_info_unlink(&sta);
  2647. if (sta)
  2648. list_add(&sta->list, &tmp_list);
  2649. }
  2650. spin_unlock_irqrestore(&local->sta_lock, flags);
  2651. synchronize_rcu();
  2652. rtnl_lock();
  2653. list_for_each_entry_safe(sta, tmp, &tmp_list, list)
  2654. sta_info_destroy(sta);
  2655. rtnl_unlock();
  2656. }
  2657. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2658. struct ieee80211_if_sta *ifsta)
  2659. {
  2660. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2661. ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
  2662. if (ieee80211_sta_active_ibss(dev))
  2663. return;
  2664. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2665. "IBSS networks with same SSID (merge)\n", dev->name);
  2666. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2667. }
  2668. #ifdef CONFIG_MAC80211_MESH
  2669. static void ieee80211_mesh_housekeeping(struct net_device *dev,
  2670. struct ieee80211_if_sta *ifsta)
  2671. {
  2672. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2673. bool free_plinks;
  2674. ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
  2675. mesh_path_expire(dev);
  2676. free_plinks = mesh_plink_availables(sdata);
  2677. if (free_plinks != sdata->u.sta.accepting_plinks)
  2678. ieee80211_if_config_beacon(dev);
  2679. mod_timer(&ifsta->timer, jiffies +
  2680. IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
  2681. }
  2682. void ieee80211_start_mesh(struct net_device *dev)
  2683. {
  2684. struct ieee80211_if_sta *ifsta;
  2685. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2686. ifsta = &sdata->u.sta;
  2687. ifsta->state = IEEE80211_MESH_UP;
  2688. ieee80211_sta_timer((unsigned long)sdata);
  2689. }
  2690. #endif
  2691. void ieee80211_sta_timer(unsigned long data)
  2692. {
  2693. struct ieee80211_sub_if_data *sdata =
  2694. (struct ieee80211_sub_if_data *) data;
  2695. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2696. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2697. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2698. queue_work(local->hw.workqueue, &ifsta->work);
  2699. }
  2700. void ieee80211_sta_work(struct work_struct *work)
  2701. {
  2702. struct ieee80211_sub_if_data *sdata =
  2703. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2704. struct net_device *dev = sdata->dev;
  2705. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2706. struct ieee80211_if_sta *ifsta;
  2707. struct sk_buff *skb;
  2708. if (!netif_running(dev))
  2709. return;
  2710. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2711. return;
  2712. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2713. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2714. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT) {
  2715. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2716. "(type=%d)\n", dev->name, sdata->vif.type);
  2717. return;
  2718. }
  2719. ifsta = &sdata->u.sta;
  2720. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2721. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2722. #ifdef CONFIG_MAC80211_MESH
  2723. if (ifsta->preq_queue_len &&
  2724. time_after(jiffies,
  2725. ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
  2726. mesh_path_start_discovery(dev);
  2727. #endif
  2728. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2729. ifsta->state != IEEE80211_ASSOCIATE &&
  2730. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2731. if (ifsta->scan_ssid_len)
  2732. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2733. else
  2734. ieee80211_sta_start_scan(dev, NULL, 0);
  2735. return;
  2736. }
  2737. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2738. if (ieee80211_sta_config_auth(dev, ifsta))
  2739. return;
  2740. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2741. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2742. return;
  2743. switch (ifsta->state) {
  2744. case IEEE80211_DISABLED:
  2745. break;
  2746. case IEEE80211_AUTHENTICATE:
  2747. ieee80211_authenticate(dev, ifsta);
  2748. break;
  2749. case IEEE80211_ASSOCIATE:
  2750. ieee80211_associate(dev, ifsta);
  2751. break;
  2752. case IEEE80211_ASSOCIATED:
  2753. ieee80211_associated(dev, ifsta);
  2754. break;
  2755. case IEEE80211_IBSS_SEARCH:
  2756. ieee80211_sta_find_ibss(dev, ifsta);
  2757. break;
  2758. case IEEE80211_IBSS_JOINED:
  2759. ieee80211_sta_merge_ibss(dev, ifsta);
  2760. break;
  2761. #ifdef CONFIG_MAC80211_MESH
  2762. case IEEE80211_MESH_UP:
  2763. ieee80211_mesh_housekeeping(dev, ifsta);
  2764. break;
  2765. #endif
  2766. default:
  2767. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2768. ifsta->state);
  2769. break;
  2770. }
  2771. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2772. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2773. "mixed-cell disabled - disassociate\n", dev->name);
  2774. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2775. ieee80211_set_disassoc(dev, ifsta, 0);
  2776. }
  2777. }
  2778. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2779. struct ieee80211_if_sta *ifsta)
  2780. {
  2781. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2782. if (local->ops->reset_tsf) {
  2783. /* Reset own TSF to allow time synchronization work. */
  2784. local->ops->reset_tsf(local_to_hw(local));
  2785. }
  2786. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2787. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2788. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2789. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2790. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2791. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2792. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2793. else
  2794. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2795. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2796. ifsta->auth_alg);
  2797. ifsta->auth_transaction = -1;
  2798. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2799. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2800. netif_carrier_off(dev);
  2801. }
  2802. void ieee80211_sta_req_auth(struct net_device *dev,
  2803. struct ieee80211_if_sta *ifsta)
  2804. {
  2805. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2806. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2807. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2808. return;
  2809. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2810. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2811. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2812. IEEE80211_STA_AUTO_SSID_SEL))) {
  2813. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2814. queue_work(local->hw.workqueue, &ifsta->work);
  2815. }
  2816. }
  2817. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2818. const char *ssid, int ssid_len)
  2819. {
  2820. int tmp, hidden_ssid;
  2821. if (ssid_len == ifsta->ssid_len &&
  2822. !memcmp(ifsta->ssid, ssid, ssid_len))
  2823. return 1;
  2824. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2825. return 0;
  2826. hidden_ssid = 1;
  2827. tmp = ssid_len;
  2828. while (tmp--) {
  2829. if (ssid[tmp] != '\0') {
  2830. hidden_ssid = 0;
  2831. break;
  2832. }
  2833. }
  2834. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2835. return 1;
  2836. if (ssid_len == 1 && ssid[0] == ' ')
  2837. return 1;
  2838. return 0;
  2839. }
  2840. static int ieee80211_sta_config_auth(struct net_device *dev,
  2841. struct ieee80211_if_sta *ifsta)
  2842. {
  2843. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2844. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2845. struct ieee80211_sta_bss *bss, *selected = NULL;
  2846. int top_rssi = 0, freq;
  2847. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2848. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2849. ifsta->state = IEEE80211_AUTHENTICATE;
  2850. ieee80211_sta_reset_auth(dev, ifsta);
  2851. return 0;
  2852. }
  2853. spin_lock_bh(&local->sta_bss_lock);
  2854. freq = local->oper_channel->center_freq;
  2855. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2856. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2857. continue;
  2858. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2859. !!sdata->default_key)
  2860. continue;
  2861. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2862. bss->freq != freq)
  2863. continue;
  2864. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2865. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2866. continue;
  2867. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2868. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2869. continue;
  2870. if (!selected || top_rssi < bss->rssi) {
  2871. selected = bss;
  2872. top_rssi = bss->rssi;
  2873. }
  2874. }
  2875. if (selected)
  2876. atomic_inc(&selected->users);
  2877. spin_unlock_bh(&local->sta_bss_lock);
  2878. if (selected) {
  2879. ieee80211_set_freq(local, selected->freq);
  2880. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2881. ieee80211_sta_set_ssid(dev, selected->ssid,
  2882. selected->ssid_len);
  2883. ieee80211_sta_set_bssid(dev, selected->bssid);
  2884. ieee80211_sta_def_wmm_params(dev, selected, 0);
  2885. ieee80211_rx_bss_put(dev, selected);
  2886. ifsta->state = IEEE80211_AUTHENTICATE;
  2887. ieee80211_sta_reset_auth(dev, ifsta);
  2888. return 0;
  2889. } else {
  2890. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2891. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2892. ieee80211_sta_start_scan(dev, NULL, 0);
  2893. else
  2894. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2895. ifsta->ssid_len);
  2896. ifsta->state = IEEE80211_AUTHENTICATE;
  2897. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2898. } else
  2899. ifsta->state = IEEE80211_DISABLED;
  2900. }
  2901. return -1;
  2902. }
  2903. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2904. struct ieee80211_if_sta *ifsta)
  2905. {
  2906. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2907. struct ieee80211_sta_bss *bss;
  2908. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2909. struct ieee80211_supported_band *sband;
  2910. u8 bssid[ETH_ALEN], *pos;
  2911. int i;
  2912. DECLARE_MAC_BUF(mac);
  2913. #if 0
  2914. /* Easier testing, use fixed BSSID. */
  2915. memset(bssid, 0xfe, ETH_ALEN);
  2916. #else
  2917. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2918. * own MAC address to make sure that devices that do not have proper
  2919. * random number generator get different BSSID. */
  2920. get_random_bytes(bssid, ETH_ALEN);
  2921. for (i = 0; i < ETH_ALEN; i++)
  2922. bssid[i] ^= dev->dev_addr[i];
  2923. bssid[0] &= ~0x01;
  2924. bssid[0] |= 0x02;
  2925. #endif
  2926. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2927. dev->name, print_mac(mac, bssid));
  2928. bss = ieee80211_rx_bss_add(dev, bssid,
  2929. local->hw.conf.channel->center_freq,
  2930. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2931. if (!bss)
  2932. return -ENOMEM;
  2933. bss->band = local->hw.conf.channel->band;
  2934. sband = local->hw.wiphy->bands[bss->band];
  2935. if (local->hw.conf.beacon_int == 0)
  2936. local->hw.conf.beacon_int = 10000;
  2937. bss->beacon_int = local->hw.conf.beacon_int;
  2938. bss->last_update = jiffies;
  2939. bss->capability = WLAN_CAPABILITY_IBSS;
  2940. if (sdata->default_key) {
  2941. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2942. } else
  2943. sdata->drop_unencrypted = 0;
  2944. bss->supp_rates_len = sband->n_bitrates;
  2945. pos = bss->supp_rates;
  2946. for (i = 0; i < sband->n_bitrates; i++) {
  2947. int rate = sband->bitrates[i].bitrate;
  2948. *pos++ = (u8) (rate / 5);
  2949. }
  2950. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2951. }
  2952. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2953. struct ieee80211_if_sta *ifsta)
  2954. {
  2955. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2956. struct ieee80211_sta_bss *bss;
  2957. int found = 0;
  2958. u8 bssid[ETH_ALEN];
  2959. int active_ibss;
  2960. DECLARE_MAC_BUF(mac);
  2961. DECLARE_MAC_BUF(mac2);
  2962. if (ifsta->ssid_len == 0)
  2963. return -EINVAL;
  2964. active_ibss = ieee80211_sta_active_ibss(dev);
  2965. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2966. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2967. dev->name, active_ibss);
  2968. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2969. spin_lock_bh(&local->sta_bss_lock);
  2970. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2971. if (ifsta->ssid_len != bss->ssid_len ||
  2972. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2973. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2974. continue;
  2975. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2976. printk(KERN_DEBUG " bssid=%s found\n",
  2977. print_mac(mac, bss->bssid));
  2978. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2979. memcpy(bssid, bss->bssid, ETH_ALEN);
  2980. found = 1;
  2981. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2982. break;
  2983. }
  2984. spin_unlock_bh(&local->sta_bss_lock);
  2985. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2986. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2987. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2988. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2989. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2990. (bss = ieee80211_rx_bss_get(dev, bssid,
  2991. local->hw.conf.channel->center_freq,
  2992. ifsta->ssid, ifsta->ssid_len))) {
  2993. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2994. " based on configured SSID\n",
  2995. dev->name, print_mac(mac, bssid));
  2996. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2997. }
  2998. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2999. printk(KERN_DEBUG " did not try to join ibss\n");
  3000. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3001. /* Selected IBSS not found in current scan results - try to scan */
  3002. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  3003. !ieee80211_sta_active_ibss(dev)) {
  3004. mod_timer(&ifsta->timer, jiffies +
  3005. IEEE80211_IBSS_MERGE_INTERVAL);
  3006. } else if (time_after(jiffies, local->last_scan_completed +
  3007. IEEE80211_SCAN_INTERVAL)) {
  3008. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  3009. "join\n", dev->name);
  3010. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  3011. ifsta->ssid_len);
  3012. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  3013. int interval = IEEE80211_SCAN_INTERVAL;
  3014. if (time_after(jiffies, ifsta->ibss_join_req +
  3015. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  3016. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  3017. (!(local->oper_channel->flags &
  3018. IEEE80211_CHAN_NO_IBSS)))
  3019. return ieee80211_sta_create_ibss(dev, ifsta);
  3020. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  3021. printk(KERN_DEBUG "%s: IBSS not allowed on"
  3022. " %d MHz\n", dev->name,
  3023. local->hw.conf.channel->center_freq);
  3024. }
  3025. /* No IBSS found - decrease scan interval and continue
  3026. * scanning. */
  3027. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  3028. }
  3029. ifsta->state = IEEE80211_IBSS_SEARCH;
  3030. mod_timer(&ifsta->timer, jiffies + interval);
  3031. return 0;
  3032. }
  3033. return 0;
  3034. }
  3035. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  3036. {
  3037. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3038. struct ieee80211_if_sta *ifsta;
  3039. if (len > IEEE80211_MAX_SSID_LEN)
  3040. return -EINVAL;
  3041. ifsta = &sdata->u.sta;
  3042. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  3043. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  3044. memcpy(ifsta->ssid, ssid, len);
  3045. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  3046. ifsta->ssid_len = len;
  3047. if (len)
  3048. ifsta->flags |= IEEE80211_STA_SSID_SET;
  3049. else
  3050. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  3051. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3052. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  3053. ifsta->ibss_join_req = jiffies;
  3054. ifsta->state = IEEE80211_IBSS_SEARCH;
  3055. return ieee80211_sta_find_ibss(dev, ifsta);
  3056. }
  3057. return 0;
  3058. }
  3059. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  3060. {
  3061. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3062. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3063. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  3064. *len = ifsta->ssid_len;
  3065. return 0;
  3066. }
  3067. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  3068. {
  3069. struct ieee80211_sub_if_data *sdata;
  3070. struct ieee80211_if_sta *ifsta;
  3071. int res;
  3072. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3073. ifsta = &sdata->u.sta;
  3074. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3075. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  3076. res = ieee80211_if_config(dev);
  3077. if (res) {
  3078. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  3079. "the low-level driver\n", dev->name);
  3080. return res;
  3081. }
  3082. }
  3083. if (is_valid_ether_addr(bssid))
  3084. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  3085. else
  3086. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  3087. return 0;
  3088. }
  3089. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  3090. struct ieee80211_sub_if_data *sdata,
  3091. int powersave)
  3092. {
  3093. struct sk_buff *skb;
  3094. struct ieee80211_hdr *nullfunc;
  3095. u16 fc;
  3096. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  3097. if (!skb) {
  3098. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  3099. "frame\n", sdata->dev->name);
  3100. return;
  3101. }
  3102. skb_reserve(skb, local->hw.extra_tx_headroom);
  3103. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  3104. memset(nullfunc, 0, 24);
  3105. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  3106. IEEE80211_FCTL_TODS;
  3107. if (powersave)
  3108. fc |= IEEE80211_FCTL_PM;
  3109. nullfunc->frame_control = cpu_to_le16(fc);
  3110. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  3111. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  3112. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  3113. ieee80211_sta_tx(sdata->dev, skb, 0);
  3114. }
  3115. static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
  3116. {
  3117. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  3118. ieee80211_vif_is_mesh(&sdata->vif))
  3119. ieee80211_sta_timer((unsigned long)sdata);
  3120. }
  3121. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  3122. {
  3123. struct ieee80211_local *local = hw_to_local(hw);
  3124. struct net_device *dev = local->scan_dev;
  3125. struct ieee80211_sub_if_data *sdata;
  3126. union iwreq_data wrqu;
  3127. local->last_scan_completed = jiffies;
  3128. memset(&wrqu, 0, sizeof(wrqu));
  3129. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  3130. if (local->sta_hw_scanning) {
  3131. local->sta_hw_scanning = 0;
  3132. if (ieee80211_hw_config(local))
  3133. printk(KERN_DEBUG "%s: failed to restore operational "
  3134. "channel after scan\n", dev->name);
  3135. /* Restart STA timer for HW scan case */
  3136. rcu_read_lock();
  3137. list_for_each_entry_rcu(sdata, &local->interfaces, list)
  3138. ieee80211_restart_sta_timer(sdata);
  3139. rcu_read_unlock();
  3140. goto done;
  3141. }
  3142. local->sta_sw_scanning = 0;
  3143. if (ieee80211_hw_config(local))
  3144. printk(KERN_DEBUG "%s: failed to restore operational "
  3145. "channel after scan\n", dev->name);
  3146. netif_tx_lock_bh(local->mdev);
  3147. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  3148. local->ops->configure_filter(local_to_hw(local),
  3149. FIF_BCN_PRBRESP_PROMISC,
  3150. &local->filter_flags,
  3151. local->mdev->mc_count,
  3152. local->mdev->mc_list);
  3153. netif_tx_unlock_bh(local->mdev);
  3154. rcu_read_lock();
  3155. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3156. /* No need to wake the master device. */
  3157. if (sdata->dev == local->mdev)
  3158. continue;
  3159. /* Tell AP we're back */
  3160. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3161. sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  3162. ieee80211_send_nullfunc(local, sdata, 0);
  3163. ieee80211_restart_sta_timer(sdata);
  3164. netif_wake_queue(sdata->dev);
  3165. }
  3166. rcu_read_unlock();
  3167. done:
  3168. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3169. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  3170. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3171. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  3172. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  3173. !ieee80211_sta_active_ibss(dev)))
  3174. ieee80211_sta_find_ibss(dev, ifsta);
  3175. }
  3176. }
  3177. EXPORT_SYMBOL(ieee80211_scan_completed);
  3178. void ieee80211_sta_scan_work(struct work_struct *work)
  3179. {
  3180. struct ieee80211_local *local =
  3181. container_of(work, struct ieee80211_local, scan_work.work);
  3182. struct net_device *dev = local->scan_dev;
  3183. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3184. struct ieee80211_supported_band *sband;
  3185. struct ieee80211_channel *chan;
  3186. int skip;
  3187. unsigned long next_delay = 0;
  3188. if (!local->sta_sw_scanning)
  3189. return;
  3190. switch (local->scan_state) {
  3191. case SCAN_SET_CHANNEL:
  3192. /*
  3193. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  3194. * after we successfully scanned the last channel of the last
  3195. * band (and the last band is supported by the hw)
  3196. */
  3197. if (local->scan_band < IEEE80211_NUM_BANDS)
  3198. sband = local->hw.wiphy->bands[local->scan_band];
  3199. else
  3200. sband = NULL;
  3201. /*
  3202. * If we are at an unsupported band and have more bands
  3203. * left to scan, advance to the next supported one.
  3204. */
  3205. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  3206. local->scan_band++;
  3207. sband = local->hw.wiphy->bands[local->scan_band];
  3208. local->scan_channel_idx = 0;
  3209. }
  3210. /* if no more bands/channels left, complete scan */
  3211. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  3212. ieee80211_scan_completed(local_to_hw(local));
  3213. return;
  3214. }
  3215. skip = 0;
  3216. chan = &sband->channels[local->scan_channel_idx];
  3217. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  3218. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3219. chan->flags & IEEE80211_CHAN_NO_IBSS))
  3220. skip = 1;
  3221. if (!skip) {
  3222. local->scan_channel = chan;
  3223. if (ieee80211_hw_config(local)) {
  3224. printk(KERN_DEBUG "%s: failed to set freq to "
  3225. "%d MHz for scan\n", dev->name,
  3226. chan->center_freq);
  3227. skip = 1;
  3228. }
  3229. }
  3230. /* advance state machine to next channel/band */
  3231. local->scan_channel_idx++;
  3232. if (local->scan_channel_idx >= sband->n_channels) {
  3233. /*
  3234. * scan_band may end up == IEEE80211_NUM_BANDS, but
  3235. * we'll catch that case above and complete the scan
  3236. * if that is the case.
  3237. */
  3238. local->scan_band++;
  3239. local->scan_channel_idx = 0;
  3240. }
  3241. if (skip)
  3242. break;
  3243. next_delay = IEEE80211_PROBE_DELAY +
  3244. usecs_to_jiffies(local->hw.channel_change_time);
  3245. local->scan_state = SCAN_SEND_PROBE;
  3246. break;
  3247. case SCAN_SEND_PROBE:
  3248. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  3249. local->scan_state = SCAN_SET_CHANNEL;
  3250. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  3251. break;
  3252. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  3253. local->scan_ssid_len);
  3254. next_delay = IEEE80211_CHANNEL_TIME;
  3255. break;
  3256. }
  3257. if (local->sta_sw_scanning)
  3258. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3259. next_delay);
  3260. }
  3261. static int ieee80211_sta_start_scan(struct net_device *dev,
  3262. u8 *ssid, size_t ssid_len)
  3263. {
  3264. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3265. struct ieee80211_sub_if_data *sdata;
  3266. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3267. return -EINVAL;
  3268. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3269. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3270. * BSSID: MACAddress
  3271. * SSID
  3272. * ScanType: ACTIVE, PASSIVE
  3273. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3274. * a Probe frame during active scanning
  3275. * ChannelList
  3276. * MinChannelTime (>= ProbeDelay), in TU
  3277. * MaxChannelTime: (>= MinChannelTime), in TU
  3278. */
  3279. /* MLME-SCAN.confirm
  3280. * BSSDescriptionSet
  3281. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3282. */
  3283. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3284. if (local->scan_dev == dev)
  3285. return 0;
  3286. return -EBUSY;
  3287. }
  3288. if (local->ops->hw_scan) {
  3289. int rc = local->ops->hw_scan(local_to_hw(local),
  3290. ssid, ssid_len);
  3291. if (!rc) {
  3292. local->sta_hw_scanning = 1;
  3293. local->scan_dev = dev;
  3294. }
  3295. return rc;
  3296. }
  3297. local->sta_sw_scanning = 1;
  3298. rcu_read_lock();
  3299. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3300. /* Don't stop the master interface, otherwise we can't transmit
  3301. * probes! */
  3302. if (sdata->dev == local->mdev)
  3303. continue;
  3304. netif_stop_queue(sdata->dev);
  3305. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3306. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3307. ieee80211_send_nullfunc(local, sdata, 1);
  3308. }
  3309. rcu_read_unlock();
  3310. if (ssid) {
  3311. local->scan_ssid_len = ssid_len;
  3312. memcpy(local->scan_ssid, ssid, ssid_len);
  3313. } else
  3314. local->scan_ssid_len = 0;
  3315. local->scan_state = SCAN_SET_CHANNEL;
  3316. local->scan_channel_idx = 0;
  3317. local->scan_band = IEEE80211_BAND_2GHZ;
  3318. local->scan_dev = dev;
  3319. netif_tx_lock_bh(local->mdev);
  3320. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3321. local->ops->configure_filter(local_to_hw(local),
  3322. FIF_BCN_PRBRESP_PROMISC,
  3323. &local->filter_flags,
  3324. local->mdev->mc_count,
  3325. local->mdev->mc_list);
  3326. netif_tx_unlock_bh(local->mdev);
  3327. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3328. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3329. IEEE80211_CHANNEL_TIME);
  3330. return 0;
  3331. }
  3332. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3333. {
  3334. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3335. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3336. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3337. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3338. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3339. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3340. if (local->scan_dev == dev)
  3341. return 0;
  3342. return -EBUSY;
  3343. }
  3344. ifsta->scan_ssid_len = ssid_len;
  3345. if (ssid_len)
  3346. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3347. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3348. queue_work(local->hw.workqueue, &ifsta->work);
  3349. return 0;
  3350. }
  3351. static char *
  3352. ieee80211_sta_scan_result(struct net_device *dev,
  3353. struct ieee80211_sta_bss *bss,
  3354. char *current_ev, char *end_buf)
  3355. {
  3356. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3357. struct iw_event iwe;
  3358. if (time_after(jiffies,
  3359. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3360. return current_ev;
  3361. memset(&iwe, 0, sizeof(iwe));
  3362. iwe.cmd = SIOCGIWAP;
  3363. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3364. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3365. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3366. IW_EV_ADDR_LEN);
  3367. memset(&iwe, 0, sizeof(iwe));
  3368. iwe.cmd = SIOCGIWESSID;
  3369. if (bss_mesh_cfg(bss)) {
  3370. iwe.u.data.length = bss_mesh_id_len(bss);
  3371. iwe.u.data.flags = 1;
  3372. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3373. bss_mesh_id(bss));
  3374. } else {
  3375. iwe.u.data.length = bss->ssid_len;
  3376. iwe.u.data.flags = 1;
  3377. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3378. bss->ssid);
  3379. }
  3380. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
  3381. || bss_mesh_cfg(bss)) {
  3382. memset(&iwe, 0, sizeof(iwe));
  3383. iwe.cmd = SIOCGIWMODE;
  3384. if (bss_mesh_cfg(bss))
  3385. iwe.u.mode = IW_MODE_MESH;
  3386. else if (bss->capability & WLAN_CAPABILITY_ESS)
  3387. iwe.u.mode = IW_MODE_MASTER;
  3388. else
  3389. iwe.u.mode = IW_MODE_ADHOC;
  3390. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3391. IW_EV_UINT_LEN);
  3392. }
  3393. memset(&iwe, 0, sizeof(iwe));
  3394. iwe.cmd = SIOCGIWFREQ;
  3395. iwe.u.freq.m = bss->freq;
  3396. iwe.u.freq.e = 6;
  3397. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3398. IW_EV_FREQ_LEN);
  3399. memset(&iwe, 0, sizeof(iwe));
  3400. iwe.cmd = SIOCGIWFREQ;
  3401. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3402. iwe.u.freq.e = 0;
  3403. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3404. IW_EV_FREQ_LEN);
  3405. memset(&iwe, 0, sizeof(iwe));
  3406. iwe.cmd = IWEVQUAL;
  3407. iwe.u.qual.qual = bss->signal;
  3408. iwe.u.qual.level = bss->rssi;
  3409. iwe.u.qual.noise = bss->noise;
  3410. iwe.u.qual.updated = local->wstats_flags;
  3411. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3412. IW_EV_QUAL_LEN);
  3413. memset(&iwe, 0, sizeof(iwe));
  3414. iwe.cmd = SIOCGIWENCODE;
  3415. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3416. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3417. else
  3418. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3419. iwe.u.data.length = 0;
  3420. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3421. if (bss && bss->wpa_ie) {
  3422. memset(&iwe, 0, sizeof(iwe));
  3423. iwe.cmd = IWEVGENIE;
  3424. iwe.u.data.length = bss->wpa_ie_len;
  3425. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3426. bss->wpa_ie);
  3427. }
  3428. if (bss && bss->rsn_ie) {
  3429. memset(&iwe, 0, sizeof(iwe));
  3430. iwe.cmd = IWEVGENIE;
  3431. iwe.u.data.length = bss->rsn_ie_len;
  3432. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3433. bss->rsn_ie);
  3434. }
  3435. if (bss && bss->supp_rates_len > 0) {
  3436. /* display all supported rates in readable format */
  3437. char *p = current_ev + IW_EV_LCP_LEN;
  3438. int i;
  3439. memset(&iwe, 0, sizeof(iwe));
  3440. iwe.cmd = SIOCGIWRATE;
  3441. /* Those two flags are ignored... */
  3442. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3443. for (i = 0; i < bss->supp_rates_len; i++) {
  3444. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3445. 0x7f) * 500000);
  3446. p = iwe_stream_add_value(current_ev, p,
  3447. end_buf, &iwe, IW_EV_PARAM_LEN);
  3448. }
  3449. current_ev = p;
  3450. }
  3451. if (bss) {
  3452. char *buf;
  3453. buf = kmalloc(30, GFP_ATOMIC);
  3454. if (buf) {
  3455. memset(&iwe, 0, sizeof(iwe));
  3456. iwe.cmd = IWEVCUSTOM;
  3457. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3458. iwe.u.data.length = strlen(buf);
  3459. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3460. &iwe, buf);
  3461. kfree(buf);
  3462. }
  3463. }
  3464. if (bss_mesh_cfg(bss)) {
  3465. char *buf;
  3466. u8 *cfg = bss_mesh_cfg(bss);
  3467. buf = kmalloc(50, GFP_ATOMIC);
  3468. if (buf) {
  3469. memset(&iwe, 0, sizeof(iwe));
  3470. iwe.cmd = IWEVCUSTOM;
  3471. sprintf(buf, "Mesh network (version %d)", cfg[0]);
  3472. iwe.u.data.length = strlen(buf);
  3473. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3474. &iwe, buf);
  3475. sprintf(buf, "Path Selection Protocol ID: "
  3476. "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
  3477. cfg[4]);
  3478. iwe.u.data.length = strlen(buf);
  3479. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3480. &iwe, buf);
  3481. sprintf(buf, "Path Selection Metric ID: "
  3482. "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
  3483. cfg[8]);
  3484. iwe.u.data.length = strlen(buf);
  3485. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3486. &iwe, buf);
  3487. sprintf(buf, "Congestion Control Mode ID: "
  3488. "0x%02X%02X%02X%02X", cfg[9], cfg[10],
  3489. cfg[11], cfg[12]);
  3490. iwe.u.data.length = strlen(buf);
  3491. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3492. &iwe, buf);
  3493. sprintf(buf, "Channel Precedence: "
  3494. "0x%02X%02X%02X%02X", cfg[13], cfg[14],
  3495. cfg[15], cfg[16]);
  3496. iwe.u.data.length = strlen(buf);
  3497. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3498. &iwe, buf);
  3499. kfree(buf);
  3500. }
  3501. }
  3502. return current_ev;
  3503. }
  3504. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3505. {
  3506. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3507. char *current_ev = buf;
  3508. char *end_buf = buf + len;
  3509. struct ieee80211_sta_bss *bss;
  3510. spin_lock_bh(&local->sta_bss_lock);
  3511. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3512. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3513. spin_unlock_bh(&local->sta_bss_lock);
  3514. return -E2BIG;
  3515. }
  3516. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3517. end_buf);
  3518. }
  3519. spin_unlock_bh(&local->sta_bss_lock);
  3520. return current_ev - buf;
  3521. }
  3522. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3523. {
  3524. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3525. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3526. kfree(ifsta->extra_ie);
  3527. if (len == 0) {
  3528. ifsta->extra_ie = NULL;
  3529. ifsta->extra_ie_len = 0;
  3530. return 0;
  3531. }
  3532. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3533. if (!ifsta->extra_ie) {
  3534. ifsta->extra_ie_len = 0;
  3535. return -ENOMEM;
  3536. }
  3537. memcpy(ifsta->extra_ie, ie, len);
  3538. ifsta->extra_ie_len = len;
  3539. return 0;
  3540. }
  3541. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3542. struct sk_buff *skb, u8 *bssid,
  3543. u8 *addr)
  3544. {
  3545. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3546. struct sta_info *sta;
  3547. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3548. DECLARE_MAC_BUF(mac);
  3549. /* TODO: Could consider removing the least recently used entry and
  3550. * allow new one to be added. */
  3551. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3552. if (net_ratelimit()) {
  3553. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3554. "entry %s\n", dev->name, print_mac(mac, addr));
  3555. }
  3556. return NULL;
  3557. }
  3558. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3559. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3560. sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
  3561. if (!sta)
  3562. return NULL;
  3563. sta->flags |= WLAN_STA_AUTHORIZED;
  3564. sta->supp_rates[local->hw.conf.channel->band] =
  3565. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3566. rate_control_rate_init(sta, local);
  3567. if (sta_info_insert(sta))
  3568. return NULL;
  3569. return sta;
  3570. }
  3571. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3572. {
  3573. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3574. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3575. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3576. dev->name, reason);
  3577. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3578. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3579. return -EINVAL;
  3580. ieee80211_send_deauth(dev, ifsta, reason);
  3581. ieee80211_set_disassoc(dev, ifsta, 1);
  3582. return 0;
  3583. }
  3584. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3585. {
  3586. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3587. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3588. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3589. dev->name, reason);
  3590. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3591. return -EINVAL;
  3592. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3593. return -1;
  3594. ieee80211_send_disassoc(dev, ifsta, reason);
  3595. ieee80211_set_disassoc(dev, ifsta, 0);
  3596. return 0;
  3597. }
  3598. void ieee80211_notify_mac(struct ieee80211_hw *hw,
  3599. enum ieee80211_notification_types notif_type)
  3600. {
  3601. struct ieee80211_local *local = hw_to_local(hw);
  3602. struct ieee80211_sub_if_data *sdata;
  3603. switch (notif_type) {
  3604. case IEEE80211_NOTIFY_RE_ASSOC:
  3605. rcu_read_lock();
  3606. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3607. if (sdata->vif.type == IEEE80211_IF_TYPE_STA) {
  3608. ieee80211_sta_req_auth(sdata->dev,
  3609. &sdata->u.sta);
  3610. }
  3611. }
  3612. rcu_read_unlock();
  3613. break;
  3614. }
  3615. }
  3616. EXPORT_SYMBOL(ieee80211_notify_mac);