irq_64.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053
  1. /* irq.c: UltraSparc IRQ handling/init/registry.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
  6. */
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/linkage.h>
  10. #include <linux/ptrace.h>
  11. #include <linux/errno.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/signal.h>
  14. #include <linux/mm.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/slab.h>
  17. #include <linux/random.h>
  18. #include <linux/init.h>
  19. #include <linux/delay.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/irq.h>
  23. #include <asm/ptrace.h>
  24. #include <asm/processor.h>
  25. #include <asm/atomic.h>
  26. #include <asm/system.h>
  27. #include <asm/irq.h>
  28. #include <asm/io.h>
  29. #include <asm/iommu.h>
  30. #include <asm/upa.h>
  31. #include <asm/oplib.h>
  32. #include <asm/prom.h>
  33. #include <asm/timer.h>
  34. #include <asm/smp.h>
  35. #include <asm/starfire.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/cache.h>
  38. #include <asm/cpudata.h>
  39. #include <asm/auxio.h>
  40. #include <asm/head.h>
  41. #include <asm/hypervisor.h>
  42. #include <asm/cacheflush.h>
  43. #include "entry.h"
  44. #include "cpumap.h"
  45. #define NUM_IVECS (IMAP_INR + 1)
  46. struct ino_bucket *ivector_table;
  47. unsigned long ivector_table_pa;
  48. /* On several sun4u processors, it is illegal to mix bypass and
  49. * non-bypass accesses. Therefore we access all INO buckets
  50. * using bypass accesses only.
  51. */
  52. static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
  53. {
  54. unsigned long ret;
  55. __asm__ __volatile__("ldxa [%1] %2, %0"
  56. : "=&r" (ret)
  57. : "r" (bucket_pa +
  58. offsetof(struct ino_bucket,
  59. __irq_chain_pa)),
  60. "i" (ASI_PHYS_USE_EC));
  61. return ret;
  62. }
  63. static void bucket_clear_chain_pa(unsigned long bucket_pa)
  64. {
  65. __asm__ __volatile__("stxa %%g0, [%0] %1"
  66. : /* no outputs */
  67. : "r" (bucket_pa +
  68. offsetof(struct ino_bucket,
  69. __irq_chain_pa)),
  70. "i" (ASI_PHYS_USE_EC));
  71. }
  72. static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
  73. {
  74. unsigned int ret;
  75. __asm__ __volatile__("lduwa [%1] %2, %0"
  76. : "=&r" (ret)
  77. : "r" (bucket_pa +
  78. offsetof(struct ino_bucket,
  79. __virt_irq)),
  80. "i" (ASI_PHYS_USE_EC));
  81. return ret;
  82. }
  83. static void bucket_set_virt_irq(unsigned long bucket_pa,
  84. unsigned int virt_irq)
  85. {
  86. __asm__ __volatile__("stwa %0, [%1] %2"
  87. : /* no outputs */
  88. : "r" (virt_irq),
  89. "r" (bucket_pa +
  90. offsetof(struct ino_bucket,
  91. __virt_irq)),
  92. "i" (ASI_PHYS_USE_EC));
  93. }
  94. #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
  95. static struct {
  96. unsigned int dev_handle;
  97. unsigned int dev_ino;
  98. unsigned int in_use;
  99. } virt_irq_table[NR_IRQS];
  100. static DEFINE_SPINLOCK(virt_irq_alloc_lock);
  101. unsigned char virt_irq_alloc(unsigned int dev_handle,
  102. unsigned int dev_ino)
  103. {
  104. unsigned long flags;
  105. unsigned char ent;
  106. BUILD_BUG_ON(NR_IRQS >= 256);
  107. spin_lock_irqsave(&virt_irq_alloc_lock, flags);
  108. for (ent = 1; ent < NR_IRQS; ent++) {
  109. if (!virt_irq_table[ent].in_use)
  110. break;
  111. }
  112. if (ent >= NR_IRQS) {
  113. printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
  114. ent = 0;
  115. } else {
  116. virt_irq_table[ent].dev_handle = dev_handle;
  117. virt_irq_table[ent].dev_ino = dev_ino;
  118. virt_irq_table[ent].in_use = 1;
  119. }
  120. spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
  121. return ent;
  122. }
  123. #ifdef CONFIG_PCI_MSI
  124. void virt_irq_free(unsigned int virt_irq)
  125. {
  126. unsigned long flags;
  127. if (virt_irq >= NR_IRQS)
  128. return;
  129. spin_lock_irqsave(&virt_irq_alloc_lock, flags);
  130. virt_irq_table[virt_irq].in_use = 0;
  131. spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
  132. }
  133. #endif
  134. /*
  135. * /proc/interrupts printing:
  136. */
  137. int show_interrupts(struct seq_file *p, void *v)
  138. {
  139. int i = *(loff_t *) v, j;
  140. struct irqaction * action;
  141. unsigned long flags;
  142. if (i == 0) {
  143. seq_printf(p, " ");
  144. for_each_online_cpu(j)
  145. seq_printf(p, "CPU%d ",j);
  146. seq_putc(p, '\n');
  147. }
  148. if (i < NR_IRQS) {
  149. raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
  150. action = irq_desc[i].action;
  151. if (!action)
  152. goto skip;
  153. seq_printf(p, "%3d: ",i);
  154. #ifndef CONFIG_SMP
  155. seq_printf(p, "%10u ", kstat_irqs(i));
  156. #else
  157. for_each_online_cpu(j)
  158. seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
  159. #endif
  160. seq_printf(p, " %9s", irq_desc[i].chip->name);
  161. seq_printf(p, " %s", action->name);
  162. for (action=action->next; action; action = action->next)
  163. seq_printf(p, ", %s", action->name);
  164. seq_putc(p, '\n');
  165. skip:
  166. raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
  167. } else if (i == NR_IRQS) {
  168. seq_printf(p, "NMI: ");
  169. for_each_online_cpu(j)
  170. seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
  171. seq_printf(p, " Non-maskable interrupts\n");
  172. }
  173. return 0;
  174. }
  175. static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
  176. {
  177. unsigned int tid;
  178. if (this_is_starfire) {
  179. tid = starfire_translate(imap, cpuid);
  180. tid <<= IMAP_TID_SHIFT;
  181. tid &= IMAP_TID_UPA;
  182. } else {
  183. if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  184. unsigned long ver;
  185. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  186. if ((ver >> 32UL) == __JALAPENO_ID ||
  187. (ver >> 32UL) == __SERRANO_ID) {
  188. tid = cpuid << IMAP_TID_SHIFT;
  189. tid &= IMAP_TID_JBUS;
  190. } else {
  191. unsigned int a = cpuid & 0x1f;
  192. unsigned int n = (cpuid >> 5) & 0x1f;
  193. tid = ((a << IMAP_AID_SHIFT) |
  194. (n << IMAP_NID_SHIFT));
  195. tid &= (IMAP_AID_SAFARI |
  196. IMAP_NID_SAFARI);
  197. }
  198. } else {
  199. tid = cpuid << IMAP_TID_SHIFT;
  200. tid &= IMAP_TID_UPA;
  201. }
  202. }
  203. return tid;
  204. }
  205. struct irq_handler_data {
  206. unsigned long iclr;
  207. unsigned long imap;
  208. void (*pre_handler)(unsigned int, void *, void *);
  209. void *arg1;
  210. void *arg2;
  211. };
  212. #ifdef CONFIG_SMP
  213. static int irq_choose_cpu(unsigned int virt_irq, const struct cpumask *affinity)
  214. {
  215. cpumask_t mask;
  216. int cpuid;
  217. cpumask_copy(&mask, affinity);
  218. if (cpus_equal(mask, cpu_online_map)) {
  219. cpuid = map_to_cpu(virt_irq);
  220. } else {
  221. cpumask_t tmp;
  222. cpus_and(tmp, cpu_online_map, mask);
  223. cpuid = cpus_empty(tmp) ? map_to_cpu(virt_irq) : first_cpu(tmp);
  224. }
  225. return cpuid;
  226. }
  227. #else
  228. static int irq_choose_cpu(unsigned int virt_irq, const struct cpumask *affinity)
  229. {
  230. return real_hard_smp_processor_id();
  231. }
  232. #endif
  233. static void sun4u_irq_enable(unsigned int virt_irq)
  234. {
  235. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  236. if (likely(data)) {
  237. unsigned long cpuid, imap, val;
  238. unsigned int tid;
  239. cpuid = irq_choose_cpu(virt_irq,
  240. irq_desc[virt_irq].affinity);
  241. imap = data->imap;
  242. tid = sun4u_compute_tid(imap, cpuid);
  243. val = upa_readq(imap);
  244. val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
  245. IMAP_AID_SAFARI | IMAP_NID_SAFARI);
  246. val |= tid | IMAP_VALID;
  247. upa_writeq(val, imap);
  248. upa_writeq(ICLR_IDLE, data->iclr);
  249. }
  250. }
  251. static int sun4u_set_affinity(unsigned int virt_irq,
  252. const struct cpumask *mask)
  253. {
  254. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  255. if (likely(data)) {
  256. unsigned long cpuid, imap, val;
  257. unsigned int tid;
  258. cpuid = irq_choose_cpu(virt_irq, mask);
  259. imap = data->imap;
  260. tid = sun4u_compute_tid(imap, cpuid);
  261. val = upa_readq(imap);
  262. val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
  263. IMAP_AID_SAFARI | IMAP_NID_SAFARI);
  264. val |= tid | IMAP_VALID;
  265. upa_writeq(val, imap);
  266. upa_writeq(ICLR_IDLE, data->iclr);
  267. }
  268. return 0;
  269. }
  270. /* Don't do anything. The desc->status check for IRQ_DISABLED in
  271. * handler_irq() will skip the handler call and that will leave the
  272. * interrupt in the sent state. The next ->enable() call will hit the
  273. * ICLR register to reset the state machine.
  274. *
  275. * This scheme is necessary, instead of clearing the Valid bit in the
  276. * IMAP register, to handle the case of IMAP registers being shared by
  277. * multiple INOs (and thus ICLR registers). Since we use a different
  278. * virtual IRQ for each shared IMAP instance, the generic code thinks
  279. * there is only one user so it prematurely calls ->disable() on
  280. * free_irq().
  281. *
  282. * We have to provide an explicit ->disable() method instead of using
  283. * NULL to get the default. The reason is that if the generic code
  284. * sees that, it also hooks up a default ->shutdown method which
  285. * invokes ->mask() which we do not want. See irq_chip_set_defaults().
  286. */
  287. static void sun4u_irq_disable(unsigned int virt_irq)
  288. {
  289. }
  290. static void sun4u_irq_eoi(unsigned int virt_irq)
  291. {
  292. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  293. struct irq_desc *desc = irq_desc + virt_irq;
  294. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  295. return;
  296. if (likely(data))
  297. upa_writeq(ICLR_IDLE, data->iclr);
  298. }
  299. static void sun4v_irq_enable(unsigned int virt_irq)
  300. {
  301. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  302. unsigned long cpuid = irq_choose_cpu(virt_irq,
  303. irq_desc[virt_irq].affinity);
  304. int err;
  305. err = sun4v_intr_settarget(ino, cpuid);
  306. if (err != HV_EOK)
  307. printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
  308. "err(%d)\n", ino, cpuid, err);
  309. err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
  310. if (err != HV_EOK)
  311. printk(KERN_ERR "sun4v_intr_setstate(%x): "
  312. "err(%d)\n", ino, err);
  313. err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
  314. if (err != HV_EOK)
  315. printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
  316. ino, err);
  317. }
  318. static int sun4v_set_affinity(unsigned int virt_irq,
  319. const struct cpumask *mask)
  320. {
  321. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  322. unsigned long cpuid = irq_choose_cpu(virt_irq, mask);
  323. int err;
  324. err = sun4v_intr_settarget(ino, cpuid);
  325. if (err != HV_EOK)
  326. printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
  327. "err(%d)\n", ino, cpuid, err);
  328. return 0;
  329. }
  330. static void sun4v_irq_disable(unsigned int virt_irq)
  331. {
  332. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  333. int err;
  334. err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
  335. if (err != HV_EOK)
  336. printk(KERN_ERR "sun4v_intr_setenabled(%x): "
  337. "err(%d)\n", ino, err);
  338. }
  339. static void sun4v_irq_eoi(unsigned int virt_irq)
  340. {
  341. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  342. struct irq_desc *desc = irq_desc + virt_irq;
  343. int err;
  344. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  345. return;
  346. err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
  347. if (err != HV_EOK)
  348. printk(KERN_ERR "sun4v_intr_setstate(%x): "
  349. "err(%d)\n", ino, err);
  350. }
  351. static void sun4v_virq_enable(unsigned int virt_irq)
  352. {
  353. unsigned long cpuid, dev_handle, dev_ino;
  354. int err;
  355. cpuid = irq_choose_cpu(virt_irq, irq_desc[virt_irq].affinity);
  356. dev_handle = virt_irq_table[virt_irq].dev_handle;
  357. dev_ino = virt_irq_table[virt_irq].dev_ino;
  358. err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
  359. if (err != HV_EOK)
  360. printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
  361. "err(%d)\n",
  362. dev_handle, dev_ino, cpuid, err);
  363. err = sun4v_vintr_set_state(dev_handle, dev_ino,
  364. HV_INTR_STATE_IDLE);
  365. if (err != HV_EOK)
  366. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  367. "HV_INTR_STATE_IDLE): err(%d)\n",
  368. dev_handle, dev_ino, err);
  369. err = sun4v_vintr_set_valid(dev_handle, dev_ino,
  370. HV_INTR_ENABLED);
  371. if (err != HV_EOK)
  372. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  373. "HV_INTR_ENABLED): err(%d)\n",
  374. dev_handle, dev_ino, err);
  375. }
  376. static int sun4v_virt_set_affinity(unsigned int virt_irq,
  377. const struct cpumask *mask)
  378. {
  379. unsigned long cpuid, dev_handle, dev_ino;
  380. int err;
  381. cpuid = irq_choose_cpu(virt_irq, mask);
  382. dev_handle = virt_irq_table[virt_irq].dev_handle;
  383. dev_ino = virt_irq_table[virt_irq].dev_ino;
  384. err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
  385. if (err != HV_EOK)
  386. printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
  387. "err(%d)\n",
  388. dev_handle, dev_ino, cpuid, err);
  389. return 0;
  390. }
  391. static void sun4v_virq_disable(unsigned int virt_irq)
  392. {
  393. unsigned long dev_handle, dev_ino;
  394. int err;
  395. dev_handle = virt_irq_table[virt_irq].dev_handle;
  396. dev_ino = virt_irq_table[virt_irq].dev_ino;
  397. err = sun4v_vintr_set_valid(dev_handle, dev_ino,
  398. HV_INTR_DISABLED);
  399. if (err != HV_EOK)
  400. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  401. "HV_INTR_DISABLED): err(%d)\n",
  402. dev_handle, dev_ino, err);
  403. }
  404. static void sun4v_virq_eoi(unsigned int virt_irq)
  405. {
  406. struct irq_desc *desc = irq_desc + virt_irq;
  407. unsigned long dev_handle, dev_ino;
  408. int err;
  409. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  410. return;
  411. dev_handle = virt_irq_table[virt_irq].dev_handle;
  412. dev_ino = virt_irq_table[virt_irq].dev_ino;
  413. err = sun4v_vintr_set_state(dev_handle, dev_ino,
  414. HV_INTR_STATE_IDLE);
  415. if (err != HV_EOK)
  416. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  417. "HV_INTR_STATE_IDLE): err(%d)\n",
  418. dev_handle, dev_ino, err);
  419. }
  420. static struct irq_chip sun4u_irq = {
  421. .name = "sun4u",
  422. .enable = sun4u_irq_enable,
  423. .disable = sun4u_irq_disable,
  424. .eoi = sun4u_irq_eoi,
  425. .set_affinity = sun4u_set_affinity,
  426. };
  427. static struct irq_chip sun4v_irq = {
  428. .name = "sun4v",
  429. .enable = sun4v_irq_enable,
  430. .disable = sun4v_irq_disable,
  431. .eoi = sun4v_irq_eoi,
  432. .set_affinity = sun4v_set_affinity,
  433. };
  434. static struct irq_chip sun4v_virq = {
  435. .name = "vsun4v",
  436. .enable = sun4v_virq_enable,
  437. .disable = sun4v_virq_disable,
  438. .eoi = sun4v_virq_eoi,
  439. .set_affinity = sun4v_virt_set_affinity,
  440. };
  441. static void pre_flow_handler(unsigned int virt_irq,
  442. struct irq_desc *desc)
  443. {
  444. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  445. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  446. data->pre_handler(ino, data->arg1, data->arg2);
  447. handle_fasteoi_irq(virt_irq, desc);
  448. }
  449. void irq_install_pre_handler(int virt_irq,
  450. void (*func)(unsigned int, void *, void *),
  451. void *arg1, void *arg2)
  452. {
  453. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  454. struct irq_desc *desc = irq_desc + virt_irq;
  455. data->pre_handler = func;
  456. data->arg1 = arg1;
  457. data->arg2 = arg2;
  458. desc->handle_irq = pre_flow_handler;
  459. }
  460. unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
  461. {
  462. struct ino_bucket *bucket;
  463. struct irq_handler_data *data;
  464. unsigned int virt_irq;
  465. int ino;
  466. BUG_ON(tlb_type == hypervisor);
  467. ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
  468. bucket = &ivector_table[ino];
  469. virt_irq = bucket_get_virt_irq(__pa(bucket));
  470. if (!virt_irq) {
  471. virt_irq = virt_irq_alloc(0, ino);
  472. bucket_set_virt_irq(__pa(bucket), virt_irq);
  473. set_irq_chip_and_handler_name(virt_irq,
  474. &sun4u_irq,
  475. handle_fasteoi_irq,
  476. "IVEC");
  477. }
  478. data = get_irq_chip_data(virt_irq);
  479. if (unlikely(data))
  480. goto out;
  481. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  482. if (unlikely(!data)) {
  483. prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
  484. prom_halt();
  485. }
  486. set_irq_chip_data(virt_irq, data);
  487. data->imap = imap;
  488. data->iclr = iclr;
  489. out:
  490. return virt_irq;
  491. }
  492. static unsigned int sun4v_build_common(unsigned long sysino,
  493. struct irq_chip *chip)
  494. {
  495. struct ino_bucket *bucket;
  496. struct irq_handler_data *data;
  497. unsigned int virt_irq;
  498. BUG_ON(tlb_type != hypervisor);
  499. bucket = &ivector_table[sysino];
  500. virt_irq = bucket_get_virt_irq(__pa(bucket));
  501. if (!virt_irq) {
  502. virt_irq = virt_irq_alloc(0, sysino);
  503. bucket_set_virt_irq(__pa(bucket), virt_irq);
  504. set_irq_chip_and_handler_name(virt_irq, chip,
  505. handle_fasteoi_irq,
  506. "IVEC");
  507. }
  508. data = get_irq_chip_data(virt_irq);
  509. if (unlikely(data))
  510. goto out;
  511. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  512. if (unlikely(!data)) {
  513. prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
  514. prom_halt();
  515. }
  516. set_irq_chip_data(virt_irq, data);
  517. /* Catch accidental accesses to these things. IMAP/ICLR handling
  518. * is done by hypervisor calls on sun4v platforms, not by direct
  519. * register accesses.
  520. */
  521. data->imap = ~0UL;
  522. data->iclr = ~0UL;
  523. out:
  524. return virt_irq;
  525. }
  526. unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
  527. {
  528. unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
  529. return sun4v_build_common(sysino, &sun4v_irq);
  530. }
  531. unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
  532. {
  533. struct irq_handler_data *data;
  534. unsigned long hv_err, cookie;
  535. struct ino_bucket *bucket;
  536. struct irq_desc *desc;
  537. unsigned int virt_irq;
  538. bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
  539. if (unlikely(!bucket))
  540. return 0;
  541. __flush_dcache_range((unsigned long) bucket,
  542. ((unsigned long) bucket +
  543. sizeof(struct ino_bucket)));
  544. virt_irq = virt_irq_alloc(devhandle, devino);
  545. bucket_set_virt_irq(__pa(bucket), virt_irq);
  546. set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
  547. handle_fasteoi_irq,
  548. "IVEC");
  549. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  550. if (unlikely(!data))
  551. return 0;
  552. /* In order to make the LDC channel startup sequence easier,
  553. * especially wrt. locking, we do not let request_irq() enable
  554. * the interrupt.
  555. */
  556. desc = irq_desc + virt_irq;
  557. desc->status |= IRQ_NOAUTOEN;
  558. set_irq_chip_data(virt_irq, data);
  559. /* Catch accidental accesses to these things. IMAP/ICLR handling
  560. * is done by hypervisor calls on sun4v platforms, not by direct
  561. * register accesses.
  562. */
  563. data->imap = ~0UL;
  564. data->iclr = ~0UL;
  565. cookie = ~__pa(bucket);
  566. hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
  567. if (hv_err) {
  568. prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
  569. "err=%lu\n", devhandle, devino, hv_err);
  570. prom_halt();
  571. }
  572. return virt_irq;
  573. }
  574. void ack_bad_irq(unsigned int virt_irq)
  575. {
  576. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  577. if (!ino)
  578. ino = 0xdeadbeef;
  579. printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
  580. ino, virt_irq);
  581. }
  582. void *hardirq_stack[NR_CPUS];
  583. void *softirq_stack[NR_CPUS];
  584. static __attribute__((always_inline)) void *set_hardirq_stack(void)
  585. {
  586. void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
  587. __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
  588. if (orig_sp < sp ||
  589. orig_sp > (sp + THREAD_SIZE)) {
  590. sp += THREAD_SIZE - 192 - STACK_BIAS;
  591. __asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
  592. }
  593. return orig_sp;
  594. }
  595. static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
  596. {
  597. __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
  598. }
  599. void handler_irq(int irq, struct pt_regs *regs)
  600. {
  601. unsigned long pstate, bucket_pa;
  602. struct pt_regs *old_regs;
  603. void *orig_sp;
  604. clear_softint(1 << irq);
  605. old_regs = set_irq_regs(regs);
  606. irq_enter();
  607. /* Grab an atomic snapshot of the pending IVECs. */
  608. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  609. "wrpr %0, %3, %%pstate\n\t"
  610. "ldx [%2], %1\n\t"
  611. "stx %%g0, [%2]\n\t"
  612. "wrpr %0, 0x0, %%pstate\n\t"
  613. : "=&r" (pstate), "=&r" (bucket_pa)
  614. : "r" (irq_work_pa(smp_processor_id())),
  615. "i" (PSTATE_IE)
  616. : "memory");
  617. orig_sp = set_hardirq_stack();
  618. while (bucket_pa) {
  619. struct irq_desc *desc;
  620. unsigned long next_pa;
  621. unsigned int virt_irq;
  622. next_pa = bucket_get_chain_pa(bucket_pa);
  623. virt_irq = bucket_get_virt_irq(bucket_pa);
  624. bucket_clear_chain_pa(bucket_pa);
  625. desc = irq_desc + virt_irq;
  626. if (!(desc->status & IRQ_DISABLED))
  627. desc->handle_irq(virt_irq, desc);
  628. bucket_pa = next_pa;
  629. }
  630. restore_hardirq_stack(orig_sp);
  631. irq_exit();
  632. set_irq_regs(old_regs);
  633. }
  634. void do_softirq(void)
  635. {
  636. unsigned long flags;
  637. if (in_interrupt())
  638. return;
  639. local_irq_save(flags);
  640. if (local_softirq_pending()) {
  641. void *orig_sp, *sp = softirq_stack[smp_processor_id()];
  642. sp += THREAD_SIZE - 192 - STACK_BIAS;
  643. __asm__ __volatile__("mov %%sp, %0\n\t"
  644. "mov %1, %%sp"
  645. : "=&r" (orig_sp)
  646. : "r" (sp));
  647. __do_softirq();
  648. __asm__ __volatile__("mov %0, %%sp"
  649. : : "r" (orig_sp));
  650. }
  651. local_irq_restore(flags);
  652. }
  653. #ifdef CONFIG_HOTPLUG_CPU
  654. void fixup_irqs(void)
  655. {
  656. unsigned int irq;
  657. for (irq = 0; irq < NR_IRQS; irq++) {
  658. unsigned long flags;
  659. raw_spin_lock_irqsave(&irq_desc[irq].lock, flags);
  660. if (irq_desc[irq].action &&
  661. !(irq_desc[irq].status & IRQ_PER_CPU)) {
  662. if (irq_desc[irq].chip->set_affinity)
  663. irq_desc[irq].chip->set_affinity(irq,
  664. irq_desc[irq].affinity);
  665. }
  666. raw_spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
  667. }
  668. tick_ops->disable_irq();
  669. }
  670. #endif
  671. struct sun5_timer {
  672. u64 count0;
  673. u64 limit0;
  674. u64 count1;
  675. u64 limit1;
  676. };
  677. static struct sun5_timer *prom_timers;
  678. static u64 prom_limit0, prom_limit1;
  679. static void map_prom_timers(void)
  680. {
  681. struct device_node *dp;
  682. const unsigned int *addr;
  683. /* PROM timer node hangs out in the top level of device siblings... */
  684. dp = of_find_node_by_path("/");
  685. dp = dp->child;
  686. while (dp) {
  687. if (!strcmp(dp->name, "counter-timer"))
  688. break;
  689. dp = dp->sibling;
  690. }
  691. /* Assume if node is not present, PROM uses different tick mechanism
  692. * which we should not care about.
  693. */
  694. if (!dp) {
  695. prom_timers = (struct sun5_timer *) 0;
  696. return;
  697. }
  698. /* If PROM is really using this, it must be mapped by him. */
  699. addr = of_get_property(dp, "address", NULL);
  700. if (!addr) {
  701. prom_printf("PROM does not have timer mapped, trying to continue.\n");
  702. prom_timers = (struct sun5_timer *) 0;
  703. return;
  704. }
  705. prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
  706. }
  707. static void kill_prom_timer(void)
  708. {
  709. if (!prom_timers)
  710. return;
  711. /* Save them away for later. */
  712. prom_limit0 = prom_timers->limit0;
  713. prom_limit1 = prom_timers->limit1;
  714. /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
  715. * We turn both off here just to be paranoid.
  716. */
  717. prom_timers->limit0 = 0;
  718. prom_timers->limit1 = 0;
  719. /* Wheee, eat the interrupt packet too... */
  720. __asm__ __volatile__(
  721. " mov 0x40, %%g2\n"
  722. " ldxa [%%g0] %0, %%g1\n"
  723. " ldxa [%%g2] %1, %%g1\n"
  724. " stxa %%g0, [%%g0] %0\n"
  725. " membar #Sync\n"
  726. : /* no outputs */
  727. : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
  728. : "g1", "g2");
  729. }
  730. void notrace init_irqwork_curcpu(void)
  731. {
  732. int cpu = hard_smp_processor_id();
  733. trap_block[cpu].irq_worklist_pa = 0UL;
  734. }
  735. /* Please be very careful with register_one_mondo() and
  736. * sun4v_register_mondo_queues().
  737. *
  738. * On SMP this gets invoked from the CPU trampoline before
  739. * the cpu has fully taken over the trap table from OBP,
  740. * and it's kernel stack + %g6 thread register state is
  741. * not fully cooked yet.
  742. *
  743. * Therefore you cannot make any OBP calls, not even prom_printf,
  744. * from these two routines.
  745. */
  746. static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
  747. {
  748. unsigned long num_entries = (qmask + 1) / 64;
  749. unsigned long status;
  750. status = sun4v_cpu_qconf(type, paddr, num_entries);
  751. if (status != HV_EOK) {
  752. prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
  753. "err %lu\n", type, paddr, num_entries, status);
  754. prom_halt();
  755. }
  756. }
  757. void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
  758. {
  759. struct trap_per_cpu *tb = &trap_block[this_cpu];
  760. register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
  761. tb->cpu_mondo_qmask);
  762. register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
  763. tb->dev_mondo_qmask);
  764. register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
  765. tb->resum_qmask);
  766. register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
  767. tb->nonresum_qmask);
  768. }
  769. /* Each queue region must be a power of 2 multiple of 64 bytes in
  770. * size. The base real address must be aligned to the size of the
  771. * region. Thus, an 8KB queue must be 8KB aligned, for example.
  772. */
  773. static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
  774. {
  775. unsigned long size = PAGE_ALIGN(qmask + 1);
  776. unsigned long order = get_order(size);
  777. unsigned long p;
  778. p = __get_free_pages(GFP_KERNEL, order);
  779. if (!p) {
  780. prom_printf("SUN4V: Error, cannot allocate queue.\n");
  781. prom_halt();
  782. }
  783. *pa_ptr = __pa(p);
  784. }
  785. static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
  786. {
  787. #ifdef CONFIG_SMP
  788. unsigned long page;
  789. BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
  790. page = get_zeroed_page(GFP_KERNEL);
  791. if (!page) {
  792. prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
  793. prom_halt();
  794. }
  795. tb->cpu_mondo_block_pa = __pa(page);
  796. tb->cpu_list_pa = __pa(page + 64);
  797. #endif
  798. }
  799. /* Allocate mondo and error queues for all possible cpus. */
  800. static void __init sun4v_init_mondo_queues(void)
  801. {
  802. int cpu;
  803. for_each_possible_cpu(cpu) {
  804. struct trap_per_cpu *tb = &trap_block[cpu];
  805. alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
  806. alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
  807. alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
  808. alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
  809. alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
  810. alloc_one_queue(&tb->nonresum_kernel_buf_pa,
  811. tb->nonresum_qmask);
  812. }
  813. }
  814. static void __init init_send_mondo_info(void)
  815. {
  816. int cpu;
  817. for_each_possible_cpu(cpu) {
  818. struct trap_per_cpu *tb = &trap_block[cpu];
  819. init_cpu_send_mondo_info(tb);
  820. }
  821. }
  822. static struct irqaction timer_irq_action = {
  823. .name = "timer",
  824. };
  825. /* Only invoked on boot processor. */
  826. void __init init_IRQ(void)
  827. {
  828. unsigned long size;
  829. map_prom_timers();
  830. kill_prom_timer();
  831. size = sizeof(struct ino_bucket) * NUM_IVECS;
  832. ivector_table = kzalloc(size, GFP_KERNEL);
  833. if (!ivector_table) {
  834. prom_printf("Fatal error, cannot allocate ivector_table\n");
  835. prom_halt();
  836. }
  837. __flush_dcache_range((unsigned long) ivector_table,
  838. ((unsigned long) ivector_table) + size);
  839. ivector_table_pa = __pa(ivector_table);
  840. if (tlb_type == hypervisor)
  841. sun4v_init_mondo_queues();
  842. init_send_mondo_info();
  843. if (tlb_type == hypervisor) {
  844. /* Load up the boot cpu's entries. */
  845. sun4v_register_mondo_queues(hard_smp_processor_id());
  846. }
  847. /* We need to clear any IRQ's pending in the soft interrupt
  848. * registers, a spurious one could be left around from the
  849. * PROM timer which we just disabled.
  850. */
  851. clear_softint(get_softint());
  852. /* Now that ivector table is initialized, it is safe
  853. * to receive IRQ vector traps. We will normally take
  854. * one or two right now, in case some device PROM used
  855. * to boot us wants to speak to us. We just ignore them.
  856. */
  857. __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
  858. "or %%g1, %0, %%g1\n\t"
  859. "wrpr %%g1, 0x0, %%pstate"
  860. : /* No outputs */
  861. : "i" (PSTATE_IE)
  862. : "g1");
  863. irq_desc[0].action = &timer_irq_action;
  864. }