md.c 221 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  134. struct mddev *mddev)
  135. {
  136. struct bio *b;
  137. if (!mddev || !mddev->bio_set)
  138. return bio_alloc(gfp_mask, nr_iovecs);
  139. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  140. if (!b)
  141. return NULL;
  142. return b;
  143. }
  144. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  145. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  146. struct mddev *mddev)
  147. {
  148. if (!mddev || !mddev->bio_set)
  149. return bio_clone(bio, gfp_mask);
  150. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  151. }
  152. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  153. void md_trim_bio(struct bio *bio, int offset, int size)
  154. {
  155. /* 'bio' is a cloned bio which we need to trim to match
  156. * the given offset and size.
  157. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  158. */
  159. int i;
  160. struct bio_vec *bvec;
  161. int sofar = 0;
  162. size <<= 9;
  163. if (offset == 0 && size == bio->bi_size)
  164. return;
  165. bio->bi_sector += offset;
  166. bio->bi_size = size;
  167. offset <<= 9;
  168. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  169. while (bio->bi_idx < bio->bi_vcnt &&
  170. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  171. /* remove this whole bio_vec */
  172. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  173. bio->bi_idx++;
  174. }
  175. if (bio->bi_idx < bio->bi_vcnt) {
  176. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  177. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  178. }
  179. /* avoid any complications with bi_idx being non-zero*/
  180. if (bio->bi_idx) {
  181. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  182. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  183. bio->bi_vcnt -= bio->bi_idx;
  184. bio->bi_idx = 0;
  185. }
  186. /* Make sure vcnt and last bv are not too big */
  187. bio_for_each_segment(bvec, bio, i) {
  188. if (sofar + bvec->bv_len > size)
  189. bvec->bv_len = size - sofar;
  190. if (bvec->bv_len == 0) {
  191. bio->bi_vcnt = i;
  192. break;
  193. }
  194. sofar += bvec->bv_len;
  195. }
  196. }
  197. EXPORT_SYMBOL_GPL(md_trim_bio);
  198. /*
  199. * We have a system wide 'event count' that is incremented
  200. * on any 'interesting' event, and readers of /proc/mdstat
  201. * can use 'poll' or 'select' to find out when the event
  202. * count increases.
  203. *
  204. * Events are:
  205. * start array, stop array, error, add device, remove device,
  206. * start build, activate spare
  207. */
  208. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  209. static atomic_t md_event_count;
  210. void md_new_event(struct mddev *mddev)
  211. {
  212. atomic_inc(&md_event_count);
  213. wake_up(&md_event_waiters);
  214. }
  215. EXPORT_SYMBOL_GPL(md_new_event);
  216. /* Alternate version that can be called from interrupts
  217. * when calling sysfs_notify isn't needed.
  218. */
  219. static void md_new_event_inintr(struct mddev *mddev)
  220. {
  221. atomic_inc(&md_event_count);
  222. wake_up(&md_event_waiters);
  223. }
  224. /*
  225. * Enables to iterate over all existing md arrays
  226. * all_mddevs_lock protects this list.
  227. */
  228. static LIST_HEAD(all_mddevs);
  229. static DEFINE_SPINLOCK(all_mddevs_lock);
  230. /*
  231. * iterates through all used mddevs in the system.
  232. * We take care to grab the all_mddevs_lock whenever navigating
  233. * the list, and to always hold a refcount when unlocked.
  234. * Any code which breaks out of this loop while own
  235. * a reference to the current mddev and must mddev_put it.
  236. */
  237. #define for_each_mddev(_mddev,_tmp) \
  238. \
  239. for (({ spin_lock(&all_mddevs_lock); \
  240. _tmp = all_mddevs.next; \
  241. _mddev = NULL;}); \
  242. ({ if (_tmp != &all_mddevs) \
  243. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  244. spin_unlock(&all_mddevs_lock); \
  245. if (_mddev) mddev_put(_mddev); \
  246. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  247. _tmp != &all_mddevs;}); \
  248. ({ spin_lock(&all_mddevs_lock); \
  249. _tmp = _tmp->next;}) \
  250. )
  251. /* Rather than calling directly into the personality make_request function,
  252. * IO requests come here first so that we can check if the device is
  253. * being suspended pending a reconfiguration.
  254. * We hold a refcount over the call to ->make_request. By the time that
  255. * call has finished, the bio has been linked into some internal structure
  256. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  257. */
  258. static void md_make_request(struct request_queue *q, struct bio *bio)
  259. {
  260. const int rw = bio_data_dir(bio);
  261. struct mddev *mddev = q->queuedata;
  262. int cpu;
  263. unsigned int sectors;
  264. if (mddev == NULL || mddev->pers == NULL
  265. || !mddev->ready) {
  266. bio_io_error(bio);
  267. return;
  268. }
  269. smp_rmb(); /* Ensure implications of 'active' are visible */
  270. rcu_read_lock();
  271. if (mddev->suspended) {
  272. DEFINE_WAIT(__wait);
  273. for (;;) {
  274. prepare_to_wait(&mddev->sb_wait, &__wait,
  275. TASK_UNINTERRUPTIBLE);
  276. if (!mddev->suspended)
  277. break;
  278. rcu_read_unlock();
  279. schedule();
  280. rcu_read_lock();
  281. }
  282. finish_wait(&mddev->sb_wait, &__wait);
  283. }
  284. atomic_inc(&mddev->active_io);
  285. rcu_read_unlock();
  286. /*
  287. * save the sectors now since our bio can
  288. * go away inside make_request
  289. */
  290. sectors = bio_sectors(bio);
  291. mddev->pers->make_request(mddev, bio);
  292. cpu = part_stat_lock();
  293. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  294. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  295. part_stat_unlock();
  296. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  297. wake_up(&mddev->sb_wait);
  298. }
  299. /* mddev_suspend makes sure no new requests are submitted
  300. * to the device, and that any requests that have been submitted
  301. * are completely handled.
  302. * Once ->stop is called and completes, the module will be completely
  303. * unused.
  304. */
  305. void mddev_suspend(struct mddev *mddev)
  306. {
  307. BUG_ON(mddev->suspended);
  308. mddev->suspended = 1;
  309. synchronize_rcu();
  310. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  311. mddev->pers->quiesce(mddev, 1);
  312. del_timer_sync(&mddev->safemode_timer);
  313. }
  314. EXPORT_SYMBOL_GPL(mddev_suspend);
  315. void mddev_resume(struct mddev *mddev)
  316. {
  317. mddev->suspended = 0;
  318. wake_up(&mddev->sb_wait);
  319. mddev->pers->quiesce(mddev, 0);
  320. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  321. md_wakeup_thread(mddev->thread);
  322. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  323. }
  324. EXPORT_SYMBOL_GPL(mddev_resume);
  325. int mddev_congested(struct mddev *mddev, int bits)
  326. {
  327. return mddev->suspended;
  328. }
  329. EXPORT_SYMBOL(mddev_congested);
  330. /*
  331. * Generic flush handling for md
  332. */
  333. static void md_end_flush(struct bio *bio, int err)
  334. {
  335. struct md_rdev *rdev = bio->bi_private;
  336. struct mddev *mddev = rdev->mddev;
  337. rdev_dec_pending(rdev, mddev);
  338. if (atomic_dec_and_test(&mddev->flush_pending)) {
  339. /* The pre-request flush has finished */
  340. queue_work(md_wq, &mddev->flush_work);
  341. }
  342. bio_put(bio);
  343. }
  344. static void md_submit_flush_data(struct work_struct *ws);
  345. static void submit_flushes(struct work_struct *ws)
  346. {
  347. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  348. struct md_rdev *rdev;
  349. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  350. atomic_set(&mddev->flush_pending, 1);
  351. rcu_read_lock();
  352. rdev_for_each_rcu(rdev, mddev)
  353. if (rdev->raid_disk >= 0 &&
  354. !test_bit(Faulty, &rdev->flags)) {
  355. /* Take two references, one is dropped
  356. * when request finishes, one after
  357. * we reclaim rcu_read_lock
  358. */
  359. struct bio *bi;
  360. atomic_inc(&rdev->nr_pending);
  361. atomic_inc(&rdev->nr_pending);
  362. rcu_read_unlock();
  363. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  364. bi->bi_end_io = md_end_flush;
  365. bi->bi_private = rdev;
  366. bi->bi_bdev = rdev->bdev;
  367. atomic_inc(&mddev->flush_pending);
  368. submit_bio(WRITE_FLUSH, bi);
  369. rcu_read_lock();
  370. rdev_dec_pending(rdev, mddev);
  371. }
  372. rcu_read_unlock();
  373. if (atomic_dec_and_test(&mddev->flush_pending))
  374. queue_work(md_wq, &mddev->flush_work);
  375. }
  376. static void md_submit_flush_data(struct work_struct *ws)
  377. {
  378. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  379. struct bio *bio = mddev->flush_bio;
  380. if (bio->bi_size == 0)
  381. /* an empty barrier - all done */
  382. bio_endio(bio, 0);
  383. else {
  384. bio->bi_rw &= ~REQ_FLUSH;
  385. mddev->pers->make_request(mddev, bio);
  386. }
  387. mddev->flush_bio = NULL;
  388. wake_up(&mddev->sb_wait);
  389. }
  390. void md_flush_request(struct mddev *mddev, struct bio *bio)
  391. {
  392. spin_lock_irq(&mddev->write_lock);
  393. wait_event_lock_irq(mddev->sb_wait,
  394. !mddev->flush_bio,
  395. mddev->write_lock, /*nothing*/);
  396. mddev->flush_bio = bio;
  397. spin_unlock_irq(&mddev->write_lock);
  398. INIT_WORK(&mddev->flush_work, submit_flushes);
  399. queue_work(md_wq, &mddev->flush_work);
  400. }
  401. EXPORT_SYMBOL(md_flush_request);
  402. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  403. {
  404. struct mddev *mddev = cb->data;
  405. md_wakeup_thread(mddev->thread);
  406. kfree(cb);
  407. }
  408. EXPORT_SYMBOL(md_unplug);
  409. static inline struct mddev *mddev_get(struct mddev *mddev)
  410. {
  411. atomic_inc(&mddev->active);
  412. return mddev;
  413. }
  414. static void mddev_delayed_delete(struct work_struct *ws);
  415. static void mddev_put(struct mddev *mddev)
  416. {
  417. struct bio_set *bs = NULL;
  418. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  419. return;
  420. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  421. mddev->ctime == 0 && !mddev->hold_active) {
  422. /* Array is not configured at all, and not held active,
  423. * so destroy it */
  424. list_del_init(&mddev->all_mddevs);
  425. bs = mddev->bio_set;
  426. mddev->bio_set = NULL;
  427. if (mddev->gendisk) {
  428. /* We did a probe so need to clean up. Call
  429. * queue_work inside the spinlock so that
  430. * flush_workqueue() after mddev_find will
  431. * succeed in waiting for the work to be done.
  432. */
  433. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  434. queue_work(md_misc_wq, &mddev->del_work);
  435. } else
  436. kfree(mddev);
  437. }
  438. spin_unlock(&all_mddevs_lock);
  439. if (bs)
  440. bioset_free(bs);
  441. }
  442. void mddev_init(struct mddev *mddev)
  443. {
  444. mutex_init(&mddev->open_mutex);
  445. mutex_init(&mddev->reconfig_mutex);
  446. mutex_init(&mddev->bitmap_info.mutex);
  447. INIT_LIST_HEAD(&mddev->disks);
  448. INIT_LIST_HEAD(&mddev->all_mddevs);
  449. init_timer(&mddev->safemode_timer);
  450. atomic_set(&mddev->active, 1);
  451. atomic_set(&mddev->openers, 0);
  452. atomic_set(&mddev->active_io, 0);
  453. spin_lock_init(&mddev->write_lock);
  454. atomic_set(&mddev->flush_pending, 0);
  455. init_waitqueue_head(&mddev->sb_wait);
  456. init_waitqueue_head(&mddev->recovery_wait);
  457. mddev->reshape_position = MaxSector;
  458. mddev->reshape_backwards = 0;
  459. mddev->resync_min = 0;
  460. mddev->resync_max = MaxSector;
  461. mddev->level = LEVEL_NONE;
  462. }
  463. EXPORT_SYMBOL_GPL(mddev_init);
  464. static struct mddev * mddev_find(dev_t unit)
  465. {
  466. struct mddev *mddev, *new = NULL;
  467. if (unit && MAJOR(unit) != MD_MAJOR)
  468. unit &= ~((1<<MdpMinorShift)-1);
  469. retry:
  470. spin_lock(&all_mddevs_lock);
  471. if (unit) {
  472. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  473. if (mddev->unit == unit) {
  474. mddev_get(mddev);
  475. spin_unlock(&all_mddevs_lock);
  476. kfree(new);
  477. return mddev;
  478. }
  479. if (new) {
  480. list_add(&new->all_mddevs, &all_mddevs);
  481. spin_unlock(&all_mddevs_lock);
  482. new->hold_active = UNTIL_IOCTL;
  483. return new;
  484. }
  485. } else if (new) {
  486. /* find an unused unit number */
  487. static int next_minor = 512;
  488. int start = next_minor;
  489. int is_free = 0;
  490. int dev = 0;
  491. while (!is_free) {
  492. dev = MKDEV(MD_MAJOR, next_minor);
  493. next_minor++;
  494. if (next_minor > MINORMASK)
  495. next_minor = 0;
  496. if (next_minor == start) {
  497. /* Oh dear, all in use. */
  498. spin_unlock(&all_mddevs_lock);
  499. kfree(new);
  500. return NULL;
  501. }
  502. is_free = 1;
  503. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  504. if (mddev->unit == dev) {
  505. is_free = 0;
  506. break;
  507. }
  508. }
  509. new->unit = dev;
  510. new->md_minor = MINOR(dev);
  511. new->hold_active = UNTIL_STOP;
  512. list_add(&new->all_mddevs, &all_mddevs);
  513. spin_unlock(&all_mddevs_lock);
  514. return new;
  515. }
  516. spin_unlock(&all_mddevs_lock);
  517. new = kzalloc(sizeof(*new), GFP_KERNEL);
  518. if (!new)
  519. return NULL;
  520. new->unit = unit;
  521. if (MAJOR(unit) == MD_MAJOR)
  522. new->md_minor = MINOR(unit);
  523. else
  524. new->md_minor = MINOR(unit) >> MdpMinorShift;
  525. mddev_init(new);
  526. goto retry;
  527. }
  528. static inline int mddev_lock(struct mddev * mddev)
  529. {
  530. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  531. }
  532. static inline int mddev_is_locked(struct mddev *mddev)
  533. {
  534. return mutex_is_locked(&mddev->reconfig_mutex);
  535. }
  536. static inline int mddev_trylock(struct mddev * mddev)
  537. {
  538. return mutex_trylock(&mddev->reconfig_mutex);
  539. }
  540. static struct attribute_group md_redundancy_group;
  541. static void mddev_unlock(struct mddev * mddev)
  542. {
  543. if (mddev->to_remove) {
  544. /* These cannot be removed under reconfig_mutex as
  545. * an access to the files will try to take reconfig_mutex
  546. * while holding the file unremovable, which leads to
  547. * a deadlock.
  548. * So hold set sysfs_active while the remove in happeing,
  549. * and anything else which might set ->to_remove or my
  550. * otherwise change the sysfs namespace will fail with
  551. * -EBUSY if sysfs_active is still set.
  552. * We set sysfs_active under reconfig_mutex and elsewhere
  553. * test it under the same mutex to ensure its correct value
  554. * is seen.
  555. */
  556. struct attribute_group *to_remove = mddev->to_remove;
  557. mddev->to_remove = NULL;
  558. mddev->sysfs_active = 1;
  559. mutex_unlock(&mddev->reconfig_mutex);
  560. if (mddev->kobj.sd) {
  561. if (to_remove != &md_redundancy_group)
  562. sysfs_remove_group(&mddev->kobj, to_remove);
  563. if (mddev->pers == NULL ||
  564. mddev->pers->sync_request == NULL) {
  565. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  566. if (mddev->sysfs_action)
  567. sysfs_put(mddev->sysfs_action);
  568. mddev->sysfs_action = NULL;
  569. }
  570. }
  571. mddev->sysfs_active = 0;
  572. } else
  573. mutex_unlock(&mddev->reconfig_mutex);
  574. /* As we've dropped the mutex we need a spinlock to
  575. * make sure the thread doesn't disappear
  576. */
  577. spin_lock(&pers_lock);
  578. md_wakeup_thread(mddev->thread);
  579. spin_unlock(&pers_lock);
  580. }
  581. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  582. {
  583. struct md_rdev *rdev;
  584. rdev_for_each(rdev, mddev)
  585. if (rdev->desc_nr == nr)
  586. return rdev;
  587. return NULL;
  588. }
  589. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  590. {
  591. struct md_rdev *rdev;
  592. rdev_for_each_rcu(rdev, mddev)
  593. if (rdev->desc_nr == nr)
  594. return rdev;
  595. return NULL;
  596. }
  597. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  598. {
  599. struct md_rdev *rdev;
  600. rdev_for_each(rdev, mddev)
  601. if (rdev->bdev->bd_dev == dev)
  602. return rdev;
  603. return NULL;
  604. }
  605. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  606. {
  607. struct md_rdev *rdev;
  608. rdev_for_each_rcu(rdev, mddev)
  609. if (rdev->bdev->bd_dev == dev)
  610. return rdev;
  611. return NULL;
  612. }
  613. static struct md_personality *find_pers(int level, char *clevel)
  614. {
  615. struct md_personality *pers;
  616. list_for_each_entry(pers, &pers_list, list) {
  617. if (level != LEVEL_NONE && pers->level == level)
  618. return pers;
  619. if (strcmp(pers->name, clevel)==0)
  620. return pers;
  621. }
  622. return NULL;
  623. }
  624. /* return the offset of the super block in 512byte sectors */
  625. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  626. {
  627. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  628. return MD_NEW_SIZE_SECTORS(num_sectors);
  629. }
  630. static int alloc_disk_sb(struct md_rdev * rdev)
  631. {
  632. if (rdev->sb_page)
  633. MD_BUG();
  634. rdev->sb_page = alloc_page(GFP_KERNEL);
  635. if (!rdev->sb_page) {
  636. printk(KERN_ALERT "md: out of memory.\n");
  637. return -ENOMEM;
  638. }
  639. return 0;
  640. }
  641. void md_rdev_clear(struct md_rdev *rdev)
  642. {
  643. if (rdev->sb_page) {
  644. put_page(rdev->sb_page);
  645. rdev->sb_loaded = 0;
  646. rdev->sb_page = NULL;
  647. rdev->sb_start = 0;
  648. rdev->sectors = 0;
  649. }
  650. if (rdev->bb_page) {
  651. put_page(rdev->bb_page);
  652. rdev->bb_page = NULL;
  653. }
  654. kfree(rdev->badblocks.page);
  655. rdev->badblocks.page = NULL;
  656. }
  657. EXPORT_SYMBOL_GPL(md_rdev_clear);
  658. static void super_written(struct bio *bio, int error)
  659. {
  660. struct md_rdev *rdev = bio->bi_private;
  661. struct mddev *mddev = rdev->mddev;
  662. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  663. printk("md: super_written gets error=%d, uptodate=%d\n",
  664. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  665. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  666. md_error(mddev, rdev);
  667. }
  668. if (atomic_dec_and_test(&mddev->pending_writes))
  669. wake_up(&mddev->sb_wait);
  670. bio_put(bio);
  671. }
  672. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  673. sector_t sector, int size, struct page *page)
  674. {
  675. /* write first size bytes of page to sector of rdev
  676. * Increment mddev->pending_writes before returning
  677. * and decrement it on completion, waking up sb_wait
  678. * if zero is reached.
  679. * If an error occurred, call md_error
  680. */
  681. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  682. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  683. bio->bi_sector = sector;
  684. bio_add_page(bio, page, size, 0);
  685. bio->bi_private = rdev;
  686. bio->bi_end_io = super_written;
  687. atomic_inc(&mddev->pending_writes);
  688. submit_bio(WRITE_FLUSH_FUA, bio);
  689. }
  690. void md_super_wait(struct mddev *mddev)
  691. {
  692. /* wait for all superblock writes that were scheduled to complete */
  693. DEFINE_WAIT(wq);
  694. for(;;) {
  695. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  696. if (atomic_read(&mddev->pending_writes)==0)
  697. break;
  698. schedule();
  699. }
  700. finish_wait(&mddev->sb_wait, &wq);
  701. }
  702. static void bi_complete(struct bio *bio, int error)
  703. {
  704. complete((struct completion*)bio->bi_private);
  705. }
  706. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  707. struct page *page, int rw, bool metadata_op)
  708. {
  709. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  710. struct completion event;
  711. int ret;
  712. rw |= REQ_SYNC;
  713. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  714. rdev->meta_bdev : rdev->bdev;
  715. if (metadata_op)
  716. bio->bi_sector = sector + rdev->sb_start;
  717. else if (rdev->mddev->reshape_position != MaxSector &&
  718. (rdev->mddev->reshape_backwards ==
  719. (sector >= rdev->mddev->reshape_position)))
  720. bio->bi_sector = sector + rdev->new_data_offset;
  721. else
  722. bio->bi_sector = sector + rdev->data_offset;
  723. bio_add_page(bio, page, size, 0);
  724. init_completion(&event);
  725. bio->bi_private = &event;
  726. bio->bi_end_io = bi_complete;
  727. submit_bio(rw, bio);
  728. wait_for_completion(&event);
  729. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  730. bio_put(bio);
  731. return ret;
  732. }
  733. EXPORT_SYMBOL_GPL(sync_page_io);
  734. static int read_disk_sb(struct md_rdev * rdev, int size)
  735. {
  736. char b[BDEVNAME_SIZE];
  737. if (!rdev->sb_page) {
  738. MD_BUG();
  739. return -EINVAL;
  740. }
  741. if (rdev->sb_loaded)
  742. return 0;
  743. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  744. goto fail;
  745. rdev->sb_loaded = 1;
  746. return 0;
  747. fail:
  748. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  749. bdevname(rdev->bdev,b));
  750. return -EINVAL;
  751. }
  752. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  753. {
  754. return sb1->set_uuid0 == sb2->set_uuid0 &&
  755. sb1->set_uuid1 == sb2->set_uuid1 &&
  756. sb1->set_uuid2 == sb2->set_uuid2 &&
  757. sb1->set_uuid3 == sb2->set_uuid3;
  758. }
  759. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  760. {
  761. int ret;
  762. mdp_super_t *tmp1, *tmp2;
  763. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  764. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  765. if (!tmp1 || !tmp2) {
  766. ret = 0;
  767. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  768. goto abort;
  769. }
  770. *tmp1 = *sb1;
  771. *tmp2 = *sb2;
  772. /*
  773. * nr_disks is not constant
  774. */
  775. tmp1->nr_disks = 0;
  776. tmp2->nr_disks = 0;
  777. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  778. abort:
  779. kfree(tmp1);
  780. kfree(tmp2);
  781. return ret;
  782. }
  783. static u32 md_csum_fold(u32 csum)
  784. {
  785. csum = (csum & 0xffff) + (csum >> 16);
  786. return (csum & 0xffff) + (csum >> 16);
  787. }
  788. static unsigned int calc_sb_csum(mdp_super_t * sb)
  789. {
  790. u64 newcsum = 0;
  791. u32 *sb32 = (u32*)sb;
  792. int i;
  793. unsigned int disk_csum, csum;
  794. disk_csum = sb->sb_csum;
  795. sb->sb_csum = 0;
  796. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  797. newcsum += sb32[i];
  798. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  799. #ifdef CONFIG_ALPHA
  800. /* This used to use csum_partial, which was wrong for several
  801. * reasons including that different results are returned on
  802. * different architectures. It isn't critical that we get exactly
  803. * the same return value as before (we always csum_fold before
  804. * testing, and that removes any differences). However as we
  805. * know that csum_partial always returned a 16bit value on
  806. * alphas, do a fold to maximise conformity to previous behaviour.
  807. */
  808. sb->sb_csum = md_csum_fold(disk_csum);
  809. #else
  810. sb->sb_csum = disk_csum;
  811. #endif
  812. return csum;
  813. }
  814. /*
  815. * Handle superblock details.
  816. * We want to be able to handle multiple superblock formats
  817. * so we have a common interface to them all, and an array of
  818. * different handlers.
  819. * We rely on user-space to write the initial superblock, and support
  820. * reading and updating of superblocks.
  821. * Interface methods are:
  822. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  823. * loads and validates a superblock on dev.
  824. * if refdev != NULL, compare superblocks on both devices
  825. * Return:
  826. * 0 - dev has a superblock that is compatible with refdev
  827. * 1 - dev has a superblock that is compatible and newer than refdev
  828. * so dev should be used as the refdev in future
  829. * -EINVAL superblock incompatible or invalid
  830. * -othererror e.g. -EIO
  831. *
  832. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  833. * Verify that dev is acceptable into mddev.
  834. * The first time, mddev->raid_disks will be 0, and data from
  835. * dev should be merged in. Subsequent calls check that dev
  836. * is new enough. Return 0 or -EINVAL
  837. *
  838. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  839. * Update the superblock for rdev with data in mddev
  840. * This does not write to disc.
  841. *
  842. */
  843. struct super_type {
  844. char *name;
  845. struct module *owner;
  846. int (*load_super)(struct md_rdev *rdev,
  847. struct md_rdev *refdev,
  848. int minor_version);
  849. int (*validate_super)(struct mddev *mddev,
  850. struct md_rdev *rdev);
  851. void (*sync_super)(struct mddev *mddev,
  852. struct md_rdev *rdev);
  853. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  854. sector_t num_sectors);
  855. int (*allow_new_offset)(struct md_rdev *rdev,
  856. unsigned long long new_offset);
  857. };
  858. /*
  859. * Check that the given mddev has no bitmap.
  860. *
  861. * This function is called from the run method of all personalities that do not
  862. * support bitmaps. It prints an error message and returns non-zero if mddev
  863. * has a bitmap. Otherwise, it returns 0.
  864. *
  865. */
  866. int md_check_no_bitmap(struct mddev *mddev)
  867. {
  868. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  869. return 0;
  870. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  871. mdname(mddev), mddev->pers->name);
  872. return 1;
  873. }
  874. EXPORT_SYMBOL(md_check_no_bitmap);
  875. /*
  876. * load_super for 0.90.0
  877. */
  878. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  879. {
  880. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  881. mdp_super_t *sb;
  882. int ret;
  883. /*
  884. * Calculate the position of the superblock (512byte sectors),
  885. * it's at the end of the disk.
  886. *
  887. * It also happens to be a multiple of 4Kb.
  888. */
  889. rdev->sb_start = calc_dev_sboffset(rdev);
  890. ret = read_disk_sb(rdev, MD_SB_BYTES);
  891. if (ret) return ret;
  892. ret = -EINVAL;
  893. bdevname(rdev->bdev, b);
  894. sb = page_address(rdev->sb_page);
  895. if (sb->md_magic != MD_SB_MAGIC) {
  896. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  897. b);
  898. goto abort;
  899. }
  900. if (sb->major_version != 0 ||
  901. sb->minor_version < 90 ||
  902. sb->minor_version > 91) {
  903. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  904. sb->major_version, sb->minor_version,
  905. b);
  906. goto abort;
  907. }
  908. if (sb->raid_disks <= 0)
  909. goto abort;
  910. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  911. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  912. b);
  913. goto abort;
  914. }
  915. rdev->preferred_minor = sb->md_minor;
  916. rdev->data_offset = 0;
  917. rdev->new_data_offset = 0;
  918. rdev->sb_size = MD_SB_BYTES;
  919. rdev->badblocks.shift = -1;
  920. if (sb->level == LEVEL_MULTIPATH)
  921. rdev->desc_nr = -1;
  922. else
  923. rdev->desc_nr = sb->this_disk.number;
  924. if (!refdev) {
  925. ret = 1;
  926. } else {
  927. __u64 ev1, ev2;
  928. mdp_super_t *refsb = page_address(refdev->sb_page);
  929. if (!uuid_equal(refsb, sb)) {
  930. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  931. b, bdevname(refdev->bdev,b2));
  932. goto abort;
  933. }
  934. if (!sb_equal(refsb, sb)) {
  935. printk(KERN_WARNING "md: %s has same UUID"
  936. " but different superblock to %s\n",
  937. b, bdevname(refdev->bdev, b2));
  938. goto abort;
  939. }
  940. ev1 = md_event(sb);
  941. ev2 = md_event(refsb);
  942. if (ev1 > ev2)
  943. ret = 1;
  944. else
  945. ret = 0;
  946. }
  947. rdev->sectors = rdev->sb_start;
  948. /* Limit to 4TB as metadata cannot record more than that.
  949. * (not needed for Linear and RAID0 as metadata doesn't
  950. * record this size)
  951. */
  952. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  953. rdev->sectors = (2ULL << 32) - 2;
  954. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  955. /* "this cannot possibly happen" ... */
  956. ret = -EINVAL;
  957. abort:
  958. return ret;
  959. }
  960. /*
  961. * validate_super for 0.90.0
  962. */
  963. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  964. {
  965. mdp_disk_t *desc;
  966. mdp_super_t *sb = page_address(rdev->sb_page);
  967. __u64 ev1 = md_event(sb);
  968. rdev->raid_disk = -1;
  969. clear_bit(Faulty, &rdev->flags);
  970. clear_bit(In_sync, &rdev->flags);
  971. clear_bit(WriteMostly, &rdev->flags);
  972. if (mddev->raid_disks == 0) {
  973. mddev->major_version = 0;
  974. mddev->minor_version = sb->minor_version;
  975. mddev->patch_version = sb->patch_version;
  976. mddev->external = 0;
  977. mddev->chunk_sectors = sb->chunk_size >> 9;
  978. mddev->ctime = sb->ctime;
  979. mddev->utime = sb->utime;
  980. mddev->level = sb->level;
  981. mddev->clevel[0] = 0;
  982. mddev->layout = sb->layout;
  983. mddev->raid_disks = sb->raid_disks;
  984. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  985. mddev->events = ev1;
  986. mddev->bitmap_info.offset = 0;
  987. mddev->bitmap_info.space = 0;
  988. /* bitmap can use 60 K after the 4K superblocks */
  989. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  990. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  991. mddev->reshape_backwards = 0;
  992. if (mddev->minor_version >= 91) {
  993. mddev->reshape_position = sb->reshape_position;
  994. mddev->delta_disks = sb->delta_disks;
  995. mddev->new_level = sb->new_level;
  996. mddev->new_layout = sb->new_layout;
  997. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  998. if (mddev->delta_disks < 0)
  999. mddev->reshape_backwards = 1;
  1000. } else {
  1001. mddev->reshape_position = MaxSector;
  1002. mddev->delta_disks = 0;
  1003. mddev->new_level = mddev->level;
  1004. mddev->new_layout = mddev->layout;
  1005. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1006. }
  1007. if (sb->state & (1<<MD_SB_CLEAN))
  1008. mddev->recovery_cp = MaxSector;
  1009. else {
  1010. if (sb->events_hi == sb->cp_events_hi &&
  1011. sb->events_lo == sb->cp_events_lo) {
  1012. mddev->recovery_cp = sb->recovery_cp;
  1013. } else
  1014. mddev->recovery_cp = 0;
  1015. }
  1016. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1017. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1018. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1019. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1020. mddev->max_disks = MD_SB_DISKS;
  1021. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1022. mddev->bitmap_info.file == NULL) {
  1023. mddev->bitmap_info.offset =
  1024. mddev->bitmap_info.default_offset;
  1025. mddev->bitmap_info.space =
  1026. mddev->bitmap_info.space;
  1027. }
  1028. } else if (mddev->pers == NULL) {
  1029. /* Insist on good event counter while assembling, except
  1030. * for spares (which don't need an event count) */
  1031. ++ev1;
  1032. if (sb->disks[rdev->desc_nr].state & (
  1033. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1034. if (ev1 < mddev->events)
  1035. return -EINVAL;
  1036. } else if (mddev->bitmap) {
  1037. /* if adding to array with a bitmap, then we can accept an
  1038. * older device ... but not too old.
  1039. */
  1040. if (ev1 < mddev->bitmap->events_cleared)
  1041. return 0;
  1042. } else {
  1043. if (ev1 < mddev->events)
  1044. /* just a hot-add of a new device, leave raid_disk at -1 */
  1045. return 0;
  1046. }
  1047. if (mddev->level != LEVEL_MULTIPATH) {
  1048. desc = sb->disks + rdev->desc_nr;
  1049. if (desc->state & (1<<MD_DISK_FAULTY))
  1050. set_bit(Faulty, &rdev->flags);
  1051. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1052. desc->raid_disk < mddev->raid_disks */) {
  1053. set_bit(In_sync, &rdev->flags);
  1054. rdev->raid_disk = desc->raid_disk;
  1055. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1056. /* active but not in sync implies recovery up to
  1057. * reshape position. We don't know exactly where
  1058. * that is, so set to zero for now */
  1059. if (mddev->minor_version >= 91) {
  1060. rdev->recovery_offset = 0;
  1061. rdev->raid_disk = desc->raid_disk;
  1062. }
  1063. }
  1064. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1065. set_bit(WriteMostly, &rdev->flags);
  1066. } else /* MULTIPATH are always insync */
  1067. set_bit(In_sync, &rdev->flags);
  1068. return 0;
  1069. }
  1070. /*
  1071. * sync_super for 0.90.0
  1072. */
  1073. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1074. {
  1075. mdp_super_t *sb;
  1076. struct md_rdev *rdev2;
  1077. int next_spare = mddev->raid_disks;
  1078. /* make rdev->sb match mddev data..
  1079. *
  1080. * 1/ zero out disks
  1081. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1082. * 3/ any empty disks < next_spare become removed
  1083. *
  1084. * disks[0] gets initialised to REMOVED because
  1085. * we cannot be sure from other fields if it has
  1086. * been initialised or not.
  1087. */
  1088. int i;
  1089. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1090. rdev->sb_size = MD_SB_BYTES;
  1091. sb = page_address(rdev->sb_page);
  1092. memset(sb, 0, sizeof(*sb));
  1093. sb->md_magic = MD_SB_MAGIC;
  1094. sb->major_version = mddev->major_version;
  1095. sb->patch_version = mddev->patch_version;
  1096. sb->gvalid_words = 0; /* ignored */
  1097. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1098. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1099. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1100. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1101. sb->ctime = mddev->ctime;
  1102. sb->level = mddev->level;
  1103. sb->size = mddev->dev_sectors / 2;
  1104. sb->raid_disks = mddev->raid_disks;
  1105. sb->md_minor = mddev->md_minor;
  1106. sb->not_persistent = 0;
  1107. sb->utime = mddev->utime;
  1108. sb->state = 0;
  1109. sb->events_hi = (mddev->events>>32);
  1110. sb->events_lo = (u32)mddev->events;
  1111. if (mddev->reshape_position == MaxSector)
  1112. sb->minor_version = 90;
  1113. else {
  1114. sb->minor_version = 91;
  1115. sb->reshape_position = mddev->reshape_position;
  1116. sb->new_level = mddev->new_level;
  1117. sb->delta_disks = mddev->delta_disks;
  1118. sb->new_layout = mddev->new_layout;
  1119. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1120. }
  1121. mddev->minor_version = sb->minor_version;
  1122. if (mddev->in_sync)
  1123. {
  1124. sb->recovery_cp = mddev->recovery_cp;
  1125. sb->cp_events_hi = (mddev->events>>32);
  1126. sb->cp_events_lo = (u32)mddev->events;
  1127. if (mddev->recovery_cp == MaxSector)
  1128. sb->state = (1<< MD_SB_CLEAN);
  1129. } else
  1130. sb->recovery_cp = 0;
  1131. sb->layout = mddev->layout;
  1132. sb->chunk_size = mddev->chunk_sectors << 9;
  1133. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1134. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1135. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1136. rdev_for_each(rdev2, mddev) {
  1137. mdp_disk_t *d;
  1138. int desc_nr;
  1139. int is_active = test_bit(In_sync, &rdev2->flags);
  1140. if (rdev2->raid_disk >= 0 &&
  1141. sb->minor_version >= 91)
  1142. /* we have nowhere to store the recovery_offset,
  1143. * but if it is not below the reshape_position,
  1144. * we can piggy-back on that.
  1145. */
  1146. is_active = 1;
  1147. if (rdev2->raid_disk < 0 ||
  1148. test_bit(Faulty, &rdev2->flags))
  1149. is_active = 0;
  1150. if (is_active)
  1151. desc_nr = rdev2->raid_disk;
  1152. else
  1153. desc_nr = next_spare++;
  1154. rdev2->desc_nr = desc_nr;
  1155. d = &sb->disks[rdev2->desc_nr];
  1156. nr_disks++;
  1157. d->number = rdev2->desc_nr;
  1158. d->major = MAJOR(rdev2->bdev->bd_dev);
  1159. d->minor = MINOR(rdev2->bdev->bd_dev);
  1160. if (is_active)
  1161. d->raid_disk = rdev2->raid_disk;
  1162. else
  1163. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1164. if (test_bit(Faulty, &rdev2->flags))
  1165. d->state = (1<<MD_DISK_FAULTY);
  1166. else if (is_active) {
  1167. d->state = (1<<MD_DISK_ACTIVE);
  1168. if (test_bit(In_sync, &rdev2->flags))
  1169. d->state |= (1<<MD_DISK_SYNC);
  1170. active++;
  1171. working++;
  1172. } else {
  1173. d->state = 0;
  1174. spare++;
  1175. working++;
  1176. }
  1177. if (test_bit(WriteMostly, &rdev2->flags))
  1178. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1179. }
  1180. /* now set the "removed" and "faulty" bits on any missing devices */
  1181. for (i=0 ; i < mddev->raid_disks ; i++) {
  1182. mdp_disk_t *d = &sb->disks[i];
  1183. if (d->state == 0 && d->number == 0) {
  1184. d->number = i;
  1185. d->raid_disk = i;
  1186. d->state = (1<<MD_DISK_REMOVED);
  1187. d->state |= (1<<MD_DISK_FAULTY);
  1188. failed++;
  1189. }
  1190. }
  1191. sb->nr_disks = nr_disks;
  1192. sb->active_disks = active;
  1193. sb->working_disks = working;
  1194. sb->failed_disks = failed;
  1195. sb->spare_disks = spare;
  1196. sb->this_disk = sb->disks[rdev->desc_nr];
  1197. sb->sb_csum = calc_sb_csum(sb);
  1198. }
  1199. /*
  1200. * rdev_size_change for 0.90.0
  1201. */
  1202. static unsigned long long
  1203. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1204. {
  1205. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1206. return 0; /* component must fit device */
  1207. if (rdev->mddev->bitmap_info.offset)
  1208. return 0; /* can't move bitmap */
  1209. rdev->sb_start = calc_dev_sboffset(rdev);
  1210. if (!num_sectors || num_sectors > rdev->sb_start)
  1211. num_sectors = rdev->sb_start;
  1212. /* Limit to 4TB as metadata cannot record more than that.
  1213. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1214. */
  1215. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1216. num_sectors = (2ULL << 32) - 2;
  1217. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1218. rdev->sb_page);
  1219. md_super_wait(rdev->mddev);
  1220. return num_sectors;
  1221. }
  1222. static int
  1223. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1224. {
  1225. /* non-zero offset changes not possible with v0.90 */
  1226. return new_offset == 0;
  1227. }
  1228. /*
  1229. * version 1 superblock
  1230. */
  1231. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1232. {
  1233. __le32 disk_csum;
  1234. u32 csum;
  1235. unsigned long long newcsum;
  1236. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1237. __le32 *isuper = (__le32*)sb;
  1238. int i;
  1239. disk_csum = sb->sb_csum;
  1240. sb->sb_csum = 0;
  1241. newcsum = 0;
  1242. for (i=0; size>=4; size -= 4 )
  1243. newcsum += le32_to_cpu(*isuper++);
  1244. if (size == 2)
  1245. newcsum += le16_to_cpu(*(__le16*) isuper);
  1246. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1247. sb->sb_csum = disk_csum;
  1248. return cpu_to_le32(csum);
  1249. }
  1250. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1251. int acknowledged);
  1252. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1253. {
  1254. struct mdp_superblock_1 *sb;
  1255. int ret;
  1256. sector_t sb_start;
  1257. sector_t sectors;
  1258. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1259. int bmask;
  1260. /*
  1261. * Calculate the position of the superblock in 512byte sectors.
  1262. * It is always aligned to a 4K boundary and
  1263. * depeding on minor_version, it can be:
  1264. * 0: At least 8K, but less than 12K, from end of device
  1265. * 1: At start of device
  1266. * 2: 4K from start of device.
  1267. */
  1268. switch(minor_version) {
  1269. case 0:
  1270. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1271. sb_start -= 8*2;
  1272. sb_start &= ~(sector_t)(4*2-1);
  1273. break;
  1274. case 1:
  1275. sb_start = 0;
  1276. break;
  1277. case 2:
  1278. sb_start = 8;
  1279. break;
  1280. default:
  1281. return -EINVAL;
  1282. }
  1283. rdev->sb_start = sb_start;
  1284. /* superblock is rarely larger than 1K, but it can be larger,
  1285. * and it is safe to read 4k, so we do that
  1286. */
  1287. ret = read_disk_sb(rdev, 4096);
  1288. if (ret) return ret;
  1289. sb = page_address(rdev->sb_page);
  1290. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1291. sb->major_version != cpu_to_le32(1) ||
  1292. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1293. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1294. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1295. return -EINVAL;
  1296. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1297. printk("md: invalid superblock checksum on %s\n",
  1298. bdevname(rdev->bdev,b));
  1299. return -EINVAL;
  1300. }
  1301. if (le64_to_cpu(sb->data_size) < 10) {
  1302. printk("md: data_size too small on %s\n",
  1303. bdevname(rdev->bdev,b));
  1304. return -EINVAL;
  1305. }
  1306. if (sb->pad0 ||
  1307. sb->pad3[0] ||
  1308. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1309. /* Some padding is non-zero, might be a new feature */
  1310. return -EINVAL;
  1311. rdev->preferred_minor = 0xffff;
  1312. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1313. rdev->new_data_offset = rdev->data_offset;
  1314. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1315. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1316. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1317. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1318. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1319. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1320. if (rdev->sb_size & bmask)
  1321. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1322. if (minor_version
  1323. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1324. return -EINVAL;
  1325. if (minor_version
  1326. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1327. return -EINVAL;
  1328. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1329. rdev->desc_nr = -1;
  1330. else
  1331. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1332. if (!rdev->bb_page) {
  1333. rdev->bb_page = alloc_page(GFP_KERNEL);
  1334. if (!rdev->bb_page)
  1335. return -ENOMEM;
  1336. }
  1337. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1338. rdev->badblocks.count == 0) {
  1339. /* need to load the bad block list.
  1340. * Currently we limit it to one page.
  1341. */
  1342. s32 offset;
  1343. sector_t bb_sector;
  1344. u64 *bbp;
  1345. int i;
  1346. int sectors = le16_to_cpu(sb->bblog_size);
  1347. if (sectors > (PAGE_SIZE / 512))
  1348. return -EINVAL;
  1349. offset = le32_to_cpu(sb->bblog_offset);
  1350. if (offset == 0)
  1351. return -EINVAL;
  1352. bb_sector = (long long)offset;
  1353. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1354. rdev->bb_page, READ, true))
  1355. return -EIO;
  1356. bbp = (u64 *)page_address(rdev->bb_page);
  1357. rdev->badblocks.shift = sb->bblog_shift;
  1358. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1359. u64 bb = le64_to_cpu(*bbp);
  1360. int count = bb & (0x3ff);
  1361. u64 sector = bb >> 10;
  1362. sector <<= sb->bblog_shift;
  1363. count <<= sb->bblog_shift;
  1364. if (bb + 1 == 0)
  1365. break;
  1366. if (md_set_badblocks(&rdev->badblocks,
  1367. sector, count, 1) == 0)
  1368. return -EINVAL;
  1369. }
  1370. } else if (sb->bblog_offset == 0)
  1371. rdev->badblocks.shift = -1;
  1372. if (!refdev) {
  1373. ret = 1;
  1374. } else {
  1375. __u64 ev1, ev2;
  1376. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1377. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1378. sb->level != refsb->level ||
  1379. sb->layout != refsb->layout ||
  1380. sb->chunksize != refsb->chunksize) {
  1381. printk(KERN_WARNING "md: %s has strangely different"
  1382. " superblock to %s\n",
  1383. bdevname(rdev->bdev,b),
  1384. bdevname(refdev->bdev,b2));
  1385. return -EINVAL;
  1386. }
  1387. ev1 = le64_to_cpu(sb->events);
  1388. ev2 = le64_to_cpu(refsb->events);
  1389. if (ev1 > ev2)
  1390. ret = 1;
  1391. else
  1392. ret = 0;
  1393. }
  1394. if (minor_version) {
  1395. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1396. sectors -= rdev->data_offset;
  1397. } else
  1398. sectors = rdev->sb_start;
  1399. if (sectors < le64_to_cpu(sb->data_size))
  1400. return -EINVAL;
  1401. rdev->sectors = le64_to_cpu(sb->data_size);
  1402. return ret;
  1403. }
  1404. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1405. {
  1406. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1407. __u64 ev1 = le64_to_cpu(sb->events);
  1408. rdev->raid_disk = -1;
  1409. clear_bit(Faulty, &rdev->flags);
  1410. clear_bit(In_sync, &rdev->flags);
  1411. clear_bit(WriteMostly, &rdev->flags);
  1412. if (mddev->raid_disks == 0) {
  1413. mddev->major_version = 1;
  1414. mddev->patch_version = 0;
  1415. mddev->external = 0;
  1416. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1417. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1418. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1419. mddev->level = le32_to_cpu(sb->level);
  1420. mddev->clevel[0] = 0;
  1421. mddev->layout = le32_to_cpu(sb->layout);
  1422. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1423. mddev->dev_sectors = le64_to_cpu(sb->size);
  1424. mddev->events = ev1;
  1425. mddev->bitmap_info.offset = 0;
  1426. mddev->bitmap_info.space = 0;
  1427. /* Default location for bitmap is 1K after superblock
  1428. * using 3K - total of 4K
  1429. */
  1430. mddev->bitmap_info.default_offset = 1024 >> 9;
  1431. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1432. mddev->reshape_backwards = 0;
  1433. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1434. memcpy(mddev->uuid, sb->set_uuid, 16);
  1435. mddev->max_disks = (4096-256)/2;
  1436. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1437. mddev->bitmap_info.file == NULL) {
  1438. mddev->bitmap_info.offset =
  1439. (__s32)le32_to_cpu(sb->bitmap_offset);
  1440. /* Metadata doesn't record how much space is available.
  1441. * For 1.0, we assume we can use up to the superblock
  1442. * if before, else to 4K beyond superblock.
  1443. * For others, assume no change is possible.
  1444. */
  1445. if (mddev->minor_version > 0)
  1446. mddev->bitmap_info.space = 0;
  1447. else if (mddev->bitmap_info.offset > 0)
  1448. mddev->bitmap_info.space =
  1449. 8 - mddev->bitmap_info.offset;
  1450. else
  1451. mddev->bitmap_info.space =
  1452. -mddev->bitmap_info.offset;
  1453. }
  1454. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1455. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1456. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1457. mddev->new_level = le32_to_cpu(sb->new_level);
  1458. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1459. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1460. if (mddev->delta_disks < 0 ||
  1461. (mddev->delta_disks == 0 &&
  1462. (le32_to_cpu(sb->feature_map)
  1463. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1464. mddev->reshape_backwards = 1;
  1465. } else {
  1466. mddev->reshape_position = MaxSector;
  1467. mddev->delta_disks = 0;
  1468. mddev->new_level = mddev->level;
  1469. mddev->new_layout = mddev->layout;
  1470. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1471. }
  1472. } else if (mddev->pers == NULL) {
  1473. /* Insist of good event counter while assembling, except for
  1474. * spares (which don't need an event count) */
  1475. ++ev1;
  1476. if (rdev->desc_nr >= 0 &&
  1477. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1478. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1479. if (ev1 < mddev->events)
  1480. return -EINVAL;
  1481. } else if (mddev->bitmap) {
  1482. /* If adding to array with a bitmap, then we can accept an
  1483. * older device, but not too old.
  1484. */
  1485. if (ev1 < mddev->bitmap->events_cleared)
  1486. return 0;
  1487. } else {
  1488. if (ev1 < mddev->events)
  1489. /* just a hot-add of a new device, leave raid_disk at -1 */
  1490. return 0;
  1491. }
  1492. if (mddev->level != LEVEL_MULTIPATH) {
  1493. int role;
  1494. if (rdev->desc_nr < 0 ||
  1495. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1496. role = 0xffff;
  1497. rdev->desc_nr = -1;
  1498. } else
  1499. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1500. switch(role) {
  1501. case 0xffff: /* spare */
  1502. break;
  1503. case 0xfffe: /* faulty */
  1504. set_bit(Faulty, &rdev->flags);
  1505. break;
  1506. default:
  1507. if ((le32_to_cpu(sb->feature_map) &
  1508. MD_FEATURE_RECOVERY_OFFSET))
  1509. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1510. else
  1511. set_bit(In_sync, &rdev->flags);
  1512. rdev->raid_disk = role;
  1513. break;
  1514. }
  1515. if (sb->devflags & WriteMostly1)
  1516. set_bit(WriteMostly, &rdev->flags);
  1517. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1518. set_bit(Replacement, &rdev->flags);
  1519. } else /* MULTIPATH are always insync */
  1520. set_bit(In_sync, &rdev->flags);
  1521. return 0;
  1522. }
  1523. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1524. {
  1525. struct mdp_superblock_1 *sb;
  1526. struct md_rdev *rdev2;
  1527. int max_dev, i;
  1528. /* make rdev->sb match mddev and rdev data. */
  1529. sb = page_address(rdev->sb_page);
  1530. sb->feature_map = 0;
  1531. sb->pad0 = 0;
  1532. sb->recovery_offset = cpu_to_le64(0);
  1533. memset(sb->pad3, 0, sizeof(sb->pad3));
  1534. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1535. sb->events = cpu_to_le64(mddev->events);
  1536. if (mddev->in_sync)
  1537. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1538. else
  1539. sb->resync_offset = cpu_to_le64(0);
  1540. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1541. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1542. sb->size = cpu_to_le64(mddev->dev_sectors);
  1543. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1544. sb->level = cpu_to_le32(mddev->level);
  1545. sb->layout = cpu_to_le32(mddev->layout);
  1546. if (test_bit(WriteMostly, &rdev->flags))
  1547. sb->devflags |= WriteMostly1;
  1548. else
  1549. sb->devflags &= ~WriteMostly1;
  1550. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1551. sb->data_size = cpu_to_le64(rdev->sectors);
  1552. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1553. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1554. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1555. }
  1556. if (rdev->raid_disk >= 0 &&
  1557. !test_bit(In_sync, &rdev->flags)) {
  1558. sb->feature_map |=
  1559. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1560. sb->recovery_offset =
  1561. cpu_to_le64(rdev->recovery_offset);
  1562. }
  1563. if (test_bit(Replacement, &rdev->flags))
  1564. sb->feature_map |=
  1565. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1566. if (mddev->reshape_position != MaxSector) {
  1567. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1568. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1569. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1570. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1571. sb->new_level = cpu_to_le32(mddev->new_level);
  1572. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1573. if (mddev->delta_disks == 0 &&
  1574. mddev->reshape_backwards)
  1575. sb->feature_map
  1576. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1577. if (rdev->new_data_offset != rdev->data_offset) {
  1578. sb->feature_map
  1579. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1580. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1581. - rdev->data_offset));
  1582. }
  1583. }
  1584. if (rdev->badblocks.count == 0)
  1585. /* Nothing to do for bad blocks*/ ;
  1586. else if (sb->bblog_offset == 0)
  1587. /* Cannot record bad blocks on this device */
  1588. md_error(mddev, rdev);
  1589. else {
  1590. struct badblocks *bb = &rdev->badblocks;
  1591. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1592. u64 *p = bb->page;
  1593. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1594. if (bb->changed) {
  1595. unsigned seq;
  1596. retry:
  1597. seq = read_seqbegin(&bb->lock);
  1598. memset(bbp, 0xff, PAGE_SIZE);
  1599. for (i = 0 ; i < bb->count ; i++) {
  1600. u64 internal_bb = *p++;
  1601. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1602. | BB_LEN(internal_bb));
  1603. *bbp++ = cpu_to_le64(store_bb);
  1604. }
  1605. bb->changed = 0;
  1606. if (read_seqretry(&bb->lock, seq))
  1607. goto retry;
  1608. bb->sector = (rdev->sb_start +
  1609. (int)le32_to_cpu(sb->bblog_offset));
  1610. bb->size = le16_to_cpu(sb->bblog_size);
  1611. }
  1612. }
  1613. max_dev = 0;
  1614. rdev_for_each(rdev2, mddev)
  1615. if (rdev2->desc_nr+1 > max_dev)
  1616. max_dev = rdev2->desc_nr+1;
  1617. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1618. int bmask;
  1619. sb->max_dev = cpu_to_le32(max_dev);
  1620. rdev->sb_size = max_dev * 2 + 256;
  1621. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1622. if (rdev->sb_size & bmask)
  1623. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1624. } else
  1625. max_dev = le32_to_cpu(sb->max_dev);
  1626. for (i=0; i<max_dev;i++)
  1627. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1628. rdev_for_each(rdev2, mddev) {
  1629. i = rdev2->desc_nr;
  1630. if (test_bit(Faulty, &rdev2->flags))
  1631. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1632. else if (test_bit(In_sync, &rdev2->flags))
  1633. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1634. else if (rdev2->raid_disk >= 0)
  1635. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1636. else
  1637. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1638. }
  1639. sb->sb_csum = calc_sb_1_csum(sb);
  1640. }
  1641. static unsigned long long
  1642. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1643. {
  1644. struct mdp_superblock_1 *sb;
  1645. sector_t max_sectors;
  1646. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1647. return 0; /* component must fit device */
  1648. if (rdev->data_offset != rdev->new_data_offset)
  1649. return 0; /* too confusing */
  1650. if (rdev->sb_start < rdev->data_offset) {
  1651. /* minor versions 1 and 2; superblock before data */
  1652. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1653. max_sectors -= rdev->data_offset;
  1654. if (!num_sectors || num_sectors > max_sectors)
  1655. num_sectors = max_sectors;
  1656. } else if (rdev->mddev->bitmap_info.offset) {
  1657. /* minor version 0 with bitmap we can't move */
  1658. return 0;
  1659. } else {
  1660. /* minor version 0; superblock after data */
  1661. sector_t sb_start;
  1662. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1663. sb_start &= ~(sector_t)(4*2 - 1);
  1664. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1665. if (!num_sectors || num_sectors > max_sectors)
  1666. num_sectors = max_sectors;
  1667. rdev->sb_start = sb_start;
  1668. }
  1669. sb = page_address(rdev->sb_page);
  1670. sb->data_size = cpu_to_le64(num_sectors);
  1671. sb->super_offset = rdev->sb_start;
  1672. sb->sb_csum = calc_sb_1_csum(sb);
  1673. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1674. rdev->sb_page);
  1675. md_super_wait(rdev->mddev);
  1676. return num_sectors;
  1677. }
  1678. static int
  1679. super_1_allow_new_offset(struct md_rdev *rdev,
  1680. unsigned long long new_offset)
  1681. {
  1682. /* All necessary checks on new >= old have been done */
  1683. struct bitmap *bitmap;
  1684. if (new_offset >= rdev->data_offset)
  1685. return 1;
  1686. /* with 1.0 metadata, there is no metadata to tread on
  1687. * so we can always move back */
  1688. if (rdev->mddev->minor_version == 0)
  1689. return 1;
  1690. /* otherwise we must be sure not to step on
  1691. * any metadata, so stay:
  1692. * 36K beyond start of superblock
  1693. * beyond end of badblocks
  1694. * beyond write-intent bitmap
  1695. */
  1696. if (rdev->sb_start + (32+4)*2 > new_offset)
  1697. return 0;
  1698. bitmap = rdev->mddev->bitmap;
  1699. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1700. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1701. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1702. return 0;
  1703. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1704. return 0;
  1705. return 1;
  1706. }
  1707. static struct super_type super_types[] = {
  1708. [0] = {
  1709. .name = "0.90.0",
  1710. .owner = THIS_MODULE,
  1711. .load_super = super_90_load,
  1712. .validate_super = super_90_validate,
  1713. .sync_super = super_90_sync,
  1714. .rdev_size_change = super_90_rdev_size_change,
  1715. .allow_new_offset = super_90_allow_new_offset,
  1716. },
  1717. [1] = {
  1718. .name = "md-1",
  1719. .owner = THIS_MODULE,
  1720. .load_super = super_1_load,
  1721. .validate_super = super_1_validate,
  1722. .sync_super = super_1_sync,
  1723. .rdev_size_change = super_1_rdev_size_change,
  1724. .allow_new_offset = super_1_allow_new_offset,
  1725. },
  1726. };
  1727. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1728. {
  1729. if (mddev->sync_super) {
  1730. mddev->sync_super(mddev, rdev);
  1731. return;
  1732. }
  1733. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1734. super_types[mddev->major_version].sync_super(mddev, rdev);
  1735. }
  1736. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1737. {
  1738. struct md_rdev *rdev, *rdev2;
  1739. rcu_read_lock();
  1740. rdev_for_each_rcu(rdev, mddev1)
  1741. rdev_for_each_rcu(rdev2, mddev2)
  1742. if (rdev->bdev->bd_contains ==
  1743. rdev2->bdev->bd_contains) {
  1744. rcu_read_unlock();
  1745. return 1;
  1746. }
  1747. rcu_read_unlock();
  1748. return 0;
  1749. }
  1750. static LIST_HEAD(pending_raid_disks);
  1751. /*
  1752. * Try to register data integrity profile for an mddev
  1753. *
  1754. * This is called when an array is started and after a disk has been kicked
  1755. * from the array. It only succeeds if all working and active component devices
  1756. * are integrity capable with matching profiles.
  1757. */
  1758. int md_integrity_register(struct mddev *mddev)
  1759. {
  1760. struct md_rdev *rdev, *reference = NULL;
  1761. if (list_empty(&mddev->disks))
  1762. return 0; /* nothing to do */
  1763. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1764. return 0; /* shouldn't register, or already is */
  1765. rdev_for_each(rdev, mddev) {
  1766. /* skip spares and non-functional disks */
  1767. if (test_bit(Faulty, &rdev->flags))
  1768. continue;
  1769. if (rdev->raid_disk < 0)
  1770. continue;
  1771. if (!reference) {
  1772. /* Use the first rdev as the reference */
  1773. reference = rdev;
  1774. continue;
  1775. }
  1776. /* does this rdev's profile match the reference profile? */
  1777. if (blk_integrity_compare(reference->bdev->bd_disk,
  1778. rdev->bdev->bd_disk) < 0)
  1779. return -EINVAL;
  1780. }
  1781. if (!reference || !bdev_get_integrity(reference->bdev))
  1782. return 0;
  1783. /*
  1784. * All component devices are integrity capable and have matching
  1785. * profiles, register the common profile for the md device.
  1786. */
  1787. if (blk_integrity_register(mddev->gendisk,
  1788. bdev_get_integrity(reference->bdev)) != 0) {
  1789. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1790. mdname(mddev));
  1791. return -EINVAL;
  1792. }
  1793. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1794. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1795. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1796. mdname(mddev));
  1797. return -EINVAL;
  1798. }
  1799. return 0;
  1800. }
  1801. EXPORT_SYMBOL(md_integrity_register);
  1802. /* Disable data integrity if non-capable/non-matching disk is being added */
  1803. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1804. {
  1805. struct blk_integrity *bi_rdev;
  1806. struct blk_integrity *bi_mddev;
  1807. if (!mddev->gendisk)
  1808. return;
  1809. bi_rdev = bdev_get_integrity(rdev->bdev);
  1810. bi_mddev = blk_get_integrity(mddev->gendisk);
  1811. if (!bi_mddev) /* nothing to do */
  1812. return;
  1813. if (rdev->raid_disk < 0) /* skip spares */
  1814. return;
  1815. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1816. rdev->bdev->bd_disk) >= 0)
  1817. return;
  1818. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1819. blk_integrity_unregister(mddev->gendisk);
  1820. }
  1821. EXPORT_SYMBOL(md_integrity_add_rdev);
  1822. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1823. {
  1824. char b[BDEVNAME_SIZE];
  1825. struct kobject *ko;
  1826. char *s;
  1827. int err;
  1828. if (rdev->mddev) {
  1829. MD_BUG();
  1830. return -EINVAL;
  1831. }
  1832. /* prevent duplicates */
  1833. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1834. return -EEXIST;
  1835. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1836. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1837. rdev->sectors < mddev->dev_sectors)) {
  1838. if (mddev->pers) {
  1839. /* Cannot change size, so fail
  1840. * If mddev->level <= 0, then we don't care
  1841. * about aligning sizes (e.g. linear)
  1842. */
  1843. if (mddev->level > 0)
  1844. return -ENOSPC;
  1845. } else
  1846. mddev->dev_sectors = rdev->sectors;
  1847. }
  1848. /* Verify rdev->desc_nr is unique.
  1849. * If it is -1, assign a free number, else
  1850. * check number is not in use
  1851. */
  1852. if (rdev->desc_nr < 0) {
  1853. int choice = 0;
  1854. if (mddev->pers) choice = mddev->raid_disks;
  1855. while (find_rdev_nr(mddev, choice))
  1856. choice++;
  1857. rdev->desc_nr = choice;
  1858. } else {
  1859. if (find_rdev_nr(mddev, rdev->desc_nr))
  1860. return -EBUSY;
  1861. }
  1862. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1863. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1864. mdname(mddev), mddev->max_disks);
  1865. return -EBUSY;
  1866. }
  1867. bdevname(rdev->bdev,b);
  1868. while ( (s=strchr(b, '/')) != NULL)
  1869. *s = '!';
  1870. rdev->mddev = mddev;
  1871. printk(KERN_INFO "md: bind<%s>\n", b);
  1872. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1873. goto fail;
  1874. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1875. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1876. /* failure here is OK */;
  1877. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1878. list_add_rcu(&rdev->same_set, &mddev->disks);
  1879. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1880. /* May as well allow recovery to be retried once */
  1881. mddev->recovery_disabled++;
  1882. return 0;
  1883. fail:
  1884. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1885. b, mdname(mddev));
  1886. return err;
  1887. }
  1888. static void md_delayed_delete(struct work_struct *ws)
  1889. {
  1890. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1891. kobject_del(&rdev->kobj);
  1892. kobject_put(&rdev->kobj);
  1893. }
  1894. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1895. {
  1896. char b[BDEVNAME_SIZE];
  1897. if (!rdev->mddev) {
  1898. MD_BUG();
  1899. return;
  1900. }
  1901. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1902. list_del_rcu(&rdev->same_set);
  1903. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1904. rdev->mddev = NULL;
  1905. sysfs_remove_link(&rdev->kobj, "block");
  1906. sysfs_put(rdev->sysfs_state);
  1907. rdev->sysfs_state = NULL;
  1908. rdev->badblocks.count = 0;
  1909. /* We need to delay this, otherwise we can deadlock when
  1910. * writing to 'remove' to "dev/state". We also need
  1911. * to delay it due to rcu usage.
  1912. */
  1913. synchronize_rcu();
  1914. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1915. kobject_get(&rdev->kobj);
  1916. queue_work(md_misc_wq, &rdev->del_work);
  1917. }
  1918. /*
  1919. * prevent the device from being mounted, repartitioned or
  1920. * otherwise reused by a RAID array (or any other kernel
  1921. * subsystem), by bd_claiming the device.
  1922. */
  1923. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1924. {
  1925. int err = 0;
  1926. struct block_device *bdev;
  1927. char b[BDEVNAME_SIZE];
  1928. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1929. shared ? (struct md_rdev *)lock_rdev : rdev);
  1930. if (IS_ERR(bdev)) {
  1931. printk(KERN_ERR "md: could not open %s.\n",
  1932. __bdevname(dev, b));
  1933. return PTR_ERR(bdev);
  1934. }
  1935. rdev->bdev = bdev;
  1936. return err;
  1937. }
  1938. static void unlock_rdev(struct md_rdev *rdev)
  1939. {
  1940. struct block_device *bdev = rdev->bdev;
  1941. rdev->bdev = NULL;
  1942. if (!bdev)
  1943. MD_BUG();
  1944. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1945. }
  1946. void md_autodetect_dev(dev_t dev);
  1947. static void export_rdev(struct md_rdev * rdev)
  1948. {
  1949. char b[BDEVNAME_SIZE];
  1950. printk(KERN_INFO "md: export_rdev(%s)\n",
  1951. bdevname(rdev->bdev,b));
  1952. if (rdev->mddev)
  1953. MD_BUG();
  1954. md_rdev_clear(rdev);
  1955. #ifndef MODULE
  1956. if (test_bit(AutoDetected, &rdev->flags))
  1957. md_autodetect_dev(rdev->bdev->bd_dev);
  1958. #endif
  1959. unlock_rdev(rdev);
  1960. kobject_put(&rdev->kobj);
  1961. }
  1962. static void kick_rdev_from_array(struct md_rdev * rdev)
  1963. {
  1964. unbind_rdev_from_array(rdev);
  1965. export_rdev(rdev);
  1966. }
  1967. static void export_array(struct mddev *mddev)
  1968. {
  1969. struct md_rdev *rdev, *tmp;
  1970. rdev_for_each_safe(rdev, tmp, mddev) {
  1971. if (!rdev->mddev) {
  1972. MD_BUG();
  1973. continue;
  1974. }
  1975. kick_rdev_from_array(rdev);
  1976. }
  1977. if (!list_empty(&mddev->disks))
  1978. MD_BUG();
  1979. mddev->raid_disks = 0;
  1980. mddev->major_version = 0;
  1981. }
  1982. static void print_desc(mdp_disk_t *desc)
  1983. {
  1984. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1985. desc->major,desc->minor,desc->raid_disk,desc->state);
  1986. }
  1987. static void print_sb_90(mdp_super_t *sb)
  1988. {
  1989. int i;
  1990. printk(KERN_INFO
  1991. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1992. sb->major_version, sb->minor_version, sb->patch_version,
  1993. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1994. sb->ctime);
  1995. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1996. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1997. sb->md_minor, sb->layout, sb->chunk_size);
  1998. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1999. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  2000. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  2001. sb->failed_disks, sb->spare_disks,
  2002. sb->sb_csum, (unsigned long)sb->events_lo);
  2003. printk(KERN_INFO);
  2004. for (i = 0; i < MD_SB_DISKS; i++) {
  2005. mdp_disk_t *desc;
  2006. desc = sb->disks + i;
  2007. if (desc->number || desc->major || desc->minor ||
  2008. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2009. printk(" D %2d: ", i);
  2010. print_desc(desc);
  2011. }
  2012. }
  2013. printk(KERN_INFO "md: THIS: ");
  2014. print_desc(&sb->this_disk);
  2015. }
  2016. static void print_sb_1(struct mdp_superblock_1 *sb)
  2017. {
  2018. __u8 *uuid;
  2019. uuid = sb->set_uuid;
  2020. printk(KERN_INFO
  2021. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2022. "md: Name: \"%s\" CT:%llu\n",
  2023. le32_to_cpu(sb->major_version),
  2024. le32_to_cpu(sb->feature_map),
  2025. uuid,
  2026. sb->set_name,
  2027. (unsigned long long)le64_to_cpu(sb->ctime)
  2028. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2029. uuid = sb->device_uuid;
  2030. printk(KERN_INFO
  2031. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2032. " RO:%llu\n"
  2033. "md: Dev:%08x UUID: %pU\n"
  2034. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2035. "md: (MaxDev:%u) \n",
  2036. le32_to_cpu(sb->level),
  2037. (unsigned long long)le64_to_cpu(sb->size),
  2038. le32_to_cpu(sb->raid_disks),
  2039. le32_to_cpu(sb->layout),
  2040. le32_to_cpu(sb->chunksize),
  2041. (unsigned long long)le64_to_cpu(sb->data_offset),
  2042. (unsigned long long)le64_to_cpu(sb->data_size),
  2043. (unsigned long long)le64_to_cpu(sb->super_offset),
  2044. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2045. le32_to_cpu(sb->dev_number),
  2046. uuid,
  2047. sb->devflags,
  2048. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2049. (unsigned long long)le64_to_cpu(sb->events),
  2050. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2051. le32_to_cpu(sb->sb_csum),
  2052. le32_to_cpu(sb->max_dev)
  2053. );
  2054. }
  2055. static void print_rdev(struct md_rdev *rdev, int major_version)
  2056. {
  2057. char b[BDEVNAME_SIZE];
  2058. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2059. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2060. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2061. rdev->desc_nr);
  2062. if (rdev->sb_loaded) {
  2063. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2064. switch (major_version) {
  2065. case 0:
  2066. print_sb_90(page_address(rdev->sb_page));
  2067. break;
  2068. case 1:
  2069. print_sb_1(page_address(rdev->sb_page));
  2070. break;
  2071. }
  2072. } else
  2073. printk(KERN_INFO "md: no rdev superblock!\n");
  2074. }
  2075. static void md_print_devices(void)
  2076. {
  2077. struct list_head *tmp;
  2078. struct md_rdev *rdev;
  2079. struct mddev *mddev;
  2080. char b[BDEVNAME_SIZE];
  2081. printk("\n");
  2082. printk("md: **********************************\n");
  2083. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2084. printk("md: **********************************\n");
  2085. for_each_mddev(mddev, tmp) {
  2086. if (mddev->bitmap)
  2087. bitmap_print_sb(mddev->bitmap);
  2088. else
  2089. printk("%s: ", mdname(mddev));
  2090. rdev_for_each(rdev, mddev)
  2091. printk("<%s>", bdevname(rdev->bdev,b));
  2092. printk("\n");
  2093. rdev_for_each(rdev, mddev)
  2094. print_rdev(rdev, mddev->major_version);
  2095. }
  2096. printk("md: **********************************\n");
  2097. printk("\n");
  2098. }
  2099. static void sync_sbs(struct mddev * mddev, int nospares)
  2100. {
  2101. /* Update each superblock (in-memory image), but
  2102. * if we are allowed to, skip spares which already
  2103. * have the right event counter, or have one earlier
  2104. * (which would mean they aren't being marked as dirty
  2105. * with the rest of the array)
  2106. */
  2107. struct md_rdev *rdev;
  2108. rdev_for_each(rdev, mddev) {
  2109. if (rdev->sb_events == mddev->events ||
  2110. (nospares &&
  2111. rdev->raid_disk < 0 &&
  2112. rdev->sb_events+1 == mddev->events)) {
  2113. /* Don't update this superblock */
  2114. rdev->sb_loaded = 2;
  2115. } else {
  2116. sync_super(mddev, rdev);
  2117. rdev->sb_loaded = 1;
  2118. }
  2119. }
  2120. }
  2121. static void md_update_sb(struct mddev * mddev, int force_change)
  2122. {
  2123. struct md_rdev *rdev;
  2124. int sync_req;
  2125. int nospares = 0;
  2126. int any_badblocks_changed = 0;
  2127. repeat:
  2128. /* First make sure individual recovery_offsets are correct */
  2129. rdev_for_each(rdev, mddev) {
  2130. if (rdev->raid_disk >= 0 &&
  2131. mddev->delta_disks >= 0 &&
  2132. !test_bit(In_sync, &rdev->flags) &&
  2133. mddev->curr_resync_completed > rdev->recovery_offset)
  2134. rdev->recovery_offset = mddev->curr_resync_completed;
  2135. }
  2136. if (!mddev->persistent) {
  2137. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2138. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2139. if (!mddev->external) {
  2140. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2141. rdev_for_each(rdev, mddev) {
  2142. if (rdev->badblocks.changed) {
  2143. rdev->badblocks.changed = 0;
  2144. md_ack_all_badblocks(&rdev->badblocks);
  2145. md_error(mddev, rdev);
  2146. }
  2147. clear_bit(Blocked, &rdev->flags);
  2148. clear_bit(BlockedBadBlocks, &rdev->flags);
  2149. wake_up(&rdev->blocked_wait);
  2150. }
  2151. }
  2152. wake_up(&mddev->sb_wait);
  2153. return;
  2154. }
  2155. spin_lock_irq(&mddev->write_lock);
  2156. mddev->utime = get_seconds();
  2157. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2158. force_change = 1;
  2159. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2160. /* just a clean<-> dirty transition, possibly leave spares alone,
  2161. * though if events isn't the right even/odd, we will have to do
  2162. * spares after all
  2163. */
  2164. nospares = 1;
  2165. if (force_change)
  2166. nospares = 0;
  2167. if (mddev->degraded)
  2168. /* If the array is degraded, then skipping spares is both
  2169. * dangerous and fairly pointless.
  2170. * Dangerous because a device that was removed from the array
  2171. * might have a event_count that still looks up-to-date,
  2172. * so it can be re-added without a resync.
  2173. * Pointless because if there are any spares to skip,
  2174. * then a recovery will happen and soon that array won't
  2175. * be degraded any more and the spare can go back to sleep then.
  2176. */
  2177. nospares = 0;
  2178. sync_req = mddev->in_sync;
  2179. /* If this is just a dirty<->clean transition, and the array is clean
  2180. * and 'events' is odd, we can roll back to the previous clean state */
  2181. if (nospares
  2182. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2183. && mddev->can_decrease_events
  2184. && mddev->events != 1) {
  2185. mddev->events--;
  2186. mddev->can_decrease_events = 0;
  2187. } else {
  2188. /* otherwise we have to go forward and ... */
  2189. mddev->events ++;
  2190. mddev->can_decrease_events = nospares;
  2191. }
  2192. if (!mddev->events) {
  2193. /*
  2194. * oops, this 64-bit counter should never wrap.
  2195. * Either we are in around ~1 trillion A.C., assuming
  2196. * 1 reboot per second, or we have a bug:
  2197. */
  2198. MD_BUG();
  2199. mddev->events --;
  2200. }
  2201. rdev_for_each(rdev, mddev) {
  2202. if (rdev->badblocks.changed)
  2203. any_badblocks_changed++;
  2204. if (test_bit(Faulty, &rdev->flags))
  2205. set_bit(FaultRecorded, &rdev->flags);
  2206. }
  2207. sync_sbs(mddev, nospares);
  2208. spin_unlock_irq(&mddev->write_lock);
  2209. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2210. mdname(mddev), mddev->in_sync);
  2211. bitmap_update_sb(mddev->bitmap);
  2212. rdev_for_each(rdev, mddev) {
  2213. char b[BDEVNAME_SIZE];
  2214. if (rdev->sb_loaded != 1)
  2215. continue; /* no noise on spare devices */
  2216. if (!test_bit(Faulty, &rdev->flags) &&
  2217. rdev->saved_raid_disk == -1) {
  2218. md_super_write(mddev,rdev,
  2219. rdev->sb_start, rdev->sb_size,
  2220. rdev->sb_page);
  2221. pr_debug("md: (write) %s's sb offset: %llu\n",
  2222. bdevname(rdev->bdev, b),
  2223. (unsigned long long)rdev->sb_start);
  2224. rdev->sb_events = mddev->events;
  2225. if (rdev->badblocks.size) {
  2226. md_super_write(mddev, rdev,
  2227. rdev->badblocks.sector,
  2228. rdev->badblocks.size << 9,
  2229. rdev->bb_page);
  2230. rdev->badblocks.size = 0;
  2231. }
  2232. } else if (test_bit(Faulty, &rdev->flags))
  2233. pr_debug("md: %s (skipping faulty)\n",
  2234. bdevname(rdev->bdev, b));
  2235. else
  2236. pr_debug("(skipping incremental s/r ");
  2237. if (mddev->level == LEVEL_MULTIPATH)
  2238. /* only need to write one superblock... */
  2239. break;
  2240. }
  2241. md_super_wait(mddev);
  2242. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2243. spin_lock_irq(&mddev->write_lock);
  2244. if (mddev->in_sync != sync_req ||
  2245. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2246. /* have to write it out again */
  2247. spin_unlock_irq(&mddev->write_lock);
  2248. goto repeat;
  2249. }
  2250. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2251. spin_unlock_irq(&mddev->write_lock);
  2252. wake_up(&mddev->sb_wait);
  2253. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2254. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2255. rdev_for_each(rdev, mddev) {
  2256. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2257. clear_bit(Blocked, &rdev->flags);
  2258. if (any_badblocks_changed)
  2259. md_ack_all_badblocks(&rdev->badblocks);
  2260. clear_bit(BlockedBadBlocks, &rdev->flags);
  2261. wake_up(&rdev->blocked_wait);
  2262. }
  2263. }
  2264. /* words written to sysfs files may, or may not, be \n terminated.
  2265. * We want to accept with case. For this we use cmd_match.
  2266. */
  2267. static int cmd_match(const char *cmd, const char *str)
  2268. {
  2269. /* See if cmd, written into a sysfs file, matches
  2270. * str. They must either be the same, or cmd can
  2271. * have a trailing newline
  2272. */
  2273. while (*cmd && *str && *cmd == *str) {
  2274. cmd++;
  2275. str++;
  2276. }
  2277. if (*cmd == '\n')
  2278. cmd++;
  2279. if (*str || *cmd)
  2280. return 0;
  2281. return 1;
  2282. }
  2283. struct rdev_sysfs_entry {
  2284. struct attribute attr;
  2285. ssize_t (*show)(struct md_rdev *, char *);
  2286. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2287. };
  2288. static ssize_t
  2289. state_show(struct md_rdev *rdev, char *page)
  2290. {
  2291. char *sep = "";
  2292. size_t len = 0;
  2293. if (test_bit(Faulty, &rdev->flags) ||
  2294. rdev->badblocks.unacked_exist) {
  2295. len+= sprintf(page+len, "%sfaulty",sep);
  2296. sep = ",";
  2297. }
  2298. if (test_bit(In_sync, &rdev->flags)) {
  2299. len += sprintf(page+len, "%sin_sync",sep);
  2300. sep = ",";
  2301. }
  2302. if (test_bit(WriteMostly, &rdev->flags)) {
  2303. len += sprintf(page+len, "%swrite_mostly",sep);
  2304. sep = ",";
  2305. }
  2306. if (test_bit(Blocked, &rdev->flags) ||
  2307. (rdev->badblocks.unacked_exist
  2308. && !test_bit(Faulty, &rdev->flags))) {
  2309. len += sprintf(page+len, "%sblocked", sep);
  2310. sep = ",";
  2311. }
  2312. if (!test_bit(Faulty, &rdev->flags) &&
  2313. !test_bit(In_sync, &rdev->flags)) {
  2314. len += sprintf(page+len, "%sspare", sep);
  2315. sep = ",";
  2316. }
  2317. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2318. len += sprintf(page+len, "%swrite_error", sep);
  2319. sep = ",";
  2320. }
  2321. if (test_bit(WantReplacement, &rdev->flags)) {
  2322. len += sprintf(page+len, "%swant_replacement", sep);
  2323. sep = ",";
  2324. }
  2325. if (test_bit(Replacement, &rdev->flags)) {
  2326. len += sprintf(page+len, "%sreplacement", sep);
  2327. sep = ",";
  2328. }
  2329. return len+sprintf(page+len, "\n");
  2330. }
  2331. static ssize_t
  2332. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2333. {
  2334. /* can write
  2335. * faulty - simulates an error
  2336. * remove - disconnects the device
  2337. * writemostly - sets write_mostly
  2338. * -writemostly - clears write_mostly
  2339. * blocked - sets the Blocked flags
  2340. * -blocked - clears the Blocked and possibly simulates an error
  2341. * insync - sets Insync providing device isn't active
  2342. * write_error - sets WriteErrorSeen
  2343. * -write_error - clears WriteErrorSeen
  2344. */
  2345. int err = -EINVAL;
  2346. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2347. md_error(rdev->mddev, rdev);
  2348. if (test_bit(Faulty, &rdev->flags))
  2349. err = 0;
  2350. else
  2351. err = -EBUSY;
  2352. } else if (cmd_match(buf, "remove")) {
  2353. if (rdev->raid_disk >= 0)
  2354. err = -EBUSY;
  2355. else {
  2356. struct mddev *mddev = rdev->mddev;
  2357. kick_rdev_from_array(rdev);
  2358. if (mddev->pers)
  2359. md_update_sb(mddev, 1);
  2360. md_new_event(mddev);
  2361. err = 0;
  2362. }
  2363. } else if (cmd_match(buf, "writemostly")) {
  2364. set_bit(WriteMostly, &rdev->flags);
  2365. err = 0;
  2366. } else if (cmd_match(buf, "-writemostly")) {
  2367. clear_bit(WriteMostly, &rdev->flags);
  2368. err = 0;
  2369. } else if (cmd_match(buf, "blocked")) {
  2370. set_bit(Blocked, &rdev->flags);
  2371. err = 0;
  2372. } else if (cmd_match(buf, "-blocked")) {
  2373. if (!test_bit(Faulty, &rdev->flags) &&
  2374. rdev->badblocks.unacked_exist) {
  2375. /* metadata handler doesn't understand badblocks,
  2376. * so we need to fail the device
  2377. */
  2378. md_error(rdev->mddev, rdev);
  2379. }
  2380. clear_bit(Blocked, &rdev->flags);
  2381. clear_bit(BlockedBadBlocks, &rdev->flags);
  2382. wake_up(&rdev->blocked_wait);
  2383. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2384. md_wakeup_thread(rdev->mddev->thread);
  2385. err = 0;
  2386. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2387. set_bit(In_sync, &rdev->flags);
  2388. err = 0;
  2389. } else if (cmd_match(buf, "write_error")) {
  2390. set_bit(WriteErrorSeen, &rdev->flags);
  2391. err = 0;
  2392. } else if (cmd_match(buf, "-write_error")) {
  2393. clear_bit(WriteErrorSeen, &rdev->flags);
  2394. err = 0;
  2395. } else if (cmd_match(buf, "want_replacement")) {
  2396. /* Any non-spare device that is not a replacement can
  2397. * become want_replacement at any time, but we then need to
  2398. * check if recovery is needed.
  2399. */
  2400. if (rdev->raid_disk >= 0 &&
  2401. !test_bit(Replacement, &rdev->flags))
  2402. set_bit(WantReplacement, &rdev->flags);
  2403. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2404. md_wakeup_thread(rdev->mddev->thread);
  2405. err = 0;
  2406. } else if (cmd_match(buf, "-want_replacement")) {
  2407. /* Clearing 'want_replacement' is always allowed.
  2408. * Once replacements starts it is too late though.
  2409. */
  2410. err = 0;
  2411. clear_bit(WantReplacement, &rdev->flags);
  2412. } else if (cmd_match(buf, "replacement")) {
  2413. /* Can only set a device as a replacement when array has not
  2414. * yet been started. Once running, replacement is automatic
  2415. * from spares, or by assigning 'slot'.
  2416. */
  2417. if (rdev->mddev->pers)
  2418. err = -EBUSY;
  2419. else {
  2420. set_bit(Replacement, &rdev->flags);
  2421. err = 0;
  2422. }
  2423. } else if (cmd_match(buf, "-replacement")) {
  2424. /* Similarly, can only clear Replacement before start */
  2425. if (rdev->mddev->pers)
  2426. err = -EBUSY;
  2427. else {
  2428. clear_bit(Replacement, &rdev->flags);
  2429. err = 0;
  2430. }
  2431. }
  2432. if (!err)
  2433. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2434. return err ? err : len;
  2435. }
  2436. static struct rdev_sysfs_entry rdev_state =
  2437. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2438. static ssize_t
  2439. errors_show(struct md_rdev *rdev, char *page)
  2440. {
  2441. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2442. }
  2443. static ssize_t
  2444. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2445. {
  2446. char *e;
  2447. unsigned long n = simple_strtoul(buf, &e, 10);
  2448. if (*buf && (*e == 0 || *e == '\n')) {
  2449. atomic_set(&rdev->corrected_errors, n);
  2450. return len;
  2451. }
  2452. return -EINVAL;
  2453. }
  2454. static struct rdev_sysfs_entry rdev_errors =
  2455. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2456. static ssize_t
  2457. slot_show(struct md_rdev *rdev, char *page)
  2458. {
  2459. if (rdev->raid_disk < 0)
  2460. return sprintf(page, "none\n");
  2461. else
  2462. return sprintf(page, "%d\n", rdev->raid_disk);
  2463. }
  2464. static ssize_t
  2465. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2466. {
  2467. char *e;
  2468. int err;
  2469. int slot = simple_strtoul(buf, &e, 10);
  2470. if (strncmp(buf, "none", 4)==0)
  2471. slot = -1;
  2472. else if (e==buf || (*e && *e!= '\n'))
  2473. return -EINVAL;
  2474. if (rdev->mddev->pers && slot == -1) {
  2475. /* Setting 'slot' on an active array requires also
  2476. * updating the 'rd%d' link, and communicating
  2477. * with the personality with ->hot_*_disk.
  2478. * For now we only support removing
  2479. * failed/spare devices. This normally happens automatically,
  2480. * but not when the metadata is externally managed.
  2481. */
  2482. if (rdev->raid_disk == -1)
  2483. return -EEXIST;
  2484. /* personality does all needed checks */
  2485. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2486. return -EINVAL;
  2487. err = rdev->mddev->pers->
  2488. hot_remove_disk(rdev->mddev, rdev);
  2489. if (err)
  2490. return err;
  2491. sysfs_unlink_rdev(rdev->mddev, rdev);
  2492. rdev->raid_disk = -1;
  2493. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2494. md_wakeup_thread(rdev->mddev->thread);
  2495. } else if (rdev->mddev->pers) {
  2496. /* Activating a spare .. or possibly reactivating
  2497. * if we ever get bitmaps working here.
  2498. */
  2499. if (rdev->raid_disk != -1)
  2500. return -EBUSY;
  2501. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2502. return -EBUSY;
  2503. if (rdev->mddev->pers->hot_add_disk == NULL)
  2504. return -EINVAL;
  2505. if (slot >= rdev->mddev->raid_disks &&
  2506. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2507. return -ENOSPC;
  2508. rdev->raid_disk = slot;
  2509. if (test_bit(In_sync, &rdev->flags))
  2510. rdev->saved_raid_disk = slot;
  2511. else
  2512. rdev->saved_raid_disk = -1;
  2513. clear_bit(In_sync, &rdev->flags);
  2514. err = rdev->mddev->pers->
  2515. hot_add_disk(rdev->mddev, rdev);
  2516. if (err) {
  2517. rdev->raid_disk = -1;
  2518. return err;
  2519. } else
  2520. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2521. if (sysfs_link_rdev(rdev->mddev, rdev))
  2522. /* failure here is OK */;
  2523. /* don't wakeup anyone, leave that to userspace. */
  2524. } else {
  2525. if (slot >= rdev->mddev->raid_disks &&
  2526. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2527. return -ENOSPC;
  2528. rdev->raid_disk = slot;
  2529. /* assume it is working */
  2530. clear_bit(Faulty, &rdev->flags);
  2531. clear_bit(WriteMostly, &rdev->flags);
  2532. set_bit(In_sync, &rdev->flags);
  2533. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2534. }
  2535. return len;
  2536. }
  2537. static struct rdev_sysfs_entry rdev_slot =
  2538. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2539. static ssize_t
  2540. offset_show(struct md_rdev *rdev, char *page)
  2541. {
  2542. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2543. }
  2544. static ssize_t
  2545. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2546. {
  2547. unsigned long long offset;
  2548. if (strict_strtoull(buf, 10, &offset) < 0)
  2549. return -EINVAL;
  2550. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2551. return -EBUSY;
  2552. if (rdev->sectors && rdev->mddev->external)
  2553. /* Must set offset before size, so overlap checks
  2554. * can be sane */
  2555. return -EBUSY;
  2556. rdev->data_offset = offset;
  2557. rdev->new_data_offset = offset;
  2558. return len;
  2559. }
  2560. static struct rdev_sysfs_entry rdev_offset =
  2561. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2562. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2563. {
  2564. return sprintf(page, "%llu\n",
  2565. (unsigned long long)rdev->new_data_offset);
  2566. }
  2567. static ssize_t new_offset_store(struct md_rdev *rdev,
  2568. const char *buf, size_t len)
  2569. {
  2570. unsigned long long new_offset;
  2571. struct mddev *mddev = rdev->mddev;
  2572. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2573. return -EINVAL;
  2574. if (mddev->sync_thread)
  2575. return -EBUSY;
  2576. if (new_offset == rdev->data_offset)
  2577. /* reset is always permitted */
  2578. ;
  2579. else if (new_offset > rdev->data_offset) {
  2580. /* must not push array size beyond rdev_sectors */
  2581. if (new_offset - rdev->data_offset
  2582. + mddev->dev_sectors > rdev->sectors)
  2583. return -E2BIG;
  2584. }
  2585. /* Metadata worries about other space details. */
  2586. /* decreasing the offset is inconsistent with a backwards
  2587. * reshape.
  2588. */
  2589. if (new_offset < rdev->data_offset &&
  2590. mddev->reshape_backwards)
  2591. return -EINVAL;
  2592. /* Increasing offset is inconsistent with forwards
  2593. * reshape. reshape_direction should be set to
  2594. * 'backwards' first.
  2595. */
  2596. if (new_offset > rdev->data_offset &&
  2597. !mddev->reshape_backwards)
  2598. return -EINVAL;
  2599. if (mddev->pers && mddev->persistent &&
  2600. !super_types[mddev->major_version]
  2601. .allow_new_offset(rdev, new_offset))
  2602. return -E2BIG;
  2603. rdev->new_data_offset = new_offset;
  2604. if (new_offset > rdev->data_offset)
  2605. mddev->reshape_backwards = 1;
  2606. else if (new_offset < rdev->data_offset)
  2607. mddev->reshape_backwards = 0;
  2608. return len;
  2609. }
  2610. static struct rdev_sysfs_entry rdev_new_offset =
  2611. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2612. static ssize_t
  2613. rdev_size_show(struct md_rdev *rdev, char *page)
  2614. {
  2615. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2616. }
  2617. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2618. {
  2619. /* check if two start/length pairs overlap */
  2620. if (s1+l1 <= s2)
  2621. return 0;
  2622. if (s2+l2 <= s1)
  2623. return 0;
  2624. return 1;
  2625. }
  2626. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2627. {
  2628. unsigned long long blocks;
  2629. sector_t new;
  2630. if (strict_strtoull(buf, 10, &blocks) < 0)
  2631. return -EINVAL;
  2632. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2633. return -EINVAL; /* sector conversion overflow */
  2634. new = blocks * 2;
  2635. if (new != blocks * 2)
  2636. return -EINVAL; /* unsigned long long to sector_t overflow */
  2637. *sectors = new;
  2638. return 0;
  2639. }
  2640. static ssize_t
  2641. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2642. {
  2643. struct mddev *my_mddev = rdev->mddev;
  2644. sector_t oldsectors = rdev->sectors;
  2645. sector_t sectors;
  2646. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2647. return -EINVAL;
  2648. if (rdev->data_offset != rdev->new_data_offset)
  2649. return -EINVAL; /* too confusing */
  2650. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2651. if (my_mddev->persistent) {
  2652. sectors = super_types[my_mddev->major_version].
  2653. rdev_size_change(rdev, sectors);
  2654. if (!sectors)
  2655. return -EBUSY;
  2656. } else if (!sectors)
  2657. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2658. rdev->data_offset;
  2659. }
  2660. if (sectors < my_mddev->dev_sectors)
  2661. return -EINVAL; /* component must fit device */
  2662. rdev->sectors = sectors;
  2663. if (sectors > oldsectors && my_mddev->external) {
  2664. /* need to check that all other rdevs with the same ->bdev
  2665. * do not overlap. We need to unlock the mddev to avoid
  2666. * a deadlock. We have already changed rdev->sectors, and if
  2667. * we have to change it back, we will have the lock again.
  2668. */
  2669. struct mddev *mddev;
  2670. int overlap = 0;
  2671. struct list_head *tmp;
  2672. mddev_unlock(my_mddev);
  2673. for_each_mddev(mddev, tmp) {
  2674. struct md_rdev *rdev2;
  2675. mddev_lock(mddev);
  2676. rdev_for_each(rdev2, mddev)
  2677. if (rdev->bdev == rdev2->bdev &&
  2678. rdev != rdev2 &&
  2679. overlaps(rdev->data_offset, rdev->sectors,
  2680. rdev2->data_offset,
  2681. rdev2->sectors)) {
  2682. overlap = 1;
  2683. break;
  2684. }
  2685. mddev_unlock(mddev);
  2686. if (overlap) {
  2687. mddev_put(mddev);
  2688. break;
  2689. }
  2690. }
  2691. mddev_lock(my_mddev);
  2692. if (overlap) {
  2693. /* Someone else could have slipped in a size
  2694. * change here, but doing so is just silly.
  2695. * We put oldsectors back because we *know* it is
  2696. * safe, and trust userspace not to race with
  2697. * itself
  2698. */
  2699. rdev->sectors = oldsectors;
  2700. return -EBUSY;
  2701. }
  2702. }
  2703. return len;
  2704. }
  2705. static struct rdev_sysfs_entry rdev_size =
  2706. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2707. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2708. {
  2709. unsigned long long recovery_start = rdev->recovery_offset;
  2710. if (test_bit(In_sync, &rdev->flags) ||
  2711. recovery_start == MaxSector)
  2712. return sprintf(page, "none\n");
  2713. return sprintf(page, "%llu\n", recovery_start);
  2714. }
  2715. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2716. {
  2717. unsigned long long recovery_start;
  2718. if (cmd_match(buf, "none"))
  2719. recovery_start = MaxSector;
  2720. else if (strict_strtoull(buf, 10, &recovery_start))
  2721. return -EINVAL;
  2722. if (rdev->mddev->pers &&
  2723. rdev->raid_disk >= 0)
  2724. return -EBUSY;
  2725. rdev->recovery_offset = recovery_start;
  2726. if (recovery_start == MaxSector)
  2727. set_bit(In_sync, &rdev->flags);
  2728. else
  2729. clear_bit(In_sync, &rdev->flags);
  2730. return len;
  2731. }
  2732. static struct rdev_sysfs_entry rdev_recovery_start =
  2733. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2734. static ssize_t
  2735. badblocks_show(struct badblocks *bb, char *page, int unack);
  2736. static ssize_t
  2737. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2738. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2739. {
  2740. return badblocks_show(&rdev->badblocks, page, 0);
  2741. }
  2742. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2743. {
  2744. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2745. /* Maybe that ack was all we needed */
  2746. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2747. wake_up(&rdev->blocked_wait);
  2748. return rv;
  2749. }
  2750. static struct rdev_sysfs_entry rdev_bad_blocks =
  2751. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2752. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2753. {
  2754. return badblocks_show(&rdev->badblocks, page, 1);
  2755. }
  2756. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2757. {
  2758. return badblocks_store(&rdev->badblocks, page, len, 1);
  2759. }
  2760. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2761. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2762. static struct attribute *rdev_default_attrs[] = {
  2763. &rdev_state.attr,
  2764. &rdev_errors.attr,
  2765. &rdev_slot.attr,
  2766. &rdev_offset.attr,
  2767. &rdev_new_offset.attr,
  2768. &rdev_size.attr,
  2769. &rdev_recovery_start.attr,
  2770. &rdev_bad_blocks.attr,
  2771. &rdev_unack_bad_blocks.attr,
  2772. NULL,
  2773. };
  2774. static ssize_t
  2775. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2776. {
  2777. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2778. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2779. struct mddev *mddev = rdev->mddev;
  2780. ssize_t rv;
  2781. if (!entry->show)
  2782. return -EIO;
  2783. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2784. if (!rv) {
  2785. if (rdev->mddev == NULL)
  2786. rv = -EBUSY;
  2787. else
  2788. rv = entry->show(rdev, page);
  2789. mddev_unlock(mddev);
  2790. }
  2791. return rv;
  2792. }
  2793. static ssize_t
  2794. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2795. const char *page, size_t length)
  2796. {
  2797. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2798. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2799. ssize_t rv;
  2800. struct mddev *mddev = rdev->mddev;
  2801. if (!entry->store)
  2802. return -EIO;
  2803. if (!capable(CAP_SYS_ADMIN))
  2804. return -EACCES;
  2805. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2806. if (!rv) {
  2807. if (rdev->mddev == NULL)
  2808. rv = -EBUSY;
  2809. else
  2810. rv = entry->store(rdev, page, length);
  2811. mddev_unlock(mddev);
  2812. }
  2813. return rv;
  2814. }
  2815. static void rdev_free(struct kobject *ko)
  2816. {
  2817. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2818. kfree(rdev);
  2819. }
  2820. static const struct sysfs_ops rdev_sysfs_ops = {
  2821. .show = rdev_attr_show,
  2822. .store = rdev_attr_store,
  2823. };
  2824. static struct kobj_type rdev_ktype = {
  2825. .release = rdev_free,
  2826. .sysfs_ops = &rdev_sysfs_ops,
  2827. .default_attrs = rdev_default_attrs,
  2828. };
  2829. int md_rdev_init(struct md_rdev *rdev)
  2830. {
  2831. rdev->desc_nr = -1;
  2832. rdev->saved_raid_disk = -1;
  2833. rdev->raid_disk = -1;
  2834. rdev->flags = 0;
  2835. rdev->data_offset = 0;
  2836. rdev->new_data_offset = 0;
  2837. rdev->sb_events = 0;
  2838. rdev->last_read_error.tv_sec = 0;
  2839. rdev->last_read_error.tv_nsec = 0;
  2840. rdev->sb_loaded = 0;
  2841. rdev->bb_page = NULL;
  2842. atomic_set(&rdev->nr_pending, 0);
  2843. atomic_set(&rdev->read_errors, 0);
  2844. atomic_set(&rdev->corrected_errors, 0);
  2845. INIT_LIST_HEAD(&rdev->same_set);
  2846. init_waitqueue_head(&rdev->blocked_wait);
  2847. /* Add space to store bad block list.
  2848. * This reserves the space even on arrays where it cannot
  2849. * be used - I wonder if that matters
  2850. */
  2851. rdev->badblocks.count = 0;
  2852. rdev->badblocks.shift = 0;
  2853. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2854. seqlock_init(&rdev->badblocks.lock);
  2855. if (rdev->badblocks.page == NULL)
  2856. return -ENOMEM;
  2857. return 0;
  2858. }
  2859. EXPORT_SYMBOL_GPL(md_rdev_init);
  2860. /*
  2861. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2862. *
  2863. * mark the device faulty if:
  2864. *
  2865. * - the device is nonexistent (zero size)
  2866. * - the device has no valid superblock
  2867. *
  2868. * a faulty rdev _never_ has rdev->sb set.
  2869. */
  2870. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2871. {
  2872. char b[BDEVNAME_SIZE];
  2873. int err;
  2874. struct md_rdev *rdev;
  2875. sector_t size;
  2876. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2877. if (!rdev) {
  2878. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2879. return ERR_PTR(-ENOMEM);
  2880. }
  2881. err = md_rdev_init(rdev);
  2882. if (err)
  2883. goto abort_free;
  2884. err = alloc_disk_sb(rdev);
  2885. if (err)
  2886. goto abort_free;
  2887. err = lock_rdev(rdev, newdev, super_format == -2);
  2888. if (err)
  2889. goto abort_free;
  2890. kobject_init(&rdev->kobj, &rdev_ktype);
  2891. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2892. if (!size) {
  2893. printk(KERN_WARNING
  2894. "md: %s has zero or unknown size, marking faulty!\n",
  2895. bdevname(rdev->bdev,b));
  2896. err = -EINVAL;
  2897. goto abort_free;
  2898. }
  2899. if (super_format >= 0) {
  2900. err = super_types[super_format].
  2901. load_super(rdev, NULL, super_minor);
  2902. if (err == -EINVAL) {
  2903. printk(KERN_WARNING
  2904. "md: %s does not have a valid v%d.%d "
  2905. "superblock, not importing!\n",
  2906. bdevname(rdev->bdev,b),
  2907. super_format, super_minor);
  2908. goto abort_free;
  2909. }
  2910. if (err < 0) {
  2911. printk(KERN_WARNING
  2912. "md: could not read %s's sb, not importing!\n",
  2913. bdevname(rdev->bdev,b));
  2914. goto abort_free;
  2915. }
  2916. }
  2917. if (super_format == -1)
  2918. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2919. rdev->badblocks.shift = -1;
  2920. return rdev;
  2921. abort_free:
  2922. if (rdev->bdev)
  2923. unlock_rdev(rdev);
  2924. md_rdev_clear(rdev);
  2925. kfree(rdev);
  2926. return ERR_PTR(err);
  2927. }
  2928. /*
  2929. * Check a full RAID array for plausibility
  2930. */
  2931. static void analyze_sbs(struct mddev * mddev)
  2932. {
  2933. int i;
  2934. struct md_rdev *rdev, *freshest, *tmp;
  2935. char b[BDEVNAME_SIZE];
  2936. freshest = NULL;
  2937. rdev_for_each_safe(rdev, tmp, mddev)
  2938. switch (super_types[mddev->major_version].
  2939. load_super(rdev, freshest, mddev->minor_version)) {
  2940. case 1:
  2941. freshest = rdev;
  2942. break;
  2943. case 0:
  2944. break;
  2945. default:
  2946. printk( KERN_ERR \
  2947. "md: fatal superblock inconsistency in %s"
  2948. " -- removing from array\n",
  2949. bdevname(rdev->bdev,b));
  2950. kick_rdev_from_array(rdev);
  2951. }
  2952. super_types[mddev->major_version].
  2953. validate_super(mddev, freshest);
  2954. i = 0;
  2955. rdev_for_each_safe(rdev, tmp, mddev) {
  2956. if (mddev->max_disks &&
  2957. (rdev->desc_nr >= mddev->max_disks ||
  2958. i > mddev->max_disks)) {
  2959. printk(KERN_WARNING
  2960. "md: %s: %s: only %d devices permitted\n",
  2961. mdname(mddev), bdevname(rdev->bdev, b),
  2962. mddev->max_disks);
  2963. kick_rdev_from_array(rdev);
  2964. continue;
  2965. }
  2966. if (rdev != freshest)
  2967. if (super_types[mddev->major_version].
  2968. validate_super(mddev, rdev)) {
  2969. printk(KERN_WARNING "md: kicking non-fresh %s"
  2970. " from array!\n",
  2971. bdevname(rdev->bdev,b));
  2972. kick_rdev_from_array(rdev);
  2973. continue;
  2974. }
  2975. if (mddev->level == LEVEL_MULTIPATH) {
  2976. rdev->desc_nr = i++;
  2977. rdev->raid_disk = rdev->desc_nr;
  2978. set_bit(In_sync, &rdev->flags);
  2979. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2980. rdev->raid_disk = -1;
  2981. clear_bit(In_sync, &rdev->flags);
  2982. }
  2983. }
  2984. }
  2985. /* Read a fixed-point number.
  2986. * Numbers in sysfs attributes should be in "standard" units where
  2987. * possible, so time should be in seconds.
  2988. * However we internally use a a much smaller unit such as
  2989. * milliseconds or jiffies.
  2990. * This function takes a decimal number with a possible fractional
  2991. * component, and produces an integer which is the result of
  2992. * multiplying that number by 10^'scale'.
  2993. * all without any floating-point arithmetic.
  2994. */
  2995. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2996. {
  2997. unsigned long result = 0;
  2998. long decimals = -1;
  2999. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  3000. if (*cp == '.')
  3001. decimals = 0;
  3002. else if (decimals < scale) {
  3003. unsigned int value;
  3004. value = *cp - '0';
  3005. result = result * 10 + value;
  3006. if (decimals >= 0)
  3007. decimals++;
  3008. }
  3009. cp++;
  3010. }
  3011. if (*cp == '\n')
  3012. cp++;
  3013. if (*cp)
  3014. return -EINVAL;
  3015. if (decimals < 0)
  3016. decimals = 0;
  3017. while (decimals < scale) {
  3018. result *= 10;
  3019. decimals ++;
  3020. }
  3021. *res = result;
  3022. return 0;
  3023. }
  3024. static void md_safemode_timeout(unsigned long data);
  3025. static ssize_t
  3026. safe_delay_show(struct mddev *mddev, char *page)
  3027. {
  3028. int msec = (mddev->safemode_delay*1000)/HZ;
  3029. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3030. }
  3031. static ssize_t
  3032. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3033. {
  3034. unsigned long msec;
  3035. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3036. return -EINVAL;
  3037. if (msec == 0)
  3038. mddev->safemode_delay = 0;
  3039. else {
  3040. unsigned long old_delay = mddev->safemode_delay;
  3041. mddev->safemode_delay = (msec*HZ)/1000;
  3042. if (mddev->safemode_delay == 0)
  3043. mddev->safemode_delay = 1;
  3044. if (mddev->safemode_delay < old_delay)
  3045. md_safemode_timeout((unsigned long)mddev);
  3046. }
  3047. return len;
  3048. }
  3049. static struct md_sysfs_entry md_safe_delay =
  3050. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3051. static ssize_t
  3052. level_show(struct mddev *mddev, char *page)
  3053. {
  3054. struct md_personality *p = mddev->pers;
  3055. if (p)
  3056. return sprintf(page, "%s\n", p->name);
  3057. else if (mddev->clevel[0])
  3058. return sprintf(page, "%s\n", mddev->clevel);
  3059. else if (mddev->level != LEVEL_NONE)
  3060. return sprintf(page, "%d\n", mddev->level);
  3061. else
  3062. return 0;
  3063. }
  3064. static ssize_t
  3065. level_store(struct mddev *mddev, const char *buf, size_t len)
  3066. {
  3067. char clevel[16];
  3068. ssize_t rv = len;
  3069. struct md_personality *pers;
  3070. long level;
  3071. void *priv;
  3072. struct md_rdev *rdev;
  3073. if (mddev->pers == NULL) {
  3074. if (len == 0)
  3075. return 0;
  3076. if (len >= sizeof(mddev->clevel))
  3077. return -ENOSPC;
  3078. strncpy(mddev->clevel, buf, len);
  3079. if (mddev->clevel[len-1] == '\n')
  3080. len--;
  3081. mddev->clevel[len] = 0;
  3082. mddev->level = LEVEL_NONE;
  3083. return rv;
  3084. }
  3085. /* request to change the personality. Need to ensure:
  3086. * - array is not engaged in resync/recovery/reshape
  3087. * - old personality can be suspended
  3088. * - new personality will access other array.
  3089. */
  3090. if (mddev->sync_thread ||
  3091. mddev->reshape_position != MaxSector ||
  3092. mddev->sysfs_active)
  3093. return -EBUSY;
  3094. if (!mddev->pers->quiesce) {
  3095. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3096. mdname(mddev), mddev->pers->name);
  3097. return -EINVAL;
  3098. }
  3099. /* Now find the new personality */
  3100. if (len == 0 || len >= sizeof(clevel))
  3101. return -EINVAL;
  3102. strncpy(clevel, buf, len);
  3103. if (clevel[len-1] == '\n')
  3104. len--;
  3105. clevel[len] = 0;
  3106. if (strict_strtol(clevel, 10, &level))
  3107. level = LEVEL_NONE;
  3108. if (request_module("md-%s", clevel) != 0)
  3109. request_module("md-level-%s", clevel);
  3110. spin_lock(&pers_lock);
  3111. pers = find_pers(level, clevel);
  3112. if (!pers || !try_module_get(pers->owner)) {
  3113. spin_unlock(&pers_lock);
  3114. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3115. return -EINVAL;
  3116. }
  3117. spin_unlock(&pers_lock);
  3118. if (pers == mddev->pers) {
  3119. /* Nothing to do! */
  3120. module_put(pers->owner);
  3121. return rv;
  3122. }
  3123. if (!pers->takeover) {
  3124. module_put(pers->owner);
  3125. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3126. mdname(mddev), clevel);
  3127. return -EINVAL;
  3128. }
  3129. rdev_for_each(rdev, mddev)
  3130. rdev->new_raid_disk = rdev->raid_disk;
  3131. /* ->takeover must set new_* and/or delta_disks
  3132. * if it succeeds, and may set them when it fails.
  3133. */
  3134. priv = pers->takeover(mddev);
  3135. if (IS_ERR(priv)) {
  3136. mddev->new_level = mddev->level;
  3137. mddev->new_layout = mddev->layout;
  3138. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3139. mddev->raid_disks -= mddev->delta_disks;
  3140. mddev->delta_disks = 0;
  3141. mddev->reshape_backwards = 0;
  3142. module_put(pers->owner);
  3143. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3144. mdname(mddev), clevel);
  3145. return PTR_ERR(priv);
  3146. }
  3147. /* Looks like we have a winner */
  3148. mddev_suspend(mddev);
  3149. mddev->pers->stop(mddev);
  3150. if (mddev->pers->sync_request == NULL &&
  3151. pers->sync_request != NULL) {
  3152. /* need to add the md_redundancy_group */
  3153. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3154. printk(KERN_WARNING
  3155. "md: cannot register extra attributes for %s\n",
  3156. mdname(mddev));
  3157. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3158. }
  3159. if (mddev->pers->sync_request != NULL &&
  3160. pers->sync_request == NULL) {
  3161. /* need to remove the md_redundancy_group */
  3162. if (mddev->to_remove == NULL)
  3163. mddev->to_remove = &md_redundancy_group;
  3164. }
  3165. if (mddev->pers->sync_request == NULL &&
  3166. mddev->external) {
  3167. /* We are converting from a no-redundancy array
  3168. * to a redundancy array and metadata is managed
  3169. * externally so we need to be sure that writes
  3170. * won't block due to a need to transition
  3171. * clean->dirty
  3172. * until external management is started.
  3173. */
  3174. mddev->in_sync = 0;
  3175. mddev->safemode_delay = 0;
  3176. mddev->safemode = 0;
  3177. }
  3178. rdev_for_each(rdev, mddev) {
  3179. if (rdev->raid_disk < 0)
  3180. continue;
  3181. if (rdev->new_raid_disk >= mddev->raid_disks)
  3182. rdev->new_raid_disk = -1;
  3183. if (rdev->new_raid_disk == rdev->raid_disk)
  3184. continue;
  3185. sysfs_unlink_rdev(mddev, rdev);
  3186. }
  3187. rdev_for_each(rdev, mddev) {
  3188. if (rdev->raid_disk < 0)
  3189. continue;
  3190. if (rdev->new_raid_disk == rdev->raid_disk)
  3191. continue;
  3192. rdev->raid_disk = rdev->new_raid_disk;
  3193. if (rdev->raid_disk < 0)
  3194. clear_bit(In_sync, &rdev->flags);
  3195. else {
  3196. if (sysfs_link_rdev(mddev, rdev))
  3197. printk(KERN_WARNING "md: cannot register rd%d"
  3198. " for %s after level change\n",
  3199. rdev->raid_disk, mdname(mddev));
  3200. }
  3201. }
  3202. module_put(mddev->pers->owner);
  3203. mddev->pers = pers;
  3204. mddev->private = priv;
  3205. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3206. mddev->level = mddev->new_level;
  3207. mddev->layout = mddev->new_layout;
  3208. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3209. mddev->delta_disks = 0;
  3210. mddev->reshape_backwards = 0;
  3211. mddev->degraded = 0;
  3212. if (mddev->pers->sync_request == NULL) {
  3213. /* this is now an array without redundancy, so
  3214. * it must always be in_sync
  3215. */
  3216. mddev->in_sync = 1;
  3217. del_timer_sync(&mddev->safemode_timer);
  3218. }
  3219. pers->run(mddev);
  3220. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3221. mddev_resume(mddev);
  3222. sysfs_notify(&mddev->kobj, NULL, "level");
  3223. md_new_event(mddev);
  3224. return rv;
  3225. }
  3226. static struct md_sysfs_entry md_level =
  3227. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3228. static ssize_t
  3229. layout_show(struct mddev *mddev, char *page)
  3230. {
  3231. /* just a number, not meaningful for all levels */
  3232. if (mddev->reshape_position != MaxSector &&
  3233. mddev->layout != mddev->new_layout)
  3234. return sprintf(page, "%d (%d)\n",
  3235. mddev->new_layout, mddev->layout);
  3236. return sprintf(page, "%d\n", mddev->layout);
  3237. }
  3238. static ssize_t
  3239. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3240. {
  3241. char *e;
  3242. unsigned long n = simple_strtoul(buf, &e, 10);
  3243. if (!*buf || (*e && *e != '\n'))
  3244. return -EINVAL;
  3245. if (mddev->pers) {
  3246. int err;
  3247. if (mddev->pers->check_reshape == NULL)
  3248. return -EBUSY;
  3249. mddev->new_layout = n;
  3250. err = mddev->pers->check_reshape(mddev);
  3251. if (err) {
  3252. mddev->new_layout = mddev->layout;
  3253. return err;
  3254. }
  3255. } else {
  3256. mddev->new_layout = n;
  3257. if (mddev->reshape_position == MaxSector)
  3258. mddev->layout = n;
  3259. }
  3260. return len;
  3261. }
  3262. static struct md_sysfs_entry md_layout =
  3263. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3264. static ssize_t
  3265. raid_disks_show(struct mddev *mddev, char *page)
  3266. {
  3267. if (mddev->raid_disks == 0)
  3268. return 0;
  3269. if (mddev->reshape_position != MaxSector &&
  3270. mddev->delta_disks != 0)
  3271. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3272. mddev->raid_disks - mddev->delta_disks);
  3273. return sprintf(page, "%d\n", mddev->raid_disks);
  3274. }
  3275. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3276. static ssize_t
  3277. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3278. {
  3279. char *e;
  3280. int rv = 0;
  3281. unsigned long n = simple_strtoul(buf, &e, 10);
  3282. if (!*buf || (*e && *e != '\n'))
  3283. return -EINVAL;
  3284. if (mddev->pers)
  3285. rv = update_raid_disks(mddev, n);
  3286. else if (mddev->reshape_position != MaxSector) {
  3287. struct md_rdev *rdev;
  3288. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3289. rdev_for_each(rdev, mddev) {
  3290. if (olddisks < n &&
  3291. rdev->data_offset < rdev->new_data_offset)
  3292. return -EINVAL;
  3293. if (olddisks > n &&
  3294. rdev->data_offset > rdev->new_data_offset)
  3295. return -EINVAL;
  3296. }
  3297. mddev->delta_disks = n - olddisks;
  3298. mddev->raid_disks = n;
  3299. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3300. } else
  3301. mddev->raid_disks = n;
  3302. return rv ? rv : len;
  3303. }
  3304. static struct md_sysfs_entry md_raid_disks =
  3305. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3306. static ssize_t
  3307. chunk_size_show(struct mddev *mddev, char *page)
  3308. {
  3309. if (mddev->reshape_position != MaxSector &&
  3310. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3311. return sprintf(page, "%d (%d)\n",
  3312. mddev->new_chunk_sectors << 9,
  3313. mddev->chunk_sectors << 9);
  3314. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3315. }
  3316. static ssize_t
  3317. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3318. {
  3319. char *e;
  3320. unsigned long n = simple_strtoul(buf, &e, 10);
  3321. if (!*buf || (*e && *e != '\n'))
  3322. return -EINVAL;
  3323. if (mddev->pers) {
  3324. int err;
  3325. if (mddev->pers->check_reshape == NULL)
  3326. return -EBUSY;
  3327. mddev->new_chunk_sectors = n >> 9;
  3328. err = mddev->pers->check_reshape(mddev);
  3329. if (err) {
  3330. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3331. return err;
  3332. }
  3333. } else {
  3334. mddev->new_chunk_sectors = n >> 9;
  3335. if (mddev->reshape_position == MaxSector)
  3336. mddev->chunk_sectors = n >> 9;
  3337. }
  3338. return len;
  3339. }
  3340. static struct md_sysfs_entry md_chunk_size =
  3341. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3342. static ssize_t
  3343. resync_start_show(struct mddev *mddev, char *page)
  3344. {
  3345. if (mddev->recovery_cp == MaxSector)
  3346. return sprintf(page, "none\n");
  3347. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3348. }
  3349. static ssize_t
  3350. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3351. {
  3352. char *e;
  3353. unsigned long long n = simple_strtoull(buf, &e, 10);
  3354. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3355. return -EBUSY;
  3356. if (cmd_match(buf, "none"))
  3357. n = MaxSector;
  3358. else if (!*buf || (*e && *e != '\n'))
  3359. return -EINVAL;
  3360. mddev->recovery_cp = n;
  3361. if (mddev->pers)
  3362. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3363. return len;
  3364. }
  3365. static struct md_sysfs_entry md_resync_start =
  3366. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3367. /*
  3368. * The array state can be:
  3369. *
  3370. * clear
  3371. * No devices, no size, no level
  3372. * Equivalent to STOP_ARRAY ioctl
  3373. * inactive
  3374. * May have some settings, but array is not active
  3375. * all IO results in error
  3376. * When written, doesn't tear down array, but just stops it
  3377. * suspended (not supported yet)
  3378. * All IO requests will block. The array can be reconfigured.
  3379. * Writing this, if accepted, will block until array is quiescent
  3380. * readonly
  3381. * no resync can happen. no superblocks get written.
  3382. * write requests fail
  3383. * read-auto
  3384. * like readonly, but behaves like 'clean' on a write request.
  3385. *
  3386. * clean - no pending writes, but otherwise active.
  3387. * When written to inactive array, starts without resync
  3388. * If a write request arrives then
  3389. * if metadata is known, mark 'dirty' and switch to 'active'.
  3390. * if not known, block and switch to write-pending
  3391. * If written to an active array that has pending writes, then fails.
  3392. * active
  3393. * fully active: IO and resync can be happening.
  3394. * When written to inactive array, starts with resync
  3395. *
  3396. * write-pending
  3397. * clean, but writes are blocked waiting for 'active' to be written.
  3398. *
  3399. * active-idle
  3400. * like active, but no writes have been seen for a while (100msec).
  3401. *
  3402. */
  3403. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3404. write_pending, active_idle, bad_word};
  3405. static char *array_states[] = {
  3406. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3407. "write-pending", "active-idle", NULL };
  3408. static int match_word(const char *word, char **list)
  3409. {
  3410. int n;
  3411. for (n=0; list[n]; n++)
  3412. if (cmd_match(word, list[n]))
  3413. break;
  3414. return n;
  3415. }
  3416. static ssize_t
  3417. array_state_show(struct mddev *mddev, char *page)
  3418. {
  3419. enum array_state st = inactive;
  3420. if (mddev->pers)
  3421. switch(mddev->ro) {
  3422. case 1:
  3423. st = readonly;
  3424. break;
  3425. case 2:
  3426. st = read_auto;
  3427. break;
  3428. case 0:
  3429. if (mddev->in_sync)
  3430. st = clean;
  3431. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3432. st = write_pending;
  3433. else if (mddev->safemode)
  3434. st = active_idle;
  3435. else
  3436. st = active;
  3437. }
  3438. else {
  3439. if (list_empty(&mddev->disks) &&
  3440. mddev->raid_disks == 0 &&
  3441. mddev->dev_sectors == 0)
  3442. st = clear;
  3443. else
  3444. st = inactive;
  3445. }
  3446. return sprintf(page, "%s\n", array_states[st]);
  3447. }
  3448. static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
  3449. static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
  3450. static int do_md_run(struct mddev * mddev);
  3451. static int restart_array(struct mddev *mddev);
  3452. static ssize_t
  3453. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3454. {
  3455. int err = -EINVAL;
  3456. enum array_state st = match_word(buf, array_states);
  3457. switch(st) {
  3458. case bad_word:
  3459. break;
  3460. case clear:
  3461. /* stopping an active array */
  3462. err = do_md_stop(mddev, 0, NULL);
  3463. break;
  3464. case inactive:
  3465. /* stopping an active array */
  3466. if (mddev->pers)
  3467. err = do_md_stop(mddev, 2, NULL);
  3468. else
  3469. err = 0; /* already inactive */
  3470. break;
  3471. case suspended:
  3472. break; /* not supported yet */
  3473. case readonly:
  3474. if (mddev->pers)
  3475. err = md_set_readonly(mddev, NULL);
  3476. else {
  3477. mddev->ro = 1;
  3478. set_disk_ro(mddev->gendisk, 1);
  3479. err = do_md_run(mddev);
  3480. }
  3481. break;
  3482. case read_auto:
  3483. if (mddev->pers) {
  3484. if (mddev->ro == 0)
  3485. err = md_set_readonly(mddev, NULL);
  3486. else if (mddev->ro == 1)
  3487. err = restart_array(mddev);
  3488. if (err == 0) {
  3489. mddev->ro = 2;
  3490. set_disk_ro(mddev->gendisk, 0);
  3491. }
  3492. } else {
  3493. mddev->ro = 2;
  3494. err = do_md_run(mddev);
  3495. }
  3496. break;
  3497. case clean:
  3498. if (mddev->pers) {
  3499. restart_array(mddev);
  3500. spin_lock_irq(&mddev->write_lock);
  3501. if (atomic_read(&mddev->writes_pending) == 0) {
  3502. if (mddev->in_sync == 0) {
  3503. mddev->in_sync = 1;
  3504. if (mddev->safemode == 1)
  3505. mddev->safemode = 0;
  3506. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3507. }
  3508. err = 0;
  3509. } else
  3510. err = -EBUSY;
  3511. spin_unlock_irq(&mddev->write_lock);
  3512. } else
  3513. err = -EINVAL;
  3514. break;
  3515. case active:
  3516. if (mddev->pers) {
  3517. restart_array(mddev);
  3518. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3519. wake_up(&mddev->sb_wait);
  3520. err = 0;
  3521. } else {
  3522. mddev->ro = 0;
  3523. set_disk_ro(mddev->gendisk, 0);
  3524. err = do_md_run(mddev);
  3525. }
  3526. break;
  3527. case write_pending:
  3528. case active_idle:
  3529. /* these cannot be set */
  3530. break;
  3531. }
  3532. if (err)
  3533. return err;
  3534. else {
  3535. if (mddev->hold_active == UNTIL_IOCTL)
  3536. mddev->hold_active = 0;
  3537. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3538. return len;
  3539. }
  3540. }
  3541. static struct md_sysfs_entry md_array_state =
  3542. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3543. static ssize_t
  3544. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3545. return sprintf(page, "%d\n",
  3546. atomic_read(&mddev->max_corr_read_errors));
  3547. }
  3548. static ssize_t
  3549. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3550. {
  3551. char *e;
  3552. unsigned long n = simple_strtoul(buf, &e, 10);
  3553. if (*buf && (*e == 0 || *e == '\n')) {
  3554. atomic_set(&mddev->max_corr_read_errors, n);
  3555. return len;
  3556. }
  3557. return -EINVAL;
  3558. }
  3559. static struct md_sysfs_entry max_corr_read_errors =
  3560. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3561. max_corrected_read_errors_store);
  3562. static ssize_t
  3563. null_show(struct mddev *mddev, char *page)
  3564. {
  3565. return -EINVAL;
  3566. }
  3567. static ssize_t
  3568. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3569. {
  3570. /* buf must be %d:%d\n? giving major and minor numbers */
  3571. /* The new device is added to the array.
  3572. * If the array has a persistent superblock, we read the
  3573. * superblock to initialise info and check validity.
  3574. * Otherwise, only checking done is that in bind_rdev_to_array,
  3575. * which mainly checks size.
  3576. */
  3577. char *e;
  3578. int major = simple_strtoul(buf, &e, 10);
  3579. int minor;
  3580. dev_t dev;
  3581. struct md_rdev *rdev;
  3582. int err;
  3583. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3584. return -EINVAL;
  3585. minor = simple_strtoul(e+1, &e, 10);
  3586. if (*e && *e != '\n')
  3587. return -EINVAL;
  3588. dev = MKDEV(major, minor);
  3589. if (major != MAJOR(dev) ||
  3590. minor != MINOR(dev))
  3591. return -EOVERFLOW;
  3592. if (mddev->persistent) {
  3593. rdev = md_import_device(dev, mddev->major_version,
  3594. mddev->minor_version);
  3595. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3596. struct md_rdev *rdev0
  3597. = list_entry(mddev->disks.next,
  3598. struct md_rdev, same_set);
  3599. err = super_types[mddev->major_version]
  3600. .load_super(rdev, rdev0, mddev->minor_version);
  3601. if (err < 0)
  3602. goto out;
  3603. }
  3604. } else if (mddev->external)
  3605. rdev = md_import_device(dev, -2, -1);
  3606. else
  3607. rdev = md_import_device(dev, -1, -1);
  3608. if (IS_ERR(rdev))
  3609. return PTR_ERR(rdev);
  3610. err = bind_rdev_to_array(rdev, mddev);
  3611. out:
  3612. if (err)
  3613. export_rdev(rdev);
  3614. return err ? err : len;
  3615. }
  3616. static struct md_sysfs_entry md_new_device =
  3617. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3618. static ssize_t
  3619. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3620. {
  3621. char *end;
  3622. unsigned long chunk, end_chunk;
  3623. if (!mddev->bitmap)
  3624. goto out;
  3625. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3626. while (*buf) {
  3627. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3628. if (buf == end) break;
  3629. if (*end == '-') { /* range */
  3630. buf = end + 1;
  3631. end_chunk = simple_strtoul(buf, &end, 0);
  3632. if (buf == end) break;
  3633. }
  3634. if (*end && !isspace(*end)) break;
  3635. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3636. buf = skip_spaces(end);
  3637. }
  3638. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3639. out:
  3640. return len;
  3641. }
  3642. static struct md_sysfs_entry md_bitmap =
  3643. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3644. static ssize_t
  3645. size_show(struct mddev *mddev, char *page)
  3646. {
  3647. return sprintf(page, "%llu\n",
  3648. (unsigned long long)mddev->dev_sectors / 2);
  3649. }
  3650. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3651. static ssize_t
  3652. size_store(struct mddev *mddev, const char *buf, size_t len)
  3653. {
  3654. /* If array is inactive, we can reduce the component size, but
  3655. * not increase it (except from 0).
  3656. * If array is active, we can try an on-line resize
  3657. */
  3658. sector_t sectors;
  3659. int err = strict_blocks_to_sectors(buf, &sectors);
  3660. if (err < 0)
  3661. return err;
  3662. if (mddev->pers) {
  3663. err = update_size(mddev, sectors);
  3664. md_update_sb(mddev, 1);
  3665. } else {
  3666. if (mddev->dev_sectors == 0 ||
  3667. mddev->dev_sectors > sectors)
  3668. mddev->dev_sectors = sectors;
  3669. else
  3670. err = -ENOSPC;
  3671. }
  3672. return err ? err : len;
  3673. }
  3674. static struct md_sysfs_entry md_size =
  3675. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3676. /* Metadata version.
  3677. * This is one of
  3678. * 'none' for arrays with no metadata (good luck...)
  3679. * 'external' for arrays with externally managed metadata,
  3680. * or N.M for internally known formats
  3681. */
  3682. static ssize_t
  3683. metadata_show(struct mddev *mddev, char *page)
  3684. {
  3685. if (mddev->persistent)
  3686. return sprintf(page, "%d.%d\n",
  3687. mddev->major_version, mddev->minor_version);
  3688. else if (mddev->external)
  3689. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3690. else
  3691. return sprintf(page, "none\n");
  3692. }
  3693. static ssize_t
  3694. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3695. {
  3696. int major, minor;
  3697. char *e;
  3698. /* Changing the details of 'external' metadata is
  3699. * always permitted. Otherwise there must be
  3700. * no devices attached to the array.
  3701. */
  3702. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3703. ;
  3704. else if (!list_empty(&mddev->disks))
  3705. return -EBUSY;
  3706. if (cmd_match(buf, "none")) {
  3707. mddev->persistent = 0;
  3708. mddev->external = 0;
  3709. mddev->major_version = 0;
  3710. mddev->minor_version = 90;
  3711. return len;
  3712. }
  3713. if (strncmp(buf, "external:", 9) == 0) {
  3714. size_t namelen = len-9;
  3715. if (namelen >= sizeof(mddev->metadata_type))
  3716. namelen = sizeof(mddev->metadata_type)-1;
  3717. strncpy(mddev->metadata_type, buf+9, namelen);
  3718. mddev->metadata_type[namelen] = 0;
  3719. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3720. mddev->metadata_type[--namelen] = 0;
  3721. mddev->persistent = 0;
  3722. mddev->external = 1;
  3723. mddev->major_version = 0;
  3724. mddev->minor_version = 90;
  3725. return len;
  3726. }
  3727. major = simple_strtoul(buf, &e, 10);
  3728. if (e==buf || *e != '.')
  3729. return -EINVAL;
  3730. buf = e+1;
  3731. minor = simple_strtoul(buf, &e, 10);
  3732. if (e==buf || (*e && *e != '\n') )
  3733. return -EINVAL;
  3734. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3735. return -ENOENT;
  3736. mddev->major_version = major;
  3737. mddev->minor_version = minor;
  3738. mddev->persistent = 1;
  3739. mddev->external = 0;
  3740. return len;
  3741. }
  3742. static struct md_sysfs_entry md_metadata =
  3743. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3744. static ssize_t
  3745. action_show(struct mddev *mddev, char *page)
  3746. {
  3747. char *type = "idle";
  3748. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3749. type = "frozen";
  3750. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3751. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3752. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3753. type = "reshape";
  3754. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3755. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3756. type = "resync";
  3757. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3758. type = "check";
  3759. else
  3760. type = "repair";
  3761. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3762. type = "recover";
  3763. }
  3764. return sprintf(page, "%s\n", type);
  3765. }
  3766. static void reap_sync_thread(struct mddev *mddev);
  3767. static ssize_t
  3768. action_store(struct mddev *mddev, const char *page, size_t len)
  3769. {
  3770. if (!mddev->pers || !mddev->pers->sync_request)
  3771. return -EINVAL;
  3772. if (cmd_match(page, "frozen"))
  3773. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3774. else
  3775. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3776. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3777. if (mddev->sync_thread) {
  3778. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3779. reap_sync_thread(mddev);
  3780. }
  3781. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3782. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3783. return -EBUSY;
  3784. else if (cmd_match(page, "resync"))
  3785. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3786. else if (cmd_match(page, "recover")) {
  3787. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3788. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3789. } else if (cmd_match(page, "reshape")) {
  3790. int err;
  3791. if (mddev->pers->start_reshape == NULL)
  3792. return -EINVAL;
  3793. err = mddev->pers->start_reshape(mddev);
  3794. if (err)
  3795. return err;
  3796. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3797. } else {
  3798. if (cmd_match(page, "check"))
  3799. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3800. else if (!cmd_match(page, "repair"))
  3801. return -EINVAL;
  3802. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3803. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3804. }
  3805. if (mddev->ro == 2) {
  3806. /* A write to sync_action is enough to justify
  3807. * canceling read-auto mode
  3808. */
  3809. mddev->ro = 0;
  3810. md_wakeup_thread(mddev->sync_thread);
  3811. }
  3812. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3813. md_wakeup_thread(mddev->thread);
  3814. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3815. return len;
  3816. }
  3817. static ssize_t
  3818. mismatch_cnt_show(struct mddev *mddev, char *page)
  3819. {
  3820. return sprintf(page, "%llu\n",
  3821. (unsigned long long)
  3822. atomic64_read(&mddev->resync_mismatches));
  3823. }
  3824. static struct md_sysfs_entry md_scan_mode =
  3825. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3826. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3827. static ssize_t
  3828. sync_min_show(struct mddev *mddev, char *page)
  3829. {
  3830. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3831. mddev->sync_speed_min ? "local": "system");
  3832. }
  3833. static ssize_t
  3834. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3835. {
  3836. int min;
  3837. char *e;
  3838. if (strncmp(buf, "system", 6)==0) {
  3839. mddev->sync_speed_min = 0;
  3840. return len;
  3841. }
  3842. min = simple_strtoul(buf, &e, 10);
  3843. if (buf == e || (*e && *e != '\n') || min <= 0)
  3844. return -EINVAL;
  3845. mddev->sync_speed_min = min;
  3846. return len;
  3847. }
  3848. static struct md_sysfs_entry md_sync_min =
  3849. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3850. static ssize_t
  3851. sync_max_show(struct mddev *mddev, char *page)
  3852. {
  3853. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3854. mddev->sync_speed_max ? "local": "system");
  3855. }
  3856. static ssize_t
  3857. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3858. {
  3859. int max;
  3860. char *e;
  3861. if (strncmp(buf, "system", 6)==0) {
  3862. mddev->sync_speed_max = 0;
  3863. return len;
  3864. }
  3865. max = simple_strtoul(buf, &e, 10);
  3866. if (buf == e || (*e && *e != '\n') || max <= 0)
  3867. return -EINVAL;
  3868. mddev->sync_speed_max = max;
  3869. return len;
  3870. }
  3871. static struct md_sysfs_entry md_sync_max =
  3872. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3873. static ssize_t
  3874. degraded_show(struct mddev *mddev, char *page)
  3875. {
  3876. return sprintf(page, "%d\n", mddev->degraded);
  3877. }
  3878. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3879. static ssize_t
  3880. sync_force_parallel_show(struct mddev *mddev, char *page)
  3881. {
  3882. return sprintf(page, "%d\n", mddev->parallel_resync);
  3883. }
  3884. static ssize_t
  3885. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3886. {
  3887. long n;
  3888. if (strict_strtol(buf, 10, &n))
  3889. return -EINVAL;
  3890. if (n != 0 && n != 1)
  3891. return -EINVAL;
  3892. mddev->parallel_resync = n;
  3893. if (mddev->sync_thread)
  3894. wake_up(&resync_wait);
  3895. return len;
  3896. }
  3897. /* force parallel resync, even with shared block devices */
  3898. static struct md_sysfs_entry md_sync_force_parallel =
  3899. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3900. sync_force_parallel_show, sync_force_parallel_store);
  3901. static ssize_t
  3902. sync_speed_show(struct mddev *mddev, char *page)
  3903. {
  3904. unsigned long resync, dt, db;
  3905. if (mddev->curr_resync == 0)
  3906. return sprintf(page, "none\n");
  3907. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3908. dt = (jiffies - mddev->resync_mark) / HZ;
  3909. if (!dt) dt++;
  3910. db = resync - mddev->resync_mark_cnt;
  3911. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3912. }
  3913. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3914. static ssize_t
  3915. sync_completed_show(struct mddev *mddev, char *page)
  3916. {
  3917. unsigned long long max_sectors, resync;
  3918. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3919. return sprintf(page, "none\n");
  3920. if (mddev->curr_resync == 1 ||
  3921. mddev->curr_resync == 2)
  3922. return sprintf(page, "delayed\n");
  3923. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3924. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3925. max_sectors = mddev->resync_max_sectors;
  3926. else
  3927. max_sectors = mddev->dev_sectors;
  3928. resync = mddev->curr_resync_completed;
  3929. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3930. }
  3931. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3932. static ssize_t
  3933. min_sync_show(struct mddev *mddev, char *page)
  3934. {
  3935. return sprintf(page, "%llu\n",
  3936. (unsigned long long)mddev->resync_min);
  3937. }
  3938. static ssize_t
  3939. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3940. {
  3941. unsigned long long min;
  3942. if (strict_strtoull(buf, 10, &min))
  3943. return -EINVAL;
  3944. if (min > mddev->resync_max)
  3945. return -EINVAL;
  3946. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3947. return -EBUSY;
  3948. /* Must be a multiple of chunk_size */
  3949. if (mddev->chunk_sectors) {
  3950. sector_t temp = min;
  3951. if (sector_div(temp, mddev->chunk_sectors))
  3952. return -EINVAL;
  3953. }
  3954. mddev->resync_min = min;
  3955. return len;
  3956. }
  3957. static struct md_sysfs_entry md_min_sync =
  3958. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3959. static ssize_t
  3960. max_sync_show(struct mddev *mddev, char *page)
  3961. {
  3962. if (mddev->resync_max == MaxSector)
  3963. return sprintf(page, "max\n");
  3964. else
  3965. return sprintf(page, "%llu\n",
  3966. (unsigned long long)mddev->resync_max);
  3967. }
  3968. static ssize_t
  3969. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3970. {
  3971. if (strncmp(buf, "max", 3) == 0)
  3972. mddev->resync_max = MaxSector;
  3973. else {
  3974. unsigned long long max;
  3975. if (strict_strtoull(buf, 10, &max))
  3976. return -EINVAL;
  3977. if (max < mddev->resync_min)
  3978. return -EINVAL;
  3979. if (max < mddev->resync_max &&
  3980. mddev->ro == 0 &&
  3981. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3982. return -EBUSY;
  3983. /* Must be a multiple of chunk_size */
  3984. if (mddev->chunk_sectors) {
  3985. sector_t temp = max;
  3986. if (sector_div(temp, mddev->chunk_sectors))
  3987. return -EINVAL;
  3988. }
  3989. mddev->resync_max = max;
  3990. }
  3991. wake_up(&mddev->recovery_wait);
  3992. return len;
  3993. }
  3994. static struct md_sysfs_entry md_max_sync =
  3995. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3996. static ssize_t
  3997. suspend_lo_show(struct mddev *mddev, char *page)
  3998. {
  3999. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4000. }
  4001. static ssize_t
  4002. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4003. {
  4004. char *e;
  4005. unsigned long long new = simple_strtoull(buf, &e, 10);
  4006. unsigned long long old = mddev->suspend_lo;
  4007. if (mddev->pers == NULL ||
  4008. mddev->pers->quiesce == NULL)
  4009. return -EINVAL;
  4010. if (buf == e || (*e && *e != '\n'))
  4011. return -EINVAL;
  4012. mddev->suspend_lo = new;
  4013. if (new >= old)
  4014. /* Shrinking suspended region */
  4015. mddev->pers->quiesce(mddev, 2);
  4016. else {
  4017. /* Expanding suspended region - need to wait */
  4018. mddev->pers->quiesce(mddev, 1);
  4019. mddev->pers->quiesce(mddev, 0);
  4020. }
  4021. return len;
  4022. }
  4023. static struct md_sysfs_entry md_suspend_lo =
  4024. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4025. static ssize_t
  4026. suspend_hi_show(struct mddev *mddev, char *page)
  4027. {
  4028. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4029. }
  4030. static ssize_t
  4031. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4032. {
  4033. char *e;
  4034. unsigned long long new = simple_strtoull(buf, &e, 10);
  4035. unsigned long long old = mddev->suspend_hi;
  4036. if (mddev->pers == NULL ||
  4037. mddev->pers->quiesce == NULL)
  4038. return -EINVAL;
  4039. if (buf == e || (*e && *e != '\n'))
  4040. return -EINVAL;
  4041. mddev->suspend_hi = new;
  4042. if (new <= old)
  4043. /* Shrinking suspended region */
  4044. mddev->pers->quiesce(mddev, 2);
  4045. else {
  4046. /* Expanding suspended region - need to wait */
  4047. mddev->pers->quiesce(mddev, 1);
  4048. mddev->pers->quiesce(mddev, 0);
  4049. }
  4050. return len;
  4051. }
  4052. static struct md_sysfs_entry md_suspend_hi =
  4053. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4054. static ssize_t
  4055. reshape_position_show(struct mddev *mddev, char *page)
  4056. {
  4057. if (mddev->reshape_position != MaxSector)
  4058. return sprintf(page, "%llu\n",
  4059. (unsigned long long)mddev->reshape_position);
  4060. strcpy(page, "none\n");
  4061. return 5;
  4062. }
  4063. static ssize_t
  4064. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4065. {
  4066. struct md_rdev *rdev;
  4067. char *e;
  4068. unsigned long long new = simple_strtoull(buf, &e, 10);
  4069. if (mddev->pers)
  4070. return -EBUSY;
  4071. if (buf == e || (*e && *e != '\n'))
  4072. return -EINVAL;
  4073. mddev->reshape_position = new;
  4074. mddev->delta_disks = 0;
  4075. mddev->reshape_backwards = 0;
  4076. mddev->new_level = mddev->level;
  4077. mddev->new_layout = mddev->layout;
  4078. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4079. rdev_for_each(rdev, mddev)
  4080. rdev->new_data_offset = rdev->data_offset;
  4081. return len;
  4082. }
  4083. static struct md_sysfs_entry md_reshape_position =
  4084. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4085. reshape_position_store);
  4086. static ssize_t
  4087. reshape_direction_show(struct mddev *mddev, char *page)
  4088. {
  4089. return sprintf(page, "%s\n",
  4090. mddev->reshape_backwards ? "backwards" : "forwards");
  4091. }
  4092. static ssize_t
  4093. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4094. {
  4095. int backwards = 0;
  4096. if (cmd_match(buf, "forwards"))
  4097. backwards = 0;
  4098. else if (cmd_match(buf, "backwards"))
  4099. backwards = 1;
  4100. else
  4101. return -EINVAL;
  4102. if (mddev->reshape_backwards == backwards)
  4103. return len;
  4104. /* check if we are allowed to change */
  4105. if (mddev->delta_disks)
  4106. return -EBUSY;
  4107. if (mddev->persistent &&
  4108. mddev->major_version == 0)
  4109. return -EINVAL;
  4110. mddev->reshape_backwards = backwards;
  4111. return len;
  4112. }
  4113. static struct md_sysfs_entry md_reshape_direction =
  4114. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4115. reshape_direction_store);
  4116. static ssize_t
  4117. array_size_show(struct mddev *mddev, char *page)
  4118. {
  4119. if (mddev->external_size)
  4120. return sprintf(page, "%llu\n",
  4121. (unsigned long long)mddev->array_sectors/2);
  4122. else
  4123. return sprintf(page, "default\n");
  4124. }
  4125. static ssize_t
  4126. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4127. {
  4128. sector_t sectors;
  4129. if (strncmp(buf, "default", 7) == 0) {
  4130. if (mddev->pers)
  4131. sectors = mddev->pers->size(mddev, 0, 0);
  4132. else
  4133. sectors = mddev->array_sectors;
  4134. mddev->external_size = 0;
  4135. } else {
  4136. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4137. return -EINVAL;
  4138. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4139. return -E2BIG;
  4140. mddev->external_size = 1;
  4141. }
  4142. mddev->array_sectors = sectors;
  4143. if (mddev->pers) {
  4144. set_capacity(mddev->gendisk, mddev->array_sectors);
  4145. revalidate_disk(mddev->gendisk);
  4146. }
  4147. return len;
  4148. }
  4149. static struct md_sysfs_entry md_array_size =
  4150. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4151. array_size_store);
  4152. static struct attribute *md_default_attrs[] = {
  4153. &md_level.attr,
  4154. &md_layout.attr,
  4155. &md_raid_disks.attr,
  4156. &md_chunk_size.attr,
  4157. &md_size.attr,
  4158. &md_resync_start.attr,
  4159. &md_metadata.attr,
  4160. &md_new_device.attr,
  4161. &md_safe_delay.attr,
  4162. &md_array_state.attr,
  4163. &md_reshape_position.attr,
  4164. &md_reshape_direction.attr,
  4165. &md_array_size.attr,
  4166. &max_corr_read_errors.attr,
  4167. NULL,
  4168. };
  4169. static struct attribute *md_redundancy_attrs[] = {
  4170. &md_scan_mode.attr,
  4171. &md_mismatches.attr,
  4172. &md_sync_min.attr,
  4173. &md_sync_max.attr,
  4174. &md_sync_speed.attr,
  4175. &md_sync_force_parallel.attr,
  4176. &md_sync_completed.attr,
  4177. &md_min_sync.attr,
  4178. &md_max_sync.attr,
  4179. &md_suspend_lo.attr,
  4180. &md_suspend_hi.attr,
  4181. &md_bitmap.attr,
  4182. &md_degraded.attr,
  4183. NULL,
  4184. };
  4185. static struct attribute_group md_redundancy_group = {
  4186. .name = NULL,
  4187. .attrs = md_redundancy_attrs,
  4188. };
  4189. static ssize_t
  4190. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4191. {
  4192. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4193. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4194. ssize_t rv;
  4195. if (!entry->show)
  4196. return -EIO;
  4197. spin_lock(&all_mddevs_lock);
  4198. if (list_empty(&mddev->all_mddevs)) {
  4199. spin_unlock(&all_mddevs_lock);
  4200. return -EBUSY;
  4201. }
  4202. mddev_get(mddev);
  4203. spin_unlock(&all_mddevs_lock);
  4204. rv = mddev_lock(mddev);
  4205. if (!rv) {
  4206. rv = entry->show(mddev, page);
  4207. mddev_unlock(mddev);
  4208. }
  4209. mddev_put(mddev);
  4210. return rv;
  4211. }
  4212. static ssize_t
  4213. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4214. const char *page, size_t length)
  4215. {
  4216. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4217. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4218. ssize_t rv;
  4219. if (!entry->store)
  4220. return -EIO;
  4221. if (!capable(CAP_SYS_ADMIN))
  4222. return -EACCES;
  4223. spin_lock(&all_mddevs_lock);
  4224. if (list_empty(&mddev->all_mddevs)) {
  4225. spin_unlock(&all_mddevs_lock);
  4226. return -EBUSY;
  4227. }
  4228. mddev_get(mddev);
  4229. spin_unlock(&all_mddevs_lock);
  4230. rv = mddev_lock(mddev);
  4231. if (!rv) {
  4232. rv = entry->store(mddev, page, length);
  4233. mddev_unlock(mddev);
  4234. }
  4235. mddev_put(mddev);
  4236. return rv;
  4237. }
  4238. static void md_free(struct kobject *ko)
  4239. {
  4240. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4241. if (mddev->sysfs_state)
  4242. sysfs_put(mddev->sysfs_state);
  4243. if (mddev->gendisk) {
  4244. del_gendisk(mddev->gendisk);
  4245. put_disk(mddev->gendisk);
  4246. }
  4247. if (mddev->queue)
  4248. blk_cleanup_queue(mddev->queue);
  4249. kfree(mddev);
  4250. }
  4251. static const struct sysfs_ops md_sysfs_ops = {
  4252. .show = md_attr_show,
  4253. .store = md_attr_store,
  4254. };
  4255. static struct kobj_type md_ktype = {
  4256. .release = md_free,
  4257. .sysfs_ops = &md_sysfs_ops,
  4258. .default_attrs = md_default_attrs,
  4259. };
  4260. int mdp_major = 0;
  4261. static void mddev_delayed_delete(struct work_struct *ws)
  4262. {
  4263. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4264. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4265. kobject_del(&mddev->kobj);
  4266. kobject_put(&mddev->kobj);
  4267. }
  4268. static int md_alloc(dev_t dev, char *name)
  4269. {
  4270. static DEFINE_MUTEX(disks_mutex);
  4271. struct mddev *mddev = mddev_find(dev);
  4272. struct gendisk *disk;
  4273. int partitioned;
  4274. int shift;
  4275. int unit;
  4276. int error;
  4277. if (!mddev)
  4278. return -ENODEV;
  4279. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4280. shift = partitioned ? MdpMinorShift : 0;
  4281. unit = MINOR(mddev->unit) >> shift;
  4282. /* wait for any previous instance of this device to be
  4283. * completely removed (mddev_delayed_delete).
  4284. */
  4285. flush_workqueue(md_misc_wq);
  4286. mutex_lock(&disks_mutex);
  4287. error = -EEXIST;
  4288. if (mddev->gendisk)
  4289. goto abort;
  4290. if (name) {
  4291. /* Need to ensure that 'name' is not a duplicate.
  4292. */
  4293. struct mddev *mddev2;
  4294. spin_lock(&all_mddevs_lock);
  4295. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4296. if (mddev2->gendisk &&
  4297. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4298. spin_unlock(&all_mddevs_lock);
  4299. goto abort;
  4300. }
  4301. spin_unlock(&all_mddevs_lock);
  4302. }
  4303. error = -ENOMEM;
  4304. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4305. if (!mddev->queue)
  4306. goto abort;
  4307. mddev->queue->queuedata = mddev;
  4308. blk_queue_make_request(mddev->queue, md_make_request);
  4309. blk_set_stacking_limits(&mddev->queue->limits);
  4310. disk = alloc_disk(1 << shift);
  4311. if (!disk) {
  4312. blk_cleanup_queue(mddev->queue);
  4313. mddev->queue = NULL;
  4314. goto abort;
  4315. }
  4316. disk->major = MAJOR(mddev->unit);
  4317. disk->first_minor = unit << shift;
  4318. if (name)
  4319. strcpy(disk->disk_name, name);
  4320. else if (partitioned)
  4321. sprintf(disk->disk_name, "md_d%d", unit);
  4322. else
  4323. sprintf(disk->disk_name, "md%d", unit);
  4324. disk->fops = &md_fops;
  4325. disk->private_data = mddev;
  4326. disk->queue = mddev->queue;
  4327. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4328. /* Allow extended partitions. This makes the
  4329. * 'mdp' device redundant, but we can't really
  4330. * remove it now.
  4331. */
  4332. disk->flags |= GENHD_FL_EXT_DEVT;
  4333. mddev->gendisk = disk;
  4334. /* As soon as we call add_disk(), another thread could get
  4335. * through to md_open, so make sure it doesn't get too far
  4336. */
  4337. mutex_lock(&mddev->open_mutex);
  4338. add_disk(disk);
  4339. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4340. &disk_to_dev(disk)->kobj, "%s", "md");
  4341. if (error) {
  4342. /* This isn't possible, but as kobject_init_and_add is marked
  4343. * __must_check, we must do something with the result
  4344. */
  4345. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4346. disk->disk_name);
  4347. error = 0;
  4348. }
  4349. if (mddev->kobj.sd &&
  4350. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4351. printk(KERN_DEBUG "pointless warning\n");
  4352. mutex_unlock(&mddev->open_mutex);
  4353. abort:
  4354. mutex_unlock(&disks_mutex);
  4355. if (!error && mddev->kobj.sd) {
  4356. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4357. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4358. }
  4359. mddev_put(mddev);
  4360. return error;
  4361. }
  4362. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4363. {
  4364. md_alloc(dev, NULL);
  4365. return NULL;
  4366. }
  4367. static int add_named_array(const char *val, struct kernel_param *kp)
  4368. {
  4369. /* val must be "md_*" where * is not all digits.
  4370. * We allocate an array with a large free minor number, and
  4371. * set the name to val. val must not already be an active name.
  4372. */
  4373. int len = strlen(val);
  4374. char buf[DISK_NAME_LEN];
  4375. while (len && val[len-1] == '\n')
  4376. len--;
  4377. if (len >= DISK_NAME_LEN)
  4378. return -E2BIG;
  4379. strlcpy(buf, val, len+1);
  4380. if (strncmp(buf, "md_", 3) != 0)
  4381. return -EINVAL;
  4382. return md_alloc(0, buf);
  4383. }
  4384. static void md_safemode_timeout(unsigned long data)
  4385. {
  4386. struct mddev *mddev = (struct mddev *) data;
  4387. if (!atomic_read(&mddev->writes_pending)) {
  4388. mddev->safemode = 1;
  4389. if (mddev->external)
  4390. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4391. }
  4392. md_wakeup_thread(mddev->thread);
  4393. }
  4394. static int start_dirty_degraded;
  4395. int md_run(struct mddev *mddev)
  4396. {
  4397. int err;
  4398. struct md_rdev *rdev;
  4399. struct md_personality *pers;
  4400. if (list_empty(&mddev->disks))
  4401. /* cannot run an array with no devices.. */
  4402. return -EINVAL;
  4403. if (mddev->pers)
  4404. return -EBUSY;
  4405. /* Cannot run until previous stop completes properly */
  4406. if (mddev->sysfs_active)
  4407. return -EBUSY;
  4408. /*
  4409. * Analyze all RAID superblock(s)
  4410. */
  4411. if (!mddev->raid_disks) {
  4412. if (!mddev->persistent)
  4413. return -EINVAL;
  4414. analyze_sbs(mddev);
  4415. }
  4416. if (mddev->level != LEVEL_NONE)
  4417. request_module("md-level-%d", mddev->level);
  4418. else if (mddev->clevel[0])
  4419. request_module("md-%s", mddev->clevel);
  4420. /*
  4421. * Drop all container device buffers, from now on
  4422. * the only valid external interface is through the md
  4423. * device.
  4424. */
  4425. rdev_for_each(rdev, mddev) {
  4426. if (test_bit(Faulty, &rdev->flags))
  4427. continue;
  4428. sync_blockdev(rdev->bdev);
  4429. invalidate_bdev(rdev->bdev);
  4430. /* perform some consistency tests on the device.
  4431. * We don't want the data to overlap the metadata,
  4432. * Internal Bitmap issues have been handled elsewhere.
  4433. */
  4434. if (rdev->meta_bdev) {
  4435. /* Nothing to check */;
  4436. } else if (rdev->data_offset < rdev->sb_start) {
  4437. if (mddev->dev_sectors &&
  4438. rdev->data_offset + mddev->dev_sectors
  4439. > rdev->sb_start) {
  4440. printk("md: %s: data overlaps metadata\n",
  4441. mdname(mddev));
  4442. return -EINVAL;
  4443. }
  4444. } else {
  4445. if (rdev->sb_start + rdev->sb_size/512
  4446. > rdev->data_offset) {
  4447. printk("md: %s: metadata overlaps data\n",
  4448. mdname(mddev));
  4449. return -EINVAL;
  4450. }
  4451. }
  4452. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4453. }
  4454. if (mddev->bio_set == NULL)
  4455. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4456. spin_lock(&pers_lock);
  4457. pers = find_pers(mddev->level, mddev->clevel);
  4458. if (!pers || !try_module_get(pers->owner)) {
  4459. spin_unlock(&pers_lock);
  4460. if (mddev->level != LEVEL_NONE)
  4461. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4462. mddev->level);
  4463. else
  4464. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4465. mddev->clevel);
  4466. return -EINVAL;
  4467. }
  4468. mddev->pers = pers;
  4469. spin_unlock(&pers_lock);
  4470. if (mddev->level != pers->level) {
  4471. mddev->level = pers->level;
  4472. mddev->new_level = pers->level;
  4473. }
  4474. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4475. if (mddev->reshape_position != MaxSector &&
  4476. pers->start_reshape == NULL) {
  4477. /* This personality cannot handle reshaping... */
  4478. mddev->pers = NULL;
  4479. module_put(pers->owner);
  4480. return -EINVAL;
  4481. }
  4482. if (pers->sync_request) {
  4483. /* Warn if this is a potentially silly
  4484. * configuration.
  4485. */
  4486. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4487. struct md_rdev *rdev2;
  4488. int warned = 0;
  4489. rdev_for_each(rdev, mddev)
  4490. rdev_for_each(rdev2, mddev) {
  4491. if (rdev < rdev2 &&
  4492. rdev->bdev->bd_contains ==
  4493. rdev2->bdev->bd_contains) {
  4494. printk(KERN_WARNING
  4495. "%s: WARNING: %s appears to be"
  4496. " on the same physical disk as"
  4497. " %s.\n",
  4498. mdname(mddev),
  4499. bdevname(rdev->bdev,b),
  4500. bdevname(rdev2->bdev,b2));
  4501. warned = 1;
  4502. }
  4503. }
  4504. if (warned)
  4505. printk(KERN_WARNING
  4506. "True protection against single-disk"
  4507. " failure might be compromised.\n");
  4508. }
  4509. mddev->recovery = 0;
  4510. /* may be over-ridden by personality */
  4511. mddev->resync_max_sectors = mddev->dev_sectors;
  4512. mddev->ok_start_degraded = start_dirty_degraded;
  4513. if (start_readonly && mddev->ro == 0)
  4514. mddev->ro = 2; /* read-only, but switch on first write */
  4515. err = mddev->pers->run(mddev);
  4516. if (err)
  4517. printk(KERN_ERR "md: pers->run() failed ...\n");
  4518. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4519. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4520. " but 'external_size' not in effect?\n", __func__);
  4521. printk(KERN_ERR
  4522. "md: invalid array_size %llu > default size %llu\n",
  4523. (unsigned long long)mddev->array_sectors / 2,
  4524. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4525. err = -EINVAL;
  4526. mddev->pers->stop(mddev);
  4527. }
  4528. if (err == 0 && mddev->pers->sync_request &&
  4529. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4530. err = bitmap_create(mddev);
  4531. if (err) {
  4532. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4533. mdname(mddev), err);
  4534. mddev->pers->stop(mddev);
  4535. }
  4536. }
  4537. if (err) {
  4538. module_put(mddev->pers->owner);
  4539. mddev->pers = NULL;
  4540. bitmap_destroy(mddev);
  4541. return err;
  4542. }
  4543. if (mddev->pers->sync_request) {
  4544. if (mddev->kobj.sd &&
  4545. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4546. printk(KERN_WARNING
  4547. "md: cannot register extra attributes for %s\n",
  4548. mdname(mddev));
  4549. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4550. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4551. mddev->ro = 0;
  4552. atomic_set(&mddev->writes_pending,0);
  4553. atomic_set(&mddev->max_corr_read_errors,
  4554. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4555. mddev->safemode = 0;
  4556. mddev->safemode_timer.function = md_safemode_timeout;
  4557. mddev->safemode_timer.data = (unsigned long) mddev;
  4558. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4559. mddev->in_sync = 1;
  4560. smp_wmb();
  4561. mddev->ready = 1;
  4562. rdev_for_each(rdev, mddev)
  4563. if (rdev->raid_disk >= 0)
  4564. if (sysfs_link_rdev(mddev, rdev))
  4565. /* failure here is OK */;
  4566. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4567. if (mddev->flags)
  4568. md_update_sb(mddev, 0);
  4569. md_new_event(mddev);
  4570. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4571. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4572. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4573. return 0;
  4574. }
  4575. EXPORT_SYMBOL_GPL(md_run);
  4576. static int do_md_run(struct mddev *mddev)
  4577. {
  4578. int err;
  4579. err = md_run(mddev);
  4580. if (err)
  4581. goto out;
  4582. err = bitmap_load(mddev);
  4583. if (err) {
  4584. bitmap_destroy(mddev);
  4585. goto out;
  4586. }
  4587. md_wakeup_thread(mddev->thread);
  4588. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4589. set_capacity(mddev->gendisk, mddev->array_sectors);
  4590. revalidate_disk(mddev->gendisk);
  4591. mddev->changed = 1;
  4592. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4593. out:
  4594. return err;
  4595. }
  4596. static int restart_array(struct mddev *mddev)
  4597. {
  4598. struct gendisk *disk = mddev->gendisk;
  4599. /* Complain if it has no devices */
  4600. if (list_empty(&mddev->disks))
  4601. return -ENXIO;
  4602. if (!mddev->pers)
  4603. return -EINVAL;
  4604. if (!mddev->ro)
  4605. return -EBUSY;
  4606. mddev->safemode = 0;
  4607. mddev->ro = 0;
  4608. set_disk_ro(disk, 0);
  4609. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4610. mdname(mddev));
  4611. /* Kick recovery or resync if necessary */
  4612. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4613. md_wakeup_thread(mddev->thread);
  4614. md_wakeup_thread(mddev->sync_thread);
  4615. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4616. return 0;
  4617. }
  4618. /* similar to deny_write_access, but accounts for our holding a reference
  4619. * to the file ourselves */
  4620. static int deny_bitmap_write_access(struct file * file)
  4621. {
  4622. struct inode *inode = file->f_mapping->host;
  4623. spin_lock(&inode->i_lock);
  4624. if (atomic_read(&inode->i_writecount) > 1) {
  4625. spin_unlock(&inode->i_lock);
  4626. return -ETXTBSY;
  4627. }
  4628. atomic_set(&inode->i_writecount, -1);
  4629. spin_unlock(&inode->i_lock);
  4630. return 0;
  4631. }
  4632. void restore_bitmap_write_access(struct file *file)
  4633. {
  4634. struct inode *inode = file->f_mapping->host;
  4635. spin_lock(&inode->i_lock);
  4636. atomic_set(&inode->i_writecount, 1);
  4637. spin_unlock(&inode->i_lock);
  4638. }
  4639. static void md_clean(struct mddev *mddev)
  4640. {
  4641. mddev->array_sectors = 0;
  4642. mddev->external_size = 0;
  4643. mddev->dev_sectors = 0;
  4644. mddev->raid_disks = 0;
  4645. mddev->recovery_cp = 0;
  4646. mddev->resync_min = 0;
  4647. mddev->resync_max = MaxSector;
  4648. mddev->reshape_position = MaxSector;
  4649. mddev->external = 0;
  4650. mddev->persistent = 0;
  4651. mddev->level = LEVEL_NONE;
  4652. mddev->clevel[0] = 0;
  4653. mddev->flags = 0;
  4654. mddev->ro = 0;
  4655. mddev->metadata_type[0] = 0;
  4656. mddev->chunk_sectors = 0;
  4657. mddev->ctime = mddev->utime = 0;
  4658. mddev->layout = 0;
  4659. mddev->max_disks = 0;
  4660. mddev->events = 0;
  4661. mddev->can_decrease_events = 0;
  4662. mddev->delta_disks = 0;
  4663. mddev->reshape_backwards = 0;
  4664. mddev->new_level = LEVEL_NONE;
  4665. mddev->new_layout = 0;
  4666. mddev->new_chunk_sectors = 0;
  4667. mddev->curr_resync = 0;
  4668. atomic64_set(&mddev->resync_mismatches, 0);
  4669. mddev->suspend_lo = mddev->suspend_hi = 0;
  4670. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4671. mddev->recovery = 0;
  4672. mddev->in_sync = 0;
  4673. mddev->changed = 0;
  4674. mddev->degraded = 0;
  4675. mddev->safemode = 0;
  4676. mddev->merge_check_needed = 0;
  4677. mddev->bitmap_info.offset = 0;
  4678. mddev->bitmap_info.default_offset = 0;
  4679. mddev->bitmap_info.default_space = 0;
  4680. mddev->bitmap_info.chunksize = 0;
  4681. mddev->bitmap_info.daemon_sleep = 0;
  4682. mddev->bitmap_info.max_write_behind = 0;
  4683. }
  4684. static void __md_stop_writes(struct mddev *mddev)
  4685. {
  4686. if (mddev->sync_thread) {
  4687. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4688. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4689. reap_sync_thread(mddev);
  4690. }
  4691. del_timer_sync(&mddev->safemode_timer);
  4692. bitmap_flush(mddev);
  4693. md_super_wait(mddev);
  4694. if (!mddev->in_sync || mddev->flags) {
  4695. /* mark array as shutdown cleanly */
  4696. mddev->in_sync = 1;
  4697. md_update_sb(mddev, 1);
  4698. }
  4699. }
  4700. void md_stop_writes(struct mddev *mddev)
  4701. {
  4702. mddev_lock(mddev);
  4703. __md_stop_writes(mddev);
  4704. mddev_unlock(mddev);
  4705. }
  4706. EXPORT_SYMBOL_GPL(md_stop_writes);
  4707. void md_stop(struct mddev *mddev)
  4708. {
  4709. mddev->ready = 0;
  4710. mddev->pers->stop(mddev);
  4711. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4712. mddev->to_remove = &md_redundancy_group;
  4713. module_put(mddev->pers->owner);
  4714. mddev->pers = NULL;
  4715. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4716. }
  4717. EXPORT_SYMBOL_GPL(md_stop);
  4718. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4719. {
  4720. int err = 0;
  4721. mutex_lock(&mddev->open_mutex);
  4722. if (atomic_read(&mddev->openers) > !!bdev) {
  4723. printk("md: %s still in use.\n",mdname(mddev));
  4724. err = -EBUSY;
  4725. goto out;
  4726. }
  4727. if (bdev)
  4728. sync_blockdev(bdev);
  4729. if (mddev->pers) {
  4730. __md_stop_writes(mddev);
  4731. err = -ENXIO;
  4732. if (mddev->ro==1)
  4733. goto out;
  4734. mddev->ro = 1;
  4735. set_disk_ro(mddev->gendisk, 1);
  4736. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4737. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4738. err = 0;
  4739. }
  4740. out:
  4741. mutex_unlock(&mddev->open_mutex);
  4742. return err;
  4743. }
  4744. /* mode:
  4745. * 0 - completely stop and dis-assemble array
  4746. * 2 - stop but do not disassemble array
  4747. */
  4748. static int do_md_stop(struct mddev * mddev, int mode,
  4749. struct block_device *bdev)
  4750. {
  4751. struct gendisk *disk = mddev->gendisk;
  4752. struct md_rdev *rdev;
  4753. mutex_lock(&mddev->open_mutex);
  4754. if (atomic_read(&mddev->openers) > !!bdev ||
  4755. mddev->sysfs_active) {
  4756. printk("md: %s still in use.\n",mdname(mddev));
  4757. mutex_unlock(&mddev->open_mutex);
  4758. return -EBUSY;
  4759. }
  4760. if (bdev)
  4761. /* It is possible IO was issued on some other
  4762. * open file which was closed before we took ->open_mutex.
  4763. * As that was not the last close __blkdev_put will not
  4764. * have called sync_blockdev, so we must.
  4765. */
  4766. sync_blockdev(bdev);
  4767. if (mddev->pers) {
  4768. if (mddev->ro)
  4769. set_disk_ro(disk, 0);
  4770. __md_stop_writes(mddev);
  4771. md_stop(mddev);
  4772. mddev->queue->merge_bvec_fn = NULL;
  4773. mddev->queue->backing_dev_info.congested_fn = NULL;
  4774. /* tell userspace to handle 'inactive' */
  4775. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4776. rdev_for_each(rdev, mddev)
  4777. if (rdev->raid_disk >= 0)
  4778. sysfs_unlink_rdev(mddev, rdev);
  4779. set_capacity(disk, 0);
  4780. mutex_unlock(&mddev->open_mutex);
  4781. mddev->changed = 1;
  4782. revalidate_disk(disk);
  4783. if (mddev->ro)
  4784. mddev->ro = 0;
  4785. } else
  4786. mutex_unlock(&mddev->open_mutex);
  4787. /*
  4788. * Free resources if final stop
  4789. */
  4790. if (mode == 0) {
  4791. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4792. bitmap_destroy(mddev);
  4793. if (mddev->bitmap_info.file) {
  4794. restore_bitmap_write_access(mddev->bitmap_info.file);
  4795. fput(mddev->bitmap_info.file);
  4796. mddev->bitmap_info.file = NULL;
  4797. }
  4798. mddev->bitmap_info.offset = 0;
  4799. export_array(mddev);
  4800. md_clean(mddev);
  4801. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4802. if (mddev->hold_active == UNTIL_STOP)
  4803. mddev->hold_active = 0;
  4804. }
  4805. blk_integrity_unregister(disk);
  4806. md_new_event(mddev);
  4807. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4808. return 0;
  4809. }
  4810. #ifndef MODULE
  4811. static void autorun_array(struct mddev *mddev)
  4812. {
  4813. struct md_rdev *rdev;
  4814. int err;
  4815. if (list_empty(&mddev->disks))
  4816. return;
  4817. printk(KERN_INFO "md: running: ");
  4818. rdev_for_each(rdev, mddev) {
  4819. char b[BDEVNAME_SIZE];
  4820. printk("<%s>", bdevname(rdev->bdev,b));
  4821. }
  4822. printk("\n");
  4823. err = do_md_run(mddev);
  4824. if (err) {
  4825. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4826. do_md_stop(mddev, 0, NULL);
  4827. }
  4828. }
  4829. /*
  4830. * lets try to run arrays based on all disks that have arrived
  4831. * until now. (those are in pending_raid_disks)
  4832. *
  4833. * the method: pick the first pending disk, collect all disks with
  4834. * the same UUID, remove all from the pending list and put them into
  4835. * the 'same_array' list. Then order this list based on superblock
  4836. * update time (freshest comes first), kick out 'old' disks and
  4837. * compare superblocks. If everything's fine then run it.
  4838. *
  4839. * If "unit" is allocated, then bump its reference count
  4840. */
  4841. static void autorun_devices(int part)
  4842. {
  4843. struct md_rdev *rdev0, *rdev, *tmp;
  4844. struct mddev *mddev;
  4845. char b[BDEVNAME_SIZE];
  4846. printk(KERN_INFO "md: autorun ...\n");
  4847. while (!list_empty(&pending_raid_disks)) {
  4848. int unit;
  4849. dev_t dev;
  4850. LIST_HEAD(candidates);
  4851. rdev0 = list_entry(pending_raid_disks.next,
  4852. struct md_rdev, same_set);
  4853. printk(KERN_INFO "md: considering %s ...\n",
  4854. bdevname(rdev0->bdev,b));
  4855. INIT_LIST_HEAD(&candidates);
  4856. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4857. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4858. printk(KERN_INFO "md: adding %s ...\n",
  4859. bdevname(rdev->bdev,b));
  4860. list_move(&rdev->same_set, &candidates);
  4861. }
  4862. /*
  4863. * now we have a set of devices, with all of them having
  4864. * mostly sane superblocks. It's time to allocate the
  4865. * mddev.
  4866. */
  4867. if (part) {
  4868. dev = MKDEV(mdp_major,
  4869. rdev0->preferred_minor << MdpMinorShift);
  4870. unit = MINOR(dev) >> MdpMinorShift;
  4871. } else {
  4872. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4873. unit = MINOR(dev);
  4874. }
  4875. if (rdev0->preferred_minor != unit) {
  4876. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4877. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4878. break;
  4879. }
  4880. md_probe(dev, NULL, NULL);
  4881. mddev = mddev_find(dev);
  4882. if (!mddev || !mddev->gendisk) {
  4883. if (mddev)
  4884. mddev_put(mddev);
  4885. printk(KERN_ERR
  4886. "md: cannot allocate memory for md drive.\n");
  4887. break;
  4888. }
  4889. if (mddev_lock(mddev))
  4890. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4891. mdname(mddev));
  4892. else if (mddev->raid_disks || mddev->major_version
  4893. || !list_empty(&mddev->disks)) {
  4894. printk(KERN_WARNING
  4895. "md: %s already running, cannot run %s\n",
  4896. mdname(mddev), bdevname(rdev0->bdev,b));
  4897. mddev_unlock(mddev);
  4898. } else {
  4899. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4900. mddev->persistent = 1;
  4901. rdev_for_each_list(rdev, tmp, &candidates) {
  4902. list_del_init(&rdev->same_set);
  4903. if (bind_rdev_to_array(rdev, mddev))
  4904. export_rdev(rdev);
  4905. }
  4906. autorun_array(mddev);
  4907. mddev_unlock(mddev);
  4908. }
  4909. /* on success, candidates will be empty, on error
  4910. * it won't...
  4911. */
  4912. rdev_for_each_list(rdev, tmp, &candidates) {
  4913. list_del_init(&rdev->same_set);
  4914. export_rdev(rdev);
  4915. }
  4916. mddev_put(mddev);
  4917. }
  4918. printk(KERN_INFO "md: ... autorun DONE.\n");
  4919. }
  4920. #endif /* !MODULE */
  4921. static int get_version(void __user * arg)
  4922. {
  4923. mdu_version_t ver;
  4924. ver.major = MD_MAJOR_VERSION;
  4925. ver.minor = MD_MINOR_VERSION;
  4926. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4927. if (copy_to_user(arg, &ver, sizeof(ver)))
  4928. return -EFAULT;
  4929. return 0;
  4930. }
  4931. static int get_array_info(struct mddev * mddev, void __user * arg)
  4932. {
  4933. mdu_array_info_t info;
  4934. int nr,working,insync,failed,spare;
  4935. struct md_rdev *rdev;
  4936. nr = working = insync = failed = spare = 0;
  4937. rcu_read_lock();
  4938. rdev_for_each_rcu(rdev, mddev) {
  4939. nr++;
  4940. if (test_bit(Faulty, &rdev->flags))
  4941. failed++;
  4942. else {
  4943. working++;
  4944. if (test_bit(In_sync, &rdev->flags))
  4945. insync++;
  4946. else
  4947. spare++;
  4948. }
  4949. }
  4950. rcu_read_unlock();
  4951. info.major_version = mddev->major_version;
  4952. info.minor_version = mddev->minor_version;
  4953. info.patch_version = MD_PATCHLEVEL_VERSION;
  4954. info.ctime = mddev->ctime;
  4955. info.level = mddev->level;
  4956. info.size = mddev->dev_sectors / 2;
  4957. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4958. info.size = -1;
  4959. info.nr_disks = nr;
  4960. info.raid_disks = mddev->raid_disks;
  4961. info.md_minor = mddev->md_minor;
  4962. info.not_persistent= !mddev->persistent;
  4963. info.utime = mddev->utime;
  4964. info.state = 0;
  4965. if (mddev->in_sync)
  4966. info.state = (1<<MD_SB_CLEAN);
  4967. if (mddev->bitmap && mddev->bitmap_info.offset)
  4968. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4969. info.active_disks = insync;
  4970. info.working_disks = working;
  4971. info.failed_disks = failed;
  4972. info.spare_disks = spare;
  4973. info.layout = mddev->layout;
  4974. info.chunk_size = mddev->chunk_sectors << 9;
  4975. if (copy_to_user(arg, &info, sizeof(info)))
  4976. return -EFAULT;
  4977. return 0;
  4978. }
  4979. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4980. {
  4981. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4982. char *ptr, *buf = NULL;
  4983. int err = -ENOMEM;
  4984. if (md_allow_write(mddev))
  4985. file = kmalloc(sizeof(*file), GFP_NOIO);
  4986. else
  4987. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4988. if (!file)
  4989. goto out;
  4990. /* bitmap disabled, zero the first byte and copy out */
  4991. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  4992. file->pathname[0] = '\0';
  4993. goto copy_out;
  4994. }
  4995. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4996. if (!buf)
  4997. goto out;
  4998. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  4999. buf, sizeof(file->pathname));
  5000. if (IS_ERR(ptr))
  5001. goto out;
  5002. strcpy(file->pathname, ptr);
  5003. copy_out:
  5004. err = 0;
  5005. if (copy_to_user(arg, file, sizeof(*file)))
  5006. err = -EFAULT;
  5007. out:
  5008. kfree(buf);
  5009. kfree(file);
  5010. return err;
  5011. }
  5012. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5013. {
  5014. mdu_disk_info_t info;
  5015. struct md_rdev *rdev;
  5016. if (copy_from_user(&info, arg, sizeof(info)))
  5017. return -EFAULT;
  5018. rcu_read_lock();
  5019. rdev = find_rdev_nr_rcu(mddev, info.number);
  5020. if (rdev) {
  5021. info.major = MAJOR(rdev->bdev->bd_dev);
  5022. info.minor = MINOR(rdev->bdev->bd_dev);
  5023. info.raid_disk = rdev->raid_disk;
  5024. info.state = 0;
  5025. if (test_bit(Faulty, &rdev->flags))
  5026. info.state |= (1<<MD_DISK_FAULTY);
  5027. else if (test_bit(In_sync, &rdev->flags)) {
  5028. info.state |= (1<<MD_DISK_ACTIVE);
  5029. info.state |= (1<<MD_DISK_SYNC);
  5030. }
  5031. if (test_bit(WriteMostly, &rdev->flags))
  5032. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5033. } else {
  5034. info.major = info.minor = 0;
  5035. info.raid_disk = -1;
  5036. info.state = (1<<MD_DISK_REMOVED);
  5037. }
  5038. rcu_read_unlock();
  5039. if (copy_to_user(arg, &info, sizeof(info)))
  5040. return -EFAULT;
  5041. return 0;
  5042. }
  5043. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5044. {
  5045. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5046. struct md_rdev *rdev;
  5047. dev_t dev = MKDEV(info->major,info->minor);
  5048. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5049. return -EOVERFLOW;
  5050. if (!mddev->raid_disks) {
  5051. int err;
  5052. /* expecting a device which has a superblock */
  5053. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5054. if (IS_ERR(rdev)) {
  5055. printk(KERN_WARNING
  5056. "md: md_import_device returned %ld\n",
  5057. PTR_ERR(rdev));
  5058. return PTR_ERR(rdev);
  5059. }
  5060. if (!list_empty(&mddev->disks)) {
  5061. struct md_rdev *rdev0
  5062. = list_entry(mddev->disks.next,
  5063. struct md_rdev, same_set);
  5064. err = super_types[mddev->major_version]
  5065. .load_super(rdev, rdev0, mddev->minor_version);
  5066. if (err < 0) {
  5067. printk(KERN_WARNING
  5068. "md: %s has different UUID to %s\n",
  5069. bdevname(rdev->bdev,b),
  5070. bdevname(rdev0->bdev,b2));
  5071. export_rdev(rdev);
  5072. return -EINVAL;
  5073. }
  5074. }
  5075. err = bind_rdev_to_array(rdev, mddev);
  5076. if (err)
  5077. export_rdev(rdev);
  5078. return err;
  5079. }
  5080. /*
  5081. * add_new_disk can be used once the array is assembled
  5082. * to add "hot spares". They must already have a superblock
  5083. * written
  5084. */
  5085. if (mddev->pers) {
  5086. int err;
  5087. if (!mddev->pers->hot_add_disk) {
  5088. printk(KERN_WARNING
  5089. "%s: personality does not support diskops!\n",
  5090. mdname(mddev));
  5091. return -EINVAL;
  5092. }
  5093. if (mddev->persistent)
  5094. rdev = md_import_device(dev, mddev->major_version,
  5095. mddev->minor_version);
  5096. else
  5097. rdev = md_import_device(dev, -1, -1);
  5098. if (IS_ERR(rdev)) {
  5099. printk(KERN_WARNING
  5100. "md: md_import_device returned %ld\n",
  5101. PTR_ERR(rdev));
  5102. return PTR_ERR(rdev);
  5103. }
  5104. /* set saved_raid_disk if appropriate */
  5105. if (!mddev->persistent) {
  5106. if (info->state & (1<<MD_DISK_SYNC) &&
  5107. info->raid_disk < mddev->raid_disks) {
  5108. rdev->raid_disk = info->raid_disk;
  5109. set_bit(In_sync, &rdev->flags);
  5110. } else
  5111. rdev->raid_disk = -1;
  5112. } else
  5113. super_types[mddev->major_version].
  5114. validate_super(mddev, rdev);
  5115. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5116. rdev->raid_disk != info->raid_disk) {
  5117. /* This was a hot-add request, but events doesn't
  5118. * match, so reject it.
  5119. */
  5120. export_rdev(rdev);
  5121. return -EINVAL;
  5122. }
  5123. if (test_bit(In_sync, &rdev->flags))
  5124. rdev->saved_raid_disk = rdev->raid_disk;
  5125. else
  5126. rdev->saved_raid_disk = -1;
  5127. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5128. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5129. set_bit(WriteMostly, &rdev->flags);
  5130. else
  5131. clear_bit(WriteMostly, &rdev->flags);
  5132. rdev->raid_disk = -1;
  5133. err = bind_rdev_to_array(rdev, mddev);
  5134. if (!err && !mddev->pers->hot_remove_disk) {
  5135. /* If there is hot_add_disk but no hot_remove_disk
  5136. * then added disks for geometry changes,
  5137. * and should be added immediately.
  5138. */
  5139. super_types[mddev->major_version].
  5140. validate_super(mddev, rdev);
  5141. err = mddev->pers->hot_add_disk(mddev, rdev);
  5142. if (err)
  5143. unbind_rdev_from_array(rdev);
  5144. }
  5145. if (err)
  5146. export_rdev(rdev);
  5147. else
  5148. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5149. md_update_sb(mddev, 1);
  5150. if (mddev->degraded)
  5151. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5152. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5153. if (!err)
  5154. md_new_event(mddev);
  5155. md_wakeup_thread(mddev->thread);
  5156. return err;
  5157. }
  5158. /* otherwise, add_new_disk is only allowed
  5159. * for major_version==0 superblocks
  5160. */
  5161. if (mddev->major_version != 0) {
  5162. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5163. mdname(mddev));
  5164. return -EINVAL;
  5165. }
  5166. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5167. int err;
  5168. rdev = md_import_device(dev, -1, 0);
  5169. if (IS_ERR(rdev)) {
  5170. printk(KERN_WARNING
  5171. "md: error, md_import_device() returned %ld\n",
  5172. PTR_ERR(rdev));
  5173. return PTR_ERR(rdev);
  5174. }
  5175. rdev->desc_nr = info->number;
  5176. if (info->raid_disk < mddev->raid_disks)
  5177. rdev->raid_disk = info->raid_disk;
  5178. else
  5179. rdev->raid_disk = -1;
  5180. if (rdev->raid_disk < mddev->raid_disks)
  5181. if (info->state & (1<<MD_DISK_SYNC))
  5182. set_bit(In_sync, &rdev->flags);
  5183. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5184. set_bit(WriteMostly, &rdev->flags);
  5185. if (!mddev->persistent) {
  5186. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5187. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5188. } else
  5189. rdev->sb_start = calc_dev_sboffset(rdev);
  5190. rdev->sectors = rdev->sb_start;
  5191. err = bind_rdev_to_array(rdev, mddev);
  5192. if (err) {
  5193. export_rdev(rdev);
  5194. return err;
  5195. }
  5196. }
  5197. return 0;
  5198. }
  5199. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5200. {
  5201. char b[BDEVNAME_SIZE];
  5202. struct md_rdev *rdev;
  5203. rdev = find_rdev(mddev, dev);
  5204. if (!rdev)
  5205. return -ENXIO;
  5206. if (rdev->raid_disk >= 0)
  5207. goto busy;
  5208. kick_rdev_from_array(rdev);
  5209. md_update_sb(mddev, 1);
  5210. md_new_event(mddev);
  5211. return 0;
  5212. busy:
  5213. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5214. bdevname(rdev->bdev,b), mdname(mddev));
  5215. return -EBUSY;
  5216. }
  5217. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5218. {
  5219. char b[BDEVNAME_SIZE];
  5220. int err;
  5221. struct md_rdev *rdev;
  5222. if (!mddev->pers)
  5223. return -ENODEV;
  5224. if (mddev->major_version != 0) {
  5225. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5226. " version-0 superblocks.\n",
  5227. mdname(mddev));
  5228. return -EINVAL;
  5229. }
  5230. if (!mddev->pers->hot_add_disk) {
  5231. printk(KERN_WARNING
  5232. "%s: personality does not support diskops!\n",
  5233. mdname(mddev));
  5234. return -EINVAL;
  5235. }
  5236. rdev = md_import_device(dev, -1, 0);
  5237. if (IS_ERR(rdev)) {
  5238. printk(KERN_WARNING
  5239. "md: error, md_import_device() returned %ld\n",
  5240. PTR_ERR(rdev));
  5241. return -EINVAL;
  5242. }
  5243. if (mddev->persistent)
  5244. rdev->sb_start = calc_dev_sboffset(rdev);
  5245. else
  5246. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5247. rdev->sectors = rdev->sb_start;
  5248. if (test_bit(Faulty, &rdev->flags)) {
  5249. printk(KERN_WARNING
  5250. "md: can not hot-add faulty %s disk to %s!\n",
  5251. bdevname(rdev->bdev,b), mdname(mddev));
  5252. err = -EINVAL;
  5253. goto abort_export;
  5254. }
  5255. clear_bit(In_sync, &rdev->flags);
  5256. rdev->desc_nr = -1;
  5257. rdev->saved_raid_disk = -1;
  5258. err = bind_rdev_to_array(rdev, mddev);
  5259. if (err)
  5260. goto abort_export;
  5261. /*
  5262. * The rest should better be atomic, we can have disk failures
  5263. * noticed in interrupt contexts ...
  5264. */
  5265. rdev->raid_disk = -1;
  5266. md_update_sb(mddev, 1);
  5267. /*
  5268. * Kick recovery, maybe this spare has to be added to the
  5269. * array immediately.
  5270. */
  5271. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5272. md_wakeup_thread(mddev->thread);
  5273. md_new_event(mddev);
  5274. return 0;
  5275. abort_export:
  5276. export_rdev(rdev);
  5277. return err;
  5278. }
  5279. static int set_bitmap_file(struct mddev *mddev, int fd)
  5280. {
  5281. int err;
  5282. if (mddev->pers) {
  5283. if (!mddev->pers->quiesce)
  5284. return -EBUSY;
  5285. if (mddev->recovery || mddev->sync_thread)
  5286. return -EBUSY;
  5287. /* we should be able to change the bitmap.. */
  5288. }
  5289. if (fd >= 0) {
  5290. if (mddev->bitmap)
  5291. return -EEXIST; /* cannot add when bitmap is present */
  5292. mddev->bitmap_info.file = fget(fd);
  5293. if (mddev->bitmap_info.file == NULL) {
  5294. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5295. mdname(mddev));
  5296. return -EBADF;
  5297. }
  5298. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5299. if (err) {
  5300. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5301. mdname(mddev));
  5302. fput(mddev->bitmap_info.file);
  5303. mddev->bitmap_info.file = NULL;
  5304. return err;
  5305. }
  5306. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5307. } else if (mddev->bitmap == NULL)
  5308. return -ENOENT; /* cannot remove what isn't there */
  5309. err = 0;
  5310. if (mddev->pers) {
  5311. mddev->pers->quiesce(mddev, 1);
  5312. if (fd >= 0) {
  5313. err = bitmap_create(mddev);
  5314. if (!err)
  5315. err = bitmap_load(mddev);
  5316. }
  5317. if (fd < 0 || err) {
  5318. bitmap_destroy(mddev);
  5319. fd = -1; /* make sure to put the file */
  5320. }
  5321. mddev->pers->quiesce(mddev, 0);
  5322. }
  5323. if (fd < 0) {
  5324. if (mddev->bitmap_info.file) {
  5325. restore_bitmap_write_access(mddev->bitmap_info.file);
  5326. fput(mddev->bitmap_info.file);
  5327. }
  5328. mddev->bitmap_info.file = NULL;
  5329. }
  5330. return err;
  5331. }
  5332. /*
  5333. * set_array_info is used two different ways
  5334. * The original usage is when creating a new array.
  5335. * In this usage, raid_disks is > 0 and it together with
  5336. * level, size, not_persistent,layout,chunksize determine the
  5337. * shape of the array.
  5338. * This will always create an array with a type-0.90.0 superblock.
  5339. * The newer usage is when assembling an array.
  5340. * In this case raid_disks will be 0, and the major_version field is
  5341. * use to determine which style super-blocks are to be found on the devices.
  5342. * The minor and patch _version numbers are also kept incase the
  5343. * super_block handler wishes to interpret them.
  5344. */
  5345. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5346. {
  5347. if (info->raid_disks == 0) {
  5348. /* just setting version number for superblock loading */
  5349. if (info->major_version < 0 ||
  5350. info->major_version >= ARRAY_SIZE(super_types) ||
  5351. super_types[info->major_version].name == NULL) {
  5352. /* maybe try to auto-load a module? */
  5353. printk(KERN_INFO
  5354. "md: superblock version %d not known\n",
  5355. info->major_version);
  5356. return -EINVAL;
  5357. }
  5358. mddev->major_version = info->major_version;
  5359. mddev->minor_version = info->minor_version;
  5360. mddev->patch_version = info->patch_version;
  5361. mddev->persistent = !info->not_persistent;
  5362. /* ensure mddev_put doesn't delete this now that there
  5363. * is some minimal configuration.
  5364. */
  5365. mddev->ctime = get_seconds();
  5366. return 0;
  5367. }
  5368. mddev->major_version = MD_MAJOR_VERSION;
  5369. mddev->minor_version = MD_MINOR_VERSION;
  5370. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5371. mddev->ctime = get_seconds();
  5372. mddev->level = info->level;
  5373. mddev->clevel[0] = 0;
  5374. mddev->dev_sectors = 2 * (sector_t)info->size;
  5375. mddev->raid_disks = info->raid_disks;
  5376. /* don't set md_minor, it is determined by which /dev/md* was
  5377. * openned
  5378. */
  5379. if (info->state & (1<<MD_SB_CLEAN))
  5380. mddev->recovery_cp = MaxSector;
  5381. else
  5382. mddev->recovery_cp = 0;
  5383. mddev->persistent = ! info->not_persistent;
  5384. mddev->external = 0;
  5385. mddev->layout = info->layout;
  5386. mddev->chunk_sectors = info->chunk_size >> 9;
  5387. mddev->max_disks = MD_SB_DISKS;
  5388. if (mddev->persistent)
  5389. mddev->flags = 0;
  5390. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5391. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5392. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5393. mddev->bitmap_info.offset = 0;
  5394. mddev->reshape_position = MaxSector;
  5395. /*
  5396. * Generate a 128 bit UUID
  5397. */
  5398. get_random_bytes(mddev->uuid, 16);
  5399. mddev->new_level = mddev->level;
  5400. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5401. mddev->new_layout = mddev->layout;
  5402. mddev->delta_disks = 0;
  5403. mddev->reshape_backwards = 0;
  5404. return 0;
  5405. }
  5406. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5407. {
  5408. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5409. if (mddev->external_size)
  5410. return;
  5411. mddev->array_sectors = array_sectors;
  5412. }
  5413. EXPORT_SYMBOL(md_set_array_sectors);
  5414. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5415. {
  5416. struct md_rdev *rdev;
  5417. int rv;
  5418. int fit = (num_sectors == 0);
  5419. if (mddev->pers->resize == NULL)
  5420. return -EINVAL;
  5421. /* The "num_sectors" is the number of sectors of each device that
  5422. * is used. This can only make sense for arrays with redundancy.
  5423. * linear and raid0 always use whatever space is available. We can only
  5424. * consider changing this number if no resync or reconstruction is
  5425. * happening, and if the new size is acceptable. It must fit before the
  5426. * sb_start or, if that is <data_offset, it must fit before the size
  5427. * of each device. If num_sectors is zero, we find the largest size
  5428. * that fits.
  5429. */
  5430. if (mddev->sync_thread)
  5431. return -EBUSY;
  5432. rdev_for_each(rdev, mddev) {
  5433. sector_t avail = rdev->sectors;
  5434. if (fit && (num_sectors == 0 || num_sectors > avail))
  5435. num_sectors = avail;
  5436. if (avail < num_sectors)
  5437. return -ENOSPC;
  5438. }
  5439. rv = mddev->pers->resize(mddev, num_sectors);
  5440. if (!rv)
  5441. revalidate_disk(mddev->gendisk);
  5442. return rv;
  5443. }
  5444. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5445. {
  5446. int rv;
  5447. struct md_rdev *rdev;
  5448. /* change the number of raid disks */
  5449. if (mddev->pers->check_reshape == NULL)
  5450. return -EINVAL;
  5451. if (raid_disks <= 0 ||
  5452. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5453. return -EINVAL;
  5454. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5455. return -EBUSY;
  5456. rdev_for_each(rdev, mddev) {
  5457. if (mddev->raid_disks < raid_disks &&
  5458. rdev->data_offset < rdev->new_data_offset)
  5459. return -EINVAL;
  5460. if (mddev->raid_disks > raid_disks &&
  5461. rdev->data_offset > rdev->new_data_offset)
  5462. return -EINVAL;
  5463. }
  5464. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5465. if (mddev->delta_disks < 0)
  5466. mddev->reshape_backwards = 1;
  5467. else if (mddev->delta_disks > 0)
  5468. mddev->reshape_backwards = 0;
  5469. rv = mddev->pers->check_reshape(mddev);
  5470. if (rv < 0) {
  5471. mddev->delta_disks = 0;
  5472. mddev->reshape_backwards = 0;
  5473. }
  5474. return rv;
  5475. }
  5476. /*
  5477. * update_array_info is used to change the configuration of an
  5478. * on-line array.
  5479. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5480. * fields in the info are checked against the array.
  5481. * Any differences that cannot be handled will cause an error.
  5482. * Normally, only one change can be managed at a time.
  5483. */
  5484. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5485. {
  5486. int rv = 0;
  5487. int cnt = 0;
  5488. int state = 0;
  5489. /* calculate expected state,ignoring low bits */
  5490. if (mddev->bitmap && mddev->bitmap_info.offset)
  5491. state |= (1 << MD_SB_BITMAP_PRESENT);
  5492. if (mddev->major_version != info->major_version ||
  5493. mddev->minor_version != info->minor_version ||
  5494. /* mddev->patch_version != info->patch_version || */
  5495. mddev->ctime != info->ctime ||
  5496. mddev->level != info->level ||
  5497. /* mddev->layout != info->layout || */
  5498. !mddev->persistent != info->not_persistent||
  5499. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5500. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5501. ((state^info->state) & 0xfffffe00)
  5502. )
  5503. return -EINVAL;
  5504. /* Check there is only one change */
  5505. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5506. cnt++;
  5507. if (mddev->raid_disks != info->raid_disks)
  5508. cnt++;
  5509. if (mddev->layout != info->layout)
  5510. cnt++;
  5511. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5512. cnt++;
  5513. if (cnt == 0)
  5514. return 0;
  5515. if (cnt > 1)
  5516. return -EINVAL;
  5517. if (mddev->layout != info->layout) {
  5518. /* Change layout
  5519. * we don't need to do anything at the md level, the
  5520. * personality will take care of it all.
  5521. */
  5522. if (mddev->pers->check_reshape == NULL)
  5523. return -EINVAL;
  5524. else {
  5525. mddev->new_layout = info->layout;
  5526. rv = mddev->pers->check_reshape(mddev);
  5527. if (rv)
  5528. mddev->new_layout = mddev->layout;
  5529. return rv;
  5530. }
  5531. }
  5532. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5533. rv = update_size(mddev, (sector_t)info->size * 2);
  5534. if (mddev->raid_disks != info->raid_disks)
  5535. rv = update_raid_disks(mddev, info->raid_disks);
  5536. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5537. if (mddev->pers->quiesce == NULL)
  5538. return -EINVAL;
  5539. if (mddev->recovery || mddev->sync_thread)
  5540. return -EBUSY;
  5541. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5542. /* add the bitmap */
  5543. if (mddev->bitmap)
  5544. return -EEXIST;
  5545. if (mddev->bitmap_info.default_offset == 0)
  5546. return -EINVAL;
  5547. mddev->bitmap_info.offset =
  5548. mddev->bitmap_info.default_offset;
  5549. mddev->bitmap_info.space =
  5550. mddev->bitmap_info.default_space;
  5551. mddev->pers->quiesce(mddev, 1);
  5552. rv = bitmap_create(mddev);
  5553. if (!rv)
  5554. rv = bitmap_load(mddev);
  5555. if (rv)
  5556. bitmap_destroy(mddev);
  5557. mddev->pers->quiesce(mddev, 0);
  5558. } else {
  5559. /* remove the bitmap */
  5560. if (!mddev->bitmap)
  5561. return -ENOENT;
  5562. if (mddev->bitmap->storage.file)
  5563. return -EINVAL;
  5564. mddev->pers->quiesce(mddev, 1);
  5565. bitmap_destroy(mddev);
  5566. mddev->pers->quiesce(mddev, 0);
  5567. mddev->bitmap_info.offset = 0;
  5568. }
  5569. }
  5570. md_update_sb(mddev, 1);
  5571. return rv;
  5572. }
  5573. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5574. {
  5575. struct md_rdev *rdev;
  5576. int err = 0;
  5577. if (mddev->pers == NULL)
  5578. return -ENODEV;
  5579. rcu_read_lock();
  5580. rdev = find_rdev_rcu(mddev, dev);
  5581. if (!rdev)
  5582. err = -ENODEV;
  5583. else {
  5584. md_error(mddev, rdev);
  5585. if (!test_bit(Faulty, &rdev->flags))
  5586. err = -EBUSY;
  5587. }
  5588. rcu_read_unlock();
  5589. return err;
  5590. }
  5591. /*
  5592. * We have a problem here : there is no easy way to give a CHS
  5593. * virtual geometry. We currently pretend that we have a 2 heads
  5594. * 4 sectors (with a BIG number of cylinders...). This drives
  5595. * dosfs just mad... ;-)
  5596. */
  5597. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5598. {
  5599. struct mddev *mddev = bdev->bd_disk->private_data;
  5600. geo->heads = 2;
  5601. geo->sectors = 4;
  5602. geo->cylinders = mddev->array_sectors / 8;
  5603. return 0;
  5604. }
  5605. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5606. unsigned int cmd, unsigned long arg)
  5607. {
  5608. int err = 0;
  5609. void __user *argp = (void __user *)arg;
  5610. struct mddev *mddev = NULL;
  5611. int ro;
  5612. switch (cmd) {
  5613. case RAID_VERSION:
  5614. case GET_ARRAY_INFO:
  5615. case GET_DISK_INFO:
  5616. break;
  5617. default:
  5618. if (!capable(CAP_SYS_ADMIN))
  5619. return -EACCES;
  5620. }
  5621. /*
  5622. * Commands dealing with the RAID driver but not any
  5623. * particular array:
  5624. */
  5625. switch (cmd)
  5626. {
  5627. case RAID_VERSION:
  5628. err = get_version(argp);
  5629. goto done;
  5630. case PRINT_RAID_DEBUG:
  5631. err = 0;
  5632. md_print_devices();
  5633. goto done;
  5634. #ifndef MODULE
  5635. case RAID_AUTORUN:
  5636. err = 0;
  5637. autostart_arrays(arg);
  5638. goto done;
  5639. #endif
  5640. default:;
  5641. }
  5642. /*
  5643. * Commands creating/starting a new array:
  5644. */
  5645. mddev = bdev->bd_disk->private_data;
  5646. if (!mddev) {
  5647. BUG();
  5648. goto abort;
  5649. }
  5650. /* Some actions do not requires the mutex */
  5651. switch (cmd) {
  5652. case GET_ARRAY_INFO:
  5653. if (!mddev->raid_disks && !mddev->external)
  5654. err = -ENODEV;
  5655. else
  5656. err = get_array_info(mddev, argp);
  5657. goto abort;
  5658. case GET_DISK_INFO:
  5659. if (!mddev->raid_disks && !mddev->external)
  5660. err = -ENODEV;
  5661. else
  5662. err = get_disk_info(mddev, argp);
  5663. goto abort;
  5664. case SET_DISK_FAULTY:
  5665. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5666. goto abort;
  5667. }
  5668. err = mddev_lock(mddev);
  5669. if (err) {
  5670. printk(KERN_INFO
  5671. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5672. err, cmd);
  5673. goto abort;
  5674. }
  5675. switch (cmd)
  5676. {
  5677. case SET_ARRAY_INFO:
  5678. {
  5679. mdu_array_info_t info;
  5680. if (!arg)
  5681. memset(&info, 0, sizeof(info));
  5682. else if (copy_from_user(&info, argp, sizeof(info))) {
  5683. err = -EFAULT;
  5684. goto abort_unlock;
  5685. }
  5686. if (mddev->pers) {
  5687. err = update_array_info(mddev, &info);
  5688. if (err) {
  5689. printk(KERN_WARNING "md: couldn't update"
  5690. " array info. %d\n", err);
  5691. goto abort_unlock;
  5692. }
  5693. goto done_unlock;
  5694. }
  5695. if (!list_empty(&mddev->disks)) {
  5696. printk(KERN_WARNING
  5697. "md: array %s already has disks!\n",
  5698. mdname(mddev));
  5699. err = -EBUSY;
  5700. goto abort_unlock;
  5701. }
  5702. if (mddev->raid_disks) {
  5703. printk(KERN_WARNING
  5704. "md: array %s already initialised!\n",
  5705. mdname(mddev));
  5706. err = -EBUSY;
  5707. goto abort_unlock;
  5708. }
  5709. err = set_array_info(mddev, &info);
  5710. if (err) {
  5711. printk(KERN_WARNING "md: couldn't set"
  5712. " array info. %d\n", err);
  5713. goto abort_unlock;
  5714. }
  5715. }
  5716. goto done_unlock;
  5717. default:;
  5718. }
  5719. /*
  5720. * Commands querying/configuring an existing array:
  5721. */
  5722. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5723. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5724. if ((!mddev->raid_disks && !mddev->external)
  5725. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5726. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5727. && cmd != GET_BITMAP_FILE) {
  5728. err = -ENODEV;
  5729. goto abort_unlock;
  5730. }
  5731. /*
  5732. * Commands even a read-only array can execute:
  5733. */
  5734. switch (cmd)
  5735. {
  5736. case GET_BITMAP_FILE:
  5737. err = get_bitmap_file(mddev, argp);
  5738. goto done_unlock;
  5739. case RESTART_ARRAY_RW:
  5740. err = restart_array(mddev);
  5741. goto done_unlock;
  5742. case STOP_ARRAY:
  5743. err = do_md_stop(mddev, 0, bdev);
  5744. goto done_unlock;
  5745. case STOP_ARRAY_RO:
  5746. err = md_set_readonly(mddev, bdev);
  5747. goto done_unlock;
  5748. case BLKROSET:
  5749. if (get_user(ro, (int __user *)(arg))) {
  5750. err = -EFAULT;
  5751. goto done_unlock;
  5752. }
  5753. err = -EINVAL;
  5754. /* if the bdev is going readonly the value of mddev->ro
  5755. * does not matter, no writes are coming
  5756. */
  5757. if (ro)
  5758. goto done_unlock;
  5759. /* are we are already prepared for writes? */
  5760. if (mddev->ro != 1)
  5761. goto done_unlock;
  5762. /* transitioning to readauto need only happen for
  5763. * arrays that call md_write_start
  5764. */
  5765. if (mddev->pers) {
  5766. err = restart_array(mddev);
  5767. if (err == 0) {
  5768. mddev->ro = 2;
  5769. set_disk_ro(mddev->gendisk, 0);
  5770. }
  5771. }
  5772. goto done_unlock;
  5773. }
  5774. /*
  5775. * The remaining ioctls are changing the state of the
  5776. * superblock, so we do not allow them on read-only arrays.
  5777. * However non-MD ioctls (e.g. get-size) will still come through
  5778. * here and hit the 'default' below, so only disallow
  5779. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5780. */
  5781. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5782. if (mddev->ro == 2) {
  5783. mddev->ro = 0;
  5784. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5785. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5786. md_wakeup_thread(mddev->thread);
  5787. } else {
  5788. err = -EROFS;
  5789. goto abort_unlock;
  5790. }
  5791. }
  5792. switch (cmd)
  5793. {
  5794. case ADD_NEW_DISK:
  5795. {
  5796. mdu_disk_info_t info;
  5797. if (copy_from_user(&info, argp, sizeof(info)))
  5798. err = -EFAULT;
  5799. else
  5800. err = add_new_disk(mddev, &info);
  5801. goto done_unlock;
  5802. }
  5803. case HOT_REMOVE_DISK:
  5804. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5805. goto done_unlock;
  5806. case HOT_ADD_DISK:
  5807. err = hot_add_disk(mddev, new_decode_dev(arg));
  5808. goto done_unlock;
  5809. case RUN_ARRAY:
  5810. err = do_md_run(mddev);
  5811. goto done_unlock;
  5812. case SET_BITMAP_FILE:
  5813. err = set_bitmap_file(mddev, (int)arg);
  5814. goto done_unlock;
  5815. default:
  5816. err = -EINVAL;
  5817. goto abort_unlock;
  5818. }
  5819. done_unlock:
  5820. abort_unlock:
  5821. if (mddev->hold_active == UNTIL_IOCTL &&
  5822. err != -EINVAL)
  5823. mddev->hold_active = 0;
  5824. mddev_unlock(mddev);
  5825. return err;
  5826. done:
  5827. if (err)
  5828. MD_BUG();
  5829. abort:
  5830. return err;
  5831. }
  5832. #ifdef CONFIG_COMPAT
  5833. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5834. unsigned int cmd, unsigned long arg)
  5835. {
  5836. switch (cmd) {
  5837. case HOT_REMOVE_DISK:
  5838. case HOT_ADD_DISK:
  5839. case SET_DISK_FAULTY:
  5840. case SET_BITMAP_FILE:
  5841. /* These take in integer arg, do not convert */
  5842. break;
  5843. default:
  5844. arg = (unsigned long)compat_ptr(arg);
  5845. break;
  5846. }
  5847. return md_ioctl(bdev, mode, cmd, arg);
  5848. }
  5849. #endif /* CONFIG_COMPAT */
  5850. static int md_open(struct block_device *bdev, fmode_t mode)
  5851. {
  5852. /*
  5853. * Succeed if we can lock the mddev, which confirms that
  5854. * it isn't being stopped right now.
  5855. */
  5856. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5857. int err;
  5858. if (!mddev)
  5859. return -ENODEV;
  5860. if (mddev->gendisk != bdev->bd_disk) {
  5861. /* we are racing with mddev_put which is discarding this
  5862. * bd_disk.
  5863. */
  5864. mddev_put(mddev);
  5865. /* Wait until bdev->bd_disk is definitely gone */
  5866. flush_workqueue(md_misc_wq);
  5867. /* Then retry the open from the top */
  5868. return -ERESTARTSYS;
  5869. }
  5870. BUG_ON(mddev != bdev->bd_disk->private_data);
  5871. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5872. goto out;
  5873. err = 0;
  5874. atomic_inc(&mddev->openers);
  5875. mutex_unlock(&mddev->open_mutex);
  5876. check_disk_change(bdev);
  5877. out:
  5878. return err;
  5879. }
  5880. static int md_release(struct gendisk *disk, fmode_t mode)
  5881. {
  5882. struct mddev *mddev = disk->private_data;
  5883. BUG_ON(!mddev);
  5884. atomic_dec(&mddev->openers);
  5885. mddev_put(mddev);
  5886. return 0;
  5887. }
  5888. static int md_media_changed(struct gendisk *disk)
  5889. {
  5890. struct mddev *mddev = disk->private_data;
  5891. return mddev->changed;
  5892. }
  5893. static int md_revalidate(struct gendisk *disk)
  5894. {
  5895. struct mddev *mddev = disk->private_data;
  5896. mddev->changed = 0;
  5897. return 0;
  5898. }
  5899. static const struct block_device_operations md_fops =
  5900. {
  5901. .owner = THIS_MODULE,
  5902. .open = md_open,
  5903. .release = md_release,
  5904. .ioctl = md_ioctl,
  5905. #ifdef CONFIG_COMPAT
  5906. .compat_ioctl = md_compat_ioctl,
  5907. #endif
  5908. .getgeo = md_getgeo,
  5909. .media_changed = md_media_changed,
  5910. .revalidate_disk= md_revalidate,
  5911. };
  5912. static int md_thread(void * arg)
  5913. {
  5914. struct md_thread *thread = arg;
  5915. /*
  5916. * md_thread is a 'system-thread', it's priority should be very
  5917. * high. We avoid resource deadlocks individually in each
  5918. * raid personality. (RAID5 does preallocation) We also use RR and
  5919. * the very same RT priority as kswapd, thus we will never get
  5920. * into a priority inversion deadlock.
  5921. *
  5922. * we definitely have to have equal or higher priority than
  5923. * bdflush, otherwise bdflush will deadlock if there are too
  5924. * many dirty RAID5 blocks.
  5925. */
  5926. allow_signal(SIGKILL);
  5927. while (!kthread_should_stop()) {
  5928. /* We need to wait INTERRUPTIBLE so that
  5929. * we don't add to the load-average.
  5930. * That means we need to be sure no signals are
  5931. * pending
  5932. */
  5933. if (signal_pending(current))
  5934. flush_signals(current);
  5935. wait_event_interruptible_timeout
  5936. (thread->wqueue,
  5937. test_bit(THREAD_WAKEUP, &thread->flags)
  5938. || kthread_should_stop(),
  5939. thread->timeout);
  5940. clear_bit(THREAD_WAKEUP, &thread->flags);
  5941. if (!kthread_should_stop())
  5942. thread->run(thread);
  5943. }
  5944. return 0;
  5945. }
  5946. void md_wakeup_thread(struct md_thread *thread)
  5947. {
  5948. if (thread) {
  5949. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5950. set_bit(THREAD_WAKEUP, &thread->flags);
  5951. wake_up(&thread->wqueue);
  5952. }
  5953. }
  5954. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  5955. struct mddev *mddev, const char *name)
  5956. {
  5957. struct md_thread *thread;
  5958. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5959. if (!thread)
  5960. return NULL;
  5961. init_waitqueue_head(&thread->wqueue);
  5962. thread->run = run;
  5963. thread->mddev = mddev;
  5964. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5965. thread->tsk = kthread_run(md_thread, thread,
  5966. "%s_%s",
  5967. mdname(thread->mddev),
  5968. name);
  5969. if (IS_ERR(thread->tsk)) {
  5970. kfree(thread);
  5971. return NULL;
  5972. }
  5973. return thread;
  5974. }
  5975. void md_unregister_thread(struct md_thread **threadp)
  5976. {
  5977. struct md_thread *thread = *threadp;
  5978. if (!thread)
  5979. return;
  5980. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5981. /* Locking ensures that mddev_unlock does not wake_up a
  5982. * non-existent thread
  5983. */
  5984. spin_lock(&pers_lock);
  5985. *threadp = NULL;
  5986. spin_unlock(&pers_lock);
  5987. kthread_stop(thread->tsk);
  5988. kfree(thread);
  5989. }
  5990. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5991. {
  5992. if (!mddev) {
  5993. MD_BUG();
  5994. return;
  5995. }
  5996. if (!rdev || test_bit(Faulty, &rdev->flags))
  5997. return;
  5998. if (!mddev->pers || !mddev->pers->error_handler)
  5999. return;
  6000. mddev->pers->error_handler(mddev,rdev);
  6001. if (mddev->degraded)
  6002. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6003. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6004. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6005. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6006. md_wakeup_thread(mddev->thread);
  6007. if (mddev->event_work.func)
  6008. queue_work(md_misc_wq, &mddev->event_work);
  6009. md_new_event_inintr(mddev);
  6010. }
  6011. /* seq_file implementation /proc/mdstat */
  6012. static void status_unused(struct seq_file *seq)
  6013. {
  6014. int i = 0;
  6015. struct md_rdev *rdev;
  6016. seq_printf(seq, "unused devices: ");
  6017. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6018. char b[BDEVNAME_SIZE];
  6019. i++;
  6020. seq_printf(seq, "%s ",
  6021. bdevname(rdev->bdev,b));
  6022. }
  6023. if (!i)
  6024. seq_printf(seq, "<none>");
  6025. seq_printf(seq, "\n");
  6026. }
  6027. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6028. {
  6029. sector_t max_sectors, resync, res;
  6030. unsigned long dt, db;
  6031. sector_t rt;
  6032. int scale;
  6033. unsigned int per_milli;
  6034. if (mddev->curr_resync <= 3)
  6035. resync = 0;
  6036. else
  6037. resync = mddev->curr_resync
  6038. - atomic_read(&mddev->recovery_active);
  6039. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6040. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6041. max_sectors = mddev->resync_max_sectors;
  6042. else
  6043. max_sectors = mddev->dev_sectors;
  6044. /*
  6045. * Should not happen.
  6046. */
  6047. if (!max_sectors) {
  6048. MD_BUG();
  6049. return;
  6050. }
  6051. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6052. * in a sector_t, and (max_sectors>>scale) will fit in a
  6053. * u32, as those are the requirements for sector_div.
  6054. * Thus 'scale' must be at least 10
  6055. */
  6056. scale = 10;
  6057. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6058. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6059. scale++;
  6060. }
  6061. res = (resync>>scale)*1000;
  6062. sector_div(res, (u32)((max_sectors>>scale)+1));
  6063. per_milli = res;
  6064. {
  6065. int i, x = per_milli/50, y = 20-x;
  6066. seq_printf(seq, "[");
  6067. for (i = 0; i < x; i++)
  6068. seq_printf(seq, "=");
  6069. seq_printf(seq, ">");
  6070. for (i = 0; i < y; i++)
  6071. seq_printf(seq, ".");
  6072. seq_printf(seq, "] ");
  6073. }
  6074. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6075. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6076. "reshape" :
  6077. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6078. "check" :
  6079. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6080. "resync" : "recovery"))),
  6081. per_milli/10, per_milli % 10,
  6082. (unsigned long long) resync/2,
  6083. (unsigned long long) max_sectors/2);
  6084. /*
  6085. * dt: time from mark until now
  6086. * db: blocks written from mark until now
  6087. * rt: remaining time
  6088. *
  6089. * rt is a sector_t, so could be 32bit or 64bit.
  6090. * So we divide before multiply in case it is 32bit and close
  6091. * to the limit.
  6092. * We scale the divisor (db) by 32 to avoid losing precision
  6093. * near the end of resync when the number of remaining sectors
  6094. * is close to 'db'.
  6095. * We then divide rt by 32 after multiplying by db to compensate.
  6096. * The '+1' avoids division by zero if db is very small.
  6097. */
  6098. dt = ((jiffies - mddev->resync_mark) / HZ);
  6099. if (!dt) dt++;
  6100. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6101. - mddev->resync_mark_cnt;
  6102. rt = max_sectors - resync; /* number of remaining sectors */
  6103. sector_div(rt, db/32+1);
  6104. rt *= dt;
  6105. rt >>= 5;
  6106. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6107. ((unsigned long)rt % 60)/6);
  6108. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6109. }
  6110. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6111. {
  6112. struct list_head *tmp;
  6113. loff_t l = *pos;
  6114. struct mddev *mddev;
  6115. if (l >= 0x10000)
  6116. return NULL;
  6117. if (!l--)
  6118. /* header */
  6119. return (void*)1;
  6120. spin_lock(&all_mddevs_lock);
  6121. list_for_each(tmp,&all_mddevs)
  6122. if (!l--) {
  6123. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6124. mddev_get(mddev);
  6125. spin_unlock(&all_mddevs_lock);
  6126. return mddev;
  6127. }
  6128. spin_unlock(&all_mddevs_lock);
  6129. if (!l--)
  6130. return (void*)2;/* tail */
  6131. return NULL;
  6132. }
  6133. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6134. {
  6135. struct list_head *tmp;
  6136. struct mddev *next_mddev, *mddev = v;
  6137. ++*pos;
  6138. if (v == (void*)2)
  6139. return NULL;
  6140. spin_lock(&all_mddevs_lock);
  6141. if (v == (void*)1)
  6142. tmp = all_mddevs.next;
  6143. else
  6144. tmp = mddev->all_mddevs.next;
  6145. if (tmp != &all_mddevs)
  6146. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6147. else {
  6148. next_mddev = (void*)2;
  6149. *pos = 0x10000;
  6150. }
  6151. spin_unlock(&all_mddevs_lock);
  6152. if (v != (void*)1)
  6153. mddev_put(mddev);
  6154. return next_mddev;
  6155. }
  6156. static void md_seq_stop(struct seq_file *seq, void *v)
  6157. {
  6158. struct mddev *mddev = v;
  6159. if (mddev && v != (void*)1 && v != (void*)2)
  6160. mddev_put(mddev);
  6161. }
  6162. static int md_seq_show(struct seq_file *seq, void *v)
  6163. {
  6164. struct mddev *mddev = v;
  6165. sector_t sectors;
  6166. struct md_rdev *rdev;
  6167. if (v == (void*)1) {
  6168. struct md_personality *pers;
  6169. seq_printf(seq, "Personalities : ");
  6170. spin_lock(&pers_lock);
  6171. list_for_each_entry(pers, &pers_list, list)
  6172. seq_printf(seq, "[%s] ", pers->name);
  6173. spin_unlock(&pers_lock);
  6174. seq_printf(seq, "\n");
  6175. seq->poll_event = atomic_read(&md_event_count);
  6176. return 0;
  6177. }
  6178. if (v == (void*)2) {
  6179. status_unused(seq);
  6180. return 0;
  6181. }
  6182. if (mddev_lock(mddev) < 0)
  6183. return -EINTR;
  6184. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6185. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6186. mddev->pers ? "" : "in");
  6187. if (mddev->pers) {
  6188. if (mddev->ro==1)
  6189. seq_printf(seq, " (read-only)");
  6190. if (mddev->ro==2)
  6191. seq_printf(seq, " (auto-read-only)");
  6192. seq_printf(seq, " %s", mddev->pers->name);
  6193. }
  6194. sectors = 0;
  6195. rdev_for_each(rdev, mddev) {
  6196. char b[BDEVNAME_SIZE];
  6197. seq_printf(seq, " %s[%d]",
  6198. bdevname(rdev->bdev,b), rdev->desc_nr);
  6199. if (test_bit(WriteMostly, &rdev->flags))
  6200. seq_printf(seq, "(W)");
  6201. if (test_bit(Faulty, &rdev->flags)) {
  6202. seq_printf(seq, "(F)");
  6203. continue;
  6204. }
  6205. if (rdev->raid_disk < 0)
  6206. seq_printf(seq, "(S)"); /* spare */
  6207. if (test_bit(Replacement, &rdev->flags))
  6208. seq_printf(seq, "(R)");
  6209. sectors += rdev->sectors;
  6210. }
  6211. if (!list_empty(&mddev->disks)) {
  6212. if (mddev->pers)
  6213. seq_printf(seq, "\n %llu blocks",
  6214. (unsigned long long)
  6215. mddev->array_sectors / 2);
  6216. else
  6217. seq_printf(seq, "\n %llu blocks",
  6218. (unsigned long long)sectors / 2);
  6219. }
  6220. if (mddev->persistent) {
  6221. if (mddev->major_version != 0 ||
  6222. mddev->minor_version != 90) {
  6223. seq_printf(seq," super %d.%d",
  6224. mddev->major_version,
  6225. mddev->minor_version);
  6226. }
  6227. } else if (mddev->external)
  6228. seq_printf(seq, " super external:%s",
  6229. mddev->metadata_type);
  6230. else
  6231. seq_printf(seq, " super non-persistent");
  6232. if (mddev->pers) {
  6233. mddev->pers->status(seq, mddev);
  6234. seq_printf(seq, "\n ");
  6235. if (mddev->pers->sync_request) {
  6236. if (mddev->curr_resync > 2) {
  6237. status_resync(seq, mddev);
  6238. seq_printf(seq, "\n ");
  6239. } else if (mddev->curr_resync >= 1)
  6240. seq_printf(seq, "\tresync=DELAYED\n ");
  6241. else if (mddev->recovery_cp < MaxSector)
  6242. seq_printf(seq, "\tresync=PENDING\n ");
  6243. }
  6244. } else
  6245. seq_printf(seq, "\n ");
  6246. bitmap_status(seq, mddev->bitmap);
  6247. seq_printf(seq, "\n");
  6248. }
  6249. mddev_unlock(mddev);
  6250. return 0;
  6251. }
  6252. static const struct seq_operations md_seq_ops = {
  6253. .start = md_seq_start,
  6254. .next = md_seq_next,
  6255. .stop = md_seq_stop,
  6256. .show = md_seq_show,
  6257. };
  6258. static int md_seq_open(struct inode *inode, struct file *file)
  6259. {
  6260. struct seq_file *seq;
  6261. int error;
  6262. error = seq_open(file, &md_seq_ops);
  6263. if (error)
  6264. return error;
  6265. seq = file->private_data;
  6266. seq->poll_event = atomic_read(&md_event_count);
  6267. return error;
  6268. }
  6269. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6270. {
  6271. struct seq_file *seq = filp->private_data;
  6272. int mask;
  6273. poll_wait(filp, &md_event_waiters, wait);
  6274. /* always allow read */
  6275. mask = POLLIN | POLLRDNORM;
  6276. if (seq->poll_event != atomic_read(&md_event_count))
  6277. mask |= POLLERR | POLLPRI;
  6278. return mask;
  6279. }
  6280. static const struct file_operations md_seq_fops = {
  6281. .owner = THIS_MODULE,
  6282. .open = md_seq_open,
  6283. .read = seq_read,
  6284. .llseek = seq_lseek,
  6285. .release = seq_release_private,
  6286. .poll = mdstat_poll,
  6287. };
  6288. int register_md_personality(struct md_personality *p)
  6289. {
  6290. spin_lock(&pers_lock);
  6291. list_add_tail(&p->list, &pers_list);
  6292. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6293. spin_unlock(&pers_lock);
  6294. return 0;
  6295. }
  6296. int unregister_md_personality(struct md_personality *p)
  6297. {
  6298. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6299. spin_lock(&pers_lock);
  6300. list_del_init(&p->list);
  6301. spin_unlock(&pers_lock);
  6302. return 0;
  6303. }
  6304. static int is_mddev_idle(struct mddev *mddev, int init)
  6305. {
  6306. struct md_rdev * rdev;
  6307. int idle;
  6308. int curr_events;
  6309. idle = 1;
  6310. rcu_read_lock();
  6311. rdev_for_each_rcu(rdev, mddev) {
  6312. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6313. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6314. (int)part_stat_read(&disk->part0, sectors[1]) -
  6315. atomic_read(&disk->sync_io);
  6316. /* sync IO will cause sync_io to increase before the disk_stats
  6317. * as sync_io is counted when a request starts, and
  6318. * disk_stats is counted when it completes.
  6319. * So resync activity will cause curr_events to be smaller than
  6320. * when there was no such activity.
  6321. * non-sync IO will cause disk_stat to increase without
  6322. * increasing sync_io so curr_events will (eventually)
  6323. * be larger than it was before. Once it becomes
  6324. * substantially larger, the test below will cause
  6325. * the array to appear non-idle, and resync will slow
  6326. * down.
  6327. * If there is a lot of outstanding resync activity when
  6328. * we set last_event to curr_events, then all that activity
  6329. * completing might cause the array to appear non-idle
  6330. * and resync will be slowed down even though there might
  6331. * not have been non-resync activity. This will only
  6332. * happen once though. 'last_events' will soon reflect
  6333. * the state where there is little or no outstanding
  6334. * resync requests, and further resync activity will
  6335. * always make curr_events less than last_events.
  6336. *
  6337. */
  6338. if (init || curr_events - rdev->last_events > 64) {
  6339. rdev->last_events = curr_events;
  6340. idle = 0;
  6341. }
  6342. }
  6343. rcu_read_unlock();
  6344. return idle;
  6345. }
  6346. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6347. {
  6348. /* another "blocks" (512byte) blocks have been synced */
  6349. atomic_sub(blocks, &mddev->recovery_active);
  6350. wake_up(&mddev->recovery_wait);
  6351. if (!ok) {
  6352. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6353. md_wakeup_thread(mddev->thread);
  6354. // stop recovery, signal do_sync ....
  6355. }
  6356. }
  6357. /* md_write_start(mddev, bi)
  6358. * If we need to update some array metadata (e.g. 'active' flag
  6359. * in superblock) before writing, schedule a superblock update
  6360. * and wait for it to complete.
  6361. */
  6362. void md_write_start(struct mddev *mddev, struct bio *bi)
  6363. {
  6364. int did_change = 0;
  6365. if (bio_data_dir(bi) != WRITE)
  6366. return;
  6367. BUG_ON(mddev->ro == 1);
  6368. if (mddev->ro == 2) {
  6369. /* need to switch to read/write */
  6370. mddev->ro = 0;
  6371. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6372. md_wakeup_thread(mddev->thread);
  6373. md_wakeup_thread(mddev->sync_thread);
  6374. did_change = 1;
  6375. }
  6376. atomic_inc(&mddev->writes_pending);
  6377. if (mddev->safemode == 1)
  6378. mddev->safemode = 0;
  6379. if (mddev->in_sync) {
  6380. spin_lock_irq(&mddev->write_lock);
  6381. if (mddev->in_sync) {
  6382. mddev->in_sync = 0;
  6383. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6384. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6385. md_wakeup_thread(mddev->thread);
  6386. did_change = 1;
  6387. }
  6388. spin_unlock_irq(&mddev->write_lock);
  6389. }
  6390. if (did_change)
  6391. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6392. wait_event(mddev->sb_wait,
  6393. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6394. }
  6395. void md_write_end(struct mddev *mddev)
  6396. {
  6397. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6398. if (mddev->safemode == 2)
  6399. md_wakeup_thread(mddev->thread);
  6400. else if (mddev->safemode_delay)
  6401. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6402. }
  6403. }
  6404. /* md_allow_write(mddev)
  6405. * Calling this ensures that the array is marked 'active' so that writes
  6406. * may proceed without blocking. It is important to call this before
  6407. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6408. * Must be called with mddev_lock held.
  6409. *
  6410. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6411. * is dropped, so return -EAGAIN after notifying userspace.
  6412. */
  6413. int md_allow_write(struct mddev *mddev)
  6414. {
  6415. if (!mddev->pers)
  6416. return 0;
  6417. if (mddev->ro)
  6418. return 0;
  6419. if (!mddev->pers->sync_request)
  6420. return 0;
  6421. spin_lock_irq(&mddev->write_lock);
  6422. if (mddev->in_sync) {
  6423. mddev->in_sync = 0;
  6424. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6425. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6426. if (mddev->safemode_delay &&
  6427. mddev->safemode == 0)
  6428. mddev->safemode = 1;
  6429. spin_unlock_irq(&mddev->write_lock);
  6430. md_update_sb(mddev, 0);
  6431. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6432. } else
  6433. spin_unlock_irq(&mddev->write_lock);
  6434. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6435. return -EAGAIN;
  6436. else
  6437. return 0;
  6438. }
  6439. EXPORT_SYMBOL_GPL(md_allow_write);
  6440. #define SYNC_MARKS 10
  6441. #define SYNC_MARK_STEP (3*HZ)
  6442. void md_do_sync(struct md_thread *thread)
  6443. {
  6444. struct mddev *mddev = thread->mddev;
  6445. struct mddev *mddev2;
  6446. unsigned int currspeed = 0,
  6447. window;
  6448. sector_t max_sectors,j, io_sectors;
  6449. unsigned long mark[SYNC_MARKS];
  6450. sector_t mark_cnt[SYNC_MARKS];
  6451. int last_mark,m;
  6452. struct list_head *tmp;
  6453. sector_t last_check;
  6454. int skipped = 0;
  6455. struct md_rdev *rdev;
  6456. char *desc;
  6457. struct blk_plug plug;
  6458. /* just incase thread restarts... */
  6459. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6460. return;
  6461. if (mddev->ro) /* never try to sync a read-only array */
  6462. return;
  6463. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6464. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6465. desc = "data-check";
  6466. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6467. desc = "requested-resync";
  6468. else
  6469. desc = "resync";
  6470. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6471. desc = "reshape";
  6472. else
  6473. desc = "recovery";
  6474. /* we overload curr_resync somewhat here.
  6475. * 0 == not engaged in resync at all
  6476. * 2 == checking that there is no conflict with another sync
  6477. * 1 == like 2, but have yielded to allow conflicting resync to
  6478. * commense
  6479. * other == active in resync - this many blocks
  6480. *
  6481. * Before starting a resync we must have set curr_resync to
  6482. * 2, and then checked that every "conflicting" array has curr_resync
  6483. * less than ours. When we find one that is the same or higher
  6484. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6485. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6486. * This will mean we have to start checking from the beginning again.
  6487. *
  6488. */
  6489. do {
  6490. mddev->curr_resync = 2;
  6491. try_again:
  6492. if (kthread_should_stop())
  6493. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6494. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6495. goto skip;
  6496. for_each_mddev(mddev2, tmp) {
  6497. if (mddev2 == mddev)
  6498. continue;
  6499. if (!mddev->parallel_resync
  6500. && mddev2->curr_resync
  6501. && match_mddev_units(mddev, mddev2)) {
  6502. DEFINE_WAIT(wq);
  6503. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6504. /* arbitrarily yield */
  6505. mddev->curr_resync = 1;
  6506. wake_up(&resync_wait);
  6507. }
  6508. if (mddev > mddev2 && mddev->curr_resync == 1)
  6509. /* no need to wait here, we can wait the next
  6510. * time 'round when curr_resync == 2
  6511. */
  6512. continue;
  6513. /* We need to wait 'interruptible' so as not to
  6514. * contribute to the load average, and not to
  6515. * be caught by 'softlockup'
  6516. */
  6517. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6518. if (!kthread_should_stop() &&
  6519. mddev2->curr_resync >= mddev->curr_resync) {
  6520. printk(KERN_INFO "md: delaying %s of %s"
  6521. " until %s has finished (they"
  6522. " share one or more physical units)\n",
  6523. desc, mdname(mddev), mdname(mddev2));
  6524. mddev_put(mddev2);
  6525. if (signal_pending(current))
  6526. flush_signals(current);
  6527. schedule();
  6528. finish_wait(&resync_wait, &wq);
  6529. goto try_again;
  6530. }
  6531. finish_wait(&resync_wait, &wq);
  6532. }
  6533. }
  6534. } while (mddev->curr_resync < 2);
  6535. j = 0;
  6536. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6537. /* resync follows the size requested by the personality,
  6538. * which defaults to physical size, but can be virtual size
  6539. */
  6540. max_sectors = mddev->resync_max_sectors;
  6541. atomic64_set(&mddev->resync_mismatches, 0);
  6542. /* we don't use the checkpoint if there's a bitmap */
  6543. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6544. j = mddev->resync_min;
  6545. else if (!mddev->bitmap)
  6546. j = mddev->recovery_cp;
  6547. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6548. max_sectors = mddev->resync_max_sectors;
  6549. else {
  6550. /* recovery follows the physical size of devices */
  6551. max_sectors = mddev->dev_sectors;
  6552. j = MaxSector;
  6553. rcu_read_lock();
  6554. rdev_for_each_rcu(rdev, mddev)
  6555. if (rdev->raid_disk >= 0 &&
  6556. !test_bit(Faulty, &rdev->flags) &&
  6557. !test_bit(In_sync, &rdev->flags) &&
  6558. rdev->recovery_offset < j)
  6559. j = rdev->recovery_offset;
  6560. rcu_read_unlock();
  6561. }
  6562. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6563. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6564. " %d KB/sec/disk.\n", speed_min(mddev));
  6565. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6566. "(but not more than %d KB/sec) for %s.\n",
  6567. speed_max(mddev), desc);
  6568. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6569. io_sectors = 0;
  6570. for (m = 0; m < SYNC_MARKS; m++) {
  6571. mark[m] = jiffies;
  6572. mark_cnt[m] = io_sectors;
  6573. }
  6574. last_mark = 0;
  6575. mddev->resync_mark = mark[last_mark];
  6576. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6577. /*
  6578. * Tune reconstruction:
  6579. */
  6580. window = 32*(PAGE_SIZE/512);
  6581. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6582. window/2, (unsigned long long)max_sectors/2);
  6583. atomic_set(&mddev->recovery_active, 0);
  6584. last_check = 0;
  6585. if (j>2) {
  6586. printk(KERN_INFO
  6587. "md: resuming %s of %s from checkpoint.\n",
  6588. desc, mdname(mddev));
  6589. mddev->curr_resync = j;
  6590. } else
  6591. mddev->curr_resync = 3; /* no longer delayed */
  6592. mddev->curr_resync_completed = j;
  6593. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6594. md_new_event(mddev);
  6595. blk_start_plug(&plug);
  6596. while (j < max_sectors) {
  6597. sector_t sectors;
  6598. skipped = 0;
  6599. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6600. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6601. (mddev->curr_resync - mddev->curr_resync_completed)
  6602. > (max_sectors >> 4)) ||
  6603. (j - mddev->curr_resync_completed)*2
  6604. >= mddev->resync_max - mddev->curr_resync_completed
  6605. )) {
  6606. /* time to update curr_resync_completed */
  6607. wait_event(mddev->recovery_wait,
  6608. atomic_read(&mddev->recovery_active) == 0);
  6609. mddev->curr_resync_completed = j;
  6610. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6611. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6612. }
  6613. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6614. /* As this condition is controlled by user-space,
  6615. * we can block indefinitely, so use '_interruptible'
  6616. * to avoid triggering warnings.
  6617. */
  6618. flush_signals(current); /* just in case */
  6619. wait_event_interruptible(mddev->recovery_wait,
  6620. mddev->resync_max > j
  6621. || kthread_should_stop());
  6622. }
  6623. if (kthread_should_stop())
  6624. goto interrupted;
  6625. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6626. currspeed < speed_min(mddev));
  6627. if (sectors == 0) {
  6628. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6629. goto out;
  6630. }
  6631. if (!skipped) { /* actual IO requested */
  6632. io_sectors += sectors;
  6633. atomic_add(sectors, &mddev->recovery_active);
  6634. }
  6635. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6636. break;
  6637. j += sectors;
  6638. if (j > 2)
  6639. mddev->curr_resync = j;
  6640. mddev->curr_mark_cnt = io_sectors;
  6641. if (last_check == 0)
  6642. /* this is the earliest that rebuild will be
  6643. * visible in /proc/mdstat
  6644. */
  6645. md_new_event(mddev);
  6646. if (last_check + window > io_sectors || j == max_sectors)
  6647. continue;
  6648. last_check = io_sectors;
  6649. repeat:
  6650. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6651. /* step marks */
  6652. int next = (last_mark+1) % SYNC_MARKS;
  6653. mddev->resync_mark = mark[next];
  6654. mddev->resync_mark_cnt = mark_cnt[next];
  6655. mark[next] = jiffies;
  6656. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6657. last_mark = next;
  6658. }
  6659. if (kthread_should_stop())
  6660. goto interrupted;
  6661. /*
  6662. * this loop exits only if either when we are slower than
  6663. * the 'hard' speed limit, or the system was IO-idle for
  6664. * a jiffy.
  6665. * the system might be non-idle CPU-wise, but we only care
  6666. * about not overloading the IO subsystem. (things like an
  6667. * e2fsck being done on the RAID array should execute fast)
  6668. */
  6669. cond_resched();
  6670. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6671. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6672. if (currspeed > speed_min(mddev)) {
  6673. if ((currspeed > speed_max(mddev)) ||
  6674. !is_mddev_idle(mddev, 0)) {
  6675. msleep(500);
  6676. goto repeat;
  6677. }
  6678. }
  6679. }
  6680. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6681. /*
  6682. * this also signals 'finished resyncing' to md_stop
  6683. */
  6684. out:
  6685. blk_finish_plug(&plug);
  6686. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6687. /* tell personality that we are finished */
  6688. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6689. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6690. mddev->curr_resync > 2) {
  6691. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6692. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6693. if (mddev->curr_resync >= mddev->recovery_cp) {
  6694. printk(KERN_INFO
  6695. "md: checkpointing %s of %s.\n",
  6696. desc, mdname(mddev));
  6697. mddev->recovery_cp =
  6698. mddev->curr_resync_completed;
  6699. }
  6700. } else
  6701. mddev->recovery_cp = MaxSector;
  6702. } else {
  6703. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6704. mddev->curr_resync = MaxSector;
  6705. rcu_read_lock();
  6706. rdev_for_each_rcu(rdev, mddev)
  6707. if (rdev->raid_disk >= 0 &&
  6708. mddev->delta_disks >= 0 &&
  6709. !test_bit(Faulty, &rdev->flags) &&
  6710. !test_bit(In_sync, &rdev->flags) &&
  6711. rdev->recovery_offset < mddev->curr_resync)
  6712. rdev->recovery_offset = mddev->curr_resync;
  6713. rcu_read_unlock();
  6714. }
  6715. }
  6716. skip:
  6717. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6718. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6719. /* We completed so min/max setting can be forgotten if used. */
  6720. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6721. mddev->resync_min = 0;
  6722. mddev->resync_max = MaxSector;
  6723. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6724. mddev->resync_min = mddev->curr_resync_completed;
  6725. mddev->curr_resync = 0;
  6726. wake_up(&resync_wait);
  6727. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6728. md_wakeup_thread(mddev->thread);
  6729. return;
  6730. interrupted:
  6731. /*
  6732. * got a signal, exit.
  6733. */
  6734. printk(KERN_INFO
  6735. "md: md_do_sync() got signal ... exiting\n");
  6736. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6737. goto out;
  6738. }
  6739. EXPORT_SYMBOL_GPL(md_do_sync);
  6740. static int remove_and_add_spares(struct mddev *mddev)
  6741. {
  6742. struct md_rdev *rdev;
  6743. int spares = 0;
  6744. int removed = 0;
  6745. rdev_for_each(rdev, mddev)
  6746. if (rdev->raid_disk >= 0 &&
  6747. !test_bit(Blocked, &rdev->flags) &&
  6748. (test_bit(Faulty, &rdev->flags) ||
  6749. ! test_bit(In_sync, &rdev->flags)) &&
  6750. atomic_read(&rdev->nr_pending)==0) {
  6751. if (mddev->pers->hot_remove_disk(
  6752. mddev, rdev) == 0) {
  6753. sysfs_unlink_rdev(mddev, rdev);
  6754. rdev->raid_disk = -1;
  6755. removed++;
  6756. }
  6757. }
  6758. if (removed)
  6759. sysfs_notify(&mddev->kobj, NULL,
  6760. "degraded");
  6761. rdev_for_each(rdev, mddev) {
  6762. if (rdev->raid_disk >= 0 &&
  6763. !test_bit(In_sync, &rdev->flags) &&
  6764. !test_bit(Faulty, &rdev->flags))
  6765. spares++;
  6766. if (rdev->raid_disk < 0
  6767. && !test_bit(Faulty, &rdev->flags)) {
  6768. rdev->recovery_offset = 0;
  6769. if (mddev->pers->
  6770. hot_add_disk(mddev, rdev) == 0) {
  6771. if (sysfs_link_rdev(mddev, rdev))
  6772. /* failure here is OK */;
  6773. spares++;
  6774. md_new_event(mddev);
  6775. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6776. }
  6777. }
  6778. }
  6779. if (removed)
  6780. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6781. return spares;
  6782. }
  6783. static void reap_sync_thread(struct mddev *mddev)
  6784. {
  6785. struct md_rdev *rdev;
  6786. /* resync has finished, collect result */
  6787. md_unregister_thread(&mddev->sync_thread);
  6788. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6789. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6790. /* success...*/
  6791. /* activate any spares */
  6792. if (mddev->pers->spare_active(mddev)) {
  6793. sysfs_notify(&mddev->kobj, NULL,
  6794. "degraded");
  6795. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6796. }
  6797. }
  6798. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6799. mddev->pers->finish_reshape)
  6800. mddev->pers->finish_reshape(mddev);
  6801. /* If array is no-longer degraded, then any saved_raid_disk
  6802. * information must be scrapped. Also if any device is now
  6803. * In_sync we must scrape the saved_raid_disk for that device
  6804. * do the superblock for an incrementally recovered device
  6805. * written out.
  6806. */
  6807. rdev_for_each(rdev, mddev)
  6808. if (!mddev->degraded ||
  6809. test_bit(In_sync, &rdev->flags))
  6810. rdev->saved_raid_disk = -1;
  6811. md_update_sb(mddev, 1);
  6812. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6813. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6814. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6815. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6816. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6817. /* flag recovery needed just to double check */
  6818. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6819. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6820. md_new_event(mddev);
  6821. if (mddev->event_work.func)
  6822. queue_work(md_misc_wq, &mddev->event_work);
  6823. }
  6824. /*
  6825. * This routine is regularly called by all per-raid-array threads to
  6826. * deal with generic issues like resync and super-block update.
  6827. * Raid personalities that don't have a thread (linear/raid0) do not
  6828. * need this as they never do any recovery or update the superblock.
  6829. *
  6830. * It does not do any resync itself, but rather "forks" off other threads
  6831. * to do that as needed.
  6832. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6833. * "->recovery" and create a thread at ->sync_thread.
  6834. * When the thread finishes it sets MD_RECOVERY_DONE
  6835. * and wakeups up this thread which will reap the thread and finish up.
  6836. * This thread also removes any faulty devices (with nr_pending == 0).
  6837. *
  6838. * The overall approach is:
  6839. * 1/ if the superblock needs updating, update it.
  6840. * 2/ If a recovery thread is running, don't do anything else.
  6841. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6842. * 4/ If there are any faulty devices, remove them.
  6843. * 5/ If array is degraded, try to add spares devices
  6844. * 6/ If array has spares or is not in-sync, start a resync thread.
  6845. */
  6846. void md_check_recovery(struct mddev *mddev)
  6847. {
  6848. if (mddev->suspended)
  6849. return;
  6850. if (mddev->bitmap)
  6851. bitmap_daemon_work(mddev);
  6852. if (signal_pending(current)) {
  6853. if (mddev->pers->sync_request && !mddev->external) {
  6854. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6855. mdname(mddev));
  6856. mddev->safemode = 2;
  6857. }
  6858. flush_signals(current);
  6859. }
  6860. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6861. return;
  6862. if ( ! (
  6863. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6864. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6865. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6866. (mddev->external == 0 && mddev->safemode == 1) ||
  6867. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6868. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6869. ))
  6870. return;
  6871. if (mddev_trylock(mddev)) {
  6872. int spares = 0;
  6873. if (mddev->ro) {
  6874. /* Only thing we do on a ro array is remove
  6875. * failed devices.
  6876. */
  6877. struct md_rdev *rdev;
  6878. rdev_for_each(rdev, mddev)
  6879. if (rdev->raid_disk >= 0 &&
  6880. !test_bit(Blocked, &rdev->flags) &&
  6881. test_bit(Faulty, &rdev->flags) &&
  6882. atomic_read(&rdev->nr_pending)==0) {
  6883. if (mddev->pers->hot_remove_disk(
  6884. mddev, rdev) == 0) {
  6885. sysfs_unlink_rdev(mddev, rdev);
  6886. rdev->raid_disk = -1;
  6887. }
  6888. }
  6889. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6890. goto unlock;
  6891. }
  6892. if (!mddev->external) {
  6893. int did_change = 0;
  6894. spin_lock_irq(&mddev->write_lock);
  6895. if (mddev->safemode &&
  6896. !atomic_read(&mddev->writes_pending) &&
  6897. !mddev->in_sync &&
  6898. mddev->recovery_cp == MaxSector) {
  6899. mddev->in_sync = 1;
  6900. did_change = 1;
  6901. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6902. }
  6903. if (mddev->safemode == 1)
  6904. mddev->safemode = 0;
  6905. spin_unlock_irq(&mddev->write_lock);
  6906. if (did_change)
  6907. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6908. }
  6909. if (mddev->flags)
  6910. md_update_sb(mddev, 0);
  6911. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6912. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6913. /* resync/recovery still happening */
  6914. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6915. goto unlock;
  6916. }
  6917. if (mddev->sync_thread) {
  6918. reap_sync_thread(mddev);
  6919. goto unlock;
  6920. }
  6921. /* Set RUNNING before clearing NEEDED to avoid
  6922. * any transients in the value of "sync_action".
  6923. */
  6924. mddev->curr_resync_completed = 0;
  6925. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6926. /* Clear some bits that don't mean anything, but
  6927. * might be left set
  6928. */
  6929. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6930. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6931. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6932. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6933. goto unlock;
  6934. /* no recovery is running.
  6935. * remove any failed drives, then
  6936. * add spares if possible.
  6937. * Spares are also removed and re-added, to allow
  6938. * the personality to fail the re-add.
  6939. */
  6940. if (mddev->reshape_position != MaxSector) {
  6941. if (mddev->pers->check_reshape == NULL ||
  6942. mddev->pers->check_reshape(mddev) != 0)
  6943. /* Cannot proceed */
  6944. goto unlock;
  6945. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6946. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6947. } else if ((spares = remove_and_add_spares(mddev))) {
  6948. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6949. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6950. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6951. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6952. } else if (mddev->recovery_cp < MaxSector) {
  6953. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6954. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6955. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6956. /* nothing to be done ... */
  6957. goto unlock;
  6958. if (mddev->pers->sync_request) {
  6959. if (spares) {
  6960. /* We are adding a device or devices to an array
  6961. * which has the bitmap stored on all devices.
  6962. * So make sure all bitmap pages get written
  6963. */
  6964. bitmap_write_all(mddev->bitmap);
  6965. }
  6966. mddev->sync_thread = md_register_thread(md_do_sync,
  6967. mddev,
  6968. "resync");
  6969. if (!mddev->sync_thread) {
  6970. printk(KERN_ERR "%s: could not start resync"
  6971. " thread...\n",
  6972. mdname(mddev));
  6973. /* leave the spares where they are, it shouldn't hurt */
  6974. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6975. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6976. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6977. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6978. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6979. } else
  6980. md_wakeup_thread(mddev->sync_thread);
  6981. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6982. md_new_event(mddev);
  6983. }
  6984. unlock:
  6985. if (!mddev->sync_thread) {
  6986. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6987. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6988. &mddev->recovery))
  6989. if (mddev->sysfs_action)
  6990. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6991. }
  6992. mddev_unlock(mddev);
  6993. }
  6994. }
  6995. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6996. {
  6997. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6998. wait_event_timeout(rdev->blocked_wait,
  6999. !test_bit(Blocked, &rdev->flags) &&
  7000. !test_bit(BlockedBadBlocks, &rdev->flags),
  7001. msecs_to_jiffies(5000));
  7002. rdev_dec_pending(rdev, mddev);
  7003. }
  7004. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7005. void md_finish_reshape(struct mddev *mddev)
  7006. {
  7007. /* called be personality module when reshape completes. */
  7008. struct md_rdev *rdev;
  7009. rdev_for_each(rdev, mddev) {
  7010. if (rdev->data_offset > rdev->new_data_offset)
  7011. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7012. else
  7013. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7014. rdev->data_offset = rdev->new_data_offset;
  7015. }
  7016. }
  7017. EXPORT_SYMBOL(md_finish_reshape);
  7018. /* Bad block management.
  7019. * We can record which blocks on each device are 'bad' and so just
  7020. * fail those blocks, or that stripe, rather than the whole device.
  7021. * Entries in the bad-block table are 64bits wide. This comprises:
  7022. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7023. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7024. * A 'shift' can be set so that larger blocks are tracked and
  7025. * consequently larger devices can be covered.
  7026. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7027. *
  7028. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7029. * might need to retry if it is very unlucky.
  7030. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7031. * so we use the write_seqlock_irq variant.
  7032. *
  7033. * When looking for a bad block we specify a range and want to
  7034. * know if any block in the range is bad. So we binary-search
  7035. * to the last range that starts at-or-before the given endpoint,
  7036. * (or "before the sector after the target range")
  7037. * then see if it ends after the given start.
  7038. * We return
  7039. * 0 if there are no known bad blocks in the range
  7040. * 1 if there are known bad block which are all acknowledged
  7041. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7042. * plus the start/length of the first bad section we overlap.
  7043. */
  7044. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7045. sector_t *first_bad, int *bad_sectors)
  7046. {
  7047. int hi;
  7048. int lo = 0;
  7049. u64 *p = bb->page;
  7050. int rv = 0;
  7051. sector_t target = s + sectors;
  7052. unsigned seq;
  7053. if (bb->shift > 0) {
  7054. /* round the start down, and the end up */
  7055. s >>= bb->shift;
  7056. target += (1<<bb->shift) - 1;
  7057. target >>= bb->shift;
  7058. sectors = target - s;
  7059. }
  7060. /* 'target' is now the first block after the bad range */
  7061. retry:
  7062. seq = read_seqbegin(&bb->lock);
  7063. hi = bb->count;
  7064. /* Binary search between lo and hi for 'target'
  7065. * i.e. for the last range that starts before 'target'
  7066. */
  7067. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7068. * are known not to be the last range before target.
  7069. * VARIANT: hi-lo is the number of possible
  7070. * ranges, and decreases until it reaches 1
  7071. */
  7072. while (hi - lo > 1) {
  7073. int mid = (lo + hi) / 2;
  7074. sector_t a = BB_OFFSET(p[mid]);
  7075. if (a < target)
  7076. /* This could still be the one, earlier ranges
  7077. * could not. */
  7078. lo = mid;
  7079. else
  7080. /* This and later ranges are definitely out. */
  7081. hi = mid;
  7082. }
  7083. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7084. if (hi > lo) {
  7085. /* need to check all range that end after 's' to see if
  7086. * any are unacknowledged.
  7087. */
  7088. while (lo >= 0 &&
  7089. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7090. if (BB_OFFSET(p[lo]) < target) {
  7091. /* starts before the end, and finishes after
  7092. * the start, so they must overlap
  7093. */
  7094. if (rv != -1 && BB_ACK(p[lo]))
  7095. rv = 1;
  7096. else
  7097. rv = -1;
  7098. *first_bad = BB_OFFSET(p[lo]);
  7099. *bad_sectors = BB_LEN(p[lo]);
  7100. }
  7101. lo--;
  7102. }
  7103. }
  7104. if (read_seqretry(&bb->lock, seq))
  7105. goto retry;
  7106. return rv;
  7107. }
  7108. EXPORT_SYMBOL_GPL(md_is_badblock);
  7109. /*
  7110. * Add a range of bad blocks to the table.
  7111. * This might extend the table, or might contract it
  7112. * if two adjacent ranges can be merged.
  7113. * We binary-search to find the 'insertion' point, then
  7114. * decide how best to handle it.
  7115. */
  7116. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7117. int acknowledged)
  7118. {
  7119. u64 *p;
  7120. int lo, hi;
  7121. int rv = 1;
  7122. if (bb->shift < 0)
  7123. /* badblocks are disabled */
  7124. return 0;
  7125. if (bb->shift) {
  7126. /* round the start down, and the end up */
  7127. sector_t next = s + sectors;
  7128. s >>= bb->shift;
  7129. next += (1<<bb->shift) - 1;
  7130. next >>= bb->shift;
  7131. sectors = next - s;
  7132. }
  7133. write_seqlock_irq(&bb->lock);
  7134. p = bb->page;
  7135. lo = 0;
  7136. hi = bb->count;
  7137. /* Find the last range that starts at-or-before 's' */
  7138. while (hi - lo > 1) {
  7139. int mid = (lo + hi) / 2;
  7140. sector_t a = BB_OFFSET(p[mid]);
  7141. if (a <= s)
  7142. lo = mid;
  7143. else
  7144. hi = mid;
  7145. }
  7146. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7147. hi = lo;
  7148. if (hi > lo) {
  7149. /* we found a range that might merge with the start
  7150. * of our new range
  7151. */
  7152. sector_t a = BB_OFFSET(p[lo]);
  7153. sector_t e = a + BB_LEN(p[lo]);
  7154. int ack = BB_ACK(p[lo]);
  7155. if (e >= s) {
  7156. /* Yes, we can merge with a previous range */
  7157. if (s == a && s + sectors >= e)
  7158. /* new range covers old */
  7159. ack = acknowledged;
  7160. else
  7161. ack = ack && acknowledged;
  7162. if (e < s + sectors)
  7163. e = s + sectors;
  7164. if (e - a <= BB_MAX_LEN) {
  7165. p[lo] = BB_MAKE(a, e-a, ack);
  7166. s = e;
  7167. } else {
  7168. /* does not all fit in one range,
  7169. * make p[lo] maximal
  7170. */
  7171. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7172. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7173. s = a + BB_MAX_LEN;
  7174. }
  7175. sectors = e - s;
  7176. }
  7177. }
  7178. if (sectors && hi < bb->count) {
  7179. /* 'hi' points to the first range that starts after 's'.
  7180. * Maybe we can merge with the start of that range */
  7181. sector_t a = BB_OFFSET(p[hi]);
  7182. sector_t e = a + BB_LEN(p[hi]);
  7183. int ack = BB_ACK(p[hi]);
  7184. if (a <= s + sectors) {
  7185. /* merging is possible */
  7186. if (e <= s + sectors) {
  7187. /* full overlap */
  7188. e = s + sectors;
  7189. ack = acknowledged;
  7190. } else
  7191. ack = ack && acknowledged;
  7192. a = s;
  7193. if (e - a <= BB_MAX_LEN) {
  7194. p[hi] = BB_MAKE(a, e-a, ack);
  7195. s = e;
  7196. } else {
  7197. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7198. s = a + BB_MAX_LEN;
  7199. }
  7200. sectors = e - s;
  7201. lo = hi;
  7202. hi++;
  7203. }
  7204. }
  7205. if (sectors == 0 && hi < bb->count) {
  7206. /* we might be able to combine lo and hi */
  7207. /* Note: 's' is at the end of 'lo' */
  7208. sector_t a = BB_OFFSET(p[hi]);
  7209. int lolen = BB_LEN(p[lo]);
  7210. int hilen = BB_LEN(p[hi]);
  7211. int newlen = lolen + hilen - (s - a);
  7212. if (s >= a && newlen < BB_MAX_LEN) {
  7213. /* yes, we can combine them */
  7214. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7215. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7216. memmove(p + hi, p + hi + 1,
  7217. (bb->count - hi - 1) * 8);
  7218. bb->count--;
  7219. }
  7220. }
  7221. while (sectors) {
  7222. /* didn't merge (it all).
  7223. * Need to add a range just before 'hi' */
  7224. if (bb->count >= MD_MAX_BADBLOCKS) {
  7225. /* No room for more */
  7226. rv = 0;
  7227. break;
  7228. } else {
  7229. int this_sectors = sectors;
  7230. memmove(p + hi + 1, p + hi,
  7231. (bb->count - hi) * 8);
  7232. bb->count++;
  7233. if (this_sectors > BB_MAX_LEN)
  7234. this_sectors = BB_MAX_LEN;
  7235. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7236. sectors -= this_sectors;
  7237. s += this_sectors;
  7238. }
  7239. }
  7240. bb->changed = 1;
  7241. if (!acknowledged)
  7242. bb->unacked_exist = 1;
  7243. write_sequnlock_irq(&bb->lock);
  7244. return rv;
  7245. }
  7246. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7247. int is_new)
  7248. {
  7249. int rv;
  7250. if (is_new)
  7251. s += rdev->new_data_offset;
  7252. else
  7253. s += rdev->data_offset;
  7254. rv = md_set_badblocks(&rdev->badblocks,
  7255. s, sectors, 0);
  7256. if (rv) {
  7257. /* Make sure they get written out promptly */
  7258. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7259. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7260. md_wakeup_thread(rdev->mddev->thread);
  7261. }
  7262. return rv;
  7263. }
  7264. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7265. /*
  7266. * Remove a range of bad blocks from the table.
  7267. * This may involve extending the table if we spilt a region,
  7268. * but it must not fail. So if the table becomes full, we just
  7269. * drop the remove request.
  7270. */
  7271. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7272. {
  7273. u64 *p;
  7274. int lo, hi;
  7275. sector_t target = s + sectors;
  7276. int rv = 0;
  7277. if (bb->shift > 0) {
  7278. /* When clearing we round the start up and the end down.
  7279. * This should not matter as the shift should align with
  7280. * the block size and no rounding should ever be needed.
  7281. * However it is better the think a block is bad when it
  7282. * isn't than to think a block is not bad when it is.
  7283. */
  7284. s += (1<<bb->shift) - 1;
  7285. s >>= bb->shift;
  7286. target >>= bb->shift;
  7287. sectors = target - s;
  7288. }
  7289. write_seqlock_irq(&bb->lock);
  7290. p = bb->page;
  7291. lo = 0;
  7292. hi = bb->count;
  7293. /* Find the last range that starts before 'target' */
  7294. while (hi - lo > 1) {
  7295. int mid = (lo + hi) / 2;
  7296. sector_t a = BB_OFFSET(p[mid]);
  7297. if (a < target)
  7298. lo = mid;
  7299. else
  7300. hi = mid;
  7301. }
  7302. if (hi > lo) {
  7303. /* p[lo] is the last range that could overlap the
  7304. * current range. Earlier ranges could also overlap,
  7305. * but only this one can overlap the end of the range.
  7306. */
  7307. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7308. /* Partial overlap, leave the tail of this range */
  7309. int ack = BB_ACK(p[lo]);
  7310. sector_t a = BB_OFFSET(p[lo]);
  7311. sector_t end = a + BB_LEN(p[lo]);
  7312. if (a < s) {
  7313. /* we need to split this range */
  7314. if (bb->count >= MD_MAX_BADBLOCKS) {
  7315. rv = 0;
  7316. goto out;
  7317. }
  7318. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7319. bb->count++;
  7320. p[lo] = BB_MAKE(a, s-a, ack);
  7321. lo++;
  7322. }
  7323. p[lo] = BB_MAKE(target, end - target, ack);
  7324. /* there is no longer an overlap */
  7325. hi = lo;
  7326. lo--;
  7327. }
  7328. while (lo >= 0 &&
  7329. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7330. /* This range does overlap */
  7331. if (BB_OFFSET(p[lo]) < s) {
  7332. /* Keep the early parts of this range. */
  7333. int ack = BB_ACK(p[lo]);
  7334. sector_t start = BB_OFFSET(p[lo]);
  7335. p[lo] = BB_MAKE(start, s - start, ack);
  7336. /* now low doesn't overlap, so.. */
  7337. break;
  7338. }
  7339. lo--;
  7340. }
  7341. /* 'lo' is strictly before, 'hi' is strictly after,
  7342. * anything between needs to be discarded
  7343. */
  7344. if (hi - lo > 1) {
  7345. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7346. bb->count -= (hi - lo - 1);
  7347. }
  7348. }
  7349. bb->changed = 1;
  7350. out:
  7351. write_sequnlock_irq(&bb->lock);
  7352. return rv;
  7353. }
  7354. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7355. int is_new)
  7356. {
  7357. if (is_new)
  7358. s += rdev->new_data_offset;
  7359. else
  7360. s += rdev->data_offset;
  7361. return md_clear_badblocks(&rdev->badblocks,
  7362. s, sectors);
  7363. }
  7364. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7365. /*
  7366. * Acknowledge all bad blocks in a list.
  7367. * This only succeeds if ->changed is clear. It is used by
  7368. * in-kernel metadata updates
  7369. */
  7370. void md_ack_all_badblocks(struct badblocks *bb)
  7371. {
  7372. if (bb->page == NULL || bb->changed)
  7373. /* no point even trying */
  7374. return;
  7375. write_seqlock_irq(&bb->lock);
  7376. if (bb->changed == 0 && bb->unacked_exist) {
  7377. u64 *p = bb->page;
  7378. int i;
  7379. for (i = 0; i < bb->count ; i++) {
  7380. if (!BB_ACK(p[i])) {
  7381. sector_t start = BB_OFFSET(p[i]);
  7382. int len = BB_LEN(p[i]);
  7383. p[i] = BB_MAKE(start, len, 1);
  7384. }
  7385. }
  7386. bb->unacked_exist = 0;
  7387. }
  7388. write_sequnlock_irq(&bb->lock);
  7389. }
  7390. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7391. /* sysfs access to bad-blocks list.
  7392. * We present two files.
  7393. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7394. * are recorded as bad. The list is truncated to fit within
  7395. * the one-page limit of sysfs.
  7396. * Writing "sector length" to this file adds an acknowledged
  7397. * bad block list.
  7398. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7399. * been acknowledged. Writing to this file adds bad blocks
  7400. * without acknowledging them. This is largely for testing.
  7401. */
  7402. static ssize_t
  7403. badblocks_show(struct badblocks *bb, char *page, int unack)
  7404. {
  7405. size_t len;
  7406. int i;
  7407. u64 *p = bb->page;
  7408. unsigned seq;
  7409. if (bb->shift < 0)
  7410. return 0;
  7411. retry:
  7412. seq = read_seqbegin(&bb->lock);
  7413. len = 0;
  7414. i = 0;
  7415. while (len < PAGE_SIZE && i < bb->count) {
  7416. sector_t s = BB_OFFSET(p[i]);
  7417. unsigned int length = BB_LEN(p[i]);
  7418. int ack = BB_ACK(p[i]);
  7419. i++;
  7420. if (unack && ack)
  7421. continue;
  7422. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7423. (unsigned long long)s << bb->shift,
  7424. length << bb->shift);
  7425. }
  7426. if (unack && len == 0)
  7427. bb->unacked_exist = 0;
  7428. if (read_seqretry(&bb->lock, seq))
  7429. goto retry;
  7430. return len;
  7431. }
  7432. #define DO_DEBUG 1
  7433. static ssize_t
  7434. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7435. {
  7436. unsigned long long sector;
  7437. int length;
  7438. char newline;
  7439. #ifdef DO_DEBUG
  7440. /* Allow clearing via sysfs *only* for testing/debugging.
  7441. * Normally only a successful write may clear a badblock
  7442. */
  7443. int clear = 0;
  7444. if (page[0] == '-') {
  7445. clear = 1;
  7446. page++;
  7447. }
  7448. #endif /* DO_DEBUG */
  7449. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7450. case 3:
  7451. if (newline != '\n')
  7452. return -EINVAL;
  7453. case 2:
  7454. if (length <= 0)
  7455. return -EINVAL;
  7456. break;
  7457. default:
  7458. return -EINVAL;
  7459. }
  7460. #ifdef DO_DEBUG
  7461. if (clear) {
  7462. md_clear_badblocks(bb, sector, length);
  7463. return len;
  7464. }
  7465. #endif /* DO_DEBUG */
  7466. if (md_set_badblocks(bb, sector, length, !unack))
  7467. return len;
  7468. else
  7469. return -ENOSPC;
  7470. }
  7471. static int md_notify_reboot(struct notifier_block *this,
  7472. unsigned long code, void *x)
  7473. {
  7474. struct list_head *tmp;
  7475. struct mddev *mddev;
  7476. int need_delay = 0;
  7477. for_each_mddev(mddev, tmp) {
  7478. if (mddev_trylock(mddev)) {
  7479. if (mddev->pers)
  7480. __md_stop_writes(mddev);
  7481. mddev->safemode = 2;
  7482. mddev_unlock(mddev);
  7483. }
  7484. need_delay = 1;
  7485. }
  7486. /*
  7487. * certain more exotic SCSI devices are known to be
  7488. * volatile wrt too early system reboots. While the
  7489. * right place to handle this issue is the given
  7490. * driver, we do want to have a safe RAID driver ...
  7491. */
  7492. if (need_delay)
  7493. mdelay(1000*1);
  7494. return NOTIFY_DONE;
  7495. }
  7496. static struct notifier_block md_notifier = {
  7497. .notifier_call = md_notify_reboot,
  7498. .next = NULL,
  7499. .priority = INT_MAX, /* before any real devices */
  7500. };
  7501. static void md_geninit(void)
  7502. {
  7503. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7504. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7505. }
  7506. static int __init md_init(void)
  7507. {
  7508. int ret = -ENOMEM;
  7509. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7510. if (!md_wq)
  7511. goto err_wq;
  7512. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7513. if (!md_misc_wq)
  7514. goto err_misc_wq;
  7515. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7516. goto err_md;
  7517. if ((ret = register_blkdev(0, "mdp")) < 0)
  7518. goto err_mdp;
  7519. mdp_major = ret;
  7520. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7521. md_probe, NULL, NULL);
  7522. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7523. md_probe, NULL, NULL);
  7524. register_reboot_notifier(&md_notifier);
  7525. raid_table_header = register_sysctl_table(raid_root_table);
  7526. md_geninit();
  7527. return 0;
  7528. err_mdp:
  7529. unregister_blkdev(MD_MAJOR, "md");
  7530. err_md:
  7531. destroy_workqueue(md_misc_wq);
  7532. err_misc_wq:
  7533. destroy_workqueue(md_wq);
  7534. err_wq:
  7535. return ret;
  7536. }
  7537. #ifndef MODULE
  7538. /*
  7539. * Searches all registered partitions for autorun RAID arrays
  7540. * at boot time.
  7541. */
  7542. static LIST_HEAD(all_detected_devices);
  7543. struct detected_devices_node {
  7544. struct list_head list;
  7545. dev_t dev;
  7546. };
  7547. void md_autodetect_dev(dev_t dev)
  7548. {
  7549. struct detected_devices_node *node_detected_dev;
  7550. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7551. if (node_detected_dev) {
  7552. node_detected_dev->dev = dev;
  7553. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7554. } else {
  7555. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7556. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7557. }
  7558. }
  7559. static void autostart_arrays(int part)
  7560. {
  7561. struct md_rdev *rdev;
  7562. struct detected_devices_node *node_detected_dev;
  7563. dev_t dev;
  7564. int i_scanned, i_passed;
  7565. i_scanned = 0;
  7566. i_passed = 0;
  7567. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7568. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7569. i_scanned++;
  7570. node_detected_dev = list_entry(all_detected_devices.next,
  7571. struct detected_devices_node, list);
  7572. list_del(&node_detected_dev->list);
  7573. dev = node_detected_dev->dev;
  7574. kfree(node_detected_dev);
  7575. rdev = md_import_device(dev,0, 90);
  7576. if (IS_ERR(rdev))
  7577. continue;
  7578. if (test_bit(Faulty, &rdev->flags)) {
  7579. MD_BUG();
  7580. continue;
  7581. }
  7582. set_bit(AutoDetected, &rdev->flags);
  7583. list_add(&rdev->same_set, &pending_raid_disks);
  7584. i_passed++;
  7585. }
  7586. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7587. i_scanned, i_passed);
  7588. autorun_devices(part);
  7589. }
  7590. #endif /* !MODULE */
  7591. static __exit void md_exit(void)
  7592. {
  7593. struct mddev *mddev;
  7594. struct list_head *tmp;
  7595. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7596. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7597. unregister_blkdev(MD_MAJOR,"md");
  7598. unregister_blkdev(mdp_major, "mdp");
  7599. unregister_reboot_notifier(&md_notifier);
  7600. unregister_sysctl_table(raid_table_header);
  7601. remove_proc_entry("mdstat", NULL);
  7602. for_each_mddev(mddev, tmp) {
  7603. export_array(mddev);
  7604. mddev->hold_active = 0;
  7605. }
  7606. destroy_workqueue(md_misc_wq);
  7607. destroy_workqueue(md_wq);
  7608. }
  7609. subsys_initcall(md_init);
  7610. module_exit(md_exit)
  7611. static int get_ro(char *buffer, struct kernel_param *kp)
  7612. {
  7613. return sprintf(buffer, "%d", start_readonly);
  7614. }
  7615. static int set_ro(const char *val, struct kernel_param *kp)
  7616. {
  7617. char *e;
  7618. int num = simple_strtoul(val, &e, 10);
  7619. if (*val && (*e == '\0' || *e == '\n')) {
  7620. start_readonly = num;
  7621. return 0;
  7622. }
  7623. return -EINVAL;
  7624. }
  7625. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7626. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7627. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7628. EXPORT_SYMBOL(register_md_personality);
  7629. EXPORT_SYMBOL(unregister_md_personality);
  7630. EXPORT_SYMBOL(md_error);
  7631. EXPORT_SYMBOL(md_done_sync);
  7632. EXPORT_SYMBOL(md_write_start);
  7633. EXPORT_SYMBOL(md_write_end);
  7634. EXPORT_SYMBOL(md_register_thread);
  7635. EXPORT_SYMBOL(md_unregister_thread);
  7636. EXPORT_SYMBOL(md_wakeup_thread);
  7637. EXPORT_SYMBOL(md_check_recovery);
  7638. MODULE_LICENSE("GPL");
  7639. MODULE_DESCRIPTION("MD RAID framework");
  7640. MODULE_ALIAS("md");
  7641. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);