core.c 196 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_sched.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. *
  311. * Its all a bit involved since we cannot program an hrt while holding the
  312. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  313. * reschedule event.
  314. *
  315. * When we get rescheduled we reprogram the hrtick_timer outside of the
  316. * rq->lock.
  317. */
  318. static void hrtick_clear(struct rq *rq)
  319. {
  320. if (hrtimer_active(&rq->hrtick_timer))
  321. hrtimer_cancel(&rq->hrtick_timer);
  322. }
  323. /*
  324. * High-resolution timer tick.
  325. * Runs from hardirq context with interrupts disabled.
  326. */
  327. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  328. {
  329. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  330. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  331. raw_spin_lock(&rq->lock);
  332. update_rq_clock(rq);
  333. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  334. raw_spin_unlock(&rq->lock);
  335. return HRTIMER_NORESTART;
  336. }
  337. #ifdef CONFIG_SMP
  338. /*
  339. * called from hardirq (IPI) context
  340. */
  341. static void __hrtick_start(void *arg)
  342. {
  343. struct rq *rq = arg;
  344. raw_spin_lock(&rq->lock);
  345. hrtimer_restart(&rq->hrtick_timer);
  346. rq->hrtick_csd_pending = 0;
  347. raw_spin_unlock(&rq->lock);
  348. }
  349. /*
  350. * Called to set the hrtick timer state.
  351. *
  352. * called with rq->lock held and irqs disabled
  353. */
  354. void hrtick_start(struct rq *rq, u64 delay)
  355. {
  356. struct hrtimer *timer = &rq->hrtick_timer;
  357. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  358. hrtimer_set_expires(timer, time);
  359. if (rq == this_rq()) {
  360. hrtimer_restart(timer);
  361. } else if (!rq->hrtick_csd_pending) {
  362. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  363. rq->hrtick_csd_pending = 1;
  364. }
  365. }
  366. static int
  367. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  368. {
  369. int cpu = (int)(long)hcpu;
  370. switch (action) {
  371. case CPU_UP_CANCELED:
  372. case CPU_UP_CANCELED_FROZEN:
  373. case CPU_DOWN_PREPARE:
  374. case CPU_DOWN_PREPARE_FROZEN:
  375. case CPU_DEAD:
  376. case CPU_DEAD_FROZEN:
  377. hrtick_clear(cpu_rq(cpu));
  378. return NOTIFY_OK;
  379. }
  380. return NOTIFY_DONE;
  381. }
  382. static __init void init_hrtick(void)
  383. {
  384. hotcpu_notifier(hotplug_hrtick, 0);
  385. }
  386. #else
  387. /*
  388. * Called to set the hrtick timer state.
  389. *
  390. * called with rq->lock held and irqs disabled
  391. */
  392. void hrtick_start(struct rq *rq, u64 delay)
  393. {
  394. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  395. HRTIMER_MODE_REL_PINNED, 0);
  396. }
  397. static inline void init_hrtick(void)
  398. {
  399. }
  400. #endif /* CONFIG_SMP */
  401. static void init_rq_hrtick(struct rq *rq)
  402. {
  403. #ifdef CONFIG_SMP
  404. rq->hrtick_csd_pending = 0;
  405. rq->hrtick_csd.flags = 0;
  406. rq->hrtick_csd.func = __hrtick_start;
  407. rq->hrtick_csd.info = rq;
  408. #endif
  409. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  410. rq->hrtick_timer.function = hrtick;
  411. }
  412. #else /* CONFIG_SCHED_HRTICK */
  413. static inline void hrtick_clear(struct rq *rq)
  414. {
  415. }
  416. static inline void init_rq_hrtick(struct rq *rq)
  417. {
  418. }
  419. static inline void init_hrtick(void)
  420. {
  421. }
  422. #endif /* CONFIG_SCHED_HRTICK */
  423. /*
  424. * resched_task - mark a task 'to be rescheduled now'.
  425. *
  426. * On UP this means the setting of the need_resched flag, on SMP it
  427. * might also involve a cross-CPU call to trigger the scheduler on
  428. * the target CPU.
  429. */
  430. #ifdef CONFIG_SMP
  431. #ifndef tsk_is_polling
  432. #define tsk_is_polling(t) 0
  433. #endif
  434. void resched_task(struct task_struct *p)
  435. {
  436. int cpu;
  437. assert_raw_spin_locked(&task_rq(p)->lock);
  438. if (test_tsk_need_resched(p))
  439. return;
  440. set_tsk_need_resched(p);
  441. cpu = task_cpu(p);
  442. if (cpu == smp_processor_id())
  443. return;
  444. /* NEED_RESCHED must be visible before we test polling */
  445. smp_mb();
  446. if (!tsk_is_polling(p))
  447. smp_send_reschedule(cpu);
  448. }
  449. void resched_cpu(int cpu)
  450. {
  451. struct rq *rq = cpu_rq(cpu);
  452. unsigned long flags;
  453. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  454. return;
  455. resched_task(cpu_curr(cpu));
  456. raw_spin_unlock_irqrestore(&rq->lock, flags);
  457. }
  458. #ifdef CONFIG_NO_HZ
  459. /*
  460. * In the semi idle case, use the nearest busy cpu for migrating timers
  461. * from an idle cpu. This is good for power-savings.
  462. *
  463. * We don't do similar optimization for completely idle system, as
  464. * selecting an idle cpu will add more delays to the timers than intended
  465. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  466. */
  467. int get_nohz_timer_target(void)
  468. {
  469. int cpu = smp_processor_id();
  470. int i;
  471. struct sched_domain *sd;
  472. rcu_read_lock();
  473. for_each_domain(cpu, sd) {
  474. for_each_cpu(i, sched_domain_span(sd)) {
  475. if (!idle_cpu(i)) {
  476. cpu = i;
  477. goto unlock;
  478. }
  479. }
  480. }
  481. unlock:
  482. rcu_read_unlock();
  483. return cpu;
  484. }
  485. /*
  486. * When add_timer_on() enqueues a timer into the timer wheel of an
  487. * idle CPU then this timer might expire before the next timer event
  488. * which is scheduled to wake up that CPU. In case of a completely
  489. * idle system the next event might even be infinite time into the
  490. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  491. * leaves the inner idle loop so the newly added timer is taken into
  492. * account when the CPU goes back to idle and evaluates the timer
  493. * wheel for the next timer event.
  494. */
  495. void wake_up_idle_cpu(int cpu)
  496. {
  497. struct rq *rq = cpu_rq(cpu);
  498. if (cpu == smp_processor_id())
  499. return;
  500. /*
  501. * This is safe, as this function is called with the timer
  502. * wheel base lock of (cpu) held. When the CPU is on the way
  503. * to idle and has not yet set rq->curr to idle then it will
  504. * be serialized on the timer wheel base lock and take the new
  505. * timer into account automatically.
  506. */
  507. if (rq->curr != rq->idle)
  508. return;
  509. /*
  510. * We can set TIF_RESCHED on the idle task of the other CPU
  511. * lockless. The worst case is that the other CPU runs the
  512. * idle task through an additional NOOP schedule()
  513. */
  514. set_tsk_need_resched(rq->idle);
  515. /* NEED_RESCHED must be visible before we test polling */
  516. smp_mb();
  517. if (!tsk_is_polling(rq->idle))
  518. smp_send_reschedule(cpu);
  519. }
  520. static inline bool got_nohz_idle_kick(void)
  521. {
  522. int cpu = smp_processor_id();
  523. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  524. }
  525. #else /* CONFIG_NO_HZ */
  526. static inline bool got_nohz_idle_kick(void)
  527. {
  528. return false;
  529. }
  530. #endif /* CONFIG_NO_HZ */
  531. void sched_avg_update(struct rq *rq)
  532. {
  533. s64 period = sched_avg_period();
  534. while ((s64)(rq->clock - rq->age_stamp) > period) {
  535. /*
  536. * Inline assembly required to prevent the compiler
  537. * optimising this loop into a divmod call.
  538. * See __iter_div_u64_rem() for another example of this.
  539. */
  540. asm("" : "+rm" (rq->age_stamp));
  541. rq->age_stamp += period;
  542. rq->rt_avg /= 2;
  543. }
  544. }
  545. #else /* !CONFIG_SMP */
  546. void resched_task(struct task_struct *p)
  547. {
  548. assert_raw_spin_locked(&task_rq(p)->lock);
  549. set_tsk_need_resched(p);
  550. }
  551. #endif /* CONFIG_SMP */
  552. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  553. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  554. /*
  555. * Iterate task_group tree rooted at *from, calling @down when first entering a
  556. * node and @up when leaving it for the final time.
  557. *
  558. * Caller must hold rcu_lock or sufficient equivalent.
  559. */
  560. int walk_tg_tree_from(struct task_group *from,
  561. tg_visitor down, tg_visitor up, void *data)
  562. {
  563. struct task_group *parent, *child;
  564. int ret;
  565. parent = from;
  566. down:
  567. ret = (*down)(parent, data);
  568. if (ret)
  569. goto out;
  570. list_for_each_entry_rcu(child, &parent->children, siblings) {
  571. parent = child;
  572. goto down;
  573. up:
  574. continue;
  575. }
  576. ret = (*up)(parent, data);
  577. if (ret || parent == from)
  578. goto out;
  579. child = parent;
  580. parent = parent->parent;
  581. if (parent)
  582. goto up;
  583. out:
  584. return ret;
  585. }
  586. int tg_nop(struct task_group *tg, void *data)
  587. {
  588. return 0;
  589. }
  590. #endif
  591. static void set_load_weight(struct task_struct *p)
  592. {
  593. int prio = p->static_prio - MAX_RT_PRIO;
  594. struct load_weight *load = &p->se.load;
  595. /*
  596. * SCHED_IDLE tasks get minimal weight:
  597. */
  598. if (p->policy == SCHED_IDLE) {
  599. load->weight = scale_load(WEIGHT_IDLEPRIO);
  600. load->inv_weight = WMULT_IDLEPRIO;
  601. return;
  602. }
  603. load->weight = scale_load(prio_to_weight[prio]);
  604. load->inv_weight = prio_to_wmult[prio];
  605. }
  606. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  607. {
  608. update_rq_clock(rq);
  609. sched_info_queued(p);
  610. p->sched_class->enqueue_task(rq, p, flags);
  611. }
  612. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  613. {
  614. update_rq_clock(rq);
  615. sched_info_dequeued(p);
  616. p->sched_class->dequeue_task(rq, p, flags);
  617. }
  618. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  619. {
  620. if (task_contributes_to_load(p))
  621. rq->nr_uninterruptible--;
  622. enqueue_task(rq, p, flags);
  623. }
  624. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  625. {
  626. if (task_contributes_to_load(p))
  627. rq->nr_uninterruptible++;
  628. dequeue_task(rq, p, flags);
  629. }
  630. static void update_rq_clock_task(struct rq *rq, s64 delta)
  631. {
  632. /*
  633. * In theory, the compile should just see 0 here, and optimize out the call
  634. * to sched_rt_avg_update. But I don't trust it...
  635. */
  636. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  637. s64 steal = 0, irq_delta = 0;
  638. #endif
  639. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  640. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  641. /*
  642. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  643. * this case when a previous update_rq_clock() happened inside a
  644. * {soft,}irq region.
  645. *
  646. * When this happens, we stop ->clock_task and only update the
  647. * prev_irq_time stamp to account for the part that fit, so that a next
  648. * update will consume the rest. This ensures ->clock_task is
  649. * monotonic.
  650. *
  651. * It does however cause some slight miss-attribution of {soft,}irq
  652. * time, a more accurate solution would be to update the irq_time using
  653. * the current rq->clock timestamp, except that would require using
  654. * atomic ops.
  655. */
  656. if (irq_delta > delta)
  657. irq_delta = delta;
  658. rq->prev_irq_time += irq_delta;
  659. delta -= irq_delta;
  660. #endif
  661. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  662. if (static_key_false((&paravirt_steal_rq_enabled))) {
  663. u64 st;
  664. steal = paravirt_steal_clock(cpu_of(rq));
  665. steal -= rq->prev_steal_time_rq;
  666. if (unlikely(steal > delta))
  667. steal = delta;
  668. st = steal_ticks(steal);
  669. steal = st * TICK_NSEC;
  670. rq->prev_steal_time_rq += steal;
  671. delta -= steal;
  672. }
  673. #endif
  674. rq->clock_task += delta;
  675. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  676. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  677. sched_rt_avg_update(rq, irq_delta + steal);
  678. #endif
  679. }
  680. void sched_set_stop_task(int cpu, struct task_struct *stop)
  681. {
  682. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  683. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  684. if (stop) {
  685. /*
  686. * Make it appear like a SCHED_FIFO task, its something
  687. * userspace knows about and won't get confused about.
  688. *
  689. * Also, it will make PI more or less work without too
  690. * much confusion -- but then, stop work should not
  691. * rely on PI working anyway.
  692. */
  693. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  694. stop->sched_class = &stop_sched_class;
  695. }
  696. cpu_rq(cpu)->stop = stop;
  697. if (old_stop) {
  698. /*
  699. * Reset it back to a normal scheduling class so that
  700. * it can die in pieces.
  701. */
  702. old_stop->sched_class = &rt_sched_class;
  703. }
  704. }
  705. /*
  706. * __normal_prio - return the priority that is based on the static prio
  707. */
  708. static inline int __normal_prio(struct task_struct *p)
  709. {
  710. return p->static_prio;
  711. }
  712. /*
  713. * Calculate the expected normal priority: i.e. priority
  714. * without taking RT-inheritance into account. Might be
  715. * boosted by interactivity modifiers. Changes upon fork,
  716. * setprio syscalls, and whenever the interactivity
  717. * estimator recalculates.
  718. */
  719. static inline int normal_prio(struct task_struct *p)
  720. {
  721. int prio;
  722. if (task_has_rt_policy(p))
  723. prio = MAX_RT_PRIO-1 - p->rt_priority;
  724. else
  725. prio = __normal_prio(p);
  726. return prio;
  727. }
  728. /*
  729. * Calculate the current priority, i.e. the priority
  730. * taken into account by the scheduler. This value might
  731. * be boosted by RT tasks, or might be boosted by
  732. * interactivity modifiers. Will be RT if the task got
  733. * RT-boosted. If not then it returns p->normal_prio.
  734. */
  735. static int effective_prio(struct task_struct *p)
  736. {
  737. p->normal_prio = normal_prio(p);
  738. /*
  739. * If we are RT tasks or we were boosted to RT priority,
  740. * keep the priority unchanged. Otherwise, update priority
  741. * to the normal priority:
  742. */
  743. if (!rt_prio(p->prio))
  744. return p->normal_prio;
  745. return p->prio;
  746. }
  747. /**
  748. * task_curr - is this task currently executing on a CPU?
  749. * @p: the task in question.
  750. */
  751. inline int task_curr(const struct task_struct *p)
  752. {
  753. return cpu_curr(task_cpu(p)) == p;
  754. }
  755. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  756. const struct sched_class *prev_class,
  757. int oldprio)
  758. {
  759. if (prev_class != p->sched_class) {
  760. if (prev_class->switched_from)
  761. prev_class->switched_from(rq, p);
  762. p->sched_class->switched_to(rq, p);
  763. } else if (oldprio != p->prio)
  764. p->sched_class->prio_changed(rq, p, oldprio);
  765. }
  766. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  767. {
  768. const struct sched_class *class;
  769. if (p->sched_class == rq->curr->sched_class) {
  770. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  771. } else {
  772. for_each_class(class) {
  773. if (class == rq->curr->sched_class)
  774. break;
  775. if (class == p->sched_class) {
  776. resched_task(rq->curr);
  777. break;
  778. }
  779. }
  780. }
  781. /*
  782. * A queue event has occurred, and we're going to schedule. In
  783. * this case, we can save a useless back to back clock update.
  784. */
  785. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  786. rq->skip_clock_update = 1;
  787. }
  788. static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
  789. void register_task_migration_notifier(struct notifier_block *n)
  790. {
  791. atomic_notifier_chain_register(&task_migration_notifier, n);
  792. }
  793. #ifdef CONFIG_SMP
  794. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  795. {
  796. #ifdef CONFIG_SCHED_DEBUG
  797. /*
  798. * We should never call set_task_cpu() on a blocked task,
  799. * ttwu() will sort out the placement.
  800. */
  801. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  802. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  803. #ifdef CONFIG_LOCKDEP
  804. /*
  805. * The caller should hold either p->pi_lock or rq->lock, when changing
  806. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  807. *
  808. * sched_move_task() holds both and thus holding either pins the cgroup,
  809. * see task_group().
  810. *
  811. * Furthermore, all task_rq users should acquire both locks, see
  812. * task_rq_lock().
  813. */
  814. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  815. lockdep_is_held(&task_rq(p)->lock)));
  816. #endif
  817. #endif
  818. trace_sched_migrate_task(p, new_cpu);
  819. if (task_cpu(p) != new_cpu) {
  820. struct task_migration_notifier tmn;
  821. if (p->sched_class->migrate_task_rq)
  822. p->sched_class->migrate_task_rq(p, new_cpu);
  823. p->se.nr_migrations++;
  824. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  825. tmn.task = p;
  826. tmn.from_cpu = task_cpu(p);
  827. tmn.to_cpu = new_cpu;
  828. atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
  829. }
  830. __set_task_cpu(p, new_cpu);
  831. }
  832. struct migration_arg {
  833. struct task_struct *task;
  834. int dest_cpu;
  835. };
  836. static int migration_cpu_stop(void *data);
  837. /*
  838. * wait_task_inactive - wait for a thread to unschedule.
  839. *
  840. * If @match_state is nonzero, it's the @p->state value just checked and
  841. * not expected to change. If it changes, i.e. @p might have woken up,
  842. * then return zero. When we succeed in waiting for @p to be off its CPU,
  843. * we return a positive number (its total switch count). If a second call
  844. * a short while later returns the same number, the caller can be sure that
  845. * @p has remained unscheduled the whole time.
  846. *
  847. * The caller must ensure that the task *will* unschedule sometime soon,
  848. * else this function might spin for a *long* time. This function can't
  849. * be called with interrupts off, or it may introduce deadlock with
  850. * smp_call_function() if an IPI is sent by the same process we are
  851. * waiting to become inactive.
  852. */
  853. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  854. {
  855. unsigned long flags;
  856. int running, on_rq;
  857. unsigned long ncsw;
  858. struct rq *rq;
  859. for (;;) {
  860. /*
  861. * We do the initial early heuristics without holding
  862. * any task-queue locks at all. We'll only try to get
  863. * the runqueue lock when things look like they will
  864. * work out!
  865. */
  866. rq = task_rq(p);
  867. /*
  868. * If the task is actively running on another CPU
  869. * still, just relax and busy-wait without holding
  870. * any locks.
  871. *
  872. * NOTE! Since we don't hold any locks, it's not
  873. * even sure that "rq" stays as the right runqueue!
  874. * But we don't care, since "task_running()" will
  875. * return false if the runqueue has changed and p
  876. * is actually now running somewhere else!
  877. */
  878. while (task_running(rq, p)) {
  879. if (match_state && unlikely(p->state != match_state))
  880. return 0;
  881. cpu_relax();
  882. }
  883. /*
  884. * Ok, time to look more closely! We need the rq
  885. * lock now, to be *sure*. If we're wrong, we'll
  886. * just go back and repeat.
  887. */
  888. rq = task_rq_lock(p, &flags);
  889. trace_sched_wait_task(p);
  890. running = task_running(rq, p);
  891. on_rq = p->on_rq;
  892. ncsw = 0;
  893. if (!match_state || p->state == match_state)
  894. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  895. task_rq_unlock(rq, p, &flags);
  896. /*
  897. * If it changed from the expected state, bail out now.
  898. */
  899. if (unlikely(!ncsw))
  900. break;
  901. /*
  902. * Was it really running after all now that we
  903. * checked with the proper locks actually held?
  904. *
  905. * Oops. Go back and try again..
  906. */
  907. if (unlikely(running)) {
  908. cpu_relax();
  909. continue;
  910. }
  911. /*
  912. * It's not enough that it's not actively running,
  913. * it must be off the runqueue _entirely_, and not
  914. * preempted!
  915. *
  916. * So if it was still runnable (but just not actively
  917. * running right now), it's preempted, and we should
  918. * yield - it could be a while.
  919. */
  920. if (unlikely(on_rq)) {
  921. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  922. set_current_state(TASK_UNINTERRUPTIBLE);
  923. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  924. continue;
  925. }
  926. /*
  927. * Ahh, all good. It wasn't running, and it wasn't
  928. * runnable, which means that it will never become
  929. * running in the future either. We're all done!
  930. */
  931. break;
  932. }
  933. return ncsw;
  934. }
  935. /***
  936. * kick_process - kick a running thread to enter/exit the kernel
  937. * @p: the to-be-kicked thread
  938. *
  939. * Cause a process which is running on another CPU to enter
  940. * kernel-mode, without any delay. (to get signals handled.)
  941. *
  942. * NOTE: this function doesn't have to take the runqueue lock,
  943. * because all it wants to ensure is that the remote task enters
  944. * the kernel. If the IPI races and the task has been migrated
  945. * to another CPU then no harm is done and the purpose has been
  946. * achieved as well.
  947. */
  948. void kick_process(struct task_struct *p)
  949. {
  950. int cpu;
  951. preempt_disable();
  952. cpu = task_cpu(p);
  953. if ((cpu != smp_processor_id()) && task_curr(p))
  954. smp_send_reschedule(cpu);
  955. preempt_enable();
  956. }
  957. EXPORT_SYMBOL_GPL(kick_process);
  958. #endif /* CONFIG_SMP */
  959. #ifdef CONFIG_SMP
  960. /*
  961. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  962. */
  963. static int select_fallback_rq(int cpu, struct task_struct *p)
  964. {
  965. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  966. enum { cpuset, possible, fail } state = cpuset;
  967. int dest_cpu;
  968. /* Look for allowed, online CPU in same node. */
  969. for_each_cpu(dest_cpu, nodemask) {
  970. if (!cpu_online(dest_cpu))
  971. continue;
  972. if (!cpu_active(dest_cpu))
  973. continue;
  974. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  975. return dest_cpu;
  976. }
  977. for (;;) {
  978. /* Any allowed, online CPU? */
  979. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  980. if (!cpu_online(dest_cpu))
  981. continue;
  982. if (!cpu_active(dest_cpu))
  983. continue;
  984. goto out;
  985. }
  986. switch (state) {
  987. case cpuset:
  988. /* No more Mr. Nice Guy. */
  989. cpuset_cpus_allowed_fallback(p);
  990. state = possible;
  991. break;
  992. case possible:
  993. do_set_cpus_allowed(p, cpu_possible_mask);
  994. state = fail;
  995. break;
  996. case fail:
  997. BUG();
  998. break;
  999. }
  1000. }
  1001. out:
  1002. if (state != cpuset) {
  1003. /*
  1004. * Don't tell them about moving exiting tasks or
  1005. * kernel threads (both mm NULL), since they never
  1006. * leave kernel.
  1007. */
  1008. if (p->mm && printk_ratelimit()) {
  1009. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1010. task_pid_nr(p), p->comm, cpu);
  1011. }
  1012. }
  1013. return dest_cpu;
  1014. }
  1015. /*
  1016. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1017. */
  1018. static inline
  1019. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1020. {
  1021. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1022. /*
  1023. * In order not to call set_task_cpu() on a blocking task we need
  1024. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1025. * cpu.
  1026. *
  1027. * Since this is common to all placement strategies, this lives here.
  1028. *
  1029. * [ this allows ->select_task() to simply return task_cpu(p) and
  1030. * not worry about this generic constraint ]
  1031. */
  1032. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1033. !cpu_online(cpu)))
  1034. cpu = select_fallback_rq(task_cpu(p), p);
  1035. return cpu;
  1036. }
  1037. static void update_avg(u64 *avg, u64 sample)
  1038. {
  1039. s64 diff = sample - *avg;
  1040. *avg += diff >> 3;
  1041. }
  1042. #endif
  1043. static void
  1044. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1045. {
  1046. #ifdef CONFIG_SCHEDSTATS
  1047. struct rq *rq = this_rq();
  1048. #ifdef CONFIG_SMP
  1049. int this_cpu = smp_processor_id();
  1050. if (cpu == this_cpu) {
  1051. schedstat_inc(rq, ttwu_local);
  1052. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1053. } else {
  1054. struct sched_domain *sd;
  1055. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1056. rcu_read_lock();
  1057. for_each_domain(this_cpu, sd) {
  1058. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1059. schedstat_inc(sd, ttwu_wake_remote);
  1060. break;
  1061. }
  1062. }
  1063. rcu_read_unlock();
  1064. }
  1065. if (wake_flags & WF_MIGRATED)
  1066. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1067. #endif /* CONFIG_SMP */
  1068. schedstat_inc(rq, ttwu_count);
  1069. schedstat_inc(p, se.statistics.nr_wakeups);
  1070. if (wake_flags & WF_SYNC)
  1071. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1072. #endif /* CONFIG_SCHEDSTATS */
  1073. }
  1074. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1075. {
  1076. activate_task(rq, p, en_flags);
  1077. p->on_rq = 1;
  1078. /* if a worker is waking up, notify workqueue */
  1079. if (p->flags & PF_WQ_WORKER)
  1080. wq_worker_waking_up(p, cpu_of(rq));
  1081. }
  1082. /*
  1083. * Mark the task runnable and perform wakeup-preemption.
  1084. */
  1085. static void
  1086. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1087. {
  1088. trace_sched_wakeup(p, true);
  1089. check_preempt_curr(rq, p, wake_flags);
  1090. p->state = TASK_RUNNING;
  1091. #ifdef CONFIG_SMP
  1092. if (p->sched_class->task_woken)
  1093. p->sched_class->task_woken(rq, p);
  1094. if (rq->idle_stamp) {
  1095. u64 delta = rq->clock - rq->idle_stamp;
  1096. u64 max = 2*sysctl_sched_migration_cost;
  1097. if (delta > max)
  1098. rq->avg_idle = max;
  1099. else
  1100. update_avg(&rq->avg_idle, delta);
  1101. rq->idle_stamp = 0;
  1102. }
  1103. #endif
  1104. }
  1105. static void
  1106. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1107. {
  1108. #ifdef CONFIG_SMP
  1109. if (p->sched_contributes_to_load)
  1110. rq->nr_uninterruptible--;
  1111. #endif
  1112. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1113. ttwu_do_wakeup(rq, p, wake_flags);
  1114. }
  1115. /*
  1116. * Called in case the task @p isn't fully descheduled from its runqueue,
  1117. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1118. * since all we need to do is flip p->state to TASK_RUNNING, since
  1119. * the task is still ->on_rq.
  1120. */
  1121. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1122. {
  1123. struct rq *rq;
  1124. int ret = 0;
  1125. rq = __task_rq_lock(p);
  1126. if (p->on_rq) {
  1127. ttwu_do_wakeup(rq, p, wake_flags);
  1128. ret = 1;
  1129. }
  1130. __task_rq_unlock(rq);
  1131. return ret;
  1132. }
  1133. #ifdef CONFIG_SMP
  1134. static void sched_ttwu_pending(void)
  1135. {
  1136. struct rq *rq = this_rq();
  1137. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1138. struct task_struct *p;
  1139. raw_spin_lock(&rq->lock);
  1140. while (llist) {
  1141. p = llist_entry(llist, struct task_struct, wake_entry);
  1142. llist = llist_next(llist);
  1143. ttwu_do_activate(rq, p, 0);
  1144. }
  1145. raw_spin_unlock(&rq->lock);
  1146. }
  1147. void scheduler_ipi(void)
  1148. {
  1149. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1150. return;
  1151. /*
  1152. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1153. * traditionally all their work was done from the interrupt return
  1154. * path. Now that we actually do some work, we need to make sure
  1155. * we do call them.
  1156. *
  1157. * Some archs already do call them, luckily irq_enter/exit nest
  1158. * properly.
  1159. *
  1160. * Arguably we should visit all archs and update all handlers,
  1161. * however a fair share of IPIs are still resched only so this would
  1162. * somewhat pessimize the simple resched case.
  1163. */
  1164. irq_enter();
  1165. sched_ttwu_pending();
  1166. /*
  1167. * Check if someone kicked us for doing the nohz idle load balance.
  1168. */
  1169. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1170. this_rq()->idle_balance = 1;
  1171. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1172. }
  1173. irq_exit();
  1174. }
  1175. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1176. {
  1177. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1178. smp_send_reschedule(cpu);
  1179. }
  1180. bool cpus_share_cache(int this_cpu, int that_cpu)
  1181. {
  1182. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1183. }
  1184. #endif /* CONFIG_SMP */
  1185. static void ttwu_queue(struct task_struct *p, int cpu)
  1186. {
  1187. struct rq *rq = cpu_rq(cpu);
  1188. #if defined(CONFIG_SMP)
  1189. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1190. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1191. ttwu_queue_remote(p, cpu);
  1192. return;
  1193. }
  1194. #endif
  1195. raw_spin_lock(&rq->lock);
  1196. ttwu_do_activate(rq, p, 0);
  1197. raw_spin_unlock(&rq->lock);
  1198. }
  1199. /**
  1200. * try_to_wake_up - wake up a thread
  1201. * @p: the thread to be awakened
  1202. * @state: the mask of task states that can be woken
  1203. * @wake_flags: wake modifier flags (WF_*)
  1204. *
  1205. * Put it on the run-queue if it's not already there. The "current"
  1206. * thread is always on the run-queue (except when the actual
  1207. * re-schedule is in progress), and as such you're allowed to do
  1208. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1209. * runnable without the overhead of this.
  1210. *
  1211. * Returns %true if @p was woken up, %false if it was already running
  1212. * or @state didn't match @p's state.
  1213. */
  1214. static int
  1215. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1216. {
  1217. unsigned long flags;
  1218. int cpu, success = 0;
  1219. smp_wmb();
  1220. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1221. if (!(p->state & state))
  1222. goto out;
  1223. success = 1; /* we're going to change ->state */
  1224. cpu = task_cpu(p);
  1225. if (p->on_rq && ttwu_remote(p, wake_flags))
  1226. goto stat;
  1227. #ifdef CONFIG_SMP
  1228. /*
  1229. * If the owning (remote) cpu is still in the middle of schedule() with
  1230. * this task as prev, wait until its done referencing the task.
  1231. */
  1232. while (p->on_cpu)
  1233. cpu_relax();
  1234. /*
  1235. * Pairs with the smp_wmb() in finish_lock_switch().
  1236. */
  1237. smp_rmb();
  1238. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1239. p->state = TASK_WAKING;
  1240. if (p->sched_class->task_waking)
  1241. p->sched_class->task_waking(p);
  1242. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1243. if (task_cpu(p) != cpu) {
  1244. wake_flags |= WF_MIGRATED;
  1245. set_task_cpu(p, cpu);
  1246. }
  1247. #endif /* CONFIG_SMP */
  1248. ttwu_queue(p, cpu);
  1249. stat:
  1250. ttwu_stat(p, cpu, wake_flags);
  1251. out:
  1252. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1253. return success;
  1254. }
  1255. /**
  1256. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1257. * @p: the thread to be awakened
  1258. *
  1259. * Put @p on the run-queue if it's not already there. The caller must
  1260. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1261. * the current task.
  1262. */
  1263. static void try_to_wake_up_local(struct task_struct *p)
  1264. {
  1265. struct rq *rq = task_rq(p);
  1266. BUG_ON(rq != this_rq());
  1267. BUG_ON(p == current);
  1268. lockdep_assert_held(&rq->lock);
  1269. if (!raw_spin_trylock(&p->pi_lock)) {
  1270. raw_spin_unlock(&rq->lock);
  1271. raw_spin_lock(&p->pi_lock);
  1272. raw_spin_lock(&rq->lock);
  1273. }
  1274. if (!(p->state & TASK_NORMAL))
  1275. goto out;
  1276. if (!p->on_rq)
  1277. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1278. ttwu_do_wakeup(rq, p, 0);
  1279. ttwu_stat(p, smp_processor_id(), 0);
  1280. out:
  1281. raw_spin_unlock(&p->pi_lock);
  1282. }
  1283. /**
  1284. * wake_up_process - Wake up a specific process
  1285. * @p: The process to be woken up.
  1286. *
  1287. * Attempt to wake up the nominated process and move it to the set of runnable
  1288. * processes. Returns 1 if the process was woken up, 0 if it was already
  1289. * running.
  1290. *
  1291. * It may be assumed that this function implies a write memory barrier before
  1292. * changing the task state if and only if any tasks are woken up.
  1293. */
  1294. int wake_up_process(struct task_struct *p)
  1295. {
  1296. WARN_ON(task_is_stopped_or_traced(p));
  1297. return try_to_wake_up(p, TASK_NORMAL, 0);
  1298. }
  1299. EXPORT_SYMBOL(wake_up_process);
  1300. int wake_up_state(struct task_struct *p, unsigned int state)
  1301. {
  1302. return try_to_wake_up(p, state, 0);
  1303. }
  1304. /*
  1305. * Perform scheduler related setup for a newly forked process p.
  1306. * p is forked by current.
  1307. *
  1308. * __sched_fork() is basic setup used by init_idle() too:
  1309. */
  1310. static void __sched_fork(struct task_struct *p)
  1311. {
  1312. p->on_rq = 0;
  1313. p->se.on_rq = 0;
  1314. p->se.exec_start = 0;
  1315. p->se.sum_exec_runtime = 0;
  1316. p->se.prev_sum_exec_runtime = 0;
  1317. p->se.nr_migrations = 0;
  1318. p->se.vruntime = 0;
  1319. INIT_LIST_HEAD(&p->se.group_node);
  1320. /*
  1321. * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
  1322. * removed when useful for applications beyond shares distribution (e.g.
  1323. * load-balance).
  1324. */
  1325. #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
  1326. p->se.avg.runnable_avg_period = 0;
  1327. p->se.avg.runnable_avg_sum = 0;
  1328. #endif
  1329. #ifdef CONFIG_SCHEDSTATS
  1330. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1331. #endif
  1332. INIT_LIST_HEAD(&p->rt.run_list);
  1333. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1334. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1335. #endif
  1336. #ifdef CONFIG_NUMA_BALANCING
  1337. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1338. p->mm->numa_next_scan = jiffies;
  1339. p->mm->numa_next_reset = jiffies;
  1340. p->mm->numa_scan_seq = 0;
  1341. }
  1342. p->node_stamp = 0ULL;
  1343. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1344. p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
  1345. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1346. p->numa_work.next = &p->numa_work;
  1347. #endif /* CONFIG_NUMA_BALANCING */
  1348. }
  1349. #ifdef CONFIG_NUMA_BALANCING
  1350. #ifdef CONFIG_SCHED_DEBUG
  1351. void set_numabalancing_state(bool enabled)
  1352. {
  1353. if (enabled)
  1354. sched_feat_set("NUMA");
  1355. else
  1356. sched_feat_set("NO_NUMA");
  1357. }
  1358. #else
  1359. __read_mostly bool numabalancing_enabled;
  1360. void set_numabalancing_state(bool enabled)
  1361. {
  1362. numabalancing_enabled = enabled;
  1363. }
  1364. #endif /* CONFIG_SCHED_DEBUG */
  1365. #endif /* CONFIG_NUMA_BALANCING */
  1366. /*
  1367. * fork()/clone()-time setup:
  1368. */
  1369. void sched_fork(struct task_struct *p)
  1370. {
  1371. unsigned long flags;
  1372. int cpu = get_cpu();
  1373. __sched_fork(p);
  1374. /*
  1375. * We mark the process as running here. This guarantees that
  1376. * nobody will actually run it, and a signal or other external
  1377. * event cannot wake it up and insert it on the runqueue either.
  1378. */
  1379. p->state = TASK_RUNNING;
  1380. /*
  1381. * Make sure we do not leak PI boosting priority to the child.
  1382. */
  1383. p->prio = current->normal_prio;
  1384. /*
  1385. * Revert to default priority/policy on fork if requested.
  1386. */
  1387. if (unlikely(p->sched_reset_on_fork)) {
  1388. if (task_has_rt_policy(p)) {
  1389. p->policy = SCHED_NORMAL;
  1390. p->static_prio = NICE_TO_PRIO(0);
  1391. p->rt_priority = 0;
  1392. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1393. p->static_prio = NICE_TO_PRIO(0);
  1394. p->prio = p->normal_prio = __normal_prio(p);
  1395. set_load_weight(p);
  1396. /*
  1397. * We don't need the reset flag anymore after the fork. It has
  1398. * fulfilled its duty:
  1399. */
  1400. p->sched_reset_on_fork = 0;
  1401. }
  1402. if (!rt_prio(p->prio))
  1403. p->sched_class = &fair_sched_class;
  1404. if (p->sched_class->task_fork)
  1405. p->sched_class->task_fork(p);
  1406. /*
  1407. * The child is not yet in the pid-hash so no cgroup attach races,
  1408. * and the cgroup is pinned to this child due to cgroup_fork()
  1409. * is ran before sched_fork().
  1410. *
  1411. * Silence PROVE_RCU.
  1412. */
  1413. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1414. set_task_cpu(p, cpu);
  1415. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1416. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1417. if (likely(sched_info_on()))
  1418. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1419. #endif
  1420. #if defined(CONFIG_SMP)
  1421. p->on_cpu = 0;
  1422. #endif
  1423. #ifdef CONFIG_PREEMPT_COUNT
  1424. /* Want to start with kernel preemption disabled. */
  1425. task_thread_info(p)->preempt_count = 1;
  1426. #endif
  1427. #ifdef CONFIG_SMP
  1428. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1429. #endif
  1430. put_cpu();
  1431. }
  1432. /*
  1433. * wake_up_new_task - wake up a newly created task for the first time.
  1434. *
  1435. * This function will do some initial scheduler statistics housekeeping
  1436. * that must be done for every newly created context, then puts the task
  1437. * on the runqueue and wakes it.
  1438. */
  1439. void wake_up_new_task(struct task_struct *p)
  1440. {
  1441. unsigned long flags;
  1442. struct rq *rq;
  1443. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1444. #ifdef CONFIG_SMP
  1445. /*
  1446. * Fork balancing, do it here and not earlier because:
  1447. * - cpus_allowed can change in the fork path
  1448. * - any previously selected cpu might disappear through hotplug
  1449. */
  1450. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1451. #endif
  1452. rq = __task_rq_lock(p);
  1453. activate_task(rq, p, 0);
  1454. p->on_rq = 1;
  1455. trace_sched_wakeup_new(p, true);
  1456. check_preempt_curr(rq, p, WF_FORK);
  1457. #ifdef CONFIG_SMP
  1458. if (p->sched_class->task_woken)
  1459. p->sched_class->task_woken(rq, p);
  1460. #endif
  1461. task_rq_unlock(rq, p, &flags);
  1462. }
  1463. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1464. /**
  1465. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1466. * @notifier: notifier struct to register
  1467. */
  1468. void preempt_notifier_register(struct preempt_notifier *notifier)
  1469. {
  1470. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1471. }
  1472. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1473. /**
  1474. * preempt_notifier_unregister - no longer interested in preemption notifications
  1475. * @notifier: notifier struct to unregister
  1476. *
  1477. * This is safe to call from within a preemption notifier.
  1478. */
  1479. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1480. {
  1481. hlist_del(&notifier->link);
  1482. }
  1483. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1484. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1485. {
  1486. struct preempt_notifier *notifier;
  1487. struct hlist_node *node;
  1488. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1489. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1490. }
  1491. static void
  1492. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1493. struct task_struct *next)
  1494. {
  1495. struct preempt_notifier *notifier;
  1496. struct hlist_node *node;
  1497. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1498. notifier->ops->sched_out(notifier, next);
  1499. }
  1500. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1501. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1502. {
  1503. }
  1504. static void
  1505. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1506. struct task_struct *next)
  1507. {
  1508. }
  1509. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1510. /**
  1511. * prepare_task_switch - prepare to switch tasks
  1512. * @rq: the runqueue preparing to switch
  1513. * @prev: the current task that is being switched out
  1514. * @next: the task we are going to switch to.
  1515. *
  1516. * This is called with the rq lock held and interrupts off. It must
  1517. * be paired with a subsequent finish_task_switch after the context
  1518. * switch.
  1519. *
  1520. * prepare_task_switch sets up locking and calls architecture specific
  1521. * hooks.
  1522. */
  1523. static inline void
  1524. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1525. struct task_struct *next)
  1526. {
  1527. trace_sched_switch(prev, next);
  1528. sched_info_switch(prev, next);
  1529. perf_event_task_sched_out(prev, next);
  1530. fire_sched_out_preempt_notifiers(prev, next);
  1531. prepare_lock_switch(rq, next);
  1532. prepare_arch_switch(next);
  1533. }
  1534. /**
  1535. * finish_task_switch - clean up after a task-switch
  1536. * @rq: runqueue associated with task-switch
  1537. * @prev: the thread we just switched away from.
  1538. *
  1539. * finish_task_switch must be called after the context switch, paired
  1540. * with a prepare_task_switch call before the context switch.
  1541. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1542. * and do any other architecture-specific cleanup actions.
  1543. *
  1544. * Note that we may have delayed dropping an mm in context_switch(). If
  1545. * so, we finish that here outside of the runqueue lock. (Doing it
  1546. * with the lock held can cause deadlocks; see schedule() for
  1547. * details.)
  1548. */
  1549. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1550. __releases(rq->lock)
  1551. {
  1552. struct mm_struct *mm = rq->prev_mm;
  1553. long prev_state;
  1554. rq->prev_mm = NULL;
  1555. /*
  1556. * A task struct has one reference for the use as "current".
  1557. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1558. * schedule one last time. The schedule call will never return, and
  1559. * the scheduled task must drop that reference.
  1560. * The test for TASK_DEAD must occur while the runqueue locks are
  1561. * still held, otherwise prev could be scheduled on another cpu, die
  1562. * there before we look at prev->state, and then the reference would
  1563. * be dropped twice.
  1564. * Manfred Spraul <manfred@colorfullife.com>
  1565. */
  1566. prev_state = prev->state;
  1567. vtime_task_switch(prev);
  1568. finish_arch_switch(prev);
  1569. perf_event_task_sched_in(prev, current);
  1570. finish_lock_switch(rq, prev);
  1571. finish_arch_post_lock_switch();
  1572. fire_sched_in_preempt_notifiers(current);
  1573. if (mm)
  1574. mmdrop(mm);
  1575. if (unlikely(prev_state == TASK_DEAD)) {
  1576. /*
  1577. * Remove function-return probe instances associated with this
  1578. * task and put them back on the free list.
  1579. */
  1580. kprobe_flush_task(prev);
  1581. put_task_struct(prev);
  1582. }
  1583. }
  1584. #ifdef CONFIG_SMP
  1585. /* assumes rq->lock is held */
  1586. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1587. {
  1588. if (prev->sched_class->pre_schedule)
  1589. prev->sched_class->pre_schedule(rq, prev);
  1590. }
  1591. /* rq->lock is NOT held, but preemption is disabled */
  1592. static inline void post_schedule(struct rq *rq)
  1593. {
  1594. if (rq->post_schedule) {
  1595. unsigned long flags;
  1596. raw_spin_lock_irqsave(&rq->lock, flags);
  1597. if (rq->curr->sched_class->post_schedule)
  1598. rq->curr->sched_class->post_schedule(rq);
  1599. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1600. rq->post_schedule = 0;
  1601. }
  1602. }
  1603. #else
  1604. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1605. {
  1606. }
  1607. static inline void post_schedule(struct rq *rq)
  1608. {
  1609. }
  1610. #endif
  1611. /**
  1612. * schedule_tail - first thing a freshly forked thread must call.
  1613. * @prev: the thread we just switched away from.
  1614. */
  1615. asmlinkage void schedule_tail(struct task_struct *prev)
  1616. __releases(rq->lock)
  1617. {
  1618. struct rq *rq = this_rq();
  1619. finish_task_switch(rq, prev);
  1620. /*
  1621. * FIXME: do we need to worry about rq being invalidated by the
  1622. * task_switch?
  1623. */
  1624. post_schedule(rq);
  1625. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1626. /* In this case, finish_task_switch does not reenable preemption */
  1627. preempt_enable();
  1628. #endif
  1629. if (current->set_child_tid)
  1630. put_user(task_pid_vnr(current), current->set_child_tid);
  1631. }
  1632. /*
  1633. * context_switch - switch to the new MM and the new
  1634. * thread's register state.
  1635. */
  1636. static inline void
  1637. context_switch(struct rq *rq, struct task_struct *prev,
  1638. struct task_struct *next)
  1639. {
  1640. struct mm_struct *mm, *oldmm;
  1641. prepare_task_switch(rq, prev, next);
  1642. mm = next->mm;
  1643. oldmm = prev->active_mm;
  1644. /*
  1645. * For paravirt, this is coupled with an exit in switch_to to
  1646. * combine the page table reload and the switch backend into
  1647. * one hypercall.
  1648. */
  1649. arch_start_context_switch(prev);
  1650. if (!mm) {
  1651. next->active_mm = oldmm;
  1652. atomic_inc(&oldmm->mm_count);
  1653. enter_lazy_tlb(oldmm, next);
  1654. } else
  1655. switch_mm(oldmm, mm, next);
  1656. if (!prev->mm) {
  1657. prev->active_mm = NULL;
  1658. rq->prev_mm = oldmm;
  1659. }
  1660. /*
  1661. * Since the runqueue lock will be released by the next
  1662. * task (which is an invalid locking op but in the case
  1663. * of the scheduler it's an obvious special-case), so we
  1664. * do an early lockdep release here:
  1665. */
  1666. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1667. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1668. #endif
  1669. context_tracking_task_switch(prev, next);
  1670. /* Here we just switch the register state and the stack. */
  1671. switch_to(prev, next, prev);
  1672. barrier();
  1673. /*
  1674. * this_rq must be evaluated again because prev may have moved
  1675. * CPUs since it called schedule(), thus the 'rq' on its stack
  1676. * frame will be invalid.
  1677. */
  1678. finish_task_switch(this_rq(), prev);
  1679. }
  1680. /*
  1681. * nr_running, nr_uninterruptible and nr_context_switches:
  1682. *
  1683. * externally visible scheduler statistics: current number of runnable
  1684. * threads, current number of uninterruptible-sleeping threads, total
  1685. * number of context switches performed since bootup.
  1686. */
  1687. unsigned long nr_running(void)
  1688. {
  1689. unsigned long i, sum = 0;
  1690. for_each_online_cpu(i)
  1691. sum += cpu_rq(i)->nr_running;
  1692. return sum;
  1693. }
  1694. unsigned long nr_uninterruptible(void)
  1695. {
  1696. unsigned long i, sum = 0;
  1697. for_each_possible_cpu(i)
  1698. sum += cpu_rq(i)->nr_uninterruptible;
  1699. /*
  1700. * Since we read the counters lockless, it might be slightly
  1701. * inaccurate. Do not allow it to go below zero though:
  1702. */
  1703. if (unlikely((long)sum < 0))
  1704. sum = 0;
  1705. return sum;
  1706. }
  1707. unsigned long long nr_context_switches(void)
  1708. {
  1709. int i;
  1710. unsigned long long sum = 0;
  1711. for_each_possible_cpu(i)
  1712. sum += cpu_rq(i)->nr_switches;
  1713. return sum;
  1714. }
  1715. unsigned long nr_iowait(void)
  1716. {
  1717. unsigned long i, sum = 0;
  1718. for_each_possible_cpu(i)
  1719. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1720. return sum;
  1721. }
  1722. unsigned long nr_iowait_cpu(int cpu)
  1723. {
  1724. struct rq *this = cpu_rq(cpu);
  1725. return atomic_read(&this->nr_iowait);
  1726. }
  1727. unsigned long this_cpu_load(void)
  1728. {
  1729. struct rq *this = this_rq();
  1730. return this->cpu_load[0];
  1731. }
  1732. /*
  1733. * Global load-average calculations
  1734. *
  1735. * We take a distributed and async approach to calculating the global load-avg
  1736. * in order to minimize overhead.
  1737. *
  1738. * The global load average is an exponentially decaying average of nr_running +
  1739. * nr_uninterruptible.
  1740. *
  1741. * Once every LOAD_FREQ:
  1742. *
  1743. * nr_active = 0;
  1744. * for_each_possible_cpu(cpu)
  1745. * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  1746. *
  1747. * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  1748. *
  1749. * Due to a number of reasons the above turns in the mess below:
  1750. *
  1751. * - for_each_possible_cpu() is prohibitively expensive on machines with
  1752. * serious number of cpus, therefore we need to take a distributed approach
  1753. * to calculating nr_active.
  1754. *
  1755. * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  1756. * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  1757. *
  1758. * So assuming nr_active := 0 when we start out -- true per definition, we
  1759. * can simply take per-cpu deltas and fold those into a global accumulate
  1760. * to obtain the same result. See calc_load_fold_active().
  1761. *
  1762. * Furthermore, in order to avoid synchronizing all per-cpu delta folding
  1763. * across the machine, we assume 10 ticks is sufficient time for every
  1764. * cpu to have completed this task.
  1765. *
  1766. * This places an upper-bound on the IRQ-off latency of the machine. Then
  1767. * again, being late doesn't loose the delta, just wrecks the sample.
  1768. *
  1769. * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  1770. * this would add another cross-cpu cacheline miss and atomic operation
  1771. * to the wakeup path. Instead we increment on whatever cpu the task ran
  1772. * when it went into uninterruptible state and decrement on whatever cpu
  1773. * did the wakeup. This means that only the sum of nr_uninterruptible over
  1774. * all cpus yields the correct result.
  1775. *
  1776. * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  1777. */
  1778. /* Variables and functions for calc_load */
  1779. static atomic_long_t calc_load_tasks;
  1780. static unsigned long calc_load_update;
  1781. unsigned long avenrun[3];
  1782. EXPORT_SYMBOL(avenrun); /* should be removed */
  1783. /**
  1784. * get_avenrun - get the load average array
  1785. * @loads: pointer to dest load array
  1786. * @offset: offset to add
  1787. * @shift: shift count to shift the result left
  1788. *
  1789. * These values are estimates at best, so no need for locking.
  1790. */
  1791. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1792. {
  1793. loads[0] = (avenrun[0] + offset) << shift;
  1794. loads[1] = (avenrun[1] + offset) << shift;
  1795. loads[2] = (avenrun[2] + offset) << shift;
  1796. }
  1797. static long calc_load_fold_active(struct rq *this_rq)
  1798. {
  1799. long nr_active, delta = 0;
  1800. nr_active = this_rq->nr_running;
  1801. nr_active += (long) this_rq->nr_uninterruptible;
  1802. if (nr_active != this_rq->calc_load_active) {
  1803. delta = nr_active - this_rq->calc_load_active;
  1804. this_rq->calc_load_active = nr_active;
  1805. }
  1806. return delta;
  1807. }
  1808. /*
  1809. * a1 = a0 * e + a * (1 - e)
  1810. */
  1811. static unsigned long
  1812. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1813. {
  1814. load *= exp;
  1815. load += active * (FIXED_1 - exp);
  1816. load += 1UL << (FSHIFT - 1);
  1817. return load >> FSHIFT;
  1818. }
  1819. #ifdef CONFIG_NO_HZ
  1820. /*
  1821. * Handle NO_HZ for the global load-average.
  1822. *
  1823. * Since the above described distributed algorithm to compute the global
  1824. * load-average relies on per-cpu sampling from the tick, it is affected by
  1825. * NO_HZ.
  1826. *
  1827. * The basic idea is to fold the nr_active delta into a global idle-delta upon
  1828. * entering NO_HZ state such that we can include this as an 'extra' cpu delta
  1829. * when we read the global state.
  1830. *
  1831. * Obviously reality has to ruin such a delightfully simple scheme:
  1832. *
  1833. * - When we go NO_HZ idle during the window, we can negate our sample
  1834. * contribution, causing under-accounting.
  1835. *
  1836. * We avoid this by keeping two idle-delta counters and flipping them
  1837. * when the window starts, thus separating old and new NO_HZ load.
  1838. *
  1839. * The only trick is the slight shift in index flip for read vs write.
  1840. *
  1841. * 0s 5s 10s 15s
  1842. * +10 +10 +10 +10
  1843. * |-|-----------|-|-----------|-|-----------|-|
  1844. * r:0 0 1 1 0 0 1 1 0
  1845. * w:0 1 1 0 0 1 1 0 0
  1846. *
  1847. * This ensures we'll fold the old idle contribution in this window while
  1848. * accumlating the new one.
  1849. *
  1850. * - When we wake up from NO_HZ idle during the window, we push up our
  1851. * contribution, since we effectively move our sample point to a known
  1852. * busy state.
  1853. *
  1854. * This is solved by pushing the window forward, and thus skipping the
  1855. * sample, for this cpu (effectively using the idle-delta for this cpu which
  1856. * was in effect at the time the window opened). This also solves the issue
  1857. * of having to deal with a cpu having been in NOHZ idle for multiple
  1858. * LOAD_FREQ intervals.
  1859. *
  1860. * When making the ILB scale, we should try to pull this in as well.
  1861. */
  1862. static atomic_long_t calc_load_idle[2];
  1863. static int calc_load_idx;
  1864. static inline int calc_load_write_idx(void)
  1865. {
  1866. int idx = calc_load_idx;
  1867. /*
  1868. * See calc_global_nohz(), if we observe the new index, we also
  1869. * need to observe the new update time.
  1870. */
  1871. smp_rmb();
  1872. /*
  1873. * If the folding window started, make sure we start writing in the
  1874. * next idle-delta.
  1875. */
  1876. if (!time_before(jiffies, calc_load_update))
  1877. idx++;
  1878. return idx & 1;
  1879. }
  1880. static inline int calc_load_read_idx(void)
  1881. {
  1882. return calc_load_idx & 1;
  1883. }
  1884. void calc_load_enter_idle(void)
  1885. {
  1886. struct rq *this_rq = this_rq();
  1887. long delta;
  1888. /*
  1889. * We're going into NOHZ mode, if there's any pending delta, fold it
  1890. * into the pending idle delta.
  1891. */
  1892. delta = calc_load_fold_active(this_rq);
  1893. if (delta) {
  1894. int idx = calc_load_write_idx();
  1895. atomic_long_add(delta, &calc_load_idle[idx]);
  1896. }
  1897. }
  1898. void calc_load_exit_idle(void)
  1899. {
  1900. struct rq *this_rq = this_rq();
  1901. /*
  1902. * If we're still before the sample window, we're done.
  1903. */
  1904. if (time_before(jiffies, this_rq->calc_load_update))
  1905. return;
  1906. /*
  1907. * We woke inside or after the sample window, this means we're already
  1908. * accounted through the nohz accounting, so skip the entire deal and
  1909. * sync up for the next window.
  1910. */
  1911. this_rq->calc_load_update = calc_load_update;
  1912. if (time_before(jiffies, this_rq->calc_load_update + 10))
  1913. this_rq->calc_load_update += LOAD_FREQ;
  1914. }
  1915. static long calc_load_fold_idle(void)
  1916. {
  1917. int idx = calc_load_read_idx();
  1918. long delta = 0;
  1919. if (atomic_long_read(&calc_load_idle[idx]))
  1920. delta = atomic_long_xchg(&calc_load_idle[idx], 0);
  1921. return delta;
  1922. }
  1923. /**
  1924. * fixed_power_int - compute: x^n, in O(log n) time
  1925. *
  1926. * @x: base of the power
  1927. * @frac_bits: fractional bits of @x
  1928. * @n: power to raise @x to.
  1929. *
  1930. * By exploiting the relation between the definition of the natural power
  1931. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1932. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1933. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1934. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1935. * of course trivially computable in O(log_2 n), the length of our binary
  1936. * vector.
  1937. */
  1938. static unsigned long
  1939. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1940. {
  1941. unsigned long result = 1UL << frac_bits;
  1942. if (n) for (;;) {
  1943. if (n & 1) {
  1944. result *= x;
  1945. result += 1UL << (frac_bits - 1);
  1946. result >>= frac_bits;
  1947. }
  1948. n >>= 1;
  1949. if (!n)
  1950. break;
  1951. x *= x;
  1952. x += 1UL << (frac_bits - 1);
  1953. x >>= frac_bits;
  1954. }
  1955. return result;
  1956. }
  1957. /*
  1958. * a1 = a0 * e + a * (1 - e)
  1959. *
  1960. * a2 = a1 * e + a * (1 - e)
  1961. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1962. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1963. *
  1964. * a3 = a2 * e + a * (1 - e)
  1965. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1966. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1967. *
  1968. * ...
  1969. *
  1970. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1971. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1972. * = a0 * e^n + a * (1 - e^n)
  1973. *
  1974. * [1] application of the geometric series:
  1975. *
  1976. * n 1 - x^(n+1)
  1977. * S_n := \Sum x^i = -------------
  1978. * i=0 1 - x
  1979. */
  1980. static unsigned long
  1981. calc_load_n(unsigned long load, unsigned long exp,
  1982. unsigned long active, unsigned int n)
  1983. {
  1984. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1985. }
  1986. /*
  1987. * NO_HZ can leave us missing all per-cpu ticks calling
  1988. * calc_load_account_active(), but since an idle CPU folds its delta into
  1989. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1990. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1991. *
  1992. * Once we've updated the global active value, we need to apply the exponential
  1993. * weights adjusted to the number of cycles missed.
  1994. */
  1995. static void calc_global_nohz(void)
  1996. {
  1997. long delta, active, n;
  1998. if (!time_before(jiffies, calc_load_update + 10)) {
  1999. /*
  2000. * Catch-up, fold however many we are behind still
  2001. */
  2002. delta = jiffies - calc_load_update - 10;
  2003. n = 1 + (delta / LOAD_FREQ);
  2004. active = atomic_long_read(&calc_load_tasks);
  2005. active = active > 0 ? active * FIXED_1 : 0;
  2006. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2007. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2008. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2009. calc_load_update += n * LOAD_FREQ;
  2010. }
  2011. /*
  2012. * Flip the idle index...
  2013. *
  2014. * Make sure we first write the new time then flip the index, so that
  2015. * calc_load_write_idx() will see the new time when it reads the new
  2016. * index, this avoids a double flip messing things up.
  2017. */
  2018. smp_wmb();
  2019. calc_load_idx++;
  2020. }
  2021. #else /* !CONFIG_NO_HZ */
  2022. static inline long calc_load_fold_idle(void) { return 0; }
  2023. static inline void calc_global_nohz(void) { }
  2024. #endif /* CONFIG_NO_HZ */
  2025. /*
  2026. * calc_load - update the avenrun load estimates 10 ticks after the
  2027. * CPUs have updated calc_load_tasks.
  2028. */
  2029. void calc_global_load(unsigned long ticks)
  2030. {
  2031. long active, delta;
  2032. if (time_before(jiffies, calc_load_update + 10))
  2033. return;
  2034. /*
  2035. * Fold the 'old' idle-delta to include all NO_HZ cpus.
  2036. */
  2037. delta = calc_load_fold_idle();
  2038. if (delta)
  2039. atomic_long_add(delta, &calc_load_tasks);
  2040. active = atomic_long_read(&calc_load_tasks);
  2041. active = active > 0 ? active * FIXED_1 : 0;
  2042. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2043. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2044. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2045. calc_load_update += LOAD_FREQ;
  2046. /*
  2047. * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
  2048. */
  2049. calc_global_nohz();
  2050. }
  2051. /*
  2052. * Called from update_cpu_load() to periodically update this CPU's
  2053. * active count.
  2054. */
  2055. static void calc_load_account_active(struct rq *this_rq)
  2056. {
  2057. long delta;
  2058. if (time_before(jiffies, this_rq->calc_load_update))
  2059. return;
  2060. delta = calc_load_fold_active(this_rq);
  2061. if (delta)
  2062. atomic_long_add(delta, &calc_load_tasks);
  2063. this_rq->calc_load_update += LOAD_FREQ;
  2064. }
  2065. /*
  2066. * End of global load-average stuff
  2067. */
  2068. /*
  2069. * The exact cpuload at various idx values, calculated at every tick would be
  2070. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2071. *
  2072. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2073. * on nth tick when cpu may be busy, then we have:
  2074. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2075. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2076. *
  2077. * decay_load_missed() below does efficient calculation of
  2078. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2079. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2080. *
  2081. * The calculation is approximated on a 128 point scale.
  2082. * degrade_zero_ticks is the number of ticks after which load at any
  2083. * particular idx is approximated to be zero.
  2084. * degrade_factor is a precomputed table, a row for each load idx.
  2085. * Each column corresponds to degradation factor for a power of two ticks,
  2086. * based on 128 point scale.
  2087. * Example:
  2088. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2089. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2090. *
  2091. * With this power of 2 load factors, we can degrade the load n times
  2092. * by looking at 1 bits in n and doing as many mult/shift instead of
  2093. * n mult/shifts needed by the exact degradation.
  2094. */
  2095. #define DEGRADE_SHIFT 7
  2096. static const unsigned char
  2097. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2098. static const unsigned char
  2099. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2100. {0, 0, 0, 0, 0, 0, 0, 0},
  2101. {64, 32, 8, 0, 0, 0, 0, 0},
  2102. {96, 72, 40, 12, 1, 0, 0},
  2103. {112, 98, 75, 43, 15, 1, 0},
  2104. {120, 112, 98, 76, 45, 16, 2} };
  2105. /*
  2106. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2107. * would be when CPU is idle and so we just decay the old load without
  2108. * adding any new load.
  2109. */
  2110. static unsigned long
  2111. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2112. {
  2113. int j = 0;
  2114. if (!missed_updates)
  2115. return load;
  2116. if (missed_updates >= degrade_zero_ticks[idx])
  2117. return 0;
  2118. if (idx == 1)
  2119. return load >> missed_updates;
  2120. while (missed_updates) {
  2121. if (missed_updates % 2)
  2122. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2123. missed_updates >>= 1;
  2124. j++;
  2125. }
  2126. return load;
  2127. }
  2128. /*
  2129. * Update rq->cpu_load[] statistics. This function is usually called every
  2130. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2131. * every tick. We fix it up based on jiffies.
  2132. */
  2133. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2134. unsigned long pending_updates)
  2135. {
  2136. int i, scale;
  2137. this_rq->nr_load_updates++;
  2138. /* Update our load: */
  2139. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2140. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2141. unsigned long old_load, new_load;
  2142. /* scale is effectively 1 << i now, and >> i divides by scale */
  2143. old_load = this_rq->cpu_load[i];
  2144. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2145. new_load = this_load;
  2146. /*
  2147. * Round up the averaging division if load is increasing. This
  2148. * prevents us from getting stuck on 9 if the load is 10, for
  2149. * example.
  2150. */
  2151. if (new_load > old_load)
  2152. new_load += scale - 1;
  2153. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2154. }
  2155. sched_avg_update(this_rq);
  2156. }
  2157. #ifdef CONFIG_NO_HZ
  2158. /*
  2159. * There is no sane way to deal with nohz on smp when using jiffies because the
  2160. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  2161. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  2162. *
  2163. * Therefore we cannot use the delta approach from the regular tick since that
  2164. * would seriously skew the load calculation. However we'll make do for those
  2165. * updates happening while idle (nohz_idle_balance) or coming out of idle
  2166. * (tick_nohz_idle_exit).
  2167. *
  2168. * This means we might still be one tick off for nohz periods.
  2169. */
  2170. /*
  2171. * Called from nohz_idle_balance() to update the load ratings before doing the
  2172. * idle balance.
  2173. */
  2174. void update_idle_cpu_load(struct rq *this_rq)
  2175. {
  2176. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2177. unsigned long load = this_rq->load.weight;
  2178. unsigned long pending_updates;
  2179. /*
  2180. * bail if there's load or we're actually up-to-date.
  2181. */
  2182. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2183. return;
  2184. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2185. this_rq->last_load_update_tick = curr_jiffies;
  2186. __update_cpu_load(this_rq, load, pending_updates);
  2187. }
  2188. /*
  2189. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  2190. */
  2191. void update_cpu_load_nohz(void)
  2192. {
  2193. struct rq *this_rq = this_rq();
  2194. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2195. unsigned long pending_updates;
  2196. if (curr_jiffies == this_rq->last_load_update_tick)
  2197. return;
  2198. raw_spin_lock(&this_rq->lock);
  2199. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2200. if (pending_updates) {
  2201. this_rq->last_load_update_tick = curr_jiffies;
  2202. /*
  2203. * We were idle, this means load 0, the current load might be
  2204. * !0 due to remote wakeups and the sort.
  2205. */
  2206. __update_cpu_load(this_rq, 0, pending_updates);
  2207. }
  2208. raw_spin_unlock(&this_rq->lock);
  2209. }
  2210. #endif /* CONFIG_NO_HZ */
  2211. /*
  2212. * Called from scheduler_tick()
  2213. */
  2214. static void update_cpu_load_active(struct rq *this_rq)
  2215. {
  2216. /*
  2217. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  2218. */
  2219. this_rq->last_load_update_tick = jiffies;
  2220. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2221. calc_load_account_active(this_rq);
  2222. }
  2223. #ifdef CONFIG_SMP
  2224. /*
  2225. * sched_exec - execve() is a valuable balancing opportunity, because at
  2226. * this point the task has the smallest effective memory and cache footprint.
  2227. */
  2228. void sched_exec(void)
  2229. {
  2230. struct task_struct *p = current;
  2231. unsigned long flags;
  2232. int dest_cpu;
  2233. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2234. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2235. if (dest_cpu == smp_processor_id())
  2236. goto unlock;
  2237. if (likely(cpu_active(dest_cpu))) {
  2238. struct migration_arg arg = { p, dest_cpu };
  2239. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2240. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2241. return;
  2242. }
  2243. unlock:
  2244. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2245. }
  2246. #endif
  2247. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2248. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2249. EXPORT_PER_CPU_SYMBOL(kstat);
  2250. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2251. /*
  2252. * Return any ns on the sched_clock that have not yet been accounted in
  2253. * @p in case that task is currently running.
  2254. *
  2255. * Called with task_rq_lock() held on @rq.
  2256. */
  2257. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2258. {
  2259. u64 ns = 0;
  2260. if (task_current(rq, p)) {
  2261. update_rq_clock(rq);
  2262. ns = rq->clock_task - p->se.exec_start;
  2263. if ((s64)ns < 0)
  2264. ns = 0;
  2265. }
  2266. return ns;
  2267. }
  2268. unsigned long long task_delta_exec(struct task_struct *p)
  2269. {
  2270. unsigned long flags;
  2271. struct rq *rq;
  2272. u64 ns = 0;
  2273. rq = task_rq_lock(p, &flags);
  2274. ns = do_task_delta_exec(p, rq);
  2275. task_rq_unlock(rq, p, &flags);
  2276. return ns;
  2277. }
  2278. /*
  2279. * Return accounted runtime for the task.
  2280. * In case the task is currently running, return the runtime plus current's
  2281. * pending runtime that have not been accounted yet.
  2282. */
  2283. unsigned long long task_sched_runtime(struct task_struct *p)
  2284. {
  2285. unsigned long flags;
  2286. struct rq *rq;
  2287. u64 ns = 0;
  2288. rq = task_rq_lock(p, &flags);
  2289. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2290. task_rq_unlock(rq, p, &flags);
  2291. return ns;
  2292. }
  2293. /*
  2294. * This function gets called by the timer code, with HZ frequency.
  2295. * We call it with interrupts disabled.
  2296. */
  2297. void scheduler_tick(void)
  2298. {
  2299. int cpu = smp_processor_id();
  2300. struct rq *rq = cpu_rq(cpu);
  2301. struct task_struct *curr = rq->curr;
  2302. sched_clock_tick();
  2303. raw_spin_lock(&rq->lock);
  2304. update_rq_clock(rq);
  2305. update_cpu_load_active(rq);
  2306. curr->sched_class->task_tick(rq, curr, 0);
  2307. raw_spin_unlock(&rq->lock);
  2308. perf_event_task_tick();
  2309. #ifdef CONFIG_SMP
  2310. rq->idle_balance = idle_cpu(cpu);
  2311. trigger_load_balance(rq, cpu);
  2312. #endif
  2313. }
  2314. notrace unsigned long get_parent_ip(unsigned long addr)
  2315. {
  2316. if (in_lock_functions(addr)) {
  2317. addr = CALLER_ADDR2;
  2318. if (in_lock_functions(addr))
  2319. addr = CALLER_ADDR3;
  2320. }
  2321. return addr;
  2322. }
  2323. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2324. defined(CONFIG_PREEMPT_TRACER))
  2325. void __kprobes add_preempt_count(int val)
  2326. {
  2327. #ifdef CONFIG_DEBUG_PREEMPT
  2328. /*
  2329. * Underflow?
  2330. */
  2331. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2332. return;
  2333. #endif
  2334. preempt_count() += val;
  2335. #ifdef CONFIG_DEBUG_PREEMPT
  2336. /*
  2337. * Spinlock count overflowing soon?
  2338. */
  2339. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2340. PREEMPT_MASK - 10);
  2341. #endif
  2342. if (preempt_count() == val)
  2343. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2344. }
  2345. EXPORT_SYMBOL(add_preempt_count);
  2346. void __kprobes sub_preempt_count(int val)
  2347. {
  2348. #ifdef CONFIG_DEBUG_PREEMPT
  2349. /*
  2350. * Underflow?
  2351. */
  2352. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2353. return;
  2354. /*
  2355. * Is the spinlock portion underflowing?
  2356. */
  2357. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2358. !(preempt_count() & PREEMPT_MASK)))
  2359. return;
  2360. #endif
  2361. if (preempt_count() == val)
  2362. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2363. preempt_count() -= val;
  2364. }
  2365. EXPORT_SYMBOL(sub_preempt_count);
  2366. #endif
  2367. /*
  2368. * Print scheduling while atomic bug:
  2369. */
  2370. static noinline void __schedule_bug(struct task_struct *prev)
  2371. {
  2372. if (oops_in_progress)
  2373. return;
  2374. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2375. prev->comm, prev->pid, preempt_count());
  2376. debug_show_held_locks(prev);
  2377. print_modules();
  2378. if (irqs_disabled())
  2379. print_irqtrace_events(prev);
  2380. dump_stack();
  2381. add_taint(TAINT_WARN);
  2382. }
  2383. /*
  2384. * Various schedule()-time debugging checks and statistics:
  2385. */
  2386. static inline void schedule_debug(struct task_struct *prev)
  2387. {
  2388. /*
  2389. * Test if we are atomic. Since do_exit() needs to call into
  2390. * schedule() atomically, we ignore that path for now.
  2391. * Otherwise, whine if we are scheduling when we should not be.
  2392. */
  2393. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2394. __schedule_bug(prev);
  2395. rcu_sleep_check();
  2396. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2397. schedstat_inc(this_rq(), sched_count);
  2398. }
  2399. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2400. {
  2401. if (prev->on_rq || rq->skip_clock_update < 0)
  2402. update_rq_clock(rq);
  2403. prev->sched_class->put_prev_task(rq, prev);
  2404. }
  2405. /*
  2406. * Pick up the highest-prio task:
  2407. */
  2408. static inline struct task_struct *
  2409. pick_next_task(struct rq *rq)
  2410. {
  2411. const struct sched_class *class;
  2412. struct task_struct *p;
  2413. /*
  2414. * Optimization: we know that if all tasks are in
  2415. * the fair class we can call that function directly:
  2416. */
  2417. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2418. p = fair_sched_class.pick_next_task(rq);
  2419. if (likely(p))
  2420. return p;
  2421. }
  2422. for_each_class(class) {
  2423. p = class->pick_next_task(rq);
  2424. if (p)
  2425. return p;
  2426. }
  2427. BUG(); /* the idle class will always have a runnable task */
  2428. }
  2429. /*
  2430. * __schedule() is the main scheduler function.
  2431. *
  2432. * The main means of driving the scheduler and thus entering this function are:
  2433. *
  2434. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2435. *
  2436. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2437. * paths. For example, see arch/x86/entry_64.S.
  2438. *
  2439. * To drive preemption between tasks, the scheduler sets the flag in timer
  2440. * interrupt handler scheduler_tick().
  2441. *
  2442. * 3. Wakeups don't really cause entry into schedule(). They add a
  2443. * task to the run-queue and that's it.
  2444. *
  2445. * Now, if the new task added to the run-queue preempts the current
  2446. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2447. * called on the nearest possible occasion:
  2448. *
  2449. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2450. *
  2451. * - in syscall or exception context, at the next outmost
  2452. * preempt_enable(). (this might be as soon as the wake_up()'s
  2453. * spin_unlock()!)
  2454. *
  2455. * - in IRQ context, return from interrupt-handler to
  2456. * preemptible context
  2457. *
  2458. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2459. * then at the next:
  2460. *
  2461. * - cond_resched() call
  2462. * - explicit schedule() call
  2463. * - return from syscall or exception to user-space
  2464. * - return from interrupt-handler to user-space
  2465. */
  2466. static void __sched __schedule(void)
  2467. {
  2468. struct task_struct *prev, *next;
  2469. unsigned long *switch_count;
  2470. struct rq *rq;
  2471. int cpu;
  2472. need_resched:
  2473. preempt_disable();
  2474. cpu = smp_processor_id();
  2475. rq = cpu_rq(cpu);
  2476. rcu_note_context_switch(cpu);
  2477. prev = rq->curr;
  2478. schedule_debug(prev);
  2479. if (sched_feat(HRTICK))
  2480. hrtick_clear(rq);
  2481. raw_spin_lock_irq(&rq->lock);
  2482. switch_count = &prev->nivcsw;
  2483. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2484. if (unlikely(signal_pending_state(prev->state, prev))) {
  2485. prev->state = TASK_RUNNING;
  2486. } else {
  2487. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2488. prev->on_rq = 0;
  2489. /*
  2490. * If a worker went to sleep, notify and ask workqueue
  2491. * whether it wants to wake up a task to maintain
  2492. * concurrency.
  2493. */
  2494. if (prev->flags & PF_WQ_WORKER) {
  2495. struct task_struct *to_wakeup;
  2496. to_wakeup = wq_worker_sleeping(prev, cpu);
  2497. if (to_wakeup)
  2498. try_to_wake_up_local(to_wakeup);
  2499. }
  2500. }
  2501. switch_count = &prev->nvcsw;
  2502. }
  2503. pre_schedule(rq, prev);
  2504. if (unlikely(!rq->nr_running))
  2505. idle_balance(cpu, rq);
  2506. put_prev_task(rq, prev);
  2507. next = pick_next_task(rq);
  2508. clear_tsk_need_resched(prev);
  2509. rq->skip_clock_update = 0;
  2510. if (likely(prev != next)) {
  2511. rq->nr_switches++;
  2512. rq->curr = next;
  2513. ++*switch_count;
  2514. context_switch(rq, prev, next); /* unlocks the rq */
  2515. /*
  2516. * The context switch have flipped the stack from under us
  2517. * and restored the local variables which were saved when
  2518. * this task called schedule() in the past. prev == current
  2519. * is still correct, but it can be moved to another cpu/rq.
  2520. */
  2521. cpu = smp_processor_id();
  2522. rq = cpu_rq(cpu);
  2523. } else
  2524. raw_spin_unlock_irq(&rq->lock);
  2525. post_schedule(rq);
  2526. sched_preempt_enable_no_resched();
  2527. if (need_resched())
  2528. goto need_resched;
  2529. }
  2530. static inline void sched_submit_work(struct task_struct *tsk)
  2531. {
  2532. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2533. return;
  2534. /*
  2535. * If we are going to sleep and we have plugged IO queued,
  2536. * make sure to submit it to avoid deadlocks.
  2537. */
  2538. if (blk_needs_flush_plug(tsk))
  2539. blk_schedule_flush_plug(tsk);
  2540. }
  2541. asmlinkage void __sched schedule(void)
  2542. {
  2543. struct task_struct *tsk = current;
  2544. sched_submit_work(tsk);
  2545. __schedule();
  2546. }
  2547. EXPORT_SYMBOL(schedule);
  2548. #ifdef CONFIG_CONTEXT_TRACKING
  2549. asmlinkage void __sched schedule_user(void)
  2550. {
  2551. /*
  2552. * If we come here after a random call to set_need_resched(),
  2553. * or we have been woken up remotely but the IPI has not yet arrived,
  2554. * we haven't yet exited the RCU idle mode. Do it here manually until
  2555. * we find a better solution.
  2556. */
  2557. user_exit();
  2558. schedule();
  2559. user_enter();
  2560. }
  2561. #endif
  2562. /**
  2563. * schedule_preempt_disabled - called with preemption disabled
  2564. *
  2565. * Returns with preemption disabled. Note: preempt_count must be 1
  2566. */
  2567. void __sched schedule_preempt_disabled(void)
  2568. {
  2569. sched_preempt_enable_no_resched();
  2570. schedule();
  2571. preempt_disable();
  2572. }
  2573. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2574. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2575. {
  2576. if (lock->owner != owner)
  2577. return false;
  2578. /*
  2579. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2580. * lock->owner still matches owner, if that fails, owner might
  2581. * point to free()d memory, if it still matches, the rcu_read_lock()
  2582. * ensures the memory stays valid.
  2583. */
  2584. barrier();
  2585. return owner->on_cpu;
  2586. }
  2587. /*
  2588. * Look out! "owner" is an entirely speculative pointer
  2589. * access and not reliable.
  2590. */
  2591. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2592. {
  2593. if (!sched_feat(OWNER_SPIN))
  2594. return 0;
  2595. rcu_read_lock();
  2596. while (owner_running(lock, owner)) {
  2597. if (need_resched())
  2598. break;
  2599. arch_mutex_cpu_relax();
  2600. }
  2601. rcu_read_unlock();
  2602. /*
  2603. * We break out the loop above on need_resched() and when the
  2604. * owner changed, which is a sign for heavy contention. Return
  2605. * success only when lock->owner is NULL.
  2606. */
  2607. return lock->owner == NULL;
  2608. }
  2609. #endif
  2610. #ifdef CONFIG_PREEMPT
  2611. /*
  2612. * this is the entry point to schedule() from in-kernel preemption
  2613. * off of preempt_enable. Kernel preemptions off return from interrupt
  2614. * occur there and call schedule directly.
  2615. */
  2616. asmlinkage void __sched notrace preempt_schedule(void)
  2617. {
  2618. struct thread_info *ti = current_thread_info();
  2619. /*
  2620. * If there is a non-zero preempt_count or interrupts are disabled,
  2621. * we do not want to preempt the current task. Just return..
  2622. */
  2623. if (likely(ti->preempt_count || irqs_disabled()))
  2624. return;
  2625. do {
  2626. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2627. __schedule();
  2628. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2629. /*
  2630. * Check again in case we missed a preemption opportunity
  2631. * between schedule and now.
  2632. */
  2633. barrier();
  2634. } while (need_resched());
  2635. }
  2636. EXPORT_SYMBOL(preempt_schedule);
  2637. /*
  2638. * this is the entry point to schedule() from kernel preemption
  2639. * off of irq context.
  2640. * Note, that this is called and return with irqs disabled. This will
  2641. * protect us against recursive calling from irq.
  2642. */
  2643. asmlinkage void __sched preempt_schedule_irq(void)
  2644. {
  2645. struct thread_info *ti = current_thread_info();
  2646. /* Catch callers which need to be fixed */
  2647. BUG_ON(ti->preempt_count || !irqs_disabled());
  2648. user_exit();
  2649. do {
  2650. add_preempt_count(PREEMPT_ACTIVE);
  2651. local_irq_enable();
  2652. __schedule();
  2653. local_irq_disable();
  2654. sub_preempt_count(PREEMPT_ACTIVE);
  2655. /*
  2656. * Check again in case we missed a preemption opportunity
  2657. * between schedule and now.
  2658. */
  2659. barrier();
  2660. } while (need_resched());
  2661. }
  2662. #endif /* CONFIG_PREEMPT */
  2663. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2664. void *key)
  2665. {
  2666. return try_to_wake_up(curr->private, mode, wake_flags);
  2667. }
  2668. EXPORT_SYMBOL(default_wake_function);
  2669. /*
  2670. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2671. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2672. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2673. *
  2674. * There are circumstances in which we can try to wake a task which has already
  2675. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2676. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2677. */
  2678. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2679. int nr_exclusive, int wake_flags, void *key)
  2680. {
  2681. wait_queue_t *curr, *next;
  2682. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2683. unsigned flags = curr->flags;
  2684. if (curr->func(curr, mode, wake_flags, key) &&
  2685. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2686. break;
  2687. }
  2688. }
  2689. /**
  2690. * __wake_up - wake up threads blocked on a waitqueue.
  2691. * @q: the waitqueue
  2692. * @mode: which threads
  2693. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2694. * @key: is directly passed to the wakeup function
  2695. *
  2696. * It may be assumed that this function implies a write memory barrier before
  2697. * changing the task state if and only if any tasks are woken up.
  2698. */
  2699. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2700. int nr_exclusive, void *key)
  2701. {
  2702. unsigned long flags;
  2703. spin_lock_irqsave(&q->lock, flags);
  2704. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2705. spin_unlock_irqrestore(&q->lock, flags);
  2706. }
  2707. EXPORT_SYMBOL(__wake_up);
  2708. /*
  2709. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2710. */
  2711. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2712. {
  2713. __wake_up_common(q, mode, nr, 0, NULL);
  2714. }
  2715. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2716. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2717. {
  2718. __wake_up_common(q, mode, 1, 0, key);
  2719. }
  2720. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2721. /**
  2722. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2723. * @q: the waitqueue
  2724. * @mode: which threads
  2725. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2726. * @key: opaque value to be passed to wakeup targets
  2727. *
  2728. * The sync wakeup differs that the waker knows that it will schedule
  2729. * away soon, so while the target thread will be woken up, it will not
  2730. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2731. * with each other. This can prevent needless bouncing between CPUs.
  2732. *
  2733. * On UP it can prevent extra preemption.
  2734. *
  2735. * It may be assumed that this function implies a write memory barrier before
  2736. * changing the task state if and only if any tasks are woken up.
  2737. */
  2738. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2739. int nr_exclusive, void *key)
  2740. {
  2741. unsigned long flags;
  2742. int wake_flags = WF_SYNC;
  2743. if (unlikely(!q))
  2744. return;
  2745. if (unlikely(!nr_exclusive))
  2746. wake_flags = 0;
  2747. spin_lock_irqsave(&q->lock, flags);
  2748. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2749. spin_unlock_irqrestore(&q->lock, flags);
  2750. }
  2751. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2752. /*
  2753. * __wake_up_sync - see __wake_up_sync_key()
  2754. */
  2755. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2756. {
  2757. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2758. }
  2759. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2760. /**
  2761. * complete: - signals a single thread waiting on this completion
  2762. * @x: holds the state of this particular completion
  2763. *
  2764. * This will wake up a single thread waiting on this completion. Threads will be
  2765. * awakened in the same order in which they were queued.
  2766. *
  2767. * See also complete_all(), wait_for_completion() and related routines.
  2768. *
  2769. * It may be assumed that this function implies a write memory barrier before
  2770. * changing the task state if and only if any tasks are woken up.
  2771. */
  2772. void complete(struct completion *x)
  2773. {
  2774. unsigned long flags;
  2775. spin_lock_irqsave(&x->wait.lock, flags);
  2776. x->done++;
  2777. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2778. spin_unlock_irqrestore(&x->wait.lock, flags);
  2779. }
  2780. EXPORT_SYMBOL(complete);
  2781. /**
  2782. * complete_all: - signals all threads waiting on this completion
  2783. * @x: holds the state of this particular completion
  2784. *
  2785. * This will wake up all threads waiting on this particular completion event.
  2786. *
  2787. * It may be assumed that this function implies a write memory barrier before
  2788. * changing the task state if and only if any tasks are woken up.
  2789. */
  2790. void complete_all(struct completion *x)
  2791. {
  2792. unsigned long flags;
  2793. spin_lock_irqsave(&x->wait.lock, flags);
  2794. x->done += UINT_MAX/2;
  2795. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2796. spin_unlock_irqrestore(&x->wait.lock, flags);
  2797. }
  2798. EXPORT_SYMBOL(complete_all);
  2799. static inline long __sched
  2800. do_wait_for_common(struct completion *x, long timeout, int state)
  2801. {
  2802. if (!x->done) {
  2803. DECLARE_WAITQUEUE(wait, current);
  2804. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2805. do {
  2806. if (signal_pending_state(state, current)) {
  2807. timeout = -ERESTARTSYS;
  2808. break;
  2809. }
  2810. __set_current_state(state);
  2811. spin_unlock_irq(&x->wait.lock);
  2812. timeout = schedule_timeout(timeout);
  2813. spin_lock_irq(&x->wait.lock);
  2814. } while (!x->done && timeout);
  2815. __remove_wait_queue(&x->wait, &wait);
  2816. if (!x->done)
  2817. return timeout;
  2818. }
  2819. x->done--;
  2820. return timeout ?: 1;
  2821. }
  2822. static long __sched
  2823. wait_for_common(struct completion *x, long timeout, int state)
  2824. {
  2825. might_sleep();
  2826. spin_lock_irq(&x->wait.lock);
  2827. timeout = do_wait_for_common(x, timeout, state);
  2828. spin_unlock_irq(&x->wait.lock);
  2829. return timeout;
  2830. }
  2831. /**
  2832. * wait_for_completion: - waits for completion of a task
  2833. * @x: holds the state of this particular completion
  2834. *
  2835. * This waits to be signaled for completion of a specific task. It is NOT
  2836. * interruptible and there is no timeout.
  2837. *
  2838. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2839. * and interrupt capability. Also see complete().
  2840. */
  2841. void __sched wait_for_completion(struct completion *x)
  2842. {
  2843. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2844. }
  2845. EXPORT_SYMBOL(wait_for_completion);
  2846. /**
  2847. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2848. * @x: holds the state of this particular completion
  2849. * @timeout: timeout value in jiffies
  2850. *
  2851. * This waits for either a completion of a specific task to be signaled or for a
  2852. * specified timeout to expire. The timeout is in jiffies. It is not
  2853. * interruptible.
  2854. *
  2855. * The return value is 0 if timed out, and positive (at least 1, or number of
  2856. * jiffies left till timeout) if completed.
  2857. */
  2858. unsigned long __sched
  2859. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2860. {
  2861. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2862. }
  2863. EXPORT_SYMBOL(wait_for_completion_timeout);
  2864. /**
  2865. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2866. * @x: holds the state of this particular completion
  2867. *
  2868. * This waits for completion of a specific task to be signaled. It is
  2869. * interruptible.
  2870. *
  2871. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2872. */
  2873. int __sched wait_for_completion_interruptible(struct completion *x)
  2874. {
  2875. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2876. if (t == -ERESTARTSYS)
  2877. return t;
  2878. return 0;
  2879. }
  2880. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2881. /**
  2882. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2883. * @x: holds the state of this particular completion
  2884. * @timeout: timeout value in jiffies
  2885. *
  2886. * This waits for either a completion of a specific task to be signaled or for a
  2887. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2888. *
  2889. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2890. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2891. */
  2892. long __sched
  2893. wait_for_completion_interruptible_timeout(struct completion *x,
  2894. unsigned long timeout)
  2895. {
  2896. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2897. }
  2898. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2899. /**
  2900. * wait_for_completion_killable: - waits for completion of a task (killable)
  2901. * @x: holds the state of this particular completion
  2902. *
  2903. * This waits to be signaled for completion of a specific task. It can be
  2904. * interrupted by a kill signal.
  2905. *
  2906. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2907. */
  2908. int __sched wait_for_completion_killable(struct completion *x)
  2909. {
  2910. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2911. if (t == -ERESTARTSYS)
  2912. return t;
  2913. return 0;
  2914. }
  2915. EXPORT_SYMBOL(wait_for_completion_killable);
  2916. /**
  2917. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2918. * @x: holds the state of this particular completion
  2919. * @timeout: timeout value in jiffies
  2920. *
  2921. * This waits for either a completion of a specific task to be
  2922. * signaled or for a specified timeout to expire. It can be
  2923. * interrupted by a kill signal. The timeout is in jiffies.
  2924. *
  2925. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2926. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2927. */
  2928. long __sched
  2929. wait_for_completion_killable_timeout(struct completion *x,
  2930. unsigned long timeout)
  2931. {
  2932. return wait_for_common(x, timeout, TASK_KILLABLE);
  2933. }
  2934. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2935. /**
  2936. * try_wait_for_completion - try to decrement a completion without blocking
  2937. * @x: completion structure
  2938. *
  2939. * Returns: 0 if a decrement cannot be done without blocking
  2940. * 1 if a decrement succeeded.
  2941. *
  2942. * If a completion is being used as a counting completion,
  2943. * attempt to decrement the counter without blocking. This
  2944. * enables us to avoid waiting if the resource the completion
  2945. * is protecting is not available.
  2946. */
  2947. bool try_wait_for_completion(struct completion *x)
  2948. {
  2949. unsigned long flags;
  2950. int ret = 1;
  2951. spin_lock_irqsave(&x->wait.lock, flags);
  2952. if (!x->done)
  2953. ret = 0;
  2954. else
  2955. x->done--;
  2956. spin_unlock_irqrestore(&x->wait.lock, flags);
  2957. return ret;
  2958. }
  2959. EXPORT_SYMBOL(try_wait_for_completion);
  2960. /**
  2961. * completion_done - Test to see if a completion has any waiters
  2962. * @x: completion structure
  2963. *
  2964. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  2965. * 1 if there are no waiters.
  2966. *
  2967. */
  2968. bool completion_done(struct completion *x)
  2969. {
  2970. unsigned long flags;
  2971. int ret = 1;
  2972. spin_lock_irqsave(&x->wait.lock, flags);
  2973. if (!x->done)
  2974. ret = 0;
  2975. spin_unlock_irqrestore(&x->wait.lock, flags);
  2976. return ret;
  2977. }
  2978. EXPORT_SYMBOL(completion_done);
  2979. static long __sched
  2980. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2981. {
  2982. unsigned long flags;
  2983. wait_queue_t wait;
  2984. init_waitqueue_entry(&wait, current);
  2985. __set_current_state(state);
  2986. spin_lock_irqsave(&q->lock, flags);
  2987. __add_wait_queue(q, &wait);
  2988. spin_unlock(&q->lock);
  2989. timeout = schedule_timeout(timeout);
  2990. spin_lock_irq(&q->lock);
  2991. __remove_wait_queue(q, &wait);
  2992. spin_unlock_irqrestore(&q->lock, flags);
  2993. return timeout;
  2994. }
  2995. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2996. {
  2997. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2998. }
  2999. EXPORT_SYMBOL(interruptible_sleep_on);
  3000. long __sched
  3001. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3002. {
  3003. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3004. }
  3005. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3006. void __sched sleep_on(wait_queue_head_t *q)
  3007. {
  3008. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3009. }
  3010. EXPORT_SYMBOL(sleep_on);
  3011. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3012. {
  3013. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3014. }
  3015. EXPORT_SYMBOL(sleep_on_timeout);
  3016. #ifdef CONFIG_RT_MUTEXES
  3017. /*
  3018. * rt_mutex_setprio - set the current priority of a task
  3019. * @p: task
  3020. * @prio: prio value (kernel-internal form)
  3021. *
  3022. * This function changes the 'effective' priority of a task. It does
  3023. * not touch ->normal_prio like __setscheduler().
  3024. *
  3025. * Used by the rt_mutex code to implement priority inheritance logic.
  3026. */
  3027. void rt_mutex_setprio(struct task_struct *p, int prio)
  3028. {
  3029. int oldprio, on_rq, running;
  3030. struct rq *rq;
  3031. const struct sched_class *prev_class;
  3032. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3033. rq = __task_rq_lock(p);
  3034. /*
  3035. * Idle task boosting is a nono in general. There is one
  3036. * exception, when PREEMPT_RT and NOHZ is active:
  3037. *
  3038. * The idle task calls get_next_timer_interrupt() and holds
  3039. * the timer wheel base->lock on the CPU and another CPU wants
  3040. * to access the timer (probably to cancel it). We can safely
  3041. * ignore the boosting request, as the idle CPU runs this code
  3042. * with interrupts disabled and will complete the lock
  3043. * protected section without being interrupted. So there is no
  3044. * real need to boost.
  3045. */
  3046. if (unlikely(p == rq->idle)) {
  3047. WARN_ON(p != rq->curr);
  3048. WARN_ON(p->pi_blocked_on);
  3049. goto out_unlock;
  3050. }
  3051. trace_sched_pi_setprio(p, prio);
  3052. oldprio = p->prio;
  3053. prev_class = p->sched_class;
  3054. on_rq = p->on_rq;
  3055. running = task_current(rq, p);
  3056. if (on_rq)
  3057. dequeue_task(rq, p, 0);
  3058. if (running)
  3059. p->sched_class->put_prev_task(rq, p);
  3060. if (rt_prio(prio))
  3061. p->sched_class = &rt_sched_class;
  3062. else
  3063. p->sched_class = &fair_sched_class;
  3064. p->prio = prio;
  3065. if (running)
  3066. p->sched_class->set_curr_task(rq);
  3067. if (on_rq)
  3068. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3069. check_class_changed(rq, p, prev_class, oldprio);
  3070. out_unlock:
  3071. __task_rq_unlock(rq);
  3072. }
  3073. #endif
  3074. void set_user_nice(struct task_struct *p, long nice)
  3075. {
  3076. int old_prio, delta, on_rq;
  3077. unsigned long flags;
  3078. struct rq *rq;
  3079. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3080. return;
  3081. /*
  3082. * We have to be careful, if called from sys_setpriority(),
  3083. * the task might be in the middle of scheduling on another CPU.
  3084. */
  3085. rq = task_rq_lock(p, &flags);
  3086. /*
  3087. * The RT priorities are set via sched_setscheduler(), but we still
  3088. * allow the 'normal' nice value to be set - but as expected
  3089. * it wont have any effect on scheduling until the task is
  3090. * SCHED_FIFO/SCHED_RR:
  3091. */
  3092. if (task_has_rt_policy(p)) {
  3093. p->static_prio = NICE_TO_PRIO(nice);
  3094. goto out_unlock;
  3095. }
  3096. on_rq = p->on_rq;
  3097. if (on_rq)
  3098. dequeue_task(rq, p, 0);
  3099. p->static_prio = NICE_TO_PRIO(nice);
  3100. set_load_weight(p);
  3101. old_prio = p->prio;
  3102. p->prio = effective_prio(p);
  3103. delta = p->prio - old_prio;
  3104. if (on_rq) {
  3105. enqueue_task(rq, p, 0);
  3106. /*
  3107. * If the task increased its priority or is running and
  3108. * lowered its priority, then reschedule its CPU:
  3109. */
  3110. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3111. resched_task(rq->curr);
  3112. }
  3113. out_unlock:
  3114. task_rq_unlock(rq, p, &flags);
  3115. }
  3116. EXPORT_SYMBOL(set_user_nice);
  3117. /*
  3118. * can_nice - check if a task can reduce its nice value
  3119. * @p: task
  3120. * @nice: nice value
  3121. */
  3122. int can_nice(const struct task_struct *p, const int nice)
  3123. {
  3124. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3125. int nice_rlim = 20 - nice;
  3126. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3127. capable(CAP_SYS_NICE));
  3128. }
  3129. #ifdef __ARCH_WANT_SYS_NICE
  3130. /*
  3131. * sys_nice - change the priority of the current process.
  3132. * @increment: priority increment
  3133. *
  3134. * sys_setpriority is a more generic, but much slower function that
  3135. * does similar things.
  3136. */
  3137. SYSCALL_DEFINE1(nice, int, increment)
  3138. {
  3139. long nice, retval;
  3140. /*
  3141. * Setpriority might change our priority at the same moment.
  3142. * We don't have to worry. Conceptually one call occurs first
  3143. * and we have a single winner.
  3144. */
  3145. if (increment < -40)
  3146. increment = -40;
  3147. if (increment > 40)
  3148. increment = 40;
  3149. nice = TASK_NICE(current) + increment;
  3150. if (nice < -20)
  3151. nice = -20;
  3152. if (nice > 19)
  3153. nice = 19;
  3154. if (increment < 0 && !can_nice(current, nice))
  3155. return -EPERM;
  3156. retval = security_task_setnice(current, nice);
  3157. if (retval)
  3158. return retval;
  3159. set_user_nice(current, nice);
  3160. return 0;
  3161. }
  3162. #endif
  3163. /**
  3164. * task_prio - return the priority value of a given task.
  3165. * @p: the task in question.
  3166. *
  3167. * This is the priority value as seen by users in /proc.
  3168. * RT tasks are offset by -200. Normal tasks are centered
  3169. * around 0, value goes from -16 to +15.
  3170. */
  3171. int task_prio(const struct task_struct *p)
  3172. {
  3173. return p->prio - MAX_RT_PRIO;
  3174. }
  3175. /**
  3176. * task_nice - return the nice value of a given task.
  3177. * @p: the task in question.
  3178. */
  3179. int task_nice(const struct task_struct *p)
  3180. {
  3181. return TASK_NICE(p);
  3182. }
  3183. EXPORT_SYMBOL(task_nice);
  3184. /**
  3185. * idle_cpu - is a given cpu idle currently?
  3186. * @cpu: the processor in question.
  3187. */
  3188. int idle_cpu(int cpu)
  3189. {
  3190. struct rq *rq = cpu_rq(cpu);
  3191. if (rq->curr != rq->idle)
  3192. return 0;
  3193. if (rq->nr_running)
  3194. return 0;
  3195. #ifdef CONFIG_SMP
  3196. if (!llist_empty(&rq->wake_list))
  3197. return 0;
  3198. #endif
  3199. return 1;
  3200. }
  3201. /**
  3202. * idle_task - return the idle task for a given cpu.
  3203. * @cpu: the processor in question.
  3204. */
  3205. struct task_struct *idle_task(int cpu)
  3206. {
  3207. return cpu_rq(cpu)->idle;
  3208. }
  3209. /**
  3210. * find_process_by_pid - find a process with a matching PID value.
  3211. * @pid: the pid in question.
  3212. */
  3213. static struct task_struct *find_process_by_pid(pid_t pid)
  3214. {
  3215. return pid ? find_task_by_vpid(pid) : current;
  3216. }
  3217. /* Actually do priority change: must hold rq lock. */
  3218. static void
  3219. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3220. {
  3221. p->policy = policy;
  3222. p->rt_priority = prio;
  3223. p->normal_prio = normal_prio(p);
  3224. /* we are holding p->pi_lock already */
  3225. p->prio = rt_mutex_getprio(p);
  3226. if (rt_prio(p->prio))
  3227. p->sched_class = &rt_sched_class;
  3228. else
  3229. p->sched_class = &fair_sched_class;
  3230. set_load_weight(p);
  3231. }
  3232. /*
  3233. * check the target process has a UID that matches the current process's
  3234. */
  3235. static bool check_same_owner(struct task_struct *p)
  3236. {
  3237. const struct cred *cred = current_cred(), *pcred;
  3238. bool match;
  3239. rcu_read_lock();
  3240. pcred = __task_cred(p);
  3241. match = (uid_eq(cred->euid, pcred->euid) ||
  3242. uid_eq(cred->euid, pcred->uid));
  3243. rcu_read_unlock();
  3244. return match;
  3245. }
  3246. static int __sched_setscheduler(struct task_struct *p, int policy,
  3247. const struct sched_param *param, bool user)
  3248. {
  3249. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3250. unsigned long flags;
  3251. const struct sched_class *prev_class;
  3252. struct rq *rq;
  3253. int reset_on_fork;
  3254. /* may grab non-irq protected spin_locks */
  3255. BUG_ON(in_interrupt());
  3256. recheck:
  3257. /* double check policy once rq lock held */
  3258. if (policy < 0) {
  3259. reset_on_fork = p->sched_reset_on_fork;
  3260. policy = oldpolicy = p->policy;
  3261. } else {
  3262. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3263. policy &= ~SCHED_RESET_ON_FORK;
  3264. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3265. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3266. policy != SCHED_IDLE)
  3267. return -EINVAL;
  3268. }
  3269. /*
  3270. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3271. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3272. * SCHED_BATCH and SCHED_IDLE is 0.
  3273. */
  3274. if (param->sched_priority < 0 ||
  3275. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3276. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3277. return -EINVAL;
  3278. if (rt_policy(policy) != (param->sched_priority != 0))
  3279. return -EINVAL;
  3280. /*
  3281. * Allow unprivileged RT tasks to decrease priority:
  3282. */
  3283. if (user && !capable(CAP_SYS_NICE)) {
  3284. if (rt_policy(policy)) {
  3285. unsigned long rlim_rtprio =
  3286. task_rlimit(p, RLIMIT_RTPRIO);
  3287. /* can't set/change the rt policy */
  3288. if (policy != p->policy && !rlim_rtprio)
  3289. return -EPERM;
  3290. /* can't increase priority */
  3291. if (param->sched_priority > p->rt_priority &&
  3292. param->sched_priority > rlim_rtprio)
  3293. return -EPERM;
  3294. }
  3295. /*
  3296. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3297. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3298. */
  3299. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3300. if (!can_nice(p, TASK_NICE(p)))
  3301. return -EPERM;
  3302. }
  3303. /* can't change other user's priorities */
  3304. if (!check_same_owner(p))
  3305. return -EPERM;
  3306. /* Normal users shall not reset the sched_reset_on_fork flag */
  3307. if (p->sched_reset_on_fork && !reset_on_fork)
  3308. return -EPERM;
  3309. }
  3310. if (user) {
  3311. retval = security_task_setscheduler(p);
  3312. if (retval)
  3313. return retval;
  3314. }
  3315. /*
  3316. * make sure no PI-waiters arrive (or leave) while we are
  3317. * changing the priority of the task:
  3318. *
  3319. * To be able to change p->policy safely, the appropriate
  3320. * runqueue lock must be held.
  3321. */
  3322. rq = task_rq_lock(p, &flags);
  3323. /*
  3324. * Changing the policy of the stop threads its a very bad idea
  3325. */
  3326. if (p == rq->stop) {
  3327. task_rq_unlock(rq, p, &flags);
  3328. return -EINVAL;
  3329. }
  3330. /*
  3331. * If not changing anything there's no need to proceed further:
  3332. */
  3333. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3334. param->sched_priority == p->rt_priority))) {
  3335. task_rq_unlock(rq, p, &flags);
  3336. return 0;
  3337. }
  3338. #ifdef CONFIG_RT_GROUP_SCHED
  3339. if (user) {
  3340. /*
  3341. * Do not allow realtime tasks into groups that have no runtime
  3342. * assigned.
  3343. */
  3344. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3345. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3346. !task_group_is_autogroup(task_group(p))) {
  3347. task_rq_unlock(rq, p, &flags);
  3348. return -EPERM;
  3349. }
  3350. }
  3351. #endif
  3352. /* recheck policy now with rq lock held */
  3353. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3354. policy = oldpolicy = -1;
  3355. task_rq_unlock(rq, p, &flags);
  3356. goto recheck;
  3357. }
  3358. on_rq = p->on_rq;
  3359. running = task_current(rq, p);
  3360. if (on_rq)
  3361. dequeue_task(rq, p, 0);
  3362. if (running)
  3363. p->sched_class->put_prev_task(rq, p);
  3364. p->sched_reset_on_fork = reset_on_fork;
  3365. oldprio = p->prio;
  3366. prev_class = p->sched_class;
  3367. __setscheduler(rq, p, policy, param->sched_priority);
  3368. if (running)
  3369. p->sched_class->set_curr_task(rq);
  3370. if (on_rq)
  3371. enqueue_task(rq, p, 0);
  3372. check_class_changed(rq, p, prev_class, oldprio);
  3373. task_rq_unlock(rq, p, &flags);
  3374. rt_mutex_adjust_pi(p);
  3375. return 0;
  3376. }
  3377. /**
  3378. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3379. * @p: the task in question.
  3380. * @policy: new policy.
  3381. * @param: structure containing the new RT priority.
  3382. *
  3383. * NOTE that the task may be already dead.
  3384. */
  3385. int sched_setscheduler(struct task_struct *p, int policy,
  3386. const struct sched_param *param)
  3387. {
  3388. return __sched_setscheduler(p, policy, param, true);
  3389. }
  3390. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3391. /**
  3392. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3393. * @p: the task in question.
  3394. * @policy: new policy.
  3395. * @param: structure containing the new RT priority.
  3396. *
  3397. * Just like sched_setscheduler, only don't bother checking if the
  3398. * current context has permission. For example, this is needed in
  3399. * stop_machine(): we create temporary high priority worker threads,
  3400. * but our caller might not have that capability.
  3401. */
  3402. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3403. const struct sched_param *param)
  3404. {
  3405. return __sched_setscheduler(p, policy, param, false);
  3406. }
  3407. static int
  3408. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3409. {
  3410. struct sched_param lparam;
  3411. struct task_struct *p;
  3412. int retval;
  3413. if (!param || pid < 0)
  3414. return -EINVAL;
  3415. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3416. return -EFAULT;
  3417. rcu_read_lock();
  3418. retval = -ESRCH;
  3419. p = find_process_by_pid(pid);
  3420. if (p != NULL)
  3421. retval = sched_setscheduler(p, policy, &lparam);
  3422. rcu_read_unlock();
  3423. return retval;
  3424. }
  3425. /**
  3426. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3427. * @pid: the pid in question.
  3428. * @policy: new policy.
  3429. * @param: structure containing the new RT priority.
  3430. */
  3431. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3432. struct sched_param __user *, param)
  3433. {
  3434. /* negative values for policy are not valid */
  3435. if (policy < 0)
  3436. return -EINVAL;
  3437. return do_sched_setscheduler(pid, policy, param);
  3438. }
  3439. /**
  3440. * sys_sched_setparam - set/change the RT priority of a thread
  3441. * @pid: the pid in question.
  3442. * @param: structure containing the new RT priority.
  3443. */
  3444. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3445. {
  3446. return do_sched_setscheduler(pid, -1, param);
  3447. }
  3448. /**
  3449. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3450. * @pid: the pid in question.
  3451. */
  3452. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3453. {
  3454. struct task_struct *p;
  3455. int retval;
  3456. if (pid < 0)
  3457. return -EINVAL;
  3458. retval = -ESRCH;
  3459. rcu_read_lock();
  3460. p = find_process_by_pid(pid);
  3461. if (p) {
  3462. retval = security_task_getscheduler(p);
  3463. if (!retval)
  3464. retval = p->policy
  3465. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3466. }
  3467. rcu_read_unlock();
  3468. return retval;
  3469. }
  3470. /**
  3471. * sys_sched_getparam - get the RT priority of a thread
  3472. * @pid: the pid in question.
  3473. * @param: structure containing the RT priority.
  3474. */
  3475. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3476. {
  3477. struct sched_param lp;
  3478. struct task_struct *p;
  3479. int retval;
  3480. if (!param || pid < 0)
  3481. return -EINVAL;
  3482. rcu_read_lock();
  3483. p = find_process_by_pid(pid);
  3484. retval = -ESRCH;
  3485. if (!p)
  3486. goto out_unlock;
  3487. retval = security_task_getscheduler(p);
  3488. if (retval)
  3489. goto out_unlock;
  3490. lp.sched_priority = p->rt_priority;
  3491. rcu_read_unlock();
  3492. /*
  3493. * This one might sleep, we cannot do it with a spinlock held ...
  3494. */
  3495. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3496. return retval;
  3497. out_unlock:
  3498. rcu_read_unlock();
  3499. return retval;
  3500. }
  3501. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3502. {
  3503. cpumask_var_t cpus_allowed, new_mask;
  3504. struct task_struct *p;
  3505. int retval;
  3506. get_online_cpus();
  3507. rcu_read_lock();
  3508. p = find_process_by_pid(pid);
  3509. if (!p) {
  3510. rcu_read_unlock();
  3511. put_online_cpus();
  3512. return -ESRCH;
  3513. }
  3514. /* Prevent p going away */
  3515. get_task_struct(p);
  3516. rcu_read_unlock();
  3517. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3518. retval = -ENOMEM;
  3519. goto out_put_task;
  3520. }
  3521. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3522. retval = -ENOMEM;
  3523. goto out_free_cpus_allowed;
  3524. }
  3525. retval = -EPERM;
  3526. if (!check_same_owner(p)) {
  3527. rcu_read_lock();
  3528. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3529. rcu_read_unlock();
  3530. goto out_unlock;
  3531. }
  3532. rcu_read_unlock();
  3533. }
  3534. retval = security_task_setscheduler(p);
  3535. if (retval)
  3536. goto out_unlock;
  3537. cpuset_cpus_allowed(p, cpus_allowed);
  3538. cpumask_and(new_mask, in_mask, cpus_allowed);
  3539. again:
  3540. retval = set_cpus_allowed_ptr(p, new_mask);
  3541. if (!retval) {
  3542. cpuset_cpus_allowed(p, cpus_allowed);
  3543. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3544. /*
  3545. * We must have raced with a concurrent cpuset
  3546. * update. Just reset the cpus_allowed to the
  3547. * cpuset's cpus_allowed
  3548. */
  3549. cpumask_copy(new_mask, cpus_allowed);
  3550. goto again;
  3551. }
  3552. }
  3553. out_unlock:
  3554. free_cpumask_var(new_mask);
  3555. out_free_cpus_allowed:
  3556. free_cpumask_var(cpus_allowed);
  3557. out_put_task:
  3558. put_task_struct(p);
  3559. put_online_cpus();
  3560. return retval;
  3561. }
  3562. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3563. struct cpumask *new_mask)
  3564. {
  3565. if (len < cpumask_size())
  3566. cpumask_clear(new_mask);
  3567. else if (len > cpumask_size())
  3568. len = cpumask_size();
  3569. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3570. }
  3571. /**
  3572. * sys_sched_setaffinity - set the cpu affinity of a process
  3573. * @pid: pid of the process
  3574. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3575. * @user_mask_ptr: user-space pointer to the new cpu mask
  3576. */
  3577. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3578. unsigned long __user *, user_mask_ptr)
  3579. {
  3580. cpumask_var_t new_mask;
  3581. int retval;
  3582. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3583. return -ENOMEM;
  3584. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3585. if (retval == 0)
  3586. retval = sched_setaffinity(pid, new_mask);
  3587. free_cpumask_var(new_mask);
  3588. return retval;
  3589. }
  3590. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3591. {
  3592. struct task_struct *p;
  3593. unsigned long flags;
  3594. int retval;
  3595. get_online_cpus();
  3596. rcu_read_lock();
  3597. retval = -ESRCH;
  3598. p = find_process_by_pid(pid);
  3599. if (!p)
  3600. goto out_unlock;
  3601. retval = security_task_getscheduler(p);
  3602. if (retval)
  3603. goto out_unlock;
  3604. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3605. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3606. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3607. out_unlock:
  3608. rcu_read_unlock();
  3609. put_online_cpus();
  3610. return retval;
  3611. }
  3612. /**
  3613. * sys_sched_getaffinity - get the cpu affinity of a process
  3614. * @pid: pid of the process
  3615. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3616. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3617. */
  3618. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3619. unsigned long __user *, user_mask_ptr)
  3620. {
  3621. int ret;
  3622. cpumask_var_t mask;
  3623. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3624. return -EINVAL;
  3625. if (len & (sizeof(unsigned long)-1))
  3626. return -EINVAL;
  3627. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3628. return -ENOMEM;
  3629. ret = sched_getaffinity(pid, mask);
  3630. if (ret == 0) {
  3631. size_t retlen = min_t(size_t, len, cpumask_size());
  3632. if (copy_to_user(user_mask_ptr, mask, retlen))
  3633. ret = -EFAULT;
  3634. else
  3635. ret = retlen;
  3636. }
  3637. free_cpumask_var(mask);
  3638. return ret;
  3639. }
  3640. /**
  3641. * sys_sched_yield - yield the current processor to other threads.
  3642. *
  3643. * This function yields the current CPU to other tasks. If there are no
  3644. * other threads running on this CPU then this function will return.
  3645. */
  3646. SYSCALL_DEFINE0(sched_yield)
  3647. {
  3648. struct rq *rq = this_rq_lock();
  3649. schedstat_inc(rq, yld_count);
  3650. current->sched_class->yield_task(rq);
  3651. /*
  3652. * Since we are going to call schedule() anyway, there's
  3653. * no need to preempt or enable interrupts:
  3654. */
  3655. __release(rq->lock);
  3656. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3657. do_raw_spin_unlock(&rq->lock);
  3658. sched_preempt_enable_no_resched();
  3659. schedule();
  3660. return 0;
  3661. }
  3662. static inline int should_resched(void)
  3663. {
  3664. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3665. }
  3666. static void __cond_resched(void)
  3667. {
  3668. add_preempt_count(PREEMPT_ACTIVE);
  3669. __schedule();
  3670. sub_preempt_count(PREEMPT_ACTIVE);
  3671. }
  3672. int __sched _cond_resched(void)
  3673. {
  3674. if (should_resched()) {
  3675. __cond_resched();
  3676. return 1;
  3677. }
  3678. return 0;
  3679. }
  3680. EXPORT_SYMBOL(_cond_resched);
  3681. /*
  3682. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3683. * call schedule, and on return reacquire the lock.
  3684. *
  3685. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3686. * operations here to prevent schedule() from being called twice (once via
  3687. * spin_unlock(), once by hand).
  3688. */
  3689. int __cond_resched_lock(spinlock_t *lock)
  3690. {
  3691. int resched = should_resched();
  3692. int ret = 0;
  3693. lockdep_assert_held(lock);
  3694. if (spin_needbreak(lock) || resched) {
  3695. spin_unlock(lock);
  3696. if (resched)
  3697. __cond_resched();
  3698. else
  3699. cpu_relax();
  3700. ret = 1;
  3701. spin_lock(lock);
  3702. }
  3703. return ret;
  3704. }
  3705. EXPORT_SYMBOL(__cond_resched_lock);
  3706. int __sched __cond_resched_softirq(void)
  3707. {
  3708. BUG_ON(!in_softirq());
  3709. if (should_resched()) {
  3710. local_bh_enable();
  3711. __cond_resched();
  3712. local_bh_disable();
  3713. return 1;
  3714. }
  3715. return 0;
  3716. }
  3717. EXPORT_SYMBOL(__cond_resched_softirq);
  3718. /**
  3719. * yield - yield the current processor to other threads.
  3720. *
  3721. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3722. *
  3723. * The scheduler is at all times free to pick the calling task as the most
  3724. * eligible task to run, if removing the yield() call from your code breaks
  3725. * it, its already broken.
  3726. *
  3727. * Typical broken usage is:
  3728. *
  3729. * while (!event)
  3730. * yield();
  3731. *
  3732. * where one assumes that yield() will let 'the other' process run that will
  3733. * make event true. If the current task is a SCHED_FIFO task that will never
  3734. * happen. Never use yield() as a progress guarantee!!
  3735. *
  3736. * If you want to use yield() to wait for something, use wait_event().
  3737. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3738. * If you still want to use yield(), do not!
  3739. */
  3740. void __sched yield(void)
  3741. {
  3742. set_current_state(TASK_RUNNING);
  3743. sys_sched_yield();
  3744. }
  3745. EXPORT_SYMBOL(yield);
  3746. /**
  3747. * yield_to - yield the current processor to another thread in
  3748. * your thread group, or accelerate that thread toward the
  3749. * processor it's on.
  3750. * @p: target task
  3751. * @preempt: whether task preemption is allowed or not
  3752. *
  3753. * It's the caller's job to ensure that the target task struct
  3754. * can't go away on us before we can do any checks.
  3755. *
  3756. * Returns true if we indeed boosted the target task.
  3757. */
  3758. bool __sched yield_to(struct task_struct *p, bool preempt)
  3759. {
  3760. struct task_struct *curr = current;
  3761. struct rq *rq, *p_rq;
  3762. unsigned long flags;
  3763. bool yielded = 0;
  3764. local_irq_save(flags);
  3765. rq = this_rq();
  3766. again:
  3767. p_rq = task_rq(p);
  3768. double_rq_lock(rq, p_rq);
  3769. while (task_rq(p) != p_rq) {
  3770. double_rq_unlock(rq, p_rq);
  3771. goto again;
  3772. }
  3773. if (!curr->sched_class->yield_to_task)
  3774. goto out;
  3775. if (curr->sched_class != p->sched_class)
  3776. goto out;
  3777. if (task_running(p_rq, p) || p->state)
  3778. goto out;
  3779. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3780. if (yielded) {
  3781. schedstat_inc(rq, yld_count);
  3782. /*
  3783. * Make p's CPU reschedule; pick_next_entity takes care of
  3784. * fairness.
  3785. */
  3786. if (preempt && rq != p_rq)
  3787. resched_task(p_rq->curr);
  3788. }
  3789. out:
  3790. double_rq_unlock(rq, p_rq);
  3791. local_irq_restore(flags);
  3792. if (yielded)
  3793. schedule();
  3794. return yielded;
  3795. }
  3796. EXPORT_SYMBOL_GPL(yield_to);
  3797. /*
  3798. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3799. * that process accounting knows that this is a task in IO wait state.
  3800. */
  3801. void __sched io_schedule(void)
  3802. {
  3803. struct rq *rq = raw_rq();
  3804. delayacct_blkio_start();
  3805. atomic_inc(&rq->nr_iowait);
  3806. blk_flush_plug(current);
  3807. current->in_iowait = 1;
  3808. schedule();
  3809. current->in_iowait = 0;
  3810. atomic_dec(&rq->nr_iowait);
  3811. delayacct_blkio_end();
  3812. }
  3813. EXPORT_SYMBOL(io_schedule);
  3814. long __sched io_schedule_timeout(long timeout)
  3815. {
  3816. struct rq *rq = raw_rq();
  3817. long ret;
  3818. delayacct_blkio_start();
  3819. atomic_inc(&rq->nr_iowait);
  3820. blk_flush_plug(current);
  3821. current->in_iowait = 1;
  3822. ret = schedule_timeout(timeout);
  3823. current->in_iowait = 0;
  3824. atomic_dec(&rq->nr_iowait);
  3825. delayacct_blkio_end();
  3826. return ret;
  3827. }
  3828. /**
  3829. * sys_sched_get_priority_max - return maximum RT priority.
  3830. * @policy: scheduling class.
  3831. *
  3832. * this syscall returns the maximum rt_priority that can be used
  3833. * by a given scheduling class.
  3834. */
  3835. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3836. {
  3837. int ret = -EINVAL;
  3838. switch (policy) {
  3839. case SCHED_FIFO:
  3840. case SCHED_RR:
  3841. ret = MAX_USER_RT_PRIO-1;
  3842. break;
  3843. case SCHED_NORMAL:
  3844. case SCHED_BATCH:
  3845. case SCHED_IDLE:
  3846. ret = 0;
  3847. break;
  3848. }
  3849. return ret;
  3850. }
  3851. /**
  3852. * sys_sched_get_priority_min - return minimum RT priority.
  3853. * @policy: scheduling class.
  3854. *
  3855. * this syscall returns the minimum rt_priority that can be used
  3856. * by a given scheduling class.
  3857. */
  3858. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3859. {
  3860. int ret = -EINVAL;
  3861. switch (policy) {
  3862. case SCHED_FIFO:
  3863. case SCHED_RR:
  3864. ret = 1;
  3865. break;
  3866. case SCHED_NORMAL:
  3867. case SCHED_BATCH:
  3868. case SCHED_IDLE:
  3869. ret = 0;
  3870. }
  3871. return ret;
  3872. }
  3873. /**
  3874. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3875. * @pid: pid of the process.
  3876. * @interval: userspace pointer to the timeslice value.
  3877. *
  3878. * this syscall writes the default timeslice value of a given process
  3879. * into the user-space timespec buffer. A value of '0' means infinity.
  3880. */
  3881. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3882. struct timespec __user *, interval)
  3883. {
  3884. struct task_struct *p;
  3885. unsigned int time_slice;
  3886. unsigned long flags;
  3887. struct rq *rq;
  3888. int retval;
  3889. struct timespec t;
  3890. if (pid < 0)
  3891. return -EINVAL;
  3892. retval = -ESRCH;
  3893. rcu_read_lock();
  3894. p = find_process_by_pid(pid);
  3895. if (!p)
  3896. goto out_unlock;
  3897. retval = security_task_getscheduler(p);
  3898. if (retval)
  3899. goto out_unlock;
  3900. rq = task_rq_lock(p, &flags);
  3901. time_slice = p->sched_class->get_rr_interval(rq, p);
  3902. task_rq_unlock(rq, p, &flags);
  3903. rcu_read_unlock();
  3904. jiffies_to_timespec(time_slice, &t);
  3905. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3906. return retval;
  3907. out_unlock:
  3908. rcu_read_unlock();
  3909. return retval;
  3910. }
  3911. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3912. void sched_show_task(struct task_struct *p)
  3913. {
  3914. unsigned long free = 0;
  3915. int ppid;
  3916. unsigned state;
  3917. state = p->state ? __ffs(p->state) + 1 : 0;
  3918. printk(KERN_INFO "%-15.15s %c", p->comm,
  3919. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3920. #if BITS_PER_LONG == 32
  3921. if (state == TASK_RUNNING)
  3922. printk(KERN_CONT " running ");
  3923. else
  3924. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3925. #else
  3926. if (state == TASK_RUNNING)
  3927. printk(KERN_CONT " running task ");
  3928. else
  3929. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3930. #endif
  3931. #ifdef CONFIG_DEBUG_STACK_USAGE
  3932. free = stack_not_used(p);
  3933. #endif
  3934. rcu_read_lock();
  3935. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3936. rcu_read_unlock();
  3937. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3938. task_pid_nr(p), ppid,
  3939. (unsigned long)task_thread_info(p)->flags);
  3940. show_stack(p, NULL);
  3941. }
  3942. void show_state_filter(unsigned long state_filter)
  3943. {
  3944. struct task_struct *g, *p;
  3945. #if BITS_PER_LONG == 32
  3946. printk(KERN_INFO
  3947. " task PC stack pid father\n");
  3948. #else
  3949. printk(KERN_INFO
  3950. " task PC stack pid father\n");
  3951. #endif
  3952. rcu_read_lock();
  3953. do_each_thread(g, p) {
  3954. /*
  3955. * reset the NMI-timeout, listing all files on a slow
  3956. * console might take a lot of time:
  3957. */
  3958. touch_nmi_watchdog();
  3959. if (!state_filter || (p->state & state_filter))
  3960. sched_show_task(p);
  3961. } while_each_thread(g, p);
  3962. touch_all_softlockup_watchdogs();
  3963. #ifdef CONFIG_SCHED_DEBUG
  3964. sysrq_sched_debug_show();
  3965. #endif
  3966. rcu_read_unlock();
  3967. /*
  3968. * Only show locks if all tasks are dumped:
  3969. */
  3970. if (!state_filter)
  3971. debug_show_all_locks();
  3972. }
  3973. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  3974. {
  3975. idle->sched_class = &idle_sched_class;
  3976. }
  3977. /**
  3978. * init_idle - set up an idle thread for a given CPU
  3979. * @idle: task in question
  3980. * @cpu: cpu the idle task belongs to
  3981. *
  3982. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3983. * flag, to make booting more robust.
  3984. */
  3985. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  3986. {
  3987. struct rq *rq = cpu_rq(cpu);
  3988. unsigned long flags;
  3989. raw_spin_lock_irqsave(&rq->lock, flags);
  3990. __sched_fork(idle);
  3991. idle->state = TASK_RUNNING;
  3992. idle->se.exec_start = sched_clock();
  3993. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3994. /*
  3995. * We're having a chicken and egg problem, even though we are
  3996. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3997. * lockdep check in task_group() will fail.
  3998. *
  3999. * Similar case to sched_fork(). / Alternatively we could
  4000. * use task_rq_lock() here and obtain the other rq->lock.
  4001. *
  4002. * Silence PROVE_RCU
  4003. */
  4004. rcu_read_lock();
  4005. __set_task_cpu(idle, cpu);
  4006. rcu_read_unlock();
  4007. rq->curr = rq->idle = idle;
  4008. #if defined(CONFIG_SMP)
  4009. idle->on_cpu = 1;
  4010. #endif
  4011. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4012. /* Set the preempt count _outside_ the spinlocks! */
  4013. task_thread_info(idle)->preempt_count = 0;
  4014. /*
  4015. * The idle tasks have their own, simple scheduling class:
  4016. */
  4017. idle->sched_class = &idle_sched_class;
  4018. ftrace_graph_init_idle_task(idle, cpu);
  4019. #if defined(CONFIG_SMP)
  4020. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4021. #endif
  4022. }
  4023. #ifdef CONFIG_SMP
  4024. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4025. {
  4026. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4027. p->sched_class->set_cpus_allowed(p, new_mask);
  4028. cpumask_copy(&p->cpus_allowed, new_mask);
  4029. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4030. }
  4031. /*
  4032. * This is how migration works:
  4033. *
  4034. * 1) we invoke migration_cpu_stop() on the target CPU using
  4035. * stop_one_cpu().
  4036. * 2) stopper starts to run (implicitly forcing the migrated thread
  4037. * off the CPU)
  4038. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4039. * 4) if it's in the wrong runqueue then the migration thread removes
  4040. * it and puts it into the right queue.
  4041. * 5) stopper completes and stop_one_cpu() returns and the migration
  4042. * is done.
  4043. */
  4044. /*
  4045. * Change a given task's CPU affinity. Migrate the thread to a
  4046. * proper CPU and schedule it away if the CPU it's executing on
  4047. * is removed from the allowed bitmask.
  4048. *
  4049. * NOTE: the caller must have a valid reference to the task, the
  4050. * task must not exit() & deallocate itself prematurely. The
  4051. * call is not atomic; no spinlocks may be held.
  4052. */
  4053. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4054. {
  4055. unsigned long flags;
  4056. struct rq *rq;
  4057. unsigned int dest_cpu;
  4058. int ret = 0;
  4059. rq = task_rq_lock(p, &flags);
  4060. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4061. goto out;
  4062. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4063. ret = -EINVAL;
  4064. goto out;
  4065. }
  4066. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4067. ret = -EINVAL;
  4068. goto out;
  4069. }
  4070. do_set_cpus_allowed(p, new_mask);
  4071. /* Can the task run on the task's current CPU? If so, we're done */
  4072. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4073. goto out;
  4074. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4075. if (p->on_rq) {
  4076. struct migration_arg arg = { p, dest_cpu };
  4077. /* Need help from migration thread: drop lock and wait. */
  4078. task_rq_unlock(rq, p, &flags);
  4079. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4080. tlb_migrate_finish(p->mm);
  4081. return 0;
  4082. }
  4083. out:
  4084. task_rq_unlock(rq, p, &flags);
  4085. return ret;
  4086. }
  4087. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4088. /*
  4089. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4090. * this because either it can't run here any more (set_cpus_allowed()
  4091. * away from this CPU, or CPU going down), or because we're
  4092. * attempting to rebalance this task on exec (sched_exec).
  4093. *
  4094. * So we race with normal scheduler movements, but that's OK, as long
  4095. * as the task is no longer on this CPU.
  4096. *
  4097. * Returns non-zero if task was successfully migrated.
  4098. */
  4099. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4100. {
  4101. struct rq *rq_dest, *rq_src;
  4102. int ret = 0;
  4103. if (unlikely(!cpu_active(dest_cpu)))
  4104. return ret;
  4105. rq_src = cpu_rq(src_cpu);
  4106. rq_dest = cpu_rq(dest_cpu);
  4107. raw_spin_lock(&p->pi_lock);
  4108. double_rq_lock(rq_src, rq_dest);
  4109. /* Already moved. */
  4110. if (task_cpu(p) != src_cpu)
  4111. goto done;
  4112. /* Affinity changed (again). */
  4113. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4114. goto fail;
  4115. /*
  4116. * If we're not on a rq, the next wake-up will ensure we're
  4117. * placed properly.
  4118. */
  4119. if (p->on_rq) {
  4120. dequeue_task(rq_src, p, 0);
  4121. set_task_cpu(p, dest_cpu);
  4122. enqueue_task(rq_dest, p, 0);
  4123. check_preempt_curr(rq_dest, p, 0);
  4124. }
  4125. done:
  4126. ret = 1;
  4127. fail:
  4128. double_rq_unlock(rq_src, rq_dest);
  4129. raw_spin_unlock(&p->pi_lock);
  4130. return ret;
  4131. }
  4132. /*
  4133. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4134. * and performs thread migration by bumping thread off CPU then
  4135. * 'pushing' onto another runqueue.
  4136. */
  4137. static int migration_cpu_stop(void *data)
  4138. {
  4139. struct migration_arg *arg = data;
  4140. /*
  4141. * The original target cpu might have gone down and we might
  4142. * be on another cpu but it doesn't matter.
  4143. */
  4144. local_irq_disable();
  4145. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4146. local_irq_enable();
  4147. return 0;
  4148. }
  4149. #ifdef CONFIG_HOTPLUG_CPU
  4150. /*
  4151. * Ensures that the idle task is using init_mm right before its cpu goes
  4152. * offline.
  4153. */
  4154. void idle_task_exit(void)
  4155. {
  4156. struct mm_struct *mm = current->active_mm;
  4157. BUG_ON(cpu_online(smp_processor_id()));
  4158. if (mm != &init_mm)
  4159. switch_mm(mm, &init_mm, current);
  4160. mmdrop(mm);
  4161. }
  4162. /*
  4163. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4164. * we might have. Assumes we're called after migrate_tasks() so that the
  4165. * nr_active count is stable.
  4166. *
  4167. * Also see the comment "Global load-average calculations".
  4168. */
  4169. static void calc_load_migrate(struct rq *rq)
  4170. {
  4171. long delta = calc_load_fold_active(rq);
  4172. if (delta)
  4173. atomic_long_add(delta, &calc_load_tasks);
  4174. }
  4175. /*
  4176. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4177. * try_to_wake_up()->select_task_rq().
  4178. *
  4179. * Called with rq->lock held even though we'er in stop_machine() and
  4180. * there's no concurrency possible, we hold the required locks anyway
  4181. * because of lock validation efforts.
  4182. */
  4183. static void migrate_tasks(unsigned int dead_cpu)
  4184. {
  4185. struct rq *rq = cpu_rq(dead_cpu);
  4186. struct task_struct *next, *stop = rq->stop;
  4187. int dest_cpu;
  4188. /*
  4189. * Fudge the rq selection such that the below task selection loop
  4190. * doesn't get stuck on the currently eligible stop task.
  4191. *
  4192. * We're currently inside stop_machine() and the rq is either stuck
  4193. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4194. * either way we should never end up calling schedule() until we're
  4195. * done here.
  4196. */
  4197. rq->stop = NULL;
  4198. for ( ; ; ) {
  4199. /*
  4200. * There's this thread running, bail when that's the only
  4201. * remaining thread.
  4202. */
  4203. if (rq->nr_running == 1)
  4204. break;
  4205. next = pick_next_task(rq);
  4206. BUG_ON(!next);
  4207. next->sched_class->put_prev_task(rq, next);
  4208. /* Find suitable destination for @next, with force if needed. */
  4209. dest_cpu = select_fallback_rq(dead_cpu, next);
  4210. raw_spin_unlock(&rq->lock);
  4211. __migrate_task(next, dead_cpu, dest_cpu);
  4212. raw_spin_lock(&rq->lock);
  4213. }
  4214. rq->stop = stop;
  4215. }
  4216. #endif /* CONFIG_HOTPLUG_CPU */
  4217. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4218. static struct ctl_table sd_ctl_dir[] = {
  4219. {
  4220. .procname = "sched_domain",
  4221. .mode = 0555,
  4222. },
  4223. {}
  4224. };
  4225. static struct ctl_table sd_ctl_root[] = {
  4226. {
  4227. .procname = "kernel",
  4228. .mode = 0555,
  4229. .child = sd_ctl_dir,
  4230. },
  4231. {}
  4232. };
  4233. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4234. {
  4235. struct ctl_table *entry =
  4236. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4237. return entry;
  4238. }
  4239. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4240. {
  4241. struct ctl_table *entry;
  4242. /*
  4243. * In the intermediate directories, both the child directory and
  4244. * procname are dynamically allocated and could fail but the mode
  4245. * will always be set. In the lowest directory the names are
  4246. * static strings and all have proc handlers.
  4247. */
  4248. for (entry = *tablep; entry->mode; entry++) {
  4249. if (entry->child)
  4250. sd_free_ctl_entry(&entry->child);
  4251. if (entry->proc_handler == NULL)
  4252. kfree(entry->procname);
  4253. }
  4254. kfree(*tablep);
  4255. *tablep = NULL;
  4256. }
  4257. static int min_load_idx = 0;
  4258. static int max_load_idx = CPU_LOAD_IDX_MAX;
  4259. static void
  4260. set_table_entry(struct ctl_table *entry,
  4261. const char *procname, void *data, int maxlen,
  4262. umode_t mode, proc_handler *proc_handler,
  4263. bool load_idx)
  4264. {
  4265. entry->procname = procname;
  4266. entry->data = data;
  4267. entry->maxlen = maxlen;
  4268. entry->mode = mode;
  4269. entry->proc_handler = proc_handler;
  4270. if (load_idx) {
  4271. entry->extra1 = &min_load_idx;
  4272. entry->extra2 = &max_load_idx;
  4273. }
  4274. }
  4275. static struct ctl_table *
  4276. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4277. {
  4278. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4279. if (table == NULL)
  4280. return NULL;
  4281. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4282. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4283. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4284. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4285. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4286. sizeof(int), 0644, proc_dointvec_minmax, true);
  4287. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4288. sizeof(int), 0644, proc_dointvec_minmax, true);
  4289. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4290. sizeof(int), 0644, proc_dointvec_minmax, true);
  4291. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4292. sizeof(int), 0644, proc_dointvec_minmax, true);
  4293. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4294. sizeof(int), 0644, proc_dointvec_minmax, true);
  4295. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4296. sizeof(int), 0644, proc_dointvec_minmax, false);
  4297. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4298. sizeof(int), 0644, proc_dointvec_minmax, false);
  4299. set_table_entry(&table[9], "cache_nice_tries",
  4300. &sd->cache_nice_tries,
  4301. sizeof(int), 0644, proc_dointvec_minmax, false);
  4302. set_table_entry(&table[10], "flags", &sd->flags,
  4303. sizeof(int), 0644, proc_dointvec_minmax, false);
  4304. set_table_entry(&table[11], "name", sd->name,
  4305. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4306. /* &table[12] is terminator */
  4307. return table;
  4308. }
  4309. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4310. {
  4311. struct ctl_table *entry, *table;
  4312. struct sched_domain *sd;
  4313. int domain_num = 0, i;
  4314. char buf[32];
  4315. for_each_domain(cpu, sd)
  4316. domain_num++;
  4317. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4318. if (table == NULL)
  4319. return NULL;
  4320. i = 0;
  4321. for_each_domain(cpu, sd) {
  4322. snprintf(buf, 32, "domain%d", i);
  4323. entry->procname = kstrdup(buf, GFP_KERNEL);
  4324. entry->mode = 0555;
  4325. entry->child = sd_alloc_ctl_domain_table(sd);
  4326. entry++;
  4327. i++;
  4328. }
  4329. return table;
  4330. }
  4331. static struct ctl_table_header *sd_sysctl_header;
  4332. static void register_sched_domain_sysctl(void)
  4333. {
  4334. int i, cpu_num = num_possible_cpus();
  4335. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4336. char buf[32];
  4337. WARN_ON(sd_ctl_dir[0].child);
  4338. sd_ctl_dir[0].child = entry;
  4339. if (entry == NULL)
  4340. return;
  4341. for_each_possible_cpu(i) {
  4342. snprintf(buf, 32, "cpu%d", i);
  4343. entry->procname = kstrdup(buf, GFP_KERNEL);
  4344. entry->mode = 0555;
  4345. entry->child = sd_alloc_ctl_cpu_table(i);
  4346. entry++;
  4347. }
  4348. WARN_ON(sd_sysctl_header);
  4349. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4350. }
  4351. /* may be called multiple times per register */
  4352. static void unregister_sched_domain_sysctl(void)
  4353. {
  4354. if (sd_sysctl_header)
  4355. unregister_sysctl_table(sd_sysctl_header);
  4356. sd_sysctl_header = NULL;
  4357. if (sd_ctl_dir[0].child)
  4358. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4359. }
  4360. #else
  4361. static void register_sched_domain_sysctl(void)
  4362. {
  4363. }
  4364. static void unregister_sched_domain_sysctl(void)
  4365. {
  4366. }
  4367. #endif
  4368. static void set_rq_online(struct rq *rq)
  4369. {
  4370. if (!rq->online) {
  4371. const struct sched_class *class;
  4372. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4373. rq->online = 1;
  4374. for_each_class(class) {
  4375. if (class->rq_online)
  4376. class->rq_online(rq);
  4377. }
  4378. }
  4379. }
  4380. static void set_rq_offline(struct rq *rq)
  4381. {
  4382. if (rq->online) {
  4383. const struct sched_class *class;
  4384. for_each_class(class) {
  4385. if (class->rq_offline)
  4386. class->rq_offline(rq);
  4387. }
  4388. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4389. rq->online = 0;
  4390. }
  4391. }
  4392. /*
  4393. * migration_call - callback that gets triggered when a CPU is added.
  4394. * Here we can start up the necessary migration thread for the new CPU.
  4395. */
  4396. static int __cpuinit
  4397. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4398. {
  4399. int cpu = (long)hcpu;
  4400. unsigned long flags;
  4401. struct rq *rq = cpu_rq(cpu);
  4402. switch (action & ~CPU_TASKS_FROZEN) {
  4403. case CPU_UP_PREPARE:
  4404. rq->calc_load_update = calc_load_update;
  4405. break;
  4406. case CPU_ONLINE:
  4407. /* Update our root-domain */
  4408. raw_spin_lock_irqsave(&rq->lock, flags);
  4409. if (rq->rd) {
  4410. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4411. set_rq_online(rq);
  4412. }
  4413. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4414. break;
  4415. #ifdef CONFIG_HOTPLUG_CPU
  4416. case CPU_DYING:
  4417. sched_ttwu_pending();
  4418. /* Update our root-domain */
  4419. raw_spin_lock_irqsave(&rq->lock, flags);
  4420. if (rq->rd) {
  4421. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4422. set_rq_offline(rq);
  4423. }
  4424. migrate_tasks(cpu);
  4425. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4426. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4427. break;
  4428. case CPU_DEAD:
  4429. calc_load_migrate(rq);
  4430. break;
  4431. #endif
  4432. }
  4433. update_max_interval();
  4434. return NOTIFY_OK;
  4435. }
  4436. /*
  4437. * Register at high priority so that task migration (migrate_all_tasks)
  4438. * happens before everything else. This has to be lower priority than
  4439. * the notifier in the perf_event subsystem, though.
  4440. */
  4441. static struct notifier_block __cpuinitdata migration_notifier = {
  4442. .notifier_call = migration_call,
  4443. .priority = CPU_PRI_MIGRATION,
  4444. };
  4445. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4446. unsigned long action, void *hcpu)
  4447. {
  4448. switch (action & ~CPU_TASKS_FROZEN) {
  4449. case CPU_STARTING:
  4450. case CPU_DOWN_FAILED:
  4451. set_cpu_active((long)hcpu, true);
  4452. return NOTIFY_OK;
  4453. default:
  4454. return NOTIFY_DONE;
  4455. }
  4456. }
  4457. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4458. unsigned long action, void *hcpu)
  4459. {
  4460. switch (action & ~CPU_TASKS_FROZEN) {
  4461. case CPU_DOWN_PREPARE:
  4462. set_cpu_active((long)hcpu, false);
  4463. return NOTIFY_OK;
  4464. default:
  4465. return NOTIFY_DONE;
  4466. }
  4467. }
  4468. static int __init migration_init(void)
  4469. {
  4470. void *cpu = (void *)(long)smp_processor_id();
  4471. int err;
  4472. /* Initialize migration for the boot CPU */
  4473. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4474. BUG_ON(err == NOTIFY_BAD);
  4475. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4476. register_cpu_notifier(&migration_notifier);
  4477. /* Register cpu active notifiers */
  4478. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4479. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4480. return 0;
  4481. }
  4482. early_initcall(migration_init);
  4483. #endif
  4484. #ifdef CONFIG_SMP
  4485. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4486. #ifdef CONFIG_SCHED_DEBUG
  4487. static __read_mostly int sched_debug_enabled;
  4488. static int __init sched_debug_setup(char *str)
  4489. {
  4490. sched_debug_enabled = 1;
  4491. return 0;
  4492. }
  4493. early_param("sched_debug", sched_debug_setup);
  4494. static inline bool sched_debug(void)
  4495. {
  4496. return sched_debug_enabled;
  4497. }
  4498. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4499. struct cpumask *groupmask)
  4500. {
  4501. struct sched_group *group = sd->groups;
  4502. char str[256];
  4503. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4504. cpumask_clear(groupmask);
  4505. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4506. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4507. printk("does not load-balance\n");
  4508. if (sd->parent)
  4509. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4510. " has parent");
  4511. return -1;
  4512. }
  4513. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4514. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4515. printk(KERN_ERR "ERROR: domain->span does not contain "
  4516. "CPU%d\n", cpu);
  4517. }
  4518. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4519. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4520. " CPU%d\n", cpu);
  4521. }
  4522. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4523. do {
  4524. if (!group) {
  4525. printk("\n");
  4526. printk(KERN_ERR "ERROR: group is NULL\n");
  4527. break;
  4528. }
  4529. /*
  4530. * Even though we initialize ->power to something semi-sane,
  4531. * we leave power_orig unset. This allows us to detect if
  4532. * domain iteration is still funny without causing /0 traps.
  4533. */
  4534. if (!group->sgp->power_orig) {
  4535. printk(KERN_CONT "\n");
  4536. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4537. "set\n");
  4538. break;
  4539. }
  4540. if (!cpumask_weight(sched_group_cpus(group))) {
  4541. printk(KERN_CONT "\n");
  4542. printk(KERN_ERR "ERROR: empty group\n");
  4543. break;
  4544. }
  4545. if (!(sd->flags & SD_OVERLAP) &&
  4546. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4547. printk(KERN_CONT "\n");
  4548. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4549. break;
  4550. }
  4551. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4552. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4553. printk(KERN_CONT " %s", str);
  4554. if (group->sgp->power != SCHED_POWER_SCALE) {
  4555. printk(KERN_CONT " (cpu_power = %d)",
  4556. group->sgp->power);
  4557. }
  4558. group = group->next;
  4559. } while (group != sd->groups);
  4560. printk(KERN_CONT "\n");
  4561. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4562. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4563. if (sd->parent &&
  4564. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4565. printk(KERN_ERR "ERROR: parent span is not a superset "
  4566. "of domain->span\n");
  4567. return 0;
  4568. }
  4569. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4570. {
  4571. int level = 0;
  4572. if (!sched_debug_enabled)
  4573. return;
  4574. if (!sd) {
  4575. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4576. return;
  4577. }
  4578. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4579. for (;;) {
  4580. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4581. break;
  4582. level++;
  4583. sd = sd->parent;
  4584. if (!sd)
  4585. break;
  4586. }
  4587. }
  4588. #else /* !CONFIG_SCHED_DEBUG */
  4589. # define sched_domain_debug(sd, cpu) do { } while (0)
  4590. static inline bool sched_debug(void)
  4591. {
  4592. return false;
  4593. }
  4594. #endif /* CONFIG_SCHED_DEBUG */
  4595. static int sd_degenerate(struct sched_domain *sd)
  4596. {
  4597. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4598. return 1;
  4599. /* Following flags need at least 2 groups */
  4600. if (sd->flags & (SD_LOAD_BALANCE |
  4601. SD_BALANCE_NEWIDLE |
  4602. SD_BALANCE_FORK |
  4603. SD_BALANCE_EXEC |
  4604. SD_SHARE_CPUPOWER |
  4605. SD_SHARE_PKG_RESOURCES)) {
  4606. if (sd->groups != sd->groups->next)
  4607. return 0;
  4608. }
  4609. /* Following flags don't use groups */
  4610. if (sd->flags & (SD_WAKE_AFFINE))
  4611. return 0;
  4612. return 1;
  4613. }
  4614. static int
  4615. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4616. {
  4617. unsigned long cflags = sd->flags, pflags = parent->flags;
  4618. if (sd_degenerate(parent))
  4619. return 1;
  4620. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4621. return 0;
  4622. /* Flags needing groups don't count if only 1 group in parent */
  4623. if (parent->groups == parent->groups->next) {
  4624. pflags &= ~(SD_LOAD_BALANCE |
  4625. SD_BALANCE_NEWIDLE |
  4626. SD_BALANCE_FORK |
  4627. SD_BALANCE_EXEC |
  4628. SD_SHARE_CPUPOWER |
  4629. SD_SHARE_PKG_RESOURCES);
  4630. if (nr_node_ids == 1)
  4631. pflags &= ~SD_SERIALIZE;
  4632. }
  4633. if (~cflags & pflags)
  4634. return 0;
  4635. return 1;
  4636. }
  4637. static void free_rootdomain(struct rcu_head *rcu)
  4638. {
  4639. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4640. cpupri_cleanup(&rd->cpupri);
  4641. free_cpumask_var(rd->rto_mask);
  4642. free_cpumask_var(rd->online);
  4643. free_cpumask_var(rd->span);
  4644. kfree(rd);
  4645. }
  4646. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4647. {
  4648. struct root_domain *old_rd = NULL;
  4649. unsigned long flags;
  4650. raw_spin_lock_irqsave(&rq->lock, flags);
  4651. if (rq->rd) {
  4652. old_rd = rq->rd;
  4653. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4654. set_rq_offline(rq);
  4655. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4656. /*
  4657. * If we dont want to free the old_rt yet then
  4658. * set old_rd to NULL to skip the freeing later
  4659. * in this function:
  4660. */
  4661. if (!atomic_dec_and_test(&old_rd->refcount))
  4662. old_rd = NULL;
  4663. }
  4664. atomic_inc(&rd->refcount);
  4665. rq->rd = rd;
  4666. cpumask_set_cpu(rq->cpu, rd->span);
  4667. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4668. set_rq_online(rq);
  4669. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4670. if (old_rd)
  4671. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4672. }
  4673. static int init_rootdomain(struct root_domain *rd)
  4674. {
  4675. memset(rd, 0, sizeof(*rd));
  4676. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4677. goto out;
  4678. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4679. goto free_span;
  4680. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4681. goto free_online;
  4682. if (cpupri_init(&rd->cpupri) != 0)
  4683. goto free_rto_mask;
  4684. return 0;
  4685. free_rto_mask:
  4686. free_cpumask_var(rd->rto_mask);
  4687. free_online:
  4688. free_cpumask_var(rd->online);
  4689. free_span:
  4690. free_cpumask_var(rd->span);
  4691. out:
  4692. return -ENOMEM;
  4693. }
  4694. /*
  4695. * By default the system creates a single root-domain with all cpus as
  4696. * members (mimicking the global state we have today).
  4697. */
  4698. struct root_domain def_root_domain;
  4699. static void init_defrootdomain(void)
  4700. {
  4701. init_rootdomain(&def_root_domain);
  4702. atomic_set(&def_root_domain.refcount, 1);
  4703. }
  4704. static struct root_domain *alloc_rootdomain(void)
  4705. {
  4706. struct root_domain *rd;
  4707. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4708. if (!rd)
  4709. return NULL;
  4710. if (init_rootdomain(rd) != 0) {
  4711. kfree(rd);
  4712. return NULL;
  4713. }
  4714. return rd;
  4715. }
  4716. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4717. {
  4718. struct sched_group *tmp, *first;
  4719. if (!sg)
  4720. return;
  4721. first = sg;
  4722. do {
  4723. tmp = sg->next;
  4724. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4725. kfree(sg->sgp);
  4726. kfree(sg);
  4727. sg = tmp;
  4728. } while (sg != first);
  4729. }
  4730. static void free_sched_domain(struct rcu_head *rcu)
  4731. {
  4732. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4733. /*
  4734. * If its an overlapping domain it has private groups, iterate and
  4735. * nuke them all.
  4736. */
  4737. if (sd->flags & SD_OVERLAP) {
  4738. free_sched_groups(sd->groups, 1);
  4739. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4740. kfree(sd->groups->sgp);
  4741. kfree(sd->groups);
  4742. }
  4743. kfree(sd);
  4744. }
  4745. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4746. {
  4747. call_rcu(&sd->rcu, free_sched_domain);
  4748. }
  4749. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4750. {
  4751. for (; sd; sd = sd->parent)
  4752. destroy_sched_domain(sd, cpu);
  4753. }
  4754. /*
  4755. * Keep a special pointer to the highest sched_domain that has
  4756. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4757. * allows us to avoid some pointer chasing select_idle_sibling().
  4758. *
  4759. * Also keep a unique ID per domain (we use the first cpu number in
  4760. * the cpumask of the domain), this allows us to quickly tell if
  4761. * two cpus are in the same cache domain, see cpus_share_cache().
  4762. */
  4763. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4764. DEFINE_PER_CPU(int, sd_llc_id);
  4765. static void update_top_cache_domain(int cpu)
  4766. {
  4767. struct sched_domain *sd;
  4768. int id = cpu;
  4769. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4770. if (sd)
  4771. id = cpumask_first(sched_domain_span(sd));
  4772. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4773. per_cpu(sd_llc_id, cpu) = id;
  4774. }
  4775. /*
  4776. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4777. * hold the hotplug lock.
  4778. */
  4779. static void
  4780. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4781. {
  4782. struct rq *rq = cpu_rq(cpu);
  4783. struct sched_domain *tmp;
  4784. /* Remove the sched domains which do not contribute to scheduling. */
  4785. for (tmp = sd; tmp; ) {
  4786. struct sched_domain *parent = tmp->parent;
  4787. if (!parent)
  4788. break;
  4789. if (sd_parent_degenerate(tmp, parent)) {
  4790. tmp->parent = parent->parent;
  4791. if (parent->parent)
  4792. parent->parent->child = tmp;
  4793. destroy_sched_domain(parent, cpu);
  4794. } else
  4795. tmp = tmp->parent;
  4796. }
  4797. if (sd && sd_degenerate(sd)) {
  4798. tmp = sd;
  4799. sd = sd->parent;
  4800. destroy_sched_domain(tmp, cpu);
  4801. if (sd)
  4802. sd->child = NULL;
  4803. }
  4804. sched_domain_debug(sd, cpu);
  4805. rq_attach_root(rq, rd);
  4806. tmp = rq->sd;
  4807. rcu_assign_pointer(rq->sd, sd);
  4808. destroy_sched_domains(tmp, cpu);
  4809. update_top_cache_domain(cpu);
  4810. }
  4811. /* cpus with isolated domains */
  4812. static cpumask_var_t cpu_isolated_map;
  4813. /* Setup the mask of cpus configured for isolated domains */
  4814. static int __init isolated_cpu_setup(char *str)
  4815. {
  4816. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4817. cpulist_parse(str, cpu_isolated_map);
  4818. return 1;
  4819. }
  4820. __setup("isolcpus=", isolated_cpu_setup);
  4821. static const struct cpumask *cpu_cpu_mask(int cpu)
  4822. {
  4823. return cpumask_of_node(cpu_to_node(cpu));
  4824. }
  4825. struct sd_data {
  4826. struct sched_domain **__percpu sd;
  4827. struct sched_group **__percpu sg;
  4828. struct sched_group_power **__percpu sgp;
  4829. };
  4830. struct s_data {
  4831. struct sched_domain ** __percpu sd;
  4832. struct root_domain *rd;
  4833. };
  4834. enum s_alloc {
  4835. sa_rootdomain,
  4836. sa_sd,
  4837. sa_sd_storage,
  4838. sa_none,
  4839. };
  4840. struct sched_domain_topology_level;
  4841. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4842. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4843. #define SDTL_OVERLAP 0x01
  4844. struct sched_domain_topology_level {
  4845. sched_domain_init_f init;
  4846. sched_domain_mask_f mask;
  4847. int flags;
  4848. int numa_level;
  4849. struct sd_data data;
  4850. };
  4851. /*
  4852. * Build an iteration mask that can exclude certain CPUs from the upwards
  4853. * domain traversal.
  4854. *
  4855. * Asymmetric node setups can result in situations where the domain tree is of
  4856. * unequal depth, make sure to skip domains that already cover the entire
  4857. * range.
  4858. *
  4859. * In that case build_sched_domains() will have terminated the iteration early
  4860. * and our sibling sd spans will be empty. Domains should always include the
  4861. * cpu they're built on, so check that.
  4862. *
  4863. */
  4864. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4865. {
  4866. const struct cpumask *span = sched_domain_span(sd);
  4867. struct sd_data *sdd = sd->private;
  4868. struct sched_domain *sibling;
  4869. int i;
  4870. for_each_cpu(i, span) {
  4871. sibling = *per_cpu_ptr(sdd->sd, i);
  4872. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4873. continue;
  4874. cpumask_set_cpu(i, sched_group_mask(sg));
  4875. }
  4876. }
  4877. /*
  4878. * Return the canonical balance cpu for this group, this is the first cpu
  4879. * of this group that's also in the iteration mask.
  4880. */
  4881. int group_balance_cpu(struct sched_group *sg)
  4882. {
  4883. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4884. }
  4885. static int
  4886. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4887. {
  4888. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4889. const struct cpumask *span = sched_domain_span(sd);
  4890. struct cpumask *covered = sched_domains_tmpmask;
  4891. struct sd_data *sdd = sd->private;
  4892. struct sched_domain *child;
  4893. int i;
  4894. cpumask_clear(covered);
  4895. for_each_cpu(i, span) {
  4896. struct cpumask *sg_span;
  4897. if (cpumask_test_cpu(i, covered))
  4898. continue;
  4899. child = *per_cpu_ptr(sdd->sd, i);
  4900. /* See the comment near build_group_mask(). */
  4901. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4902. continue;
  4903. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4904. GFP_KERNEL, cpu_to_node(cpu));
  4905. if (!sg)
  4906. goto fail;
  4907. sg_span = sched_group_cpus(sg);
  4908. if (child->child) {
  4909. child = child->child;
  4910. cpumask_copy(sg_span, sched_domain_span(child));
  4911. } else
  4912. cpumask_set_cpu(i, sg_span);
  4913. cpumask_or(covered, covered, sg_span);
  4914. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4915. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4916. build_group_mask(sd, sg);
  4917. /*
  4918. * Initialize sgp->power such that even if we mess up the
  4919. * domains and no possible iteration will get us here, we won't
  4920. * die on a /0 trap.
  4921. */
  4922. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4923. /*
  4924. * Make sure the first group of this domain contains the
  4925. * canonical balance cpu. Otherwise the sched_domain iteration
  4926. * breaks. See update_sg_lb_stats().
  4927. */
  4928. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4929. group_balance_cpu(sg) == cpu)
  4930. groups = sg;
  4931. if (!first)
  4932. first = sg;
  4933. if (last)
  4934. last->next = sg;
  4935. last = sg;
  4936. last->next = first;
  4937. }
  4938. sd->groups = groups;
  4939. return 0;
  4940. fail:
  4941. free_sched_groups(first, 0);
  4942. return -ENOMEM;
  4943. }
  4944. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4945. {
  4946. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4947. struct sched_domain *child = sd->child;
  4948. if (child)
  4949. cpu = cpumask_first(sched_domain_span(child));
  4950. if (sg) {
  4951. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4952. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4953. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4954. }
  4955. return cpu;
  4956. }
  4957. /*
  4958. * build_sched_groups will build a circular linked list of the groups
  4959. * covered by the given span, and will set each group's ->cpumask correctly,
  4960. * and ->cpu_power to 0.
  4961. *
  4962. * Assumes the sched_domain tree is fully constructed
  4963. */
  4964. static int
  4965. build_sched_groups(struct sched_domain *sd, int cpu)
  4966. {
  4967. struct sched_group *first = NULL, *last = NULL;
  4968. struct sd_data *sdd = sd->private;
  4969. const struct cpumask *span = sched_domain_span(sd);
  4970. struct cpumask *covered;
  4971. int i;
  4972. get_group(cpu, sdd, &sd->groups);
  4973. atomic_inc(&sd->groups->ref);
  4974. if (cpu != cpumask_first(sched_domain_span(sd)))
  4975. return 0;
  4976. lockdep_assert_held(&sched_domains_mutex);
  4977. covered = sched_domains_tmpmask;
  4978. cpumask_clear(covered);
  4979. for_each_cpu(i, span) {
  4980. struct sched_group *sg;
  4981. int group = get_group(i, sdd, &sg);
  4982. int j;
  4983. if (cpumask_test_cpu(i, covered))
  4984. continue;
  4985. cpumask_clear(sched_group_cpus(sg));
  4986. sg->sgp->power = 0;
  4987. cpumask_setall(sched_group_mask(sg));
  4988. for_each_cpu(j, span) {
  4989. if (get_group(j, sdd, NULL) != group)
  4990. continue;
  4991. cpumask_set_cpu(j, covered);
  4992. cpumask_set_cpu(j, sched_group_cpus(sg));
  4993. }
  4994. if (!first)
  4995. first = sg;
  4996. if (last)
  4997. last->next = sg;
  4998. last = sg;
  4999. }
  5000. last->next = first;
  5001. return 0;
  5002. }
  5003. /*
  5004. * Initialize sched groups cpu_power.
  5005. *
  5006. * cpu_power indicates the capacity of sched group, which is used while
  5007. * distributing the load between different sched groups in a sched domain.
  5008. * Typically cpu_power for all the groups in a sched domain will be same unless
  5009. * there are asymmetries in the topology. If there are asymmetries, group
  5010. * having more cpu_power will pickup more load compared to the group having
  5011. * less cpu_power.
  5012. */
  5013. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5014. {
  5015. struct sched_group *sg = sd->groups;
  5016. WARN_ON(!sd || !sg);
  5017. do {
  5018. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5019. sg = sg->next;
  5020. } while (sg != sd->groups);
  5021. if (cpu != group_balance_cpu(sg))
  5022. return;
  5023. update_group_power(sd, cpu);
  5024. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5025. }
  5026. int __weak arch_sd_sibling_asym_packing(void)
  5027. {
  5028. return 0*SD_ASYM_PACKING;
  5029. }
  5030. /*
  5031. * Initializers for schedule domains
  5032. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5033. */
  5034. #ifdef CONFIG_SCHED_DEBUG
  5035. # define SD_INIT_NAME(sd, type) sd->name = #type
  5036. #else
  5037. # define SD_INIT_NAME(sd, type) do { } while (0)
  5038. #endif
  5039. #define SD_INIT_FUNC(type) \
  5040. static noinline struct sched_domain * \
  5041. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5042. { \
  5043. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5044. *sd = SD_##type##_INIT; \
  5045. SD_INIT_NAME(sd, type); \
  5046. sd->private = &tl->data; \
  5047. return sd; \
  5048. }
  5049. SD_INIT_FUNC(CPU)
  5050. #ifdef CONFIG_SCHED_SMT
  5051. SD_INIT_FUNC(SIBLING)
  5052. #endif
  5053. #ifdef CONFIG_SCHED_MC
  5054. SD_INIT_FUNC(MC)
  5055. #endif
  5056. #ifdef CONFIG_SCHED_BOOK
  5057. SD_INIT_FUNC(BOOK)
  5058. #endif
  5059. static int default_relax_domain_level = -1;
  5060. int sched_domain_level_max;
  5061. static int __init setup_relax_domain_level(char *str)
  5062. {
  5063. if (kstrtoint(str, 0, &default_relax_domain_level))
  5064. pr_warn("Unable to set relax_domain_level\n");
  5065. return 1;
  5066. }
  5067. __setup("relax_domain_level=", setup_relax_domain_level);
  5068. static void set_domain_attribute(struct sched_domain *sd,
  5069. struct sched_domain_attr *attr)
  5070. {
  5071. int request;
  5072. if (!attr || attr->relax_domain_level < 0) {
  5073. if (default_relax_domain_level < 0)
  5074. return;
  5075. else
  5076. request = default_relax_domain_level;
  5077. } else
  5078. request = attr->relax_domain_level;
  5079. if (request < sd->level) {
  5080. /* turn off idle balance on this domain */
  5081. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5082. } else {
  5083. /* turn on idle balance on this domain */
  5084. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5085. }
  5086. }
  5087. static void __sdt_free(const struct cpumask *cpu_map);
  5088. static int __sdt_alloc(const struct cpumask *cpu_map);
  5089. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5090. const struct cpumask *cpu_map)
  5091. {
  5092. switch (what) {
  5093. case sa_rootdomain:
  5094. if (!atomic_read(&d->rd->refcount))
  5095. free_rootdomain(&d->rd->rcu); /* fall through */
  5096. case sa_sd:
  5097. free_percpu(d->sd); /* fall through */
  5098. case sa_sd_storage:
  5099. __sdt_free(cpu_map); /* fall through */
  5100. case sa_none:
  5101. break;
  5102. }
  5103. }
  5104. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5105. const struct cpumask *cpu_map)
  5106. {
  5107. memset(d, 0, sizeof(*d));
  5108. if (__sdt_alloc(cpu_map))
  5109. return sa_sd_storage;
  5110. d->sd = alloc_percpu(struct sched_domain *);
  5111. if (!d->sd)
  5112. return sa_sd_storage;
  5113. d->rd = alloc_rootdomain();
  5114. if (!d->rd)
  5115. return sa_sd;
  5116. return sa_rootdomain;
  5117. }
  5118. /*
  5119. * NULL the sd_data elements we've used to build the sched_domain and
  5120. * sched_group structure so that the subsequent __free_domain_allocs()
  5121. * will not free the data we're using.
  5122. */
  5123. static void claim_allocations(int cpu, struct sched_domain *sd)
  5124. {
  5125. struct sd_data *sdd = sd->private;
  5126. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5127. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5128. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5129. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5130. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5131. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5132. }
  5133. #ifdef CONFIG_SCHED_SMT
  5134. static const struct cpumask *cpu_smt_mask(int cpu)
  5135. {
  5136. return topology_thread_cpumask(cpu);
  5137. }
  5138. #endif
  5139. /*
  5140. * Topology list, bottom-up.
  5141. */
  5142. static struct sched_domain_topology_level default_topology[] = {
  5143. #ifdef CONFIG_SCHED_SMT
  5144. { sd_init_SIBLING, cpu_smt_mask, },
  5145. #endif
  5146. #ifdef CONFIG_SCHED_MC
  5147. { sd_init_MC, cpu_coregroup_mask, },
  5148. #endif
  5149. #ifdef CONFIG_SCHED_BOOK
  5150. { sd_init_BOOK, cpu_book_mask, },
  5151. #endif
  5152. { sd_init_CPU, cpu_cpu_mask, },
  5153. { NULL, },
  5154. };
  5155. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5156. #ifdef CONFIG_NUMA
  5157. static int sched_domains_numa_levels;
  5158. static int *sched_domains_numa_distance;
  5159. static struct cpumask ***sched_domains_numa_masks;
  5160. static int sched_domains_curr_level;
  5161. static inline int sd_local_flags(int level)
  5162. {
  5163. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5164. return 0;
  5165. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5166. }
  5167. static struct sched_domain *
  5168. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5169. {
  5170. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5171. int level = tl->numa_level;
  5172. int sd_weight = cpumask_weight(
  5173. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5174. *sd = (struct sched_domain){
  5175. .min_interval = sd_weight,
  5176. .max_interval = 2*sd_weight,
  5177. .busy_factor = 32,
  5178. .imbalance_pct = 125,
  5179. .cache_nice_tries = 2,
  5180. .busy_idx = 3,
  5181. .idle_idx = 2,
  5182. .newidle_idx = 0,
  5183. .wake_idx = 0,
  5184. .forkexec_idx = 0,
  5185. .flags = 1*SD_LOAD_BALANCE
  5186. | 1*SD_BALANCE_NEWIDLE
  5187. | 0*SD_BALANCE_EXEC
  5188. | 0*SD_BALANCE_FORK
  5189. | 0*SD_BALANCE_WAKE
  5190. | 0*SD_WAKE_AFFINE
  5191. | 0*SD_SHARE_CPUPOWER
  5192. | 0*SD_SHARE_PKG_RESOURCES
  5193. | 1*SD_SERIALIZE
  5194. | 0*SD_PREFER_SIBLING
  5195. | sd_local_flags(level)
  5196. ,
  5197. .last_balance = jiffies,
  5198. .balance_interval = sd_weight,
  5199. };
  5200. SD_INIT_NAME(sd, NUMA);
  5201. sd->private = &tl->data;
  5202. /*
  5203. * Ugly hack to pass state to sd_numa_mask()...
  5204. */
  5205. sched_domains_curr_level = tl->numa_level;
  5206. return sd;
  5207. }
  5208. static const struct cpumask *sd_numa_mask(int cpu)
  5209. {
  5210. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5211. }
  5212. static void sched_numa_warn(const char *str)
  5213. {
  5214. static int done = false;
  5215. int i,j;
  5216. if (done)
  5217. return;
  5218. done = true;
  5219. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5220. for (i = 0; i < nr_node_ids; i++) {
  5221. printk(KERN_WARNING " ");
  5222. for (j = 0; j < nr_node_ids; j++)
  5223. printk(KERN_CONT "%02d ", node_distance(i,j));
  5224. printk(KERN_CONT "\n");
  5225. }
  5226. printk(KERN_WARNING "\n");
  5227. }
  5228. static bool find_numa_distance(int distance)
  5229. {
  5230. int i;
  5231. if (distance == node_distance(0, 0))
  5232. return true;
  5233. for (i = 0; i < sched_domains_numa_levels; i++) {
  5234. if (sched_domains_numa_distance[i] == distance)
  5235. return true;
  5236. }
  5237. return false;
  5238. }
  5239. static void sched_init_numa(void)
  5240. {
  5241. int next_distance, curr_distance = node_distance(0, 0);
  5242. struct sched_domain_topology_level *tl;
  5243. int level = 0;
  5244. int i, j, k;
  5245. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5246. if (!sched_domains_numa_distance)
  5247. return;
  5248. /*
  5249. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5250. * unique distances in the node_distance() table.
  5251. *
  5252. * Assumes node_distance(0,j) includes all distances in
  5253. * node_distance(i,j) in order to avoid cubic time.
  5254. */
  5255. next_distance = curr_distance;
  5256. for (i = 0; i < nr_node_ids; i++) {
  5257. for (j = 0; j < nr_node_ids; j++) {
  5258. for (k = 0; k < nr_node_ids; k++) {
  5259. int distance = node_distance(i, k);
  5260. if (distance > curr_distance &&
  5261. (distance < next_distance ||
  5262. next_distance == curr_distance))
  5263. next_distance = distance;
  5264. /*
  5265. * While not a strong assumption it would be nice to know
  5266. * about cases where if node A is connected to B, B is not
  5267. * equally connected to A.
  5268. */
  5269. if (sched_debug() && node_distance(k, i) != distance)
  5270. sched_numa_warn("Node-distance not symmetric");
  5271. if (sched_debug() && i && !find_numa_distance(distance))
  5272. sched_numa_warn("Node-0 not representative");
  5273. }
  5274. if (next_distance != curr_distance) {
  5275. sched_domains_numa_distance[level++] = next_distance;
  5276. sched_domains_numa_levels = level;
  5277. curr_distance = next_distance;
  5278. } else break;
  5279. }
  5280. /*
  5281. * In case of sched_debug() we verify the above assumption.
  5282. */
  5283. if (!sched_debug())
  5284. break;
  5285. }
  5286. /*
  5287. * 'level' contains the number of unique distances, excluding the
  5288. * identity distance node_distance(i,i).
  5289. *
  5290. * The sched_domains_nume_distance[] array includes the actual distance
  5291. * numbers.
  5292. */
  5293. /*
  5294. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5295. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5296. * the array will contain less then 'level' members. This could be
  5297. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5298. * in other functions.
  5299. *
  5300. * We reset it to 'level' at the end of this function.
  5301. */
  5302. sched_domains_numa_levels = 0;
  5303. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5304. if (!sched_domains_numa_masks)
  5305. return;
  5306. /*
  5307. * Now for each level, construct a mask per node which contains all
  5308. * cpus of nodes that are that many hops away from us.
  5309. */
  5310. for (i = 0; i < level; i++) {
  5311. sched_domains_numa_masks[i] =
  5312. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5313. if (!sched_domains_numa_masks[i])
  5314. return;
  5315. for (j = 0; j < nr_node_ids; j++) {
  5316. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5317. if (!mask)
  5318. return;
  5319. sched_domains_numa_masks[i][j] = mask;
  5320. for (k = 0; k < nr_node_ids; k++) {
  5321. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5322. continue;
  5323. cpumask_or(mask, mask, cpumask_of_node(k));
  5324. }
  5325. }
  5326. }
  5327. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5328. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5329. if (!tl)
  5330. return;
  5331. /*
  5332. * Copy the default topology bits..
  5333. */
  5334. for (i = 0; default_topology[i].init; i++)
  5335. tl[i] = default_topology[i];
  5336. /*
  5337. * .. and append 'j' levels of NUMA goodness.
  5338. */
  5339. for (j = 0; j < level; i++, j++) {
  5340. tl[i] = (struct sched_domain_topology_level){
  5341. .init = sd_numa_init,
  5342. .mask = sd_numa_mask,
  5343. .flags = SDTL_OVERLAP,
  5344. .numa_level = j,
  5345. };
  5346. }
  5347. sched_domain_topology = tl;
  5348. sched_domains_numa_levels = level;
  5349. }
  5350. static void sched_domains_numa_masks_set(int cpu)
  5351. {
  5352. int i, j;
  5353. int node = cpu_to_node(cpu);
  5354. for (i = 0; i < sched_domains_numa_levels; i++) {
  5355. for (j = 0; j < nr_node_ids; j++) {
  5356. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5357. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5358. }
  5359. }
  5360. }
  5361. static void sched_domains_numa_masks_clear(int cpu)
  5362. {
  5363. int i, j;
  5364. for (i = 0; i < sched_domains_numa_levels; i++) {
  5365. for (j = 0; j < nr_node_ids; j++)
  5366. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5367. }
  5368. }
  5369. /*
  5370. * Update sched_domains_numa_masks[level][node] array when new cpus
  5371. * are onlined.
  5372. */
  5373. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5374. unsigned long action,
  5375. void *hcpu)
  5376. {
  5377. int cpu = (long)hcpu;
  5378. switch (action & ~CPU_TASKS_FROZEN) {
  5379. case CPU_ONLINE:
  5380. sched_domains_numa_masks_set(cpu);
  5381. break;
  5382. case CPU_DEAD:
  5383. sched_domains_numa_masks_clear(cpu);
  5384. break;
  5385. default:
  5386. return NOTIFY_DONE;
  5387. }
  5388. return NOTIFY_OK;
  5389. }
  5390. #else
  5391. static inline void sched_init_numa(void)
  5392. {
  5393. }
  5394. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5395. unsigned long action,
  5396. void *hcpu)
  5397. {
  5398. return 0;
  5399. }
  5400. #endif /* CONFIG_NUMA */
  5401. static int __sdt_alloc(const struct cpumask *cpu_map)
  5402. {
  5403. struct sched_domain_topology_level *tl;
  5404. int j;
  5405. for (tl = sched_domain_topology; tl->init; tl++) {
  5406. struct sd_data *sdd = &tl->data;
  5407. sdd->sd = alloc_percpu(struct sched_domain *);
  5408. if (!sdd->sd)
  5409. return -ENOMEM;
  5410. sdd->sg = alloc_percpu(struct sched_group *);
  5411. if (!sdd->sg)
  5412. return -ENOMEM;
  5413. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5414. if (!sdd->sgp)
  5415. return -ENOMEM;
  5416. for_each_cpu(j, cpu_map) {
  5417. struct sched_domain *sd;
  5418. struct sched_group *sg;
  5419. struct sched_group_power *sgp;
  5420. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5421. GFP_KERNEL, cpu_to_node(j));
  5422. if (!sd)
  5423. return -ENOMEM;
  5424. *per_cpu_ptr(sdd->sd, j) = sd;
  5425. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5426. GFP_KERNEL, cpu_to_node(j));
  5427. if (!sg)
  5428. return -ENOMEM;
  5429. sg->next = sg;
  5430. *per_cpu_ptr(sdd->sg, j) = sg;
  5431. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5432. GFP_KERNEL, cpu_to_node(j));
  5433. if (!sgp)
  5434. return -ENOMEM;
  5435. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5436. }
  5437. }
  5438. return 0;
  5439. }
  5440. static void __sdt_free(const struct cpumask *cpu_map)
  5441. {
  5442. struct sched_domain_topology_level *tl;
  5443. int j;
  5444. for (tl = sched_domain_topology; tl->init; tl++) {
  5445. struct sd_data *sdd = &tl->data;
  5446. for_each_cpu(j, cpu_map) {
  5447. struct sched_domain *sd;
  5448. if (sdd->sd) {
  5449. sd = *per_cpu_ptr(sdd->sd, j);
  5450. if (sd && (sd->flags & SD_OVERLAP))
  5451. free_sched_groups(sd->groups, 0);
  5452. kfree(*per_cpu_ptr(sdd->sd, j));
  5453. }
  5454. if (sdd->sg)
  5455. kfree(*per_cpu_ptr(sdd->sg, j));
  5456. if (sdd->sgp)
  5457. kfree(*per_cpu_ptr(sdd->sgp, j));
  5458. }
  5459. free_percpu(sdd->sd);
  5460. sdd->sd = NULL;
  5461. free_percpu(sdd->sg);
  5462. sdd->sg = NULL;
  5463. free_percpu(sdd->sgp);
  5464. sdd->sgp = NULL;
  5465. }
  5466. }
  5467. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5468. struct s_data *d, const struct cpumask *cpu_map,
  5469. struct sched_domain_attr *attr, struct sched_domain *child,
  5470. int cpu)
  5471. {
  5472. struct sched_domain *sd = tl->init(tl, cpu);
  5473. if (!sd)
  5474. return child;
  5475. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5476. if (child) {
  5477. sd->level = child->level + 1;
  5478. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5479. child->parent = sd;
  5480. }
  5481. sd->child = child;
  5482. set_domain_attribute(sd, attr);
  5483. return sd;
  5484. }
  5485. /*
  5486. * Build sched domains for a given set of cpus and attach the sched domains
  5487. * to the individual cpus
  5488. */
  5489. static int build_sched_domains(const struct cpumask *cpu_map,
  5490. struct sched_domain_attr *attr)
  5491. {
  5492. enum s_alloc alloc_state = sa_none;
  5493. struct sched_domain *sd;
  5494. struct s_data d;
  5495. int i, ret = -ENOMEM;
  5496. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5497. if (alloc_state != sa_rootdomain)
  5498. goto error;
  5499. /* Set up domains for cpus specified by the cpu_map. */
  5500. for_each_cpu(i, cpu_map) {
  5501. struct sched_domain_topology_level *tl;
  5502. sd = NULL;
  5503. for (tl = sched_domain_topology; tl->init; tl++) {
  5504. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5505. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5506. sd->flags |= SD_OVERLAP;
  5507. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5508. break;
  5509. }
  5510. while (sd->child)
  5511. sd = sd->child;
  5512. *per_cpu_ptr(d.sd, i) = sd;
  5513. }
  5514. /* Build the groups for the domains */
  5515. for_each_cpu(i, cpu_map) {
  5516. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5517. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5518. if (sd->flags & SD_OVERLAP) {
  5519. if (build_overlap_sched_groups(sd, i))
  5520. goto error;
  5521. } else {
  5522. if (build_sched_groups(sd, i))
  5523. goto error;
  5524. }
  5525. }
  5526. }
  5527. /* Calculate CPU power for physical packages and nodes */
  5528. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5529. if (!cpumask_test_cpu(i, cpu_map))
  5530. continue;
  5531. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5532. claim_allocations(i, sd);
  5533. init_sched_groups_power(i, sd);
  5534. }
  5535. }
  5536. /* Attach the domains */
  5537. rcu_read_lock();
  5538. for_each_cpu(i, cpu_map) {
  5539. sd = *per_cpu_ptr(d.sd, i);
  5540. cpu_attach_domain(sd, d.rd, i);
  5541. }
  5542. rcu_read_unlock();
  5543. ret = 0;
  5544. error:
  5545. __free_domain_allocs(&d, alloc_state, cpu_map);
  5546. return ret;
  5547. }
  5548. static cpumask_var_t *doms_cur; /* current sched domains */
  5549. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5550. static struct sched_domain_attr *dattr_cur;
  5551. /* attribues of custom domains in 'doms_cur' */
  5552. /*
  5553. * Special case: If a kmalloc of a doms_cur partition (array of
  5554. * cpumask) fails, then fallback to a single sched domain,
  5555. * as determined by the single cpumask fallback_doms.
  5556. */
  5557. static cpumask_var_t fallback_doms;
  5558. /*
  5559. * arch_update_cpu_topology lets virtualized architectures update the
  5560. * cpu core maps. It is supposed to return 1 if the topology changed
  5561. * or 0 if it stayed the same.
  5562. */
  5563. int __attribute__((weak)) arch_update_cpu_topology(void)
  5564. {
  5565. return 0;
  5566. }
  5567. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5568. {
  5569. int i;
  5570. cpumask_var_t *doms;
  5571. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5572. if (!doms)
  5573. return NULL;
  5574. for (i = 0; i < ndoms; i++) {
  5575. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5576. free_sched_domains(doms, i);
  5577. return NULL;
  5578. }
  5579. }
  5580. return doms;
  5581. }
  5582. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5583. {
  5584. unsigned int i;
  5585. for (i = 0; i < ndoms; i++)
  5586. free_cpumask_var(doms[i]);
  5587. kfree(doms);
  5588. }
  5589. /*
  5590. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5591. * For now this just excludes isolated cpus, but could be used to
  5592. * exclude other special cases in the future.
  5593. */
  5594. static int init_sched_domains(const struct cpumask *cpu_map)
  5595. {
  5596. int err;
  5597. arch_update_cpu_topology();
  5598. ndoms_cur = 1;
  5599. doms_cur = alloc_sched_domains(ndoms_cur);
  5600. if (!doms_cur)
  5601. doms_cur = &fallback_doms;
  5602. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5603. err = build_sched_domains(doms_cur[0], NULL);
  5604. register_sched_domain_sysctl();
  5605. return err;
  5606. }
  5607. /*
  5608. * Detach sched domains from a group of cpus specified in cpu_map
  5609. * These cpus will now be attached to the NULL domain
  5610. */
  5611. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5612. {
  5613. int i;
  5614. rcu_read_lock();
  5615. for_each_cpu(i, cpu_map)
  5616. cpu_attach_domain(NULL, &def_root_domain, i);
  5617. rcu_read_unlock();
  5618. }
  5619. /* handle null as "default" */
  5620. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5621. struct sched_domain_attr *new, int idx_new)
  5622. {
  5623. struct sched_domain_attr tmp;
  5624. /* fast path */
  5625. if (!new && !cur)
  5626. return 1;
  5627. tmp = SD_ATTR_INIT;
  5628. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5629. new ? (new + idx_new) : &tmp,
  5630. sizeof(struct sched_domain_attr));
  5631. }
  5632. /*
  5633. * Partition sched domains as specified by the 'ndoms_new'
  5634. * cpumasks in the array doms_new[] of cpumasks. This compares
  5635. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5636. * It destroys each deleted domain and builds each new domain.
  5637. *
  5638. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5639. * The masks don't intersect (don't overlap.) We should setup one
  5640. * sched domain for each mask. CPUs not in any of the cpumasks will
  5641. * not be load balanced. If the same cpumask appears both in the
  5642. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5643. * it as it is.
  5644. *
  5645. * The passed in 'doms_new' should be allocated using
  5646. * alloc_sched_domains. This routine takes ownership of it and will
  5647. * free_sched_domains it when done with it. If the caller failed the
  5648. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5649. * and partition_sched_domains() will fallback to the single partition
  5650. * 'fallback_doms', it also forces the domains to be rebuilt.
  5651. *
  5652. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5653. * ndoms_new == 0 is a special case for destroying existing domains,
  5654. * and it will not create the default domain.
  5655. *
  5656. * Call with hotplug lock held
  5657. */
  5658. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5659. struct sched_domain_attr *dattr_new)
  5660. {
  5661. int i, j, n;
  5662. int new_topology;
  5663. mutex_lock(&sched_domains_mutex);
  5664. /* always unregister in case we don't destroy any domains */
  5665. unregister_sched_domain_sysctl();
  5666. /* Let architecture update cpu core mappings. */
  5667. new_topology = arch_update_cpu_topology();
  5668. n = doms_new ? ndoms_new : 0;
  5669. /* Destroy deleted domains */
  5670. for (i = 0; i < ndoms_cur; i++) {
  5671. for (j = 0; j < n && !new_topology; j++) {
  5672. if (cpumask_equal(doms_cur[i], doms_new[j])
  5673. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5674. goto match1;
  5675. }
  5676. /* no match - a current sched domain not in new doms_new[] */
  5677. detach_destroy_domains(doms_cur[i]);
  5678. match1:
  5679. ;
  5680. }
  5681. if (doms_new == NULL) {
  5682. ndoms_cur = 0;
  5683. doms_new = &fallback_doms;
  5684. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5685. WARN_ON_ONCE(dattr_new);
  5686. }
  5687. /* Build new domains */
  5688. for (i = 0; i < ndoms_new; i++) {
  5689. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5690. if (cpumask_equal(doms_new[i], doms_cur[j])
  5691. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5692. goto match2;
  5693. }
  5694. /* no match - add a new doms_new */
  5695. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5696. match2:
  5697. ;
  5698. }
  5699. /* Remember the new sched domains */
  5700. if (doms_cur != &fallback_doms)
  5701. free_sched_domains(doms_cur, ndoms_cur);
  5702. kfree(dattr_cur); /* kfree(NULL) is safe */
  5703. doms_cur = doms_new;
  5704. dattr_cur = dattr_new;
  5705. ndoms_cur = ndoms_new;
  5706. register_sched_domain_sysctl();
  5707. mutex_unlock(&sched_domains_mutex);
  5708. }
  5709. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5710. /*
  5711. * Update cpusets according to cpu_active mask. If cpusets are
  5712. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5713. * around partition_sched_domains().
  5714. *
  5715. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5716. * want to restore it back to its original state upon resume anyway.
  5717. */
  5718. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5719. void *hcpu)
  5720. {
  5721. switch (action) {
  5722. case CPU_ONLINE_FROZEN:
  5723. case CPU_DOWN_FAILED_FROZEN:
  5724. /*
  5725. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5726. * resume sequence. As long as this is not the last online
  5727. * operation in the resume sequence, just build a single sched
  5728. * domain, ignoring cpusets.
  5729. */
  5730. num_cpus_frozen--;
  5731. if (likely(num_cpus_frozen)) {
  5732. partition_sched_domains(1, NULL, NULL);
  5733. break;
  5734. }
  5735. /*
  5736. * This is the last CPU online operation. So fall through and
  5737. * restore the original sched domains by considering the
  5738. * cpuset configurations.
  5739. */
  5740. case CPU_ONLINE:
  5741. case CPU_DOWN_FAILED:
  5742. cpuset_update_active_cpus(true);
  5743. break;
  5744. default:
  5745. return NOTIFY_DONE;
  5746. }
  5747. return NOTIFY_OK;
  5748. }
  5749. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5750. void *hcpu)
  5751. {
  5752. switch (action) {
  5753. case CPU_DOWN_PREPARE:
  5754. cpuset_update_active_cpus(false);
  5755. break;
  5756. case CPU_DOWN_PREPARE_FROZEN:
  5757. num_cpus_frozen++;
  5758. partition_sched_domains(1, NULL, NULL);
  5759. break;
  5760. default:
  5761. return NOTIFY_DONE;
  5762. }
  5763. return NOTIFY_OK;
  5764. }
  5765. void __init sched_init_smp(void)
  5766. {
  5767. cpumask_var_t non_isolated_cpus;
  5768. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5769. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5770. sched_init_numa();
  5771. get_online_cpus();
  5772. mutex_lock(&sched_domains_mutex);
  5773. init_sched_domains(cpu_active_mask);
  5774. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5775. if (cpumask_empty(non_isolated_cpus))
  5776. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5777. mutex_unlock(&sched_domains_mutex);
  5778. put_online_cpus();
  5779. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5780. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5781. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5782. /* RT runtime code needs to handle some hotplug events */
  5783. hotcpu_notifier(update_runtime, 0);
  5784. init_hrtick();
  5785. /* Move init over to a non-isolated CPU */
  5786. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5787. BUG();
  5788. sched_init_granularity();
  5789. free_cpumask_var(non_isolated_cpus);
  5790. init_sched_rt_class();
  5791. }
  5792. #else
  5793. void __init sched_init_smp(void)
  5794. {
  5795. sched_init_granularity();
  5796. }
  5797. #endif /* CONFIG_SMP */
  5798. const_debug unsigned int sysctl_timer_migration = 1;
  5799. int in_sched_functions(unsigned long addr)
  5800. {
  5801. return in_lock_functions(addr) ||
  5802. (addr >= (unsigned long)__sched_text_start
  5803. && addr < (unsigned long)__sched_text_end);
  5804. }
  5805. #ifdef CONFIG_CGROUP_SCHED
  5806. struct task_group root_task_group;
  5807. LIST_HEAD(task_groups);
  5808. #endif
  5809. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5810. void __init sched_init(void)
  5811. {
  5812. int i, j;
  5813. unsigned long alloc_size = 0, ptr;
  5814. #ifdef CONFIG_FAIR_GROUP_SCHED
  5815. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5816. #endif
  5817. #ifdef CONFIG_RT_GROUP_SCHED
  5818. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5819. #endif
  5820. #ifdef CONFIG_CPUMASK_OFFSTACK
  5821. alloc_size += num_possible_cpus() * cpumask_size();
  5822. #endif
  5823. if (alloc_size) {
  5824. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5825. #ifdef CONFIG_FAIR_GROUP_SCHED
  5826. root_task_group.se = (struct sched_entity **)ptr;
  5827. ptr += nr_cpu_ids * sizeof(void **);
  5828. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5829. ptr += nr_cpu_ids * sizeof(void **);
  5830. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5831. #ifdef CONFIG_RT_GROUP_SCHED
  5832. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5833. ptr += nr_cpu_ids * sizeof(void **);
  5834. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5835. ptr += nr_cpu_ids * sizeof(void **);
  5836. #endif /* CONFIG_RT_GROUP_SCHED */
  5837. #ifdef CONFIG_CPUMASK_OFFSTACK
  5838. for_each_possible_cpu(i) {
  5839. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5840. ptr += cpumask_size();
  5841. }
  5842. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5843. }
  5844. #ifdef CONFIG_SMP
  5845. init_defrootdomain();
  5846. #endif
  5847. init_rt_bandwidth(&def_rt_bandwidth,
  5848. global_rt_period(), global_rt_runtime());
  5849. #ifdef CONFIG_RT_GROUP_SCHED
  5850. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5851. global_rt_period(), global_rt_runtime());
  5852. #endif /* CONFIG_RT_GROUP_SCHED */
  5853. #ifdef CONFIG_CGROUP_SCHED
  5854. list_add(&root_task_group.list, &task_groups);
  5855. INIT_LIST_HEAD(&root_task_group.children);
  5856. INIT_LIST_HEAD(&root_task_group.siblings);
  5857. autogroup_init(&init_task);
  5858. #endif /* CONFIG_CGROUP_SCHED */
  5859. #ifdef CONFIG_CGROUP_CPUACCT
  5860. root_cpuacct.cpustat = &kernel_cpustat;
  5861. root_cpuacct.cpuusage = alloc_percpu(u64);
  5862. /* Too early, not expected to fail */
  5863. BUG_ON(!root_cpuacct.cpuusage);
  5864. #endif
  5865. for_each_possible_cpu(i) {
  5866. struct rq *rq;
  5867. rq = cpu_rq(i);
  5868. raw_spin_lock_init(&rq->lock);
  5869. rq->nr_running = 0;
  5870. rq->calc_load_active = 0;
  5871. rq->calc_load_update = jiffies + LOAD_FREQ;
  5872. init_cfs_rq(&rq->cfs);
  5873. init_rt_rq(&rq->rt, rq);
  5874. #ifdef CONFIG_FAIR_GROUP_SCHED
  5875. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5876. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5877. /*
  5878. * How much cpu bandwidth does root_task_group get?
  5879. *
  5880. * In case of task-groups formed thr' the cgroup filesystem, it
  5881. * gets 100% of the cpu resources in the system. This overall
  5882. * system cpu resource is divided among the tasks of
  5883. * root_task_group and its child task-groups in a fair manner,
  5884. * based on each entity's (task or task-group's) weight
  5885. * (se->load.weight).
  5886. *
  5887. * In other words, if root_task_group has 10 tasks of weight
  5888. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5889. * then A0's share of the cpu resource is:
  5890. *
  5891. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5892. *
  5893. * We achieve this by letting root_task_group's tasks sit
  5894. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5895. */
  5896. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5897. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5898. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5899. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5900. #ifdef CONFIG_RT_GROUP_SCHED
  5901. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5902. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5903. #endif
  5904. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5905. rq->cpu_load[j] = 0;
  5906. rq->last_load_update_tick = jiffies;
  5907. #ifdef CONFIG_SMP
  5908. rq->sd = NULL;
  5909. rq->rd = NULL;
  5910. rq->cpu_power = SCHED_POWER_SCALE;
  5911. rq->post_schedule = 0;
  5912. rq->active_balance = 0;
  5913. rq->next_balance = jiffies;
  5914. rq->push_cpu = 0;
  5915. rq->cpu = i;
  5916. rq->online = 0;
  5917. rq->idle_stamp = 0;
  5918. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5919. INIT_LIST_HEAD(&rq->cfs_tasks);
  5920. rq_attach_root(rq, &def_root_domain);
  5921. #ifdef CONFIG_NO_HZ
  5922. rq->nohz_flags = 0;
  5923. #endif
  5924. #endif
  5925. init_rq_hrtick(rq);
  5926. atomic_set(&rq->nr_iowait, 0);
  5927. }
  5928. set_load_weight(&init_task);
  5929. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5930. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5931. #endif
  5932. #ifdef CONFIG_RT_MUTEXES
  5933. plist_head_init(&init_task.pi_waiters);
  5934. #endif
  5935. /*
  5936. * The boot idle thread does lazy MMU switching as well:
  5937. */
  5938. atomic_inc(&init_mm.mm_count);
  5939. enter_lazy_tlb(&init_mm, current);
  5940. /*
  5941. * Make us the idle thread. Technically, schedule() should not be
  5942. * called from this thread, however somewhere below it might be,
  5943. * but because we are the idle thread, we just pick up running again
  5944. * when this runqueue becomes "idle".
  5945. */
  5946. init_idle(current, smp_processor_id());
  5947. calc_load_update = jiffies + LOAD_FREQ;
  5948. /*
  5949. * During early bootup we pretend to be a normal task:
  5950. */
  5951. current->sched_class = &fair_sched_class;
  5952. #ifdef CONFIG_SMP
  5953. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5954. /* May be allocated at isolcpus cmdline parse time */
  5955. if (cpu_isolated_map == NULL)
  5956. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5957. idle_thread_set_boot_cpu();
  5958. #endif
  5959. init_sched_fair_class();
  5960. scheduler_running = 1;
  5961. }
  5962. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5963. static inline int preempt_count_equals(int preempt_offset)
  5964. {
  5965. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5966. return (nested == preempt_offset);
  5967. }
  5968. void __might_sleep(const char *file, int line, int preempt_offset)
  5969. {
  5970. static unsigned long prev_jiffy; /* ratelimiting */
  5971. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5972. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5973. system_state != SYSTEM_RUNNING || oops_in_progress)
  5974. return;
  5975. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5976. return;
  5977. prev_jiffy = jiffies;
  5978. printk(KERN_ERR
  5979. "BUG: sleeping function called from invalid context at %s:%d\n",
  5980. file, line);
  5981. printk(KERN_ERR
  5982. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5983. in_atomic(), irqs_disabled(),
  5984. current->pid, current->comm);
  5985. debug_show_held_locks(current);
  5986. if (irqs_disabled())
  5987. print_irqtrace_events(current);
  5988. dump_stack();
  5989. }
  5990. EXPORT_SYMBOL(__might_sleep);
  5991. #endif
  5992. #ifdef CONFIG_MAGIC_SYSRQ
  5993. static void normalize_task(struct rq *rq, struct task_struct *p)
  5994. {
  5995. const struct sched_class *prev_class = p->sched_class;
  5996. int old_prio = p->prio;
  5997. int on_rq;
  5998. on_rq = p->on_rq;
  5999. if (on_rq)
  6000. dequeue_task(rq, p, 0);
  6001. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6002. if (on_rq) {
  6003. enqueue_task(rq, p, 0);
  6004. resched_task(rq->curr);
  6005. }
  6006. check_class_changed(rq, p, prev_class, old_prio);
  6007. }
  6008. void normalize_rt_tasks(void)
  6009. {
  6010. struct task_struct *g, *p;
  6011. unsigned long flags;
  6012. struct rq *rq;
  6013. read_lock_irqsave(&tasklist_lock, flags);
  6014. do_each_thread(g, p) {
  6015. /*
  6016. * Only normalize user tasks:
  6017. */
  6018. if (!p->mm)
  6019. continue;
  6020. p->se.exec_start = 0;
  6021. #ifdef CONFIG_SCHEDSTATS
  6022. p->se.statistics.wait_start = 0;
  6023. p->se.statistics.sleep_start = 0;
  6024. p->se.statistics.block_start = 0;
  6025. #endif
  6026. if (!rt_task(p)) {
  6027. /*
  6028. * Renice negative nice level userspace
  6029. * tasks back to 0:
  6030. */
  6031. if (TASK_NICE(p) < 0 && p->mm)
  6032. set_user_nice(p, 0);
  6033. continue;
  6034. }
  6035. raw_spin_lock(&p->pi_lock);
  6036. rq = __task_rq_lock(p);
  6037. normalize_task(rq, p);
  6038. __task_rq_unlock(rq);
  6039. raw_spin_unlock(&p->pi_lock);
  6040. } while_each_thread(g, p);
  6041. read_unlock_irqrestore(&tasklist_lock, flags);
  6042. }
  6043. #endif /* CONFIG_MAGIC_SYSRQ */
  6044. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6045. /*
  6046. * These functions are only useful for the IA64 MCA handling, or kdb.
  6047. *
  6048. * They can only be called when the whole system has been
  6049. * stopped - every CPU needs to be quiescent, and no scheduling
  6050. * activity can take place. Using them for anything else would
  6051. * be a serious bug, and as a result, they aren't even visible
  6052. * under any other configuration.
  6053. */
  6054. /**
  6055. * curr_task - return the current task for a given cpu.
  6056. * @cpu: the processor in question.
  6057. *
  6058. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6059. */
  6060. struct task_struct *curr_task(int cpu)
  6061. {
  6062. return cpu_curr(cpu);
  6063. }
  6064. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6065. #ifdef CONFIG_IA64
  6066. /**
  6067. * set_curr_task - set the current task for a given cpu.
  6068. * @cpu: the processor in question.
  6069. * @p: the task pointer to set.
  6070. *
  6071. * Description: This function must only be used when non-maskable interrupts
  6072. * are serviced on a separate stack. It allows the architecture to switch the
  6073. * notion of the current task on a cpu in a non-blocking manner. This function
  6074. * must be called with all CPU's synchronized, and interrupts disabled, the
  6075. * and caller must save the original value of the current task (see
  6076. * curr_task() above) and restore that value before reenabling interrupts and
  6077. * re-starting the system.
  6078. *
  6079. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6080. */
  6081. void set_curr_task(int cpu, struct task_struct *p)
  6082. {
  6083. cpu_curr(cpu) = p;
  6084. }
  6085. #endif
  6086. #ifdef CONFIG_CGROUP_SCHED
  6087. /* task_group_lock serializes the addition/removal of task groups */
  6088. static DEFINE_SPINLOCK(task_group_lock);
  6089. static void free_sched_group(struct task_group *tg)
  6090. {
  6091. free_fair_sched_group(tg);
  6092. free_rt_sched_group(tg);
  6093. autogroup_free(tg);
  6094. kfree(tg);
  6095. }
  6096. /* allocate runqueue etc for a new task group */
  6097. struct task_group *sched_create_group(struct task_group *parent)
  6098. {
  6099. struct task_group *tg;
  6100. unsigned long flags;
  6101. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6102. if (!tg)
  6103. return ERR_PTR(-ENOMEM);
  6104. if (!alloc_fair_sched_group(tg, parent))
  6105. goto err;
  6106. if (!alloc_rt_sched_group(tg, parent))
  6107. goto err;
  6108. spin_lock_irqsave(&task_group_lock, flags);
  6109. list_add_rcu(&tg->list, &task_groups);
  6110. WARN_ON(!parent); /* root should already exist */
  6111. tg->parent = parent;
  6112. INIT_LIST_HEAD(&tg->children);
  6113. list_add_rcu(&tg->siblings, &parent->children);
  6114. spin_unlock_irqrestore(&task_group_lock, flags);
  6115. return tg;
  6116. err:
  6117. free_sched_group(tg);
  6118. return ERR_PTR(-ENOMEM);
  6119. }
  6120. /* rcu callback to free various structures associated with a task group */
  6121. static void free_sched_group_rcu(struct rcu_head *rhp)
  6122. {
  6123. /* now it should be safe to free those cfs_rqs */
  6124. free_sched_group(container_of(rhp, struct task_group, rcu));
  6125. }
  6126. /* Destroy runqueue etc associated with a task group */
  6127. void sched_destroy_group(struct task_group *tg)
  6128. {
  6129. unsigned long flags;
  6130. int i;
  6131. /* end participation in shares distribution */
  6132. for_each_possible_cpu(i)
  6133. unregister_fair_sched_group(tg, i);
  6134. spin_lock_irqsave(&task_group_lock, flags);
  6135. list_del_rcu(&tg->list);
  6136. list_del_rcu(&tg->siblings);
  6137. spin_unlock_irqrestore(&task_group_lock, flags);
  6138. /* wait for possible concurrent references to cfs_rqs complete */
  6139. call_rcu(&tg->rcu, free_sched_group_rcu);
  6140. }
  6141. /* change task's runqueue when it moves between groups.
  6142. * The caller of this function should have put the task in its new group
  6143. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6144. * reflect its new group.
  6145. */
  6146. void sched_move_task(struct task_struct *tsk)
  6147. {
  6148. struct task_group *tg;
  6149. int on_rq, running;
  6150. unsigned long flags;
  6151. struct rq *rq;
  6152. rq = task_rq_lock(tsk, &flags);
  6153. running = task_current(rq, tsk);
  6154. on_rq = tsk->on_rq;
  6155. if (on_rq)
  6156. dequeue_task(rq, tsk, 0);
  6157. if (unlikely(running))
  6158. tsk->sched_class->put_prev_task(rq, tsk);
  6159. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  6160. lockdep_is_held(&tsk->sighand->siglock)),
  6161. struct task_group, css);
  6162. tg = autogroup_task_group(tsk, tg);
  6163. tsk->sched_task_group = tg;
  6164. #ifdef CONFIG_FAIR_GROUP_SCHED
  6165. if (tsk->sched_class->task_move_group)
  6166. tsk->sched_class->task_move_group(tsk, on_rq);
  6167. else
  6168. #endif
  6169. set_task_rq(tsk, task_cpu(tsk));
  6170. if (unlikely(running))
  6171. tsk->sched_class->set_curr_task(rq);
  6172. if (on_rq)
  6173. enqueue_task(rq, tsk, 0);
  6174. task_rq_unlock(rq, tsk, &flags);
  6175. }
  6176. #endif /* CONFIG_CGROUP_SCHED */
  6177. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6178. static unsigned long to_ratio(u64 period, u64 runtime)
  6179. {
  6180. if (runtime == RUNTIME_INF)
  6181. return 1ULL << 20;
  6182. return div64_u64(runtime << 20, period);
  6183. }
  6184. #endif
  6185. #ifdef CONFIG_RT_GROUP_SCHED
  6186. /*
  6187. * Ensure that the real time constraints are schedulable.
  6188. */
  6189. static DEFINE_MUTEX(rt_constraints_mutex);
  6190. /* Must be called with tasklist_lock held */
  6191. static inline int tg_has_rt_tasks(struct task_group *tg)
  6192. {
  6193. struct task_struct *g, *p;
  6194. do_each_thread(g, p) {
  6195. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6196. return 1;
  6197. } while_each_thread(g, p);
  6198. return 0;
  6199. }
  6200. struct rt_schedulable_data {
  6201. struct task_group *tg;
  6202. u64 rt_period;
  6203. u64 rt_runtime;
  6204. };
  6205. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6206. {
  6207. struct rt_schedulable_data *d = data;
  6208. struct task_group *child;
  6209. unsigned long total, sum = 0;
  6210. u64 period, runtime;
  6211. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6212. runtime = tg->rt_bandwidth.rt_runtime;
  6213. if (tg == d->tg) {
  6214. period = d->rt_period;
  6215. runtime = d->rt_runtime;
  6216. }
  6217. /*
  6218. * Cannot have more runtime than the period.
  6219. */
  6220. if (runtime > period && runtime != RUNTIME_INF)
  6221. return -EINVAL;
  6222. /*
  6223. * Ensure we don't starve existing RT tasks.
  6224. */
  6225. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6226. return -EBUSY;
  6227. total = to_ratio(period, runtime);
  6228. /*
  6229. * Nobody can have more than the global setting allows.
  6230. */
  6231. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6232. return -EINVAL;
  6233. /*
  6234. * The sum of our children's runtime should not exceed our own.
  6235. */
  6236. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6237. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6238. runtime = child->rt_bandwidth.rt_runtime;
  6239. if (child == d->tg) {
  6240. period = d->rt_period;
  6241. runtime = d->rt_runtime;
  6242. }
  6243. sum += to_ratio(period, runtime);
  6244. }
  6245. if (sum > total)
  6246. return -EINVAL;
  6247. return 0;
  6248. }
  6249. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6250. {
  6251. int ret;
  6252. struct rt_schedulable_data data = {
  6253. .tg = tg,
  6254. .rt_period = period,
  6255. .rt_runtime = runtime,
  6256. };
  6257. rcu_read_lock();
  6258. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6259. rcu_read_unlock();
  6260. return ret;
  6261. }
  6262. static int tg_set_rt_bandwidth(struct task_group *tg,
  6263. u64 rt_period, u64 rt_runtime)
  6264. {
  6265. int i, err = 0;
  6266. mutex_lock(&rt_constraints_mutex);
  6267. read_lock(&tasklist_lock);
  6268. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6269. if (err)
  6270. goto unlock;
  6271. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6272. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6273. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6274. for_each_possible_cpu(i) {
  6275. struct rt_rq *rt_rq = tg->rt_rq[i];
  6276. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6277. rt_rq->rt_runtime = rt_runtime;
  6278. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6279. }
  6280. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6281. unlock:
  6282. read_unlock(&tasklist_lock);
  6283. mutex_unlock(&rt_constraints_mutex);
  6284. return err;
  6285. }
  6286. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6287. {
  6288. u64 rt_runtime, rt_period;
  6289. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6290. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6291. if (rt_runtime_us < 0)
  6292. rt_runtime = RUNTIME_INF;
  6293. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6294. }
  6295. long sched_group_rt_runtime(struct task_group *tg)
  6296. {
  6297. u64 rt_runtime_us;
  6298. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6299. return -1;
  6300. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6301. do_div(rt_runtime_us, NSEC_PER_USEC);
  6302. return rt_runtime_us;
  6303. }
  6304. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6305. {
  6306. u64 rt_runtime, rt_period;
  6307. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6308. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6309. if (rt_period == 0)
  6310. return -EINVAL;
  6311. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6312. }
  6313. long sched_group_rt_period(struct task_group *tg)
  6314. {
  6315. u64 rt_period_us;
  6316. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6317. do_div(rt_period_us, NSEC_PER_USEC);
  6318. return rt_period_us;
  6319. }
  6320. static int sched_rt_global_constraints(void)
  6321. {
  6322. u64 runtime, period;
  6323. int ret = 0;
  6324. if (sysctl_sched_rt_period <= 0)
  6325. return -EINVAL;
  6326. runtime = global_rt_runtime();
  6327. period = global_rt_period();
  6328. /*
  6329. * Sanity check on the sysctl variables.
  6330. */
  6331. if (runtime > period && runtime != RUNTIME_INF)
  6332. return -EINVAL;
  6333. mutex_lock(&rt_constraints_mutex);
  6334. read_lock(&tasklist_lock);
  6335. ret = __rt_schedulable(NULL, 0, 0);
  6336. read_unlock(&tasklist_lock);
  6337. mutex_unlock(&rt_constraints_mutex);
  6338. return ret;
  6339. }
  6340. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6341. {
  6342. /* Don't accept realtime tasks when there is no way for them to run */
  6343. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6344. return 0;
  6345. return 1;
  6346. }
  6347. #else /* !CONFIG_RT_GROUP_SCHED */
  6348. static int sched_rt_global_constraints(void)
  6349. {
  6350. unsigned long flags;
  6351. int i;
  6352. if (sysctl_sched_rt_period <= 0)
  6353. return -EINVAL;
  6354. /*
  6355. * There's always some RT tasks in the root group
  6356. * -- migration, kstopmachine etc..
  6357. */
  6358. if (sysctl_sched_rt_runtime == 0)
  6359. return -EBUSY;
  6360. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6361. for_each_possible_cpu(i) {
  6362. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6363. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6364. rt_rq->rt_runtime = global_rt_runtime();
  6365. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6366. }
  6367. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6368. return 0;
  6369. }
  6370. #endif /* CONFIG_RT_GROUP_SCHED */
  6371. int sched_rt_handler(struct ctl_table *table, int write,
  6372. void __user *buffer, size_t *lenp,
  6373. loff_t *ppos)
  6374. {
  6375. int ret;
  6376. int old_period, old_runtime;
  6377. static DEFINE_MUTEX(mutex);
  6378. mutex_lock(&mutex);
  6379. old_period = sysctl_sched_rt_period;
  6380. old_runtime = sysctl_sched_rt_runtime;
  6381. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6382. if (!ret && write) {
  6383. ret = sched_rt_global_constraints();
  6384. if (ret) {
  6385. sysctl_sched_rt_period = old_period;
  6386. sysctl_sched_rt_runtime = old_runtime;
  6387. } else {
  6388. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6389. def_rt_bandwidth.rt_period =
  6390. ns_to_ktime(global_rt_period());
  6391. }
  6392. }
  6393. mutex_unlock(&mutex);
  6394. return ret;
  6395. }
  6396. #ifdef CONFIG_CGROUP_SCHED
  6397. /* return corresponding task_group object of a cgroup */
  6398. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6399. {
  6400. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6401. struct task_group, css);
  6402. }
  6403. static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
  6404. {
  6405. struct task_group *tg, *parent;
  6406. if (!cgrp->parent) {
  6407. /* This is early initialization for the top cgroup */
  6408. return &root_task_group.css;
  6409. }
  6410. parent = cgroup_tg(cgrp->parent);
  6411. tg = sched_create_group(parent);
  6412. if (IS_ERR(tg))
  6413. return ERR_PTR(-ENOMEM);
  6414. return &tg->css;
  6415. }
  6416. static void cpu_cgroup_css_free(struct cgroup *cgrp)
  6417. {
  6418. struct task_group *tg = cgroup_tg(cgrp);
  6419. sched_destroy_group(tg);
  6420. }
  6421. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6422. struct cgroup_taskset *tset)
  6423. {
  6424. struct task_struct *task;
  6425. cgroup_taskset_for_each(task, cgrp, tset) {
  6426. #ifdef CONFIG_RT_GROUP_SCHED
  6427. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6428. return -EINVAL;
  6429. #else
  6430. /* We don't support RT-tasks being in separate groups */
  6431. if (task->sched_class != &fair_sched_class)
  6432. return -EINVAL;
  6433. #endif
  6434. }
  6435. return 0;
  6436. }
  6437. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6438. struct cgroup_taskset *tset)
  6439. {
  6440. struct task_struct *task;
  6441. cgroup_taskset_for_each(task, cgrp, tset)
  6442. sched_move_task(task);
  6443. }
  6444. static void
  6445. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6446. struct task_struct *task)
  6447. {
  6448. /*
  6449. * cgroup_exit() is called in the copy_process() failure path.
  6450. * Ignore this case since the task hasn't ran yet, this avoids
  6451. * trying to poke a half freed task state from generic code.
  6452. */
  6453. if (!(task->flags & PF_EXITING))
  6454. return;
  6455. sched_move_task(task);
  6456. }
  6457. #ifdef CONFIG_FAIR_GROUP_SCHED
  6458. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6459. u64 shareval)
  6460. {
  6461. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6462. }
  6463. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6464. {
  6465. struct task_group *tg = cgroup_tg(cgrp);
  6466. return (u64) scale_load_down(tg->shares);
  6467. }
  6468. #ifdef CONFIG_CFS_BANDWIDTH
  6469. static DEFINE_MUTEX(cfs_constraints_mutex);
  6470. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6471. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6472. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6473. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6474. {
  6475. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6476. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6477. if (tg == &root_task_group)
  6478. return -EINVAL;
  6479. /*
  6480. * Ensure we have at some amount of bandwidth every period. This is
  6481. * to prevent reaching a state of large arrears when throttled via
  6482. * entity_tick() resulting in prolonged exit starvation.
  6483. */
  6484. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6485. return -EINVAL;
  6486. /*
  6487. * Likewise, bound things on the otherside by preventing insane quota
  6488. * periods. This also allows us to normalize in computing quota
  6489. * feasibility.
  6490. */
  6491. if (period > max_cfs_quota_period)
  6492. return -EINVAL;
  6493. mutex_lock(&cfs_constraints_mutex);
  6494. ret = __cfs_schedulable(tg, period, quota);
  6495. if (ret)
  6496. goto out_unlock;
  6497. runtime_enabled = quota != RUNTIME_INF;
  6498. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6499. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6500. raw_spin_lock_irq(&cfs_b->lock);
  6501. cfs_b->period = ns_to_ktime(period);
  6502. cfs_b->quota = quota;
  6503. __refill_cfs_bandwidth_runtime(cfs_b);
  6504. /* restart the period timer (if active) to handle new period expiry */
  6505. if (runtime_enabled && cfs_b->timer_active) {
  6506. /* force a reprogram */
  6507. cfs_b->timer_active = 0;
  6508. __start_cfs_bandwidth(cfs_b);
  6509. }
  6510. raw_spin_unlock_irq(&cfs_b->lock);
  6511. for_each_possible_cpu(i) {
  6512. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6513. struct rq *rq = cfs_rq->rq;
  6514. raw_spin_lock_irq(&rq->lock);
  6515. cfs_rq->runtime_enabled = runtime_enabled;
  6516. cfs_rq->runtime_remaining = 0;
  6517. if (cfs_rq->throttled)
  6518. unthrottle_cfs_rq(cfs_rq);
  6519. raw_spin_unlock_irq(&rq->lock);
  6520. }
  6521. out_unlock:
  6522. mutex_unlock(&cfs_constraints_mutex);
  6523. return ret;
  6524. }
  6525. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6526. {
  6527. u64 quota, period;
  6528. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6529. if (cfs_quota_us < 0)
  6530. quota = RUNTIME_INF;
  6531. else
  6532. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6533. return tg_set_cfs_bandwidth(tg, period, quota);
  6534. }
  6535. long tg_get_cfs_quota(struct task_group *tg)
  6536. {
  6537. u64 quota_us;
  6538. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6539. return -1;
  6540. quota_us = tg->cfs_bandwidth.quota;
  6541. do_div(quota_us, NSEC_PER_USEC);
  6542. return quota_us;
  6543. }
  6544. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6545. {
  6546. u64 quota, period;
  6547. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6548. quota = tg->cfs_bandwidth.quota;
  6549. return tg_set_cfs_bandwidth(tg, period, quota);
  6550. }
  6551. long tg_get_cfs_period(struct task_group *tg)
  6552. {
  6553. u64 cfs_period_us;
  6554. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6555. do_div(cfs_period_us, NSEC_PER_USEC);
  6556. return cfs_period_us;
  6557. }
  6558. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6559. {
  6560. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6561. }
  6562. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6563. s64 cfs_quota_us)
  6564. {
  6565. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6566. }
  6567. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6568. {
  6569. return tg_get_cfs_period(cgroup_tg(cgrp));
  6570. }
  6571. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6572. u64 cfs_period_us)
  6573. {
  6574. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6575. }
  6576. struct cfs_schedulable_data {
  6577. struct task_group *tg;
  6578. u64 period, quota;
  6579. };
  6580. /*
  6581. * normalize group quota/period to be quota/max_period
  6582. * note: units are usecs
  6583. */
  6584. static u64 normalize_cfs_quota(struct task_group *tg,
  6585. struct cfs_schedulable_data *d)
  6586. {
  6587. u64 quota, period;
  6588. if (tg == d->tg) {
  6589. period = d->period;
  6590. quota = d->quota;
  6591. } else {
  6592. period = tg_get_cfs_period(tg);
  6593. quota = tg_get_cfs_quota(tg);
  6594. }
  6595. /* note: these should typically be equivalent */
  6596. if (quota == RUNTIME_INF || quota == -1)
  6597. return RUNTIME_INF;
  6598. return to_ratio(period, quota);
  6599. }
  6600. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6601. {
  6602. struct cfs_schedulable_data *d = data;
  6603. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6604. s64 quota = 0, parent_quota = -1;
  6605. if (!tg->parent) {
  6606. quota = RUNTIME_INF;
  6607. } else {
  6608. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6609. quota = normalize_cfs_quota(tg, d);
  6610. parent_quota = parent_b->hierarchal_quota;
  6611. /*
  6612. * ensure max(child_quota) <= parent_quota, inherit when no
  6613. * limit is set
  6614. */
  6615. if (quota == RUNTIME_INF)
  6616. quota = parent_quota;
  6617. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6618. return -EINVAL;
  6619. }
  6620. cfs_b->hierarchal_quota = quota;
  6621. return 0;
  6622. }
  6623. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6624. {
  6625. int ret;
  6626. struct cfs_schedulable_data data = {
  6627. .tg = tg,
  6628. .period = period,
  6629. .quota = quota,
  6630. };
  6631. if (quota != RUNTIME_INF) {
  6632. do_div(data.period, NSEC_PER_USEC);
  6633. do_div(data.quota, NSEC_PER_USEC);
  6634. }
  6635. rcu_read_lock();
  6636. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6637. rcu_read_unlock();
  6638. return ret;
  6639. }
  6640. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6641. struct cgroup_map_cb *cb)
  6642. {
  6643. struct task_group *tg = cgroup_tg(cgrp);
  6644. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6645. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6646. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6647. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6648. return 0;
  6649. }
  6650. #endif /* CONFIG_CFS_BANDWIDTH */
  6651. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6652. #ifdef CONFIG_RT_GROUP_SCHED
  6653. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6654. s64 val)
  6655. {
  6656. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6657. }
  6658. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6659. {
  6660. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6661. }
  6662. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6663. u64 rt_period_us)
  6664. {
  6665. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6666. }
  6667. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6668. {
  6669. return sched_group_rt_period(cgroup_tg(cgrp));
  6670. }
  6671. #endif /* CONFIG_RT_GROUP_SCHED */
  6672. static struct cftype cpu_files[] = {
  6673. #ifdef CONFIG_FAIR_GROUP_SCHED
  6674. {
  6675. .name = "shares",
  6676. .read_u64 = cpu_shares_read_u64,
  6677. .write_u64 = cpu_shares_write_u64,
  6678. },
  6679. #endif
  6680. #ifdef CONFIG_CFS_BANDWIDTH
  6681. {
  6682. .name = "cfs_quota_us",
  6683. .read_s64 = cpu_cfs_quota_read_s64,
  6684. .write_s64 = cpu_cfs_quota_write_s64,
  6685. },
  6686. {
  6687. .name = "cfs_period_us",
  6688. .read_u64 = cpu_cfs_period_read_u64,
  6689. .write_u64 = cpu_cfs_period_write_u64,
  6690. },
  6691. {
  6692. .name = "stat",
  6693. .read_map = cpu_stats_show,
  6694. },
  6695. #endif
  6696. #ifdef CONFIG_RT_GROUP_SCHED
  6697. {
  6698. .name = "rt_runtime_us",
  6699. .read_s64 = cpu_rt_runtime_read,
  6700. .write_s64 = cpu_rt_runtime_write,
  6701. },
  6702. {
  6703. .name = "rt_period_us",
  6704. .read_u64 = cpu_rt_period_read_uint,
  6705. .write_u64 = cpu_rt_period_write_uint,
  6706. },
  6707. #endif
  6708. { } /* terminate */
  6709. };
  6710. struct cgroup_subsys cpu_cgroup_subsys = {
  6711. .name = "cpu",
  6712. .css_alloc = cpu_cgroup_css_alloc,
  6713. .css_free = cpu_cgroup_css_free,
  6714. .can_attach = cpu_cgroup_can_attach,
  6715. .attach = cpu_cgroup_attach,
  6716. .exit = cpu_cgroup_exit,
  6717. .subsys_id = cpu_cgroup_subsys_id,
  6718. .base_cftypes = cpu_files,
  6719. .early_init = 1,
  6720. };
  6721. #endif /* CONFIG_CGROUP_SCHED */
  6722. #ifdef CONFIG_CGROUP_CPUACCT
  6723. /*
  6724. * CPU accounting code for task groups.
  6725. *
  6726. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6727. * (balbir@in.ibm.com).
  6728. */
  6729. struct cpuacct root_cpuacct;
  6730. /* create a new cpu accounting group */
  6731. static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
  6732. {
  6733. struct cpuacct *ca;
  6734. if (!cgrp->parent)
  6735. return &root_cpuacct.css;
  6736. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6737. if (!ca)
  6738. goto out;
  6739. ca->cpuusage = alloc_percpu(u64);
  6740. if (!ca->cpuusage)
  6741. goto out_free_ca;
  6742. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6743. if (!ca->cpustat)
  6744. goto out_free_cpuusage;
  6745. return &ca->css;
  6746. out_free_cpuusage:
  6747. free_percpu(ca->cpuusage);
  6748. out_free_ca:
  6749. kfree(ca);
  6750. out:
  6751. return ERR_PTR(-ENOMEM);
  6752. }
  6753. /* destroy an existing cpu accounting group */
  6754. static void cpuacct_css_free(struct cgroup *cgrp)
  6755. {
  6756. struct cpuacct *ca = cgroup_ca(cgrp);
  6757. free_percpu(ca->cpustat);
  6758. free_percpu(ca->cpuusage);
  6759. kfree(ca);
  6760. }
  6761. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6762. {
  6763. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6764. u64 data;
  6765. #ifndef CONFIG_64BIT
  6766. /*
  6767. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6768. */
  6769. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6770. data = *cpuusage;
  6771. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6772. #else
  6773. data = *cpuusage;
  6774. #endif
  6775. return data;
  6776. }
  6777. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6778. {
  6779. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6780. #ifndef CONFIG_64BIT
  6781. /*
  6782. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6783. */
  6784. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6785. *cpuusage = val;
  6786. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6787. #else
  6788. *cpuusage = val;
  6789. #endif
  6790. }
  6791. /* return total cpu usage (in nanoseconds) of a group */
  6792. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6793. {
  6794. struct cpuacct *ca = cgroup_ca(cgrp);
  6795. u64 totalcpuusage = 0;
  6796. int i;
  6797. for_each_present_cpu(i)
  6798. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6799. return totalcpuusage;
  6800. }
  6801. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6802. u64 reset)
  6803. {
  6804. struct cpuacct *ca = cgroup_ca(cgrp);
  6805. int err = 0;
  6806. int i;
  6807. if (reset) {
  6808. err = -EINVAL;
  6809. goto out;
  6810. }
  6811. for_each_present_cpu(i)
  6812. cpuacct_cpuusage_write(ca, i, 0);
  6813. out:
  6814. return err;
  6815. }
  6816. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6817. struct seq_file *m)
  6818. {
  6819. struct cpuacct *ca = cgroup_ca(cgroup);
  6820. u64 percpu;
  6821. int i;
  6822. for_each_present_cpu(i) {
  6823. percpu = cpuacct_cpuusage_read(ca, i);
  6824. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6825. }
  6826. seq_printf(m, "\n");
  6827. return 0;
  6828. }
  6829. static const char *cpuacct_stat_desc[] = {
  6830. [CPUACCT_STAT_USER] = "user",
  6831. [CPUACCT_STAT_SYSTEM] = "system",
  6832. };
  6833. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6834. struct cgroup_map_cb *cb)
  6835. {
  6836. struct cpuacct *ca = cgroup_ca(cgrp);
  6837. int cpu;
  6838. s64 val = 0;
  6839. for_each_online_cpu(cpu) {
  6840. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6841. val += kcpustat->cpustat[CPUTIME_USER];
  6842. val += kcpustat->cpustat[CPUTIME_NICE];
  6843. }
  6844. val = cputime64_to_clock_t(val);
  6845. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6846. val = 0;
  6847. for_each_online_cpu(cpu) {
  6848. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6849. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6850. val += kcpustat->cpustat[CPUTIME_IRQ];
  6851. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6852. }
  6853. val = cputime64_to_clock_t(val);
  6854. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6855. return 0;
  6856. }
  6857. static struct cftype files[] = {
  6858. {
  6859. .name = "usage",
  6860. .read_u64 = cpuusage_read,
  6861. .write_u64 = cpuusage_write,
  6862. },
  6863. {
  6864. .name = "usage_percpu",
  6865. .read_seq_string = cpuacct_percpu_seq_read,
  6866. },
  6867. {
  6868. .name = "stat",
  6869. .read_map = cpuacct_stats_show,
  6870. },
  6871. { } /* terminate */
  6872. };
  6873. /*
  6874. * charge this task's execution time to its accounting group.
  6875. *
  6876. * called with rq->lock held.
  6877. */
  6878. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6879. {
  6880. struct cpuacct *ca;
  6881. int cpu;
  6882. if (unlikely(!cpuacct_subsys.active))
  6883. return;
  6884. cpu = task_cpu(tsk);
  6885. rcu_read_lock();
  6886. ca = task_ca(tsk);
  6887. for (; ca; ca = parent_ca(ca)) {
  6888. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6889. *cpuusage += cputime;
  6890. }
  6891. rcu_read_unlock();
  6892. }
  6893. struct cgroup_subsys cpuacct_subsys = {
  6894. .name = "cpuacct",
  6895. .css_alloc = cpuacct_css_alloc,
  6896. .css_free = cpuacct_css_free,
  6897. .subsys_id = cpuacct_subsys_id,
  6898. .base_cftypes = files,
  6899. };
  6900. #endif /* CONFIG_CGROUP_CPUACCT */
  6901. void dump_cpu_task(int cpu)
  6902. {
  6903. pr_info("Task dump for CPU %d:\n", cpu);
  6904. sched_show_task(cpu_curr(cpu));
  6905. }