xfs_buf_item.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_mount.h"
  27. #include "xfs_buf_item.h"
  28. #include "xfs_trans_priv.h"
  29. #include "xfs_error.h"
  30. #include "xfs_trace.h"
  31. kmem_zone_t *xfs_buf_item_zone;
  32. static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  33. {
  34. return container_of(lip, struct xfs_buf_log_item, bli_item);
  35. }
  36. #ifdef XFS_TRANS_DEBUG
  37. /*
  38. * This function uses an alternate strategy for tracking the bytes
  39. * that the user requests to be logged. This can then be used
  40. * in conjunction with the bli_orig array in the buf log item to
  41. * catch bugs in our callers' code.
  42. *
  43. * We also double check the bits set in xfs_buf_item_log using a
  44. * simple algorithm to check that every byte is accounted for.
  45. */
  46. STATIC void
  47. xfs_buf_item_log_debug(
  48. xfs_buf_log_item_t *bip,
  49. uint first,
  50. uint last)
  51. {
  52. uint x;
  53. uint byte;
  54. uint nbytes;
  55. uint chunk_num;
  56. uint word_num;
  57. uint bit_num;
  58. uint bit_set;
  59. uint *wordp;
  60. ASSERT(bip->bli_logged != NULL);
  61. byte = first;
  62. nbytes = last - first + 1;
  63. bfset(bip->bli_logged, first, nbytes);
  64. for (x = 0; x < nbytes; x++) {
  65. chunk_num = byte >> XFS_BLF_SHIFT;
  66. word_num = chunk_num >> BIT_TO_WORD_SHIFT;
  67. bit_num = chunk_num & (NBWORD - 1);
  68. wordp = &(bip->__bli_format.blf_data_map[word_num]);
  69. bit_set = *wordp & (1 << bit_num);
  70. ASSERT(bit_set);
  71. byte++;
  72. }
  73. }
  74. /*
  75. * This function is called when we flush something into a buffer without
  76. * logging it. This happens for things like inodes which are logged
  77. * separately from the buffer.
  78. */
  79. void
  80. xfs_buf_item_flush_log_debug(
  81. xfs_buf_t *bp,
  82. uint first,
  83. uint last)
  84. {
  85. xfs_buf_log_item_t *bip = bp->b_fspriv;
  86. uint nbytes;
  87. if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF))
  88. return;
  89. ASSERT(bip->bli_logged != NULL);
  90. nbytes = last - first + 1;
  91. bfset(bip->bli_logged, first, nbytes);
  92. }
  93. /*
  94. * This function is called to verify that our callers have logged
  95. * all the bytes that they changed.
  96. *
  97. * It does this by comparing the original copy of the buffer stored in
  98. * the buf log item's bli_orig array to the current copy of the buffer
  99. * and ensuring that all bytes which mismatch are set in the bli_logged
  100. * array of the buf log item.
  101. */
  102. STATIC void
  103. xfs_buf_item_log_check(
  104. xfs_buf_log_item_t *bip)
  105. {
  106. char *orig;
  107. char *buffer;
  108. int x;
  109. xfs_buf_t *bp;
  110. ASSERT(bip->bli_orig != NULL);
  111. ASSERT(bip->bli_logged != NULL);
  112. bp = bip->bli_buf;
  113. ASSERT(bp->b_length > 0);
  114. ASSERT(bp->b_addr != NULL);
  115. orig = bip->bli_orig;
  116. buffer = bp->b_addr;
  117. for (x = 0; x < BBTOB(bp->b_length); x++) {
  118. if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
  119. xfs_emerg(bp->b_mount,
  120. "%s: bip %x buffer %x orig %x index %d",
  121. __func__, bip, bp, orig, x);
  122. ASSERT(0);
  123. }
  124. }
  125. }
  126. #else
  127. #define xfs_buf_item_log_debug(x,y,z)
  128. #define xfs_buf_item_log_check(x)
  129. #endif
  130. STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
  131. /*
  132. * This returns the number of log iovecs needed to log the
  133. * given buf log item.
  134. *
  135. * It calculates this as 1 iovec for the buf log format structure
  136. * and 1 for each stretch of non-contiguous chunks to be logged.
  137. * Contiguous chunks are logged in a single iovec.
  138. *
  139. * If the XFS_BLI_STALE flag has been set, then log nothing.
  140. */
  141. STATIC uint
  142. xfs_buf_item_size_segment(
  143. struct xfs_buf_log_item *bip,
  144. struct xfs_buf_log_format *blfp)
  145. {
  146. struct xfs_buf *bp = bip->bli_buf;
  147. uint nvecs;
  148. int next_bit;
  149. int last_bit;
  150. last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  151. if (last_bit == -1)
  152. return 0;
  153. /*
  154. * initial count for a dirty buffer is 2 vectors - the format structure
  155. * and the first dirty region.
  156. */
  157. nvecs = 2;
  158. while (last_bit != -1) {
  159. /*
  160. * This takes the bit number to start looking from and
  161. * returns the next set bit from there. It returns -1
  162. * if there are no more bits set or the start bit is
  163. * beyond the end of the bitmap.
  164. */
  165. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  166. last_bit + 1);
  167. /*
  168. * If we run out of bits, leave the loop,
  169. * else if we find a new set of bits bump the number of vecs,
  170. * else keep scanning the current set of bits.
  171. */
  172. if (next_bit == -1) {
  173. break;
  174. } else if (next_bit != last_bit + 1) {
  175. last_bit = next_bit;
  176. nvecs++;
  177. } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  178. (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  179. XFS_BLF_CHUNK)) {
  180. last_bit = next_bit;
  181. nvecs++;
  182. } else {
  183. last_bit++;
  184. }
  185. }
  186. return nvecs;
  187. }
  188. /*
  189. * This returns the number of log iovecs needed to log the given buf log item.
  190. *
  191. * It calculates this as 1 iovec for the buf log format structure and 1 for each
  192. * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
  193. * in a single iovec.
  194. *
  195. * Discontiguous buffers need a format structure per region that that is being
  196. * logged. This makes the changes in the buffer appear to log recovery as though
  197. * they came from separate buffers, just like would occur if multiple buffers
  198. * were used instead of a single discontiguous buffer. This enables
  199. * discontiguous buffers to be in-memory constructs, completely transparent to
  200. * what ends up on disk.
  201. *
  202. * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
  203. * format structures.
  204. */
  205. STATIC uint
  206. xfs_buf_item_size(
  207. struct xfs_log_item *lip)
  208. {
  209. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  210. uint nvecs;
  211. int i;
  212. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  213. if (bip->bli_flags & XFS_BLI_STALE) {
  214. /*
  215. * The buffer is stale, so all we need to log
  216. * is the buf log format structure with the
  217. * cancel flag in it.
  218. */
  219. trace_xfs_buf_item_size_stale(bip);
  220. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  221. return bip->bli_format_count;
  222. }
  223. ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
  224. /*
  225. * the vector count is based on the number of buffer vectors we have
  226. * dirty bits in. This will only be greater than one when we have a
  227. * compound buffer with more than one segment dirty. Hence for compound
  228. * buffers we need to track which segment the dirty bits correspond to,
  229. * and when we move from one segment to the next increment the vector
  230. * count for the extra buf log format structure that will need to be
  231. * written.
  232. */
  233. nvecs = 0;
  234. for (i = 0; i < bip->bli_format_count; i++) {
  235. nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
  236. }
  237. trace_xfs_buf_item_size(bip);
  238. return nvecs;
  239. }
  240. static struct xfs_log_iovec *
  241. xfs_buf_item_format_segment(
  242. struct xfs_buf_log_item *bip,
  243. struct xfs_log_iovec *vecp,
  244. uint offset,
  245. struct xfs_buf_log_format *blfp)
  246. {
  247. struct xfs_buf *bp = bip->bli_buf;
  248. uint base_size;
  249. uint nvecs;
  250. int first_bit;
  251. int last_bit;
  252. int next_bit;
  253. uint nbits;
  254. uint buffer_offset;
  255. /* copy the flags across from the base format item */
  256. blfp->blf_flags = bip->__bli_format.blf_flags;
  257. /*
  258. * Base size is the actual size of the ondisk structure - it reflects
  259. * the actual size of the dirty bitmap rather than the size of the in
  260. * memory structure.
  261. */
  262. base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
  263. (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  264. nvecs = 0;
  265. first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  266. if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
  267. /*
  268. * If the map is not be dirty in the transaction, mark
  269. * the size as zero and do not advance the vector pointer.
  270. */
  271. goto out;
  272. }
  273. vecp->i_addr = blfp;
  274. vecp->i_len = base_size;
  275. vecp->i_type = XLOG_REG_TYPE_BFORMAT;
  276. vecp++;
  277. nvecs = 1;
  278. if (bip->bli_flags & XFS_BLI_STALE) {
  279. /*
  280. * The buffer is stale, so all we need to log
  281. * is the buf log format structure with the
  282. * cancel flag in it.
  283. */
  284. trace_xfs_buf_item_format_stale(bip);
  285. ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
  286. goto out;
  287. }
  288. /*
  289. * Fill in an iovec for each set of contiguous chunks.
  290. */
  291. last_bit = first_bit;
  292. nbits = 1;
  293. for (;;) {
  294. /*
  295. * This takes the bit number to start looking from and
  296. * returns the next set bit from there. It returns -1
  297. * if there are no more bits set or the start bit is
  298. * beyond the end of the bitmap.
  299. */
  300. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  301. (uint)last_bit + 1);
  302. /*
  303. * If we run out of bits fill in the last iovec and get
  304. * out of the loop.
  305. * Else if we start a new set of bits then fill in the
  306. * iovec for the series we were looking at and start
  307. * counting the bits in the new one.
  308. * Else we're still in the same set of bits so just
  309. * keep counting and scanning.
  310. */
  311. if (next_bit == -1) {
  312. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  313. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  314. vecp->i_len = nbits * XFS_BLF_CHUNK;
  315. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  316. nvecs++;
  317. break;
  318. } else if (next_bit != last_bit + 1) {
  319. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  320. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  321. vecp->i_len = nbits * XFS_BLF_CHUNK;
  322. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  323. nvecs++;
  324. vecp++;
  325. first_bit = next_bit;
  326. last_bit = next_bit;
  327. nbits = 1;
  328. } else if (xfs_buf_offset(bp, offset +
  329. (next_bit << XFS_BLF_SHIFT)) !=
  330. (xfs_buf_offset(bp, offset +
  331. (last_bit << XFS_BLF_SHIFT)) +
  332. XFS_BLF_CHUNK)) {
  333. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  334. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  335. vecp->i_len = nbits * XFS_BLF_CHUNK;
  336. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  337. /*
  338. * You would think we need to bump the nvecs here too, but we do not
  339. * this number is used by recovery, and it gets confused by the boundary
  340. * split here
  341. * nvecs++;
  342. */
  343. vecp++;
  344. first_bit = next_bit;
  345. last_bit = next_bit;
  346. nbits = 1;
  347. } else {
  348. last_bit++;
  349. nbits++;
  350. }
  351. }
  352. out:
  353. blfp->blf_size = nvecs;
  354. return vecp;
  355. }
  356. /*
  357. * This is called to fill in the vector of log iovecs for the
  358. * given log buf item. It fills the first entry with a buf log
  359. * format structure, and the rest point to contiguous chunks
  360. * within the buffer.
  361. */
  362. STATIC void
  363. xfs_buf_item_format(
  364. struct xfs_log_item *lip,
  365. struct xfs_log_iovec *vecp)
  366. {
  367. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  368. struct xfs_buf *bp = bip->bli_buf;
  369. uint offset = 0;
  370. int i;
  371. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  372. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  373. (bip->bli_flags & XFS_BLI_STALE));
  374. /*
  375. * If it is an inode buffer, transfer the in-memory state to the
  376. * format flags and clear the in-memory state. We do not transfer
  377. * this state if the inode buffer allocation has not yet been committed
  378. * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
  379. * correct replay of the inode allocation.
  380. */
  381. if (bip->bli_flags & XFS_BLI_INODE_BUF) {
  382. if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
  383. xfs_log_item_in_current_chkpt(lip)))
  384. bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
  385. bip->bli_flags &= ~XFS_BLI_INODE_BUF;
  386. }
  387. for (i = 0; i < bip->bli_format_count; i++) {
  388. vecp = xfs_buf_item_format_segment(bip, vecp, offset,
  389. &bip->bli_formats[i]);
  390. offset += bp->b_maps[i].bm_len;
  391. }
  392. /*
  393. * Check to make sure everything is consistent.
  394. */
  395. trace_xfs_buf_item_format(bip);
  396. xfs_buf_item_log_check(bip);
  397. }
  398. /*
  399. * This is called to pin the buffer associated with the buf log item in memory
  400. * so it cannot be written out.
  401. *
  402. * We also always take a reference to the buffer log item here so that the bli
  403. * is held while the item is pinned in memory. This means that we can
  404. * unconditionally drop the reference count a transaction holds when the
  405. * transaction is completed.
  406. */
  407. STATIC void
  408. xfs_buf_item_pin(
  409. struct xfs_log_item *lip)
  410. {
  411. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  412. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  413. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  414. (bip->bli_flags & XFS_BLI_STALE));
  415. trace_xfs_buf_item_pin(bip);
  416. atomic_inc(&bip->bli_refcount);
  417. atomic_inc(&bip->bli_buf->b_pin_count);
  418. }
  419. /*
  420. * This is called to unpin the buffer associated with the buf log
  421. * item which was previously pinned with a call to xfs_buf_item_pin().
  422. *
  423. * Also drop the reference to the buf item for the current transaction.
  424. * If the XFS_BLI_STALE flag is set and we are the last reference,
  425. * then free up the buf log item and unlock the buffer.
  426. *
  427. * If the remove flag is set we are called from uncommit in the
  428. * forced-shutdown path. If that is true and the reference count on
  429. * the log item is going to drop to zero we need to free the item's
  430. * descriptor in the transaction.
  431. */
  432. STATIC void
  433. xfs_buf_item_unpin(
  434. struct xfs_log_item *lip,
  435. int remove)
  436. {
  437. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  438. xfs_buf_t *bp = bip->bli_buf;
  439. struct xfs_ail *ailp = lip->li_ailp;
  440. int stale = bip->bli_flags & XFS_BLI_STALE;
  441. int freed;
  442. ASSERT(bp->b_fspriv == bip);
  443. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  444. trace_xfs_buf_item_unpin(bip);
  445. freed = atomic_dec_and_test(&bip->bli_refcount);
  446. if (atomic_dec_and_test(&bp->b_pin_count))
  447. wake_up_all(&bp->b_waiters);
  448. if (freed && stale) {
  449. ASSERT(bip->bli_flags & XFS_BLI_STALE);
  450. ASSERT(xfs_buf_islocked(bp));
  451. ASSERT(XFS_BUF_ISSTALE(bp));
  452. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  453. trace_xfs_buf_item_unpin_stale(bip);
  454. if (remove) {
  455. /*
  456. * If we are in a transaction context, we have to
  457. * remove the log item from the transaction as we are
  458. * about to release our reference to the buffer. If we
  459. * don't, the unlock that occurs later in
  460. * xfs_trans_uncommit() will try to reference the
  461. * buffer which we no longer have a hold on.
  462. */
  463. if (lip->li_desc)
  464. xfs_trans_del_item(lip);
  465. /*
  466. * Since the transaction no longer refers to the buffer,
  467. * the buffer should no longer refer to the transaction.
  468. */
  469. bp->b_transp = NULL;
  470. }
  471. /*
  472. * If we get called here because of an IO error, we may
  473. * or may not have the item on the AIL. xfs_trans_ail_delete()
  474. * will take care of that situation.
  475. * xfs_trans_ail_delete() drops the AIL lock.
  476. */
  477. if (bip->bli_flags & XFS_BLI_STALE_INODE) {
  478. xfs_buf_do_callbacks(bp);
  479. bp->b_fspriv = NULL;
  480. bp->b_iodone = NULL;
  481. } else {
  482. spin_lock(&ailp->xa_lock);
  483. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
  484. xfs_buf_item_relse(bp);
  485. ASSERT(bp->b_fspriv == NULL);
  486. }
  487. xfs_buf_relse(bp);
  488. } else if (freed && remove) {
  489. /*
  490. * There are currently two references to the buffer - the active
  491. * LRU reference and the buf log item. What we are about to do
  492. * here - simulate a failed IO completion - requires 3
  493. * references.
  494. *
  495. * The LRU reference is removed by the xfs_buf_stale() call. The
  496. * buf item reference is removed by the xfs_buf_iodone()
  497. * callback that is run by xfs_buf_do_callbacks() during ioend
  498. * processing (via the bp->b_iodone callback), and then finally
  499. * the ioend processing will drop the IO reference if the buffer
  500. * is marked XBF_ASYNC.
  501. *
  502. * Hence we need to take an additional reference here so that IO
  503. * completion processing doesn't free the buffer prematurely.
  504. */
  505. xfs_buf_lock(bp);
  506. xfs_buf_hold(bp);
  507. bp->b_flags |= XBF_ASYNC;
  508. xfs_buf_ioerror(bp, EIO);
  509. XFS_BUF_UNDONE(bp);
  510. xfs_buf_stale(bp);
  511. xfs_buf_ioend(bp, 0);
  512. }
  513. }
  514. STATIC uint
  515. xfs_buf_item_push(
  516. struct xfs_log_item *lip,
  517. struct list_head *buffer_list)
  518. {
  519. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  520. struct xfs_buf *bp = bip->bli_buf;
  521. uint rval = XFS_ITEM_SUCCESS;
  522. if (xfs_buf_ispinned(bp))
  523. return XFS_ITEM_PINNED;
  524. if (!xfs_buf_trylock(bp))
  525. return XFS_ITEM_LOCKED;
  526. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  527. trace_xfs_buf_item_push(bip);
  528. if (!xfs_buf_delwri_queue(bp, buffer_list))
  529. rval = XFS_ITEM_FLUSHING;
  530. xfs_buf_unlock(bp);
  531. return rval;
  532. }
  533. /*
  534. * Release the buffer associated with the buf log item. If there is no dirty
  535. * logged data associated with the buffer recorded in the buf log item, then
  536. * free the buf log item and remove the reference to it in the buffer.
  537. *
  538. * This call ignores the recursion count. It is only called when the buffer
  539. * should REALLY be unlocked, regardless of the recursion count.
  540. *
  541. * We unconditionally drop the transaction's reference to the log item. If the
  542. * item was logged, then another reference was taken when it was pinned, so we
  543. * can safely drop the transaction reference now. This also allows us to avoid
  544. * potential races with the unpin code freeing the bli by not referencing the
  545. * bli after we've dropped the reference count.
  546. *
  547. * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
  548. * if necessary but do not unlock the buffer. This is for support of
  549. * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
  550. * free the item.
  551. */
  552. STATIC void
  553. xfs_buf_item_unlock(
  554. struct xfs_log_item *lip)
  555. {
  556. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  557. struct xfs_buf *bp = bip->bli_buf;
  558. int aborted, clean, i;
  559. uint hold;
  560. /* Clear the buffer's association with this transaction. */
  561. bp->b_transp = NULL;
  562. /*
  563. * If this is a transaction abort, don't return early. Instead, allow
  564. * the brelse to happen. Normally it would be done for stale
  565. * (cancelled) buffers at unpin time, but we'll never go through the
  566. * pin/unpin cycle if we abort inside commit.
  567. */
  568. aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
  569. /*
  570. * Before possibly freeing the buf item, determine if we should
  571. * release the buffer at the end of this routine.
  572. */
  573. hold = bip->bli_flags & XFS_BLI_HOLD;
  574. /* Clear the per transaction state. */
  575. bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
  576. /*
  577. * If the buf item is marked stale, then don't do anything. We'll
  578. * unlock the buffer and free the buf item when the buffer is unpinned
  579. * for the last time.
  580. */
  581. if (bip->bli_flags & XFS_BLI_STALE) {
  582. trace_xfs_buf_item_unlock_stale(bip);
  583. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  584. if (!aborted) {
  585. atomic_dec(&bip->bli_refcount);
  586. return;
  587. }
  588. }
  589. trace_xfs_buf_item_unlock(bip);
  590. /*
  591. * If the buf item isn't tracking any data, free it, otherwise drop the
  592. * reference we hold to it. If we are aborting the transaction, this may
  593. * be the only reference to the buf item, so we free it anyway
  594. * regardless of whether it is dirty or not. A dirty abort implies a
  595. * shutdown, anyway.
  596. */
  597. clean = 1;
  598. for (i = 0; i < bip->bli_format_count; i++) {
  599. if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
  600. bip->bli_formats[i].blf_map_size)) {
  601. clean = 0;
  602. break;
  603. }
  604. }
  605. if (clean)
  606. xfs_buf_item_relse(bp);
  607. else if (aborted) {
  608. if (atomic_dec_and_test(&bip->bli_refcount)) {
  609. ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
  610. xfs_buf_item_relse(bp);
  611. }
  612. } else
  613. atomic_dec(&bip->bli_refcount);
  614. if (!hold)
  615. xfs_buf_relse(bp);
  616. }
  617. /*
  618. * This is called to find out where the oldest active copy of the
  619. * buf log item in the on disk log resides now that the last log
  620. * write of it completed at the given lsn.
  621. * We always re-log all the dirty data in a buffer, so usually the
  622. * latest copy in the on disk log is the only one that matters. For
  623. * those cases we simply return the given lsn.
  624. *
  625. * The one exception to this is for buffers full of newly allocated
  626. * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
  627. * flag set, indicating that only the di_next_unlinked fields from the
  628. * inodes in the buffers will be replayed during recovery. If the
  629. * original newly allocated inode images have not yet been flushed
  630. * when the buffer is so relogged, then we need to make sure that we
  631. * keep the old images in the 'active' portion of the log. We do this
  632. * by returning the original lsn of that transaction here rather than
  633. * the current one.
  634. */
  635. STATIC xfs_lsn_t
  636. xfs_buf_item_committed(
  637. struct xfs_log_item *lip,
  638. xfs_lsn_t lsn)
  639. {
  640. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  641. trace_xfs_buf_item_committed(bip);
  642. if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
  643. return lip->li_lsn;
  644. return lsn;
  645. }
  646. STATIC void
  647. xfs_buf_item_committing(
  648. struct xfs_log_item *lip,
  649. xfs_lsn_t commit_lsn)
  650. {
  651. }
  652. /*
  653. * This is the ops vector shared by all buf log items.
  654. */
  655. static const struct xfs_item_ops xfs_buf_item_ops = {
  656. .iop_size = xfs_buf_item_size,
  657. .iop_format = xfs_buf_item_format,
  658. .iop_pin = xfs_buf_item_pin,
  659. .iop_unpin = xfs_buf_item_unpin,
  660. .iop_unlock = xfs_buf_item_unlock,
  661. .iop_committed = xfs_buf_item_committed,
  662. .iop_push = xfs_buf_item_push,
  663. .iop_committing = xfs_buf_item_committing
  664. };
  665. STATIC int
  666. xfs_buf_item_get_format(
  667. struct xfs_buf_log_item *bip,
  668. int count)
  669. {
  670. ASSERT(bip->bli_formats == NULL);
  671. bip->bli_format_count = count;
  672. if (count == 1) {
  673. bip->bli_formats = &bip->__bli_format;
  674. return 0;
  675. }
  676. bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
  677. KM_SLEEP);
  678. if (!bip->bli_formats)
  679. return ENOMEM;
  680. return 0;
  681. }
  682. STATIC void
  683. xfs_buf_item_free_format(
  684. struct xfs_buf_log_item *bip)
  685. {
  686. if (bip->bli_formats != &bip->__bli_format) {
  687. kmem_free(bip->bli_formats);
  688. bip->bli_formats = NULL;
  689. }
  690. }
  691. /*
  692. * Allocate a new buf log item to go with the given buffer.
  693. * Set the buffer's b_fsprivate field to point to the new
  694. * buf log item. If there are other item's attached to the
  695. * buffer (see xfs_buf_attach_iodone() below), then put the
  696. * buf log item at the front.
  697. */
  698. void
  699. xfs_buf_item_init(
  700. xfs_buf_t *bp,
  701. xfs_mount_t *mp)
  702. {
  703. xfs_log_item_t *lip = bp->b_fspriv;
  704. xfs_buf_log_item_t *bip;
  705. int chunks;
  706. int map_size;
  707. int error;
  708. int i;
  709. /*
  710. * Check to see if there is already a buf log item for
  711. * this buffer. If there is, it is guaranteed to be
  712. * the first. If we do already have one, there is
  713. * nothing to do here so return.
  714. */
  715. ASSERT(bp->b_target->bt_mount == mp);
  716. if (lip != NULL && lip->li_type == XFS_LI_BUF)
  717. return;
  718. bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
  719. xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
  720. bip->bli_buf = bp;
  721. xfs_buf_hold(bp);
  722. /*
  723. * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
  724. * can be divided into. Make sure not to truncate any pieces.
  725. * map_size is the size of the bitmap needed to describe the
  726. * chunks of the buffer.
  727. *
  728. * Discontiguous buffer support follows the layout of the underlying
  729. * buffer. This makes the implementation as simple as possible.
  730. */
  731. error = xfs_buf_item_get_format(bip, bp->b_map_count);
  732. ASSERT(error == 0);
  733. for (i = 0; i < bip->bli_format_count; i++) {
  734. chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
  735. XFS_BLF_CHUNK);
  736. map_size = DIV_ROUND_UP(chunks, NBWORD);
  737. bip->bli_formats[i].blf_type = XFS_LI_BUF;
  738. bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
  739. bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
  740. bip->bli_formats[i].blf_map_size = map_size;
  741. }
  742. #ifdef XFS_TRANS_DEBUG
  743. /*
  744. * Allocate the arrays for tracking what needs to be logged
  745. * and what our callers request to be logged. bli_orig
  746. * holds a copy of the original, clean buffer for comparison
  747. * against, and bli_logged keeps a 1 bit flag per byte in
  748. * the buffer to indicate which bytes the callers have asked
  749. * to have logged.
  750. */
  751. bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
  752. memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
  753. bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
  754. #endif
  755. /*
  756. * Put the buf item into the list of items attached to the
  757. * buffer at the front.
  758. */
  759. if (bp->b_fspriv)
  760. bip->bli_item.li_bio_list = bp->b_fspriv;
  761. bp->b_fspriv = bip;
  762. }
  763. /*
  764. * Mark bytes first through last inclusive as dirty in the buf
  765. * item's bitmap.
  766. */
  767. void
  768. xfs_buf_item_log_segment(
  769. struct xfs_buf_log_item *bip,
  770. uint first,
  771. uint last,
  772. uint *map)
  773. {
  774. uint first_bit;
  775. uint last_bit;
  776. uint bits_to_set;
  777. uint bits_set;
  778. uint word_num;
  779. uint *wordp;
  780. uint bit;
  781. uint end_bit;
  782. uint mask;
  783. /*
  784. * Convert byte offsets to bit numbers.
  785. */
  786. first_bit = first >> XFS_BLF_SHIFT;
  787. last_bit = last >> XFS_BLF_SHIFT;
  788. /*
  789. * Calculate the total number of bits to be set.
  790. */
  791. bits_to_set = last_bit - first_bit + 1;
  792. /*
  793. * Get a pointer to the first word in the bitmap
  794. * to set a bit in.
  795. */
  796. word_num = first_bit >> BIT_TO_WORD_SHIFT;
  797. wordp = &map[word_num];
  798. /*
  799. * Calculate the starting bit in the first word.
  800. */
  801. bit = first_bit & (uint)(NBWORD - 1);
  802. /*
  803. * First set any bits in the first word of our range.
  804. * If it starts at bit 0 of the word, it will be
  805. * set below rather than here. That is what the variable
  806. * bit tells us. The variable bits_set tracks the number
  807. * of bits that have been set so far. End_bit is the number
  808. * of the last bit to be set in this word plus one.
  809. */
  810. if (bit) {
  811. end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
  812. mask = ((1 << (end_bit - bit)) - 1) << bit;
  813. *wordp |= mask;
  814. wordp++;
  815. bits_set = end_bit - bit;
  816. } else {
  817. bits_set = 0;
  818. }
  819. /*
  820. * Now set bits a whole word at a time that are between
  821. * first_bit and last_bit.
  822. */
  823. while ((bits_to_set - bits_set) >= NBWORD) {
  824. *wordp |= 0xffffffff;
  825. bits_set += NBWORD;
  826. wordp++;
  827. }
  828. /*
  829. * Finally, set any bits left to be set in one last partial word.
  830. */
  831. end_bit = bits_to_set - bits_set;
  832. if (end_bit) {
  833. mask = (1 << end_bit) - 1;
  834. *wordp |= mask;
  835. }
  836. xfs_buf_item_log_debug(bip, first, last);
  837. }
  838. /*
  839. * Mark bytes first through last inclusive as dirty in the buf
  840. * item's bitmap.
  841. */
  842. void
  843. xfs_buf_item_log(
  844. xfs_buf_log_item_t *bip,
  845. uint first,
  846. uint last)
  847. {
  848. int i;
  849. uint start;
  850. uint end;
  851. struct xfs_buf *bp = bip->bli_buf;
  852. /*
  853. * Mark the item as having some dirty data for
  854. * quick reference in xfs_buf_item_dirty.
  855. */
  856. bip->bli_flags |= XFS_BLI_DIRTY;
  857. /*
  858. * walk each buffer segment and mark them dirty appropriately.
  859. */
  860. start = 0;
  861. for (i = 0; i < bip->bli_format_count; i++) {
  862. if (start > last)
  863. break;
  864. end = start + BBTOB(bp->b_maps[i].bm_len);
  865. if (first > end) {
  866. start += BBTOB(bp->b_maps[i].bm_len);
  867. continue;
  868. }
  869. if (first < start)
  870. first = start;
  871. if (end > last)
  872. end = last;
  873. xfs_buf_item_log_segment(bip, first, end,
  874. &bip->bli_formats[i].blf_data_map[0]);
  875. start += bp->b_maps[i].bm_len;
  876. }
  877. }
  878. /*
  879. * Return 1 if the buffer has some data that has been logged (at any
  880. * point, not just the current transaction) and 0 if not.
  881. */
  882. uint
  883. xfs_buf_item_dirty(
  884. xfs_buf_log_item_t *bip)
  885. {
  886. return (bip->bli_flags & XFS_BLI_DIRTY);
  887. }
  888. STATIC void
  889. xfs_buf_item_free(
  890. xfs_buf_log_item_t *bip)
  891. {
  892. #ifdef XFS_TRANS_DEBUG
  893. kmem_free(bip->bli_orig);
  894. kmem_free(bip->bli_logged);
  895. #endif /* XFS_TRANS_DEBUG */
  896. xfs_buf_item_free_format(bip);
  897. kmem_zone_free(xfs_buf_item_zone, bip);
  898. }
  899. /*
  900. * This is called when the buf log item is no longer needed. It should
  901. * free the buf log item associated with the given buffer and clear
  902. * the buffer's pointer to the buf log item. If there are no more
  903. * items in the list, clear the b_iodone field of the buffer (see
  904. * xfs_buf_attach_iodone() below).
  905. */
  906. void
  907. xfs_buf_item_relse(
  908. xfs_buf_t *bp)
  909. {
  910. xfs_buf_log_item_t *bip;
  911. trace_xfs_buf_item_relse(bp, _RET_IP_);
  912. bip = bp->b_fspriv;
  913. bp->b_fspriv = bip->bli_item.li_bio_list;
  914. if (bp->b_fspriv == NULL)
  915. bp->b_iodone = NULL;
  916. xfs_buf_rele(bp);
  917. xfs_buf_item_free(bip);
  918. }
  919. /*
  920. * Add the given log item with its callback to the list of callbacks
  921. * to be called when the buffer's I/O completes. If it is not set
  922. * already, set the buffer's b_iodone() routine to be
  923. * xfs_buf_iodone_callbacks() and link the log item into the list of
  924. * items rooted at b_fsprivate. Items are always added as the second
  925. * entry in the list if there is a first, because the buf item code
  926. * assumes that the buf log item is first.
  927. */
  928. void
  929. xfs_buf_attach_iodone(
  930. xfs_buf_t *bp,
  931. void (*cb)(xfs_buf_t *, xfs_log_item_t *),
  932. xfs_log_item_t *lip)
  933. {
  934. xfs_log_item_t *head_lip;
  935. ASSERT(xfs_buf_islocked(bp));
  936. lip->li_cb = cb;
  937. head_lip = bp->b_fspriv;
  938. if (head_lip) {
  939. lip->li_bio_list = head_lip->li_bio_list;
  940. head_lip->li_bio_list = lip;
  941. } else {
  942. bp->b_fspriv = lip;
  943. }
  944. ASSERT(bp->b_iodone == NULL ||
  945. bp->b_iodone == xfs_buf_iodone_callbacks);
  946. bp->b_iodone = xfs_buf_iodone_callbacks;
  947. }
  948. /*
  949. * We can have many callbacks on a buffer. Running the callbacks individually
  950. * can cause a lot of contention on the AIL lock, so we allow for a single
  951. * callback to be able to scan the remaining lip->li_bio_list for other items
  952. * of the same type and callback to be processed in the first call.
  953. *
  954. * As a result, the loop walking the callback list below will also modify the
  955. * list. it removes the first item from the list and then runs the callback.
  956. * The loop then restarts from the new head of the list. This allows the
  957. * callback to scan and modify the list attached to the buffer and we don't
  958. * have to care about maintaining a next item pointer.
  959. */
  960. STATIC void
  961. xfs_buf_do_callbacks(
  962. struct xfs_buf *bp)
  963. {
  964. struct xfs_log_item *lip;
  965. while ((lip = bp->b_fspriv) != NULL) {
  966. bp->b_fspriv = lip->li_bio_list;
  967. ASSERT(lip->li_cb != NULL);
  968. /*
  969. * Clear the next pointer so we don't have any
  970. * confusion if the item is added to another buf.
  971. * Don't touch the log item after calling its
  972. * callback, because it could have freed itself.
  973. */
  974. lip->li_bio_list = NULL;
  975. lip->li_cb(bp, lip);
  976. }
  977. }
  978. /*
  979. * This is the iodone() function for buffers which have had callbacks
  980. * attached to them by xfs_buf_attach_iodone(). It should remove each
  981. * log item from the buffer's list and call the callback of each in turn.
  982. * When done, the buffer's fsprivate field is set to NULL and the buffer
  983. * is unlocked with a call to iodone().
  984. */
  985. void
  986. xfs_buf_iodone_callbacks(
  987. struct xfs_buf *bp)
  988. {
  989. struct xfs_log_item *lip = bp->b_fspriv;
  990. struct xfs_mount *mp = lip->li_mountp;
  991. static ulong lasttime;
  992. static xfs_buftarg_t *lasttarg;
  993. if (likely(!xfs_buf_geterror(bp)))
  994. goto do_callbacks;
  995. /*
  996. * If we've already decided to shutdown the filesystem because of
  997. * I/O errors, there's no point in giving this a retry.
  998. */
  999. if (XFS_FORCED_SHUTDOWN(mp)) {
  1000. xfs_buf_stale(bp);
  1001. XFS_BUF_DONE(bp);
  1002. trace_xfs_buf_item_iodone(bp, _RET_IP_);
  1003. goto do_callbacks;
  1004. }
  1005. if (bp->b_target != lasttarg ||
  1006. time_after(jiffies, (lasttime + 5*HZ))) {
  1007. lasttime = jiffies;
  1008. xfs_buf_ioerror_alert(bp, __func__);
  1009. }
  1010. lasttarg = bp->b_target;
  1011. /*
  1012. * If the write was asynchronous then no one will be looking for the
  1013. * error. Clear the error state and write the buffer out again.
  1014. *
  1015. * XXX: This helps against transient write errors, but we need to find
  1016. * a way to shut the filesystem down if the writes keep failing.
  1017. *
  1018. * In practice we'll shut the filesystem down soon as non-transient
  1019. * erorrs tend to affect the whole device and a failing log write
  1020. * will make us give up. But we really ought to do better here.
  1021. */
  1022. if (XFS_BUF_ISASYNC(bp)) {
  1023. ASSERT(bp->b_iodone != NULL);
  1024. trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
  1025. xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
  1026. if (!XFS_BUF_ISSTALE(bp)) {
  1027. bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
  1028. xfs_buf_iorequest(bp);
  1029. } else {
  1030. xfs_buf_relse(bp);
  1031. }
  1032. return;
  1033. }
  1034. /*
  1035. * If the write of the buffer was synchronous, we want to make
  1036. * sure to return the error to the caller of xfs_bwrite().
  1037. */
  1038. xfs_buf_stale(bp);
  1039. XFS_BUF_DONE(bp);
  1040. trace_xfs_buf_error_relse(bp, _RET_IP_);
  1041. do_callbacks:
  1042. xfs_buf_do_callbacks(bp);
  1043. bp->b_fspriv = NULL;
  1044. bp->b_iodone = NULL;
  1045. xfs_buf_ioend(bp, 0);
  1046. }
  1047. /*
  1048. * This is the iodone() function for buffers which have been
  1049. * logged. It is called when they are eventually flushed out.
  1050. * It should remove the buf item from the AIL, and free the buf item.
  1051. * It is called by xfs_buf_iodone_callbacks() above which will take
  1052. * care of cleaning up the buffer itself.
  1053. */
  1054. void
  1055. xfs_buf_iodone(
  1056. struct xfs_buf *bp,
  1057. struct xfs_log_item *lip)
  1058. {
  1059. struct xfs_ail *ailp = lip->li_ailp;
  1060. ASSERT(BUF_ITEM(lip)->bli_buf == bp);
  1061. xfs_buf_rele(bp);
  1062. /*
  1063. * If we are forcibly shutting down, this may well be
  1064. * off the AIL already. That's because we simulate the
  1065. * log-committed callbacks to unpin these buffers. Or we may never
  1066. * have put this item on AIL because of the transaction was
  1067. * aborted forcibly. xfs_trans_ail_delete() takes care of these.
  1068. *
  1069. * Either way, AIL is useless if we're forcing a shutdown.
  1070. */
  1071. spin_lock(&ailp->xa_lock);
  1072. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
  1073. xfs_buf_item_free(BUF_ITEM(lip));
  1074. }