12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099 |
- /*
- * Copyright (C) 2012 Fusion-io All rights reserved.
- * Copyright (C) 2012 Intel Corp. All rights reserved.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public
- * License v2 as published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public
- * License along with this program; if not, write to the
- * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- * Boston, MA 021110-1307, USA.
- */
- #include <linux/sched.h>
- #include <linux/wait.h>
- #include <linux/bio.h>
- #include <linux/slab.h>
- #include <linux/buffer_head.h>
- #include <linux/blkdev.h>
- #include <linux/random.h>
- #include <linux/iocontext.h>
- #include <linux/capability.h>
- #include <linux/ratelimit.h>
- #include <linux/kthread.h>
- #include <linux/raid/pq.h>
- #include <linux/hash.h>
- #include <linux/list_sort.h>
- #include <linux/raid/xor.h>
- #include <asm/div64.h>
- #include "compat.h"
- #include "ctree.h"
- #include "extent_map.h"
- #include "disk-io.h"
- #include "transaction.h"
- #include "print-tree.h"
- #include "volumes.h"
- #include "raid56.h"
- #include "async-thread.h"
- #include "check-integrity.h"
- #include "rcu-string.h"
- /* set when additional merges to this rbio are not allowed */
- #define RBIO_RMW_LOCKED_BIT 1
- /*
- * set when this rbio is sitting in the hash, but it is just a cache
- * of past RMW
- */
- #define RBIO_CACHE_BIT 2
- /*
- * set when it is safe to trust the stripe_pages for caching
- */
- #define RBIO_CACHE_READY_BIT 3
- #define RBIO_CACHE_SIZE 1024
- struct btrfs_raid_bio {
- struct btrfs_fs_info *fs_info;
- struct btrfs_bio *bbio;
- /*
- * logical block numbers for the start of each stripe
- * The last one or two are p/q. These are sorted,
- * so raid_map[0] is the start of our full stripe
- */
- u64 *raid_map;
- /* while we're doing rmw on a stripe
- * we put it into a hash table so we can
- * lock the stripe and merge more rbios
- * into it.
- */
- struct list_head hash_list;
- /*
- * LRU list for the stripe cache
- */
- struct list_head stripe_cache;
- /*
- * for scheduling work in the helper threads
- */
- struct btrfs_work work;
- /*
- * bio list and bio_list_lock are used
- * to add more bios into the stripe
- * in hopes of avoiding the full rmw
- */
- struct bio_list bio_list;
- spinlock_t bio_list_lock;
- /* also protected by the bio_list_lock, the
- * plug list is used by the plugging code
- * to collect partial bios while plugged. The
- * stripe locking code also uses it to hand off
- * the stripe lock to the next pending IO
- */
- struct list_head plug_list;
- /*
- * flags that tell us if it is safe to
- * merge with this bio
- */
- unsigned long flags;
- /* size of each individual stripe on disk */
- int stripe_len;
- /* number of data stripes (no p/q) */
- int nr_data;
- /*
- * set if we're doing a parity rebuild
- * for a read from higher up, which is handled
- * differently from a parity rebuild as part of
- * rmw
- */
- int read_rebuild;
- /* first bad stripe */
- int faila;
- /* second bad stripe (for raid6 use) */
- int failb;
- /*
- * number of pages needed to represent the full
- * stripe
- */
- int nr_pages;
- /*
- * size of all the bios in the bio_list. This
- * helps us decide if the rbio maps to a full
- * stripe or not
- */
- int bio_list_bytes;
- atomic_t refs;
- /*
- * these are two arrays of pointers. We allocate the
- * rbio big enough to hold them both and setup their
- * locations when the rbio is allocated
- */
- /* pointers to pages that we allocated for
- * reading/writing stripes directly from the disk (including P/Q)
- */
- struct page **stripe_pages;
- /*
- * pointers to the pages in the bio_list. Stored
- * here for faster lookup
- */
- struct page **bio_pages;
- };
- static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
- static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
- static void rmw_work(struct btrfs_work *work);
- static void read_rebuild_work(struct btrfs_work *work);
- static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
- static void async_read_rebuild(struct btrfs_raid_bio *rbio);
- static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
- static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
- static void __free_raid_bio(struct btrfs_raid_bio *rbio);
- static void index_rbio_pages(struct btrfs_raid_bio *rbio);
- static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
- /*
- * the stripe hash table is used for locking, and to collect
- * bios in hopes of making a full stripe
- */
- int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
- {
- struct btrfs_stripe_hash_table *table;
- struct btrfs_stripe_hash_table *x;
- struct btrfs_stripe_hash *cur;
- struct btrfs_stripe_hash *h;
- int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
- int i;
- int table_size;
- if (info->stripe_hash_table)
- return 0;
- /*
- * The table is large, starting with order 4 and can go as high as
- * order 7 in case lock debugging is turned on.
- *
- * Try harder to allocate and fallback to vmalloc to lower the chance
- * of a failing mount.
- */
- table_size = sizeof(*table) + sizeof(*h) * num_entries;
- table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
- if (!table) {
- table = vzalloc(table_size);
- if (!table)
- return -ENOMEM;
- }
- spin_lock_init(&table->cache_lock);
- INIT_LIST_HEAD(&table->stripe_cache);
- h = table->table;
- for (i = 0; i < num_entries; i++) {
- cur = h + i;
- INIT_LIST_HEAD(&cur->hash_list);
- spin_lock_init(&cur->lock);
- init_waitqueue_head(&cur->wait);
- }
- x = cmpxchg(&info->stripe_hash_table, NULL, table);
- if (x) {
- if (is_vmalloc_addr(x))
- vfree(x);
- else
- kfree(x);
- }
- return 0;
- }
- /*
- * caching an rbio means to copy anything from the
- * bio_pages array into the stripe_pages array. We
- * use the page uptodate bit in the stripe cache array
- * to indicate if it has valid data
- *
- * once the caching is done, we set the cache ready
- * bit.
- */
- static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
- {
- int i;
- char *s;
- char *d;
- int ret;
- ret = alloc_rbio_pages(rbio);
- if (ret)
- return;
- for (i = 0; i < rbio->nr_pages; i++) {
- if (!rbio->bio_pages[i])
- continue;
- s = kmap(rbio->bio_pages[i]);
- d = kmap(rbio->stripe_pages[i]);
- memcpy(d, s, PAGE_CACHE_SIZE);
- kunmap(rbio->bio_pages[i]);
- kunmap(rbio->stripe_pages[i]);
- SetPageUptodate(rbio->stripe_pages[i]);
- }
- set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
- }
- /*
- * we hash on the first logical address of the stripe
- */
- static int rbio_bucket(struct btrfs_raid_bio *rbio)
- {
- u64 num = rbio->raid_map[0];
- /*
- * we shift down quite a bit. We're using byte
- * addressing, and most of the lower bits are zeros.
- * This tends to upset hash_64, and it consistently
- * returns just one or two different values.
- *
- * shifting off the lower bits fixes things.
- */
- return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
- }
- /*
- * stealing an rbio means taking all the uptodate pages from the stripe
- * array in the source rbio and putting them into the destination rbio
- */
- static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
- {
- int i;
- struct page *s;
- struct page *d;
- if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
- return;
- for (i = 0; i < dest->nr_pages; i++) {
- s = src->stripe_pages[i];
- if (!s || !PageUptodate(s)) {
- continue;
- }
- d = dest->stripe_pages[i];
- if (d)
- __free_page(d);
- dest->stripe_pages[i] = s;
- src->stripe_pages[i] = NULL;
- }
- }
- /*
- * merging means we take the bio_list from the victim and
- * splice it into the destination. The victim should
- * be discarded afterwards.
- *
- * must be called with dest->rbio_list_lock held
- */
- static void merge_rbio(struct btrfs_raid_bio *dest,
- struct btrfs_raid_bio *victim)
- {
- bio_list_merge(&dest->bio_list, &victim->bio_list);
- dest->bio_list_bytes += victim->bio_list_bytes;
- bio_list_init(&victim->bio_list);
- }
- /*
- * used to prune items that are in the cache. The caller
- * must hold the hash table lock.
- */
- static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
- {
- int bucket = rbio_bucket(rbio);
- struct btrfs_stripe_hash_table *table;
- struct btrfs_stripe_hash *h;
- int freeit = 0;
- /*
- * check the bit again under the hash table lock.
- */
- if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
- return;
- table = rbio->fs_info->stripe_hash_table;
- h = table->table + bucket;
- /* hold the lock for the bucket because we may be
- * removing it from the hash table
- */
- spin_lock(&h->lock);
- /*
- * hold the lock for the bio list because we need
- * to make sure the bio list is empty
- */
- spin_lock(&rbio->bio_list_lock);
- if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
- list_del_init(&rbio->stripe_cache);
- table->cache_size -= 1;
- freeit = 1;
- /* if the bio list isn't empty, this rbio is
- * still involved in an IO. We take it out
- * of the cache list, and drop the ref that
- * was held for the list.
- *
- * If the bio_list was empty, we also remove
- * the rbio from the hash_table, and drop
- * the corresponding ref
- */
- if (bio_list_empty(&rbio->bio_list)) {
- if (!list_empty(&rbio->hash_list)) {
- list_del_init(&rbio->hash_list);
- atomic_dec(&rbio->refs);
- BUG_ON(!list_empty(&rbio->plug_list));
- }
- }
- }
- spin_unlock(&rbio->bio_list_lock);
- spin_unlock(&h->lock);
- if (freeit)
- __free_raid_bio(rbio);
- }
- /*
- * prune a given rbio from the cache
- */
- static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
- {
- struct btrfs_stripe_hash_table *table;
- unsigned long flags;
- if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
- return;
- table = rbio->fs_info->stripe_hash_table;
- spin_lock_irqsave(&table->cache_lock, flags);
- __remove_rbio_from_cache(rbio);
- spin_unlock_irqrestore(&table->cache_lock, flags);
- }
- /*
- * remove everything in the cache
- */
- void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
- {
- struct btrfs_stripe_hash_table *table;
- unsigned long flags;
- struct btrfs_raid_bio *rbio;
- table = info->stripe_hash_table;
- spin_lock_irqsave(&table->cache_lock, flags);
- while (!list_empty(&table->stripe_cache)) {
- rbio = list_entry(table->stripe_cache.next,
- struct btrfs_raid_bio,
- stripe_cache);
- __remove_rbio_from_cache(rbio);
- }
- spin_unlock_irqrestore(&table->cache_lock, flags);
- }
- /*
- * remove all cached entries and free the hash table
- * used by unmount
- */
- void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
- {
- if (!info->stripe_hash_table)
- return;
- btrfs_clear_rbio_cache(info);
- if (is_vmalloc_addr(info->stripe_hash_table))
- vfree(info->stripe_hash_table);
- else
- kfree(info->stripe_hash_table);
- info->stripe_hash_table = NULL;
- }
- /*
- * insert an rbio into the stripe cache. It
- * must have already been prepared by calling
- * cache_rbio_pages
- *
- * If this rbio was already cached, it gets
- * moved to the front of the lru.
- *
- * If the size of the rbio cache is too big, we
- * prune an item.
- */
- static void cache_rbio(struct btrfs_raid_bio *rbio)
- {
- struct btrfs_stripe_hash_table *table;
- unsigned long flags;
- if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
- return;
- table = rbio->fs_info->stripe_hash_table;
- spin_lock_irqsave(&table->cache_lock, flags);
- spin_lock(&rbio->bio_list_lock);
- /* bump our ref if we were not in the list before */
- if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
- atomic_inc(&rbio->refs);
- if (!list_empty(&rbio->stripe_cache)){
- list_move(&rbio->stripe_cache, &table->stripe_cache);
- } else {
- list_add(&rbio->stripe_cache, &table->stripe_cache);
- table->cache_size += 1;
- }
- spin_unlock(&rbio->bio_list_lock);
- if (table->cache_size > RBIO_CACHE_SIZE) {
- struct btrfs_raid_bio *found;
- found = list_entry(table->stripe_cache.prev,
- struct btrfs_raid_bio,
- stripe_cache);
- if (found != rbio)
- __remove_rbio_from_cache(found);
- }
- spin_unlock_irqrestore(&table->cache_lock, flags);
- return;
- }
- /*
- * helper function to run the xor_blocks api. It is only
- * able to do MAX_XOR_BLOCKS at a time, so we need to
- * loop through.
- */
- static void run_xor(void **pages, int src_cnt, ssize_t len)
- {
- int src_off = 0;
- int xor_src_cnt = 0;
- void *dest = pages[src_cnt];
- while(src_cnt > 0) {
- xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
- xor_blocks(xor_src_cnt, len, dest, pages + src_off);
- src_cnt -= xor_src_cnt;
- src_off += xor_src_cnt;
- }
- }
- /*
- * returns true if the bio list inside this rbio
- * covers an entire stripe (no rmw required).
- * Must be called with the bio list lock held, or
- * at a time when you know it is impossible to add
- * new bios into the list
- */
- static int __rbio_is_full(struct btrfs_raid_bio *rbio)
- {
- unsigned long size = rbio->bio_list_bytes;
- int ret = 1;
- if (size != rbio->nr_data * rbio->stripe_len)
- ret = 0;
- BUG_ON(size > rbio->nr_data * rbio->stripe_len);
- return ret;
- }
- static int rbio_is_full(struct btrfs_raid_bio *rbio)
- {
- unsigned long flags;
- int ret;
- spin_lock_irqsave(&rbio->bio_list_lock, flags);
- ret = __rbio_is_full(rbio);
- spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
- return ret;
- }
- /*
- * returns 1 if it is safe to merge two rbios together.
- * The merging is safe if the two rbios correspond to
- * the same stripe and if they are both going in the same
- * direction (read vs write), and if neither one is
- * locked for final IO
- *
- * The caller is responsible for locking such that
- * rmw_locked is safe to test
- */
- static int rbio_can_merge(struct btrfs_raid_bio *last,
- struct btrfs_raid_bio *cur)
- {
- if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
- test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
- return 0;
- /*
- * we can't merge with cached rbios, since the
- * idea is that when we merge the destination
- * rbio is going to run our IO for us. We can
- * steal from cached rbio's though, other functions
- * handle that.
- */
- if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
- test_bit(RBIO_CACHE_BIT, &cur->flags))
- return 0;
- if (last->raid_map[0] !=
- cur->raid_map[0])
- return 0;
- /* reads can't merge with writes */
- if (last->read_rebuild !=
- cur->read_rebuild) {
- return 0;
- }
- return 1;
- }
- /*
- * helper to index into the pstripe
- */
- static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
- {
- index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
- return rbio->stripe_pages[index];
- }
- /*
- * helper to index into the qstripe, returns null
- * if there is no qstripe
- */
- static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
- {
- if (rbio->nr_data + 1 == rbio->bbio->num_stripes)
- return NULL;
- index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
- PAGE_CACHE_SHIFT;
- return rbio->stripe_pages[index];
- }
- /*
- * The first stripe in the table for a logical address
- * has the lock. rbios are added in one of three ways:
- *
- * 1) Nobody has the stripe locked yet. The rbio is given
- * the lock and 0 is returned. The caller must start the IO
- * themselves.
- *
- * 2) Someone has the stripe locked, but we're able to merge
- * with the lock owner. The rbio is freed and the IO will
- * start automatically along with the existing rbio. 1 is returned.
- *
- * 3) Someone has the stripe locked, but we're not able to merge.
- * The rbio is added to the lock owner's plug list, or merged into
- * an rbio already on the plug list. When the lock owner unlocks,
- * the next rbio on the list is run and the IO is started automatically.
- * 1 is returned
- *
- * If we return 0, the caller still owns the rbio and must continue with
- * IO submission. If we return 1, the caller must assume the rbio has
- * already been freed.
- */
- static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
- {
- int bucket = rbio_bucket(rbio);
- struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
- struct btrfs_raid_bio *cur;
- struct btrfs_raid_bio *pending;
- unsigned long flags;
- DEFINE_WAIT(wait);
- struct btrfs_raid_bio *freeit = NULL;
- struct btrfs_raid_bio *cache_drop = NULL;
- int ret = 0;
- int walk = 0;
- spin_lock_irqsave(&h->lock, flags);
- list_for_each_entry(cur, &h->hash_list, hash_list) {
- walk++;
- if (cur->raid_map[0] == rbio->raid_map[0]) {
- spin_lock(&cur->bio_list_lock);
- /* can we steal this cached rbio's pages? */
- if (bio_list_empty(&cur->bio_list) &&
- list_empty(&cur->plug_list) &&
- test_bit(RBIO_CACHE_BIT, &cur->flags) &&
- !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
- list_del_init(&cur->hash_list);
- atomic_dec(&cur->refs);
- steal_rbio(cur, rbio);
- cache_drop = cur;
- spin_unlock(&cur->bio_list_lock);
- goto lockit;
- }
- /* can we merge into the lock owner? */
- if (rbio_can_merge(cur, rbio)) {
- merge_rbio(cur, rbio);
- spin_unlock(&cur->bio_list_lock);
- freeit = rbio;
- ret = 1;
- goto out;
- }
- /*
- * we couldn't merge with the running
- * rbio, see if we can merge with the
- * pending ones. We don't have to
- * check for rmw_locked because there
- * is no way they are inside finish_rmw
- * right now
- */
- list_for_each_entry(pending, &cur->plug_list,
- plug_list) {
- if (rbio_can_merge(pending, rbio)) {
- merge_rbio(pending, rbio);
- spin_unlock(&cur->bio_list_lock);
- freeit = rbio;
- ret = 1;
- goto out;
- }
- }
- /* no merging, put us on the tail of the plug list,
- * our rbio will be started with the currently
- * running rbio unlocks
- */
- list_add_tail(&rbio->plug_list, &cur->plug_list);
- spin_unlock(&cur->bio_list_lock);
- ret = 1;
- goto out;
- }
- }
- lockit:
- atomic_inc(&rbio->refs);
- list_add(&rbio->hash_list, &h->hash_list);
- out:
- spin_unlock_irqrestore(&h->lock, flags);
- if (cache_drop)
- remove_rbio_from_cache(cache_drop);
- if (freeit)
- __free_raid_bio(freeit);
- return ret;
- }
- /*
- * called as rmw or parity rebuild is completed. If the plug list has more
- * rbios waiting for this stripe, the next one on the list will be started
- */
- static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
- {
- int bucket;
- struct btrfs_stripe_hash *h;
- unsigned long flags;
- int keep_cache = 0;
- bucket = rbio_bucket(rbio);
- h = rbio->fs_info->stripe_hash_table->table + bucket;
- if (list_empty(&rbio->plug_list))
- cache_rbio(rbio);
- spin_lock_irqsave(&h->lock, flags);
- spin_lock(&rbio->bio_list_lock);
- if (!list_empty(&rbio->hash_list)) {
- /*
- * if we're still cached and there is no other IO
- * to perform, just leave this rbio here for others
- * to steal from later
- */
- if (list_empty(&rbio->plug_list) &&
- test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
- keep_cache = 1;
- clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
- BUG_ON(!bio_list_empty(&rbio->bio_list));
- goto done;
- }
- list_del_init(&rbio->hash_list);
- atomic_dec(&rbio->refs);
- /*
- * we use the plug list to hold all the rbios
- * waiting for the chance to lock this stripe.
- * hand the lock over to one of them.
- */
- if (!list_empty(&rbio->plug_list)) {
- struct btrfs_raid_bio *next;
- struct list_head *head = rbio->plug_list.next;
- next = list_entry(head, struct btrfs_raid_bio,
- plug_list);
- list_del_init(&rbio->plug_list);
- list_add(&next->hash_list, &h->hash_list);
- atomic_inc(&next->refs);
- spin_unlock(&rbio->bio_list_lock);
- spin_unlock_irqrestore(&h->lock, flags);
- if (next->read_rebuild)
- async_read_rebuild(next);
- else {
- steal_rbio(rbio, next);
- async_rmw_stripe(next);
- }
- goto done_nolock;
- } else if (waitqueue_active(&h->wait)) {
- spin_unlock(&rbio->bio_list_lock);
- spin_unlock_irqrestore(&h->lock, flags);
- wake_up(&h->wait);
- goto done_nolock;
- }
- }
- done:
- spin_unlock(&rbio->bio_list_lock);
- spin_unlock_irqrestore(&h->lock, flags);
- done_nolock:
- if (!keep_cache)
- remove_rbio_from_cache(rbio);
- }
- static void __free_raid_bio(struct btrfs_raid_bio *rbio)
- {
- int i;
- WARN_ON(atomic_read(&rbio->refs) < 0);
- if (!atomic_dec_and_test(&rbio->refs))
- return;
- WARN_ON(!list_empty(&rbio->stripe_cache));
- WARN_ON(!list_empty(&rbio->hash_list));
- WARN_ON(!bio_list_empty(&rbio->bio_list));
- for (i = 0; i < rbio->nr_pages; i++) {
- if (rbio->stripe_pages[i]) {
- __free_page(rbio->stripe_pages[i]);
- rbio->stripe_pages[i] = NULL;
- }
- }
- kfree(rbio->raid_map);
- kfree(rbio->bbio);
- kfree(rbio);
- }
- static void free_raid_bio(struct btrfs_raid_bio *rbio)
- {
- unlock_stripe(rbio);
- __free_raid_bio(rbio);
- }
- /*
- * this frees the rbio and runs through all the bios in the
- * bio_list and calls end_io on them
- */
- static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
- {
- struct bio *cur = bio_list_get(&rbio->bio_list);
- struct bio *next;
- free_raid_bio(rbio);
- while (cur) {
- next = cur->bi_next;
- cur->bi_next = NULL;
- if (uptodate)
- set_bit(BIO_UPTODATE, &cur->bi_flags);
- bio_endio(cur, err);
- cur = next;
- }
- }
- /*
- * end io function used by finish_rmw. When we finally
- * get here, we've written a full stripe
- */
- static void raid_write_end_io(struct bio *bio, int err)
- {
- struct btrfs_raid_bio *rbio = bio->bi_private;
- if (err)
- fail_bio_stripe(rbio, bio);
- bio_put(bio);
- if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
- return;
- err = 0;
- /* OK, we have read all the stripes we need to. */
- if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
- err = -EIO;
- rbio_orig_end_io(rbio, err, 0);
- return;
- }
- /*
- * the read/modify/write code wants to use the original bio for
- * any pages it included, and then use the rbio for everything
- * else. This function decides if a given index (stripe number)
- * and page number in that stripe fall inside the original bio
- * or the rbio.
- *
- * if you set bio_list_only, you'll get a NULL back for any ranges
- * that are outside the bio_list
- *
- * This doesn't take any refs on anything, you get a bare page pointer
- * and the caller must bump refs as required.
- *
- * You must call index_rbio_pages once before you can trust
- * the answers from this function.
- */
- static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
- int index, int pagenr, int bio_list_only)
- {
- int chunk_page;
- struct page *p = NULL;
- chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
- spin_lock_irq(&rbio->bio_list_lock);
- p = rbio->bio_pages[chunk_page];
- spin_unlock_irq(&rbio->bio_list_lock);
- if (p || bio_list_only)
- return p;
- return rbio->stripe_pages[chunk_page];
- }
- /*
- * number of pages we need for the entire stripe across all the
- * drives
- */
- static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
- {
- unsigned long nr = stripe_len * nr_stripes;
- return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
- }
- /*
- * allocation and initial setup for the btrfs_raid_bio. Not
- * this does not allocate any pages for rbio->pages.
- */
- static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
- struct btrfs_bio *bbio, u64 *raid_map,
- u64 stripe_len)
- {
- struct btrfs_raid_bio *rbio;
- int nr_data = 0;
- int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes);
- void *p;
- rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2,
- GFP_NOFS);
- if (!rbio) {
- kfree(raid_map);
- kfree(bbio);
- return ERR_PTR(-ENOMEM);
- }
- bio_list_init(&rbio->bio_list);
- INIT_LIST_HEAD(&rbio->plug_list);
- spin_lock_init(&rbio->bio_list_lock);
- INIT_LIST_HEAD(&rbio->stripe_cache);
- INIT_LIST_HEAD(&rbio->hash_list);
- rbio->bbio = bbio;
- rbio->raid_map = raid_map;
- rbio->fs_info = root->fs_info;
- rbio->stripe_len = stripe_len;
- rbio->nr_pages = num_pages;
- rbio->faila = -1;
- rbio->failb = -1;
- atomic_set(&rbio->refs, 1);
- /*
- * the stripe_pages and bio_pages array point to the extra
- * memory we allocated past the end of the rbio
- */
- p = rbio + 1;
- rbio->stripe_pages = p;
- rbio->bio_pages = p + sizeof(struct page *) * num_pages;
- if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE)
- nr_data = bbio->num_stripes - 2;
- else
- nr_data = bbio->num_stripes - 1;
- rbio->nr_data = nr_data;
- return rbio;
- }
- /* allocate pages for all the stripes in the bio, including parity */
- static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
- {
- int i;
- struct page *page;
- for (i = 0; i < rbio->nr_pages; i++) {
- if (rbio->stripe_pages[i])
- continue;
- page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
- if (!page)
- return -ENOMEM;
- rbio->stripe_pages[i] = page;
- ClearPageUptodate(page);
- }
- return 0;
- }
- /* allocate pages for just the p/q stripes */
- static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
- {
- int i;
- struct page *page;
- i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
- for (; i < rbio->nr_pages; i++) {
- if (rbio->stripe_pages[i])
- continue;
- page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
- if (!page)
- return -ENOMEM;
- rbio->stripe_pages[i] = page;
- }
- return 0;
- }
- /*
- * add a single page from a specific stripe into our list of bios for IO
- * this will try to merge into existing bios if possible, and returns
- * zero if all went well.
- */
- int rbio_add_io_page(struct btrfs_raid_bio *rbio,
- struct bio_list *bio_list,
- struct page *page,
- int stripe_nr,
- unsigned long page_index,
- unsigned long bio_max_len)
- {
- struct bio *last = bio_list->tail;
- u64 last_end = 0;
- int ret;
- struct bio *bio;
- struct btrfs_bio_stripe *stripe;
- u64 disk_start;
- stripe = &rbio->bbio->stripes[stripe_nr];
- disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
- /* if the device is missing, just fail this stripe */
- if (!stripe->dev->bdev)
- return fail_rbio_index(rbio, stripe_nr);
- /* see if we can add this page onto our existing bio */
- if (last) {
- last_end = (u64)last->bi_sector << 9;
- last_end += last->bi_size;
- /*
- * we can't merge these if they are from different
- * devices or if they are not contiguous
- */
- if (last_end == disk_start && stripe->dev->bdev &&
- test_bit(BIO_UPTODATE, &last->bi_flags) &&
- last->bi_bdev == stripe->dev->bdev) {
- ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
- if (ret == PAGE_CACHE_SIZE)
- return 0;
- }
- }
- /* put a new bio on the list */
- bio = bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
- if (!bio)
- return -ENOMEM;
- bio->bi_size = 0;
- bio->bi_bdev = stripe->dev->bdev;
- bio->bi_sector = disk_start >> 9;
- set_bit(BIO_UPTODATE, &bio->bi_flags);
- bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
- bio_list_add(bio_list, bio);
- return 0;
- }
- /*
- * while we're doing the read/modify/write cycle, we could
- * have errors in reading pages off the disk. This checks
- * for errors and if we're not able to read the page it'll
- * trigger parity reconstruction. The rmw will be finished
- * after we've reconstructed the failed stripes
- */
- static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
- {
- if (rbio->faila >= 0 || rbio->failb >= 0) {
- BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1);
- __raid56_parity_recover(rbio);
- } else {
- finish_rmw(rbio);
- }
- }
- /*
- * these are just the pages from the rbio array, not from anything
- * the FS sent down to us
- */
- static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
- {
- int index;
- index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
- index += page;
- return rbio->stripe_pages[index];
- }
- /*
- * helper function to walk our bio list and populate the bio_pages array with
- * the result. This seems expensive, but it is faster than constantly
- * searching through the bio list as we setup the IO in finish_rmw or stripe
- * reconstruction.
- *
- * This must be called before you trust the answers from page_in_rbio
- */
- static void index_rbio_pages(struct btrfs_raid_bio *rbio)
- {
- struct bio *bio;
- u64 start;
- unsigned long stripe_offset;
- unsigned long page_index;
- struct page *p;
- int i;
- spin_lock_irq(&rbio->bio_list_lock);
- bio_list_for_each(bio, &rbio->bio_list) {
- start = (u64)bio->bi_sector << 9;
- stripe_offset = start - rbio->raid_map[0];
- page_index = stripe_offset >> PAGE_CACHE_SHIFT;
- for (i = 0; i < bio->bi_vcnt; i++) {
- p = bio->bi_io_vec[i].bv_page;
- rbio->bio_pages[page_index + i] = p;
- }
- }
- spin_unlock_irq(&rbio->bio_list_lock);
- }
- /*
- * this is called from one of two situations. We either
- * have a full stripe from the higher layers, or we've read all
- * the missing bits off disk.
- *
- * This will calculate the parity and then send down any
- * changed blocks.
- */
- static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
- {
- struct btrfs_bio *bbio = rbio->bbio;
- void *pointers[bbio->num_stripes];
- int stripe_len = rbio->stripe_len;
- int nr_data = rbio->nr_data;
- int stripe;
- int pagenr;
- int p_stripe = -1;
- int q_stripe = -1;
- struct bio_list bio_list;
- struct bio *bio;
- int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
- int ret;
- bio_list_init(&bio_list);
- if (bbio->num_stripes - rbio->nr_data == 1) {
- p_stripe = bbio->num_stripes - 1;
- } else if (bbio->num_stripes - rbio->nr_data == 2) {
- p_stripe = bbio->num_stripes - 2;
- q_stripe = bbio->num_stripes - 1;
- } else {
- BUG();
- }
- /* at this point we either have a full stripe,
- * or we've read the full stripe from the drive.
- * recalculate the parity and write the new results.
- *
- * We're not allowed to add any new bios to the
- * bio list here, anyone else that wants to
- * change this stripe needs to do their own rmw.
- */
- spin_lock_irq(&rbio->bio_list_lock);
- set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
- spin_unlock_irq(&rbio->bio_list_lock);
- atomic_set(&rbio->bbio->error, 0);
- /*
- * now that we've set rmw_locked, run through the
- * bio list one last time and map the page pointers
- *
- * We don't cache full rbios because we're assuming
- * the higher layers are unlikely to use this area of
- * the disk again soon. If they do use it again,
- * hopefully they will send another full bio.
- */
- index_rbio_pages(rbio);
- if (!rbio_is_full(rbio))
- cache_rbio_pages(rbio);
- else
- clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
- for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
- struct page *p;
- /* first collect one page from each data stripe */
- for (stripe = 0; stripe < nr_data; stripe++) {
- p = page_in_rbio(rbio, stripe, pagenr, 0);
- pointers[stripe] = kmap(p);
- }
- /* then add the parity stripe */
- p = rbio_pstripe_page(rbio, pagenr);
- SetPageUptodate(p);
- pointers[stripe++] = kmap(p);
- if (q_stripe != -1) {
- /*
- * raid6, add the qstripe and call the
- * library function to fill in our p/q
- */
- p = rbio_qstripe_page(rbio, pagenr);
- SetPageUptodate(p);
- pointers[stripe++] = kmap(p);
- raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE,
- pointers);
- } else {
- /* raid5 */
- memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
- run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
- }
- for (stripe = 0; stripe < bbio->num_stripes; stripe++)
- kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
- }
- /*
- * time to start writing. Make bios for everything from the
- * higher layers (the bio_list in our rbio) and our p/q. Ignore
- * everything else.
- */
- for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
- for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
- struct page *page;
- if (stripe < rbio->nr_data) {
- page = page_in_rbio(rbio, stripe, pagenr, 1);
- if (!page)
- continue;
- } else {
- page = rbio_stripe_page(rbio, stripe, pagenr);
- }
- ret = rbio_add_io_page(rbio, &bio_list,
- page, stripe, pagenr, rbio->stripe_len);
- if (ret)
- goto cleanup;
- }
- }
- atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list));
- BUG_ON(atomic_read(&bbio->stripes_pending) == 0);
- while (1) {
- bio = bio_list_pop(&bio_list);
- if (!bio)
- break;
- bio->bi_private = rbio;
- bio->bi_end_io = raid_write_end_io;
- BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
- submit_bio(WRITE, bio);
- }
- return;
- cleanup:
- rbio_orig_end_io(rbio, -EIO, 0);
- }
- /*
- * helper to find the stripe number for a given bio. Used to figure out which
- * stripe has failed. This expects the bio to correspond to a physical disk,
- * so it looks up based on physical sector numbers.
- */
- static int find_bio_stripe(struct btrfs_raid_bio *rbio,
- struct bio *bio)
- {
- u64 physical = bio->bi_sector;
- u64 stripe_start;
- int i;
- struct btrfs_bio_stripe *stripe;
- physical <<= 9;
- for (i = 0; i < rbio->bbio->num_stripes; i++) {
- stripe = &rbio->bbio->stripes[i];
- stripe_start = stripe->physical;
- if (physical >= stripe_start &&
- physical < stripe_start + rbio->stripe_len) {
- return i;
- }
- }
- return -1;
- }
- /*
- * helper to find the stripe number for a given
- * bio (before mapping). Used to figure out which stripe has
- * failed. This looks up based on logical block numbers.
- */
- static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
- struct bio *bio)
- {
- u64 logical = bio->bi_sector;
- u64 stripe_start;
- int i;
- logical <<= 9;
- for (i = 0; i < rbio->nr_data; i++) {
- stripe_start = rbio->raid_map[i];
- if (logical >= stripe_start &&
- logical < stripe_start + rbio->stripe_len) {
- return i;
- }
- }
- return -1;
- }
- /*
- * returns -EIO if we had too many failures
- */
- static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
- {
- unsigned long flags;
- int ret = 0;
- spin_lock_irqsave(&rbio->bio_list_lock, flags);
- /* we already know this stripe is bad, move on */
- if (rbio->faila == failed || rbio->failb == failed)
- goto out;
- if (rbio->faila == -1) {
- /* first failure on this rbio */
- rbio->faila = failed;
- atomic_inc(&rbio->bbio->error);
- } else if (rbio->failb == -1) {
- /* second failure on this rbio */
- rbio->failb = failed;
- atomic_inc(&rbio->bbio->error);
- } else {
- ret = -EIO;
- }
- out:
- spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
- return ret;
- }
- /*
- * helper to fail a stripe based on a physical disk
- * bio.
- */
- static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
- struct bio *bio)
- {
- int failed = find_bio_stripe(rbio, bio);
- if (failed < 0)
- return -EIO;
- return fail_rbio_index(rbio, failed);
- }
- /*
- * this sets each page in the bio uptodate. It should only be used on private
- * rbio pages, nothing that comes in from the higher layers
- */
- static void set_bio_pages_uptodate(struct bio *bio)
- {
- int i;
- struct page *p;
- for (i = 0; i < bio->bi_vcnt; i++) {
- p = bio->bi_io_vec[i].bv_page;
- SetPageUptodate(p);
- }
- }
- /*
- * end io for the read phase of the rmw cycle. All the bios here are physical
- * stripe bios we've read from the disk so we can recalculate the parity of the
- * stripe.
- *
- * This will usually kick off finish_rmw once all the bios are read in, but it
- * may trigger parity reconstruction if we had any errors along the way
- */
- static void raid_rmw_end_io(struct bio *bio, int err)
- {
- struct btrfs_raid_bio *rbio = bio->bi_private;
- if (err)
- fail_bio_stripe(rbio, bio);
- else
- set_bio_pages_uptodate(bio);
- bio_put(bio);
- if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
- return;
- err = 0;
- if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
- goto cleanup;
- /*
- * this will normally call finish_rmw to start our write
- * but if there are any failed stripes we'll reconstruct
- * from parity first
- */
- validate_rbio_for_rmw(rbio);
- return;
- cleanup:
- rbio_orig_end_io(rbio, -EIO, 0);
- }
- static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
- {
- rbio->work.flags = 0;
- rbio->work.func = rmw_work;
- btrfs_queue_worker(&rbio->fs_info->rmw_workers,
- &rbio->work);
- }
- static void async_read_rebuild(struct btrfs_raid_bio *rbio)
- {
- rbio->work.flags = 0;
- rbio->work.func = read_rebuild_work;
- btrfs_queue_worker(&rbio->fs_info->rmw_workers,
- &rbio->work);
- }
- /*
- * the stripe must be locked by the caller. It will
- * unlock after all the writes are done
- */
- static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
- {
- int bios_to_read = 0;
- struct btrfs_bio *bbio = rbio->bbio;
- struct bio_list bio_list;
- int ret;
- int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
- int pagenr;
- int stripe;
- struct bio *bio;
- bio_list_init(&bio_list);
- ret = alloc_rbio_pages(rbio);
- if (ret)
- goto cleanup;
- index_rbio_pages(rbio);
- atomic_set(&rbio->bbio->error, 0);
- /*
- * build a list of bios to read all the missing parts of this
- * stripe
- */
- for (stripe = 0; stripe < rbio->nr_data; stripe++) {
- for (pagenr = 0; pagenr < nr_pages; pagenr++) {
- struct page *page;
- /*
- * we want to find all the pages missing from
- * the rbio and read them from the disk. If
- * page_in_rbio finds a page in the bio list
- * we don't need to read it off the stripe.
- */
- page = page_in_rbio(rbio, stripe, pagenr, 1);
- if (page)
- continue;
- page = rbio_stripe_page(rbio, stripe, pagenr);
- /*
- * the bio cache may have handed us an uptodate
- * page. If so, be happy and use it
- */
- if (PageUptodate(page))
- continue;
- ret = rbio_add_io_page(rbio, &bio_list, page,
- stripe, pagenr, rbio->stripe_len);
- if (ret)
- goto cleanup;
- }
- }
- bios_to_read = bio_list_size(&bio_list);
- if (!bios_to_read) {
- /*
- * this can happen if others have merged with
- * us, it means there is nothing left to read.
- * But if there are missing devices it may not be
- * safe to do the full stripe write yet.
- */
- goto finish;
- }
- /*
- * the bbio may be freed once we submit the last bio. Make sure
- * not to touch it after that
- */
- atomic_set(&bbio->stripes_pending, bios_to_read);
- while (1) {
- bio = bio_list_pop(&bio_list);
- if (!bio)
- break;
- bio->bi_private = rbio;
- bio->bi_end_io = raid_rmw_end_io;
- btrfs_bio_wq_end_io(rbio->fs_info, bio,
- BTRFS_WQ_ENDIO_RAID56);
- BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
- submit_bio(READ, bio);
- }
- /* the actual write will happen once the reads are done */
- return 0;
- cleanup:
- rbio_orig_end_io(rbio, -EIO, 0);
- return -EIO;
- finish:
- validate_rbio_for_rmw(rbio);
- return 0;
- }
- /*
- * if the upper layers pass in a full stripe, we thank them by only allocating
- * enough pages to hold the parity, and sending it all down quickly.
- */
- static int full_stripe_write(struct btrfs_raid_bio *rbio)
- {
- int ret;
- ret = alloc_rbio_parity_pages(rbio);
- if (ret)
- return ret;
- ret = lock_stripe_add(rbio);
- if (ret == 0)
- finish_rmw(rbio);
- return 0;
- }
- /*
- * partial stripe writes get handed over to async helpers.
- * We're really hoping to merge a few more writes into this
- * rbio before calculating new parity
- */
- static int partial_stripe_write(struct btrfs_raid_bio *rbio)
- {
- int ret;
- ret = lock_stripe_add(rbio);
- if (ret == 0)
- async_rmw_stripe(rbio);
- return 0;
- }
- /*
- * sometimes while we were reading from the drive to
- * recalculate parity, enough new bios come into create
- * a full stripe. So we do a check here to see if we can
- * go directly to finish_rmw
- */
- static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
- {
- /* head off into rmw land if we don't have a full stripe */
- if (!rbio_is_full(rbio))
- return partial_stripe_write(rbio);
- return full_stripe_write(rbio);
- }
- /*
- * We use plugging call backs to collect full stripes.
- * Any time we get a partial stripe write while plugged
- * we collect it into a list. When the unplug comes down,
- * we sort the list by logical block number and merge
- * everything we can into the same rbios
- */
- struct btrfs_plug_cb {
- struct blk_plug_cb cb;
- struct btrfs_fs_info *info;
- struct list_head rbio_list;
- struct btrfs_work work;
- };
- /*
- * rbios on the plug list are sorted for easier merging.
- */
- static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
- {
- struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
- plug_list);
- struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
- plug_list);
- u64 a_sector = ra->bio_list.head->bi_sector;
- u64 b_sector = rb->bio_list.head->bi_sector;
- if (a_sector < b_sector)
- return -1;
- if (a_sector > b_sector)
- return 1;
- return 0;
- }
- static void run_plug(struct btrfs_plug_cb *plug)
- {
- struct btrfs_raid_bio *cur;
- struct btrfs_raid_bio *last = NULL;
- /*
- * sort our plug list then try to merge
- * everything we can in hopes of creating full
- * stripes.
- */
- list_sort(NULL, &plug->rbio_list, plug_cmp);
- while (!list_empty(&plug->rbio_list)) {
- cur = list_entry(plug->rbio_list.next,
- struct btrfs_raid_bio, plug_list);
- list_del_init(&cur->plug_list);
- if (rbio_is_full(cur)) {
- /* we have a full stripe, send it down */
- full_stripe_write(cur);
- continue;
- }
- if (last) {
- if (rbio_can_merge(last, cur)) {
- merge_rbio(last, cur);
- __free_raid_bio(cur);
- continue;
- }
- __raid56_parity_write(last);
- }
- last = cur;
- }
- if (last) {
- __raid56_parity_write(last);
- }
- kfree(plug);
- }
- /*
- * if the unplug comes from schedule, we have to push the
- * work off to a helper thread
- */
- static void unplug_work(struct btrfs_work *work)
- {
- struct btrfs_plug_cb *plug;
- plug = container_of(work, struct btrfs_plug_cb, work);
- run_plug(plug);
- }
- static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
- {
- struct btrfs_plug_cb *plug;
- plug = container_of(cb, struct btrfs_plug_cb, cb);
- if (from_schedule) {
- plug->work.flags = 0;
- plug->work.func = unplug_work;
- btrfs_queue_worker(&plug->info->rmw_workers,
- &plug->work);
- return;
- }
- run_plug(plug);
- }
- /*
- * our main entry point for writes from the rest of the FS.
- */
- int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
- struct btrfs_bio *bbio, u64 *raid_map,
- u64 stripe_len)
- {
- struct btrfs_raid_bio *rbio;
- struct btrfs_plug_cb *plug = NULL;
- struct blk_plug_cb *cb;
- rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
- if (IS_ERR(rbio)) {
- kfree(raid_map);
- kfree(bbio);
- return PTR_ERR(rbio);
- }
- bio_list_add(&rbio->bio_list, bio);
- rbio->bio_list_bytes = bio->bi_size;
- /*
- * don't plug on full rbios, just get them out the door
- * as quickly as we can
- */
- if (rbio_is_full(rbio))
- return full_stripe_write(rbio);
- cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
- sizeof(*plug));
- if (cb) {
- plug = container_of(cb, struct btrfs_plug_cb, cb);
- if (!plug->info) {
- plug->info = root->fs_info;
- INIT_LIST_HEAD(&plug->rbio_list);
- }
- list_add_tail(&rbio->plug_list, &plug->rbio_list);
- } else {
- return __raid56_parity_write(rbio);
- }
- return 0;
- }
- /*
- * all parity reconstruction happens here. We've read in everything
- * we can find from the drives and this does the heavy lifting of
- * sorting the good from the bad.
- */
- static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
- {
- int pagenr, stripe;
- void **pointers;
- int faila = -1, failb = -1;
- int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
- struct page *page;
- int err;
- int i;
- pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *),
- GFP_NOFS);
- if (!pointers) {
- err = -ENOMEM;
- goto cleanup_io;
- }
- faila = rbio->faila;
- failb = rbio->failb;
- if (rbio->read_rebuild) {
- spin_lock_irq(&rbio->bio_list_lock);
- set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
- spin_unlock_irq(&rbio->bio_list_lock);
- }
- index_rbio_pages(rbio);
- for (pagenr = 0; pagenr < nr_pages; pagenr++) {
- /* setup our array of pointers with pages
- * from each stripe
- */
- for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
- /*
- * if we're rebuilding a read, we have to use
- * pages from the bio list
- */
- if (rbio->read_rebuild &&
- (stripe == faila || stripe == failb)) {
- page = page_in_rbio(rbio, stripe, pagenr, 0);
- } else {
- page = rbio_stripe_page(rbio, stripe, pagenr);
- }
- pointers[stripe] = kmap(page);
- }
- /* all raid6 handling here */
- if (rbio->raid_map[rbio->bbio->num_stripes - 1] ==
- RAID6_Q_STRIPE) {
- /*
- * single failure, rebuild from parity raid5
- * style
- */
- if (failb < 0) {
- if (faila == rbio->nr_data) {
- /*
- * Just the P stripe has failed, without
- * a bad data or Q stripe.
- * TODO, we should redo the xor here.
- */
- err = -EIO;
- goto cleanup;
- }
- /*
- * a single failure in raid6 is rebuilt
- * in the pstripe code below
- */
- goto pstripe;
- }
- /* make sure our ps and qs are in order */
- if (faila > failb) {
- int tmp = failb;
- failb = faila;
- faila = tmp;
- }
- /* if the q stripe is failed, do a pstripe reconstruction
- * from the xors.
- * If both the q stripe and the P stripe are failed, we're
- * here due to a crc mismatch and we can't give them the
- * data they want
- */
- if (rbio->raid_map[failb] == RAID6_Q_STRIPE) {
- if (rbio->raid_map[faila] == RAID5_P_STRIPE) {
- err = -EIO;
- goto cleanup;
- }
- /*
- * otherwise we have one bad data stripe and
- * a good P stripe. raid5!
- */
- goto pstripe;
- }
- if (rbio->raid_map[failb] == RAID5_P_STRIPE) {
- raid6_datap_recov(rbio->bbio->num_stripes,
- PAGE_SIZE, faila, pointers);
- } else {
- raid6_2data_recov(rbio->bbio->num_stripes,
- PAGE_SIZE, faila, failb,
- pointers);
- }
- } else {
- void *p;
- /* rebuild from P stripe here (raid5 or raid6) */
- BUG_ON(failb != -1);
- pstripe:
- /* Copy parity block into failed block to start with */
- memcpy(pointers[faila],
- pointers[rbio->nr_data],
- PAGE_CACHE_SIZE);
- /* rearrange the pointer array */
- p = pointers[faila];
- for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
- pointers[stripe] = pointers[stripe + 1];
- pointers[rbio->nr_data - 1] = p;
- /* xor in the rest */
- run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
- }
- /* if we're doing this rebuild as part of an rmw, go through
- * and set all of our private rbio pages in the
- * failed stripes as uptodate. This way finish_rmw will
- * know they can be trusted. If this was a read reconstruction,
- * other endio functions will fiddle the uptodate bits
- */
- if (!rbio->read_rebuild) {
- for (i = 0; i < nr_pages; i++) {
- if (faila != -1) {
- page = rbio_stripe_page(rbio, faila, i);
- SetPageUptodate(page);
- }
- if (failb != -1) {
- page = rbio_stripe_page(rbio, failb, i);
- SetPageUptodate(page);
- }
- }
- }
- for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
- /*
- * if we're rebuilding a read, we have to use
- * pages from the bio list
- */
- if (rbio->read_rebuild &&
- (stripe == faila || stripe == failb)) {
- page = page_in_rbio(rbio, stripe, pagenr, 0);
- } else {
- page = rbio_stripe_page(rbio, stripe, pagenr);
- }
- kunmap(page);
- }
- }
- err = 0;
- cleanup:
- kfree(pointers);
- cleanup_io:
- if (rbio->read_rebuild) {
- if (err == 0)
- cache_rbio_pages(rbio);
- else
- clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
- rbio_orig_end_io(rbio, err, err == 0);
- } else if (err == 0) {
- rbio->faila = -1;
- rbio->failb = -1;
- finish_rmw(rbio);
- } else {
- rbio_orig_end_io(rbio, err, 0);
- }
- }
- /*
- * This is called only for stripes we've read from disk to
- * reconstruct the parity.
- */
- static void raid_recover_end_io(struct bio *bio, int err)
- {
- struct btrfs_raid_bio *rbio = bio->bi_private;
- /*
- * we only read stripe pages off the disk, set them
- * up to date if there were no errors
- */
- if (err)
- fail_bio_stripe(rbio, bio);
- else
- set_bio_pages_uptodate(bio);
- bio_put(bio);
- if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
- return;
- if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
- rbio_orig_end_io(rbio, -EIO, 0);
- else
- __raid_recover_end_io(rbio);
- }
- /*
- * reads everything we need off the disk to reconstruct
- * the parity. endio handlers trigger final reconstruction
- * when the IO is done.
- *
- * This is used both for reads from the higher layers and for
- * parity construction required to finish a rmw cycle.
- */
- static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
- {
- int bios_to_read = 0;
- struct btrfs_bio *bbio = rbio->bbio;
- struct bio_list bio_list;
- int ret;
- int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
- int pagenr;
- int stripe;
- struct bio *bio;
- bio_list_init(&bio_list);
- ret = alloc_rbio_pages(rbio);
- if (ret)
- goto cleanup;
- atomic_set(&rbio->bbio->error, 0);
- /*
- * read everything that hasn't failed. Thanks to the
- * stripe cache, it is possible that some or all of these
- * pages are going to be uptodate.
- */
- for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
- if (rbio->faila == stripe ||
- rbio->failb == stripe)
- continue;
- for (pagenr = 0; pagenr < nr_pages; pagenr++) {
- struct page *p;
- /*
- * the rmw code may have already read this
- * page in
- */
- p = rbio_stripe_page(rbio, stripe, pagenr);
- if (PageUptodate(p))
- continue;
- ret = rbio_add_io_page(rbio, &bio_list,
- rbio_stripe_page(rbio, stripe, pagenr),
- stripe, pagenr, rbio->stripe_len);
- if (ret < 0)
- goto cleanup;
- }
- }
- bios_to_read = bio_list_size(&bio_list);
- if (!bios_to_read) {
- /*
- * we might have no bios to read just because the pages
- * were up to date, or we might have no bios to read because
- * the devices were gone.
- */
- if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) {
- __raid_recover_end_io(rbio);
- goto out;
- } else {
- goto cleanup;
- }
- }
- /*
- * the bbio may be freed once we submit the last bio. Make sure
- * not to touch it after that
- */
- atomic_set(&bbio->stripes_pending, bios_to_read);
- while (1) {
- bio = bio_list_pop(&bio_list);
- if (!bio)
- break;
- bio->bi_private = rbio;
- bio->bi_end_io = raid_recover_end_io;
- btrfs_bio_wq_end_io(rbio->fs_info, bio,
- BTRFS_WQ_ENDIO_RAID56);
- BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
- submit_bio(READ, bio);
- }
- out:
- return 0;
- cleanup:
- if (rbio->read_rebuild)
- rbio_orig_end_io(rbio, -EIO, 0);
- return -EIO;
- }
- /*
- * the main entry point for reads from the higher layers. This
- * is really only called when the normal read path had a failure,
- * so we assume the bio they send down corresponds to a failed part
- * of the drive.
- */
- int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
- struct btrfs_bio *bbio, u64 *raid_map,
- u64 stripe_len, int mirror_num)
- {
- struct btrfs_raid_bio *rbio;
- int ret;
- rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
- if (IS_ERR(rbio)) {
- return PTR_ERR(rbio);
- }
- rbio->read_rebuild = 1;
- bio_list_add(&rbio->bio_list, bio);
- rbio->bio_list_bytes = bio->bi_size;
- rbio->faila = find_logical_bio_stripe(rbio, bio);
- if (rbio->faila == -1) {
- BUG();
- kfree(rbio);
- return -EIO;
- }
- /*
- * reconstruct from the q stripe if they are
- * asking for mirror 3
- */
- if (mirror_num == 3)
- rbio->failb = bbio->num_stripes - 2;
- ret = lock_stripe_add(rbio);
- /*
- * __raid56_parity_recover will end the bio with
- * any errors it hits. We don't want to return
- * its error value up the stack because our caller
- * will end up calling bio_endio with any nonzero
- * return
- */
- if (ret == 0)
- __raid56_parity_recover(rbio);
- /*
- * our rbio has been added to the list of
- * rbios that will be handled after the
- * currently lock owner is done
- */
- return 0;
- }
- static void rmw_work(struct btrfs_work *work)
- {
- struct btrfs_raid_bio *rbio;
- rbio = container_of(work, struct btrfs_raid_bio, work);
- raid56_rmw_stripe(rbio);
- }
- static void read_rebuild_work(struct btrfs_work *work)
- {
- struct btrfs_raid_bio *rbio;
- rbio = container_of(work, struct btrfs_raid_bio, work);
- __raid56_parity_recover(rbio);
- }
|