xmit.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  109. {
  110. struct ath_txq *txq = tid->ac->txq;
  111. WARN_ON(!tid->paused);
  112. ath_txq_lock(sc, txq);
  113. tid->paused = false;
  114. if (skb_queue_empty(&tid->buf_q))
  115. goto unlock;
  116. ath_tx_queue_tid(txq, tid);
  117. ath_txq_schedule(sc, txq);
  118. unlock:
  119. ath_txq_unlock_complete(sc, txq);
  120. }
  121. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  122. {
  123. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  124. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  125. sizeof(tx_info->rate_driver_data));
  126. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  127. }
  128. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  129. {
  130. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  131. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  132. }
  133. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  134. {
  135. struct ath_txq *txq = tid->ac->txq;
  136. struct sk_buff *skb;
  137. struct ath_buf *bf;
  138. struct list_head bf_head;
  139. struct ath_tx_status ts;
  140. struct ath_frame_info *fi;
  141. bool sendbar = false;
  142. INIT_LIST_HEAD(&bf_head);
  143. memset(&ts, 0, sizeof(ts));
  144. while ((skb = __skb_dequeue(&tid->buf_q))) {
  145. fi = get_frame_info(skb);
  146. bf = fi->bf;
  147. if (!bf) {
  148. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  149. if (!bf) {
  150. ieee80211_free_txskb(sc->hw, skb);
  151. continue;
  152. }
  153. }
  154. if (fi->retries) {
  155. list_add_tail(&bf->list, &bf_head);
  156. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  157. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  158. sendbar = true;
  159. } else {
  160. ath_tx_send_normal(sc, txq, NULL, skb);
  161. }
  162. }
  163. if (tid->baw_head == tid->baw_tail) {
  164. tid->state &= ~AGGR_ADDBA_COMPLETE;
  165. tid->state &= ~AGGR_CLEANUP;
  166. }
  167. if (sendbar) {
  168. ath_txq_unlock(sc, txq);
  169. ath_send_bar(tid, tid->seq_start);
  170. ath_txq_lock(sc, txq);
  171. }
  172. }
  173. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  174. int seqno)
  175. {
  176. int index, cindex;
  177. index = ATH_BA_INDEX(tid->seq_start, seqno);
  178. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  179. __clear_bit(cindex, tid->tx_buf);
  180. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  181. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  182. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  183. if (tid->bar_index >= 0)
  184. tid->bar_index--;
  185. }
  186. }
  187. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  188. u16 seqno)
  189. {
  190. int index, cindex;
  191. index = ATH_BA_INDEX(tid->seq_start, seqno);
  192. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  193. __set_bit(cindex, tid->tx_buf);
  194. if (index >= ((tid->baw_tail - tid->baw_head) &
  195. (ATH_TID_MAX_BUFS - 1))) {
  196. tid->baw_tail = cindex;
  197. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  198. }
  199. }
  200. /*
  201. * TODO: For frame(s) that are in the retry state, we will reuse the
  202. * sequence number(s) without setting the retry bit. The
  203. * alternative is to give up on these and BAR the receiver's window
  204. * forward.
  205. */
  206. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  207. struct ath_atx_tid *tid)
  208. {
  209. struct sk_buff *skb;
  210. struct ath_buf *bf;
  211. struct list_head bf_head;
  212. struct ath_tx_status ts;
  213. struct ath_frame_info *fi;
  214. memset(&ts, 0, sizeof(ts));
  215. INIT_LIST_HEAD(&bf_head);
  216. while ((skb = __skb_dequeue(&tid->buf_q))) {
  217. fi = get_frame_info(skb);
  218. bf = fi->bf;
  219. if (!bf) {
  220. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  221. continue;
  222. }
  223. list_add_tail(&bf->list, &bf_head);
  224. if (fi->retries)
  225. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  226. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  227. }
  228. tid->seq_next = tid->seq_start;
  229. tid->baw_tail = tid->baw_head;
  230. tid->bar_index = -1;
  231. }
  232. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  233. struct sk_buff *skb, int count)
  234. {
  235. struct ath_frame_info *fi = get_frame_info(skb);
  236. struct ath_buf *bf = fi->bf;
  237. struct ieee80211_hdr *hdr;
  238. int prev = fi->retries;
  239. TX_STAT_INC(txq->axq_qnum, a_retries);
  240. fi->retries += count;
  241. if (prev > 0)
  242. return;
  243. hdr = (struct ieee80211_hdr *)skb->data;
  244. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  245. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  246. sizeof(*hdr), DMA_TO_DEVICE);
  247. }
  248. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  249. {
  250. struct ath_buf *bf = NULL;
  251. spin_lock_bh(&sc->tx.txbuflock);
  252. if (unlikely(list_empty(&sc->tx.txbuf))) {
  253. spin_unlock_bh(&sc->tx.txbuflock);
  254. return NULL;
  255. }
  256. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  257. bf->bf_next = NULL;
  258. list_del(&bf->list);
  259. spin_unlock_bh(&sc->tx.txbuflock);
  260. return bf;
  261. }
  262. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  263. {
  264. spin_lock_bh(&sc->tx.txbuflock);
  265. list_add_tail(&bf->list, &sc->tx.txbuf);
  266. spin_unlock_bh(&sc->tx.txbuflock);
  267. }
  268. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  269. {
  270. struct ath_buf *tbf;
  271. tbf = ath_tx_get_buffer(sc);
  272. if (WARN_ON(!tbf))
  273. return NULL;
  274. ATH_TXBUF_RESET(tbf);
  275. tbf->bf_mpdu = bf->bf_mpdu;
  276. tbf->bf_buf_addr = bf->bf_buf_addr;
  277. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  278. tbf->bf_state = bf->bf_state;
  279. return tbf;
  280. }
  281. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  282. struct ath_tx_status *ts, int txok,
  283. int *nframes, int *nbad)
  284. {
  285. struct ath_frame_info *fi;
  286. u16 seq_st = 0;
  287. u32 ba[WME_BA_BMP_SIZE >> 5];
  288. int ba_index;
  289. int isaggr = 0;
  290. *nbad = 0;
  291. *nframes = 0;
  292. isaggr = bf_isaggr(bf);
  293. if (isaggr) {
  294. seq_st = ts->ts_seqnum;
  295. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  296. }
  297. while (bf) {
  298. fi = get_frame_info(bf->bf_mpdu);
  299. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  300. (*nframes)++;
  301. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  302. (*nbad)++;
  303. bf = bf->bf_next;
  304. }
  305. }
  306. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  307. struct ath_buf *bf, struct list_head *bf_q,
  308. struct ath_tx_status *ts, int txok, bool retry)
  309. {
  310. struct ath_node *an = NULL;
  311. struct sk_buff *skb;
  312. struct ieee80211_sta *sta;
  313. struct ieee80211_hw *hw = sc->hw;
  314. struct ieee80211_hdr *hdr;
  315. struct ieee80211_tx_info *tx_info;
  316. struct ath_atx_tid *tid = NULL;
  317. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  318. struct list_head bf_head;
  319. struct sk_buff_head bf_pending;
  320. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  321. u32 ba[WME_BA_BMP_SIZE >> 5];
  322. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  323. bool rc_update = true, isba;
  324. struct ieee80211_tx_rate rates[4];
  325. struct ath_frame_info *fi;
  326. int nframes;
  327. u8 tidno;
  328. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  329. int i, retries;
  330. int bar_index = -1;
  331. skb = bf->bf_mpdu;
  332. hdr = (struct ieee80211_hdr *)skb->data;
  333. tx_info = IEEE80211_SKB_CB(skb);
  334. memcpy(rates, tx_info->control.rates, sizeof(rates));
  335. retries = ts->ts_longretry + 1;
  336. for (i = 0; i < ts->ts_rateindex; i++)
  337. retries += rates[i].count;
  338. rcu_read_lock();
  339. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  340. if (!sta) {
  341. rcu_read_unlock();
  342. INIT_LIST_HEAD(&bf_head);
  343. while (bf) {
  344. bf_next = bf->bf_next;
  345. if (!bf->bf_stale || bf_next != NULL)
  346. list_move_tail(&bf->list, &bf_head);
  347. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  348. bf = bf_next;
  349. }
  350. return;
  351. }
  352. an = (struct ath_node *)sta->drv_priv;
  353. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  354. tid = ATH_AN_2_TID(an, tidno);
  355. seq_first = tid->seq_start;
  356. isba = ts->ts_flags & ATH9K_TX_BA;
  357. /*
  358. * The hardware occasionally sends a tx status for the wrong TID.
  359. * In this case, the BA status cannot be considered valid and all
  360. * subframes need to be retransmitted
  361. *
  362. * Only BlockAcks have a TID and therefore normal Acks cannot be
  363. * checked
  364. */
  365. if (isba && tidno != ts->tid)
  366. txok = false;
  367. isaggr = bf_isaggr(bf);
  368. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  369. if (isaggr && txok) {
  370. if (ts->ts_flags & ATH9K_TX_BA) {
  371. seq_st = ts->ts_seqnum;
  372. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  373. } else {
  374. /*
  375. * AR5416 can become deaf/mute when BA
  376. * issue happens. Chip needs to be reset.
  377. * But AP code may have sychronization issues
  378. * when perform internal reset in this routine.
  379. * Only enable reset in STA mode for now.
  380. */
  381. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  382. needreset = 1;
  383. }
  384. }
  385. __skb_queue_head_init(&bf_pending);
  386. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  387. while (bf) {
  388. u16 seqno = bf->bf_state.seqno;
  389. txfail = txpending = sendbar = 0;
  390. bf_next = bf->bf_next;
  391. skb = bf->bf_mpdu;
  392. tx_info = IEEE80211_SKB_CB(skb);
  393. fi = get_frame_info(skb);
  394. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  395. /* transmit completion, subframe is
  396. * acked by block ack */
  397. acked_cnt++;
  398. } else if (!isaggr && txok) {
  399. /* transmit completion */
  400. acked_cnt++;
  401. } else if ((tid->state & AGGR_CLEANUP) || !retry) {
  402. /*
  403. * cleanup in progress, just fail
  404. * the un-acked sub-frames
  405. */
  406. txfail = 1;
  407. } else if (flush) {
  408. txpending = 1;
  409. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  410. if (txok || !an->sleeping)
  411. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  412. retries);
  413. txpending = 1;
  414. } else {
  415. txfail = 1;
  416. txfail_cnt++;
  417. bar_index = max_t(int, bar_index,
  418. ATH_BA_INDEX(seq_first, seqno));
  419. }
  420. /*
  421. * Make sure the last desc is reclaimed if it
  422. * not a holding desc.
  423. */
  424. INIT_LIST_HEAD(&bf_head);
  425. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  426. bf_next != NULL || !bf_last->bf_stale)
  427. list_move_tail(&bf->list, &bf_head);
  428. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  429. /*
  430. * complete the acked-ones/xretried ones; update
  431. * block-ack window
  432. */
  433. ath_tx_update_baw(sc, tid, seqno);
  434. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  435. memcpy(tx_info->control.rates, rates, sizeof(rates));
  436. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  437. rc_update = false;
  438. }
  439. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  440. !txfail);
  441. } else {
  442. /* retry the un-acked ones */
  443. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  444. bf->bf_next == NULL && bf_last->bf_stale) {
  445. struct ath_buf *tbf;
  446. tbf = ath_clone_txbuf(sc, bf_last);
  447. /*
  448. * Update tx baw and complete the
  449. * frame with failed status if we
  450. * run out of tx buf.
  451. */
  452. if (!tbf) {
  453. ath_tx_update_baw(sc, tid, seqno);
  454. ath_tx_complete_buf(sc, bf, txq,
  455. &bf_head, ts, 0);
  456. bar_index = max_t(int, bar_index,
  457. ATH_BA_INDEX(seq_first, seqno));
  458. break;
  459. }
  460. fi->bf = tbf;
  461. }
  462. /*
  463. * Put this buffer to the temporary pending
  464. * queue to retain ordering
  465. */
  466. __skb_queue_tail(&bf_pending, skb);
  467. }
  468. bf = bf_next;
  469. }
  470. /* prepend un-acked frames to the beginning of the pending frame queue */
  471. if (!skb_queue_empty(&bf_pending)) {
  472. if (an->sleeping)
  473. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  474. skb_queue_splice(&bf_pending, &tid->buf_q);
  475. if (!an->sleeping) {
  476. ath_tx_queue_tid(txq, tid);
  477. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  478. tid->ac->clear_ps_filter = true;
  479. }
  480. }
  481. if (bar_index >= 0) {
  482. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  483. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  484. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  485. ath_txq_unlock(sc, txq);
  486. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  487. ath_txq_lock(sc, txq);
  488. }
  489. if (tid->state & AGGR_CLEANUP)
  490. ath_tx_flush_tid(sc, tid);
  491. rcu_read_unlock();
  492. if (needreset)
  493. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  494. }
  495. static bool ath_lookup_legacy(struct ath_buf *bf)
  496. {
  497. struct sk_buff *skb;
  498. struct ieee80211_tx_info *tx_info;
  499. struct ieee80211_tx_rate *rates;
  500. int i;
  501. skb = bf->bf_mpdu;
  502. tx_info = IEEE80211_SKB_CB(skb);
  503. rates = tx_info->control.rates;
  504. for (i = 0; i < 4; i++) {
  505. if (!rates[i].count || rates[i].idx < 0)
  506. break;
  507. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  508. return true;
  509. }
  510. return false;
  511. }
  512. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  513. struct ath_atx_tid *tid)
  514. {
  515. struct sk_buff *skb;
  516. struct ieee80211_tx_info *tx_info;
  517. struct ieee80211_tx_rate *rates;
  518. u32 max_4ms_framelen, frmlen;
  519. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  520. int q = tid->ac->txq->mac80211_qnum;
  521. int i;
  522. skb = bf->bf_mpdu;
  523. tx_info = IEEE80211_SKB_CB(skb);
  524. rates = tx_info->control.rates;
  525. /*
  526. * Find the lowest frame length among the rate series that will have a
  527. * 4ms (or TXOP limited) transmit duration.
  528. */
  529. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  530. for (i = 0; i < 4; i++) {
  531. int modeidx;
  532. if (!rates[i].count)
  533. continue;
  534. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  535. legacy = 1;
  536. break;
  537. }
  538. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  539. modeidx = MCS_HT40;
  540. else
  541. modeidx = MCS_HT20;
  542. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  543. modeidx++;
  544. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  545. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  546. }
  547. /*
  548. * limit aggregate size by the minimum rate if rate selected is
  549. * not a probe rate, if rate selected is a probe rate then
  550. * avoid aggregation of this packet.
  551. */
  552. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  553. return 0;
  554. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  555. /*
  556. * Override the default aggregation limit for BTCOEX.
  557. */
  558. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  559. if (bt_aggr_limit)
  560. aggr_limit = bt_aggr_limit;
  561. /*
  562. * h/w can accept aggregates up to 16 bit lengths (65535).
  563. * The IE, however can hold up to 65536, which shows up here
  564. * as zero. Ignore 65536 since we are constrained by hw.
  565. */
  566. if (tid->an->maxampdu)
  567. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  568. return aggr_limit;
  569. }
  570. /*
  571. * Returns the number of delimiters to be added to
  572. * meet the minimum required mpdudensity.
  573. */
  574. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  575. struct ath_buf *bf, u16 frmlen,
  576. bool first_subfrm)
  577. {
  578. #define FIRST_DESC_NDELIMS 60
  579. struct sk_buff *skb = bf->bf_mpdu;
  580. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  581. u32 nsymbits, nsymbols;
  582. u16 minlen;
  583. u8 flags, rix;
  584. int width, streams, half_gi, ndelim, mindelim;
  585. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  586. /* Select standard number of delimiters based on frame length alone */
  587. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  588. /*
  589. * If encryption enabled, hardware requires some more padding between
  590. * subframes.
  591. * TODO - this could be improved to be dependent on the rate.
  592. * The hardware can keep up at lower rates, but not higher rates
  593. */
  594. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  595. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  596. ndelim += ATH_AGGR_ENCRYPTDELIM;
  597. /*
  598. * Add delimiter when using RTS/CTS with aggregation
  599. * and non enterprise AR9003 card
  600. */
  601. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  602. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  603. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  604. /*
  605. * Convert desired mpdu density from microeconds to bytes based
  606. * on highest rate in rate series (i.e. first rate) to determine
  607. * required minimum length for subframe. Take into account
  608. * whether high rate is 20 or 40Mhz and half or full GI.
  609. *
  610. * If there is no mpdu density restriction, no further calculation
  611. * is needed.
  612. */
  613. if (tid->an->mpdudensity == 0)
  614. return ndelim;
  615. rix = tx_info->control.rates[0].idx;
  616. flags = tx_info->control.rates[0].flags;
  617. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  618. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  619. if (half_gi)
  620. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  621. else
  622. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  623. if (nsymbols == 0)
  624. nsymbols = 1;
  625. streams = HT_RC_2_STREAMS(rix);
  626. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  627. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  628. if (frmlen < minlen) {
  629. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  630. ndelim = max(mindelim, ndelim);
  631. }
  632. return ndelim;
  633. }
  634. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  635. struct ath_txq *txq,
  636. struct ath_atx_tid *tid,
  637. struct list_head *bf_q,
  638. int *aggr_len)
  639. {
  640. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  641. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  642. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  643. u16 aggr_limit = 0, al = 0, bpad = 0,
  644. al_delta, h_baw = tid->baw_size / 2;
  645. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  646. struct ieee80211_tx_info *tx_info;
  647. struct ath_frame_info *fi;
  648. struct sk_buff *skb;
  649. u16 seqno;
  650. do {
  651. skb = skb_peek(&tid->buf_q);
  652. fi = get_frame_info(skb);
  653. bf = fi->bf;
  654. if (!fi->bf)
  655. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  656. if (!bf) {
  657. __skb_unlink(skb, &tid->buf_q);
  658. ieee80211_free_txskb(sc->hw, skb);
  659. continue;
  660. }
  661. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  662. seqno = bf->bf_state.seqno;
  663. /* do not step over block-ack window */
  664. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  665. status = ATH_AGGR_BAW_CLOSED;
  666. break;
  667. }
  668. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  669. struct ath_tx_status ts = {};
  670. struct list_head bf_head;
  671. INIT_LIST_HEAD(&bf_head);
  672. list_add(&bf->list, &bf_head);
  673. __skb_unlink(skb, &tid->buf_q);
  674. ath_tx_update_baw(sc, tid, seqno);
  675. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  676. continue;
  677. }
  678. if (!bf_first)
  679. bf_first = bf;
  680. if (!rl) {
  681. aggr_limit = ath_lookup_rate(sc, bf, tid);
  682. rl = 1;
  683. }
  684. /* do not exceed aggregation limit */
  685. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  686. if (nframes &&
  687. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  688. ath_lookup_legacy(bf))) {
  689. status = ATH_AGGR_LIMITED;
  690. break;
  691. }
  692. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  693. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  694. break;
  695. /* do not exceed subframe limit */
  696. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  697. status = ATH_AGGR_LIMITED;
  698. break;
  699. }
  700. /* add padding for previous frame to aggregation length */
  701. al += bpad + al_delta;
  702. /*
  703. * Get the delimiters needed to meet the MPDU
  704. * density for this node.
  705. */
  706. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  707. !nframes);
  708. bpad = PADBYTES(al_delta) + (ndelim << 2);
  709. nframes++;
  710. bf->bf_next = NULL;
  711. /* link buffers of this frame to the aggregate */
  712. if (!fi->retries)
  713. ath_tx_addto_baw(sc, tid, seqno);
  714. bf->bf_state.ndelim = ndelim;
  715. __skb_unlink(skb, &tid->buf_q);
  716. list_add_tail(&bf->list, bf_q);
  717. if (bf_prev)
  718. bf_prev->bf_next = bf;
  719. bf_prev = bf;
  720. } while (!skb_queue_empty(&tid->buf_q));
  721. *aggr_len = al;
  722. return status;
  723. #undef PADBYTES
  724. }
  725. /*
  726. * rix - rate index
  727. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  728. * width - 0 for 20 MHz, 1 for 40 MHz
  729. * half_gi - to use 4us v/s 3.6 us for symbol time
  730. */
  731. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  732. int width, int half_gi, bool shortPreamble)
  733. {
  734. u32 nbits, nsymbits, duration, nsymbols;
  735. int streams;
  736. /* find number of symbols: PLCP + data */
  737. streams = HT_RC_2_STREAMS(rix);
  738. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  739. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  740. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  741. if (!half_gi)
  742. duration = SYMBOL_TIME(nsymbols);
  743. else
  744. duration = SYMBOL_TIME_HALFGI(nsymbols);
  745. /* addup duration for legacy/ht training and signal fields */
  746. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  747. return duration;
  748. }
  749. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  750. {
  751. int streams = HT_RC_2_STREAMS(mcs);
  752. int symbols, bits;
  753. int bytes = 0;
  754. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  755. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  756. bits -= OFDM_PLCP_BITS;
  757. bytes = bits / 8;
  758. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  759. if (bytes > 65532)
  760. bytes = 65532;
  761. return bytes;
  762. }
  763. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  764. {
  765. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  766. int mcs;
  767. /* 4ms is the default (and maximum) duration */
  768. if (!txop || txop > 4096)
  769. txop = 4096;
  770. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  771. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  772. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  773. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  774. for (mcs = 0; mcs < 32; mcs++) {
  775. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  776. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  777. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  778. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  779. }
  780. }
  781. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  782. struct ath_tx_info *info, int len)
  783. {
  784. struct ath_hw *ah = sc->sc_ah;
  785. struct sk_buff *skb;
  786. struct ieee80211_tx_info *tx_info;
  787. struct ieee80211_tx_rate *rates;
  788. const struct ieee80211_rate *rate;
  789. struct ieee80211_hdr *hdr;
  790. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  791. int i;
  792. u8 rix = 0;
  793. skb = bf->bf_mpdu;
  794. tx_info = IEEE80211_SKB_CB(skb);
  795. rates = tx_info->control.rates;
  796. hdr = (struct ieee80211_hdr *)skb->data;
  797. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  798. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  799. info->rtscts_rate = fi->rtscts_rate;
  800. for (i = 0; i < 4; i++) {
  801. bool is_40, is_sgi, is_sp;
  802. int phy;
  803. if (!rates[i].count || (rates[i].idx < 0))
  804. continue;
  805. rix = rates[i].idx;
  806. info->rates[i].Tries = rates[i].count;
  807. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  808. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  809. info->flags |= ATH9K_TXDESC_RTSENA;
  810. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  811. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  812. info->flags |= ATH9K_TXDESC_CTSENA;
  813. }
  814. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  815. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  816. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  817. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  818. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  819. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  820. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  821. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  822. /* MCS rates */
  823. info->rates[i].Rate = rix | 0x80;
  824. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  825. ah->txchainmask, info->rates[i].Rate);
  826. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  827. is_40, is_sgi, is_sp);
  828. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  829. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  830. continue;
  831. }
  832. /* legacy rates */
  833. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  834. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  835. !(rate->flags & IEEE80211_RATE_ERP_G))
  836. phy = WLAN_RC_PHY_CCK;
  837. else
  838. phy = WLAN_RC_PHY_OFDM;
  839. info->rates[i].Rate = rate->hw_value;
  840. if (rate->hw_value_short) {
  841. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  842. info->rates[i].Rate |= rate->hw_value_short;
  843. } else {
  844. is_sp = false;
  845. }
  846. if (bf->bf_state.bfs_paprd)
  847. info->rates[i].ChSel = ah->txchainmask;
  848. else
  849. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  850. ah->txchainmask, info->rates[i].Rate);
  851. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  852. phy, rate->bitrate * 100, len, rix, is_sp);
  853. }
  854. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  855. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  856. info->flags &= ~ATH9K_TXDESC_RTSENA;
  857. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  858. if (info->flags & ATH9K_TXDESC_RTSENA)
  859. info->flags &= ~ATH9K_TXDESC_CTSENA;
  860. }
  861. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  862. {
  863. struct ieee80211_hdr *hdr;
  864. enum ath9k_pkt_type htype;
  865. __le16 fc;
  866. hdr = (struct ieee80211_hdr *)skb->data;
  867. fc = hdr->frame_control;
  868. if (ieee80211_is_beacon(fc))
  869. htype = ATH9K_PKT_TYPE_BEACON;
  870. else if (ieee80211_is_probe_resp(fc))
  871. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  872. else if (ieee80211_is_atim(fc))
  873. htype = ATH9K_PKT_TYPE_ATIM;
  874. else if (ieee80211_is_pspoll(fc))
  875. htype = ATH9K_PKT_TYPE_PSPOLL;
  876. else
  877. htype = ATH9K_PKT_TYPE_NORMAL;
  878. return htype;
  879. }
  880. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  881. struct ath_txq *txq, int len)
  882. {
  883. struct ath_hw *ah = sc->sc_ah;
  884. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  885. struct ath_buf *bf_first = bf;
  886. struct ath_tx_info info;
  887. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  888. memset(&info, 0, sizeof(info));
  889. info.is_first = true;
  890. info.is_last = true;
  891. info.txpower = MAX_RATE_POWER;
  892. info.qcu = txq->axq_qnum;
  893. info.flags = ATH9K_TXDESC_INTREQ;
  894. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  895. info.flags |= ATH9K_TXDESC_NOACK;
  896. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  897. info.flags |= ATH9K_TXDESC_LDPC;
  898. ath_buf_set_rate(sc, bf, &info, len);
  899. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  900. info.flags |= ATH9K_TXDESC_CLRDMASK;
  901. if (bf->bf_state.bfs_paprd)
  902. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  903. while (bf) {
  904. struct sk_buff *skb = bf->bf_mpdu;
  905. struct ath_frame_info *fi = get_frame_info(skb);
  906. info.type = get_hw_packet_type(skb);
  907. if (bf->bf_next)
  908. info.link = bf->bf_next->bf_daddr;
  909. else
  910. info.link = 0;
  911. info.buf_addr[0] = bf->bf_buf_addr;
  912. info.buf_len[0] = skb->len;
  913. info.pkt_len = fi->framelen;
  914. info.keyix = fi->keyix;
  915. info.keytype = fi->keytype;
  916. if (aggr) {
  917. if (bf == bf_first)
  918. info.aggr = AGGR_BUF_FIRST;
  919. else if (!bf->bf_next)
  920. info.aggr = AGGR_BUF_LAST;
  921. else
  922. info.aggr = AGGR_BUF_MIDDLE;
  923. info.ndelim = bf->bf_state.ndelim;
  924. info.aggr_len = len;
  925. }
  926. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  927. bf = bf->bf_next;
  928. }
  929. }
  930. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  931. struct ath_atx_tid *tid)
  932. {
  933. struct ath_buf *bf;
  934. enum ATH_AGGR_STATUS status;
  935. struct ieee80211_tx_info *tx_info;
  936. struct list_head bf_q;
  937. int aggr_len;
  938. do {
  939. if (skb_queue_empty(&tid->buf_q))
  940. return;
  941. INIT_LIST_HEAD(&bf_q);
  942. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  943. /*
  944. * no frames picked up to be aggregated;
  945. * block-ack window is not open.
  946. */
  947. if (list_empty(&bf_q))
  948. break;
  949. bf = list_first_entry(&bf_q, struct ath_buf, list);
  950. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  951. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  952. if (tid->ac->clear_ps_filter) {
  953. tid->ac->clear_ps_filter = false;
  954. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  955. } else {
  956. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  957. }
  958. /* if only one frame, send as non-aggregate */
  959. if (bf == bf->bf_lastbf) {
  960. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  961. bf->bf_state.bf_type = BUF_AMPDU;
  962. } else {
  963. TX_STAT_INC(txq->axq_qnum, a_aggr);
  964. }
  965. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  966. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  967. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  968. status != ATH_AGGR_BAW_CLOSED);
  969. }
  970. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  971. u16 tid, u16 *ssn)
  972. {
  973. struct ath_atx_tid *txtid;
  974. struct ath_node *an;
  975. u8 density;
  976. an = (struct ath_node *)sta->drv_priv;
  977. txtid = ATH_AN_2_TID(an, tid);
  978. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  979. return -EAGAIN;
  980. /* update ampdu factor/density, they may have changed. This may happen
  981. * in HT IBSS when a beacon with HT-info is received after the station
  982. * has already been added.
  983. */
  984. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  985. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  986. sta->ht_cap.ampdu_factor);
  987. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  988. an->mpdudensity = density;
  989. }
  990. txtid->state |= AGGR_ADDBA_PROGRESS;
  991. txtid->paused = true;
  992. *ssn = txtid->seq_start = txtid->seq_next;
  993. txtid->bar_index = -1;
  994. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  995. txtid->baw_head = txtid->baw_tail = 0;
  996. return 0;
  997. }
  998. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  999. {
  1000. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1001. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1002. struct ath_txq *txq = txtid->ac->txq;
  1003. if (txtid->state & AGGR_CLEANUP)
  1004. return;
  1005. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  1006. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1007. return;
  1008. }
  1009. ath_txq_lock(sc, txq);
  1010. txtid->paused = true;
  1011. /*
  1012. * If frames are still being transmitted for this TID, they will be
  1013. * cleaned up during tx completion. To prevent race conditions, this
  1014. * TID can only be reused after all in-progress subframes have been
  1015. * completed.
  1016. */
  1017. if (txtid->baw_head != txtid->baw_tail)
  1018. txtid->state |= AGGR_CLEANUP;
  1019. else
  1020. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  1021. ath_tx_flush_tid(sc, txtid);
  1022. ath_txq_unlock_complete(sc, txq);
  1023. }
  1024. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1025. struct ath_node *an)
  1026. {
  1027. struct ath_atx_tid *tid;
  1028. struct ath_atx_ac *ac;
  1029. struct ath_txq *txq;
  1030. bool buffered;
  1031. int tidno;
  1032. for (tidno = 0, tid = &an->tid[tidno];
  1033. tidno < WME_NUM_TID; tidno++, tid++) {
  1034. if (!tid->sched)
  1035. continue;
  1036. ac = tid->ac;
  1037. txq = ac->txq;
  1038. ath_txq_lock(sc, txq);
  1039. buffered = !skb_queue_empty(&tid->buf_q);
  1040. tid->sched = false;
  1041. list_del(&tid->list);
  1042. if (ac->sched) {
  1043. ac->sched = false;
  1044. list_del(&ac->list);
  1045. }
  1046. ath_txq_unlock(sc, txq);
  1047. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1048. }
  1049. }
  1050. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1051. {
  1052. struct ath_atx_tid *tid;
  1053. struct ath_atx_ac *ac;
  1054. struct ath_txq *txq;
  1055. int tidno;
  1056. for (tidno = 0, tid = &an->tid[tidno];
  1057. tidno < WME_NUM_TID; tidno++, tid++) {
  1058. ac = tid->ac;
  1059. txq = ac->txq;
  1060. ath_txq_lock(sc, txq);
  1061. ac->clear_ps_filter = true;
  1062. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1063. ath_tx_queue_tid(txq, tid);
  1064. ath_txq_schedule(sc, txq);
  1065. }
  1066. ath_txq_unlock_complete(sc, txq);
  1067. }
  1068. }
  1069. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1070. {
  1071. struct ath_atx_tid *txtid;
  1072. struct ath_node *an;
  1073. an = (struct ath_node *)sta->drv_priv;
  1074. txtid = ATH_AN_2_TID(an, tid);
  1075. txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1076. txtid->state |= AGGR_ADDBA_COMPLETE;
  1077. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1078. ath_tx_resume_tid(sc, txtid);
  1079. }
  1080. /********************/
  1081. /* Queue Management */
  1082. /********************/
  1083. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  1084. struct ath_txq *txq)
  1085. {
  1086. struct ath_atx_ac *ac, *ac_tmp;
  1087. struct ath_atx_tid *tid, *tid_tmp;
  1088. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1089. list_del(&ac->list);
  1090. ac->sched = false;
  1091. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  1092. list_del(&tid->list);
  1093. tid->sched = false;
  1094. ath_tid_drain(sc, txq, tid);
  1095. }
  1096. }
  1097. }
  1098. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1099. {
  1100. struct ath_hw *ah = sc->sc_ah;
  1101. struct ath9k_tx_queue_info qi;
  1102. static const int subtype_txq_to_hwq[] = {
  1103. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1104. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1105. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1106. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1107. };
  1108. int axq_qnum, i;
  1109. memset(&qi, 0, sizeof(qi));
  1110. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1111. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1112. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1113. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1114. qi.tqi_physCompBuf = 0;
  1115. /*
  1116. * Enable interrupts only for EOL and DESC conditions.
  1117. * We mark tx descriptors to receive a DESC interrupt
  1118. * when a tx queue gets deep; otherwise waiting for the
  1119. * EOL to reap descriptors. Note that this is done to
  1120. * reduce interrupt load and this only defers reaping
  1121. * descriptors, never transmitting frames. Aside from
  1122. * reducing interrupts this also permits more concurrency.
  1123. * The only potential downside is if the tx queue backs
  1124. * up in which case the top half of the kernel may backup
  1125. * due to a lack of tx descriptors.
  1126. *
  1127. * The UAPSD queue is an exception, since we take a desc-
  1128. * based intr on the EOSP frames.
  1129. */
  1130. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1131. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1132. } else {
  1133. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1134. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1135. else
  1136. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1137. TXQ_FLAG_TXDESCINT_ENABLE;
  1138. }
  1139. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1140. if (axq_qnum == -1) {
  1141. /*
  1142. * NB: don't print a message, this happens
  1143. * normally on parts with too few tx queues
  1144. */
  1145. return NULL;
  1146. }
  1147. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1148. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1149. txq->axq_qnum = axq_qnum;
  1150. txq->mac80211_qnum = -1;
  1151. txq->axq_link = NULL;
  1152. __skb_queue_head_init(&txq->complete_q);
  1153. INIT_LIST_HEAD(&txq->axq_q);
  1154. INIT_LIST_HEAD(&txq->axq_acq);
  1155. spin_lock_init(&txq->axq_lock);
  1156. txq->axq_depth = 0;
  1157. txq->axq_ampdu_depth = 0;
  1158. txq->axq_tx_inprogress = false;
  1159. sc->tx.txqsetup |= 1<<axq_qnum;
  1160. txq->txq_headidx = txq->txq_tailidx = 0;
  1161. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1162. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1163. }
  1164. return &sc->tx.txq[axq_qnum];
  1165. }
  1166. int ath_txq_update(struct ath_softc *sc, int qnum,
  1167. struct ath9k_tx_queue_info *qinfo)
  1168. {
  1169. struct ath_hw *ah = sc->sc_ah;
  1170. int error = 0;
  1171. struct ath9k_tx_queue_info qi;
  1172. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1173. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1174. qi.tqi_aifs = qinfo->tqi_aifs;
  1175. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1176. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1177. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1178. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1179. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1180. ath_err(ath9k_hw_common(sc->sc_ah),
  1181. "Unable to update hardware queue %u!\n", qnum);
  1182. error = -EIO;
  1183. } else {
  1184. ath9k_hw_resettxqueue(ah, qnum);
  1185. }
  1186. return error;
  1187. }
  1188. int ath_cabq_update(struct ath_softc *sc)
  1189. {
  1190. struct ath9k_tx_queue_info qi;
  1191. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1192. int qnum = sc->beacon.cabq->axq_qnum;
  1193. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1194. /*
  1195. * Ensure the readytime % is within the bounds.
  1196. */
  1197. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1198. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1199. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1200. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1201. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1202. sc->config.cabqReadytime) / 100;
  1203. ath_txq_update(sc, qnum, &qi);
  1204. return 0;
  1205. }
  1206. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1207. {
  1208. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1209. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1210. }
  1211. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1212. struct list_head *list, bool retry_tx)
  1213. {
  1214. struct ath_buf *bf, *lastbf;
  1215. struct list_head bf_head;
  1216. struct ath_tx_status ts;
  1217. memset(&ts, 0, sizeof(ts));
  1218. ts.ts_status = ATH9K_TX_FLUSH;
  1219. INIT_LIST_HEAD(&bf_head);
  1220. while (!list_empty(list)) {
  1221. bf = list_first_entry(list, struct ath_buf, list);
  1222. if (bf->bf_stale) {
  1223. list_del(&bf->list);
  1224. ath_tx_return_buffer(sc, bf);
  1225. continue;
  1226. }
  1227. lastbf = bf->bf_lastbf;
  1228. list_cut_position(&bf_head, list, &lastbf->list);
  1229. txq->axq_depth--;
  1230. if (bf_is_ampdu_not_probing(bf))
  1231. txq->axq_ampdu_depth--;
  1232. if (bf_isampdu(bf))
  1233. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1234. retry_tx);
  1235. else
  1236. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  1237. }
  1238. }
  1239. /*
  1240. * Drain a given TX queue (could be Beacon or Data)
  1241. *
  1242. * This assumes output has been stopped and
  1243. * we do not need to block ath_tx_tasklet.
  1244. */
  1245. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1246. {
  1247. ath_txq_lock(sc, txq);
  1248. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1249. int idx = txq->txq_tailidx;
  1250. while (!list_empty(&txq->txq_fifo[idx])) {
  1251. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1252. retry_tx);
  1253. INCR(idx, ATH_TXFIFO_DEPTH);
  1254. }
  1255. txq->txq_tailidx = idx;
  1256. }
  1257. txq->axq_link = NULL;
  1258. txq->axq_tx_inprogress = false;
  1259. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1260. /* flush any pending frames if aggregation is enabled */
  1261. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
  1262. ath_txq_drain_pending_buffers(sc, txq);
  1263. ath_txq_unlock_complete(sc, txq);
  1264. }
  1265. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1266. {
  1267. struct ath_hw *ah = sc->sc_ah;
  1268. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1269. struct ath_txq *txq;
  1270. int i;
  1271. u32 npend = 0;
  1272. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1273. return true;
  1274. ath9k_hw_abort_tx_dma(ah);
  1275. /* Check if any queue remains active */
  1276. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1277. if (!ATH_TXQ_SETUP(sc, i))
  1278. continue;
  1279. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1280. npend |= BIT(i);
  1281. }
  1282. if (npend)
  1283. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1284. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1285. if (!ATH_TXQ_SETUP(sc, i))
  1286. continue;
  1287. /*
  1288. * The caller will resume queues with ieee80211_wake_queues.
  1289. * Mark the queue as not stopped to prevent ath_tx_complete
  1290. * from waking the queue too early.
  1291. */
  1292. txq = &sc->tx.txq[i];
  1293. txq->stopped = false;
  1294. ath_draintxq(sc, txq, retry_tx);
  1295. }
  1296. return !npend;
  1297. }
  1298. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1299. {
  1300. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1301. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1302. }
  1303. /* For each axq_acq entry, for each tid, try to schedule packets
  1304. * for transmit until ampdu_depth has reached min Q depth.
  1305. */
  1306. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1307. {
  1308. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1309. struct ath_atx_tid *tid, *last_tid;
  1310. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1311. list_empty(&txq->axq_acq) ||
  1312. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1313. return;
  1314. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1315. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1316. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1317. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1318. list_del(&ac->list);
  1319. ac->sched = false;
  1320. while (!list_empty(&ac->tid_q)) {
  1321. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1322. list);
  1323. list_del(&tid->list);
  1324. tid->sched = false;
  1325. if (tid->paused)
  1326. continue;
  1327. ath_tx_sched_aggr(sc, txq, tid);
  1328. /*
  1329. * add tid to round-robin queue if more frames
  1330. * are pending for the tid
  1331. */
  1332. if (!skb_queue_empty(&tid->buf_q))
  1333. ath_tx_queue_tid(txq, tid);
  1334. if (tid == last_tid ||
  1335. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1336. break;
  1337. }
  1338. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1339. ac->sched = true;
  1340. list_add_tail(&ac->list, &txq->axq_acq);
  1341. }
  1342. if (ac == last_ac ||
  1343. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1344. return;
  1345. }
  1346. }
  1347. /***********/
  1348. /* TX, DMA */
  1349. /***********/
  1350. /*
  1351. * Insert a chain of ath_buf (descriptors) on a txq and
  1352. * assume the descriptors are already chained together by caller.
  1353. */
  1354. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1355. struct list_head *head, bool internal)
  1356. {
  1357. struct ath_hw *ah = sc->sc_ah;
  1358. struct ath_common *common = ath9k_hw_common(ah);
  1359. struct ath_buf *bf, *bf_last;
  1360. bool puttxbuf = false;
  1361. bool edma;
  1362. /*
  1363. * Insert the frame on the outbound list and
  1364. * pass it on to the hardware.
  1365. */
  1366. if (list_empty(head))
  1367. return;
  1368. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1369. bf = list_first_entry(head, struct ath_buf, list);
  1370. bf_last = list_entry(head->prev, struct ath_buf, list);
  1371. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1372. txq->axq_qnum, txq->axq_depth);
  1373. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1374. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1375. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1376. puttxbuf = true;
  1377. } else {
  1378. list_splice_tail_init(head, &txq->axq_q);
  1379. if (txq->axq_link) {
  1380. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1381. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1382. txq->axq_qnum, txq->axq_link,
  1383. ito64(bf->bf_daddr), bf->bf_desc);
  1384. } else if (!edma)
  1385. puttxbuf = true;
  1386. txq->axq_link = bf_last->bf_desc;
  1387. }
  1388. if (puttxbuf) {
  1389. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1390. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1391. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1392. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1393. }
  1394. if (!edma) {
  1395. TX_STAT_INC(txq->axq_qnum, txstart);
  1396. ath9k_hw_txstart(ah, txq->axq_qnum);
  1397. }
  1398. if (!internal) {
  1399. txq->axq_depth++;
  1400. if (bf_is_ampdu_not_probing(bf))
  1401. txq->axq_ampdu_depth++;
  1402. }
  1403. }
  1404. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1405. struct sk_buff *skb, struct ath_tx_control *txctl)
  1406. {
  1407. struct ath_frame_info *fi = get_frame_info(skb);
  1408. struct list_head bf_head;
  1409. struct ath_buf *bf;
  1410. /*
  1411. * Do not queue to h/w when any of the following conditions is true:
  1412. * - there are pending frames in software queue
  1413. * - the TID is currently paused for ADDBA/BAR request
  1414. * - seqno is not within block-ack window
  1415. * - h/w queue depth exceeds low water mark
  1416. */
  1417. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1418. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1419. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1420. /*
  1421. * Add this frame to software queue for scheduling later
  1422. * for aggregation.
  1423. */
  1424. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1425. __skb_queue_tail(&tid->buf_q, skb);
  1426. if (!txctl->an || !txctl->an->sleeping)
  1427. ath_tx_queue_tid(txctl->txq, tid);
  1428. return;
  1429. }
  1430. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1431. if (!bf) {
  1432. ieee80211_free_txskb(sc->hw, skb);
  1433. return;
  1434. }
  1435. bf->bf_state.bf_type = BUF_AMPDU;
  1436. INIT_LIST_HEAD(&bf_head);
  1437. list_add(&bf->list, &bf_head);
  1438. /* Add sub-frame to BAW */
  1439. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1440. /* Queue to h/w without aggregation */
  1441. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1442. bf->bf_lastbf = bf;
  1443. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1444. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1445. }
  1446. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1447. struct ath_atx_tid *tid, struct sk_buff *skb)
  1448. {
  1449. struct ath_frame_info *fi = get_frame_info(skb);
  1450. struct list_head bf_head;
  1451. struct ath_buf *bf;
  1452. bf = fi->bf;
  1453. INIT_LIST_HEAD(&bf_head);
  1454. list_add_tail(&bf->list, &bf_head);
  1455. bf->bf_state.bf_type = 0;
  1456. bf->bf_next = NULL;
  1457. bf->bf_lastbf = bf;
  1458. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1459. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1460. TX_STAT_INC(txq->axq_qnum, queued);
  1461. }
  1462. static void setup_frame_info(struct ieee80211_hw *hw,
  1463. struct ieee80211_sta *sta,
  1464. struct sk_buff *skb,
  1465. int framelen)
  1466. {
  1467. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1468. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1469. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1470. const struct ieee80211_rate *rate;
  1471. struct ath_frame_info *fi = get_frame_info(skb);
  1472. struct ath_node *an = NULL;
  1473. enum ath9k_key_type keytype;
  1474. bool short_preamble = false;
  1475. /*
  1476. * We check if Short Preamble is needed for the CTS rate by
  1477. * checking the BSS's global flag.
  1478. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1479. */
  1480. if (tx_info->control.vif &&
  1481. tx_info->control.vif->bss_conf.use_short_preamble)
  1482. short_preamble = true;
  1483. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1484. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1485. if (sta)
  1486. an = (struct ath_node *) sta->drv_priv;
  1487. memset(fi, 0, sizeof(*fi));
  1488. if (hw_key)
  1489. fi->keyix = hw_key->hw_key_idx;
  1490. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1491. fi->keyix = an->ps_key;
  1492. else
  1493. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1494. fi->keytype = keytype;
  1495. fi->framelen = framelen;
  1496. fi->rtscts_rate = rate->hw_value;
  1497. if (short_preamble)
  1498. fi->rtscts_rate |= rate->hw_value_short;
  1499. }
  1500. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1501. {
  1502. struct ath_hw *ah = sc->sc_ah;
  1503. struct ath9k_channel *curchan = ah->curchan;
  1504. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1505. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1506. (chainmask == 0x7) && (rate < 0x90))
  1507. return 0x3;
  1508. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1509. IS_CCK_RATE(rate))
  1510. return 0x2;
  1511. else
  1512. return chainmask;
  1513. }
  1514. /*
  1515. * Assign a descriptor (and sequence number if necessary,
  1516. * and map buffer for DMA. Frees skb on error
  1517. */
  1518. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1519. struct ath_txq *txq,
  1520. struct ath_atx_tid *tid,
  1521. struct sk_buff *skb)
  1522. {
  1523. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1524. struct ath_frame_info *fi = get_frame_info(skb);
  1525. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1526. struct ath_buf *bf;
  1527. int fragno;
  1528. u16 seqno;
  1529. bf = ath_tx_get_buffer(sc);
  1530. if (!bf) {
  1531. ath_dbg(common, XMIT, "TX buffers are full\n");
  1532. return NULL;
  1533. }
  1534. ATH_TXBUF_RESET(bf);
  1535. if (tid) {
  1536. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1537. seqno = tid->seq_next;
  1538. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1539. if (fragno)
  1540. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1541. if (!ieee80211_has_morefrags(hdr->frame_control))
  1542. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1543. bf->bf_state.seqno = seqno;
  1544. }
  1545. bf->bf_mpdu = skb;
  1546. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1547. skb->len, DMA_TO_DEVICE);
  1548. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1549. bf->bf_mpdu = NULL;
  1550. bf->bf_buf_addr = 0;
  1551. ath_err(ath9k_hw_common(sc->sc_ah),
  1552. "dma_mapping_error() on TX\n");
  1553. ath_tx_return_buffer(sc, bf);
  1554. return NULL;
  1555. }
  1556. fi->bf = bf;
  1557. return bf;
  1558. }
  1559. /* FIXME: tx power */
  1560. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1561. struct ath_tx_control *txctl)
  1562. {
  1563. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1564. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1565. struct ath_atx_tid *tid = NULL;
  1566. struct ath_buf *bf;
  1567. u8 tidno;
  1568. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
  1569. ieee80211_is_data_qos(hdr->frame_control)) {
  1570. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1571. IEEE80211_QOS_CTL_TID_MASK;
  1572. tid = ATH_AN_2_TID(txctl->an, tidno);
  1573. WARN_ON(tid->ac->txq != txctl->txq);
  1574. }
  1575. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1576. /*
  1577. * Try aggregation if it's a unicast data frame
  1578. * and the destination is HT capable.
  1579. */
  1580. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1581. } else {
  1582. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1583. if (!bf) {
  1584. if (txctl->paprd)
  1585. dev_kfree_skb_any(skb);
  1586. else
  1587. ieee80211_free_txskb(sc->hw, skb);
  1588. return;
  1589. }
  1590. bf->bf_state.bfs_paprd = txctl->paprd;
  1591. if (txctl->paprd)
  1592. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1593. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1594. }
  1595. }
  1596. /* Upon failure caller should free skb */
  1597. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1598. struct ath_tx_control *txctl)
  1599. {
  1600. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1601. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1602. struct ieee80211_sta *sta = txctl->sta;
  1603. struct ieee80211_vif *vif = info->control.vif;
  1604. struct ath_softc *sc = hw->priv;
  1605. struct ath_txq *txq = txctl->txq;
  1606. int padpos, padsize;
  1607. int frmlen = skb->len + FCS_LEN;
  1608. int q;
  1609. /* NOTE: sta can be NULL according to net/mac80211.h */
  1610. if (sta)
  1611. txctl->an = (struct ath_node *)sta->drv_priv;
  1612. if (info->control.hw_key)
  1613. frmlen += info->control.hw_key->icv_len;
  1614. /*
  1615. * As a temporary workaround, assign seq# here; this will likely need
  1616. * to be cleaned up to work better with Beacon transmission and virtual
  1617. * BSSes.
  1618. */
  1619. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1620. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1621. sc->tx.seq_no += 0x10;
  1622. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1623. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1624. }
  1625. /* Add the padding after the header if this is not already done */
  1626. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1627. padsize = padpos & 3;
  1628. if (padsize && skb->len > padpos) {
  1629. if (skb_headroom(skb) < padsize)
  1630. return -ENOMEM;
  1631. skb_push(skb, padsize);
  1632. memmove(skb->data, skb->data + padsize, padpos);
  1633. hdr = (struct ieee80211_hdr *) skb->data;
  1634. }
  1635. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1636. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1637. !ieee80211_is_data(hdr->frame_control))
  1638. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1639. setup_frame_info(hw, sta, skb, frmlen);
  1640. /*
  1641. * At this point, the vif, hw_key and sta pointers in the tx control
  1642. * info are no longer valid (overwritten by the ath_frame_info data.
  1643. */
  1644. q = skb_get_queue_mapping(skb);
  1645. ath_txq_lock(sc, txq);
  1646. if (txq == sc->tx.txq_map[q] &&
  1647. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1648. !txq->stopped) {
  1649. ieee80211_stop_queue(sc->hw, q);
  1650. txq->stopped = true;
  1651. }
  1652. ath_tx_start_dma(sc, skb, txctl);
  1653. ath_txq_unlock(sc, txq);
  1654. return 0;
  1655. }
  1656. /*****************/
  1657. /* TX Completion */
  1658. /*****************/
  1659. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1660. int tx_flags, struct ath_txq *txq)
  1661. {
  1662. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1663. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1664. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1665. int q, padpos, padsize;
  1666. unsigned long flags;
  1667. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1668. if (sc->sc_ah->caldata)
  1669. sc->sc_ah->caldata->paprd_packet_sent = true;
  1670. if (!(tx_flags & ATH_TX_ERROR))
  1671. /* Frame was ACKed */
  1672. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1673. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1674. padsize = padpos & 3;
  1675. if (padsize && skb->len>padpos+padsize) {
  1676. /*
  1677. * Remove MAC header padding before giving the frame back to
  1678. * mac80211.
  1679. */
  1680. memmove(skb->data + padsize, skb->data, padpos);
  1681. skb_pull(skb, padsize);
  1682. }
  1683. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1684. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1685. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1686. ath_dbg(common, PS,
  1687. "Going back to sleep after having received TX status (0x%lx)\n",
  1688. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1689. PS_WAIT_FOR_CAB |
  1690. PS_WAIT_FOR_PSPOLL_DATA |
  1691. PS_WAIT_FOR_TX_ACK));
  1692. }
  1693. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1694. q = skb_get_queue_mapping(skb);
  1695. if (txq == sc->tx.txq_map[q]) {
  1696. if (WARN_ON(--txq->pending_frames < 0))
  1697. txq->pending_frames = 0;
  1698. if (txq->stopped &&
  1699. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  1700. ieee80211_wake_queue(sc->hw, q);
  1701. txq->stopped = false;
  1702. }
  1703. }
  1704. __skb_queue_tail(&txq->complete_q, skb);
  1705. }
  1706. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1707. struct ath_txq *txq, struct list_head *bf_q,
  1708. struct ath_tx_status *ts, int txok)
  1709. {
  1710. struct sk_buff *skb = bf->bf_mpdu;
  1711. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1712. unsigned long flags;
  1713. int tx_flags = 0;
  1714. if (!txok)
  1715. tx_flags |= ATH_TX_ERROR;
  1716. if (ts->ts_status & ATH9K_TXERR_FILT)
  1717. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1718. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1719. bf->bf_buf_addr = 0;
  1720. if (bf->bf_state.bfs_paprd) {
  1721. if (time_after(jiffies,
  1722. bf->bf_state.bfs_paprd_timestamp +
  1723. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1724. dev_kfree_skb_any(skb);
  1725. else
  1726. complete(&sc->paprd_complete);
  1727. } else {
  1728. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1729. ath_tx_complete(sc, skb, tx_flags, txq);
  1730. }
  1731. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1732. * accidentally reference it later.
  1733. */
  1734. bf->bf_mpdu = NULL;
  1735. /*
  1736. * Return the list of ath_buf of this mpdu to free queue
  1737. */
  1738. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1739. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1740. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1741. }
  1742. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1743. struct ath_tx_status *ts, int nframes, int nbad,
  1744. int txok)
  1745. {
  1746. struct sk_buff *skb = bf->bf_mpdu;
  1747. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1748. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1749. struct ieee80211_hw *hw = sc->hw;
  1750. struct ath_hw *ah = sc->sc_ah;
  1751. u8 i, tx_rateindex;
  1752. if (txok)
  1753. tx_info->status.ack_signal = ts->ts_rssi;
  1754. tx_rateindex = ts->ts_rateindex;
  1755. WARN_ON(tx_rateindex >= hw->max_rates);
  1756. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1757. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1758. BUG_ON(nbad > nframes);
  1759. }
  1760. tx_info->status.ampdu_len = nframes;
  1761. tx_info->status.ampdu_ack_len = nframes - nbad;
  1762. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1763. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1764. /*
  1765. * If an underrun error is seen assume it as an excessive
  1766. * retry only if max frame trigger level has been reached
  1767. * (2 KB for single stream, and 4 KB for dual stream).
  1768. * Adjust the long retry as if the frame was tried
  1769. * hw->max_rate_tries times to affect how rate control updates
  1770. * PER for the failed rate.
  1771. * In case of congestion on the bus penalizing this type of
  1772. * underruns should help hardware actually transmit new frames
  1773. * successfully by eventually preferring slower rates.
  1774. * This itself should also alleviate congestion on the bus.
  1775. */
  1776. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1777. ATH9K_TX_DELIM_UNDERRUN)) &&
  1778. ieee80211_is_data(hdr->frame_control) &&
  1779. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1780. tx_info->status.rates[tx_rateindex].count =
  1781. hw->max_rate_tries;
  1782. }
  1783. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1784. tx_info->status.rates[i].count = 0;
  1785. tx_info->status.rates[i].idx = -1;
  1786. }
  1787. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1788. }
  1789. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1790. struct ath_tx_status *ts, struct ath_buf *bf,
  1791. struct list_head *bf_head)
  1792. {
  1793. int txok;
  1794. txq->axq_depth--;
  1795. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1796. txq->axq_tx_inprogress = false;
  1797. if (bf_is_ampdu_not_probing(bf))
  1798. txq->axq_ampdu_depth--;
  1799. if (!bf_isampdu(bf)) {
  1800. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  1801. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  1802. } else
  1803. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1804. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1805. ath_txq_schedule(sc, txq);
  1806. }
  1807. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1808. {
  1809. struct ath_hw *ah = sc->sc_ah;
  1810. struct ath_common *common = ath9k_hw_common(ah);
  1811. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1812. struct list_head bf_head;
  1813. struct ath_desc *ds;
  1814. struct ath_tx_status ts;
  1815. int status;
  1816. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1817. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1818. txq->axq_link);
  1819. ath_txq_lock(sc, txq);
  1820. for (;;) {
  1821. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1822. break;
  1823. if (list_empty(&txq->axq_q)) {
  1824. txq->axq_link = NULL;
  1825. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1826. ath_txq_schedule(sc, txq);
  1827. break;
  1828. }
  1829. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1830. /*
  1831. * There is a race condition that a BH gets scheduled
  1832. * after sw writes TxE and before hw re-load the last
  1833. * descriptor to get the newly chained one.
  1834. * Software must keep the last DONE descriptor as a
  1835. * holding descriptor - software does so by marking
  1836. * it with the STALE flag.
  1837. */
  1838. bf_held = NULL;
  1839. if (bf->bf_stale) {
  1840. bf_held = bf;
  1841. if (list_is_last(&bf_held->list, &txq->axq_q))
  1842. break;
  1843. bf = list_entry(bf_held->list.next, struct ath_buf,
  1844. list);
  1845. }
  1846. lastbf = bf->bf_lastbf;
  1847. ds = lastbf->bf_desc;
  1848. memset(&ts, 0, sizeof(ts));
  1849. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1850. if (status == -EINPROGRESS)
  1851. break;
  1852. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1853. /*
  1854. * Remove ath_buf's of the same transmit unit from txq,
  1855. * however leave the last descriptor back as the holding
  1856. * descriptor for hw.
  1857. */
  1858. lastbf->bf_stale = true;
  1859. INIT_LIST_HEAD(&bf_head);
  1860. if (!list_is_singular(&lastbf->list))
  1861. list_cut_position(&bf_head,
  1862. &txq->axq_q, lastbf->list.prev);
  1863. if (bf_held) {
  1864. list_del(&bf_held->list);
  1865. ath_tx_return_buffer(sc, bf_held);
  1866. }
  1867. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1868. }
  1869. ath_txq_unlock_complete(sc, txq);
  1870. }
  1871. void ath_tx_tasklet(struct ath_softc *sc)
  1872. {
  1873. struct ath_hw *ah = sc->sc_ah;
  1874. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  1875. int i;
  1876. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1877. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1878. ath_tx_processq(sc, &sc->tx.txq[i]);
  1879. }
  1880. }
  1881. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1882. {
  1883. struct ath_tx_status ts;
  1884. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1885. struct ath_hw *ah = sc->sc_ah;
  1886. struct ath_txq *txq;
  1887. struct ath_buf *bf, *lastbf;
  1888. struct list_head bf_head;
  1889. int status;
  1890. for (;;) {
  1891. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1892. break;
  1893. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1894. if (status == -EINPROGRESS)
  1895. break;
  1896. if (status == -EIO) {
  1897. ath_dbg(common, XMIT, "Error processing tx status\n");
  1898. break;
  1899. }
  1900. /* Process beacon completions separately */
  1901. if (ts.qid == sc->beacon.beaconq) {
  1902. sc->beacon.tx_processed = true;
  1903. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  1904. continue;
  1905. }
  1906. txq = &sc->tx.txq[ts.qid];
  1907. ath_txq_lock(sc, txq);
  1908. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1909. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1910. ath_txq_unlock(sc, txq);
  1911. return;
  1912. }
  1913. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1914. struct ath_buf, list);
  1915. lastbf = bf->bf_lastbf;
  1916. INIT_LIST_HEAD(&bf_head);
  1917. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1918. &lastbf->list);
  1919. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1920. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1921. if (!list_empty(&txq->axq_q)) {
  1922. struct list_head bf_q;
  1923. INIT_LIST_HEAD(&bf_q);
  1924. txq->axq_link = NULL;
  1925. list_splice_tail_init(&txq->axq_q, &bf_q);
  1926. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1927. }
  1928. }
  1929. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1930. ath_txq_unlock_complete(sc, txq);
  1931. }
  1932. }
  1933. /*****************/
  1934. /* Init, Cleanup */
  1935. /*****************/
  1936. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1937. {
  1938. struct ath_descdma *dd = &sc->txsdma;
  1939. u8 txs_len = sc->sc_ah->caps.txs_len;
  1940. dd->dd_desc_len = size * txs_len;
  1941. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1942. &dd->dd_desc_paddr, GFP_KERNEL);
  1943. if (!dd->dd_desc)
  1944. return -ENOMEM;
  1945. return 0;
  1946. }
  1947. static int ath_tx_edma_init(struct ath_softc *sc)
  1948. {
  1949. int err;
  1950. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1951. if (!err)
  1952. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1953. sc->txsdma.dd_desc_paddr,
  1954. ATH_TXSTATUS_RING_SIZE);
  1955. return err;
  1956. }
  1957. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1958. {
  1959. struct ath_descdma *dd = &sc->txsdma;
  1960. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1961. dd->dd_desc_paddr);
  1962. }
  1963. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1964. {
  1965. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1966. int error = 0;
  1967. spin_lock_init(&sc->tx.txbuflock);
  1968. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1969. "tx", nbufs, 1, 1);
  1970. if (error != 0) {
  1971. ath_err(common,
  1972. "Failed to allocate tx descriptors: %d\n", error);
  1973. goto err;
  1974. }
  1975. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1976. "beacon", ATH_BCBUF, 1, 1);
  1977. if (error != 0) {
  1978. ath_err(common,
  1979. "Failed to allocate beacon descriptors: %d\n", error);
  1980. goto err;
  1981. }
  1982. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1983. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1984. error = ath_tx_edma_init(sc);
  1985. if (error)
  1986. goto err;
  1987. }
  1988. err:
  1989. if (error != 0)
  1990. ath_tx_cleanup(sc);
  1991. return error;
  1992. }
  1993. void ath_tx_cleanup(struct ath_softc *sc)
  1994. {
  1995. if (sc->beacon.bdma.dd_desc_len != 0)
  1996. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1997. if (sc->tx.txdma.dd_desc_len != 0)
  1998. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1999. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  2000. ath_tx_edma_cleanup(sc);
  2001. }
  2002. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  2003. {
  2004. struct ath_atx_tid *tid;
  2005. struct ath_atx_ac *ac;
  2006. int tidno, acno;
  2007. for (tidno = 0, tid = &an->tid[tidno];
  2008. tidno < WME_NUM_TID;
  2009. tidno++, tid++) {
  2010. tid->an = an;
  2011. tid->tidno = tidno;
  2012. tid->seq_start = tid->seq_next = 0;
  2013. tid->baw_size = WME_MAX_BA;
  2014. tid->baw_head = tid->baw_tail = 0;
  2015. tid->sched = false;
  2016. tid->paused = false;
  2017. tid->state &= ~AGGR_CLEANUP;
  2018. __skb_queue_head_init(&tid->buf_q);
  2019. acno = TID_TO_WME_AC(tidno);
  2020. tid->ac = &an->ac[acno];
  2021. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2022. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2023. }
  2024. for (acno = 0, ac = &an->ac[acno];
  2025. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  2026. ac->sched = false;
  2027. ac->txq = sc->tx.txq_map[acno];
  2028. INIT_LIST_HEAD(&ac->tid_q);
  2029. }
  2030. }
  2031. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2032. {
  2033. struct ath_atx_ac *ac;
  2034. struct ath_atx_tid *tid;
  2035. struct ath_txq *txq;
  2036. int tidno;
  2037. for (tidno = 0, tid = &an->tid[tidno];
  2038. tidno < WME_NUM_TID; tidno++, tid++) {
  2039. ac = tid->ac;
  2040. txq = ac->txq;
  2041. ath_txq_lock(sc, txq);
  2042. if (tid->sched) {
  2043. list_del(&tid->list);
  2044. tid->sched = false;
  2045. }
  2046. if (ac->sched) {
  2047. list_del(&ac->list);
  2048. tid->ac->sched = false;
  2049. }
  2050. ath_tid_drain(sc, txq, tid);
  2051. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2052. tid->state &= ~AGGR_CLEANUP;
  2053. ath_txq_unlock(sc, txq);
  2054. }
  2055. }