fork.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/seccomp.h>
  36. #include <linux/swap.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/futex.h>
  40. #include <linux/compat.h>
  41. #include <linux/kthread.h>
  42. #include <linux/task_io_accounting_ops.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/audit.h>
  47. #include <linux/memcontrol.h>
  48. #include <linux/ftrace.h>
  49. #include <linux/proc_fs.h>
  50. #include <linux/profile.h>
  51. #include <linux/rmap.h>
  52. #include <linux/ksm.h>
  53. #include <linux/acct.h>
  54. #include <linux/tsacct_kern.h>
  55. #include <linux/cn_proc.h>
  56. #include <linux/freezer.h>
  57. #include <linux/delayacct.h>
  58. #include <linux/taskstats_kern.h>
  59. #include <linux/random.h>
  60. #include <linux/tty.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/fs_struct.h>
  63. #include <linux/magic.h>
  64. #include <linux/perf_event.h>
  65. #include <linux/posix-timers.h>
  66. #include <linux/user-return-notifier.h>
  67. #include <linux/oom.h>
  68. #include <linux/khugepaged.h>
  69. #include <linux/signalfd.h>
  70. #include <linux/uprobes.h>
  71. #include <asm/pgtable.h>
  72. #include <asm/pgalloc.h>
  73. #include <asm/uaccess.h>
  74. #include <asm/mmu_context.h>
  75. #include <asm/cacheflush.h>
  76. #include <asm/tlbflush.h>
  77. #include <trace/events/sched.h>
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/task.h>
  80. /*
  81. * Protected counters by write_lock_irq(&tasklist_lock)
  82. */
  83. unsigned long total_forks; /* Handle normal Linux uptimes. */
  84. int nr_threads; /* The idle threads do not count.. */
  85. int max_threads; /* tunable limit on nr_threads */
  86. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  87. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  88. #ifdef CONFIG_PROVE_RCU
  89. int lockdep_tasklist_lock_is_held(void)
  90. {
  91. return lockdep_is_held(&tasklist_lock);
  92. }
  93. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  94. #endif /* #ifdef CONFIG_PROVE_RCU */
  95. int nr_processes(void)
  96. {
  97. int cpu;
  98. int total = 0;
  99. for_each_possible_cpu(cpu)
  100. total += per_cpu(process_counts, cpu);
  101. return total;
  102. }
  103. void __weak arch_release_task_struct(struct task_struct *tsk)
  104. {
  105. }
  106. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  107. static struct kmem_cache *task_struct_cachep;
  108. static inline struct task_struct *alloc_task_struct_node(int node)
  109. {
  110. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  111. }
  112. static inline void free_task_struct(struct task_struct *tsk)
  113. {
  114. kmem_cache_free(task_struct_cachep, tsk);
  115. }
  116. #endif
  117. void __weak arch_release_thread_info(struct thread_info *ti)
  118. {
  119. }
  120. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  121. /*
  122. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  123. * kmemcache based allocator.
  124. */
  125. # if THREAD_SIZE >= PAGE_SIZE
  126. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  127. int node)
  128. {
  129. struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
  130. THREAD_SIZE_ORDER);
  131. return page ? page_address(page) : NULL;
  132. }
  133. static inline void free_thread_info(struct thread_info *ti)
  134. {
  135. free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  136. }
  137. # else
  138. static struct kmem_cache *thread_info_cache;
  139. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  140. int node)
  141. {
  142. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  143. }
  144. static void free_thread_info(struct thread_info *ti)
  145. {
  146. kmem_cache_free(thread_info_cache, ti);
  147. }
  148. void thread_info_cache_init(void)
  149. {
  150. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  151. THREAD_SIZE, 0, NULL);
  152. BUG_ON(thread_info_cache == NULL);
  153. }
  154. # endif
  155. #endif
  156. /* SLAB cache for signal_struct structures (tsk->signal) */
  157. static struct kmem_cache *signal_cachep;
  158. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  159. struct kmem_cache *sighand_cachep;
  160. /* SLAB cache for files_struct structures (tsk->files) */
  161. struct kmem_cache *files_cachep;
  162. /* SLAB cache for fs_struct structures (tsk->fs) */
  163. struct kmem_cache *fs_cachep;
  164. /* SLAB cache for vm_area_struct structures */
  165. struct kmem_cache *vm_area_cachep;
  166. /* SLAB cache for mm_struct structures (tsk->mm) */
  167. static struct kmem_cache *mm_cachep;
  168. static void account_kernel_stack(struct thread_info *ti, int account)
  169. {
  170. struct zone *zone = page_zone(virt_to_page(ti));
  171. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  172. }
  173. void free_task(struct task_struct *tsk)
  174. {
  175. account_kernel_stack(tsk->stack, -1);
  176. arch_release_thread_info(tsk->stack);
  177. free_thread_info(tsk->stack);
  178. rt_mutex_debug_task_free(tsk);
  179. ftrace_graph_exit_task(tsk);
  180. put_seccomp_filter(tsk);
  181. arch_release_task_struct(tsk);
  182. free_task_struct(tsk);
  183. }
  184. EXPORT_SYMBOL(free_task);
  185. static inline void free_signal_struct(struct signal_struct *sig)
  186. {
  187. taskstats_tgid_free(sig);
  188. sched_autogroup_exit(sig);
  189. kmem_cache_free(signal_cachep, sig);
  190. }
  191. static inline void put_signal_struct(struct signal_struct *sig)
  192. {
  193. if (atomic_dec_and_test(&sig->sigcnt))
  194. free_signal_struct(sig);
  195. }
  196. void __put_task_struct(struct task_struct *tsk)
  197. {
  198. WARN_ON(!tsk->exit_state);
  199. WARN_ON(atomic_read(&tsk->usage));
  200. WARN_ON(tsk == current);
  201. security_task_free(tsk);
  202. exit_creds(tsk);
  203. delayacct_tsk_free(tsk);
  204. put_signal_struct(tsk->signal);
  205. if (!profile_handoff_task(tsk))
  206. free_task(tsk);
  207. }
  208. EXPORT_SYMBOL_GPL(__put_task_struct);
  209. void __init __weak arch_task_cache_init(void) { }
  210. void __init fork_init(unsigned long mempages)
  211. {
  212. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  213. #ifndef ARCH_MIN_TASKALIGN
  214. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  215. #endif
  216. /* create a slab on which task_structs can be allocated */
  217. task_struct_cachep =
  218. kmem_cache_create("task_struct", sizeof(struct task_struct),
  219. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  220. #endif
  221. /* do the arch specific task caches init */
  222. arch_task_cache_init();
  223. /*
  224. * The default maximum number of threads is set to a safe
  225. * value: the thread structures can take up at most half
  226. * of memory.
  227. */
  228. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  229. /*
  230. * we need to allow at least 20 threads to boot a system
  231. */
  232. if (max_threads < 20)
  233. max_threads = 20;
  234. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  235. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  236. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  237. init_task.signal->rlim[RLIMIT_NPROC];
  238. }
  239. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  240. struct task_struct *src)
  241. {
  242. *dst = *src;
  243. return 0;
  244. }
  245. static struct task_struct *dup_task_struct(struct task_struct *orig)
  246. {
  247. struct task_struct *tsk;
  248. struct thread_info *ti;
  249. unsigned long *stackend;
  250. int node = tsk_fork_get_node(orig);
  251. int err;
  252. tsk = alloc_task_struct_node(node);
  253. if (!tsk)
  254. return NULL;
  255. ti = alloc_thread_info_node(tsk, node);
  256. if (!ti)
  257. goto free_tsk;
  258. err = arch_dup_task_struct(tsk, orig);
  259. if (err)
  260. goto free_ti;
  261. tsk->stack = ti;
  262. setup_thread_stack(tsk, orig);
  263. clear_user_return_notifier(tsk);
  264. clear_tsk_need_resched(tsk);
  265. stackend = end_of_stack(tsk);
  266. *stackend = STACK_END_MAGIC; /* for overflow detection */
  267. #ifdef CONFIG_CC_STACKPROTECTOR
  268. tsk->stack_canary = get_random_int();
  269. #endif
  270. /*
  271. * One for us, one for whoever does the "release_task()" (usually
  272. * parent)
  273. */
  274. atomic_set(&tsk->usage, 2);
  275. #ifdef CONFIG_BLK_DEV_IO_TRACE
  276. tsk->btrace_seq = 0;
  277. #endif
  278. tsk->splice_pipe = NULL;
  279. tsk->task_frag.page = NULL;
  280. account_kernel_stack(ti, 1);
  281. return tsk;
  282. free_ti:
  283. free_thread_info(ti);
  284. free_tsk:
  285. free_task_struct(tsk);
  286. return NULL;
  287. }
  288. #ifdef CONFIG_MMU
  289. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  290. {
  291. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  292. struct rb_node **rb_link, *rb_parent;
  293. int retval;
  294. unsigned long charge;
  295. struct mempolicy *pol;
  296. uprobe_start_dup_mmap();
  297. down_write(&oldmm->mmap_sem);
  298. flush_cache_dup_mm(oldmm);
  299. uprobe_dup_mmap(oldmm, mm);
  300. /*
  301. * Not linked in yet - no deadlock potential:
  302. */
  303. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  304. mm->locked_vm = 0;
  305. mm->mmap = NULL;
  306. mm->mmap_cache = NULL;
  307. mm->free_area_cache = oldmm->mmap_base;
  308. mm->cached_hole_size = ~0UL;
  309. mm->map_count = 0;
  310. cpumask_clear(mm_cpumask(mm));
  311. mm->mm_rb = RB_ROOT;
  312. rb_link = &mm->mm_rb.rb_node;
  313. rb_parent = NULL;
  314. pprev = &mm->mmap;
  315. retval = ksm_fork(mm, oldmm);
  316. if (retval)
  317. goto out;
  318. retval = khugepaged_fork(mm, oldmm);
  319. if (retval)
  320. goto out;
  321. prev = NULL;
  322. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  323. struct file *file;
  324. if (mpnt->vm_flags & VM_DONTCOPY) {
  325. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  326. -vma_pages(mpnt));
  327. continue;
  328. }
  329. charge = 0;
  330. if (mpnt->vm_flags & VM_ACCOUNT) {
  331. unsigned long len = vma_pages(mpnt);
  332. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  333. goto fail_nomem;
  334. charge = len;
  335. }
  336. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  337. if (!tmp)
  338. goto fail_nomem;
  339. *tmp = *mpnt;
  340. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  341. pol = mpol_dup(vma_policy(mpnt));
  342. retval = PTR_ERR(pol);
  343. if (IS_ERR(pol))
  344. goto fail_nomem_policy;
  345. vma_set_policy(tmp, pol);
  346. tmp->vm_mm = mm;
  347. if (anon_vma_fork(tmp, mpnt))
  348. goto fail_nomem_anon_vma_fork;
  349. tmp->vm_flags &= ~VM_LOCKED;
  350. tmp->vm_next = tmp->vm_prev = NULL;
  351. file = tmp->vm_file;
  352. if (file) {
  353. struct inode *inode = file->f_path.dentry->d_inode;
  354. struct address_space *mapping = file->f_mapping;
  355. get_file(file);
  356. if (tmp->vm_flags & VM_DENYWRITE)
  357. atomic_dec(&inode->i_writecount);
  358. mutex_lock(&mapping->i_mmap_mutex);
  359. if (tmp->vm_flags & VM_SHARED)
  360. mapping->i_mmap_writable++;
  361. flush_dcache_mmap_lock(mapping);
  362. /* insert tmp into the share list, just after mpnt */
  363. if (unlikely(tmp->vm_flags & VM_NONLINEAR))
  364. vma_nonlinear_insert(tmp,
  365. &mapping->i_mmap_nonlinear);
  366. else
  367. vma_interval_tree_insert_after(tmp, mpnt,
  368. &mapping->i_mmap);
  369. flush_dcache_mmap_unlock(mapping);
  370. mutex_unlock(&mapping->i_mmap_mutex);
  371. }
  372. /*
  373. * Clear hugetlb-related page reserves for children. This only
  374. * affects MAP_PRIVATE mappings. Faults generated by the child
  375. * are not guaranteed to succeed, even if read-only
  376. */
  377. if (is_vm_hugetlb_page(tmp))
  378. reset_vma_resv_huge_pages(tmp);
  379. /*
  380. * Link in the new vma and copy the page table entries.
  381. */
  382. *pprev = tmp;
  383. pprev = &tmp->vm_next;
  384. tmp->vm_prev = prev;
  385. prev = tmp;
  386. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  387. rb_link = &tmp->vm_rb.rb_right;
  388. rb_parent = &tmp->vm_rb;
  389. mm->map_count++;
  390. retval = copy_page_range(mm, oldmm, mpnt);
  391. if (tmp->vm_ops && tmp->vm_ops->open)
  392. tmp->vm_ops->open(tmp);
  393. if (retval)
  394. goto out;
  395. }
  396. /* a new mm has just been created */
  397. arch_dup_mmap(oldmm, mm);
  398. retval = 0;
  399. out:
  400. up_write(&mm->mmap_sem);
  401. flush_tlb_mm(oldmm);
  402. up_write(&oldmm->mmap_sem);
  403. uprobe_end_dup_mmap();
  404. return retval;
  405. fail_nomem_anon_vma_fork:
  406. mpol_put(pol);
  407. fail_nomem_policy:
  408. kmem_cache_free(vm_area_cachep, tmp);
  409. fail_nomem:
  410. retval = -ENOMEM;
  411. vm_unacct_memory(charge);
  412. goto out;
  413. }
  414. static inline int mm_alloc_pgd(struct mm_struct *mm)
  415. {
  416. mm->pgd = pgd_alloc(mm);
  417. if (unlikely(!mm->pgd))
  418. return -ENOMEM;
  419. return 0;
  420. }
  421. static inline void mm_free_pgd(struct mm_struct *mm)
  422. {
  423. pgd_free(mm, mm->pgd);
  424. }
  425. #else
  426. #define dup_mmap(mm, oldmm) (0)
  427. #define mm_alloc_pgd(mm) (0)
  428. #define mm_free_pgd(mm)
  429. #endif /* CONFIG_MMU */
  430. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  431. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  432. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  433. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  434. static int __init coredump_filter_setup(char *s)
  435. {
  436. default_dump_filter =
  437. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  438. MMF_DUMP_FILTER_MASK;
  439. return 1;
  440. }
  441. __setup("coredump_filter=", coredump_filter_setup);
  442. #include <linux/init_task.h>
  443. static void mm_init_aio(struct mm_struct *mm)
  444. {
  445. #ifdef CONFIG_AIO
  446. spin_lock_init(&mm->ioctx_lock);
  447. INIT_HLIST_HEAD(&mm->ioctx_list);
  448. #endif
  449. }
  450. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  451. {
  452. atomic_set(&mm->mm_users, 1);
  453. atomic_set(&mm->mm_count, 1);
  454. init_rwsem(&mm->mmap_sem);
  455. INIT_LIST_HEAD(&mm->mmlist);
  456. mm->flags = (current->mm) ?
  457. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  458. mm->core_state = NULL;
  459. mm->nr_ptes = 0;
  460. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  461. spin_lock_init(&mm->page_table_lock);
  462. mm->free_area_cache = TASK_UNMAPPED_BASE;
  463. mm->cached_hole_size = ~0UL;
  464. mm_init_aio(mm);
  465. mm_init_owner(mm, p);
  466. if (likely(!mm_alloc_pgd(mm))) {
  467. mm->def_flags = 0;
  468. mmu_notifier_mm_init(mm);
  469. return mm;
  470. }
  471. free_mm(mm);
  472. return NULL;
  473. }
  474. static void check_mm(struct mm_struct *mm)
  475. {
  476. int i;
  477. for (i = 0; i < NR_MM_COUNTERS; i++) {
  478. long x = atomic_long_read(&mm->rss_stat.count[i]);
  479. if (unlikely(x))
  480. printk(KERN_ALERT "BUG: Bad rss-counter state "
  481. "mm:%p idx:%d val:%ld\n", mm, i, x);
  482. }
  483. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  484. VM_BUG_ON(mm->pmd_huge_pte);
  485. #endif
  486. }
  487. /*
  488. * Allocate and initialize an mm_struct.
  489. */
  490. struct mm_struct *mm_alloc(void)
  491. {
  492. struct mm_struct *mm;
  493. mm = allocate_mm();
  494. if (!mm)
  495. return NULL;
  496. memset(mm, 0, sizeof(*mm));
  497. mm_init_cpumask(mm);
  498. return mm_init(mm, current);
  499. }
  500. /*
  501. * Called when the last reference to the mm
  502. * is dropped: either by a lazy thread or by
  503. * mmput. Free the page directory and the mm.
  504. */
  505. void __mmdrop(struct mm_struct *mm)
  506. {
  507. BUG_ON(mm == &init_mm);
  508. mm_free_pgd(mm);
  509. destroy_context(mm);
  510. mmu_notifier_mm_destroy(mm);
  511. check_mm(mm);
  512. free_mm(mm);
  513. }
  514. EXPORT_SYMBOL_GPL(__mmdrop);
  515. /*
  516. * Decrement the use count and release all resources for an mm.
  517. */
  518. void mmput(struct mm_struct *mm)
  519. {
  520. might_sleep();
  521. if (atomic_dec_and_test(&mm->mm_users)) {
  522. uprobe_clear_state(mm);
  523. exit_aio(mm);
  524. ksm_exit(mm);
  525. khugepaged_exit(mm); /* must run before exit_mmap */
  526. exit_mmap(mm);
  527. set_mm_exe_file(mm, NULL);
  528. if (!list_empty(&mm->mmlist)) {
  529. spin_lock(&mmlist_lock);
  530. list_del(&mm->mmlist);
  531. spin_unlock(&mmlist_lock);
  532. }
  533. if (mm->binfmt)
  534. module_put(mm->binfmt->module);
  535. mmdrop(mm);
  536. }
  537. }
  538. EXPORT_SYMBOL_GPL(mmput);
  539. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  540. {
  541. if (new_exe_file)
  542. get_file(new_exe_file);
  543. if (mm->exe_file)
  544. fput(mm->exe_file);
  545. mm->exe_file = new_exe_file;
  546. }
  547. struct file *get_mm_exe_file(struct mm_struct *mm)
  548. {
  549. struct file *exe_file;
  550. /* We need mmap_sem to protect against races with removal of exe_file */
  551. down_read(&mm->mmap_sem);
  552. exe_file = mm->exe_file;
  553. if (exe_file)
  554. get_file(exe_file);
  555. up_read(&mm->mmap_sem);
  556. return exe_file;
  557. }
  558. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  559. {
  560. /* It's safe to write the exe_file pointer without exe_file_lock because
  561. * this is called during fork when the task is not yet in /proc */
  562. newmm->exe_file = get_mm_exe_file(oldmm);
  563. }
  564. /**
  565. * get_task_mm - acquire a reference to the task's mm
  566. *
  567. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  568. * this kernel workthread has transiently adopted a user mm with use_mm,
  569. * to do its AIO) is not set and if so returns a reference to it, after
  570. * bumping up the use count. User must release the mm via mmput()
  571. * after use. Typically used by /proc and ptrace.
  572. */
  573. struct mm_struct *get_task_mm(struct task_struct *task)
  574. {
  575. struct mm_struct *mm;
  576. task_lock(task);
  577. mm = task->mm;
  578. if (mm) {
  579. if (task->flags & PF_KTHREAD)
  580. mm = NULL;
  581. else
  582. atomic_inc(&mm->mm_users);
  583. }
  584. task_unlock(task);
  585. return mm;
  586. }
  587. EXPORT_SYMBOL_GPL(get_task_mm);
  588. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  589. {
  590. struct mm_struct *mm;
  591. int err;
  592. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  593. if (err)
  594. return ERR_PTR(err);
  595. mm = get_task_mm(task);
  596. if (mm && mm != current->mm &&
  597. !ptrace_may_access(task, mode)) {
  598. mmput(mm);
  599. mm = ERR_PTR(-EACCES);
  600. }
  601. mutex_unlock(&task->signal->cred_guard_mutex);
  602. return mm;
  603. }
  604. static void complete_vfork_done(struct task_struct *tsk)
  605. {
  606. struct completion *vfork;
  607. task_lock(tsk);
  608. vfork = tsk->vfork_done;
  609. if (likely(vfork)) {
  610. tsk->vfork_done = NULL;
  611. complete(vfork);
  612. }
  613. task_unlock(tsk);
  614. }
  615. static int wait_for_vfork_done(struct task_struct *child,
  616. struct completion *vfork)
  617. {
  618. int killed;
  619. freezer_do_not_count();
  620. killed = wait_for_completion_killable(vfork);
  621. freezer_count();
  622. if (killed) {
  623. task_lock(child);
  624. child->vfork_done = NULL;
  625. task_unlock(child);
  626. }
  627. put_task_struct(child);
  628. return killed;
  629. }
  630. /* Please note the differences between mmput and mm_release.
  631. * mmput is called whenever we stop holding onto a mm_struct,
  632. * error success whatever.
  633. *
  634. * mm_release is called after a mm_struct has been removed
  635. * from the current process.
  636. *
  637. * This difference is important for error handling, when we
  638. * only half set up a mm_struct for a new process and need to restore
  639. * the old one. Because we mmput the new mm_struct before
  640. * restoring the old one. . .
  641. * Eric Biederman 10 January 1998
  642. */
  643. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  644. {
  645. /* Get rid of any futexes when releasing the mm */
  646. #ifdef CONFIG_FUTEX
  647. if (unlikely(tsk->robust_list)) {
  648. exit_robust_list(tsk);
  649. tsk->robust_list = NULL;
  650. }
  651. #ifdef CONFIG_COMPAT
  652. if (unlikely(tsk->compat_robust_list)) {
  653. compat_exit_robust_list(tsk);
  654. tsk->compat_robust_list = NULL;
  655. }
  656. #endif
  657. if (unlikely(!list_empty(&tsk->pi_state_list)))
  658. exit_pi_state_list(tsk);
  659. #endif
  660. uprobe_free_utask(tsk);
  661. /* Get rid of any cached register state */
  662. deactivate_mm(tsk, mm);
  663. /*
  664. * If we're exiting normally, clear a user-space tid field if
  665. * requested. We leave this alone when dying by signal, to leave
  666. * the value intact in a core dump, and to save the unnecessary
  667. * trouble, say, a killed vfork parent shouldn't touch this mm.
  668. * Userland only wants this done for a sys_exit.
  669. */
  670. if (tsk->clear_child_tid) {
  671. if (!(tsk->flags & PF_SIGNALED) &&
  672. atomic_read(&mm->mm_users) > 1) {
  673. /*
  674. * We don't check the error code - if userspace has
  675. * not set up a proper pointer then tough luck.
  676. */
  677. put_user(0, tsk->clear_child_tid);
  678. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  679. 1, NULL, NULL, 0);
  680. }
  681. tsk->clear_child_tid = NULL;
  682. }
  683. /*
  684. * All done, finally we can wake up parent and return this mm to him.
  685. * Also kthread_stop() uses this completion for synchronization.
  686. */
  687. if (tsk->vfork_done)
  688. complete_vfork_done(tsk);
  689. }
  690. /*
  691. * Allocate a new mm structure and copy contents from the
  692. * mm structure of the passed in task structure.
  693. */
  694. struct mm_struct *dup_mm(struct task_struct *tsk)
  695. {
  696. struct mm_struct *mm, *oldmm = current->mm;
  697. int err;
  698. if (!oldmm)
  699. return NULL;
  700. mm = allocate_mm();
  701. if (!mm)
  702. goto fail_nomem;
  703. memcpy(mm, oldmm, sizeof(*mm));
  704. mm_init_cpumask(mm);
  705. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  706. mm->pmd_huge_pte = NULL;
  707. #endif
  708. #ifdef CONFIG_NUMA_BALANCING
  709. mm->first_nid = NUMA_PTE_SCAN_INIT;
  710. #endif
  711. if (!mm_init(mm, tsk))
  712. goto fail_nomem;
  713. if (init_new_context(tsk, mm))
  714. goto fail_nocontext;
  715. dup_mm_exe_file(oldmm, mm);
  716. err = dup_mmap(mm, oldmm);
  717. if (err)
  718. goto free_pt;
  719. mm->hiwater_rss = get_mm_rss(mm);
  720. mm->hiwater_vm = mm->total_vm;
  721. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  722. goto free_pt;
  723. return mm;
  724. free_pt:
  725. /* don't put binfmt in mmput, we haven't got module yet */
  726. mm->binfmt = NULL;
  727. mmput(mm);
  728. fail_nomem:
  729. return NULL;
  730. fail_nocontext:
  731. /*
  732. * If init_new_context() failed, we cannot use mmput() to free the mm
  733. * because it calls destroy_context()
  734. */
  735. mm_free_pgd(mm);
  736. free_mm(mm);
  737. return NULL;
  738. }
  739. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  740. {
  741. struct mm_struct *mm, *oldmm;
  742. int retval;
  743. tsk->min_flt = tsk->maj_flt = 0;
  744. tsk->nvcsw = tsk->nivcsw = 0;
  745. #ifdef CONFIG_DETECT_HUNG_TASK
  746. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  747. #endif
  748. tsk->mm = NULL;
  749. tsk->active_mm = NULL;
  750. /*
  751. * Are we cloning a kernel thread?
  752. *
  753. * We need to steal a active VM for that..
  754. */
  755. oldmm = current->mm;
  756. if (!oldmm)
  757. return 0;
  758. if (clone_flags & CLONE_VM) {
  759. atomic_inc(&oldmm->mm_users);
  760. mm = oldmm;
  761. goto good_mm;
  762. }
  763. retval = -ENOMEM;
  764. mm = dup_mm(tsk);
  765. if (!mm)
  766. goto fail_nomem;
  767. good_mm:
  768. tsk->mm = mm;
  769. tsk->active_mm = mm;
  770. return 0;
  771. fail_nomem:
  772. return retval;
  773. }
  774. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  775. {
  776. struct fs_struct *fs = current->fs;
  777. if (clone_flags & CLONE_FS) {
  778. /* tsk->fs is already what we want */
  779. spin_lock(&fs->lock);
  780. if (fs->in_exec) {
  781. spin_unlock(&fs->lock);
  782. return -EAGAIN;
  783. }
  784. fs->users++;
  785. spin_unlock(&fs->lock);
  786. return 0;
  787. }
  788. tsk->fs = copy_fs_struct(fs);
  789. if (!tsk->fs)
  790. return -ENOMEM;
  791. return 0;
  792. }
  793. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  794. {
  795. struct files_struct *oldf, *newf;
  796. int error = 0;
  797. /*
  798. * A background process may not have any files ...
  799. */
  800. oldf = current->files;
  801. if (!oldf)
  802. goto out;
  803. if (clone_flags & CLONE_FILES) {
  804. atomic_inc(&oldf->count);
  805. goto out;
  806. }
  807. newf = dup_fd(oldf, &error);
  808. if (!newf)
  809. goto out;
  810. tsk->files = newf;
  811. error = 0;
  812. out:
  813. return error;
  814. }
  815. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  816. {
  817. #ifdef CONFIG_BLOCK
  818. struct io_context *ioc = current->io_context;
  819. struct io_context *new_ioc;
  820. if (!ioc)
  821. return 0;
  822. /*
  823. * Share io context with parent, if CLONE_IO is set
  824. */
  825. if (clone_flags & CLONE_IO) {
  826. ioc_task_link(ioc);
  827. tsk->io_context = ioc;
  828. } else if (ioprio_valid(ioc->ioprio)) {
  829. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  830. if (unlikely(!new_ioc))
  831. return -ENOMEM;
  832. new_ioc->ioprio = ioc->ioprio;
  833. put_io_context(new_ioc);
  834. }
  835. #endif
  836. return 0;
  837. }
  838. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  839. {
  840. struct sighand_struct *sig;
  841. if (clone_flags & CLONE_SIGHAND) {
  842. atomic_inc(&current->sighand->count);
  843. return 0;
  844. }
  845. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  846. rcu_assign_pointer(tsk->sighand, sig);
  847. if (!sig)
  848. return -ENOMEM;
  849. atomic_set(&sig->count, 1);
  850. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  851. return 0;
  852. }
  853. void __cleanup_sighand(struct sighand_struct *sighand)
  854. {
  855. if (atomic_dec_and_test(&sighand->count)) {
  856. signalfd_cleanup(sighand);
  857. kmem_cache_free(sighand_cachep, sighand);
  858. }
  859. }
  860. /*
  861. * Initialize POSIX timer handling for a thread group.
  862. */
  863. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  864. {
  865. unsigned long cpu_limit;
  866. /* Thread group counters. */
  867. thread_group_cputime_init(sig);
  868. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  869. if (cpu_limit != RLIM_INFINITY) {
  870. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  871. sig->cputimer.running = 1;
  872. }
  873. /* The timer lists. */
  874. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  875. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  876. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  877. }
  878. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  879. {
  880. struct signal_struct *sig;
  881. if (clone_flags & CLONE_THREAD)
  882. return 0;
  883. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  884. tsk->signal = sig;
  885. if (!sig)
  886. return -ENOMEM;
  887. sig->nr_threads = 1;
  888. atomic_set(&sig->live, 1);
  889. atomic_set(&sig->sigcnt, 1);
  890. init_waitqueue_head(&sig->wait_chldexit);
  891. sig->curr_target = tsk;
  892. init_sigpending(&sig->shared_pending);
  893. INIT_LIST_HEAD(&sig->posix_timers);
  894. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  895. sig->real_timer.function = it_real_fn;
  896. task_lock(current->group_leader);
  897. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  898. task_unlock(current->group_leader);
  899. posix_cpu_timers_init_group(sig);
  900. tty_audit_fork(sig);
  901. sched_autogroup_fork(sig);
  902. #ifdef CONFIG_CGROUPS
  903. init_rwsem(&sig->group_rwsem);
  904. #endif
  905. sig->oom_score_adj = current->signal->oom_score_adj;
  906. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  907. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  908. current->signal->is_child_subreaper;
  909. mutex_init(&sig->cred_guard_mutex);
  910. return 0;
  911. }
  912. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  913. {
  914. unsigned long new_flags = p->flags;
  915. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  916. new_flags |= PF_FORKNOEXEC;
  917. p->flags = new_flags;
  918. }
  919. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  920. {
  921. current->clear_child_tid = tidptr;
  922. return task_pid_vnr(current);
  923. }
  924. static void rt_mutex_init_task(struct task_struct *p)
  925. {
  926. raw_spin_lock_init(&p->pi_lock);
  927. #ifdef CONFIG_RT_MUTEXES
  928. plist_head_init(&p->pi_waiters);
  929. p->pi_blocked_on = NULL;
  930. #endif
  931. }
  932. #ifdef CONFIG_MM_OWNER
  933. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  934. {
  935. mm->owner = p;
  936. }
  937. #endif /* CONFIG_MM_OWNER */
  938. /*
  939. * Initialize POSIX timer handling for a single task.
  940. */
  941. static void posix_cpu_timers_init(struct task_struct *tsk)
  942. {
  943. tsk->cputime_expires.prof_exp = 0;
  944. tsk->cputime_expires.virt_exp = 0;
  945. tsk->cputime_expires.sched_exp = 0;
  946. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  947. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  948. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  949. }
  950. /*
  951. * This creates a new process as a copy of the old one,
  952. * but does not actually start it yet.
  953. *
  954. * It copies the registers, and all the appropriate
  955. * parts of the process environment (as per the clone
  956. * flags). The actual kick-off is left to the caller.
  957. */
  958. static struct task_struct *copy_process(unsigned long clone_flags,
  959. unsigned long stack_start,
  960. unsigned long stack_size,
  961. int __user *child_tidptr,
  962. struct pid *pid,
  963. int trace)
  964. {
  965. int retval;
  966. struct task_struct *p;
  967. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  968. return ERR_PTR(-EINVAL);
  969. /*
  970. * Thread groups must share signals as well, and detached threads
  971. * can only be started up within the thread group.
  972. */
  973. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  974. return ERR_PTR(-EINVAL);
  975. /*
  976. * Shared signal handlers imply shared VM. By way of the above,
  977. * thread groups also imply shared VM. Blocking this case allows
  978. * for various simplifications in other code.
  979. */
  980. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  981. return ERR_PTR(-EINVAL);
  982. /*
  983. * Siblings of global init remain as zombies on exit since they are
  984. * not reaped by their parent (swapper). To solve this and to avoid
  985. * multi-rooted process trees, prevent global and container-inits
  986. * from creating siblings.
  987. */
  988. if ((clone_flags & CLONE_PARENT) &&
  989. current->signal->flags & SIGNAL_UNKILLABLE)
  990. return ERR_PTR(-EINVAL);
  991. /*
  992. * If the new process will be in a different pid namespace
  993. * don't allow the creation of threads.
  994. */
  995. if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
  996. (task_active_pid_ns(current) != current->nsproxy->pid_ns))
  997. return ERR_PTR(-EINVAL);
  998. retval = security_task_create(clone_flags);
  999. if (retval)
  1000. goto fork_out;
  1001. retval = -ENOMEM;
  1002. p = dup_task_struct(current);
  1003. if (!p)
  1004. goto fork_out;
  1005. ftrace_graph_init_task(p);
  1006. get_seccomp_filter(p);
  1007. rt_mutex_init_task(p);
  1008. #ifdef CONFIG_PROVE_LOCKING
  1009. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1010. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1011. #endif
  1012. retval = -EAGAIN;
  1013. if (atomic_read(&p->real_cred->user->processes) >=
  1014. task_rlimit(p, RLIMIT_NPROC)) {
  1015. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  1016. p->real_cred->user != INIT_USER)
  1017. goto bad_fork_free;
  1018. }
  1019. current->flags &= ~PF_NPROC_EXCEEDED;
  1020. retval = copy_creds(p, clone_flags);
  1021. if (retval < 0)
  1022. goto bad_fork_free;
  1023. /*
  1024. * If multiple threads are within copy_process(), then this check
  1025. * triggers too late. This doesn't hurt, the check is only there
  1026. * to stop root fork bombs.
  1027. */
  1028. retval = -EAGAIN;
  1029. if (nr_threads >= max_threads)
  1030. goto bad_fork_cleanup_count;
  1031. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1032. goto bad_fork_cleanup_count;
  1033. p->did_exec = 0;
  1034. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1035. copy_flags(clone_flags, p);
  1036. INIT_LIST_HEAD(&p->children);
  1037. INIT_LIST_HEAD(&p->sibling);
  1038. rcu_copy_process(p);
  1039. p->vfork_done = NULL;
  1040. spin_lock_init(&p->alloc_lock);
  1041. init_sigpending(&p->pending);
  1042. p->utime = p->stime = p->gtime = 0;
  1043. p->utimescaled = p->stimescaled = 0;
  1044. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  1045. p->prev_cputime.utime = p->prev_cputime.stime = 0;
  1046. #endif
  1047. #if defined(SPLIT_RSS_COUNTING)
  1048. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1049. #endif
  1050. p->default_timer_slack_ns = current->timer_slack_ns;
  1051. task_io_accounting_init(&p->ioac);
  1052. acct_clear_integrals(p);
  1053. posix_cpu_timers_init(p);
  1054. do_posix_clock_monotonic_gettime(&p->start_time);
  1055. p->real_start_time = p->start_time;
  1056. monotonic_to_bootbased(&p->real_start_time);
  1057. p->io_context = NULL;
  1058. p->audit_context = NULL;
  1059. if (clone_flags & CLONE_THREAD)
  1060. threadgroup_change_begin(current);
  1061. cgroup_fork(p);
  1062. #ifdef CONFIG_NUMA
  1063. p->mempolicy = mpol_dup(p->mempolicy);
  1064. if (IS_ERR(p->mempolicy)) {
  1065. retval = PTR_ERR(p->mempolicy);
  1066. p->mempolicy = NULL;
  1067. goto bad_fork_cleanup_cgroup;
  1068. }
  1069. mpol_fix_fork_child_flag(p);
  1070. #endif
  1071. #ifdef CONFIG_CPUSETS
  1072. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1073. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1074. seqcount_init(&p->mems_allowed_seq);
  1075. #endif
  1076. #ifdef CONFIG_TRACE_IRQFLAGS
  1077. p->irq_events = 0;
  1078. p->hardirqs_enabled = 0;
  1079. p->hardirq_enable_ip = 0;
  1080. p->hardirq_enable_event = 0;
  1081. p->hardirq_disable_ip = _THIS_IP_;
  1082. p->hardirq_disable_event = 0;
  1083. p->softirqs_enabled = 1;
  1084. p->softirq_enable_ip = _THIS_IP_;
  1085. p->softirq_enable_event = 0;
  1086. p->softirq_disable_ip = 0;
  1087. p->softirq_disable_event = 0;
  1088. p->hardirq_context = 0;
  1089. p->softirq_context = 0;
  1090. #endif
  1091. #ifdef CONFIG_LOCKDEP
  1092. p->lockdep_depth = 0; /* no locks held yet */
  1093. p->curr_chain_key = 0;
  1094. p->lockdep_recursion = 0;
  1095. #endif
  1096. #ifdef CONFIG_DEBUG_MUTEXES
  1097. p->blocked_on = NULL; /* not blocked yet */
  1098. #endif
  1099. #ifdef CONFIG_MEMCG
  1100. p->memcg_batch.do_batch = 0;
  1101. p->memcg_batch.memcg = NULL;
  1102. #endif
  1103. /* Perform scheduler related setup. Assign this task to a CPU. */
  1104. sched_fork(p);
  1105. retval = perf_event_init_task(p);
  1106. if (retval)
  1107. goto bad_fork_cleanup_policy;
  1108. retval = audit_alloc(p);
  1109. if (retval)
  1110. goto bad_fork_cleanup_policy;
  1111. /* copy all the process information */
  1112. retval = copy_semundo(clone_flags, p);
  1113. if (retval)
  1114. goto bad_fork_cleanup_audit;
  1115. retval = copy_files(clone_flags, p);
  1116. if (retval)
  1117. goto bad_fork_cleanup_semundo;
  1118. retval = copy_fs(clone_flags, p);
  1119. if (retval)
  1120. goto bad_fork_cleanup_files;
  1121. retval = copy_sighand(clone_flags, p);
  1122. if (retval)
  1123. goto bad_fork_cleanup_fs;
  1124. retval = copy_signal(clone_flags, p);
  1125. if (retval)
  1126. goto bad_fork_cleanup_sighand;
  1127. retval = copy_mm(clone_flags, p);
  1128. if (retval)
  1129. goto bad_fork_cleanup_signal;
  1130. retval = copy_namespaces(clone_flags, p);
  1131. if (retval)
  1132. goto bad_fork_cleanup_mm;
  1133. retval = copy_io(clone_flags, p);
  1134. if (retval)
  1135. goto bad_fork_cleanup_namespaces;
  1136. retval = copy_thread(clone_flags, stack_start, stack_size, p);
  1137. if (retval)
  1138. goto bad_fork_cleanup_io;
  1139. if (pid != &init_struct_pid) {
  1140. retval = -ENOMEM;
  1141. pid = alloc_pid(p->nsproxy->pid_ns);
  1142. if (!pid)
  1143. goto bad_fork_cleanup_io;
  1144. }
  1145. p->pid = pid_nr(pid);
  1146. p->tgid = p->pid;
  1147. if (clone_flags & CLONE_THREAD)
  1148. p->tgid = current->tgid;
  1149. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1150. /*
  1151. * Clear TID on mm_release()?
  1152. */
  1153. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1154. #ifdef CONFIG_BLOCK
  1155. p->plug = NULL;
  1156. #endif
  1157. #ifdef CONFIG_FUTEX
  1158. p->robust_list = NULL;
  1159. #ifdef CONFIG_COMPAT
  1160. p->compat_robust_list = NULL;
  1161. #endif
  1162. INIT_LIST_HEAD(&p->pi_state_list);
  1163. p->pi_state_cache = NULL;
  1164. #endif
  1165. uprobe_copy_process(p);
  1166. /*
  1167. * sigaltstack should be cleared when sharing the same VM
  1168. */
  1169. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1170. p->sas_ss_sp = p->sas_ss_size = 0;
  1171. /*
  1172. * Syscall tracing and stepping should be turned off in the
  1173. * child regardless of CLONE_PTRACE.
  1174. */
  1175. user_disable_single_step(p);
  1176. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1177. #ifdef TIF_SYSCALL_EMU
  1178. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1179. #endif
  1180. clear_all_latency_tracing(p);
  1181. /* ok, now we should be set up.. */
  1182. if (clone_flags & CLONE_THREAD)
  1183. p->exit_signal = -1;
  1184. else if (clone_flags & CLONE_PARENT)
  1185. p->exit_signal = current->group_leader->exit_signal;
  1186. else
  1187. p->exit_signal = (clone_flags & CSIGNAL);
  1188. p->pdeath_signal = 0;
  1189. p->exit_state = 0;
  1190. p->nr_dirtied = 0;
  1191. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1192. p->dirty_paused_when = 0;
  1193. /*
  1194. * Ok, make it visible to the rest of the system.
  1195. * We dont wake it up yet.
  1196. */
  1197. p->group_leader = p;
  1198. INIT_LIST_HEAD(&p->thread_group);
  1199. p->task_works = NULL;
  1200. /* Need tasklist lock for parent etc handling! */
  1201. write_lock_irq(&tasklist_lock);
  1202. /* CLONE_PARENT re-uses the old parent */
  1203. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1204. p->real_parent = current->real_parent;
  1205. p->parent_exec_id = current->parent_exec_id;
  1206. } else {
  1207. p->real_parent = current;
  1208. p->parent_exec_id = current->self_exec_id;
  1209. }
  1210. spin_lock(&current->sighand->siglock);
  1211. /*
  1212. * Process group and session signals need to be delivered to just the
  1213. * parent before the fork or both the parent and the child after the
  1214. * fork. Restart if a signal comes in before we add the new process to
  1215. * it's process group.
  1216. * A fatal signal pending means that current will exit, so the new
  1217. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1218. */
  1219. recalc_sigpending();
  1220. if (signal_pending(current)) {
  1221. spin_unlock(&current->sighand->siglock);
  1222. write_unlock_irq(&tasklist_lock);
  1223. retval = -ERESTARTNOINTR;
  1224. goto bad_fork_free_pid;
  1225. }
  1226. if (clone_flags & CLONE_THREAD) {
  1227. current->signal->nr_threads++;
  1228. atomic_inc(&current->signal->live);
  1229. atomic_inc(&current->signal->sigcnt);
  1230. p->group_leader = current->group_leader;
  1231. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1232. }
  1233. if (likely(p->pid)) {
  1234. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1235. if (thread_group_leader(p)) {
  1236. if (is_child_reaper(pid)) {
  1237. ns_of_pid(pid)->child_reaper = p;
  1238. p->signal->flags |= SIGNAL_UNKILLABLE;
  1239. }
  1240. p->signal->leader_pid = pid;
  1241. p->signal->tty = tty_kref_get(current->signal->tty);
  1242. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1243. attach_pid(p, PIDTYPE_SID, task_session(current));
  1244. list_add_tail(&p->sibling, &p->real_parent->children);
  1245. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1246. __this_cpu_inc(process_counts);
  1247. }
  1248. attach_pid(p, PIDTYPE_PID, pid);
  1249. nr_threads++;
  1250. }
  1251. total_forks++;
  1252. spin_unlock(&current->sighand->siglock);
  1253. write_unlock_irq(&tasklist_lock);
  1254. proc_fork_connector(p);
  1255. cgroup_post_fork(p);
  1256. if (clone_flags & CLONE_THREAD)
  1257. threadgroup_change_end(current);
  1258. perf_event_fork(p);
  1259. trace_task_newtask(p, clone_flags);
  1260. return p;
  1261. bad_fork_free_pid:
  1262. if (pid != &init_struct_pid)
  1263. free_pid(pid);
  1264. bad_fork_cleanup_io:
  1265. if (p->io_context)
  1266. exit_io_context(p);
  1267. bad_fork_cleanup_namespaces:
  1268. exit_task_namespaces(p);
  1269. bad_fork_cleanup_mm:
  1270. if (p->mm)
  1271. mmput(p->mm);
  1272. bad_fork_cleanup_signal:
  1273. if (!(clone_flags & CLONE_THREAD))
  1274. free_signal_struct(p->signal);
  1275. bad_fork_cleanup_sighand:
  1276. __cleanup_sighand(p->sighand);
  1277. bad_fork_cleanup_fs:
  1278. exit_fs(p); /* blocking */
  1279. bad_fork_cleanup_files:
  1280. exit_files(p); /* blocking */
  1281. bad_fork_cleanup_semundo:
  1282. exit_sem(p);
  1283. bad_fork_cleanup_audit:
  1284. audit_free(p);
  1285. bad_fork_cleanup_policy:
  1286. perf_event_free_task(p);
  1287. #ifdef CONFIG_NUMA
  1288. mpol_put(p->mempolicy);
  1289. bad_fork_cleanup_cgroup:
  1290. #endif
  1291. if (clone_flags & CLONE_THREAD)
  1292. threadgroup_change_end(current);
  1293. cgroup_exit(p, 0);
  1294. delayacct_tsk_free(p);
  1295. module_put(task_thread_info(p)->exec_domain->module);
  1296. bad_fork_cleanup_count:
  1297. atomic_dec(&p->cred->user->processes);
  1298. exit_creds(p);
  1299. bad_fork_free:
  1300. free_task(p);
  1301. fork_out:
  1302. return ERR_PTR(retval);
  1303. }
  1304. static inline void init_idle_pids(struct pid_link *links)
  1305. {
  1306. enum pid_type type;
  1307. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1308. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1309. links[type].pid = &init_struct_pid;
  1310. }
  1311. }
  1312. struct task_struct * __cpuinit fork_idle(int cpu)
  1313. {
  1314. struct task_struct *task;
  1315. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
  1316. if (!IS_ERR(task)) {
  1317. init_idle_pids(task->pids);
  1318. init_idle(task, cpu);
  1319. }
  1320. return task;
  1321. }
  1322. /*
  1323. * Ok, this is the main fork-routine.
  1324. *
  1325. * It copies the process, and if successful kick-starts
  1326. * it and waits for it to finish using the VM if required.
  1327. */
  1328. long do_fork(unsigned long clone_flags,
  1329. unsigned long stack_start,
  1330. unsigned long stack_size,
  1331. int __user *parent_tidptr,
  1332. int __user *child_tidptr)
  1333. {
  1334. struct task_struct *p;
  1335. int trace = 0;
  1336. long nr;
  1337. /*
  1338. * Do some preliminary argument and permissions checking before we
  1339. * actually start allocating stuff
  1340. */
  1341. if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
  1342. if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
  1343. return -EINVAL;
  1344. }
  1345. /*
  1346. * Determine whether and which event to report to ptracer. When
  1347. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1348. * requested, no event is reported; otherwise, report if the event
  1349. * for the type of forking is enabled.
  1350. */
  1351. if (!(clone_flags & CLONE_UNTRACED)) {
  1352. if (clone_flags & CLONE_VFORK)
  1353. trace = PTRACE_EVENT_VFORK;
  1354. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1355. trace = PTRACE_EVENT_CLONE;
  1356. else
  1357. trace = PTRACE_EVENT_FORK;
  1358. if (likely(!ptrace_event_enabled(current, trace)))
  1359. trace = 0;
  1360. }
  1361. p = copy_process(clone_flags, stack_start, stack_size,
  1362. child_tidptr, NULL, trace);
  1363. /*
  1364. * Do this prior waking up the new thread - the thread pointer
  1365. * might get invalid after that point, if the thread exits quickly.
  1366. */
  1367. if (!IS_ERR(p)) {
  1368. struct completion vfork;
  1369. trace_sched_process_fork(current, p);
  1370. nr = task_pid_vnr(p);
  1371. if (clone_flags & CLONE_PARENT_SETTID)
  1372. put_user(nr, parent_tidptr);
  1373. if (clone_flags & CLONE_VFORK) {
  1374. p->vfork_done = &vfork;
  1375. init_completion(&vfork);
  1376. get_task_struct(p);
  1377. }
  1378. wake_up_new_task(p);
  1379. /* forking complete and child started to run, tell ptracer */
  1380. if (unlikely(trace))
  1381. ptrace_event(trace, nr);
  1382. if (clone_flags & CLONE_VFORK) {
  1383. if (!wait_for_vfork_done(p, &vfork))
  1384. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1385. }
  1386. } else {
  1387. nr = PTR_ERR(p);
  1388. }
  1389. return nr;
  1390. }
  1391. /*
  1392. * Create a kernel thread.
  1393. */
  1394. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1395. {
  1396. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1397. (unsigned long)arg, NULL, NULL);
  1398. }
  1399. #ifdef __ARCH_WANT_SYS_FORK
  1400. SYSCALL_DEFINE0(fork)
  1401. {
  1402. #ifdef CONFIG_MMU
  1403. return do_fork(SIGCHLD, 0, 0, NULL, NULL);
  1404. #else
  1405. /* can not support in nommu mode */
  1406. return(-EINVAL);
  1407. #endif
  1408. }
  1409. #endif
  1410. #ifdef __ARCH_WANT_SYS_VFORK
  1411. SYSCALL_DEFINE0(vfork)
  1412. {
  1413. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1414. 0, NULL, NULL);
  1415. }
  1416. #endif
  1417. #ifdef __ARCH_WANT_SYS_CLONE
  1418. #ifdef CONFIG_CLONE_BACKWARDS
  1419. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1420. int __user *, parent_tidptr,
  1421. int, tls_val,
  1422. int __user *, child_tidptr)
  1423. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1424. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1425. int __user *, parent_tidptr,
  1426. int __user *, child_tidptr,
  1427. int, tls_val)
  1428. #else
  1429. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1430. int __user *, parent_tidptr,
  1431. int __user *, child_tidptr,
  1432. int, tls_val)
  1433. #endif
  1434. {
  1435. return do_fork(clone_flags, newsp, 0,
  1436. parent_tidptr, child_tidptr);
  1437. }
  1438. #endif
  1439. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1440. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1441. #endif
  1442. static void sighand_ctor(void *data)
  1443. {
  1444. struct sighand_struct *sighand = data;
  1445. spin_lock_init(&sighand->siglock);
  1446. init_waitqueue_head(&sighand->signalfd_wqh);
  1447. }
  1448. void __init proc_caches_init(void)
  1449. {
  1450. sighand_cachep = kmem_cache_create("sighand_cache",
  1451. sizeof(struct sighand_struct), 0,
  1452. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1453. SLAB_NOTRACK, sighand_ctor);
  1454. signal_cachep = kmem_cache_create("signal_cache",
  1455. sizeof(struct signal_struct), 0,
  1456. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1457. files_cachep = kmem_cache_create("files_cache",
  1458. sizeof(struct files_struct), 0,
  1459. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1460. fs_cachep = kmem_cache_create("fs_cache",
  1461. sizeof(struct fs_struct), 0,
  1462. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1463. /*
  1464. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1465. * whole struct cpumask for the OFFSTACK case. We could change
  1466. * this to *only* allocate as much of it as required by the
  1467. * maximum number of CPU's we can ever have. The cpumask_allocation
  1468. * is at the end of the structure, exactly for that reason.
  1469. */
  1470. mm_cachep = kmem_cache_create("mm_struct",
  1471. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1472. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1473. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1474. mmap_init();
  1475. nsproxy_cache_init();
  1476. }
  1477. /*
  1478. * Check constraints on flags passed to the unshare system call.
  1479. */
  1480. static int check_unshare_flags(unsigned long unshare_flags)
  1481. {
  1482. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1483. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1484. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1485. CLONE_NEWUSER|CLONE_NEWPID))
  1486. return -EINVAL;
  1487. /*
  1488. * Not implemented, but pretend it works if there is nothing to
  1489. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1490. * needs to unshare vm.
  1491. */
  1492. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1493. /* FIXME: get_task_mm() increments ->mm_users */
  1494. if (atomic_read(&current->mm->mm_users) > 1)
  1495. return -EINVAL;
  1496. }
  1497. return 0;
  1498. }
  1499. /*
  1500. * Unshare the filesystem structure if it is being shared
  1501. */
  1502. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1503. {
  1504. struct fs_struct *fs = current->fs;
  1505. if (!(unshare_flags & CLONE_FS) || !fs)
  1506. return 0;
  1507. /* don't need lock here; in the worst case we'll do useless copy */
  1508. if (fs->users == 1)
  1509. return 0;
  1510. *new_fsp = copy_fs_struct(fs);
  1511. if (!*new_fsp)
  1512. return -ENOMEM;
  1513. return 0;
  1514. }
  1515. /*
  1516. * Unshare file descriptor table if it is being shared
  1517. */
  1518. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1519. {
  1520. struct files_struct *fd = current->files;
  1521. int error = 0;
  1522. if ((unshare_flags & CLONE_FILES) &&
  1523. (fd && atomic_read(&fd->count) > 1)) {
  1524. *new_fdp = dup_fd(fd, &error);
  1525. if (!*new_fdp)
  1526. return error;
  1527. }
  1528. return 0;
  1529. }
  1530. /*
  1531. * unshare allows a process to 'unshare' part of the process
  1532. * context which was originally shared using clone. copy_*
  1533. * functions used by do_fork() cannot be used here directly
  1534. * because they modify an inactive task_struct that is being
  1535. * constructed. Here we are modifying the current, active,
  1536. * task_struct.
  1537. */
  1538. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1539. {
  1540. struct fs_struct *fs, *new_fs = NULL;
  1541. struct files_struct *fd, *new_fd = NULL;
  1542. struct cred *new_cred = NULL;
  1543. struct nsproxy *new_nsproxy = NULL;
  1544. int do_sysvsem = 0;
  1545. int err;
  1546. /*
  1547. * If unsharing a user namespace must also unshare the thread.
  1548. */
  1549. if (unshare_flags & CLONE_NEWUSER)
  1550. unshare_flags |= CLONE_THREAD;
  1551. /*
  1552. * If unsharing a pid namespace must also unshare the thread.
  1553. */
  1554. if (unshare_flags & CLONE_NEWPID)
  1555. unshare_flags |= CLONE_THREAD;
  1556. /*
  1557. * If unsharing a thread from a thread group, must also unshare vm.
  1558. */
  1559. if (unshare_flags & CLONE_THREAD)
  1560. unshare_flags |= CLONE_VM;
  1561. /*
  1562. * If unsharing vm, must also unshare signal handlers.
  1563. */
  1564. if (unshare_flags & CLONE_VM)
  1565. unshare_flags |= CLONE_SIGHAND;
  1566. /*
  1567. * If unsharing namespace, must also unshare filesystem information.
  1568. */
  1569. if (unshare_flags & CLONE_NEWNS)
  1570. unshare_flags |= CLONE_FS;
  1571. err = check_unshare_flags(unshare_flags);
  1572. if (err)
  1573. goto bad_unshare_out;
  1574. /*
  1575. * CLONE_NEWIPC must also detach from the undolist: after switching
  1576. * to a new ipc namespace, the semaphore arrays from the old
  1577. * namespace are unreachable.
  1578. */
  1579. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1580. do_sysvsem = 1;
  1581. err = unshare_fs(unshare_flags, &new_fs);
  1582. if (err)
  1583. goto bad_unshare_out;
  1584. err = unshare_fd(unshare_flags, &new_fd);
  1585. if (err)
  1586. goto bad_unshare_cleanup_fs;
  1587. err = unshare_userns(unshare_flags, &new_cred);
  1588. if (err)
  1589. goto bad_unshare_cleanup_fd;
  1590. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1591. new_cred, new_fs);
  1592. if (err)
  1593. goto bad_unshare_cleanup_cred;
  1594. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1595. if (do_sysvsem) {
  1596. /*
  1597. * CLONE_SYSVSEM is equivalent to sys_exit().
  1598. */
  1599. exit_sem(current);
  1600. }
  1601. if (new_nsproxy) {
  1602. switch_task_namespaces(current, new_nsproxy);
  1603. new_nsproxy = NULL;
  1604. }
  1605. task_lock(current);
  1606. if (new_fs) {
  1607. fs = current->fs;
  1608. spin_lock(&fs->lock);
  1609. current->fs = new_fs;
  1610. if (--fs->users)
  1611. new_fs = NULL;
  1612. else
  1613. new_fs = fs;
  1614. spin_unlock(&fs->lock);
  1615. }
  1616. if (new_fd) {
  1617. fd = current->files;
  1618. current->files = new_fd;
  1619. new_fd = fd;
  1620. }
  1621. task_unlock(current);
  1622. if (new_cred) {
  1623. /* Install the new user namespace */
  1624. commit_creds(new_cred);
  1625. new_cred = NULL;
  1626. }
  1627. }
  1628. if (new_nsproxy)
  1629. put_nsproxy(new_nsproxy);
  1630. bad_unshare_cleanup_cred:
  1631. if (new_cred)
  1632. put_cred(new_cred);
  1633. bad_unshare_cleanup_fd:
  1634. if (new_fd)
  1635. put_files_struct(new_fd);
  1636. bad_unshare_cleanup_fs:
  1637. if (new_fs)
  1638. free_fs_struct(new_fs);
  1639. bad_unshare_out:
  1640. return err;
  1641. }
  1642. /*
  1643. * Helper to unshare the files of the current task.
  1644. * We don't want to expose copy_files internals to
  1645. * the exec layer of the kernel.
  1646. */
  1647. int unshare_files(struct files_struct **displaced)
  1648. {
  1649. struct task_struct *task = current;
  1650. struct files_struct *copy = NULL;
  1651. int error;
  1652. error = unshare_fd(CLONE_FILES, &copy);
  1653. if (error || !copy) {
  1654. *displaced = NULL;
  1655. return error;
  1656. }
  1657. *displaced = task->files;
  1658. task_lock(task);
  1659. task->files = copy;
  1660. task_unlock(task);
  1661. return 0;
  1662. }