sched.c 177 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/cpu_acct.h>
  55. #include <linux/kthread.h>
  56. #include <linux/seq_file.h>
  57. #include <linux/sysctl.h>
  58. #include <linux/syscalls.h>
  59. #include <linux/times.h>
  60. #include <linux/tsacct_kern.h>
  61. #include <linux/kprobes.h>
  62. #include <linux/delayacct.h>
  63. #include <linux/reciprocal_div.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <asm/tlb.h>
  67. #include <asm/irq_regs.h>
  68. /*
  69. * Scheduler clock - returns current time in nanosec units.
  70. * This is default implementation.
  71. * Architectures and sub-architectures can override this.
  72. */
  73. unsigned long long __attribute__((weak)) sched_clock(void)
  74. {
  75. return (unsigned long long)jiffies * (1000000000 / HZ);
  76. }
  77. /*
  78. * Convert user-nice values [ -20 ... 0 ... 19 ]
  79. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  80. * and back.
  81. */
  82. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  83. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  84. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  85. /*
  86. * 'User priority' is the nice value converted to something we
  87. * can work with better when scaling various scheduler parameters,
  88. * it's a [ 0 ... 39 ] range.
  89. */
  90. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  91. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  92. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  93. /*
  94. * Some helpers for converting nanosecond timing to jiffy resolution
  95. */
  96. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
  97. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. #ifdef CONFIG_FAIR_GROUP_SCHED
  144. #include <linux/cgroup.h>
  145. struct cfs_rq;
  146. /* task group related information */
  147. struct task_group {
  148. #ifdef CONFIG_FAIR_CGROUP_SCHED
  149. struct cgroup_subsys_state css;
  150. #endif
  151. /* schedulable entities of this group on each cpu */
  152. struct sched_entity **se;
  153. /* runqueue "owned" by this group on each cpu */
  154. struct cfs_rq **cfs_rq;
  155. unsigned long shares;
  156. /* spinlock to serialize modification to shares */
  157. spinlock_t lock;
  158. };
  159. /* Default task group's sched entity on each cpu */
  160. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  161. /* Default task group's cfs_rq on each cpu */
  162. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  163. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  164. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  165. /* Default task group.
  166. * Every task in system belong to this group at bootup.
  167. */
  168. struct task_group init_task_group = {
  169. .se = init_sched_entity_p,
  170. .cfs_rq = init_cfs_rq_p,
  171. };
  172. #ifdef CONFIG_FAIR_USER_SCHED
  173. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  174. #else
  175. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  176. #endif
  177. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  178. /* return group to which a task belongs */
  179. static inline struct task_group *task_group(struct task_struct *p)
  180. {
  181. struct task_group *tg;
  182. #ifdef CONFIG_FAIR_USER_SCHED
  183. tg = p->user->tg;
  184. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  185. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  186. struct task_group, css);
  187. #else
  188. tg = &init_task_group;
  189. #endif
  190. return tg;
  191. }
  192. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  193. static inline void set_task_cfs_rq(struct task_struct *p)
  194. {
  195. p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
  196. p->se.parent = task_group(p)->se[task_cpu(p)];
  197. }
  198. #else
  199. static inline void set_task_cfs_rq(struct task_struct *p) { }
  200. #endif /* CONFIG_FAIR_GROUP_SCHED */
  201. /* CFS-related fields in a runqueue */
  202. struct cfs_rq {
  203. struct load_weight load;
  204. unsigned long nr_running;
  205. u64 exec_clock;
  206. u64 min_vruntime;
  207. struct rb_root tasks_timeline;
  208. struct rb_node *rb_leftmost;
  209. struct rb_node *rb_load_balance_curr;
  210. /* 'curr' points to currently running entity on this cfs_rq.
  211. * It is set to NULL otherwise (i.e when none are currently running).
  212. */
  213. struct sched_entity *curr;
  214. unsigned long nr_spread_over;
  215. #ifdef CONFIG_FAIR_GROUP_SCHED
  216. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  217. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  218. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  219. * (like users, containers etc.)
  220. *
  221. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  222. * list is used during load balance.
  223. */
  224. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  225. struct task_group *tg; /* group that "owns" this runqueue */
  226. struct rcu_head rcu;
  227. #endif
  228. };
  229. /* Real-Time classes' related field in a runqueue: */
  230. struct rt_rq {
  231. struct rt_prio_array active;
  232. int rt_load_balance_idx;
  233. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  234. };
  235. /*
  236. * This is the main, per-CPU runqueue data structure.
  237. *
  238. * Locking rule: those places that want to lock multiple runqueues
  239. * (such as the load balancing or the thread migration code), lock
  240. * acquire operations must be ordered by ascending &runqueue.
  241. */
  242. struct rq {
  243. /* runqueue lock: */
  244. spinlock_t lock;
  245. /*
  246. * nr_running and cpu_load should be in the same cacheline because
  247. * remote CPUs use both these fields when doing load calculation.
  248. */
  249. unsigned long nr_running;
  250. #define CPU_LOAD_IDX_MAX 5
  251. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  252. unsigned char idle_at_tick;
  253. #ifdef CONFIG_NO_HZ
  254. unsigned char in_nohz_recently;
  255. #endif
  256. /* capture load from *all* tasks on this cpu: */
  257. struct load_weight load;
  258. unsigned long nr_load_updates;
  259. u64 nr_switches;
  260. struct cfs_rq cfs;
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. /* list of leaf cfs_rq on this cpu: */
  263. struct list_head leaf_cfs_rq_list;
  264. #endif
  265. struct rt_rq rt;
  266. /*
  267. * This is part of a global counter where only the total sum
  268. * over all CPUs matters. A task can increase this counter on
  269. * one CPU and if it got migrated afterwards it may decrease
  270. * it on another CPU. Always updated under the runqueue lock:
  271. */
  272. unsigned long nr_uninterruptible;
  273. struct task_struct *curr, *idle;
  274. unsigned long next_balance;
  275. struct mm_struct *prev_mm;
  276. u64 clock, prev_clock_raw;
  277. s64 clock_max_delta;
  278. unsigned int clock_warps, clock_overflows;
  279. u64 idle_clock;
  280. unsigned int clock_deep_idle_events;
  281. u64 tick_timestamp;
  282. atomic_t nr_iowait;
  283. #ifdef CONFIG_SMP
  284. struct sched_domain *sd;
  285. /* For active balancing */
  286. int active_balance;
  287. int push_cpu;
  288. /* cpu of this runqueue: */
  289. int cpu;
  290. struct task_struct *migration_thread;
  291. struct list_head migration_queue;
  292. #endif
  293. #ifdef CONFIG_SCHEDSTATS
  294. /* latency stats */
  295. struct sched_info rq_sched_info;
  296. /* sys_sched_yield() stats */
  297. unsigned int yld_exp_empty;
  298. unsigned int yld_act_empty;
  299. unsigned int yld_both_empty;
  300. unsigned int yld_count;
  301. /* schedule() stats */
  302. unsigned int sched_switch;
  303. unsigned int sched_count;
  304. unsigned int sched_goidle;
  305. /* try_to_wake_up() stats */
  306. unsigned int ttwu_count;
  307. unsigned int ttwu_local;
  308. /* BKL stats */
  309. unsigned int bkl_count;
  310. #endif
  311. struct lock_class_key rq_lock_key;
  312. };
  313. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  314. static DEFINE_MUTEX(sched_hotcpu_mutex);
  315. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  316. {
  317. rq->curr->sched_class->check_preempt_curr(rq, p);
  318. }
  319. static inline int cpu_of(struct rq *rq)
  320. {
  321. #ifdef CONFIG_SMP
  322. return rq->cpu;
  323. #else
  324. return 0;
  325. #endif
  326. }
  327. /*
  328. * Update the per-runqueue clock, as finegrained as the platform can give
  329. * us, but without assuming monotonicity, etc.:
  330. */
  331. static void __update_rq_clock(struct rq *rq)
  332. {
  333. u64 prev_raw = rq->prev_clock_raw;
  334. u64 now = sched_clock();
  335. s64 delta = now - prev_raw;
  336. u64 clock = rq->clock;
  337. #ifdef CONFIG_SCHED_DEBUG
  338. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  339. #endif
  340. /*
  341. * Protect against sched_clock() occasionally going backwards:
  342. */
  343. if (unlikely(delta < 0)) {
  344. clock++;
  345. rq->clock_warps++;
  346. } else {
  347. /*
  348. * Catch too large forward jumps too:
  349. */
  350. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  351. if (clock < rq->tick_timestamp + TICK_NSEC)
  352. clock = rq->tick_timestamp + TICK_NSEC;
  353. else
  354. clock++;
  355. rq->clock_overflows++;
  356. } else {
  357. if (unlikely(delta > rq->clock_max_delta))
  358. rq->clock_max_delta = delta;
  359. clock += delta;
  360. }
  361. }
  362. rq->prev_clock_raw = now;
  363. rq->clock = clock;
  364. }
  365. static void update_rq_clock(struct rq *rq)
  366. {
  367. if (likely(smp_processor_id() == cpu_of(rq)))
  368. __update_rq_clock(rq);
  369. }
  370. /*
  371. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  372. * See detach_destroy_domains: synchronize_sched for details.
  373. *
  374. * The domain tree of any CPU may only be accessed from within
  375. * preempt-disabled sections.
  376. */
  377. #define for_each_domain(cpu, __sd) \
  378. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  379. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  380. #define this_rq() (&__get_cpu_var(runqueues))
  381. #define task_rq(p) cpu_rq(task_cpu(p))
  382. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  383. /*
  384. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  385. */
  386. #ifdef CONFIG_SCHED_DEBUG
  387. # define const_debug __read_mostly
  388. #else
  389. # define const_debug static const
  390. #endif
  391. /*
  392. * Debugging: various feature bits
  393. */
  394. enum {
  395. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  396. SCHED_FEAT_START_DEBIT = 2,
  397. SCHED_FEAT_TREE_AVG = 4,
  398. SCHED_FEAT_APPROX_AVG = 8,
  399. SCHED_FEAT_WAKEUP_PREEMPT = 16,
  400. SCHED_FEAT_PREEMPT_RESTRICT = 32,
  401. };
  402. const_debug unsigned int sysctl_sched_features =
  403. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  404. SCHED_FEAT_START_DEBIT * 1 |
  405. SCHED_FEAT_TREE_AVG * 0 |
  406. SCHED_FEAT_APPROX_AVG * 0 |
  407. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  408. SCHED_FEAT_PREEMPT_RESTRICT * 1;
  409. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  410. /*
  411. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  412. * clock constructed from sched_clock():
  413. */
  414. unsigned long long cpu_clock(int cpu)
  415. {
  416. unsigned long long now;
  417. unsigned long flags;
  418. struct rq *rq;
  419. local_irq_save(flags);
  420. rq = cpu_rq(cpu);
  421. update_rq_clock(rq);
  422. now = rq->clock;
  423. local_irq_restore(flags);
  424. return now;
  425. }
  426. EXPORT_SYMBOL_GPL(cpu_clock);
  427. #ifndef prepare_arch_switch
  428. # define prepare_arch_switch(next) do { } while (0)
  429. #endif
  430. #ifndef finish_arch_switch
  431. # define finish_arch_switch(prev) do { } while (0)
  432. #endif
  433. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  434. static inline int task_running(struct rq *rq, struct task_struct *p)
  435. {
  436. return rq->curr == p;
  437. }
  438. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  439. {
  440. }
  441. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  442. {
  443. #ifdef CONFIG_DEBUG_SPINLOCK
  444. /* this is a valid case when another task releases the spinlock */
  445. rq->lock.owner = current;
  446. #endif
  447. /*
  448. * If we are tracking spinlock dependencies then we have to
  449. * fix up the runqueue lock - which gets 'carried over' from
  450. * prev into current:
  451. */
  452. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  453. spin_unlock_irq(&rq->lock);
  454. }
  455. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  456. static inline int task_running(struct rq *rq, struct task_struct *p)
  457. {
  458. #ifdef CONFIG_SMP
  459. return p->oncpu;
  460. #else
  461. return rq->curr == p;
  462. #endif
  463. }
  464. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  465. {
  466. #ifdef CONFIG_SMP
  467. /*
  468. * We can optimise this out completely for !SMP, because the
  469. * SMP rebalancing from interrupt is the only thing that cares
  470. * here.
  471. */
  472. next->oncpu = 1;
  473. #endif
  474. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  475. spin_unlock_irq(&rq->lock);
  476. #else
  477. spin_unlock(&rq->lock);
  478. #endif
  479. }
  480. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  481. {
  482. #ifdef CONFIG_SMP
  483. /*
  484. * After ->oncpu is cleared, the task can be moved to a different CPU.
  485. * We must ensure this doesn't happen until the switch is completely
  486. * finished.
  487. */
  488. smp_wmb();
  489. prev->oncpu = 0;
  490. #endif
  491. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  492. local_irq_enable();
  493. #endif
  494. }
  495. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  496. /*
  497. * __task_rq_lock - lock the runqueue a given task resides on.
  498. * Must be called interrupts disabled.
  499. */
  500. static inline struct rq *__task_rq_lock(struct task_struct *p)
  501. __acquires(rq->lock)
  502. {
  503. for (;;) {
  504. struct rq *rq = task_rq(p);
  505. spin_lock(&rq->lock);
  506. if (likely(rq == task_rq(p)))
  507. return rq;
  508. spin_unlock(&rq->lock);
  509. }
  510. }
  511. /*
  512. * task_rq_lock - lock the runqueue a given task resides on and disable
  513. * interrupts. Note the ordering: we can safely lookup the task_rq without
  514. * explicitly disabling preemption.
  515. */
  516. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  517. __acquires(rq->lock)
  518. {
  519. struct rq *rq;
  520. for (;;) {
  521. local_irq_save(*flags);
  522. rq = task_rq(p);
  523. spin_lock(&rq->lock);
  524. if (likely(rq == task_rq(p)))
  525. return rq;
  526. spin_unlock_irqrestore(&rq->lock, *flags);
  527. }
  528. }
  529. static void __task_rq_unlock(struct rq *rq)
  530. __releases(rq->lock)
  531. {
  532. spin_unlock(&rq->lock);
  533. }
  534. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  535. __releases(rq->lock)
  536. {
  537. spin_unlock_irqrestore(&rq->lock, *flags);
  538. }
  539. /*
  540. * this_rq_lock - lock this runqueue and disable interrupts.
  541. */
  542. static struct rq *this_rq_lock(void)
  543. __acquires(rq->lock)
  544. {
  545. struct rq *rq;
  546. local_irq_disable();
  547. rq = this_rq();
  548. spin_lock(&rq->lock);
  549. return rq;
  550. }
  551. /*
  552. * We are going deep-idle (irqs are disabled):
  553. */
  554. void sched_clock_idle_sleep_event(void)
  555. {
  556. struct rq *rq = cpu_rq(smp_processor_id());
  557. spin_lock(&rq->lock);
  558. __update_rq_clock(rq);
  559. spin_unlock(&rq->lock);
  560. rq->clock_deep_idle_events++;
  561. }
  562. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  563. /*
  564. * We just idled delta nanoseconds (called with irqs disabled):
  565. */
  566. void sched_clock_idle_wakeup_event(u64 delta_ns)
  567. {
  568. struct rq *rq = cpu_rq(smp_processor_id());
  569. u64 now = sched_clock();
  570. rq->idle_clock += delta_ns;
  571. /*
  572. * Override the previous timestamp and ignore all
  573. * sched_clock() deltas that occured while we idled,
  574. * and use the PM-provided delta_ns to advance the
  575. * rq clock:
  576. */
  577. spin_lock(&rq->lock);
  578. rq->prev_clock_raw = now;
  579. rq->clock += delta_ns;
  580. spin_unlock(&rq->lock);
  581. }
  582. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  583. /*
  584. * resched_task - mark a task 'to be rescheduled now'.
  585. *
  586. * On UP this means the setting of the need_resched flag, on SMP it
  587. * might also involve a cross-CPU call to trigger the scheduler on
  588. * the target CPU.
  589. */
  590. #ifdef CONFIG_SMP
  591. #ifndef tsk_is_polling
  592. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  593. #endif
  594. static void resched_task(struct task_struct *p)
  595. {
  596. int cpu;
  597. assert_spin_locked(&task_rq(p)->lock);
  598. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  599. return;
  600. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  601. cpu = task_cpu(p);
  602. if (cpu == smp_processor_id())
  603. return;
  604. /* NEED_RESCHED must be visible before we test polling */
  605. smp_mb();
  606. if (!tsk_is_polling(p))
  607. smp_send_reschedule(cpu);
  608. }
  609. static void resched_cpu(int cpu)
  610. {
  611. struct rq *rq = cpu_rq(cpu);
  612. unsigned long flags;
  613. if (!spin_trylock_irqsave(&rq->lock, flags))
  614. return;
  615. resched_task(cpu_curr(cpu));
  616. spin_unlock_irqrestore(&rq->lock, flags);
  617. }
  618. #else
  619. static inline void resched_task(struct task_struct *p)
  620. {
  621. assert_spin_locked(&task_rq(p)->lock);
  622. set_tsk_need_resched(p);
  623. }
  624. #endif
  625. #if BITS_PER_LONG == 32
  626. # define WMULT_CONST (~0UL)
  627. #else
  628. # define WMULT_CONST (1UL << 32)
  629. #endif
  630. #define WMULT_SHIFT 32
  631. /*
  632. * Shift right and round:
  633. */
  634. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  635. static unsigned long
  636. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  637. struct load_weight *lw)
  638. {
  639. u64 tmp;
  640. if (unlikely(!lw->inv_weight))
  641. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  642. tmp = (u64)delta_exec * weight;
  643. /*
  644. * Check whether we'd overflow the 64-bit multiplication:
  645. */
  646. if (unlikely(tmp > WMULT_CONST))
  647. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  648. WMULT_SHIFT/2);
  649. else
  650. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  651. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  652. }
  653. static inline unsigned long
  654. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  655. {
  656. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  657. }
  658. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  659. {
  660. lw->weight += inc;
  661. }
  662. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  663. {
  664. lw->weight -= dec;
  665. }
  666. /*
  667. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  668. * of tasks with abnormal "nice" values across CPUs the contribution that
  669. * each task makes to its run queue's load is weighted according to its
  670. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  671. * scaled version of the new time slice allocation that they receive on time
  672. * slice expiry etc.
  673. */
  674. #define WEIGHT_IDLEPRIO 2
  675. #define WMULT_IDLEPRIO (1 << 31)
  676. /*
  677. * Nice levels are multiplicative, with a gentle 10% change for every
  678. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  679. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  680. * that remained on nice 0.
  681. *
  682. * The "10% effect" is relative and cumulative: from _any_ nice level,
  683. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  684. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  685. * If a task goes up by ~10% and another task goes down by ~10% then
  686. * the relative distance between them is ~25%.)
  687. */
  688. static const int prio_to_weight[40] = {
  689. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  690. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  691. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  692. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  693. /* 0 */ 1024, 820, 655, 526, 423,
  694. /* 5 */ 335, 272, 215, 172, 137,
  695. /* 10 */ 110, 87, 70, 56, 45,
  696. /* 15 */ 36, 29, 23, 18, 15,
  697. };
  698. /*
  699. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  700. *
  701. * In cases where the weight does not change often, we can use the
  702. * precalculated inverse to speed up arithmetics by turning divisions
  703. * into multiplications:
  704. */
  705. static const u32 prio_to_wmult[40] = {
  706. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  707. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  708. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  709. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  710. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  711. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  712. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  713. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  714. };
  715. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  716. /*
  717. * runqueue iterator, to support SMP load-balancing between different
  718. * scheduling classes, without having to expose their internal data
  719. * structures to the load-balancing proper:
  720. */
  721. struct rq_iterator {
  722. void *arg;
  723. struct task_struct *(*start)(void *);
  724. struct task_struct *(*next)(void *);
  725. };
  726. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  727. unsigned long max_nr_move, unsigned long max_load_move,
  728. struct sched_domain *sd, enum cpu_idle_type idle,
  729. int *all_pinned, unsigned long *load_moved,
  730. int *this_best_prio, struct rq_iterator *iterator);
  731. #include "sched_stats.h"
  732. #include "sched_idletask.c"
  733. #include "sched_fair.c"
  734. #include "sched_rt.c"
  735. #ifdef CONFIG_SCHED_DEBUG
  736. # include "sched_debug.c"
  737. #endif
  738. #define sched_class_highest (&rt_sched_class)
  739. /*
  740. * Update delta_exec, delta_fair fields for rq.
  741. *
  742. * delta_fair clock advances at a rate inversely proportional to
  743. * total load (rq->load.weight) on the runqueue, while
  744. * delta_exec advances at the same rate as wall-clock (provided
  745. * cpu is not idle).
  746. *
  747. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  748. * runqueue over any given interval. This (smoothened) load is used
  749. * during load balance.
  750. *
  751. * This function is called /before/ updating rq->load
  752. * and when switching tasks.
  753. */
  754. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  755. {
  756. update_load_add(&rq->load, p->se.load.weight);
  757. }
  758. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  759. {
  760. update_load_sub(&rq->load, p->se.load.weight);
  761. }
  762. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  763. {
  764. rq->nr_running++;
  765. inc_load(rq, p);
  766. }
  767. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  768. {
  769. rq->nr_running--;
  770. dec_load(rq, p);
  771. }
  772. static void set_load_weight(struct task_struct *p)
  773. {
  774. if (task_has_rt_policy(p)) {
  775. p->se.load.weight = prio_to_weight[0] * 2;
  776. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  777. return;
  778. }
  779. /*
  780. * SCHED_IDLE tasks get minimal weight:
  781. */
  782. if (p->policy == SCHED_IDLE) {
  783. p->se.load.weight = WEIGHT_IDLEPRIO;
  784. p->se.load.inv_weight = WMULT_IDLEPRIO;
  785. return;
  786. }
  787. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  788. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  789. }
  790. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  791. {
  792. sched_info_queued(p);
  793. p->sched_class->enqueue_task(rq, p, wakeup);
  794. p->se.on_rq = 1;
  795. }
  796. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  797. {
  798. p->sched_class->dequeue_task(rq, p, sleep);
  799. p->se.on_rq = 0;
  800. }
  801. /*
  802. * __normal_prio - return the priority that is based on the static prio
  803. */
  804. static inline int __normal_prio(struct task_struct *p)
  805. {
  806. return p->static_prio;
  807. }
  808. /*
  809. * Calculate the expected normal priority: i.e. priority
  810. * without taking RT-inheritance into account. Might be
  811. * boosted by interactivity modifiers. Changes upon fork,
  812. * setprio syscalls, and whenever the interactivity
  813. * estimator recalculates.
  814. */
  815. static inline int normal_prio(struct task_struct *p)
  816. {
  817. int prio;
  818. if (task_has_rt_policy(p))
  819. prio = MAX_RT_PRIO-1 - p->rt_priority;
  820. else
  821. prio = __normal_prio(p);
  822. return prio;
  823. }
  824. /*
  825. * Calculate the current priority, i.e. the priority
  826. * taken into account by the scheduler. This value might
  827. * be boosted by RT tasks, or might be boosted by
  828. * interactivity modifiers. Will be RT if the task got
  829. * RT-boosted. If not then it returns p->normal_prio.
  830. */
  831. static int effective_prio(struct task_struct *p)
  832. {
  833. p->normal_prio = normal_prio(p);
  834. /*
  835. * If we are RT tasks or we were boosted to RT priority,
  836. * keep the priority unchanged. Otherwise, update priority
  837. * to the normal priority:
  838. */
  839. if (!rt_prio(p->prio))
  840. return p->normal_prio;
  841. return p->prio;
  842. }
  843. /*
  844. * activate_task - move a task to the runqueue.
  845. */
  846. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  847. {
  848. if (p->state == TASK_UNINTERRUPTIBLE)
  849. rq->nr_uninterruptible--;
  850. enqueue_task(rq, p, wakeup);
  851. inc_nr_running(p, rq);
  852. }
  853. /*
  854. * deactivate_task - remove a task from the runqueue.
  855. */
  856. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  857. {
  858. if (p->state == TASK_UNINTERRUPTIBLE)
  859. rq->nr_uninterruptible++;
  860. dequeue_task(rq, p, sleep);
  861. dec_nr_running(p, rq);
  862. }
  863. /**
  864. * task_curr - is this task currently executing on a CPU?
  865. * @p: the task in question.
  866. */
  867. inline int task_curr(const struct task_struct *p)
  868. {
  869. return cpu_curr(task_cpu(p)) == p;
  870. }
  871. /* Used instead of source_load when we know the type == 0 */
  872. unsigned long weighted_cpuload(const int cpu)
  873. {
  874. return cpu_rq(cpu)->load.weight;
  875. }
  876. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  877. {
  878. #ifdef CONFIG_SMP
  879. task_thread_info(p)->cpu = cpu;
  880. #endif
  881. set_task_cfs_rq(p);
  882. }
  883. #ifdef CONFIG_SMP
  884. /*
  885. * Is this task likely cache-hot:
  886. */
  887. static inline int
  888. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  889. {
  890. s64 delta;
  891. if (p->sched_class != &fair_sched_class)
  892. return 0;
  893. if (sysctl_sched_migration_cost == -1)
  894. return 1;
  895. if (sysctl_sched_migration_cost == 0)
  896. return 0;
  897. delta = now - p->se.exec_start;
  898. return delta < (s64)sysctl_sched_migration_cost;
  899. }
  900. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  901. {
  902. int old_cpu = task_cpu(p);
  903. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  904. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  905. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  906. u64 clock_offset;
  907. clock_offset = old_rq->clock - new_rq->clock;
  908. #ifdef CONFIG_SCHEDSTATS
  909. if (p->se.wait_start)
  910. p->se.wait_start -= clock_offset;
  911. if (p->se.sleep_start)
  912. p->se.sleep_start -= clock_offset;
  913. if (p->se.block_start)
  914. p->se.block_start -= clock_offset;
  915. if (old_cpu != new_cpu) {
  916. schedstat_inc(p, se.nr_migrations);
  917. if (task_hot(p, old_rq->clock, NULL))
  918. schedstat_inc(p, se.nr_forced2_migrations);
  919. }
  920. #endif
  921. p->se.vruntime -= old_cfsrq->min_vruntime -
  922. new_cfsrq->min_vruntime;
  923. __set_task_cpu(p, new_cpu);
  924. }
  925. struct migration_req {
  926. struct list_head list;
  927. struct task_struct *task;
  928. int dest_cpu;
  929. struct completion done;
  930. };
  931. /*
  932. * The task's runqueue lock must be held.
  933. * Returns true if you have to wait for migration thread.
  934. */
  935. static int
  936. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  937. {
  938. struct rq *rq = task_rq(p);
  939. /*
  940. * If the task is not on a runqueue (and not running), then
  941. * it is sufficient to simply update the task's cpu field.
  942. */
  943. if (!p->se.on_rq && !task_running(rq, p)) {
  944. set_task_cpu(p, dest_cpu);
  945. return 0;
  946. }
  947. init_completion(&req->done);
  948. req->task = p;
  949. req->dest_cpu = dest_cpu;
  950. list_add(&req->list, &rq->migration_queue);
  951. return 1;
  952. }
  953. /*
  954. * wait_task_inactive - wait for a thread to unschedule.
  955. *
  956. * The caller must ensure that the task *will* unschedule sometime soon,
  957. * else this function might spin for a *long* time. This function can't
  958. * be called with interrupts off, or it may introduce deadlock with
  959. * smp_call_function() if an IPI is sent by the same process we are
  960. * waiting to become inactive.
  961. */
  962. void wait_task_inactive(struct task_struct *p)
  963. {
  964. unsigned long flags;
  965. int running, on_rq;
  966. struct rq *rq;
  967. for (;;) {
  968. /*
  969. * We do the initial early heuristics without holding
  970. * any task-queue locks at all. We'll only try to get
  971. * the runqueue lock when things look like they will
  972. * work out!
  973. */
  974. rq = task_rq(p);
  975. /*
  976. * If the task is actively running on another CPU
  977. * still, just relax and busy-wait without holding
  978. * any locks.
  979. *
  980. * NOTE! Since we don't hold any locks, it's not
  981. * even sure that "rq" stays as the right runqueue!
  982. * But we don't care, since "task_running()" will
  983. * return false if the runqueue has changed and p
  984. * is actually now running somewhere else!
  985. */
  986. while (task_running(rq, p))
  987. cpu_relax();
  988. /*
  989. * Ok, time to look more closely! We need the rq
  990. * lock now, to be *sure*. If we're wrong, we'll
  991. * just go back and repeat.
  992. */
  993. rq = task_rq_lock(p, &flags);
  994. running = task_running(rq, p);
  995. on_rq = p->se.on_rq;
  996. task_rq_unlock(rq, &flags);
  997. /*
  998. * Was it really running after all now that we
  999. * checked with the proper locks actually held?
  1000. *
  1001. * Oops. Go back and try again..
  1002. */
  1003. if (unlikely(running)) {
  1004. cpu_relax();
  1005. continue;
  1006. }
  1007. /*
  1008. * It's not enough that it's not actively running,
  1009. * it must be off the runqueue _entirely_, and not
  1010. * preempted!
  1011. *
  1012. * So if it wa still runnable (but just not actively
  1013. * running right now), it's preempted, and we should
  1014. * yield - it could be a while.
  1015. */
  1016. if (unlikely(on_rq)) {
  1017. schedule_timeout_uninterruptible(1);
  1018. continue;
  1019. }
  1020. /*
  1021. * Ahh, all good. It wasn't running, and it wasn't
  1022. * runnable, which means that it will never become
  1023. * running in the future either. We're all done!
  1024. */
  1025. break;
  1026. }
  1027. }
  1028. /***
  1029. * kick_process - kick a running thread to enter/exit the kernel
  1030. * @p: the to-be-kicked thread
  1031. *
  1032. * Cause a process which is running on another CPU to enter
  1033. * kernel-mode, without any delay. (to get signals handled.)
  1034. *
  1035. * NOTE: this function doesnt have to take the runqueue lock,
  1036. * because all it wants to ensure is that the remote task enters
  1037. * the kernel. If the IPI races and the task has been migrated
  1038. * to another CPU then no harm is done and the purpose has been
  1039. * achieved as well.
  1040. */
  1041. void kick_process(struct task_struct *p)
  1042. {
  1043. int cpu;
  1044. preempt_disable();
  1045. cpu = task_cpu(p);
  1046. if ((cpu != smp_processor_id()) && task_curr(p))
  1047. smp_send_reschedule(cpu);
  1048. preempt_enable();
  1049. }
  1050. /*
  1051. * Return a low guess at the load of a migration-source cpu weighted
  1052. * according to the scheduling class and "nice" value.
  1053. *
  1054. * We want to under-estimate the load of migration sources, to
  1055. * balance conservatively.
  1056. */
  1057. static unsigned long source_load(int cpu, int type)
  1058. {
  1059. struct rq *rq = cpu_rq(cpu);
  1060. unsigned long total = weighted_cpuload(cpu);
  1061. if (type == 0)
  1062. return total;
  1063. return min(rq->cpu_load[type-1], total);
  1064. }
  1065. /*
  1066. * Return a high guess at the load of a migration-target cpu weighted
  1067. * according to the scheduling class and "nice" value.
  1068. */
  1069. static unsigned long target_load(int cpu, int type)
  1070. {
  1071. struct rq *rq = cpu_rq(cpu);
  1072. unsigned long total = weighted_cpuload(cpu);
  1073. if (type == 0)
  1074. return total;
  1075. return max(rq->cpu_load[type-1], total);
  1076. }
  1077. /*
  1078. * Return the average load per task on the cpu's run queue
  1079. */
  1080. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1081. {
  1082. struct rq *rq = cpu_rq(cpu);
  1083. unsigned long total = weighted_cpuload(cpu);
  1084. unsigned long n = rq->nr_running;
  1085. return n ? total / n : SCHED_LOAD_SCALE;
  1086. }
  1087. /*
  1088. * find_idlest_group finds and returns the least busy CPU group within the
  1089. * domain.
  1090. */
  1091. static struct sched_group *
  1092. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1093. {
  1094. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1095. unsigned long min_load = ULONG_MAX, this_load = 0;
  1096. int load_idx = sd->forkexec_idx;
  1097. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1098. do {
  1099. unsigned long load, avg_load;
  1100. int local_group;
  1101. int i;
  1102. /* Skip over this group if it has no CPUs allowed */
  1103. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1104. continue;
  1105. local_group = cpu_isset(this_cpu, group->cpumask);
  1106. /* Tally up the load of all CPUs in the group */
  1107. avg_load = 0;
  1108. for_each_cpu_mask(i, group->cpumask) {
  1109. /* Bias balancing toward cpus of our domain */
  1110. if (local_group)
  1111. load = source_load(i, load_idx);
  1112. else
  1113. load = target_load(i, load_idx);
  1114. avg_load += load;
  1115. }
  1116. /* Adjust by relative CPU power of the group */
  1117. avg_load = sg_div_cpu_power(group,
  1118. avg_load * SCHED_LOAD_SCALE);
  1119. if (local_group) {
  1120. this_load = avg_load;
  1121. this = group;
  1122. } else if (avg_load < min_load) {
  1123. min_load = avg_load;
  1124. idlest = group;
  1125. }
  1126. } while (group = group->next, group != sd->groups);
  1127. if (!idlest || 100*this_load < imbalance*min_load)
  1128. return NULL;
  1129. return idlest;
  1130. }
  1131. /*
  1132. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1133. */
  1134. static int
  1135. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1136. {
  1137. cpumask_t tmp;
  1138. unsigned long load, min_load = ULONG_MAX;
  1139. int idlest = -1;
  1140. int i;
  1141. /* Traverse only the allowed CPUs */
  1142. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1143. for_each_cpu_mask(i, tmp) {
  1144. load = weighted_cpuload(i);
  1145. if (load < min_load || (load == min_load && i == this_cpu)) {
  1146. min_load = load;
  1147. idlest = i;
  1148. }
  1149. }
  1150. return idlest;
  1151. }
  1152. /*
  1153. * sched_balance_self: balance the current task (running on cpu) in domains
  1154. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1155. * SD_BALANCE_EXEC.
  1156. *
  1157. * Balance, ie. select the least loaded group.
  1158. *
  1159. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1160. *
  1161. * preempt must be disabled.
  1162. */
  1163. static int sched_balance_self(int cpu, int flag)
  1164. {
  1165. struct task_struct *t = current;
  1166. struct sched_domain *tmp, *sd = NULL;
  1167. for_each_domain(cpu, tmp) {
  1168. /*
  1169. * If power savings logic is enabled for a domain, stop there.
  1170. */
  1171. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1172. break;
  1173. if (tmp->flags & flag)
  1174. sd = tmp;
  1175. }
  1176. while (sd) {
  1177. cpumask_t span;
  1178. struct sched_group *group;
  1179. int new_cpu, weight;
  1180. if (!(sd->flags & flag)) {
  1181. sd = sd->child;
  1182. continue;
  1183. }
  1184. span = sd->span;
  1185. group = find_idlest_group(sd, t, cpu);
  1186. if (!group) {
  1187. sd = sd->child;
  1188. continue;
  1189. }
  1190. new_cpu = find_idlest_cpu(group, t, cpu);
  1191. if (new_cpu == -1 || new_cpu == cpu) {
  1192. /* Now try balancing at a lower domain level of cpu */
  1193. sd = sd->child;
  1194. continue;
  1195. }
  1196. /* Now try balancing at a lower domain level of new_cpu */
  1197. cpu = new_cpu;
  1198. sd = NULL;
  1199. weight = cpus_weight(span);
  1200. for_each_domain(cpu, tmp) {
  1201. if (weight <= cpus_weight(tmp->span))
  1202. break;
  1203. if (tmp->flags & flag)
  1204. sd = tmp;
  1205. }
  1206. /* while loop will break here if sd == NULL */
  1207. }
  1208. return cpu;
  1209. }
  1210. #endif /* CONFIG_SMP */
  1211. /*
  1212. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1213. * not idle and an idle cpu is available. The span of cpus to
  1214. * search starts with cpus closest then further out as needed,
  1215. * so we always favor a closer, idle cpu.
  1216. *
  1217. * Returns the CPU we should wake onto.
  1218. */
  1219. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1220. static int wake_idle(int cpu, struct task_struct *p)
  1221. {
  1222. cpumask_t tmp;
  1223. struct sched_domain *sd;
  1224. int i;
  1225. /*
  1226. * If it is idle, then it is the best cpu to run this task.
  1227. *
  1228. * This cpu is also the best, if it has more than one task already.
  1229. * Siblings must be also busy(in most cases) as they didn't already
  1230. * pickup the extra load from this cpu and hence we need not check
  1231. * sibling runqueue info. This will avoid the checks and cache miss
  1232. * penalities associated with that.
  1233. */
  1234. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1235. return cpu;
  1236. for_each_domain(cpu, sd) {
  1237. if (sd->flags & SD_WAKE_IDLE) {
  1238. cpus_and(tmp, sd->span, p->cpus_allowed);
  1239. for_each_cpu_mask(i, tmp) {
  1240. if (idle_cpu(i)) {
  1241. if (i != task_cpu(p)) {
  1242. schedstat_inc(p,
  1243. se.nr_wakeups_idle);
  1244. }
  1245. return i;
  1246. }
  1247. }
  1248. } else {
  1249. break;
  1250. }
  1251. }
  1252. return cpu;
  1253. }
  1254. #else
  1255. static inline int wake_idle(int cpu, struct task_struct *p)
  1256. {
  1257. return cpu;
  1258. }
  1259. #endif
  1260. /***
  1261. * try_to_wake_up - wake up a thread
  1262. * @p: the to-be-woken-up thread
  1263. * @state: the mask of task states that can be woken
  1264. * @sync: do a synchronous wakeup?
  1265. *
  1266. * Put it on the run-queue if it's not already there. The "current"
  1267. * thread is always on the run-queue (except when the actual
  1268. * re-schedule is in progress), and as such you're allowed to do
  1269. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1270. * runnable without the overhead of this.
  1271. *
  1272. * returns failure only if the task is already active.
  1273. */
  1274. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1275. {
  1276. int cpu, orig_cpu, this_cpu, success = 0;
  1277. unsigned long flags;
  1278. long old_state;
  1279. struct rq *rq;
  1280. #ifdef CONFIG_SMP
  1281. struct sched_domain *sd, *this_sd = NULL;
  1282. unsigned long load, this_load;
  1283. int new_cpu;
  1284. #endif
  1285. rq = task_rq_lock(p, &flags);
  1286. old_state = p->state;
  1287. if (!(old_state & state))
  1288. goto out;
  1289. if (p->se.on_rq)
  1290. goto out_running;
  1291. cpu = task_cpu(p);
  1292. orig_cpu = cpu;
  1293. this_cpu = smp_processor_id();
  1294. #ifdef CONFIG_SMP
  1295. if (unlikely(task_running(rq, p)))
  1296. goto out_activate;
  1297. new_cpu = cpu;
  1298. schedstat_inc(rq, ttwu_count);
  1299. if (cpu == this_cpu) {
  1300. schedstat_inc(rq, ttwu_local);
  1301. goto out_set_cpu;
  1302. }
  1303. for_each_domain(this_cpu, sd) {
  1304. if (cpu_isset(cpu, sd->span)) {
  1305. schedstat_inc(sd, ttwu_wake_remote);
  1306. this_sd = sd;
  1307. break;
  1308. }
  1309. }
  1310. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1311. goto out_set_cpu;
  1312. /*
  1313. * Check for affine wakeup and passive balancing possibilities.
  1314. */
  1315. if (this_sd) {
  1316. int idx = this_sd->wake_idx;
  1317. unsigned int imbalance;
  1318. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1319. load = source_load(cpu, idx);
  1320. this_load = target_load(this_cpu, idx);
  1321. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1322. if (this_sd->flags & SD_WAKE_AFFINE) {
  1323. unsigned long tl = this_load;
  1324. unsigned long tl_per_task;
  1325. /*
  1326. * Attract cache-cold tasks on sync wakeups:
  1327. */
  1328. if (sync && !task_hot(p, rq->clock, this_sd))
  1329. goto out_set_cpu;
  1330. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1331. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1332. /*
  1333. * If sync wakeup then subtract the (maximum possible)
  1334. * effect of the currently running task from the load
  1335. * of the current CPU:
  1336. */
  1337. if (sync)
  1338. tl -= current->se.load.weight;
  1339. if ((tl <= load &&
  1340. tl + target_load(cpu, idx) <= tl_per_task) ||
  1341. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1342. /*
  1343. * This domain has SD_WAKE_AFFINE and
  1344. * p is cache cold in this domain, and
  1345. * there is no bad imbalance.
  1346. */
  1347. schedstat_inc(this_sd, ttwu_move_affine);
  1348. schedstat_inc(p, se.nr_wakeups_affine);
  1349. goto out_set_cpu;
  1350. }
  1351. }
  1352. /*
  1353. * Start passive balancing when half the imbalance_pct
  1354. * limit is reached.
  1355. */
  1356. if (this_sd->flags & SD_WAKE_BALANCE) {
  1357. if (imbalance*this_load <= 100*load) {
  1358. schedstat_inc(this_sd, ttwu_move_balance);
  1359. schedstat_inc(p, se.nr_wakeups_passive);
  1360. goto out_set_cpu;
  1361. }
  1362. }
  1363. }
  1364. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1365. out_set_cpu:
  1366. new_cpu = wake_idle(new_cpu, p);
  1367. if (new_cpu != cpu) {
  1368. set_task_cpu(p, new_cpu);
  1369. task_rq_unlock(rq, &flags);
  1370. /* might preempt at this point */
  1371. rq = task_rq_lock(p, &flags);
  1372. old_state = p->state;
  1373. if (!(old_state & state))
  1374. goto out;
  1375. if (p->se.on_rq)
  1376. goto out_running;
  1377. this_cpu = smp_processor_id();
  1378. cpu = task_cpu(p);
  1379. }
  1380. out_activate:
  1381. #endif /* CONFIG_SMP */
  1382. schedstat_inc(p, se.nr_wakeups);
  1383. if (sync)
  1384. schedstat_inc(p, se.nr_wakeups_sync);
  1385. if (orig_cpu != cpu)
  1386. schedstat_inc(p, se.nr_wakeups_migrate);
  1387. if (cpu == this_cpu)
  1388. schedstat_inc(p, se.nr_wakeups_local);
  1389. else
  1390. schedstat_inc(p, se.nr_wakeups_remote);
  1391. update_rq_clock(rq);
  1392. activate_task(rq, p, 1);
  1393. check_preempt_curr(rq, p);
  1394. success = 1;
  1395. out_running:
  1396. p->state = TASK_RUNNING;
  1397. out:
  1398. task_rq_unlock(rq, &flags);
  1399. return success;
  1400. }
  1401. int fastcall wake_up_process(struct task_struct *p)
  1402. {
  1403. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1404. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1405. }
  1406. EXPORT_SYMBOL(wake_up_process);
  1407. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1408. {
  1409. return try_to_wake_up(p, state, 0);
  1410. }
  1411. /*
  1412. * Perform scheduler related setup for a newly forked process p.
  1413. * p is forked by current.
  1414. *
  1415. * __sched_fork() is basic setup used by init_idle() too:
  1416. */
  1417. static void __sched_fork(struct task_struct *p)
  1418. {
  1419. p->se.exec_start = 0;
  1420. p->se.sum_exec_runtime = 0;
  1421. p->se.prev_sum_exec_runtime = 0;
  1422. #ifdef CONFIG_SCHEDSTATS
  1423. p->se.wait_start = 0;
  1424. p->se.sum_sleep_runtime = 0;
  1425. p->se.sleep_start = 0;
  1426. p->se.block_start = 0;
  1427. p->se.sleep_max = 0;
  1428. p->se.block_max = 0;
  1429. p->se.exec_max = 0;
  1430. p->se.slice_max = 0;
  1431. p->se.wait_max = 0;
  1432. #endif
  1433. INIT_LIST_HEAD(&p->run_list);
  1434. p->se.on_rq = 0;
  1435. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1436. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1437. #endif
  1438. /*
  1439. * We mark the process as running here, but have not actually
  1440. * inserted it onto the runqueue yet. This guarantees that
  1441. * nobody will actually run it, and a signal or other external
  1442. * event cannot wake it up and insert it on the runqueue either.
  1443. */
  1444. p->state = TASK_RUNNING;
  1445. }
  1446. /*
  1447. * fork()/clone()-time setup:
  1448. */
  1449. void sched_fork(struct task_struct *p, int clone_flags)
  1450. {
  1451. int cpu = get_cpu();
  1452. __sched_fork(p);
  1453. #ifdef CONFIG_SMP
  1454. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1455. #endif
  1456. set_task_cpu(p, cpu);
  1457. /*
  1458. * Make sure we do not leak PI boosting priority to the child:
  1459. */
  1460. p->prio = current->normal_prio;
  1461. if (!rt_prio(p->prio))
  1462. p->sched_class = &fair_sched_class;
  1463. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1464. if (likely(sched_info_on()))
  1465. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1466. #endif
  1467. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1468. p->oncpu = 0;
  1469. #endif
  1470. #ifdef CONFIG_PREEMPT
  1471. /* Want to start with kernel preemption disabled. */
  1472. task_thread_info(p)->preempt_count = 1;
  1473. #endif
  1474. put_cpu();
  1475. }
  1476. /*
  1477. * wake_up_new_task - wake up a newly created task for the first time.
  1478. *
  1479. * This function will do some initial scheduler statistics housekeeping
  1480. * that must be done for every newly created context, then puts the task
  1481. * on the runqueue and wakes it.
  1482. */
  1483. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1484. {
  1485. unsigned long flags;
  1486. struct rq *rq;
  1487. rq = task_rq_lock(p, &flags);
  1488. BUG_ON(p->state != TASK_RUNNING);
  1489. update_rq_clock(rq);
  1490. p->prio = effective_prio(p);
  1491. if (!p->sched_class->task_new || !current->se.on_rq) {
  1492. activate_task(rq, p, 0);
  1493. } else {
  1494. /*
  1495. * Let the scheduling class do new task startup
  1496. * management (if any):
  1497. */
  1498. p->sched_class->task_new(rq, p);
  1499. inc_nr_running(p, rq);
  1500. }
  1501. check_preempt_curr(rq, p);
  1502. task_rq_unlock(rq, &flags);
  1503. }
  1504. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1505. /**
  1506. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1507. * @notifier: notifier struct to register
  1508. */
  1509. void preempt_notifier_register(struct preempt_notifier *notifier)
  1510. {
  1511. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1512. }
  1513. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1514. /**
  1515. * preempt_notifier_unregister - no longer interested in preemption notifications
  1516. * @notifier: notifier struct to unregister
  1517. *
  1518. * This is safe to call from within a preemption notifier.
  1519. */
  1520. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1521. {
  1522. hlist_del(&notifier->link);
  1523. }
  1524. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1525. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1526. {
  1527. struct preempt_notifier *notifier;
  1528. struct hlist_node *node;
  1529. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1530. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1531. }
  1532. static void
  1533. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1534. struct task_struct *next)
  1535. {
  1536. struct preempt_notifier *notifier;
  1537. struct hlist_node *node;
  1538. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1539. notifier->ops->sched_out(notifier, next);
  1540. }
  1541. #else
  1542. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1543. {
  1544. }
  1545. static void
  1546. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1547. struct task_struct *next)
  1548. {
  1549. }
  1550. #endif
  1551. /**
  1552. * prepare_task_switch - prepare to switch tasks
  1553. * @rq: the runqueue preparing to switch
  1554. * @prev: the current task that is being switched out
  1555. * @next: the task we are going to switch to.
  1556. *
  1557. * This is called with the rq lock held and interrupts off. It must
  1558. * be paired with a subsequent finish_task_switch after the context
  1559. * switch.
  1560. *
  1561. * prepare_task_switch sets up locking and calls architecture specific
  1562. * hooks.
  1563. */
  1564. static inline void
  1565. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1566. struct task_struct *next)
  1567. {
  1568. fire_sched_out_preempt_notifiers(prev, next);
  1569. prepare_lock_switch(rq, next);
  1570. prepare_arch_switch(next);
  1571. }
  1572. /**
  1573. * finish_task_switch - clean up after a task-switch
  1574. * @rq: runqueue associated with task-switch
  1575. * @prev: the thread we just switched away from.
  1576. *
  1577. * finish_task_switch must be called after the context switch, paired
  1578. * with a prepare_task_switch call before the context switch.
  1579. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1580. * and do any other architecture-specific cleanup actions.
  1581. *
  1582. * Note that we may have delayed dropping an mm in context_switch(). If
  1583. * so, we finish that here outside of the runqueue lock. (Doing it
  1584. * with the lock held can cause deadlocks; see schedule() for
  1585. * details.)
  1586. */
  1587. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1588. __releases(rq->lock)
  1589. {
  1590. struct mm_struct *mm = rq->prev_mm;
  1591. long prev_state;
  1592. rq->prev_mm = NULL;
  1593. /*
  1594. * A task struct has one reference for the use as "current".
  1595. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1596. * schedule one last time. The schedule call will never return, and
  1597. * the scheduled task must drop that reference.
  1598. * The test for TASK_DEAD must occur while the runqueue locks are
  1599. * still held, otherwise prev could be scheduled on another cpu, die
  1600. * there before we look at prev->state, and then the reference would
  1601. * be dropped twice.
  1602. * Manfred Spraul <manfred@colorfullife.com>
  1603. */
  1604. prev_state = prev->state;
  1605. finish_arch_switch(prev);
  1606. finish_lock_switch(rq, prev);
  1607. fire_sched_in_preempt_notifiers(current);
  1608. if (mm)
  1609. mmdrop(mm);
  1610. if (unlikely(prev_state == TASK_DEAD)) {
  1611. /*
  1612. * Remove function-return probe instances associated with this
  1613. * task and put them back on the free list.
  1614. */
  1615. kprobe_flush_task(prev);
  1616. put_task_struct(prev);
  1617. }
  1618. }
  1619. /**
  1620. * schedule_tail - first thing a freshly forked thread must call.
  1621. * @prev: the thread we just switched away from.
  1622. */
  1623. asmlinkage void schedule_tail(struct task_struct *prev)
  1624. __releases(rq->lock)
  1625. {
  1626. struct rq *rq = this_rq();
  1627. finish_task_switch(rq, prev);
  1628. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1629. /* In this case, finish_task_switch does not reenable preemption */
  1630. preempt_enable();
  1631. #endif
  1632. if (current->set_child_tid)
  1633. put_user(task_pid_vnr(current), current->set_child_tid);
  1634. }
  1635. /*
  1636. * context_switch - switch to the new MM and the new
  1637. * thread's register state.
  1638. */
  1639. static inline void
  1640. context_switch(struct rq *rq, struct task_struct *prev,
  1641. struct task_struct *next)
  1642. {
  1643. struct mm_struct *mm, *oldmm;
  1644. prepare_task_switch(rq, prev, next);
  1645. mm = next->mm;
  1646. oldmm = prev->active_mm;
  1647. /*
  1648. * For paravirt, this is coupled with an exit in switch_to to
  1649. * combine the page table reload and the switch backend into
  1650. * one hypercall.
  1651. */
  1652. arch_enter_lazy_cpu_mode();
  1653. if (unlikely(!mm)) {
  1654. next->active_mm = oldmm;
  1655. atomic_inc(&oldmm->mm_count);
  1656. enter_lazy_tlb(oldmm, next);
  1657. } else
  1658. switch_mm(oldmm, mm, next);
  1659. if (unlikely(!prev->mm)) {
  1660. prev->active_mm = NULL;
  1661. rq->prev_mm = oldmm;
  1662. }
  1663. /*
  1664. * Since the runqueue lock will be released by the next
  1665. * task (which is an invalid locking op but in the case
  1666. * of the scheduler it's an obvious special-case), so we
  1667. * do an early lockdep release here:
  1668. */
  1669. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1670. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1671. #endif
  1672. /* Here we just switch the register state and the stack. */
  1673. switch_to(prev, next, prev);
  1674. barrier();
  1675. /*
  1676. * this_rq must be evaluated again because prev may have moved
  1677. * CPUs since it called schedule(), thus the 'rq' on its stack
  1678. * frame will be invalid.
  1679. */
  1680. finish_task_switch(this_rq(), prev);
  1681. }
  1682. /*
  1683. * nr_running, nr_uninterruptible and nr_context_switches:
  1684. *
  1685. * externally visible scheduler statistics: current number of runnable
  1686. * threads, current number of uninterruptible-sleeping threads, total
  1687. * number of context switches performed since bootup.
  1688. */
  1689. unsigned long nr_running(void)
  1690. {
  1691. unsigned long i, sum = 0;
  1692. for_each_online_cpu(i)
  1693. sum += cpu_rq(i)->nr_running;
  1694. return sum;
  1695. }
  1696. unsigned long nr_uninterruptible(void)
  1697. {
  1698. unsigned long i, sum = 0;
  1699. for_each_possible_cpu(i)
  1700. sum += cpu_rq(i)->nr_uninterruptible;
  1701. /*
  1702. * Since we read the counters lockless, it might be slightly
  1703. * inaccurate. Do not allow it to go below zero though:
  1704. */
  1705. if (unlikely((long)sum < 0))
  1706. sum = 0;
  1707. return sum;
  1708. }
  1709. unsigned long long nr_context_switches(void)
  1710. {
  1711. int i;
  1712. unsigned long long sum = 0;
  1713. for_each_possible_cpu(i)
  1714. sum += cpu_rq(i)->nr_switches;
  1715. return sum;
  1716. }
  1717. unsigned long nr_iowait(void)
  1718. {
  1719. unsigned long i, sum = 0;
  1720. for_each_possible_cpu(i)
  1721. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1722. return sum;
  1723. }
  1724. unsigned long nr_active(void)
  1725. {
  1726. unsigned long i, running = 0, uninterruptible = 0;
  1727. for_each_online_cpu(i) {
  1728. running += cpu_rq(i)->nr_running;
  1729. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1730. }
  1731. if (unlikely((long)uninterruptible < 0))
  1732. uninterruptible = 0;
  1733. return running + uninterruptible;
  1734. }
  1735. /*
  1736. * Update rq->cpu_load[] statistics. This function is usually called every
  1737. * scheduler tick (TICK_NSEC).
  1738. */
  1739. static void update_cpu_load(struct rq *this_rq)
  1740. {
  1741. unsigned long this_load = this_rq->load.weight;
  1742. int i, scale;
  1743. this_rq->nr_load_updates++;
  1744. /* Update our load: */
  1745. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1746. unsigned long old_load, new_load;
  1747. /* scale is effectively 1 << i now, and >> i divides by scale */
  1748. old_load = this_rq->cpu_load[i];
  1749. new_load = this_load;
  1750. /*
  1751. * Round up the averaging division if load is increasing. This
  1752. * prevents us from getting stuck on 9 if the load is 10, for
  1753. * example.
  1754. */
  1755. if (new_load > old_load)
  1756. new_load += scale-1;
  1757. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1758. }
  1759. }
  1760. #ifdef CONFIG_SMP
  1761. /*
  1762. * double_rq_lock - safely lock two runqueues
  1763. *
  1764. * Note this does not disable interrupts like task_rq_lock,
  1765. * you need to do so manually before calling.
  1766. */
  1767. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1768. __acquires(rq1->lock)
  1769. __acquires(rq2->lock)
  1770. {
  1771. BUG_ON(!irqs_disabled());
  1772. if (rq1 == rq2) {
  1773. spin_lock(&rq1->lock);
  1774. __acquire(rq2->lock); /* Fake it out ;) */
  1775. } else {
  1776. if (rq1 < rq2) {
  1777. spin_lock(&rq1->lock);
  1778. spin_lock(&rq2->lock);
  1779. } else {
  1780. spin_lock(&rq2->lock);
  1781. spin_lock(&rq1->lock);
  1782. }
  1783. }
  1784. update_rq_clock(rq1);
  1785. update_rq_clock(rq2);
  1786. }
  1787. /*
  1788. * double_rq_unlock - safely unlock two runqueues
  1789. *
  1790. * Note this does not restore interrupts like task_rq_unlock,
  1791. * you need to do so manually after calling.
  1792. */
  1793. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1794. __releases(rq1->lock)
  1795. __releases(rq2->lock)
  1796. {
  1797. spin_unlock(&rq1->lock);
  1798. if (rq1 != rq2)
  1799. spin_unlock(&rq2->lock);
  1800. else
  1801. __release(rq2->lock);
  1802. }
  1803. /*
  1804. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1805. */
  1806. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1807. __releases(this_rq->lock)
  1808. __acquires(busiest->lock)
  1809. __acquires(this_rq->lock)
  1810. {
  1811. if (unlikely(!irqs_disabled())) {
  1812. /* printk() doesn't work good under rq->lock */
  1813. spin_unlock(&this_rq->lock);
  1814. BUG_ON(1);
  1815. }
  1816. if (unlikely(!spin_trylock(&busiest->lock))) {
  1817. if (busiest < this_rq) {
  1818. spin_unlock(&this_rq->lock);
  1819. spin_lock(&busiest->lock);
  1820. spin_lock(&this_rq->lock);
  1821. } else
  1822. spin_lock(&busiest->lock);
  1823. }
  1824. }
  1825. /*
  1826. * If dest_cpu is allowed for this process, migrate the task to it.
  1827. * This is accomplished by forcing the cpu_allowed mask to only
  1828. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1829. * the cpu_allowed mask is restored.
  1830. */
  1831. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1832. {
  1833. struct migration_req req;
  1834. unsigned long flags;
  1835. struct rq *rq;
  1836. rq = task_rq_lock(p, &flags);
  1837. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1838. || unlikely(cpu_is_offline(dest_cpu)))
  1839. goto out;
  1840. /* force the process onto the specified CPU */
  1841. if (migrate_task(p, dest_cpu, &req)) {
  1842. /* Need to wait for migration thread (might exit: take ref). */
  1843. struct task_struct *mt = rq->migration_thread;
  1844. get_task_struct(mt);
  1845. task_rq_unlock(rq, &flags);
  1846. wake_up_process(mt);
  1847. put_task_struct(mt);
  1848. wait_for_completion(&req.done);
  1849. return;
  1850. }
  1851. out:
  1852. task_rq_unlock(rq, &flags);
  1853. }
  1854. /*
  1855. * sched_exec - execve() is a valuable balancing opportunity, because at
  1856. * this point the task has the smallest effective memory and cache footprint.
  1857. */
  1858. void sched_exec(void)
  1859. {
  1860. int new_cpu, this_cpu = get_cpu();
  1861. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1862. put_cpu();
  1863. if (new_cpu != this_cpu)
  1864. sched_migrate_task(current, new_cpu);
  1865. }
  1866. /*
  1867. * pull_task - move a task from a remote runqueue to the local runqueue.
  1868. * Both runqueues must be locked.
  1869. */
  1870. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1871. struct rq *this_rq, int this_cpu)
  1872. {
  1873. deactivate_task(src_rq, p, 0);
  1874. set_task_cpu(p, this_cpu);
  1875. activate_task(this_rq, p, 0);
  1876. /*
  1877. * Note that idle threads have a prio of MAX_PRIO, for this test
  1878. * to be always true for them.
  1879. */
  1880. check_preempt_curr(this_rq, p);
  1881. }
  1882. /*
  1883. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1884. */
  1885. static
  1886. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1887. struct sched_domain *sd, enum cpu_idle_type idle,
  1888. int *all_pinned)
  1889. {
  1890. /*
  1891. * We do not migrate tasks that are:
  1892. * 1) running (obviously), or
  1893. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1894. * 3) are cache-hot on their current CPU.
  1895. */
  1896. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1897. schedstat_inc(p, se.nr_failed_migrations_affine);
  1898. return 0;
  1899. }
  1900. *all_pinned = 0;
  1901. if (task_running(rq, p)) {
  1902. schedstat_inc(p, se.nr_failed_migrations_running);
  1903. return 0;
  1904. }
  1905. /*
  1906. * Aggressive migration if:
  1907. * 1) task is cache cold, or
  1908. * 2) too many balance attempts have failed.
  1909. */
  1910. if (!task_hot(p, rq->clock, sd) ||
  1911. sd->nr_balance_failed > sd->cache_nice_tries) {
  1912. #ifdef CONFIG_SCHEDSTATS
  1913. if (task_hot(p, rq->clock, sd)) {
  1914. schedstat_inc(sd, lb_hot_gained[idle]);
  1915. schedstat_inc(p, se.nr_forced_migrations);
  1916. }
  1917. #endif
  1918. return 1;
  1919. }
  1920. if (task_hot(p, rq->clock, sd)) {
  1921. schedstat_inc(p, se.nr_failed_migrations_hot);
  1922. return 0;
  1923. }
  1924. return 1;
  1925. }
  1926. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1927. unsigned long max_nr_move, unsigned long max_load_move,
  1928. struct sched_domain *sd, enum cpu_idle_type idle,
  1929. int *all_pinned, unsigned long *load_moved,
  1930. int *this_best_prio, struct rq_iterator *iterator)
  1931. {
  1932. int pulled = 0, pinned = 0, skip_for_load;
  1933. struct task_struct *p;
  1934. long rem_load_move = max_load_move;
  1935. if (max_nr_move == 0 || max_load_move == 0)
  1936. goto out;
  1937. pinned = 1;
  1938. /*
  1939. * Start the load-balancing iterator:
  1940. */
  1941. p = iterator->start(iterator->arg);
  1942. next:
  1943. if (!p)
  1944. goto out;
  1945. /*
  1946. * To help distribute high priority tasks accross CPUs we don't
  1947. * skip a task if it will be the highest priority task (i.e. smallest
  1948. * prio value) on its new queue regardless of its load weight
  1949. */
  1950. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1951. SCHED_LOAD_SCALE_FUZZ;
  1952. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1953. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1954. p = iterator->next(iterator->arg);
  1955. goto next;
  1956. }
  1957. pull_task(busiest, p, this_rq, this_cpu);
  1958. pulled++;
  1959. rem_load_move -= p->se.load.weight;
  1960. /*
  1961. * We only want to steal up to the prescribed number of tasks
  1962. * and the prescribed amount of weighted load.
  1963. */
  1964. if (pulled < max_nr_move && rem_load_move > 0) {
  1965. if (p->prio < *this_best_prio)
  1966. *this_best_prio = p->prio;
  1967. p = iterator->next(iterator->arg);
  1968. goto next;
  1969. }
  1970. out:
  1971. /*
  1972. * Right now, this is the only place pull_task() is called,
  1973. * so we can safely collect pull_task() stats here rather than
  1974. * inside pull_task().
  1975. */
  1976. schedstat_add(sd, lb_gained[idle], pulled);
  1977. if (all_pinned)
  1978. *all_pinned = pinned;
  1979. *load_moved = max_load_move - rem_load_move;
  1980. return pulled;
  1981. }
  1982. /*
  1983. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1984. * this_rq, as part of a balancing operation within domain "sd".
  1985. * Returns 1 if successful and 0 otherwise.
  1986. *
  1987. * Called with both runqueues locked.
  1988. */
  1989. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1990. unsigned long max_load_move,
  1991. struct sched_domain *sd, enum cpu_idle_type idle,
  1992. int *all_pinned)
  1993. {
  1994. const struct sched_class *class = sched_class_highest;
  1995. unsigned long total_load_moved = 0;
  1996. int this_best_prio = this_rq->curr->prio;
  1997. do {
  1998. total_load_moved +=
  1999. class->load_balance(this_rq, this_cpu, busiest,
  2000. ULONG_MAX, max_load_move - total_load_moved,
  2001. sd, idle, all_pinned, &this_best_prio);
  2002. class = class->next;
  2003. } while (class && max_load_move > total_load_moved);
  2004. return total_load_moved > 0;
  2005. }
  2006. /*
  2007. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2008. * part of active balancing operations within "domain".
  2009. * Returns 1 if successful and 0 otherwise.
  2010. *
  2011. * Called with both runqueues locked.
  2012. */
  2013. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2014. struct sched_domain *sd, enum cpu_idle_type idle)
  2015. {
  2016. const struct sched_class *class;
  2017. int this_best_prio = MAX_PRIO;
  2018. for (class = sched_class_highest; class; class = class->next)
  2019. if (class->load_balance(this_rq, this_cpu, busiest,
  2020. 1, ULONG_MAX, sd, idle, NULL,
  2021. &this_best_prio))
  2022. return 1;
  2023. return 0;
  2024. }
  2025. /*
  2026. * find_busiest_group finds and returns the busiest CPU group within the
  2027. * domain. It calculates and returns the amount of weighted load which
  2028. * should be moved to restore balance via the imbalance parameter.
  2029. */
  2030. static struct sched_group *
  2031. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2032. unsigned long *imbalance, enum cpu_idle_type idle,
  2033. int *sd_idle, cpumask_t *cpus, int *balance)
  2034. {
  2035. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2036. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2037. unsigned long max_pull;
  2038. unsigned long busiest_load_per_task, busiest_nr_running;
  2039. unsigned long this_load_per_task, this_nr_running;
  2040. int load_idx, group_imb = 0;
  2041. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2042. int power_savings_balance = 1;
  2043. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2044. unsigned long min_nr_running = ULONG_MAX;
  2045. struct sched_group *group_min = NULL, *group_leader = NULL;
  2046. #endif
  2047. max_load = this_load = total_load = total_pwr = 0;
  2048. busiest_load_per_task = busiest_nr_running = 0;
  2049. this_load_per_task = this_nr_running = 0;
  2050. if (idle == CPU_NOT_IDLE)
  2051. load_idx = sd->busy_idx;
  2052. else if (idle == CPU_NEWLY_IDLE)
  2053. load_idx = sd->newidle_idx;
  2054. else
  2055. load_idx = sd->idle_idx;
  2056. do {
  2057. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2058. int local_group;
  2059. int i;
  2060. int __group_imb = 0;
  2061. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2062. unsigned long sum_nr_running, sum_weighted_load;
  2063. local_group = cpu_isset(this_cpu, group->cpumask);
  2064. if (local_group)
  2065. balance_cpu = first_cpu(group->cpumask);
  2066. /* Tally up the load of all CPUs in the group */
  2067. sum_weighted_load = sum_nr_running = avg_load = 0;
  2068. max_cpu_load = 0;
  2069. min_cpu_load = ~0UL;
  2070. for_each_cpu_mask(i, group->cpumask) {
  2071. struct rq *rq;
  2072. if (!cpu_isset(i, *cpus))
  2073. continue;
  2074. rq = cpu_rq(i);
  2075. if (*sd_idle && rq->nr_running)
  2076. *sd_idle = 0;
  2077. /* Bias balancing toward cpus of our domain */
  2078. if (local_group) {
  2079. if (idle_cpu(i) && !first_idle_cpu) {
  2080. first_idle_cpu = 1;
  2081. balance_cpu = i;
  2082. }
  2083. load = target_load(i, load_idx);
  2084. } else {
  2085. load = source_load(i, load_idx);
  2086. if (load > max_cpu_load)
  2087. max_cpu_load = load;
  2088. if (min_cpu_load > load)
  2089. min_cpu_load = load;
  2090. }
  2091. avg_load += load;
  2092. sum_nr_running += rq->nr_running;
  2093. sum_weighted_load += weighted_cpuload(i);
  2094. }
  2095. /*
  2096. * First idle cpu or the first cpu(busiest) in this sched group
  2097. * is eligible for doing load balancing at this and above
  2098. * domains. In the newly idle case, we will allow all the cpu's
  2099. * to do the newly idle load balance.
  2100. */
  2101. if (idle != CPU_NEWLY_IDLE && local_group &&
  2102. balance_cpu != this_cpu && balance) {
  2103. *balance = 0;
  2104. goto ret;
  2105. }
  2106. total_load += avg_load;
  2107. total_pwr += group->__cpu_power;
  2108. /* Adjust by relative CPU power of the group */
  2109. avg_load = sg_div_cpu_power(group,
  2110. avg_load * SCHED_LOAD_SCALE);
  2111. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2112. __group_imb = 1;
  2113. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2114. if (local_group) {
  2115. this_load = avg_load;
  2116. this = group;
  2117. this_nr_running = sum_nr_running;
  2118. this_load_per_task = sum_weighted_load;
  2119. } else if (avg_load > max_load &&
  2120. (sum_nr_running > group_capacity || __group_imb)) {
  2121. max_load = avg_load;
  2122. busiest = group;
  2123. busiest_nr_running = sum_nr_running;
  2124. busiest_load_per_task = sum_weighted_load;
  2125. group_imb = __group_imb;
  2126. }
  2127. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2128. /*
  2129. * Busy processors will not participate in power savings
  2130. * balance.
  2131. */
  2132. if (idle == CPU_NOT_IDLE ||
  2133. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2134. goto group_next;
  2135. /*
  2136. * If the local group is idle or completely loaded
  2137. * no need to do power savings balance at this domain
  2138. */
  2139. if (local_group && (this_nr_running >= group_capacity ||
  2140. !this_nr_running))
  2141. power_savings_balance = 0;
  2142. /*
  2143. * If a group is already running at full capacity or idle,
  2144. * don't include that group in power savings calculations
  2145. */
  2146. if (!power_savings_balance || sum_nr_running >= group_capacity
  2147. || !sum_nr_running)
  2148. goto group_next;
  2149. /*
  2150. * Calculate the group which has the least non-idle load.
  2151. * This is the group from where we need to pick up the load
  2152. * for saving power
  2153. */
  2154. if ((sum_nr_running < min_nr_running) ||
  2155. (sum_nr_running == min_nr_running &&
  2156. first_cpu(group->cpumask) <
  2157. first_cpu(group_min->cpumask))) {
  2158. group_min = group;
  2159. min_nr_running = sum_nr_running;
  2160. min_load_per_task = sum_weighted_load /
  2161. sum_nr_running;
  2162. }
  2163. /*
  2164. * Calculate the group which is almost near its
  2165. * capacity but still has some space to pick up some load
  2166. * from other group and save more power
  2167. */
  2168. if (sum_nr_running <= group_capacity - 1) {
  2169. if (sum_nr_running > leader_nr_running ||
  2170. (sum_nr_running == leader_nr_running &&
  2171. first_cpu(group->cpumask) >
  2172. first_cpu(group_leader->cpumask))) {
  2173. group_leader = group;
  2174. leader_nr_running = sum_nr_running;
  2175. }
  2176. }
  2177. group_next:
  2178. #endif
  2179. group = group->next;
  2180. } while (group != sd->groups);
  2181. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2182. goto out_balanced;
  2183. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2184. if (this_load >= avg_load ||
  2185. 100*max_load <= sd->imbalance_pct*this_load)
  2186. goto out_balanced;
  2187. busiest_load_per_task /= busiest_nr_running;
  2188. if (group_imb)
  2189. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2190. /*
  2191. * We're trying to get all the cpus to the average_load, so we don't
  2192. * want to push ourselves above the average load, nor do we wish to
  2193. * reduce the max loaded cpu below the average load, as either of these
  2194. * actions would just result in more rebalancing later, and ping-pong
  2195. * tasks around. Thus we look for the minimum possible imbalance.
  2196. * Negative imbalances (*we* are more loaded than anyone else) will
  2197. * be counted as no imbalance for these purposes -- we can't fix that
  2198. * by pulling tasks to us. Be careful of negative numbers as they'll
  2199. * appear as very large values with unsigned longs.
  2200. */
  2201. if (max_load <= busiest_load_per_task)
  2202. goto out_balanced;
  2203. /*
  2204. * In the presence of smp nice balancing, certain scenarios can have
  2205. * max load less than avg load(as we skip the groups at or below
  2206. * its cpu_power, while calculating max_load..)
  2207. */
  2208. if (max_load < avg_load) {
  2209. *imbalance = 0;
  2210. goto small_imbalance;
  2211. }
  2212. /* Don't want to pull so many tasks that a group would go idle */
  2213. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2214. /* How much load to actually move to equalise the imbalance */
  2215. *imbalance = min(max_pull * busiest->__cpu_power,
  2216. (avg_load - this_load) * this->__cpu_power)
  2217. / SCHED_LOAD_SCALE;
  2218. /*
  2219. * if *imbalance is less than the average load per runnable task
  2220. * there is no gaurantee that any tasks will be moved so we'll have
  2221. * a think about bumping its value to force at least one task to be
  2222. * moved
  2223. */
  2224. if (*imbalance < busiest_load_per_task) {
  2225. unsigned long tmp, pwr_now, pwr_move;
  2226. unsigned int imbn;
  2227. small_imbalance:
  2228. pwr_move = pwr_now = 0;
  2229. imbn = 2;
  2230. if (this_nr_running) {
  2231. this_load_per_task /= this_nr_running;
  2232. if (busiest_load_per_task > this_load_per_task)
  2233. imbn = 1;
  2234. } else
  2235. this_load_per_task = SCHED_LOAD_SCALE;
  2236. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2237. busiest_load_per_task * imbn) {
  2238. *imbalance = busiest_load_per_task;
  2239. return busiest;
  2240. }
  2241. /*
  2242. * OK, we don't have enough imbalance to justify moving tasks,
  2243. * however we may be able to increase total CPU power used by
  2244. * moving them.
  2245. */
  2246. pwr_now += busiest->__cpu_power *
  2247. min(busiest_load_per_task, max_load);
  2248. pwr_now += this->__cpu_power *
  2249. min(this_load_per_task, this_load);
  2250. pwr_now /= SCHED_LOAD_SCALE;
  2251. /* Amount of load we'd subtract */
  2252. tmp = sg_div_cpu_power(busiest,
  2253. busiest_load_per_task * SCHED_LOAD_SCALE);
  2254. if (max_load > tmp)
  2255. pwr_move += busiest->__cpu_power *
  2256. min(busiest_load_per_task, max_load - tmp);
  2257. /* Amount of load we'd add */
  2258. if (max_load * busiest->__cpu_power <
  2259. busiest_load_per_task * SCHED_LOAD_SCALE)
  2260. tmp = sg_div_cpu_power(this,
  2261. max_load * busiest->__cpu_power);
  2262. else
  2263. tmp = sg_div_cpu_power(this,
  2264. busiest_load_per_task * SCHED_LOAD_SCALE);
  2265. pwr_move += this->__cpu_power *
  2266. min(this_load_per_task, this_load + tmp);
  2267. pwr_move /= SCHED_LOAD_SCALE;
  2268. /* Move if we gain throughput */
  2269. if (pwr_move > pwr_now)
  2270. *imbalance = busiest_load_per_task;
  2271. }
  2272. return busiest;
  2273. out_balanced:
  2274. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2275. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2276. goto ret;
  2277. if (this == group_leader && group_leader != group_min) {
  2278. *imbalance = min_load_per_task;
  2279. return group_min;
  2280. }
  2281. #endif
  2282. ret:
  2283. *imbalance = 0;
  2284. return NULL;
  2285. }
  2286. /*
  2287. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2288. */
  2289. static struct rq *
  2290. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2291. unsigned long imbalance, cpumask_t *cpus)
  2292. {
  2293. struct rq *busiest = NULL, *rq;
  2294. unsigned long max_load = 0;
  2295. int i;
  2296. for_each_cpu_mask(i, group->cpumask) {
  2297. unsigned long wl;
  2298. if (!cpu_isset(i, *cpus))
  2299. continue;
  2300. rq = cpu_rq(i);
  2301. wl = weighted_cpuload(i);
  2302. if (rq->nr_running == 1 && wl > imbalance)
  2303. continue;
  2304. if (wl > max_load) {
  2305. max_load = wl;
  2306. busiest = rq;
  2307. }
  2308. }
  2309. return busiest;
  2310. }
  2311. /*
  2312. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2313. * so long as it is large enough.
  2314. */
  2315. #define MAX_PINNED_INTERVAL 512
  2316. /*
  2317. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2318. * tasks if there is an imbalance.
  2319. */
  2320. static int load_balance(int this_cpu, struct rq *this_rq,
  2321. struct sched_domain *sd, enum cpu_idle_type idle,
  2322. int *balance)
  2323. {
  2324. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2325. struct sched_group *group;
  2326. unsigned long imbalance;
  2327. struct rq *busiest;
  2328. cpumask_t cpus = CPU_MASK_ALL;
  2329. unsigned long flags;
  2330. /*
  2331. * When power savings policy is enabled for the parent domain, idle
  2332. * sibling can pick up load irrespective of busy siblings. In this case,
  2333. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2334. * portraying it as CPU_NOT_IDLE.
  2335. */
  2336. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2337. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2338. sd_idle = 1;
  2339. schedstat_inc(sd, lb_count[idle]);
  2340. redo:
  2341. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2342. &cpus, balance);
  2343. if (*balance == 0)
  2344. goto out_balanced;
  2345. if (!group) {
  2346. schedstat_inc(sd, lb_nobusyg[idle]);
  2347. goto out_balanced;
  2348. }
  2349. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2350. if (!busiest) {
  2351. schedstat_inc(sd, lb_nobusyq[idle]);
  2352. goto out_balanced;
  2353. }
  2354. BUG_ON(busiest == this_rq);
  2355. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2356. ld_moved = 0;
  2357. if (busiest->nr_running > 1) {
  2358. /*
  2359. * Attempt to move tasks. If find_busiest_group has found
  2360. * an imbalance but busiest->nr_running <= 1, the group is
  2361. * still unbalanced. ld_moved simply stays zero, so it is
  2362. * correctly treated as an imbalance.
  2363. */
  2364. local_irq_save(flags);
  2365. double_rq_lock(this_rq, busiest);
  2366. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2367. imbalance, sd, idle, &all_pinned);
  2368. double_rq_unlock(this_rq, busiest);
  2369. local_irq_restore(flags);
  2370. /*
  2371. * some other cpu did the load balance for us.
  2372. */
  2373. if (ld_moved && this_cpu != smp_processor_id())
  2374. resched_cpu(this_cpu);
  2375. /* All tasks on this runqueue were pinned by CPU affinity */
  2376. if (unlikely(all_pinned)) {
  2377. cpu_clear(cpu_of(busiest), cpus);
  2378. if (!cpus_empty(cpus))
  2379. goto redo;
  2380. goto out_balanced;
  2381. }
  2382. }
  2383. if (!ld_moved) {
  2384. schedstat_inc(sd, lb_failed[idle]);
  2385. sd->nr_balance_failed++;
  2386. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2387. spin_lock_irqsave(&busiest->lock, flags);
  2388. /* don't kick the migration_thread, if the curr
  2389. * task on busiest cpu can't be moved to this_cpu
  2390. */
  2391. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2392. spin_unlock_irqrestore(&busiest->lock, flags);
  2393. all_pinned = 1;
  2394. goto out_one_pinned;
  2395. }
  2396. if (!busiest->active_balance) {
  2397. busiest->active_balance = 1;
  2398. busiest->push_cpu = this_cpu;
  2399. active_balance = 1;
  2400. }
  2401. spin_unlock_irqrestore(&busiest->lock, flags);
  2402. if (active_balance)
  2403. wake_up_process(busiest->migration_thread);
  2404. /*
  2405. * We've kicked active balancing, reset the failure
  2406. * counter.
  2407. */
  2408. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2409. }
  2410. } else
  2411. sd->nr_balance_failed = 0;
  2412. if (likely(!active_balance)) {
  2413. /* We were unbalanced, so reset the balancing interval */
  2414. sd->balance_interval = sd->min_interval;
  2415. } else {
  2416. /*
  2417. * If we've begun active balancing, start to back off. This
  2418. * case may not be covered by the all_pinned logic if there
  2419. * is only 1 task on the busy runqueue (because we don't call
  2420. * move_tasks).
  2421. */
  2422. if (sd->balance_interval < sd->max_interval)
  2423. sd->balance_interval *= 2;
  2424. }
  2425. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2426. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2427. return -1;
  2428. return ld_moved;
  2429. out_balanced:
  2430. schedstat_inc(sd, lb_balanced[idle]);
  2431. sd->nr_balance_failed = 0;
  2432. out_one_pinned:
  2433. /* tune up the balancing interval */
  2434. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2435. (sd->balance_interval < sd->max_interval))
  2436. sd->balance_interval *= 2;
  2437. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2438. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2439. return -1;
  2440. return 0;
  2441. }
  2442. /*
  2443. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2444. * tasks if there is an imbalance.
  2445. *
  2446. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2447. * this_rq is locked.
  2448. */
  2449. static int
  2450. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2451. {
  2452. struct sched_group *group;
  2453. struct rq *busiest = NULL;
  2454. unsigned long imbalance;
  2455. int ld_moved = 0;
  2456. int sd_idle = 0;
  2457. int all_pinned = 0;
  2458. cpumask_t cpus = CPU_MASK_ALL;
  2459. /*
  2460. * When power savings policy is enabled for the parent domain, idle
  2461. * sibling can pick up load irrespective of busy siblings. In this case,
  2462. * let the state of idle sibling percolate up as IDLE, instead of
  2463. * portraying it as CPU_NOT_IDLE.
  2464. */
  2465. if (sd->flags & SD_SHARE_CPUPOWER &&
  2466. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2467. sd_idle = 1;
  2468. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2469. redo:
  2470. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2471. &sd_idle, &cpus, NULL);
  2472. if (!group) {
  2473. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2474. goto out_balanced;
  2475. }
  2476. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2477. &cpus);
  2478. if (!busiest) {
  2479. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2480. goto out_balanced;
  2481. }
  2482. BUG_ON(busiest == this_rq);
  2483. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2484. ld_moved = 0;
  2485. if (busiest->nr_running > 1) {
  2486. /* Attempt to move tasks */
  2487. double_lock_balance(this_rq, busiest);
  2488. /* this_rq->clock is already updated */
  2489. update_rq_clock(busiest);
  2490. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2491. imbalance, sd, CPU_NEWLY_IDLE,
  2492. &all_pinned);
  2493. spin_unlock(&busiest->lock);
  2494. if (unlikely(all_pinned)) {
  2495. cpu_clear(cpu_of(busiest), cpus);
  2496. if (!cpus_empty(cpus))
  2497. goto redo;
  2498. }
  2499. }
  2500. if (!ld_moved) {
  2501. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2502. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2503. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2504. return -1;
  2505. } else
  2506. sd->nr_balance_failed = 0;
  2507. return ld_moved;
  2508. out_balanced:
  2509. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2510. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2511. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2512. return -1;
  2513. sd->nr_balance_failed = 0;
  2514. return 0;
  2515. }
  2516. /*
  2517. * idle_balance is called by schedule() if this_cpu is about to become
  2518. * idle. Attempts to pull tasks from other CPUs.
  2519. */
  2520. static void idle_balance(int this_cpu, struct rq *this_rq)
  2521. {
  2522. struct sched_domain *sd;
  2523. int pulled_task = -1;
  2524. unsigned long next_balance = jiffies + HZ;
  2525. for_each_domain(this_cpu, sd) {
  2526. unsigned long interval;
  2527. if (!(sd->flags & SD_LOAD_BALANCE))
  2528. continue;
  2529. if (sd->flags & SD_BALANCE_NEWIDLE)
  2530. /* If we've pulled tasks over stop searching: */
  2531. pulled_task = load_balance_newidle(this_cpu,
  2532. this_rq, sd);
  2533. interval = msecs_to_jiffies(sd->balance_interval);
  2534. if (time_after(next_balance, sd->last_balance + interval))
  2535. next_balance = sd->last_balance + interval;
  2536. if (pulled_task)
  2537. break;
  2538. }
  2539. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2540. /*
  2541. * We are going idle. next_balance may be set based on
  2542. * a busy processor. So reset next_balance.
  2543. */
  2544. this_rq->next_balance = next_balance;
  2545. }
  2546. }
  2547. /*
  2548. * active_load_balance is run by migration threads. It pushes running tasks
  2549. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2550. * running on each physical CPU where possible, and avoids physical /
  2551. * logical imbalances.
  2552. *
  2553. * Called with busiest_rq locked.
  2554. */
  2555. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2556. {
  2557. int target_cpu = busiest_rq->push_cpu;
  2558. struct sched_domain *sd;
  2559. struct rq *target_rq;
  2560. /* Is there any task to move? */
  2561. if (busiest_rq->nr_running <= 1)
  2562. return;
  2563. target_rq = cpu_rq(target_cpu);
  2564. /*
  2565. * This condition is "impossible", if it occurs
  2566. * we need to fix it. Originally reported by
  2567. * Bjorn Helgaas on a 128-cpu setup.
  2568. */
  2569. BUG_ON(busiest_rq == target_rq);
  2570. /* move a task from busiest_rq to target_rq */
  2571. double_lock_balance(busiest_rq, target_rq);
  2572. update_rq_clock(busiest_rq);
  2573. update_rq_clock(target_rq);
  2574. /* Search for an sd spanning us and the target CPU. */
  2575. for_each_domain(target_cpu, sd) {
  2576. if ((sd->flags & SD_LOAD_BALANCE) &&
  2577. cpu_isset(busiest_cpu, sd->span))
  2578. break;
  2579. }
  2580. if (likely(sd)) {
  2581. schedstat_inc(sd, alb_count);
  2582. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2583. sd, CPU_IDLE))
  2584. schedstat_inc(sd, alb_pushed);
  2585. else
  2586. schedstat_inc(sd, alb_failed);
  2587. }
  2588. spin_unlock(&target_rq->lock);
  2589. }
  2590. #ifdef CONFIG_NO_HZ
  2591. static struct {
  2592. atomic_t load_balancer;
  2593. cpumask_t cpu_mask;
  2594. } nohz ____cacheline_aligned = {
  2595. .load_balancer = ATOMIC_INIT(-1),
  2596. .cpu_mask = CPU_MASK_NONE,
  2597. };
  2598. /*
  2599. * This routine will try to nominate the ilb (idle load balancing)
  2600. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2601. * load balancing on behalf of all those cpus. If all the cpus in the system
  2602. * go into this tickless mode, then there will be no ilb owner (as there is
  2603. * no need for one) and all the cpus will sleep till the next wakeup event
  2604. * arrives...
  2605. *
  2606. * For the ilb owner, tick is not stopped. And this tick will be used
  2607. * for idle load balancing. ilb owner will still be part of
  2608. * nohz.cpu_mask..
  2609. *
  2610. * While stopping the tick, this cpu will become the ilb owner if there
  2611. * is no other owner. And will be the owner till that cpu becomes busy
  2612. * or if all cpus in the system stop their ticks at which point
  2613. * there is no need for ilb owner.
  2614. *
  2615. * When the ilb owner becomes busy, it nominates another owner, during the
  2616. * next busy scheduler_tick()
  2617. */
  2618. int select_nohz_load_balancer(int stop_tick)
  2619. {
  2620. int cpu = smp_processor_id();
  2621. if (stop_tick) {
  2622. cpu_set(cpu, nohz.cpu_mask);
  2623. cpu_rq(cpu)->in_nohz_recently = 1;
  2624. /*
  2625. * If we are going offline and still the leader, give up!
  2626. */
  2627. if (cpu_is_offline(cpu) &&
  2628. atomic_read(&nohz.load_balancer) == cpu) {
  2629. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2630. BUG();
  2631. return 0;
  2632. }
  2633. /* time for ilb owner also to sleep */
  2634. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2635. if (atomic_read(&nohz.load_balancer) == cpu)
  2636. atomic_set(&nohz.load_balancer, -1);
  2637. return 0;
  2638. }
  2639. if (atomic_read(&nohz.load_balancer) == -1) {
  2640. /* make me the ilb owner */
  2641. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2642. return 1;
  2643. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2644. return 1;
  2645. } else {
  2646. if (!cpu_isset(cpu, nohz.cpu_mask))
  2647. return 0;
  2648. cpu_clear(cpu, nohz.cpu_mask);
  2649. if (atomic_read(&nohz.load_balancer) == cpu)
  2650. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2651. BUG();
  2652. }
  2653. return 0;
  2654. }
  2655. #endif
  2656. static DEFINE_SPINLOCK(balancing);
  2657. /*
  2658. * It checks each scheduling domain to see if it is due to be balanced,
  2659. * and initiates a balancing operation if so.
  2660. *
  2661. * Balancing parameters are set up in arch_init_sched_domains.
  2662. */
  2663. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2664. {
  2665. int balance = 1;
  2666. struct rq *rq = cpu_rq(cpu);
  2667. unsigned long interval;
  2668. struct sched_domain *sd;
  2669. /* Earliest time when we have to do rebalance again */
  2670. unsigned long next_balance = jiffies + 60*HZ;
  2671. int update_next_balance = 0;
  2672. for_each_domain(cpu, sd) {
  2673. if (!(sd->flags & SD_LOAD_BALANCE))
  2674. continue;
  2675. interval = sd->balance_interval;
  2676. if (idle != CPU_IDLE)
  2677. interval *= sd->busy_factor;
  2678. /* scale ms to jiffies */
  2679. interval = msecs_to_jiffies(interval);
  2680. if (unlikely(!interval))
  2681. interval = 1;
  2682. if (interval > HZ*NR_CPUS/10)
  2683. interval = HZ*NR_CPUS/10;
  2684. if (sd->flags & SD_SERIALIZE) {
  2685. if (!spin_trylock(&balancing))
  2686. goto out;
  2687. }
  2688. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2689. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2690. /*
  2691. * We've pulled tasks over so either we're no
  2692. * longer idle, or one of our SMT siblings is
  2693. * not idle.
  2694. */
  2695. idle = CPU_NOT_IDLE;
  2696. }
  2697. sd->last_balance = jiffies;
  2698. }
  2699. if (sd->flags & SD_SERIALIZE)
  2700. spin_unlock(&balancing);
  2701. out:
  2702. if (time_after(next_balance, sd->last_balance + interval)) {
  2703. next_balance = sd->last_balance + interval;
  2704. update_next_balance = 1;
  2705. }
  2706. /*
  2707. * Stop the load balance at this level. There is another
  2708. * CPU in our sched group which is doing load balancing more
  2709. * actively.
  2710. */
  2711. if (!balance)
  2712. break;
  2713. }
  2714. /*
  2715. * next_balance will be updated only when there is a need.
  2716. * When the cpu is attached to null domain for ex, it will not be
  2717. * updated.
  2718. */
  2719. if (likely(update_next_balance))
  2720. rq->next_balance = next_balance;
  2721. }
  2722. /*
  2723. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2724. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2725. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2726. */
  2727. static void run_rebalance_domains(struct softirq_action *h)
  2728. {
  2729. int this_cpu = smp_processor_id();
  2730. struct rq *this_rq = cpu_rq(this_cpu);
  2731. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2732. CPU_IDLE : CPU_NOT_IDLE;
  2733. rebalance_domains(this_cpu, idle);
  2734. #ifdef CONFIG_NO_HZ
  2735. /*
  2736. * If this cpu is the owner for idle load balancing, then do the
  2737. * balancing on behalf of the other idle cpus whose ticks are
  2738. * stopped.
  2739. */
  2740. if (this_rq->idle_at_tick &&
  2741. atomic_read(&nohz.load_balancer) == this_cpu) {
  2742. cpumask_t cpus = nohz.cpu_mask;
  2743. struct rq *rq;
  2744. int balance_cpu;
  2745. cpu_clear(this_cpu, cpus);
  2746. for_each_cpu_mask(balance_cpu, cpus) {
  2747. /*
  2748. * If this cpu gets work to do, stop the load balancing
  2749. * work being done for other cpus. Next load
  2750. * balancing owner will pick it up.
  2751. */
  2752. if (need_resched())
  2753. break;
  2754. rebalance_domains(balance_cpu, CPU_IDLE);
  2755. rq = cpu_rq(balance_cpu);
  2756. if (time_after(this_rq->next_balance, rq->next_balance))
  2757. this_rq->next_balance = rq->next_balance;
  2758. }
  2759. }
  2760. #endif
  2761. }
  2762. /*
  2763. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2764. *
  2765. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2766. * idle load balancing owner or decide to stop the periodic load balancing,
  2767. * if the whole system is idle.
  2768. */
  2769. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2770. {
  2771. #ifdef CONFIG_NO_HZ
  2772. /*
  2773. * If we were in the nohz mode recently and busy at the current
  2774. * scheduler tick, then check if we need to nominate new idle
  2775. * load balancer.
  2776. */
  2777. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2778. rq->in_nohz_recently = 0;
  2779. if (atomic_read(&nohz.load_balancer) == cpu) {
  2780. cpu_clear(cpu, nohz.cpu_mask);
  2781. atomic_set(&nohz.load_balancer, -1);
  2782. }
  2783. if (atomic_read(&nohz.load_balancer) == -1) {
  2784. /*
  2785. * simple selection for now: Nominate the
  2786. * first cpu in the nohz list to be the next
  2787. * ilb owner.
  2788. *
  2789. * TBD: Traverse the sched domains and nominate
  2790. * the nearest cpu in the nohz.cpu_mask.
  2791. */
  2792. int ilb = first_cpu(nohz.cpu_mask);
  2793. if (ilb != NR_CPUS)
  2794. resched_cpu(ilb);
  2795. }
  2796. }
  2797. /*
  2798. * If this cpu is idle and doing idle load balancing for all the
  2799. * cpus with ticks stopped, is it time for that to stop?
  2800. */
  2801. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2802. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2803. resched_cpu(cpu);
  2804. return;
  2805. }
  2806. /*
  2807. * If this cpu is idle and the idle load balancing is done by
  2808. * someone else, then no need raise the SCHED_SOFTIRQ
  2809. */
  2810. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2811. cpu_isset(cpu, nohz.cpu_mask))
  2812. return;
  2813. #endif
  2814. if (time_after_eq(jiffies, rq->next_balance))
  2815. raise_softirq(SCHED_SOFTIRQ);
  2816. }
  2817. #else /* CONFIG_SMP */
  2818. /*
  2819. * on UP we do not need to balance between CPUs:
  2820. */
  2821. static inline void idle_balance(int cpu, struct rq *rq)
  2822. {
  2823. }
  2824. /* Avoid "used but not defined" warning on UP */
  2825. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2826. unsigned long max_nr_move, unsigned long max_load_move,
  2827. struct sched_domain *sd, enum cpu_idle_type idle,
  2828. int *all_pinned, unsigned long *load_moved,
  2829. int *this_best_prio, struct rq_iterator *iterator)
  2830. {
  2831. *load_moved = 0;
  2832. return 0;
  2833. }
  2834. #endif
  2835. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2836. EXPORT_PER_CPU_SYMBOL(kstat);
  2837. /*
  2838. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2839. * that have not yet been banked in case the task is currently running.
  2840. */
  2841. unsigned long long task_sched_runtime(struct task_struct *p)
  2842. {
  2843. unsigned long flags;
  2844. u64 ns, delta_exec;
  2845. struct rq *rq;
  2846. rq = task_rq_lock(p, &flags);
  2847. ns = p->se.sum_exec_runtime;
  2848. if (rq->curr == p) {
  2849. update_rq_clock(rq);
  2850. delta_exec = rq->clock - p->se.exec_start;
  2851. if ((s64)delta_exec > 0)
  2852. ns += delta_exec;
  2853. }
  2854. task_rq_unlock(rq, &flags);
  2855. return ns;
  2856. }
  2857. /*
  2858. * Account user cpu time to a process.
  2859. * @p: the process that the cpu time gets accounted to
  2860. * @cputime: the cpu time spent in user space since the last update
  2861. */
  2862. void account_user_time(struct task_struct *p, cputime_t cputime)
  2863. {
  2864. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2865. cputime64_t tmp;
  2866. struct rq *rq = this_rq();
  2867. p->utime = cputime_add(p->utime, cputime);
  2868. if (p != rq->idle)
  2869. cpuacct_charge(p, cputime);
  2870. /* Add user time to cpustat. */
  2871. tmp = cputime_to_cputime64(cputime);
  2872. if (TASK_NICE(p) > 0)
  2873. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2874. else
  2875. cpustat->user = cputime64_add(cpustat->user, tmp);
  2876. }
  2877. /*
  2878. * Account guest cpu time to a process.
  2879. * @p: the process that the cpu time gets accounted to
  2880. * @cputime: the cpu time spent in virtual machine since the last update
  2881. */
  2882. void account_guest_time(struct task_struct *p, cputime_t cputime)
  2883. {
  2884. cputime64_t tmp;
  2885. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2886. tmp = cputime_to_cputime64(cputime);
  2887. p->utime = cputime_add(p->utime, cputime);
  2888. p->gtime = cputime_add(p->gtime, cputime);
  2889. cpustat->user = cputime64_add(cpustat->user, tmp);
  2890. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2891. }
  2892. /*
  2893. * Account scaled user cpu time to a process.
  2894. * @p: the process that the cpu time gets accounted to
  2895. * @cputime: the cpu time spent in user space since the last update
  2896. */
  2897. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2898. {
  2899. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2900. }
  2901. /*
  2902. * Account system cpu time to a process.
  2903. * @p: the process that the cpu time gets accounted to
  2904. * @hardirq_offset: the offset to subtract from hardirq_count()
  2905. * @cputime: the cpu time spent in kernel space since the last update
  2906. */
  2907. void account_system_time(struct task_struct *p, int hardirq_offset,
  2908. cputime_t cputime)
  2909. {
  2910. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2911. struct rq *rq = this_rq();
  2912. cputime64_t tmp;
  2913. if (p->flags & PF_VCPU) {
  2914. account_guest_time(p, cputime);
  2915. return;
  2916. }
  2917. p->stime = cputime_add(p->stime, cputime);
  2918. /* Add system time to cpustat. */
  2919. tmp = cputime_to_cputime64(cputime);
  2920. if (hardirq_count() - hardirq_offset)
  2921. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2922. else if (softirq_count())
  2923. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2924. else if (p != rq->idle) {
  2925. cpustat->system = cputime64_add(cpustat->system, tmp);
  2926. cpuacct_charge(p, cputime);
  2927. } else if (atomic_read(&rq->nr_iowait) > 0)
  2928. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2929. else
  2930. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2931. /* Account for system time used */
  2932. acct_update_integrals(p);
  2933. }
  2934. /*
  2935. * Account scaled system cpu time to a process.
  2936. * @p: the process that the cpu time gets accounted to
  2937. * @hardirq_offset: the offset to subtract from hardirq_count()
  2938. * @cputime: the cpu time spent in kernel space since the last update
  2939. */
  2940. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2941. {
  2942. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2943. }
  2944. /*
  2945. * Account for involuntary wait time.
  2946. * @p: the process from which the cpu time has been stolen
  2947. * @steal: the cpu time spent in involuntary wait
  2948. */
  2949. void account_steal_time(struct task_struct *p, cputime_t steal)
  2950. {
  2951. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2952. cputime64_t tmp = cputime_to_cputime64(steal);
  2953. struct rq *rq = this_rq();
  2954. if (p == rq->idle) {
  2955. p->stime = cputime_add(p->stime, steal);
  2956. if (atomic_read(&rq->nr_iowait) > 0)
  2957. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2958. else
  2959. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2960. } else {
  2961. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2962. cpuacct_charge(p, -tmp);
  2963. }
  2964. }
  2965. /*
  2966. * This function gets called by the timer code, with HZ frequency.
  2967. * We call it with interrupts disabled.
  2968. *
  2969. * It also gets called by the fork code, when changing the parent's
  2970. * timeslices.
  2971. */
  2972. void scheduler_tick(void)
  2973. {
  2974. int cpu = smp_processor_id();
  2975. struct rq *rq = cpu_rq(cpu);
  2976. struct task_struct *curr = rq->curr;
  2977. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2978. spin_lock(&rq->lock);
  2979. __update_rq_clock(rq);
  2980. /*
  2981. * Let rq->clock advance by at least TICK_NSEC:
  2982. */
  2983. if (unlikely(rq->clock < next_tick))
  2984. rq->clock = next_tick;
  2985. rq->tick_timestamp = rq->clock;
  2986. update_cpu_load(rq);
  2987. if (curr != rq->idle) /* FIXME: needed? */
  2988. curr->sched_class->task_tick(rq, curr);
  2989. spin_unlock(&rq->lock);
  2990. #ifdef CONFIG_SMP
  2991. rq->idle_at_tick = idle_cpu(cpu);
  2992. trigger_load_balance(rq, cpu);
  2993. #endif
  2994. }
  2995. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2996. void fastcall add_preempt_count(int val)
  2997. {
  2998. /*
  2999. * Underflow?
  3000. */
  3001. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3002. return;
  3003. preempt_count() += val;
  3004. /*
  3005. * Spinlock count overflowing soon?
  3006. */
  3007. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3008. PREEMPT_MASK - 10);
  3009. }
  3010. EXPORT_SYMBOL(add_preempt_count);
  3011. void fastcall sub_preempt_count(int val)
  3012. {
  3013. /*
  3014. * Underflow?
  3015. */
  3016. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3017. return;
  3018. /*
  3019. * Is the spinlock portion underflowing?
  3020. */
  3021. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3022. !(preempt_count() & PREEMPT_MASK)))
  3023. return;
  3024. preempt_count() -= val;
  3025. }
  3026. EXPORT_SYMBOL(sub_preempt_count);
  3027. #endif
  3028. /*
  3029. * Print scheduling while atomic bug:
  3030. */
  3031. static noinline void __schedule_bug(struct task_struct *prev)
  3032. {
  3033. struct pt_regs *regs = get_irq_regs();
  3034. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3035. prev->comm, prev->pid, preempt_count());
  3036. debug_show_held_locks(prev);
  3037. if (irqs_disabled())
  3038. print_irqtrace_events(prev);
  3039. if (regs)
  3040. show_regs(regs);
  3041. else
  3042. dump_stack();
  3043. }
  3044. /*
  3045. * Various schedule()-time debugging checks and statistics:
  3046. */
  3047. static inline void schedule_debug(struct task_struct *prev)
  3048. {
  3049. /*
  3050. * Test if we are atomic. Since do_exit() needs to call into
  3051. * schedule() atomically, we ignore that path for now.
  3052. * Otherwise, whine if we are scheduling when we should not be.
  3053. */
  3054. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3055. __schedule_bug(prev);
  3056. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3057. schedstat_inc(this_rq(), sched_count);
  3058. #ifdef CONFIG_SCHEDSTATS
  3059. if (unlikely(prev->lock_depth >= 0)) {
  3060. schedstat_inc(this_rq(), bkl_count);
  3061. schedstat_inc(prev, sched_info.bkl_count);
  3062. }
  3063. #endif
  3064. }
  3065. /*
  3066. * Pick up the highest-prio task:
  3067. */
  3068. static inline struct task_struct *
  3069. pick_next_task(struct rq *rq, struct task_struct *prev)
  3070. {
  3071. const struct sched_class *class;
  3072. struct task_struct *p;
  3073. /*
  3074. * Optimization: we know that if all tasks are in
  3075. * the fair class we can call that function directly:
  3076. */
  3077. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3078. p = fair_sched_class.pick_next_task(rq);
  3079. if (likely(p))
  3080. return p;
  3081. }
  3082. class = sched_class_highest;
  3083. for ( ; ; ) {
  3084. p = class->pick_next_task(rq);
  3085. if (p)
  3086. return p;
  3087. /*
  3088. * Will never be NULL as the idle class always
  3089. * returns a non-NULL p:
  3090. */
  3091. class = class->next;
  3092. }
  3093. }
  3094. /*
  3095. * schedule() is the main scheduler function.
  3096. */
  3097. asmlinkage void __sched schedule(void)
  3098. {
  3099. struct task_struct *prev, *next;
  3100. long *switch_count;
  3101. struct rq *rq;
  3102. int cpu;
  3103. need_resched:
  3104. preempt_disable();
  3105. cpu = smp_processor_id();
  3106. rq = cpu_rq(cpu);
  3107. rcu_qsctr_inc(cpu);
  3108. prev = rq->curr;
  3109. switch_count = &prev->nivcsw;
  3110. release_kernel_lock(prev);
  3111. need_resched_nonpreemptible:
  3112. schedule_debug(prev);
  3113. /*
  3114. * Do the rq-clock update outside the rq lock:
  3115. */
  3116. local_irq_disable();
  3117. __update_rq_clock(rq);
  3118. spin_lock(&rq->lock);
  3119. clear_tsk_need_resched(prev);
  3120. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3121. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3122. unlikely(signal_pending(prev)))) {
  3123. prev->state = TASK_RUNNING;
  3124. } else {
  3125. deactivate_task(rq, prev, 1);
  3126. }
  3127. switch_count = &prev->nvcsw;
  3128. }
  3129. if (unlikely(!rq->nr_running))
  3130. idle_balance(cpu, rq);
  3131. prev->sched_class->put_prev_task(rq, prev);
  3132. next = pick_next_task(rq, prev);
  3133. sched_info_switch(prev, next);
  3134. if (likely(prev != next)) {
  3135. rq->nr_switches++;
  3136. rq->curr = next;
  3137. ++*switch_count;
  3138. context_switch(rq, prev, next); /* unlocks the rq */
  3139. } else
  3140. spin_unlock_irq(&rq->lock);
  3141. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3142. cpu = smp_processor_id();
  3143. rq = cpu_rq(cpu);
  3144. goto need_resched_nonpreemptible;
  3145. }
  3146. preempt_enable_no_resched();
  3147. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3148. goto need_resched;
  3149. }
  3150. EXPORT_SYMBOL(schedule);
  3151. #ifdef CONFIG_PREEMPT
  3152. /*
  3153. * this is the entry point to schedule() from in-kernel preemption
  3154. * off of preempt_enable. Kernel preemptions off return from interrupt
  3155. * occur there and call schedule directly.
  3156. */
  3157. asmlinkage void __sched preempt_schedule(void)
  3158. {
  3159. struct thread_info *ti = current_thread_info();
  3160. #ifdef CONFIG_PREEMPT_BKL
  3161. struct task_struct *task = current;
  3162. int saved_lock_depth;
  3163. #endif
  3164. /*
  3165. * If there is a non-zero preempt_count or interrupts are disabled,
  3166. * we do not want to preempt the current task. Just return..
  3167. */
  3168. if (likely(ti->preempt_count || irqs_disabled()))
  3169. return;
  3170. do {
  3171. add_preempt_count(PREEMPT_ACTIVE);
  3172. /*
  3173. * We keep the big kernel semaphore locked, but we
  3174. * clear ->lock_depth so that schedule() doesnt
  3175. * auto-release the semaphore:
  3176. */
  3177. #ifdef CONFIG_PREEMPT_BKL
  3178. saved_lock_depth = task->lock_depth;
  3179. task->lock_depth = -1;
  3180. #endif
  3181. schedule();
  3182. #ifdef CONFIG_PREEMPT_BKL
  3183. task->lock_depth = saved_lock_depth;
  3184. #endif
  3185. sub_preempt_count(PREEMPT_ACTIVE);
  3186. /*
  3187. * Check again in case we missed a preemption opportunity
  3188. * between schedule and now.
  3189. */
  3190. barrier();
  3191. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3192. }
  3193. EXPORT_SYMBOL(preempt_schedule);
  3194. /*
  3195. * this is the entry point to schedule() from kernel preemption
  3196. * off of irq context.
  3197. * Note, that this is called and return with irqs disabled. This will
  3198. * protect us against recursive calling from irq.
  3199. */
  3200. asmlinkage void __sched preempt_schedule_irq(void)
  3201. {
  3202. struct thread_info *ti = current_thread_info();
  3203. #ifdef CONFIG_PREEMPT_BKL
  3204. struct task_struct *task = current;
  3205. int saved_lock_depth;
  3206. #endif
  3207. /* Catch callers which need to be fixed */
  3208. BUG_ON(ti->preempt_count || !irqs_disabled());
  3209. do {
  3210. add_preempt_count(PREEMPT_ACTIVE);
  3211. /*
  3212. * We keep the big kernel semaphore locked, but we
  3213. * clear ->lock_depth so that schedule() doesnt
  3214. * auto-release the semaphore:
  3215. */
  3216. #ifdef CONFIG_PREEMPT_BKL
  3217. saved_lock_depth = task->lock_depth;
  3218. task->lock_depth = -1;
  3219. #endif
  3220. local_irq_enable();
  3221. schedule();
  3222. local_irq_disable();
  3223. #ifdef CONFIG_PREEMPT_BKL
  3224. task->lock_depth = saved_lock_depth;
  3225. #endif
  3226. sub_preempt_count(PREEMPT_ACTIVE);
  3227. /*
  3228. * Check again in case we missed a preemption opportunity
  3229. * between schedule and now.
  3230. */
  3231. barrier();
  3232. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3233. }
  3234. #endif /* CONFIG_PREEMPT */
  3235. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3236. void *key)
  3237. {
  3238. return try_to_wake_up(curr->private, mode, sync);
  3239. }
  3240. EXPORT_SYMBOL(default_wake_function);
  3241. /*
  3242. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3243. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3244. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3245. *
  3246. * There are circumstances in which we can try to wake a task which has already
  3247. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3248. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3249. */
  3250. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3251. int nr_exclusive, int sync, void *key)
  3252. {
  3253. wait_queue_t *curr, *next;
  3254. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3255. unsigned flags = curr->flags;
  3256. if (curr->func(curr, mode, sync, key) &&
  3257. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3258. break;
  3259. }
  3260. }
  3261. /**
  3262. * __wake_up - wake up threads blocked on a waitqueue.
  3263. * @q: the waitqueue
  3264. * @mode: which threads
  3265. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3266. * @key: is directly passed to the wakeup function
  3267. */
  3268. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3269. int nr_exclusive, void *key)
  3270. {
  3271. unsigned long flags;
  3272. spin_lock_irqsave(&q->lock, flags);
  3273. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3274. spin_unlock_irqrestore(&q->lock, flags);
  3275. }
  3276. EXPORT_SYMBOL(__wake_up);
  3277. /*
  3278. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3279. */
  3280. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3281. {
  3282. __wake_up_common(q, mode, 1, 0, NULL);
  3283. }
  3284. /**
  3285. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3286. * @q: the waitqueue
  3287. * @mode: which threads
  3288. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3289. *
  3290. * The sync wakeup differs that the waker knows that it will schedule
  3291. * away soon, so while the target thread will be woken up, it will not
  3292. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3293. * with each other. This can prevent needless bouncing between CPUs.
  3294. *
  3295. * On UP it can prevent extra preemption.
  3296. */
  3297. void fastcall
  3298. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3299. {
  3300. unsigned long flags;
  3301. int sync = 1;
  3302. if (unlikely(!q))
  3303. return;
  3304. if (unlikely(!nr_exclusive))
  3305. sync = 0;
  3306. spin_lock_irqsave(&q->lock, flags);
  3307. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3308. spin_unlock_irqrestore(&q->lock, flags);
  3309. }
  3310. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3311. void complete(struct completion *x)
  3312. {
  3313. unsigned long flags;
  3314. spin_lock_irqsave(&x->wait.lock, flags);
  3315. x->done++;
  3316. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3317. 1, 0, NULL);
  3318. spin_unlock_irqrestore(&x->wait.lock, flags);
  3319. }
  3320. EXPORT_SYMBOL(complete);
  3321. void complete_all(struct completion *x)
  3322. {
  3323. unsigned long flags;
  3324. spin_lock_irqsave(&x->wait.lock, flags);
  3325. x->done += UINT_MAX/2;
  3326. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3327. 0, 0, NULL);
  3328. spin_unlock_irqrestore(&x->wait.lock, flags);
  3329. }
  3330. EXPORT_SYMBOL(complete_all);
  3331. static inline long __sched
  3332. do_wait_for_common(struct completion *x, long timeout, int state)
  3333. {
  3334. if (!x->done) {
  3335. DECLARE_WAITQUEUE(wait, current);
  3336. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3337. __add_wait_queue_tail(&x->wait, &wait);
  3338. do {
  3339. if (state == TASK_INTERRUPTIBLE &&
  3340. signal_pending(current)) {
  3341. __remove_wait_queue(&x->wait, &wait);
  3342. return -ERESTARTSYS;
  3343. }
  3344. __set_current_state(state);
  3345. spin_unlock_irq(&x->wait.lock);
  3346. timeout = schedule_timeout(timeout);
  3347. spin_lock_irq(&x->wait.lock);
  3348. if (!timeout) {
  3349. __remove_wait_queue(&x->wait, &wait);
  3350. return timeout;
  3351. }
  3352. } while (!x->done);
  3353. __remove_wait_queue(&x->wait, &wait);
  3354. }
  3355. x->done--;
  3356. return timeout;
  3357. }
  3358. static long __sched
  3359. wait_for_common(struct completion *x, long timeout, int state)
  3360. {
  3361. might_sleep();
  3362. spin_lock_irq(&x->wait.lock);
  3363. timeout = do_wait_for_common(x, timeout, state);
  3364. spin_unlock_irq(&x->wait.lock);
  3365. return timeout;
  3366. }
  3367. void __sched wait_for_completion(struct completion *x)
  3368. {
  3369. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3370. }
  3371. EXPORT_SYMBOL(wait_for_completion);
  3372. unsigned long __sched
  3373. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3374. {
  3375. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3376. }
  3377. EXPORT_SYMBOL(wait_for_completion_timeout);
  3378. int __sched wait_for_completion_interruptible(struct completion *x)
  3379. {
  3380. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3381. if (t == -ERESTARTSYS)
  3382. return t;
  3383. return 0;
  3384. }
  3385. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3386. unsigned long __sched
  3387. wait_for_completion_interruptible_timeout(struct completion *x,
  3388. unsigned long timeout)
  3389. {
  3390. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3391. }
  3392. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3393. static long __sched
  3394. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3395. {
  3396. unsigned long flags;
  3397. wait_queue_t wait;
  3398. init_waitqueue_entry(&wait, current);
  3399. __set_current_state(state);
  3400. spin_lock_irqsave(&q->lock, flags);
  3401. __add_wait_queue(q, &wait);
  3402. spin_unlock(&q->lock);
  3403. timeout = schedule_timeout(timeout);
  3404. spin_lock_irq(&q->lock);
  3405. __remove_wait_queue(q, &wait);
  3406. spin_unlock_irqrestore(&q->lock, flags);
  3407. return timeout;
  3408. }
  3409. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3410. {
  3411. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3412. }
  3413. EXPORT_SYMBOL(interruptible_sleep_on);
  3414. long __sched
  3415. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3416. {
  3417. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3418. }
  3419. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3420. void __sched sleep_on(wait_queue_head_t *q)
  3421. {
  3422. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3423. }
  3424. EXPORT_SYMBOL(sleep_on);
  3425. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3426. {
  3427. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3428. }
  3429. EXPORT_SYMBOL(sleep_on_timeout);
  3430. #ifdef CONFIG_RT_MUTEXES
  3431. /*
  3432. * rt_mutex_setprio - set the current priority of a task
  3433. * @p: task
  3434. * @prio: prio value (kernel-internal form)
  3435. *
  3436. * This function changes the 'effective' priority of a task. It does
  3437. * not touch ->normal_prio like __setscheduler().
  3438. *
  3439. * Used by the rt_mutex code to implement priority inheritance logic.
  3440. */
  3441. void rt_mutex_setprio(struct task_struct *p, int prio)
  3442. {
  3443. unsigned long flags;
  3444. int oldprio, on_rq, running;
  3445. struct rq *rq;
  3446. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3447. rq = task_rq_lock(p, &flags);
  3448. update_rq_clock(rq);
  3449. oldprio = p->prio;
  3450. on_rq = p->se.on_rq;
  3451. running = task_running(rq, p);
  3452. if (on_rq) {
  3453. dequeue_task(rq, p, 0);
  3454. if (running)
  3455. p->sched_class->put_prev_task(rq, p);
  3456. }
  3457. if (rt_prio(prio))
  3458. p->sched_class = &rt_sched_class;
  3459. else
  3460. p->sched_class = &fair_sched_class;
  3461. p->prio = prio;
  3462. if (on_rq) {
  3463. if (running)
  3464. p->sched_class->set_curr_task(rq);
  3465. enqueue_task(rq, p, 0);
  3466. /*
  3467. * Reschedule if we are currently running on this runqueue and
  3468. * our priority decreased, or if we are not currently running on
  3469. * this runqueue and our priority is higher than the current's
  3470. */
  3471. if (running) {
  3472. if (p->prio > oldprio)
  3473. resched_task(rq->curr);
  3474. } else {
  3475. check_preempt_curr(rq, p);
  3476. }
  3477. }
  3478. task_rq_unlock(rq, &flags);
  3479. }
  3480. #endif
  3481. void set_user_nice(struct task_struct *p, long nice)
  3482. {
  3483. int old_prio, delta, on_rq;
  3484. unsigned long flags;
  3485. struct rq *rq;
  3486. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3487. return;
  3488. /*
  3489. * We have to be careful, if called from sys_setpriority(),
  3490. * the task might be in the middle of scheduling on another CPU.
  3491. */
  3492. rq = task_rq_lock(p, &flags);
  3493. update_rq_clock(rq);
  3494. /*
  3495. * The RT priorities are set via sched_setscheduler(), but we still
  3496. * allow the 'normal' nice value to be set - but as expected
  3497. * it wont have any effect on scheduling until the task is
  3498. * SCHED_FIFO/SCHED_RR:
  3499. */
  3500. if (task_has_rt_policy(p)) {
  3501. p->static_prio = NICE_TO_PRIO(nice);
  3502. goto out_unlock;
  3503. }
  3504. on_rq = p->se.on_rq;
  3505. if (on_rq) {
  3506. dequeue_task(rq, p, 0);
  3507. dec_load(rq, p);
  3508. }
  3509. p->static_prio = NICE_TO_PRIO(nice);
  3510. set_load_weight(p);
  3511. old_prio = p->prio;
  3512. p->prio = effective_prio(p);
  3513. delta = p->prio - old_prio;
  3514. if (on_rq) {
  3515. enqueue_task(rq, p, 0);
  3516. inc_load(rq, p);
  3517. /*
  3518. * If the task increased its priority or is running and
  3519. * lowered its priority, then reschedule its CPU:
  3520. */
  3521. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3522. resched_task(rq->curr);
  3523. }
  3524. out_unlock:
  3525. task_rq_unlock(rq, &flags);
  3526. }
  3527. EXPORT_SYMBOL(set_user_nice);
  3528. /*
  3529. * can_nice - check if a task can reduce its nice value
  3530. * @p: task
  3531. * @nice: nice value
  3532. */
  3533. int can_nice(const struct task_struct *p, const int nice)
  3534. {
  3535. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3536. int nice_rlim = 20 - nice;
  3537. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3538. capable(CAP_SYS_NICE));
  3539. }
  3540. #ifdef __ARCH_WANT_SYS_NICE
  3541. /*
  3542. * sys_nice - change the priority of the current process.
  3543. * @increment: priority increment
  3544. *
  3545. * sys_setpriority is a more generic, but much slower function that
  3546. * does similar things.
  3547. */
  3548. asmlinkage long sys_nice(int increment)
  3549. {
  3550. long nice, retval;
  3551. /*
  3552. * Setpriority might change our priority at the same moment.
  3553. * We don't have to worry. Conceptually one call occurs first
  3554. * and we have a single winner.
  3555. */
  3556. if (increment < -40)
  3557. increment = -40;
  3558. if (increment > 40)
  3559. increment = 40;
  3560. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3561. if (nice < -20)
  3562. nice = -20;
  3563. if (nice > 19)
  3564. nice = 19;
  3565. if (increment < 0 && !can_nice(current, nice))
  3566. return -EPERM;
  3567. retval = security_task_setnice(current, nice);
  3568. if (retval)
  3569. return retval;
  3570. set_user_nice(current, nice);
  3571. return 0;
  3572. }
  3573. #endif
  3574. /**
  3575. * task_prio - return the priority value of a given task.
  3576. * @p: the task in question.
  3577. *
  3578. * This is the priority value as seen by users in /proc.
  3579. * RT tasks are offset by -200. Normal tasks are centered
  3580. * around 0, value goes from -16 to +15.
  3581. */
  3582. int task_prio(const struct task_struct *p)
  3583. {
  3584. return p->prio - MAX_RT_PRIO;
  3585. }
  3586. /**
  3587. * task_nice - return the nice value of a given task.
  3588. * @p: the task in question.
  3589. */
  3590. int task_nice(const struct task_struct *p)
  3591. {
  3592. return TASK_NICE(p);
  3593. }
  3594. EXPORT_SYMBOL_GPL(task_nice);
  3595. /**
  3596. * idle_cpu - is a given cpu idle currently?
  3597. * @cpu: the processor in question.
  3598. */
  3599. int idle_cpu(int cpu)
  3600. {
  3601. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3602. }
  3603. /**
  3604. * idle_task - return the idle task for a given cpu.
  3605. * @cpu: the processor in question.
  3606. */
  3607. struct task_struct *idle_task(int cpu)
  3608. {
  3609. return cpu_rq(cpu)->idle;
  3610. }
  3611. /**
  3612. * find_process_by_pid - find a process with a matching PID value.
  3613. * @pid: the pid in question.
  3614. */
  3615. static struct task_struct *find_process_by_pid(pid_t pid)
  3616. {
  3617. return pid ? find_task_by_vpid(pid) : current;
  3618. }
  3619. /* Actually do priority change: must hold rq lock. */
  3620. static void
  3621. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3622. {
  3623. BUG_ON(p->se.on_rq);
  3624. p->policy = policy;
  3625. switch (p->policy) {
  3626. case SCHED_NORMAL:
  3627. case SCHED_BATCH:
  3628. case SCHED_IDLE:
  3629. p->sched_class = &fair_sched_class;
  3630. break;
  3631. case SCHED_FIFO:
  3632. case SCHED_RR:
  3633. p->sched_class = &rt_sched_class;
  3634. break;
  3635. }
  3636. p->rt_priority = prio;
  3637. p->normal_prio = normal_prio(p);
  3638. /* we are holding p->pi_lock already */
  3639. p->prio = rt_mutex_getprio(p);
  3640. set_load_weight(p);
  3641. }
  3642. /**
  3643. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3644. * @p: the task in question.
  3645. * @policy: new policy.
  3646. * @param: structure containing the new RT priority.
  3647. *
  3648. * NOTE that the task may be already dead.
  3649. */
  3650. int sched_setscheduler(struct task_struct *p, int policy,
  3651. struct sched_param *param)
  3652. {
  3653. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3654. unsigned long flags;
  3655. struct rq *rq;
  3656. /* may grab non-irq protected spin_locks */
  3657. BUG_ON(in_interrupt());
  3658. recheck:
  3659. /* double check policy once rq lock held */
  3660. if (policy < 0)
  3661. policy = oldpolicy = p->policy;
  3662. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3663. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3664. policy != SCHED_IDLE)
  3665. return -EINVAL;
  3666. /*
  3667. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3668. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3669. * SCHED_BATCH and SCHED_IDLE is 0.
  3670. */
  3671. if (param->sched_priority < 0 ||
  3672. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3673. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3674. return -EINVAL;
  3675. if (rt_policy(policy) != (param->sched_priority != 0))
  3676. return -EINVAL;
  3677. /*
  3678. * Allow unprivileged RT tasks to decrease priority:
  3679. */
  3680. if (!capable(CAP_SYS_NICE)) {
  3681. if (rt_policy(policy)) {
  3682. unsigned long rlim_rtprio;
  3683. if (!lock_task_sighand(p, &flags))
  3684. return -ESRCH;
  3685. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3686. unlock_task_sighand(p, &flags);
  3687. /* can't set/change the rt policy */
  3688. if (policy != p->policy && !rlim_rtprio)
  3689. return -EPERM;
  3690. /* can't increase priority */
  3691. if (param->sched_priority > p->rt_priority &&
  3692. param->sched_priority > rlim_rtprio)
  3693. return -EPERM;
  3694. }
  3695. /*
  3696. * Like positive nice levels, dont allow tasks to
  3697. * move out of SCHED_IDLE either:
  3698. */
  3699. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3700. return -EPERM;
  3701. /* can't change other user's priorities */
  3702. if ((current->euid != p->euid) &&
  3703. (current->euid != p->uid))
  3704. return -EPERM;
  3705. }
  3706. retval = security_task_setscheduler(p, policy, param);
  3707. if (retval)
  3708. return retval;
  3709. /*
  3710. * make sure no PI-waiters arrive (or leave) while we are
  3711. * changing the priority of the task:
  3712. */
  3713. spin_lock_irqsave(&p->pi_lock, flags);
  3714. /*
  3715. * To be able to change p->policy safely, the apropriate
  3716. * runqueue lock must be held.
  3717. */
  3718. rq = __task_rq_lock(p);
  3719. /* recheck policy now with rq lock held */
  3720. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3721. policy = oldpolicy = -1;
  3722. __task_rq_unlock(rq);
  3723. spin_unlock_irqrestore(&p->pi_lock, flags);
  3724. goto recheck;
  3725. }
  3726. update_rq_clock(rq);
  3727. on_rq = p->se.on_rq;
  3728. running = task_running(rq, p);
  3729. if (on_rq) {
  3730. deactivate_task(rq, p, 0);
  3731. if (running)
  3732. p->sched_class->put_prev_task(rq, p);
  3733. }
  3734. oldprio = p->prio;
  3735. __setscheduler(rq, p, policy, param->sched_priority);
  3736. if (on_rq) {
  3737. if (running)
  3738. p->sched_class->set_curr_task(rq);
  3739. activate_task(rq, p, 0);
  3740. /*
  3741. * Reschedule if we are currently running on this runqueue and
  3742. * our priority decreased, or if we are not currently running on
  3743. * this runqueue and our priority is higher than the current's
  3744. */
  3745. if (running) {
  3746. if (p->prio > oldprio)
  3747. resched_task(rq->curr);
  3748. } else {
  3749. check_preempt_curr(rq, p);
  3750. }
  3751. }
  3752. __task_rq_unlock(rq);
  3753. spin_unlock_irqrestore(&p->pi_lock, flags);
  3754. rt_mutex_adjust_pi(p);
  3755. return 0;
  3756. }
  3757. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3758. static int
  3759. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3760. {
  3761. struct sched_param lparam;
  3762. struct task_struct *p;
  3763. int retval;
  3764. if (!param || pid < 0)
  3765. return -EINVAL;
  3766. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3767. return -EFAULT;
  3768. rcu_read_lock();
  3769. retval = -ESRCH;
  3770. p = find_process_by_pid(pid);
  3771. if (p != NULL)
  3772. retval = sched_setscheduler(p, policy, &lparam);
  3773. rcu_read_unlock();
  3774. return retval;
  3775. }
  3776. /**
  3777. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3778. * @pid: the pid in question.
  3779. * @policy: new policy.
  3780. * @param: structure containing the new RT priority.
  3781. */
  3782. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3783. struct sched_param __user *param)
  3784. {
  3785. /* negative values for policy are not valid */
  3786. if (policy < 0)
  3787. return -EINVAL;
  3788. return do_sched_setscheduler(pid, policy, param);
  3789. }
  3790. /**
  3791. * sys_sched_setparam - set/change the RT priority of a thread
  3792. * @pid: the pid in question.
  3793. * @param: structure containing the new RT priority.
  3794. */
  3795. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3796. {
  3797. return do_sched_setscheduler(pid, -1, param);
  3798. }
  3799. /**
  3800. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3801. * @pid: the pid in question.
  3802. */
  3803. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3804. {
  3805. struct task_struct *p;
  3806. int retval;
  3807. if (pid < 0)
  3808. return -EINVAL;
  3809. retval = -ESRCH;
  3810. read_lock(&tasklist_lock);
  3811. p = find_process_by_pid(pid);
  3812. if (p) {
  3813. retval = security_task_getscheduler(p);
  3814. if (!retval)
  3815. retval = p->policy;
  3816. }
  3817. read_unlock(&tasklist_lock);
  3818. return retval;
  3819. }
  3820. /**
  3821. * sys_sched_getscheduler - get the RT priority of a thread
  3822. * @pid: the pid in question.
  3823. * @param: structure containing the RT priority.
  3824. */
  3825. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3826. {
  3827. struct sched_param lp;
  3828. struct task_struct *p;
  3829. int retval;
  3830. if (!param || pid < 0)
  3831. return -EINVAL;
  3832. read_lock(&tasklist_lock);
  3833. p = find_process_by_pid(pid);
  3834. retval = -ESRCH;
  3835. if (!p)
  3836. goto out_unlock;
  3837. retval = security_task_getscheduler(p);
  3838. if (retval)
  3839. goto out_unlock;
  3840. lp.sched_priority = p->rt_priority;
  3841. read_unlock(&tasklist_lock);
  3842. /*
  3843. * This one might sleep, we cannot do it with a spinlock held ...
  3844. */
  3845. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3846. return retval;
  3847. out_unlock:
  3848. read_unlock(&tasklist_lock);
  3849. return retval;
  3850. }
  3851. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3852. {
  3853. cpumask_t cpus_allowed;
  3854. struct task_struct *p;
  3855. int retval;
  3856. mutex_lock(&sched_hotcpu_mutex);
  3857. read_lock(&tasklist_lock);
  3858. p = find_process_by_pid(pid);
  3859. if (!p) {
  3860. read_unlock(&tasklist_lock);
  3861. mutex_unlock(&sched_hotcpu_mutex);
  3862. return -ESRCH;
  3863. }
  3864. /*
  3865. * It is not safe to call set_cpus_allowed with the
  3866. * tasklist_lock held. We will bump the task_struct's
  3867. * usage count and then drop tasklist_lock.
  3868. */
  3869. get_task_struct(p);
  3870. read_unlock(&tasklist_lock);
  3871. retval = -EPERM;
  3872. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3873. !capable(CAP_SYS_NICE))
  3874. goto out_unlock;
  3875. retval = security_task_setscheduler(p, 0, NULL);
  3876. if (retval)
  3877. goto out_unlock;
  3878. cpus_allowed = cpuset_cpus_allowed(p);
  3879. cpus_and(new_mask, new_mask, cpus_allowed);
  3880. again:
  3881. retval = set_cpus_allowed(p, new_mask);
  3882. if (!retval) {
  3883. cpus_allowed = cpuset_cpus_allowed(p);
  3884. if (!cpus_subset(new_mask, cpus_allowed)) {
  3885. /*
  3886. * We must have raced with a concurrent cpuset
  3887. * update. Just reset the cpus_allowed to the
  3888. * cpuset's cpus_allowed
  3889. */
  3890. new_mask = cpus_allowed;
  3891. goto again;
  3892. }
  3893. }
  3894. out_unlock:
  3895. put_task_struct(p);
  3896. mutex_unlock(&sched_hotcpu_mutex);
  3897. return retval;
  3898. }
  3899. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3900. cpumask_t *new_mask)
  3901. {
  3902. if (len < sizeof(cpumask_t)) {
  3903. memset(new_mask, 0, sizeof(cpumask_t));
  3904. } else if (len > sizeof(cpumask_t)) {
  3905. len = sizeof(cpumask_t);
  3906. }
  3907. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3908. }
  3909. /**
  3910. * sys_sched_setaffinity - set the cpu affinity of a process
  3911. * @pid: pid of the process
  3912. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3913. * @user_mask_ptr: user-space pointer to the new cpu mask
  3914. */
  3915. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3916. unsigned long __user *user_mask_ptr)
  3917. {
  3918. cpumask_t new_mask;
  3919. int retval;
  3920. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3921. if (retval)
  3922. return retval;
  3923. return sched_setaffinity(pid, new_mask);
  3924. }
  3925. /*
  3926. * Represents all cpu's present in the system
  3927. * In systems capable of hotplug, this map could dynamically grow
  3928. * as new cpu's are detected in the system via any platform specific
  3929. * method, such as ACPI for e.g.
  3930. */
  3931. cpumask_t cpu_present_map __read_mostly;
  3932. EXPORT_SYMBOL(cpu_present_map);
  3933. #ifndef CONFIG_SMP
  3934. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3935. EXPORT_SYMBOL(cpu_online_map);
  3936. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3937. EXPORT_SYMBOL(cpu_possible_map);
  3938. #endif
  3939. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3940. {
  3941. struct task_struct *p;
  3942. int retval;
  3943. mutex_lock(&sched_hotcpu_mutex);
  3944. read_lock(&tasklist_lock);
  3945. retval = -ESRCH;
  3946. p = find_process_by_pid(pid);
  3947. if (!p)
  3948. goto out_unlock;
  3949. retval = security_task_getscheduler(p);
  3950. if (retval)
  3951. goto out_unlock;
  3952. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3953. out_unlock:
  3954. read_unlock(&tasklist_lock);
  3955. mutex_unlock(&sched_hotcpu_mutex);
  3956. return retval;
  3957. }
  3958. /**
  3959. * sys_sched_getaffinity - get the cpu affinity of a process
  3960. * @pid: pid of the process
  3961. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3962. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3963. */
  3964. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3965. unsigned long __user *user_mask_ptr)
  3966. {
  3967. int ret;
  3968. cpumask_t mask;
  3969. if (len < sizeof(cpumask_t))
  3970. return -EINVAL;
  3971. ret = sched_getaffinity(pid, &mask);
  3972. if (ret < 0)
  3973. return ret;
  3974. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3975. return -EFAULT;
  3976. return sizeof(cpumask_t);
  3977. }
  3978. /**
  3979. * sys_sched_yield - yield the current processor to other threads.
  3980. *
  3981. * This function yields the current CPU to other tasks. If there are no
  3982. * other threads running on this CPU then this function will return.
  3983. */
  3984. asmlinkage long sys_sched_yield(void)
  3985. {
  3986. struct rq *rq = this_rq_lock();
  3987. schedstat_inc(rq, yld_count);
  3988. current->sched_class->yield_task(rq);
  3989. /*
  3990. * Since we are going to call schedule() anyway, there's
  3991. * no need to preempt or enable interrupts:
  3992. */
  3993. __release(rq->lock);
  3994. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3995. _raw_spin_unlock(&rq->lock);
  3996. preempt_enable_no_resched();
  3997. schedule();
  3998. return 0;
  3999. }
  4000. static void __cond_resched(void)
  4001. {
  4002. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4003. __might_sleep(__FILE__, __LINE__);
  4004. #endif
  4005. /*
  4006. * The BKS might be reacquired before we have dropped
  4007. * PREEMPT_ACTIVE, which could trigger a second
  4008. * cond_resched() call.
  4009. */
  4010. do {
  4011. add_preempt_count(PREEMPT_ACTIVE);
  4012. schedule();
  4013. sub_preempt_count(PREEMPT_ACTIVE);
  4014. } while (need_resched());
  4015. }
  4016. int __sched cond_resched(void)
  4017. {
  4018. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4019. system_state == SYSTEM_RUNNING) {
  4020. __cond_resched();
  4021. return 1;
  4022. }
  4023. return 0;
  4024. }
  4025. EXPORT_SYMBOL(cond_resched);
  4026. /*
  4027. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4028. * call schedule, and on return reacquire the lock.
  4029. *
  4030. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4031. * operations here to prevent schedule() from being called twice (once via
  4032. * spin_unlock(), once by hand).
  4033. */
  4034. int cond_resched_lock(spinlock_t *lock)
  4035. {
  4036. int ret = 0;
  4037. if (need_lockbreak(lock)) {
  4038. spin_unlock(lock);
  4039. cpu_relax();
  4040. ret = 1;
  4041. spin_lock(lock);
  4042. }
  4043. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4044. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4045. _raw_spin_unlock(lock);
  4046. preempt_enable_no_resched();
  4047. __cond_resched();
  4048. ret = 1;
  4049. spin_lock(lock);
  4050. }
  4051. return ret;
  4052. }
  4053. EXPORT_SYMBOL(cond_resched_lock);
  4054. int __sched cond_resched_softirq(void)
  4055. {
  4056. BUG_ON(!in_softirq());
  4057. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4058. local_bh_enable();
  4059. __cond_resched();
  4060. local_bh_disable();
  4061. return 1;
  4062. }
  4063. return 0;
  4064. }
  4065. EXPORT_SYMBOL(cond_resched_softirq);
  4066. /**
  4067. * yield - yield the current processor to other threads.
  4068. *
  4069. * This is a shortcut for kernel-space yielding - it marks the
  4070. * thread runnable and calls sys_sched_yield().
  4071. */
  4072. void __sched yield(void)
  4073. {
  4074. set_current_state(TASK_RUNNING);
  4075. sys_sched_yield();
  4076. }
  4077. EXPORT_SYMBOL(yield);
  4078. /*
  4079. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4080. * that process accounting knows that this is a task in IO wait state.
  4081. *
  4082. * But don't do that if it is a deliberate, throttling IO wait (this task
  4083. * has set its backing_dev_info: the queue against which it should throttle)
  4084. */
  4085. void __sched io_schedule(void)
  4086. {
  4087. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4088. delayacct_blkio_start();
  4089. atomic_inc(&rq->nr_iowait);
  4090. schedule();
  4091. atomic_dec(&rq->nr_iowait);
  4092. delayacct_blkio_end();
  4093. }
  4094. EXPORT_SYMBOL(io_schedule);
  4095. long __sched io_schedule_timeout(long timeout)
  4096. {
  4097. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4098. long ret;
  4099. delayacct_blkio_start();
  4100. atomic_inc(&rq->nr_iowait);
  4101. ret = schedule_timeout(timeout);
  4102. atomic_dec(&rq->nr_iowait);
  4103. delayacct_blkio_end();
  4104. return ret;
  4105. }
  4106. /**
  4107. * sys_sched_get_priority_max - return maximum RT priority.
  4108. * @policy: scheduling class.
  4109. *
  4110. * this syscall returns the maximum rt_priority that can be used
  4111. * by a given scheduling class.
  4112. */
  4113. asmlinkage long sys_sched_get_priority_max(int policy)
  4114. {
  4115. int ret = -EINVAL;
  4116. switch (policy) {
  4117. case SCHED_FIFO:
  4118. case SCHED_RR:
  4119. ret = MAX_USER_RT_PRIO-1;
  4120. break;
  4121. case SCHED_NORMAL:
  4122. case SCHED_BATCH:
  4123. case SCHED_IDLE:
  4124. ret = 0;
  4125. break;
  4126. }
  4127. return ret;
  4128. }
  4129. /**
  4130. * sys_sched_get_priority_min - return minimum RT priority.
  4131. * @policy: scheduling class.
  4132. *
  4133. * this syscall returns the minimum rt_priority that can be used
  4134. * by a given scheduling class.
  4135. */
  4136. asmlinkage long sys_sched_get_priority_min(int policy)
  4137. {
  4138. int ret = -EINVAL;
  4139. switch (policy) {
  4140. case SCHED_FIFO:
  4141. case SCHED_RR:
  4142. ret = 1;
  4143. break;
  4144. case SCHED_NORMAL:
  4145. case SCHED_BATCH:
  4146. case SCHED_IDLE:
  4147. ret = 0;
  4148. }
  4149. return ret;
  4150. }
  4151. /**
  4152. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4153. * @pid: pid of the process.
  4154. * @interval: userspace pointer to the timeslice value.
  4155. *
  4156. * this syscall writes the default timeslice value of a given process
  4157. * into the user-space timespec buffer. A value of '0' means infinity.
  4158. */
  4159. asmlinkage
  4160. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4161. {
  4162. struct task_struct *p;
  4163. unsigned int time_slice;
  4164. int retval;
  4165. struct timespec t;
  4166. if (pid < 0)
  4167. return -EINVAL;
  4168. retval = -ESRCH;
  4169. read_lock(&tasklist_lock);
  4170. p = find_process_by_pid(pid);
  4171. if (!p)
  4172. goto out_unlock;
  4173. retval = security_task_getscheduler(p);
  4174. if (retval)
  4175. goto out_unlock;
  4176. if (p->policy == SCHED_FIFO)
  4177. time_slice = 0;
  4178. else if (p->policy == SCHED_RR)
  4179. time_slice = DEF_TIMESLICE;
  4180. else {
  4181. struct sched_entity *se = &p->se;
  4182. unsigned long flags;
  4183. struct rq *rq;
  4184. rq = task_rq_lock(p, &flags);
  4185. time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4186. task_rq_unlock(rq, &flags);
  4187. }
  4188. read_unlock(&tasklist_lock);
  4189. jiffies_to_timespec(time_slice, &t);
  4190. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4191. return retval;
  4192. out_unlock:
  4193. read_unlock(&tasklist_lock);
  4194. return retval;
  4195. }
  4196. static const char stat_nam[] = "RSDTtZX";
  4197. static void show_task(struct task_struct *p)
  4198. {
  4199. unsigned long free = 0;
  4200. unsigned state;
  4201. state = p->state ? __ffs(p->state) + 1 : 0;
  4202. printk(KERN_INFO "%-13.13s %c", p->comm,
  4203. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4204. #if BITS_PER_LONG == 32
  4205. if (state == TASK_RUNNING)
  4206. printk(KERN_CONT " running ");
  4207. else
  4208. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4209. #else
  4210. if (state == TASK_RUNNING)
  4211. printk(KERN_CONT " running task ");
  4212. else
  4213. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4214. #endif
  4215. #ifdef CONFIG_DEBUG_STACK_USAGE
  4216. {
  4217. unsigned long *n = end_of_stack(p);
  4218. while (!*n)
  4219. n++;
  4220. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4221. }
  4222. #endif
  4223. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4224. task_pid_nr(p), task_pid_nr(p->parent));
  4225. if (state != TASK_RUNNING)
  4226. show_stack(p, NULL);
  4227. }
  4228. void show_state_filter(unsigned long state_filter)
  4229. {
  4230. struct task_struct *g, *p;
  4231. #if BITS_PER_LONG == 32
  4232. printk(KERN_INFO
  4233. " task PC stack pid father\n");
  4234. #else
  4235. printk(KERN_INFO
  4236. " task PC stack pid father\n");
  4237. #endif
  4238. read_lock(&tasklist_lock);
  4239. do_each_thread(g, p) {
  4240. /*
  4241. * reset the NMI-timeout, listing all files on a slow
  4242. * console might take alot of time:
  4243. */
  4244. touch_nmi_watchdog();
  4245. if (!state_filter || (p->state & state_filter))
  4246. show_task(p);
  4247. } while_each_thread(g, p);
  4248. touch_all_softlockup_watchdogs();
  4249. #ifdef CONFIG_SCHED_DEBUG
  4250. sysrq_sched_debug_show();
  4251. #endif
  4252. read_unlock(&tasklist_lock);
  4253. /*
  4254. * Only show locks if all tasks are dumped:
  4255. */
  4256. if (state_filter == -1)
  4257. debug_show_all_locks();
  4258. }
  4259. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4260. {
  4261. idle->sched_class = &idle_sched_class;
  4262. }
  4263. /**
  4264. * init_idle - set up an idle thread for a given CPU
  4265. * @idle: task in question
  4266. * @cpu: cpu the idle task belongs to
  4267. *
  4268. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4269. * flag, to make booting more robust.
  4270. */
  4271. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4272. {
  4273. struct rq *rq = cpu_rq(cpu);
  4274. unsigned long flags;
  4275. __sched_fork(idle);
  4276. idle->se.exec_start = sched_clock();
  4277. idle->prio = idle->normal_prio = MAX_PRIO;
  4278. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4279. __set_task_cpu(idle, cpu);
  4280. spin_lock_irqsave(&rq->lock, flags);
  4281. rq->curr = rq->idle = idle;
  4282. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4283. idle->oncpu = 1;
  4284. #endif
  4285. spin_unlock_irqrestore(&rq->lock, flags);
  4286. /* Set the preempt count _outside_ the spinlocks! */
  4287. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4288. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4289. #else
  4290. task_thread_info(idle)->preempt_count = 0;
  4291. #endif
  4292. /*
  4293. * The idle tasks have their own, simple scheduling class:
  4294. */
  4295. idle->sched_class = &idle_sched_class;
  4296. }
  4297. /*
  4298. * In a system that switches off the HZ timer nohz_cpu_mask
  4299. * indicates which cpus entered this state. This is used
  4300. * in the rcu update to wait only for active cpus. For system
  4301. * which do not switch off the HZ timer nohz_cpu_mask should
  4302. * always be CPU_MASK_NONE.
  4303. */
  4304. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4305. #ifdef CONFIG_SMP
  4306. /*
  4307. * This is how migration works:
  4308. *
  4309. * 1) we queue a struct migration_req structure in the source CPU's
  4310. * runqueue and wake up that CPU's migration thread.
  4311. * 2) we down() the locked semaphore => thread blocks.
  4312. * 3) migration thread wakes up (implicitly it forces the migrated
  4313. * thread off the CPU)
  4314. * 4) it gets the migration request and checks whether the migrated
  4315. * task is still in the wrong runqueue.
  4316. * 5) if it's in the wrong runqueue then the migration thread removes
  4317. * it and puts it into the right queue.
  4318. * 6) migration thread up()s the semaphore.
  4319. * 7) we wake up and the migration is done.
  4320. */
  4321. /*
  4322. * Change a given task's CPU affinity. Migrate the thread to a
  4323. * proper CPU and schedule it away if the CPU it's executing on
  4324. * is removed from the allowed bitmask.
  4325. *
  4326. * NOTE: the caller must have a valid reference to the task, the
  4327. * task must not exit() & deallocate itself prematurely. The
  4328. * call is not atomic; no spinlocks may be held.
  4329. */
  4330. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4331. {
  4332. struct migration_req req;
  4333. unsigned long flags;
  4334. struct rq *rq;
  4335. int ret = 0;
  4336. rq = task_rq_lock(p, &flags);
  4337. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4338. ret = -EINVAL;
  4339. goto out;
  4340. }
  4341. p->cpus_allowed = new_mask;
  4342. /* Can the task run on the task's current CPU? If so, we're done */
  4343. if (cpu_isset(task_cpu(p), new_mask))
  4344. goto out;
  4345. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4346. /* Need help from migration thread: drop lock and wait. */
  4347. task_rq_unlock(rq, &flags);
  4348. wake_up_process(rq->migration_thread);
  4349. wait_for_completion(&req.done);
  4350. tlb_migrate_finish(p->mm);
  4351. return 0;
  4352. }
  4353. out:
  4354. task_rq_unlock(rq, &flags);
  4355. return ret;
  4356. }
  4357. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4358. /*
  4359. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4360. * this because either it can't run here any more (set_cpus_allowed()
  4361. * away from this CPU, or CPU going down), or because we're
  4362. * attempting to rebalance this task on exec (sched_exec).
  4363. *
  4364. * So we race with normal scheduler movements, but that's OK, as long
  4365. * as the task is no longer on this CPU.
  4366. *
  4367. * Returns non-zero if task was successfully migrated.
  4368. */
  4369. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4370. {
  4371. struct rq *rq_dest, *rq_src;
  4372. int ret = 0, on_rq;
  4373. if (unlikely(cpu_is_offline(dest_cpu)))
  4374. return ret;
  4375. rq_src = cpu_rq(src_cpu);
  4376. rq_dest = cpu_rq(dest_cpu);
  4377. double_rq_lock(rq_src, rq_dest);
  4378. /* Already moved. */
  4379. if (task_cpu(p) != src_cpu)
  4380. goto out;
  4381. /* Affinity changed (again). */
  4382. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4383. goto out;
  4384. on_rq = p->se.on_rq;
  4385. if (on_rq)
  4386. deactivate_task(rq_src, p, 0);
  4387. set_task_cpu(p, dest_cpu);
  4388. if (on_rq) {
  4389. activate_task(rq_dest, p, 0);
  4390. check_preempt_curr(rq_dest, p);
  4391. }
  4392. ret = 1;
  4393. out:
  4394. double_rq_unlock(rq_src, rq_dest);
  4395. return ret;
  4396. }
  4397. /*
  4398. * migration_thread - this is a highprio system thread that performs
  4399. * thread migration by bumping thread off CPU then 'pushing' onto
  4400. * another runqueue.
  4401. */
  4402. static int migration_thread(void *data)
  4403. {
  4404. int cpu = (long)data;
  4405. struct rq *rq;
  4406. rq = cpu_rq(cpu);
  4407. BUG_ON(rq->migration_thread != current);
  4408. set_current_state(TASK_INTERRUPTIBLE);
  4409. while (!kthread_should_stop()) {
  4410. struct migration_req *req;
  4411. struct list_head *head;
  4412. spin_lock_irq(&rq->lock);
  4413. if (cpu_is_offline(cpu)) {
  4414. spin_unlock_irq(&rq->lock);
  4415. goto wait_to_die;
  4416. }
  4417. if (rq->active_balance) {
  4418. active_load_balance(rq, cpu);
  4419. rq->active_balance = 0;
  4420. }
  4421. head = &rq->migration_queue;
  4422. if (list_empty(head)) {
  4423. spin_unlock_irq(&rq->lock);
  4424. schedule();
  4425. set_current_state(TASK_INTERRUPTIBLE);
  4426. continue;
  4427. }
  4428. req = list_entry(head->next, struct migration_req, list);
  4429. list_del_init(head->next);
  4430. spin_unlock(&rq->lock);
  4431. __migrate_task(req->task, cpu, req->dest_cpu);
  4432. local_irq_enable();
  4433. complete(&req->done);
  4434. }
  4435. __set_current_state(TASK_RUNNING);
  4436. return 0;
  4437. wait_to_die:
  4438. /* Wait for kthread_stop */
  4439. set_current_state(TASK_INTERRUPTIBLE);
  4440. while (!kthread_should_stop()) {
  4441. schedule();
  4442. set_current_state(TASK_INTERRUPTIBLE);
  4443. }
  4444. __set_current_state(TASK_RUNNING);
  4445. return 0;
  4446. }
  4447. #ifdef CONFIG_HOTPLUG_CPU
  4448. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4449. {
  4450. int ret;
  4451. local_irq_disable();
  4452. ret = __migrate_task(p, src_cpu, dest_cpu);
  4453. local_irq_enable();
  4454. return ret;
  4455. }
  4456. /*
  4457. * Figure out where task on dead CPU should go, use force if necessary.
  4458. * NOTE: interrupts should be disabled by the caller
  4459. */
  4460. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4461. {
  4462. unsigned long flags;
  4463. cpumask_t mask;
  4464. struct rq *rq;
  4465. int dest_cpu;
  4466. do {
  4467. /* On same node? */
  4468. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4469. cpus_and(mask, mask, p->cpus_allowed);
  4470. dest_cpu = any_online_cpu(mask);
  4471. /* On any allowed CPU? */
  4472. if (dest_cpu == NR_CPUS)
  4473. dest_cpu = any_online_cpu(p->cpus_allowed);
  4474. /* No more Mr. Nice Guy. */
  4475. if (dest_cpu == NR_CPUS) {
  4476. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4477. /*
  4478. * Try to stay on the same cpuset, where the
  4479. * current cpuset may be a subset of all cpus.
  4480. * The cpuset_cpus_allowed_locked() variant of
  4481. * cpuset_cpus_allowed() will not block. It must be
  4482. * called within calls to cpuset_lock/cpuset_unlock.
  4483. */
  4484. rq = task_rq_lock(p, &flags);
  4485. p->cpus_allowed = cpus_allowed;
  4486. dest_cpu = any_online_cpu(p->cpus_allowed);
  4487. task_rq_unlock(rq, &flags);
  4488. /*
  4489. * Don't tell them about moving exiting tasks or
  4490. * kernel threads (both mm NULL), since they never
  4491. * leave kernel.
  4492. */
  4493. if (p->mm && printk_ratelimit())
  4494. printk(KERN_INFO "process %d (%s) no "
  4495. "longer affine to cpu%d\n",
  4496. task_pid_nr(p), p->comm, dead_cpu);
  4497. }
  4498. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4499. }
  4500. /*
  4501. * While a dead CPU has no uninterruptible tasks queued at this point,
  4502. * it might still have a nonzero ->nr_uninterruptible counter, because
  4503. * for performance reasons the counter is not stricly tracking tasks to
  4504. * their home CPUs. So we just add the counter to another CPU's counter,
  4505. * to keep the global sum constant after CPU-down:
  4506. */
  4507. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4508. {
  4509. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4510. unsigned long flags;
  4511. local_irq_save(flags);
  4512. double_rq_lock(rq_src, rq_dest);
  4513. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4514. rq_src->nr_uninterruptible = 0;
  4515. double_rq_unlock(rq_src, rq_dest);
  4516. local_irq_restore(flags);
  4517. }
  4518. /* Run through task list and migrate tasks from the dead cpu. */
  4519. static void migrate_live_tasks(int src_cpu)
  4520. {
  4521. struct task_struct *p, *t;
  4522. read_lock(&tasklist_lock);
  4523. do_each_thread(t, p) {
  4524. if (p == current)
  4525. continue;
  4526. if (task_cpu(p) == src_cpu)
  4527. move_task_off_dead_cpu(src_cpu, p);
  4528. } while_each_thread(t, p);
  4529. read_unlock(&tasklist_lock);
  4530. }
  4531. /*
  4532. * activate_idle_task - move idle task to the _front_ of runqueue.
  4533. */
  4534. static void activate_idle_task(struct task_struct *p, struct rq *rq)
  4535. {
  4536. update_rq_clock(rq);
  4537. if (p->state == TASK_UNINTERRUPTIBLE)
  4538. rq->nr_uninterruptible--;
  4539. enqueue_task(rq, p, 0);
  4540. inc_nr_running(p, rq);
  4541. }
  4542. /*
  4543. * Schedules idle task to be the next runnable task on current CPU.
  4544. * It does so by boosting its priority to highest possible and adding it to
  4545. * the _front_ of the runqueue. Used by CPU offline code.
  4546. */
  4547. void sched_idle_next(void)
  4548. {
  4549. int this_cpu = smp_processor_id();
  4550. struct rq *rq = cpu_rq(this_cpu);
  4551. struct task_struct *p = rq->idle;
  4552. unsigned long flags;
  4553. /* cpu has to be offline */
  4554. BUG_ON(cpu_online(this_cpu));
  4555. /*
  4556. * Strictly not necessary since rest of the CPUs are stopped by now
  4557. * and interrupts disabled on the current cpu.
  4558. */
  4559. spin_lock_irqsave(&rq->lock, flags);
  4560. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4561. /* Add idle task to the _front_ of its priority queue: */
  4562. activate_idle_task(p, rq);
  4563. spin_unlock_irqrestore(&rq->lock, flags);
  4564. }
  4565. /*
  4566. * Ensures that the idle task is using init_mm right before its cpu goes
  4567. * offline.
  4568. */
  4569. void idle_task_exit(void)
  4570. {
  4571. struct mm_struct *mm = current->active_mm;
  4572. BUG_ON(cpu_online(smp_processor_id()));
  4573. if (mm != &init_mm)
  4574. switch_mm(mm, &init_mm, current);
  4575. mmdrop(mm);
  4576. }
  4577. /* called under rq->lock with disabled interrupts */
  4578. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4579. {
  4580. struct rq *rq = cpu_rq(dead_cpu);
  4581. /* Must be exiting, otherwise would be on tasklist. */
  4582. BUG_ON(!p->exit_state);
  4583. /* Cannot have done final schedule yet: would have vanished. */
  4584. BUG_ON(p->state == TASK_DEAD);
  4585. get_task_struct(p);
  4586. /*
  4587. * Drop lock around migration; if someone else moves it,
  4588. * that's OK. No task can be added to this CPU, so iteration is
  4589. * fine.
  4590. */
  4591. spin_unlock_irq(&rq->lock);
  4592. move_task_off_dead_cpu(dead_cpu, p);
  4593. spin_lock_irq(&rq->lock);
  4594. put_task_struct(p);
  4595. }
  4596. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4597. static void migrate_dead_tasks(unsigned int dead_cpu)
  4598. {
  4599. struct rq *rq = cpu_rq(dead_cpu);
  4600. struct task_struct *next;
  4601. for ( ; ; ) {
  4602. if (!rq->nr_running)
  4603. break;
  4604. update_rq_clock(rq);
  4605. next = pick_next_task(rq, rq->curr);
  4606. if (!next)
  4607. break;
  4608. migrate_dead(dead_cpu, next);
  4609. }
  4610. }
  4611. #endif /* CONFIG_HOTPLUG_CPU */
  4612. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4613. static struct ctl_table sd_ctl_dir[] = {
  4614. {
  4615. .procname = "sched_domain",
  4616. .mode = 0555,
  4617. },
  4618. {0,},
  4619. };
  4620. static struct ctl_table sd_ctl_root[] = {
  4621. {
  4622. .ctl_name = CTL_KERN,
  4623. .procname = "kernel",
  4624. .mode = 0555,
  4625. .child = sd_ctl_dir,
  4626. },
  4627. {0,},
  4628. };
  4629. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4630. {
  4631. struct ctl_table *entry =
  4632. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4633. return entry;
  4634. }
  4635. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4636. {
  4637. struct ctl_table *entry;
  4638. /*
  4639. * In the intermediate directories, both the child directory and
  4640. * procname are dynamically allocated and could fail but the mode
  4641. * will always be set. In the lowest directory the names are
  4642. * static strings and all have proc handlers.
  4643. */
  4644. for (entry = *tablep; entry->mode; entry++) {
  4645. if (entry->child)
  4646. sd_free_ctl_entry(&entry->child);
  4647. if (entry->proc_handler == NULL)
  4648. kfree(entry->procname);
  4649. }
  4650. kfree(*tablep);
  4651. *tablep = NULL;
  4652. }
  4653. static void
  4654. set_table_entry(struct ctl_table *entry,
  4655. const char *procname, void *data, int maxlen,
  4656. mode_t mode, proc_handler *proc_handler)
  4657. {
  4658. entry->procname = procname;
  4659. entry->data = data;
  4660. entry->maxlen = maxlen;
  4661. entry->mode = mode;
  4662. entry->proc_handler = proc_handler;
  4663. }
  4664. static struct ctl_table *
  4665. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4666. {
  4667. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4668. if (table == NULL)
  4669. return NULL;
  4670. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4671. sizeof(long), 0644, proc_doulongvec_minmax);
  4672. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4673. sizeof(long), 0644, proc_doulongvec_minmax);
  4674. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4675. sizeof(int), 0644, proc_dointvec_minmax);
  4676. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4677. sizeof(int), 0644, proc_dointvec_minmax);
  4678. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4679. sizeof(int), 0644, proc_dointvec_minmax);
  4680. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4681. sizeof(int), 0644, proc_dointvec_minmax);
  4682. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4683. sizeof(int), 0644, proc_dointvec_minmax);
  4684. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4685. sizeof(int), 0644, proc_dointvec_minmax);
  4686. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4687. sizeof(int), 0644, proc_dointvec_minmax);
  4688. set_table_entry(&table[9], "cache_nice_tries",
  4689. &sd->cache_nice_tries,
  4690. sizeof(int), 0644, proc_dointvec_minmax);
  4691. set_table_entry(&table[10], "flags", &sd->flags,
  4692. sizeof(int), 0644, proc_dointvec_minmax);
  4693. /* &table[11] is terminator */
  4694. return table;
  4695. }
  4696. static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
  4697. {
  4698. struct ctl_table *entry, *table;
  4699. struct sched_domain *sd;
  4700. int domain_num = 0, i;
  4701. char buf[32];
  4702. for_each_domain(cpu, sd)
  4703. domain_num++;
  4704. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4705. if (table == NULL)
  4706. return NULL;
  4707. i = 0;
  4708. for_each_domain(cpu, sd) {
  4709. snprintf(buf, 32, "domain%d", i);
  4710. entry->procname = kstrdup(buf, GFP_KERNEL);
  4711. entry->mode = 0555;
  4712. entry->child = sd_alloc_ctl_domain_table(sd);
  4713. entry++;
  4714. i++;
  4715. }
  4716. return table;
  4717. }
  4718. static struct ctl_table_header *sd_sysctl_header;
  4719. static void register_sched_domain_sysctl(void)
  4720. {
  4721. int i, cpu_num = num_online_cpus();
  4722. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4723. char buf[32];
  4724. WARN_ON(sd_ctl_dir[0].child);
  4725. sd_ctl_dir[0].child = entry;
  4726. if (entry == NULL)
  4727. return;
  4728. for_each_online_cpu(i) {
  4729. snprintf(buf, 32, "cpu%d", i);
  4730. entry->procname = kstrdup(buf, GFP_KERNEL);
  4731. entry->mode = 0555;
  4732. entry->child = sd_alloc_ctl_cpu_table(i);
  4733. entry++;
  4734. }
  4735. WARN_ON(sd_sysctl_header);
  4736. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4737. }
  4738. /* may be called multiple times per register */
  4739. static void unregister_sched_domain_sysctl(void)
  4740. {
  4741. if (sd_sysctl_header)
  4742. unregister_sysctl_table(sd_sysctl_header);
  4743. sd_sysctl_header = NULL;
  4744. if (sd_ctl_dir[0].child)
  4745. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4746. }
  4747. #else
  4748. static void register_sched_domain_sysctl(void)
  4749. {
  4750. }
  4751. static void unregister_sched_domain_sysctl(void)
  4752. {
  4753. }
  4754. #endif
  4755. /*
  4756. * migration_call - callback that gets triggered when a CPU is added.
  4757. * Here we can start up the necessary migration thread for the new CPU.
  4758. */
  4759. static int __cpuinit
  4760. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4761. {
  4762. struct task_struct *p;
  4763. int cpu = (long)hcpu;
  4764. unsigned long flags;
  4765. struct rq *rq;
  4766. switch (action) {
  4767. case CPU_LOCK_ACQUIRE:
  4768. mutex_lock(&sched_hotcpu_mutex);
  4769. break;
  4770. case CPU_UP_PREPARE:
  4771. case CPU_UP_PREPARE_FROZEN:
  4772. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4773. if (IS_ERR(p))
  4774. return NOTIFY_BAD;
  4775. kthread_bind(p, cpu);
  4776. /* Must be high prio: stop_machine expects to yield to it. */
  4777. rq = task_rq_lock(p, &flags);
  4778. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4779. task_rq_unlock(rq, &flags);
  4780. cpu_rq(cpu)->migration_thread = p;
  4781. break;
  4782. case CPU_ONLINE:
  4783. case CPU_ONLINE_FROZEN:
  4784. /* Strictly unnecessary, as first user will wake it. */
  4785. wake_up_process(cpu_rq(cpu)->migration_thread);
  4786. break;
  4787. #ifdef CONFIG_HOTPLUG_CPU
  4788. case CPU_UP_CANCELED:
  4789. case CPU_UP_CANCELED_FROZEN:
  4790. if (!cpu_rq(cpu)->migration_thread)
  4791. break;
  4792. /* Unbind it from offline cpu so it can run. Fall thru. */
  4793. kthread_bind(cpu_rq(cpu)->migration_thread,
  4794. any_online_cpu(cpu_online_map));
  4795. kthread_stop(cpu_rq(cpu)->migration_thread);
  4796. cpu_rq(cpu)->migration_thread = NULL;
  4797. break;
  4798. case CPU_DEAD:
  4799. case CPU_DEAD_FROZEN:
  4800. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4801. migrate_live_tasks(cpu);
  4802. rq = cpu_rq(cpu);
  4803. kthread_stop(rq->migration_thread);
  4804. rq->migration_thread = NULL;
  4805. /* Idle task back to normal (off runqueue, low prio) */
  4806. spin_lock_irq(&rq->lock);
  4807. update_rq_clock(rq);
  4808. deactivate_task(rq, rq->idle, 0);
  4809. rq->idle->static_prio = MAX_PRIO;
  4810. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4811. rq->idle->sched_class = &idle_sched_class;
  4812. migrate_dead_tasks(cpu);
  4813. spin_unlock_irq(&rq->lock);
  4814. cpuset_unlock();
  4815. migrate_nr_uninterruptible(rq);
  4816. BUG_ON(rq->nr_running != 0);
  4817. /* No need to migrate the tasks: it was best-effort if
  4818. * they didn't take sched_hotcpu_mutex. Just wake up
  4819. * the requestors. */
  4820. spin_lock_irq(&rq->lock);
  4821. while (!list_empty(&rq->migration_queue)) {
  4822. struct migration_req *req;
  4823. req = list_entry(rq->migration_queue.next,
  4824. struct migration_req, list);
  4825. list_del_init(&req->list);
  4826. complete(&req->done);
  4827. }
  4828. spin_unlock_irq(&rq->lock);
  4829. break;
  4830. #endif
  4831. case CPU_LOCK_RELEASE:
  4832. mutex_unlock(&sched_hotcpu_mutex);
  4833. break;
  4834. }
  4835. return NOTIFY_OK;
  4836. }
  4837. /* Register at highest priority so that task migration (migrate_all_tasks)
  4838. * happens before everything else.
  4839. */
  4840. static struct notifier_block __cpuinitdata migration_notifier = {
  4841. .notifier_call = migration_call,
  4842. .priority = 10
  4843. };
  4844. int __init migration_init(void)
  4845. {
  4846. void *cpu = (void *)(long)smp_processor_id();
  4847. int err;
  4848. /* Start one for the boot CPU: */
  4849. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4850. BUG_ON(err == NOTIFY_BAD);
  4851. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4852. register_cpu_notifier(&migration_notifier);
  4853. return 0;
  4854. }
  4855. #endif
  4856. #ifdef CONFIG_SMP
  4857. /* Number of possible processor ids */
  4858. int nr_cpu_ids __read_mostly = NR_CPUS;
  4859. EXPORT_SYMBOL(nr_cpu_ids);
  4860. #ifdef CONFIG_SCHED_DEBUG
  4861. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4862. {
  4863. struct sched_group *group = sd->groups;
  4864. cpumask_t groupmask;
  4865. char str[NR_CPUS];
  4866. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4867. cpus_clear(groupmask);
  4868. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4869. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4870. printk("does not load-balance\n");
  4871. if (sd->parent)
  4872. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4873. " has parent");
  4874. return -1;
  4875. }
  4876. printk(KERN_CONT "span %s\n", str);
  4877. if (!cpu_isset(cpu, sd->span)) {
  4878. printk(KERN_ERR "ERROR: domain->span does not contain "
  4879. "CPU%d\n", cpu);
  4880. }
  4881. if (!cpu_isset(cpu, group->cpumask)) {
  4882. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4883. " CPU%d\n", cpu);
  4884. }
  4885. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4886. do {
  4887. if (!group) {
  4888. printk("\n");
  4889. printk(KERN_ERR "ERROR: group is NULL\n");
  4890. break;
  4891. }
  4892. if (!group->__cpu_power) {
  4893. printk(KERN_CONT "\n");
  4894. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4895. "set\n");
  4896. break;
  4897. }
  4898. if (!cpus_weight(group->cpumask)) {
  4899. printk(KERN_CONT "\n");
  4900. printk(KERN_ERR "ERROR: empty group\n");
  4901. break;
  4902. }
  4903. if (cpus_intersects(groupmask, group->cpumask)) {
  4904. printk(KERN_CONT "\n");
  4905. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4906. break;
  4907. }
  4908. cpus_or(groupmask, groupmask, group->cpumask);
  4909. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4910. printk(KERN_CONT " %s", str);
  4911. group = group->next;
  4912. } while (group != sd->groups);
  4913. printk(KERN_CONT "\n");
  4914. if (!cpus_equal(sd->span, groupmask))
  4915. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4916. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4917. printk(KERN_ERR "ERROR: parent span is not a superset "
  4918. "of domain->span\n");
  4919. return 0;
  4920. }
  4921. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4922. {
  4923. int level = 0;
  4924. if (!sd) {
  4925. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4926. return;
  4927. }
  4928. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4929. for (;;) {
  4930. if (sched_domain_debug_one(sd, cpu, level))
  4931. break;
  4932. level++;
  4933. sd = sd->parent;
  4934. if (!sd)
  4935. break;
  4936. }
  4937. }
  4938. #else
  4939. # define sched_domain_debug(sd, cpu) do { } while (0)
  4940. #endif
  4941. static int sd_degenerate(struct sched_domain *sd)
  4942. {
  4943. if (cpus_weight(sd->span) == 1)
  4944. return 1;
  4945. /* Following flags need at least 2 groups */
  4946. if (sd->flags & (SD_LOAD_BALANCE |
  4947. SD_BALANCE_NEWIDLE |
  4948. SD_BALANCE_FORK |
  4949. SD_BALANCE_EXEC |
  4950. SD_SHARE_CPUPOWER |
  4951. SD_SHARE_PKG_RESOURCES)) {
  4952. if (sd->groups != sd->groups->next)
  4953. return 0;
  4954. }
  4955. /* Following flags don't use groups */
  4956. if (sd->flags & (SD_WAKE_IDLE |
  4957. SD_WAKE_AFFINE |
  4958. SD_WAKE_BALANCE))
  4959. return 0;
  4960. return 1;
  4961. }
  4962. static int
  4963. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4964. {
  4965. unsigned long cflags = sd->flags, pflags = parent->flags;
  4966. if (sd_degenerate(parent))
  4967. return 1;
  4968. if (!cpus_equal(sd->span, parent->span))
  4969. return 0;
  4970. /* Does parent contain flags not in child? */
  4971. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4972. if (cflags & SD_WAKE_AFFINE)
  4973. pflags &= ~SD_WAKE_BALANCE;
  4974. /* Flags needing groups don't count if only 1 group in parent */
  4975. if (parent->groups == parent->groups->next) {
  4976. pflags &= ~(SD_LOAD_BALANCE |
  4977. SD_BALANCE_NEWIDLE |
  4978. SD_BALANCE_FORK |
  4979. SD_BALANCE_EXEC |
  4980. SD_SHARE_CPUPOWER |
  4981. SD_SHARE_PKG_RESOURCES);
  4982. }
  4983. if (~cflags & pflags)
  4984. return 0;
  4985. return 1;
  4986. }
  4987. /*
  4988. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4989. * hold the hotplug lock.
  4990. */
  4991. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4992. {
  4993. struct rq *rq = cpu_rq(cpu);
  4994. struct sched_domain *tmp;
  4995. /* Remove the sched domains which do not contribute to scheduling. */
  4996. for (tmp = sd; tmp; tmp = tmp->parent) {
  4997. struct sched_domain *parent = tmp->parent;
  4998. if (!parent)
  4999. break;
  5000. if (sd_parent_degenerate(tmp, parent)) {
  5001. tmp->parent = parent->parent;
  5002. if (parent->parent)
  5003. parent->parent->child = tmp;
  5004. }
  5005. }
  5006. if (sd && sd_degenerate(sd)) {
  5007. sd = sd->parent;
  5008. if (sd)
  5009. sd->child = NULL;
  5010. }
  5011. sched_domain_debug(sd, cpu);
  5012. rcu_assign_pointer(rq->sd, sd);
  5013. }
  5014. /* cpus with isolated domains */
  5015. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5016. /* Setup the mask of cpus configured for isolated domains */
  5017. static int __init isolated_cpu_setup(char *str)
  5018. {
  5019. int ints[NR_CPUS], i;
  5020. str = get_options(str, ARRAY_SIZE(ints), ints);
  5021. cpus_clear(cpu_isolated_map);
  5022. for (i = 1; i <= ints[0]; i++)
  5023. if (ints[i] < NR_CPUS)
  5024. cpu_set(ints[i], cpu_isolated_map);
  5025. return 1;
  5026. }
  5027. __setup("isolcpus=", isolated_cpu_setup);
  5028. /*
  5029. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5030. * to a function which identifies what group(along with sched group) a CPU
  5031. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5032. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5033. *
  5034. * init_sched_build_groups will build a circular linked list of the groups
  5035. * covered by the given span, and will set each group's ->cpumask correctly,
  5036. * and ->cpu_power to 0.
  5037. */
  5038. static void
  5039. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5040. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5041. struct sched_group **sg))
  5042. {
  5043. struct sched_group *first = NULL, *last = NULL;
  5044. cpumask_t covered = CPU_MASK_NONE;
  5045. int i;
  5046. for_each_cpu_mask(i, span) {
  5047. struct sched_group *sg;
  5048. int group = group_fn(i, cpu_map, &sg);
  5049. int j;
  5050. if (cpu_isset(i, covered))
  5051. continue;
  5052. sg->cpumask = CPU_MASK_NONE;
  5053. sg->__cpu_power = 0;
  5054. for_each_cpu_mask(j, span) {
  5055. if (group_fn(j, cpu_map, NULL) != group)
  5056. continue;
  5057. cpu_set(j, covered);
  5058. cpu_set(j, sg->cpumask);
  5059. }
  5060. if (!first)
  5061. first = sg;
  5062. if (last)
  5063. last->next = sg;
  5064. last = sg;
  5065. }
  5066. last->next = first;
  5067. }
  5068. #define SD_NODES_PER_DOMAIN 16
  5069. #ifdef CONFIG_NUMA
  5070. /**
  5071. * find_next_best_node - find the next node to include in a sched_domain
  5072. * @node: node whose sched_domain we're building
  5073. * @used_nodes: nodes already in the sched_domain
  5074. *
  5075. * Find the next node to include in a given scheduling domain. Simply
  5076. * finds the closest node not already in the @used_nodes map.
  5077. *
  5078. * Should use nodemask_t.
  5079. */
  5080. static int find_next_best_node(int node, unsigned long *used_nodes)
  5081. {
  5082. int i, n, val, min_val, best_node = 0;
  5083. min_val = INT_MAX;
  5084. for (i = 0; i < MAX_NUMNODES; i++) {
  5085. /* Start at @node */
  5086. n = (node + i) % MAX_NUMNODES;
  5087. if (!nr_cpus_node(n))
  5088. continue;
  5089. /* Skip already used nodes */
  5090. if (test_bit(n, used_nodes))
  5091. continue;
  5092. /* Simple min distance search */
  5093. val = node_distance(node, n);
  5094. if (val < min_val) {
  5095. min_val = val;
  5096. best_node = n;
  5097. }
  5098. }
  5099. set_bit(best_node, used_nodes);
  5100. return best_node;
  5101. }
  5102. /**
  5103. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5104. * @node: node whose cpumask we're constructing
  5105. * @size: number of nodes to include in this span
  5106. *
  5107. * Given a node, construct a good cpumask for its sched_domain to span. It
  5108. * should be one that prevents unnecessary balancing, but also spreads tasks
  5109. * out optimally.
  5110. */
  5111. static cpumask_t sched_domain_node_span(int node)
  5112. {
  5113. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5114. cpumask_t span, nodemask;
  5115. int i;
  5116. cpus_clear(span);
  5117. bitmap_zero(used_nodes, MAX_NUMNODES);
  5118. nodemask = node_to_cpumask(node);
  5119. cpus_or(span, span, nodemask);
  5120. set_bit(node, used_nodes);
  5121. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5122. int next_node = find_next_best_node(node, used_nodes);
  5123. nodemask = node_to_cpumask(next_node);
  5124. cpus_or(span, span, nodemask);
  5125. }
  5126. return span;
  5127. }
  5128. #endif
  5129. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5130. /*
  5131. * SMT sched-domains:
  5132. */
  5133. #ifdef CONFIG_SCHED_SMT
  5134. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5135. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5136. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5137. struct sched_group **sg)
  5138. {
  5139. if (sg)
  5140. *sg = &per_cpu(sched_group_cpus, cpu);
  5141. return cpu;
  5142. }
  5143. #endif
  5144. /*
  5145. * multi-core sched-domains:
  5146. */
  5147. #ifdef CONFIG_SCHED_MC
  5148. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5149. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5150. #endif
  5151. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5152. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5153. struct sched_group **sg)
  5154. {
  5155. int group;
  5156. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5157. cpus_and(mask, mask, *cpu_map);
  5158. group = first_cpu(mask);
  5159. if (sg)
  5160. *sg = &per_cpu(sched_group_core, group);
  5161. return group;
  5162. }
  5163. #elif defined(CONFIG_SCHED_MC)
  5164. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5165. struct sched_group **sg)
  5166. {
  5167. if (sg)
  5168. *sg = &per_cpu(sched_group_core, cpu);
  5169. return cpu;
  5170. }
  5171. #endif
  5172. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5173. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5174. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5175. struct sched_group **sg)
  5176. {
  5177. int group;
  5178. #ifdef CONFIG_SCHED_MC
  5179. cpumask_t mask = cpu_coregroup_map(cpu);
  5180. cpus_and(mask, mask, *cpu_map);
  5181. group = first_cpu(mask);
  5182. #elif defined(CONFIG_SCHED_SMT)
  5183. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5184. cpus_and(mask, mask, *cpu_map);
  5185. group = first_cpu(mask);
  5186. #else
  5187. group = cpu;
  5188. #endif
  5189. if (sg)
  5190. *sg = &per_cpu(sched_group_phys, group);
  5191. return group;
  5192. }
  5193. #ifdef CONFIG_NUMA
  5194. /*
  5195. * The init_sched_build_groups can't handle what we want to do with node
  5196. * groups, so roll our own. Now each node has its own list of groups which
  5197. * gets dynamically allocated.
  5198. */
  5199. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5200. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5201. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5202. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5203. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5204. struct sched_group **sg)
  5205. {
  5206. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5207. int group;
  5208. cpus_and(nodemask, nodemask, *cpu_map);
  5209. group = first_cpu(nodemask);
  5210. if (sg)
  5211. *sg = &per_cpu(sched_group_allnodes, group);
  5212. return group;
  5213. }
  5214. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5215. {
  5216. struct sched_group *sg = group_head;
  5217. int j;
  5218. if (!sg)
  5219. return;
  5220. do {
  5221. for_each_cpu_mask(j, sg->cpumask) {
  5222. struct sched_domain *sd;
  5223. sd = &per_cpu(phys_domains, j);
  5224. if (j != first_cpu(sd->groups->cpumask)) {
  5225. /*
  5226. * Only add "power" once for each
  5227. * physical package.
  5228. */
  5229. continue;
  5230. }
  5231. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5232. }
  5233. sg = sg->next;
  5234. } while (sg != group_head);
  5235. }
  5236. #endif
  5237. #ifdef CONFIG_NUMA
  5238. /* Free memory allocated for various sched_group structures */
  5239. static void free_sched_groups(const cpumask_t *cpu_map)
  5240. {
  5241. int cpu, i;
  5242. for_each_cpu_mask(cpu, *cpu_map) {
  5243. struct sched_group **sched_group_nodes
  5244. = sched_group_nodes_bycpu[cpu];
  5245. if (!sched_group_nodes)
  5246. continue;
  5247. for (i = 0; i < MAX_NUMNODES; i++) {
  5248. cpumask_t nodemask = node_to_cpumask(i);
  5249. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5250. cpus_and(nodemask, nodemask, *cpu_map);
  5251. if (cpus_empty(nodemask))
  5252. continue;
  5253. if (sg == NULL)
  5254. continue;
  5255. sg = sg->next;
  5256. next_sg:
  5257. oldsg = sg;
  5258. sg = sg->next;
  5259. kfree(oldsg);
  5260. if (oldsg != sched_group_nodes[i])
  5261. goto next_sg;
  5262. }
  5263. kfree(sched_group_nodes);
  5264. sched_group_nodes_bycpu[cpu] = NULL;
  5265. }
  5266. }
  5267. #else
  5268. static void free_sched_groups(const cpumask_t *cpu_map)
  5269. {
  5270. }
  5271. #endif
  5272. /*
  5273. * Initialize sched groups cpu_power.
  5274. *
  5275. * cpu_power indicates the capacity of sched group, which is used while
  5276. * distributing the load between different sched groups in a sched domain.
  5277. * Typically cpu_power for all the groups in a sched domain will be same unless
  5278. * there are asymmetries in the topology. If there are asymmetries, group
  5279. * having more cpu_power will pickup more load compared to the group having
  5280. * less cpu_power.
  5281. *
  5282. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5283. * the maximum number of tasks a group can handle in the presence of other idle
  5284. * or lightly loaded groups in the same sched domain.
  5285. */
  5286. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5287. {
  5288. struct sched_domain *child;
  5289. struct sched_group *group;
  5290. WARN_ON(!sd || !sd->groups);
  5291. if (cpu != first_cpu(sd->groups->cpumask))
  5292. return;
  5293. child = sd->child;
  5294. sd->groups->__cpu_power = 0;
  5295. /*
  5296. * For perf policy, if the groups in child domain share resources
  5297. * (for example cores sharing some portions of the cache hierarchy
  5298. * or SMT), then set this domain groups cpu_power such that each group
  5299. * can handle only one task, when there are other idle groups in the
  5300. * same sched domain.
  5301. */
  5302. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5303. (child->flags &
  5304. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5305. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5306. return;
  5307. }
  5308. /*
  5309. * add cpu_power of each child group to this groups cpu_power
  5310. */
  5311. group = child->groups;
  5312. do {
  5313. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5314. group = group->next;
  5315. } while (group != child->groups);
  5316. }
  5317. /*
  5318. * Build sched domains for a given set of cpus and attach the sched domains
  5319. * to the individual cpus
  5320. */
  5321. static int build_sched_domains(const cpumask_t *cpu_map)
  5322. {
  5323. int i;
  5324. #ifdef CONFIG_NUMA
  5325. struct sched_group **sched_group_nodes = NULL;
  5326. int sd_allnodes = 0;
  5327. /*
  5328. * Allocate the per-node list of sched groups
  5329. */
  5330. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5331. GFP_KERNEL);
  5332. if (!sched_group_nodes) {
  5333. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5334. return -ENOMEM;
  5335. }
  5336. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5337. #endif
  5338. /*
  5339. * Set up domains for cpus specified by the cpu_map.
  5340. */
  5341. for_each_cpu_mask(i, *cpu_map) {
  5342. struct sched_domain *sd = NULL, *p;
  5343. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5344. cpus_and(nodemask, nodemask, *cpu_map);
  5345. #ifdef CONFIG_NUMA
  5346. if (cpus_weight(*cpu_map) >
  5347. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5348. sd = &per_cpu(allnodes_domains, i);
  5349. *sd = SD_ALLNODES_INIT;
  5350. sd->span = *cpu_map;
  5351. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5352. p = sd;
  5353. sd_allnodes = 1;
  5354. } else
  5355. p = NULL;
  5356. sd = &per_cpu(node_domains, i);
  5357. *sd = SD_NODE_INIT;
  5358. sd->span = sched_domain_node_span(cpu_to_node(i));
  5359. sd->parent = p;
  5360. if (p)
  5361. p->child = sd;
  5362. cpus_and(sd->span, sd->span, *cpu_map);
  5363. #endif
  5364. p = sd;
  5365. sd = &per_cpu(phys_domains, i);
  5366. *sd = SD_CPU_INIT;
  5367. sd->span = nodemask;
  5368. sd->parent = p;
  5369. if (p)
  5370. p->child = sd;
  5371. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5372. #ifdef CONFIG_SCHED_MC
  5373. p = sd;
  5374. sd = &per_cpu(core_domains, i);
  5375. *sd = SD_MC_INIT;
  5376. sd->span = cpu_coregroup_map(i);
  5377. cpus_and(sd->span, sd->span, *cpu_map);
  5378. sd->parent = p;
  5379. p->child = sd;
  5380. cpu_to_core_group(i, cpu_map, &sd->groups);
  5381. #endif
  5382. #ifdef CONFIG_SCHED_SMT
  5383. p = sd;
  5384. sd = &per_cpu(cpu_domains, i);
  5385. *sd = SD_SIBLING_INIT;
  5386. sd->span = per_cpu(cpu_sibling_map, i);
  5387. cpus_and(sd->span, sd->span, *cpu_map);
  5388. sd->parent = p;
  5389. p->child = sd;
  5390. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5391. #endif
  5392. }
  5393. #ifdef CONFIG_SCHED_SMT
  5394. /* Set up CPU (sibling) groups */
  5395. for_each_cpu_mask(i, *cpu_map) {
  5396. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5397. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5398. if (i != first_cpu(this_sibling_map))
  5399. continue;
  5400. init_sched_build_groups(this_sibling_map, cpu_map,
  5401. &cpu_to_cpu_group);
  5402. }
  5403. #endif
  5404. #ifdef CONFIG_SCHED_MC
  5405. /* Set up multi-core groups */
  5406. for_each_cpu_mask(i, *cpu_map) {
  5407. cpumask_t this_core_map = cpu_coregroup_map(i);
  5408. cpus_and(this_core_map, this_core_map, *cpu_map);
  5409. if (i != first_cpu(this_core_map))
  5410. continue;
  5411. init_sched_build_groups(this_core_map, cpu_map,
  5412. &cpu_to_core_group);
  5413. }
  5414. #endif
  5415. /* Set up physical groups */
  5416. for (i = 0; i < MAX_NUMNODES; i++) {
  5417. cpumask_t nodemask = node_to_cpumask(i);
  5418. cpus_and(nodemask, nodemask, *cpu_map);
  5419. if (cpus_empty(nodemask))
  5420. continue;
  5421. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5422. }
  5423. #ifdef CONFIG_NUMA
  5424. /* Set up node groups */
  5425. if (sd_allnodes)
  5426. init_sched_build_groups(*cpu_map, cpu_map,
  5427. &cpu_to_allnodes_group);
  5428. for (i = 0; i < MAX_NUMNODES; i++) {
  5429. /* Set up node groups */
  5430. struct sched_group *sg, *prev;
  5431. cpumask_t nodemask = node_to_cpumask(i);
  5432. cpumask_t domainspan;
  5433. cpumask_t covered = CPU_MASK_NONE;
  5434. int j;
  5435. cpus_and(nodemask, nodemask, *cpu_map);
  5436. if (cpus_empty(nodemask)) {
  5437. sched_group_nodes[i] = NULL;
  5438. continue;
  5439. }
  5440. domainspan = sched_domain_node_span(i);
  5441. cpus_and(domainspan, domainspan, *cpu_map);
  5442. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5443. if (!sg) {
  5444. printk(KERN_WARNING "Can not alloc domain group for "
  5445. "node %d\n", i);
  5446. goto error;
  5447. }
  5448. sched_group_nodes[i] = sg;
  5449. for_each_cpu_mask(j, nodemask) {
  5450. struct sched_domain *sd;
  5451. sd = &per_cpu(node_domains, j);
  5452. sd->groups = sg;
  5453. }
  5454. sg->__cpu_power = 0;
  5455. sg->cpumask = nodemask;
  5456. sg->next = sg;
  5457. cpus_or(covered, covered, nodemask);
  5458. prev = sg;
  5459. for (j = 0; j < MAX_NUMNODES; j++) {
  5460. cpumask_t tmp, notcovered;
  5461. int n = (i + j) % MAX_NUMNODES;
  5462. cpus_complement(notcovered, covered);
  5463. cpus_and(tmp, notcovered, *cpu_map);
  5464. cpus_and(tmp, tmp, domainspan);
  5465. if (cpus_empty(tmp))
  5466. break;
  5467. nodemask = node_to_cpumask(n);
  5468. cpus_and(tmp, tmp, nodemask);
  5469. if (cpus_empty(tmp))
  5470. continue;
  5471. sg = kmalloc_node(sizeof(struct sched_group),
  5472. GFP_KERNEL, i);
  5473. if (!sg) {
  5474. printk(KERN_WARNING
  5475. "Can not alloc domain group for node %d\n", j);
  5476. goto error;
  5477. }
  5478. sg->__cpu_power = 0;
  5479. sg->cpumask = tmp;
  5480. sg->next = prev->next;
  5481. cpus_or(covered, covered, tmp);
  5482. prev->next = sg;
  5483. prev = sg;
  5484. }
  5485. }
  5486. #endif
  5487. /* Calculate CPU power for physical packages and nodes */
  5488. #ifdef CONFIG_SCHED_SMT
  5489. for_each_cpu_mask(i, *cpu_map) {
  5490. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5491. init_sched_groups_power(i, sd);
  5492. }
  5493. #endif
  5494. #ifdef CONFIG_SCHED_MC
  5495. for_each_cpu_mask(i, *cpu_map) {
  5496. struct sched_domain *sd = &per_cpu(core_domains, i);
  5497. init_sched_groups_power(i, sd);
  5498. }
  5499. #endif
  5500. for_each_cpu_mask(i, *cpu_map) {
  5501. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5502. init_sched_groups_power(i, sd);
  5503. }
  5504. #ifdef CONFIG_NUMA
  5505. for (i = 0; i < MAX_NUMNODES; i++)
  5506. init_numa_sched_groups_power(sched_group_nodes[i]);
  5507. if (sd_allnodes) {
  5508. struct sched_group *sg;
  5509. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5510. init_numa_sched_groups_power(sg);
  5511. }
  5512. #endif
  5513. /* Attach the domains */
  5514. for_each_cpu_mask(i, *cpu_map) {
  5515. struct sched_domain *sd;
  5516. #ifdef CONFIG_SCHED_SMT
  5517. sd = &per_cpu(cpu_domains, i);
  5518. #elif defined(CONFIG_SCHED_MC)
  5519. sd = &per_cpu(core_domains, i);
  5520. #else
  5521. sd = &per_cpu(phys_domains, i);
  5522. #endif
  5523. cpu_attach_domain(sd, i);
  5524. }
  5525. return 0;
  5526. #ifdef CONFIG_NUMA
  5527. error:
  5528. free_sched_groups(cpu_map);
  5529. return -ENOMEM;
  5530. #endif
  5531. }
  5532. static cpumask_t *doms_cur; /* current sched domains */
  5533. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5534. /*
  5535. * Special case: If a kmalloc of a doms_cur partition (array of
  5536. * cpumask_t) fails, then fallback to a single sched domain,
  5537. * as determined by the single cpumask_t fallback_doms.
  5538. */
  5539. static cpumask_t fallback_doms;
  5540. /*
  5541. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5542. * For now this just excludes isolated cpus, but could be used to
  5543. * exclude other special cases in the future.
  5544. */
  5545. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5546. {
  5547. int err;
  5548. ndoms_cur = 1;
  5549. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5550. if (!doms_cur)
  5551. doms_cur = &fallback_doms;
  5552. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5553. err = build_sched_domains(doms_cur);
  5554. register_sched_domain_sysctl();
  5555. return err;
  5556. }
  5557. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5558. {
  5559. free_sched_groups(cpu_map);
  5560. }
  5561. /*
  5562. * Detach sched domains from a group of cpus specified in cpu_map
  5563. * These cpus will now be attached to the NULL domain
  5564. */
  5565. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5566. {
  5567. int i;
  5568. unregister_sched_domain_sysctl();
  5569. for_each_cpu_mask(i, *cpu_map)
  5570. cpu_attach_domain(NULL, i);
  5571. synchronize_sched();
  5572. arch_destroy_sched_domains(cpu_map);
  5573. }
  5574. /*
  5575. * Partition sched domains as specified by the 'ndoms_new'
  5576. * cpumasks in the array doms_new[] of cpumasks. This compares
  5577. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5578. * It destroys each deleted domain and builds each new domain.
  5579. *
  5580. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5581. * The masks don't intersect (don't overlap.) We should setup one
  5582. * sched domain for each mask. CPUs not in any of the cpumasks will
  5583. * not be load balanced. If the same cpumask appears both in the
  5584. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5585. * it as it is.
  5586. *
  5587. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5588. * ownership of it and will kfree it when done with it. If the caller
  5589. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5590. * and partition_sched_domains() will fallback to the single partition
  5591. * 'fallback_doms'.
  5592. *
  5593. * Call with hotplug lock held
  5594. */
  5595. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5596. {
  5597. int i, j;
  5598. /* always unregister in case we don't destroy any domains */
  5599. unregister_sched_domain_sysctl();
  5600. if (doms_new == NULL) {
  5601. ndoms_new = 1;
  5602. doms_new = &fallback_doms;
  5603. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5604. }
  5605. /* Destroy deleted domains */
  5606. for (i = 0; i < ndoms_cur; i++) {
  5607. for (j = 0; j < ndoms_new; j++) {
  5608. if (cpus_equal(doms_cur[i], doms_new[j]))
  5609. goto match1;
  5610. }
  5611. /* no match - a current sched domain not in new doms_new[] */
  5612. detach_destroy_domains(doms_cur + i);
  5613. match1:
  5614. ;
  5615. }
  5616. /* Build new domains */
  5617. for (i = 0; i < ndoms_new; i++) {
  5618. for (j = 0; j < ndoms_cur; j++) {
  5619. if (cpus_equal(doms_new[i], doms_cur[j]))
  5620. goto match2;
  5621. }
  5622. /* no match - add a new doms_new */
  5623. build_sched_domains(doms_new + i);
  5624. match2:
  5625. ;
  5626. }
  5627. /* Remember the new sched domains */
  5628. if (doms_cur != &fallback_doms)
  5629. kfree(doms_cur);
  5630. doms_cur = doms_new;
  5631. ndoms_cur = ndoms_new;
  5632. register_sched_domain_sysctl();
  5633. }
  5634. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5635. static int arch_reinit_sched_domains(void)
  5636. {
  5637. int err;
  5638. mutex_lock(&sched_hotcpu_mutex);
  5639. detach_destroy_domains(&cpu_online_map);
  5640. err = arch_init_sched_domains(&cpu_online_map);
  5641. mutex_unlock(&sched_hotcpu_mutex);
  5642. return err;
  5643. }
  5644. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5645. {
  5646. int ret;
  5647. if (buf[0] != '0' && buf[0] != '1')
  5648. return -EINVAL;
  5649. if (smt)
  5650. sched_smt_power_savings = (buf[0] == '1');
  5651. else
  5652. sched_mc_power_savings = (buf[0] == '1');
  5653. ret = arch_reinit_sched_domains();
  5654. return ret ? ret : count;
  5655. }
  5656. #ifdef CONFIG_SCHED_MC
  5657. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5658. {
  5659. return sprintf(page, "%u\n", sched_mc_power_savings);
  5660. }
  5661. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5662. const char *buf, size_t count)
  5663. {
  5664. return sched_power_savings_store(buf, count, 0);
  5665. }
  5666. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5667. sched_mc_power_savings_store);
  5668. #endif
  5669. #ifdef CONFIG_SCHED_SMT
  5670. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5671. {
  5672. return sprintf(page, "%u\n", sched_smt_power_savings);
  5673. }
  5674. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5675. const char *buf, size_t count)
  5676. {
  5677. return sched_power_savings_store(buf, count, 1);
  5678. }
  5679. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5680. sched_smt_power_savings_store);
  5681. #endif
  5682. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5683. {
  5684. int err = 0;
  5685. #ifdef CONFIG_SCHED_SMT
  5686. if (smt_capable())
  5687. err = sysfs_create_file(&cls->kset.kobj,
  5688. &attr_sched_smt_power_savings.attr);
  5689. #endif
  5690. #ifdef CONFIG_SCHED_MC
  5691. if (!err && mc_capable())
  5692. err = sysfs_create_file(&cls->kset.kobj,
  5693. &attr_sched_mc_power_savings.attr);
  5694. #endif
  5695. return err;
  5696. }
  5697. #endif
  5698. /*
  5699. * Force a reinitialization of the sched domains hierarchy. The domains
  5700. * and groups cannot be updated in place without racing with the balancing
  5701. * code, so we temporarily attach all running cpus to the NULL domain
  5702. * which will prevent rebalancing while the sched domains are recalculated.
  5703. */
  5704. static int update_sched_domains(struct notifier_block *nfb,
  5705. unsigned long action, void *hcpu)
  5706. {
  5707. switch (action) {
  5708. case CPU_UP_PREPARE:
  5709. case CPU_UP_PREPARE_FROZEN:
  5710. case CPU_DOWN_PREPARE:
  5711. case CPU_DOWN_PREPARE_FROZEN:
  5712. detach_destroy_domains(&cpu_online_map);
  5713. return NOTIFY_OK;
  5714. case CPU_UP_CANCELED:
  5715. case CPU_UP_CANCELED_FROZEN:
  5716. case CPU_DOWN_FAILED:
  5717. case CPU_DOWN_FAILED_FROZEN:
  5718. case CPU_ONLINE:
  5719. case CPU_ONLINE_FROZEN:
  5720. case CPU_DEAD:
  5721. case CPU_DEAD_FROZEN:
  5722. /*
  5723. * Fall through and re-initialise the domains.
  5724. */
  5725. break;
  5726. default:
  5727. return NOTIFY_DONE;
  5728. }
  5729. /* The hotplug lock is already held by cpu_up/cpu_down */
  5730. arch_init_sched_domains(&cpu_online_map);
  5731. return NOTIFY_OK;
  5732. }
  5733. void __init sched_init_smp(void)
  5734. {
  5735. cpumask_t non_isolated_cpus;
  5736. mutex_lock(&sched_hotcpu_mutex);
  5737. arch_init_sched_domains(&cpu_online_map);
  5738. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5739. if (cpus_empty(non_isolated_cpus))
  5740. cpu_set(smp_processor_id(), non_isolated_cpus);
  5741. mutex_unlock(&sched_hotcpu_mutex);
  5742. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5743. hotcpu_notifier(update_sched_domains, 0);
  5744. /* Move init over to a non-isolated CPU */
  5745. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5746. BUG();
  5747. }
  5748. #else
  5749. void __init sched_init_smp(void)
  5750. {
  5751. }
  5752. #endif /* CONFIG_SMP */
  5753. int in_sched_functions(unsigned long addr)
  5754. {
  5755. /* Linker adds these: start and end of __sched functions */
  5756. extern char __sched_text_start[], __sched_text_end[];
  5757. return in_lock_functions(addr) ||
  5758. (addr >= (unsigned long)__sched_text_start
  5759. && addr < (unsigned long)__sched_text_end);
  5760. }
  5761. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5762. {
  5763. cfs_rq->tasks_timeline = RB_ROOT;
  5764. #ifdef CONFIG_FAIR_GROUP_SCHED
  5765. cfs_rq->rq = rq;
  5766. #endif
  5767. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5768. }
  5769. void __init sched_init(void)
  5770. {
  5771. int highest_cpu = 0;
  5772. int i, j;
  5773. for_each_possible_cpu(i) {
  5774. struct rt_prio_array *array;
  5775. struct rq *rq;
  5776. rq = cpu_rq(i);
  5777. spin_lock_init(&rq->lock);
  5778. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5779. rq->nr_running = 0;
  5780. rq->clock = 1;
  5781. init_cfs_rq(&rq->cfs, rq);
  5782. #ifdef CONFIG_FAIR_GROUP_SCHED
  5783. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5784. {
  5785. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5786. struct sched_entity *se =
  5787. &per_cpu(init_sched_entity, i);
  5788. init_cfs_rq_p[i] = cfs_rq;
  5789. init_cfs_rq(cfs_rq, rq);
  5790. cfs_rq->tg = &init_task_group;
  5791. list_add(&cfs_rq->leaf_cfs_rq_list,
  5792. &rq->leaf_cfs_rq_list);
  5793. init_sched_entity_p[i] = se;
  5794. se->cfs_rq = &rq->cfs;
  5795. se->my_q = cfs_rq;
  5796. se->load.weight = init_task_group_load;
  5797. se->load.inv_weight =
  5798. div64_64(1ULL<<32, init_task_group_load);
  5799. se->parent = NULL;
  5800. }
  5801. init_task_group.shares = init_task_group_load;
  5802. spin_lock_init(&init_task_group.lock);
  5803. #endif
  5804. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5805. rq->cpu_load[j] = 0;
  5806. #ifdef CONFIG_SMP
  5807. rq->sd = NULL;
  5808. rq->active_balance = 0;
  5809. rq->next_balance = jiffies;
  5810. rq->push_cpu = 0;
  5811. rq->cpu = i;
  5812. rq->migration_thread = NULL;
  5813. INIT_LIST_HEAD(&rq->migration_queue);
  5814. #endif
  5815. atomic_set(&rq->nr_iowait, 0);
  5816. array = &rq->rt.active;
  5817. for (j = 0; j < MAX_RT_PRIO; j++) {
  5818. INIT_LIST_HEAD(array->queue + j);
  5819. __clear_bit(j, array->bitmap);
  5820. }
  5821. highest_cpu = i;
  5822. /* delimiter for bitsearch: */
  5823. __set_bit(MAX_RT_PRIO, array->bitmap);
  5824. }
  5825. set_load_weight(&init_task);
  5826. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5827. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5828. #endif
  5829. #ifdef CONFIG_SMP
  5830. nr_cpu_ids = highest_cpu + 1;
  5831. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5832. #endif
  5833. #ifdef CONFIG_RT_MUTEXES
  5834. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5835. #endif
  5836. /*
  5837. * The boot idle thread does lazy MMU switching as well:
  5838. */
  5839. atomic_inc(&init_mm.mm_count);
  5840. enter_lazy_tlb(&init_mm, current);
  5841. /*
  5842. * Make us the idle thread. Technically, schedule() should not be
  5843. * called from this thread, however somewhere below it might be,
  5844. * but because we are the idle thread, we just pick up running again
  5845. * when this runqueue becomes "idle".
  5846. */
  5847. init_idle(current, smp_processor_id());
  5848. /*
  5849. * During early bootup we pretend to be a normal task:
  5850. */
  5851. current->sched_class = &fair_sched_class;
  5852. }
  5853. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5854. void __might_sleep(char *file, int line)
  5855. {
  5856. #ifdef in_atomic
  5857. static unsigned long prev_jiffy; /* ratelimiting */
  5858. if ((in_atomic() || irqs_disabled()) &&
  5859. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5860. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5861. return;
  5862. prev_jiffy = jiffies;
  5863. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5864. " context at %s:%d\n", file, line);
  5865. printk("in_atomic():%d, irqs_disabled():%d\n",
  5866. in_atomic(), irqs_disabled());
  5867. debug_show_held_locks(current);
  5868. if (irqs_disabled())
  5869. print_irqtrace_events(current);
  5870. dump_stack();
  5871. }
  5872. #endif
  5873. }
  5874. EXPORT_SYMBOL(__might_sleep);
  5875. #endif
  5876. #ifdef CONFIG_MAGIC_SYSRQ
  5877. static void normalize_task(struct rq *rq, struct task_struct *p)
  5878. {
  5879. int on_rq;
  5880. update_rq_clock(rq);
  5881. on_rq = p->se.on_rq;
  5882. if (on_rq)
  5883. deactivate_task(rq, p, 0);
  5884. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5885. if (on_rq) {
  5886. activate_task(rq, p, 0);
  5887. resched_task(rq->curr);
  5888. }
  5889. }
  5890. void normalize_rt_tasks(void)
  5891. {
  5892. struct task_struct *g, *p;
  5893. unsigned long flags;
  5894. struct rq *rq;
  5895. read_lock_irq(&tasklist_lock);
  5896. do_each_thread(g, p) {
  5897. /*
  5898. * Only normalize user tasks:
  5899. */
  5900. if (!p->mm)
  5901. continue;
  5902. p->se.exec_start = 0;
  5903. #ifdef CONFIG_SCHEDSTATS
  5904. p->se.wait_start = 0;
  5905. p->se.sleep_start = 0;
  5906. p->se.block_start = 0;
  5907. #endif
  5908. task_rq(p)->clock = 0;
  5909. if (!rt_task(p)) {
  5910. /*
  5911. * Renice negative nice level userspace
  5912. * tasks back to 0:
  5913. */
  5914. if (TASK_NICE(p) < 0 && p->mm)
  5915. set_user_nice(p, 0);
  5916. continue;
  5917. }
  5918. spin_lock_irqsave(&p->pi_lock, flags);
  5919. rq = __task_rq_lock(p);
  5920. normalize_task(rq, p);
  5921. __task_rq_unlock(rq);
  5922. spin_unlock_irqrestore(&p->pi_lock, flags);
  5923. } while_each_thread(g, p);
  5924. read_unlock_irq(&tasklist_lock);
  5925. }
  5926. #endif /* CONFIG_MAGIC_SYSRQ */
  5927. #ifdef CONFIG_IA64
  5928. /*
  5929. * These functions are only useful for the IA64 MCA handling.
  5930. *
  5931. * They can only be called when the whole system has been
  5932. * stopped - every CPU needs to be quiescent, and no scheduling
  5933. * activity can take place. Using them for anything else would
  5934. * be a serious bug, and as a result, they aren't even visible
  5935. * under any other configuration.
  5936. */
  5937. /**
  5938. * curr_task - return the current task for a given cpu.
  5939. * @cpu: the processor in question.
  5940. *
  5941. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5942. */
  5943. struct task_struct *curr_task(int cpu)
  5944. {
  5945. return cpu_curr(cpu);
  5946. }
  5947. /**
  5948. * set_curr_task - set the current task for a given cpu.
  5949. * @cpu: the processor in question.
  5950. * @p: the task pointer to set.
  5951. *
  5952. * Description: This function must only be used when non-maskable interrupts
  5953. * are serviced on a separate stack. It allows the architecture to switch the
  5954. * notion of the current task on a cpu in a non-blocking manner. This function
  5955. * must be called with all CPU's synchronized, and interrupts disabled, the
  5956. * and caller must save the original value of the current task (see
  5957. * curr_task() above) and restore that value before reenabling interrupts and
  5958. * re-starting the system.
  5959. *
  5960. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5961. */
  5962. void set_curr_task(int cpu, struct task_struct *p)
  5963. {
  5964. cpu_curr(cpu) = p;
  5965. }
  5966. #endif
  5967. #ifdef CONFIG_FAIR_GROUP_SCHED
  5968. /* allocate runqueue etc for a new task group */
  5969. struct task_group *sched_create_group(void)
  5970. {
  5971. struct task_group *tg;
  5972. struct cfs_rq *cfs_rq;
  5973. struct sched_entity *se;
  5974. struct rq *rq;
  5975. int i;
  5976. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5977. if (!tg)
  5978. return ERR_PTR(-ENOMEM);
  5979. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  5980. if (!tg->cfs_rq)
  5981. goto err;
  5982. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  5983. if (!tg->se)
  5984. goto err;
  5985. for_each_possible_cpu(i) {
  5986. rq = cpu_rq(i);
  5987. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  5988. cpu_to_node(i));
  5989. if (!cfs_rq)
  5990. goto err;
  5991. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  5992. cpu_to_node(i));
  5993. if (!se)
  5994. goto err;
  5995. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  5996. memset(se, 0, sizeof(struct sched_entity));
  5997. tg->cfs_rq[i] = cfs_rq;
  5998. init_cfs_rq(cfs_rq, rq);
  5999. cfs_rq->tg = tg;
  6000. tg->se[i] = se;
  6001. se->cfs_rq = &rq->cfs;
  6002. se->my_q = cfs_rq;
  6003. se->load.weight = NICE_0_LOAD;
  6004. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6005. se->parent = NULL;
  6006. }
  6007. for_each_possible_cpu(i) {
  6008. rq = cpu_rq(i);
  6009. cfs_rq = tg->cfs_rq[i];
  6010. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6011. }
  6012. tg->shares = NICE_0_LOAD;
  6013. spin_lock_init(&tg->lock);
  6014. return tg;
  6015. err:
  6016. for_each_possible_cpu(i) {
  6017. if (tg->cfs_rq)
  6018. kfree(tg->cfs_rq[i]);
  6019. if (tg->se)
  6020. kfree(tg->se[i]);
  6021. }
  6022. kfree(tg->cfs_rq);
  6023. kfree(tg->se);
  6024. kfree(tg);
  6025. return ERR_PTR(-ENOMEM);
  6026. }
  6027. /* rcu callback to free various structures associated with a task group */
  6028. static void free_sched_group(struct rcu_head *rhp)
  6029. {
  6030. struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
  6031. struct task_group *tg = cfs_rq->tg;
  6032. struct sched_entity *se;
  6033. int i;
  6034. /* now it should be safe to free those cfs_rqs */
  6035. for_each_possible_cpu(i) {
  6036. cfs_rq = tg->cfs_rq[i];
  6037. kfree(cfs_rq);
  6038. se = tg->se[i];
  6039. kfree(se);
  6040. }
  6041. kfree(tg->cfs_rq);
  6042. kfree(tg->se);
  6043. kfree(tg);
  6044. }
  6045. /* Destroy runqueue etc associated with a task group */
  6046. void sched_destroy_group(struct task_group *tg)
  6047. {
  6048. struct cfs_rq *cfs_rq;
  6049. int i;
  6050. for_each_possible_cpu(i) {
  6051. cfs_rq = tg->cfs_rq[i];
  6052. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6053. }
  6054. cfs_rq = tg->cfs_rq[0];
  6055. /* wait for possible concurrent references to cfs_rqs complete */
  6056. call_rcu(&cfs_rq->rcu, free_sched_group);
  6057. }
  6058. /* change task's runqueue when it moves between groups.
  6059. * The caller of this function should have put the task in its new group
  6060. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6061. * reflect its new group.
  6062. */
  6063. void sched_move_task(struct task_struct *tsk)
  6064. {
  6065. int on_rq, running;
  6066. unsigned long flags;
  6067. struct rq *rq;
  6068. rq = task_rq_lock(tsk, &flags);
  6069. if (tsk->sched_class != &fair_sched_class)
  6070. goto done;
  6071. update_rq_clock(rq);
  6072. running = task_running(rq, tsk);
  6073. on_rq = tsk->se.on_rq;
  6074. if (on_rq) {
  6075. dequeue_task(rq, tsk, 0);
  6076. if (unlikely(running))
  6077. tsk->sched_class->put_prev_task(rq, tsk);
  6078. }
  6079. set_task_cfs_rq(tsk);
  6080. if (on_rq) {
  6081. if (unlikely(running))
  6082. tsk->sched_class->set_curr_task(rq);
  6083. enqueue_task(rq, tsk, 0);
  6084. }
  6085. done:
  6086. task_rq_unlock(rq, &flags);
  6087. }
  6088. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6089. {
  6090. struct cfs_rq *cfs_rq = se->cfs_rq;
  6091. struct rq *rq = cfs_rq->rq;
  6092. int on_rq;
  6093. spin_lock_irq(&rq->lock);
  6094. on_rq = se->on_rq;
  6095. if (on_rq)
  6096. dequeue_entity(cfs_rq, se, 0);
  6097. se->load.weight = shares;
  6098. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6099. if (on_rq)
  6100. enqueue_entity(cfs_rq, se, 0);
  6101. spin_unlock_irq(&rq->lock);
  6102. }
  6103. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6104. {
  6105. int i;
  6106. spin_lock(&tg->lock);
  6107. if (tg->shares == shares)
  6108. goto done;
  6109. tg->shares = shares;
  6110. for_each_possible_cpu(i)
  6111. set_se_shares(tg->se[i], shares);
  6112. done:
  6113. spin_unlock(&tg->lock);
  6114. return 0;
  6115. }
  6116. unsigned long sched_group_shares(struct task_group *tg)
  6117. {
  6118. return tg->shares;
  6119. }
  6120. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6121. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6122. /* return corresponding task_group object of a cgroup */
  6123. static inline struct task_group *cgroup_tg(struct cgroup *cont)
  6124. {
  6125. return container_of(cgroup_subsys_state(cont, cpu_cgroup_subsys_id),
  6126. struct task_group, css);
  6127. }
  6128. static struct cgroup_subsys_state *
  6129. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
  6130. {
  6131. struct task_group *tg;
  6132. if (!cont->parent) {
  6133. /* This is early initialization for the top cgroup */
  6134. init_task_group.css.cgroup = cont;
  6135. return &init_task_group.css;
  6136. }
  6137. /* we support only 1-level deep hierarchical scheduler atm */
  6138. if (cont->parent->parent)
  6139. return ERR_PTR(-EINVAL);
  6140. tg = sched_create_group();
  6141. if (IS_ERR(tg))
  6142. return ERR_PTR(-ENOMEM);
  6143. /* Bind the cgroup to task_group object we just created */
  6144. tg->css.cgroup = cont;
  6145. return &tg->css;
  6146. }
  6147. static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
  6148. struct cgroup *cont)
  6149. {
  6150. struct task_group *tg = cgroup_tg(cont);
  6151. sched_destroy_group(tg);
  6152. }
  6153. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
  6154. struct cgroup *cont, struct task_struct *tsk)
  6155. {
  6156. /* We don't support RT-tasks being in separate groups */
  6157. if (tsk->sched_class != &fair_sched_class)
  6158. return -EINVAL;
  6159. return 0;
  6160. }
  6161. static void
  6162. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cont,
  6163. struct cgroup *old_cont, struct task_struct *tsk)
  6164. {
  6165. sched_move_task(tsk);
  6166. }
  6167. static ssize_t cpu_shares_write(struct cgroup *cont, struct cftype *cftype,
  6168. struct file *file, const char __user *userbuf,
  6169. size_t nbytes, loff_t *ppos)
  6170. {
  6171. unsigned long shareval;
  6172. struct task_group *tg = cgroup_tg(cont);
  6173. char buffer[2*sizeof(unsigned long) + 1];
  6174. int rc;
  6175. if (nbytes > 2*sizeof(unsigned long)) /* safety check */
  6176. return -E2BIG;
  6177. if (copy_from_user(buffer, userbuf, nbytes))
  6178. return -EFAULT;
  6179. buffer[nbytes] = 0; /* nul-terminate */
  6180. shareval = simple_strtoul(buffer, NULL, 10);
  6181. rc = sched_group_set_shares(tg, shareval);
  6182. return (rc < 0 ? rc : nbytes);
  6183. }
  6184. static u64 cpu_shares_read_uint(struct cgroup *cont, struct cftype *cft)
  6185. {
  6186. struct task_group *tg = cgroup_tg(cont);
  6187. return (u64) tg->shares;
  6188. }
  6189. static struct cftype cpu_shares = {
  6190. .name = "shares",
  6191. .read_uint = cpu_shares_read_uint,
  6192. .write = cpu_shares_write,
  6193. };
  6194. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6195. {
  6196. return cgroup_add_file(cont, ss, &cpu_shares);
  6197. }
  6198. struct cgroup_subsys cpu_cgroup_subsys = {
  6199. .name = "cpu",
  6200. .create = cpu_cgroup_create,
  6201. .destroy = cpu_cgroup_destroy,
  6202. .can_attach = cpu_cgroup_can_attach,
  6203. .attach = cpu_cgroup_attach,
  6204. .populate = cpu_cgroup_populate,
  6205. .subsys_id = cpu_cgroup_subsys_id,
  6206. .early_init = 1,
  6207. };
  6208. #endif /* CONFIG_FAIR_CGROUP_SCHED */