rmap.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <linux/hugetlb.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  65. }
  66. void anon_vma_free(struct anon_vma *anon_vma)
  67. {
  68. kmem_cache_free(anon_vma_cachep, anon_vma);
  69. }
  70. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  71. {
  72. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  73. }
  74. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  75. {
  76. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  77. }
  78. /**
  79. * anon_vma_prepare - attach an anon_vma to a memory region
  80. * @vma: the memory region in question
  81. *
  82. * This makes sure the memory mapping described by 'vma' has
  83. * an 'anon_vma' attached to it, so that we can associate the
  84. * anonymous pages mapped into it with that anon_vma.
  85. *
  86. * The common case will be that we already have one, but if
  87. * not we either need to find an adjacent mapping that we
  88. * can re-use the anon_vma from (very common when the only
  89. * reason for splitting a vma has been mprotect()), or we
  90. * allocate a new one.
  91. *
  92. * Anon-vma allocations are very subtle, because we may have
  93. * optimistically looked up an anon_vma in page_lock_anon_vma()
  94. * and that may actually touch the spinlock even in the newly
  95. * allocated vma (it depends on RCU to make sure that the
  96. * anon_vma isn't actually destroyed).
  97. *
  98. * As a result, we need to do proper anon_vma locking even
  99. * for the new allocation. At the same time, we do not want
  100. * to do any locking for the common case of already having
  101. * an anon_vma.
  102. *
  103. * This must be called with the mmap_sem held for reading.
  104. */
  105. int anon_vma_prepare(struct vm_area_struct *vma)
  106. {
  107. struct anon_vma *anon_vma = vma->anon_vma;
  108. struct anon_vma_chain *avc;
  109. might_sleep();
  110. if (unlikely(!anon_vma)) {
  111. struct mm_struct *mm = vma->vm_mm;
  112. struct anon_vma *allocated;
  113. avc = anon_vma_chain_alloc();
  114. if (!avc)
  115. goto out_enomem;
  116. anon_vma = find_mergeable_anon_vma(vma);
  117. allocated = NULL;
  118. if (!anon_vma) {
  119. anon_vma = anon_vma_alloc();
  120. if (unlikely(!anon_vma))
  121. goto out_enomem_free_avc;
  122. allocated = anon_vma;
  123. /*
  124. * This VMA had no anon_vma yet. This anon_vma is
  125. * the root of any anon_vma tree that might form.
  126. */
  127. anon_vma->root = anon_vma;
  128. }
  129. anon_vma_lock(anon_vma);
  130. /* page_table_lock to protect against threads */
  131. spin_lock(&mm->page_table_lock);
  132. if (likely(!vma->anon_vma)) {
  133. vma->anon_vma = anon_vma;
  134. avc->anon_vma = anon_vma;
  135. avc->vma = vma;
  136. list_add(&avc->same_vma, &vma->anon_vma_chain);
  137. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  138. allocated = NULL;
  139. avc = NULL;
  140. }
  141. spin_unlock(&mm->page_table_lock);
  142. anon_vma_unlock(anon_vma);
  143. if (unlikely(allocated))
  144. anon_vma_free(allocated);
  145. if (unlikely(avc))
  146. anon_vma_chain_free(avc);
  147. }
  148. return 0;
  149. out_enomem_free_avc:
  150. anon_vma_chain_free(avc);
  151. out_enomem:
  152. return -ENOMEM;
  153. }
  154. static void anon_vma_chain_link(struct vm_area_struct *vma,
  155. struct anon_vma_chain *avc,
  156. struct anon_vma *anon_vma)
  157. {
  158. avc->vma = vma;
  159. avc->anon_vma = anon_vma;
  160. list_add(&avc->same_vma, &vma->anon_vma_chain);
  161. anon_vma_lock(anon_vma);
  162. /*
  163. * It's critical to add new vmas to the tail of the anon_vma,
  164. * see comment in huge_memory.c:__split_huge_page().
  165. */
  166. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  167. anon_vma_unlock(anon_vma);
  168. }
  169. /*
  170. * Attach the anon_vmas from src to dst.
  171. * Returns 0 on success, -ENOMEM on failure.
  172. */
  173. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  174. {
  175. struct anon_vma_chain *avc, *pavc;
  176. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  177. avc = anon_vma_chain_alloc();
  178. if (!avc)
  179. goto enomem_failure;
  180. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  181. }
  182. return 0;
  183. enomem_failure:
  184. unlink_anon_vmas(dst);
  185. return -ENOMEM;
  186. }
  187. /*
  188. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  189. * the corresponding VMA in the parent process is attached to.
  190. * Returns 0 on success, non-zero on failure.
  191. */
  192. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  193. {
  194. struct anon_vma_chain *avc;
  195. struct anon_vma *anon_vma;
  196. /* Don't bother if the parent process has no anon_vma here. */
  197. if (!pvma->anon_vma)
  198. return 0;
  199. /*
  200. * First, attach the new VMA to the parent VMA's anon_vmas,
  201. * so rmap can find non-COWed pages in child processes.
  202. */
  203. if (anon_vma_clone(vma, pvma))
  204. return -ENOMEM;
  205. /* Then add our own anon_vma. */
  206. anon_vma = anon_vma_alloc();
  207. if (!anon_vma)
  208. goto out_error;
  209. avc = anon_vma_chain_alloc();
  210. if (!avc)
  211. goto out_error_free_anon_vma;
  212. /*
  213. * The root anon_vma's spinlock is the lock actually used when we
  214. * lock any of the anon_vmas in this anon_vma tree.
  215. */
  216. anon_vma->root = pvma->anon_vma->root;
  217. /*
  218. * With KSM refcounts, an anon_vma can stay around longer than the
  219. * process it belongs to. The root anon_vma needs to be pinned
  220. * until this anon_vma is freed, because the lock lives in the root.
  221. */
  222. get_anon_vma(anon_vma->root);
  223. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  224. vma->anon_vma = anon_vma;
  225. anon_vma_chain_link(vma, avc, anon_vma);
  226. return 0;
  227. out_error_free_anon_vma:
  228. anon_vma_free(anon_vma);
  229. out_error:
  230. unlink_anon_vmas(vma);
  231. return -ENOMEM;
  232. }
  233. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  234. {
  235. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  236. int empty;
  237. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  238. if (!anon_vma)
  239. return;
  240. anon_vma_lock(anon_vma);
  241. list_del(&anon_vma_chain->same_anon_vma);
  242. /* We must garbage collect the anon_vma if it's empty */
  243. empty = list_empty(&anon_vma->head) && !atomic_read(&anon_vma->refcount);
  244. anon_vma_unlock(anon_vma);
  245. if (empty) {
  246. /* We no longer need the root anon_vma */
  247. if (anon_vma->root != anon_vma)
  248. put_anon_vma(anon_vma->root);
  249. anon_vma_free(anon_vma);
  250. }
  251. }
  252. void unlink_anon_vmas(struct vm_area_struct *vma)
  253. {
  254. struct anon_vma_chain *avc, *next;
  255. /*
  256. * Unlink each anon_vma chained to the VMA. This list is ordered
  257. * from newest to oldest, ensuring the root anon_vma gets freed last.
  258. */
  259. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  260. anon_vma_unlink(avc);
  261. list_del(&avc->same_vma);
  262. anon_vma_chain_free(avc);
  263. }
  264. }
  265. static void anon_vma_ctor(void *data)
  266. {
  267. struct anon_vma *anon_vma = data;
  268. spin_lock_init(&anon_vma->lock);
  269. atomic_set(&anon_vma->refcount, 0);
  270. INIT_LIST_HEAD(&anon_vma->head);
  271. }
  272. void __init anon_vma_init(void)
  273. {
  274. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  275. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  276. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  277. }
  278. /*
  279. * Getting a lock on a stable anon_vma from a page off the LRU is
  280. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  281. */
  282. struct anon_vma *__page_lock_anon_vma(struct page *page)
  283. {
  284. struct anon_vma *anon_vma, *root_anon_vma;
  285. unsigned long anon_mapping;
  286. rcu_read_lock();
  287. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  288. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  289. goto out;
  290. if (!page_mapped(page))
  291. goto out;
  292. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  293. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  294. spin_lock(&root_anon_vma->lock);
  295. /*
  296. * If this page is still mapped, then its anon_vma cannot have been
  297. * freed. But if it has been unmapped, we have no security against
  298. * the anon_vma structure being freed and reused (for another anon_vma:
  299. * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
  300. * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
  301. * anon_vma->root before page_unlock_anon_vma() is called to unlock.
  302. */
  303. if (page_mapped(page))
  304. return anon_vma;
  305. spin_unlock(&root_anon_vma->lock);
  306. out:
  307. rcu_read_unlock();
  308. return NULL;
  309. }
  310. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  311. __releases(&anon_vma->root->lock)
  312. __releases(RCU)
  313. {
  314. anon_vma_unlock(anon_vma);
  315. rcu_read_unlock();
  316. }
  317. /*
  318. * At what user virtual address is page expected in @vma?
  319. * Returns virtual address or -EFAULT if page's index/offset is not
  320. * within the range mapped the @vma.
  321. */
  322. inline unsigned long
  323. vma_address(struct page *page, struct vm_area_struct *vma)
  324. {
  325. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  326. unsigned long address;
  327. if (unlikely(is_vm_hugetlb_page(vma)))
  328. pgoff = page->index << huge_page_order(page_hstate(page));
  329. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  330. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  331. /* page should be within @vma mapping range */
  332. return -EFAULT;
  333. }
  334. return address;
  335. }
  336. /*
  337. * At what user virtual address is page expected in vma?
  338. * Caller should check the page is actually part of the vma.
  339. */
  340. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  341. {
  342. if (PageAnon(page)) {
  343. struct anon_vma *page__anon_vma = page_anon_vma(page);
  344. /*
  345. * Note: swapoff's unuse_vma() is more efficient with this
  346. * check, and needs it to match anon_vma when KSM is active.
  347. */
  348. if (!vma->anon_vma || !page__anon_vma ||
  349. vma->anon_vma->root != page__anon_vma->root)
  350. return -EFAULT;
  351. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  352. if (!vma->vm_file ||
  353. vma->vm_file->f_mapping != page->mapping)
  354. return -EFAULT;
  355. } else
  356. return -EFAULT;
  357. return vma_address(page, vma);
  358. }
  359. /*
  360. * Check that @page is mapped at @address into @mm.
  361. *
  362. * If @sync is false, page_check_address may perform a racy check to avoid
  363. * the page table lock when the pte is not present (helpful when reclaiming
  364. * highly shared pages).
  365. *
  366. * On success returns with pte mapped and locked.
  367. */
  368. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  369. unsigned long address, spinlock_t **ptlp, int sync)
  370. {
  371. pgd_t *pgd;
  372. pud_t *pud;
  373. pmd_t *pmd;
  374. pte_t *pte;
  375. spinlock_t *ptl;
  376. if (unlikely(PageHuge(page))) {
  377. pte = huge_pte_offset(mm, address);
  378. ptl = &mm->page_table_lock;
  379. goto check;
  380. }
  381. pgd = pgd_offset(mm, address);
  382. if (!pgd_present(*pgd))
  383. return NULL;
  384. pud = pud_offset(pgd, address);
  385. if (!pud_present(*pud))
  386. return NULL;
  387. pmd = pmd_offset(pud, address);
  388. if (!pmd_present(*pmd))
  389. return NULL;
  390. if (pmd_trans_huge(*pmd))
  391. return NULL;
  392. pte = pte_offset_map(pmd, address);
  393. /* Make a quick check before getting the lock */
  394. if (!sync && !pte_present(*pte)) {
  395. pte_unmap(pte);
  396. return NULL;
  397. }
  398. ptl = pte_lockptr(mm, pmd);
  399. check:
  400. spin_lock(ptl);
  401. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  402. *ptlp = ptl;
  403. return pte;
  404. }
  405. pte_unmap_unlock(pte, ptl);
  406. return NULL;
  407. }
  408. /**
  409. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  410. * @page: the page to test
  411. * @vma: the VMA to test
  412. *
  413. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  414. * if the page is not mapped into the page tables of this VMA. Only
  415. * valid for normal file or anonymous VMAs.
  416. */
  417. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  418. {
  419. unsigned long address;
  420. pte_t *pte;
  421. spinlock_t *ptl;
  422. address = vma_address(page, vma);
  423. if (address == -EFAULT) /* out of vma range */
  424. return 0;
  425. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  426. if (!pte) /* the page is not in this mm */
  427. return 0;
  428. pte_unmap_unlock(pte, ptl);
  429. return 1;
  430. }
  431. /*
  432. * Subfunctions of page_referenced: page_referenced_one called
  433. * repeatedly from either page_referenced_anon or page_referenced_file.
  434. */
  435. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  436. unsigned long address, unsigned int *mapcount,
  437. unsigned long *vm_flags)
  438. {
  439. struct mm_struct *mm = vma->vm_mm;
  440. int referenced = 0;
  441. if (unlikely(PageTransHuge(page))) {
  442. pmd_t *pmd;
  443. spin_lock(&mm->page_table_lock);
  444. /*
  445. * rmap might return false positives; we must filter
  446. * these out using page_check_address_pmd().
  447. */
  448. pmd = page_check_address_pmd(page, mm, address,
  449. PAGE_CHECK_ADDRESS_PMD_FLAG);
  450. if (!pmd) {
  451. spin_unlock(&mm->page_table_lock);
  452. goto out;
  453. }
  454. if (vma->vm_flags & VM_LOCKED) {
  455. spin_unlock(&mm->page_table_lock);
  456. *mapcount = 0; /* break early from loop */
  457. *vm_flags |= VM_LOCKED;
  458. goto out;
  459. }
  460. /* go ahead even if the pmd is pmd_trans_splitting() */
  461. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  462. referenced++;
  463. spin_unlock(&mm->page_table_lock);
  464. } else {
  465. pte_t *pte;
  466. spinlock_t *ptl;
  467. /*
  468. * rmap might return false positives; we must filter
  469. * these out using page_check_address().
  470. */
  471. pte = page_check_address(page, mm, address, &ptl, 0);
  472. if (!pte)
  473. goto out;
  474. if (vma->vm_flags & VM_LOCKED) {
  475. pte_unmap_unlock(pte, ptl);
  476. *mapcount = 0; /* break early from loop */
  477. *vm_flags |= VM_LOCKED;
  478. goto out;
  479. }
  480. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  481. /*
  482. * Don't treat a reference through a sequentially read
  483. * mapping as such. If the page has been used in
  484. * another mapping, we will catch it; if this other
  485. * mapping is already gone, the unmap path will have
  486. * set PG_referenced or activated the page.
  487. */
  488. if (likely(!VM_SequentialReadHint(vma)))
  489. referenced++;
  490. }
  491. pte_unmap_unlock(pte, ptl);
  492. }
  493. /* Pretend the page is referenced if the task has the
  494. swap token and is in the middle of a page fault. */
  495. if (mm != current->mm && has_swap_token(mm) &&
  496. rwsem_is_locked(&mm->mmap_sem))
  497. referenced++;
  498. (*mapcount)--;
  499. if (referenced)
  500. *vm_flags |= vma->vm_flags;
  501. out:
  502. return referenced;
  503. }
  504. static int page_referenced_anon(struct page *page,
  505. struct mem_cgroup *mem_cont,
  506. unsigned long *vm_flags)
  507. {
  508. unsigned int mapcount;
  509. struct anon_vma *anon_vma;
  510. struct anon_vma_chain *avc;
  511. int referenced = 0;
  512. anon_vma = page_lock_anon_vma(page);
  513. if (!anon_vma)
  514. return referenced;
  515. mapcount = page_mapcount(page);
  516. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  517. struct vm_area_struct *vma = avc->vma;
  518. unsigned long address = vma_address(page, vma);
  519. if (address == -EFAULT)
  520. continue;
  521. /*
  522. * If we are reclaiming on behalf of a cgroup, skip
  523. * counting on behalf of references from different
  524. * cgroups
  525. */
  526. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  527. continue;
  528. referenced += page_referenced_one(page, vma, address,
  529. &mapcount, vm_flags);
  530. if (!mapcount)
  531. break;
  532. }
  533. page_unlock_anon_vma(anon_vma);
  534. return referenced;
  535. }
  536. /**
  537. * page_referenced_file - referenced check for object-based rmap
  538. * @page: the page we're checking references on.
  539. * @mem_cont: target memory controller
  540. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  541. *
  542. * For an object-based mapped page, find all the places it is mapped and
  543. * check/clear the referenced flag. This is done by following the page->mapping
  544. * pointer, then walking the chain of vmas it holds. It returns the number
  545. * of references it found.
  546. *
  547. * This function is only called from page_referenced for object-based pages.
  548. */
  549. static int page_referenced_file(struct page *page,
  550. struct mem_cgroup *mem_cont,
  551. unsigned long *vm_flags)
  552. {
  553. unsigned int mapcount;
  554. struct address_space *mapping = page->mapping;
  555. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  556. struct vm_area_struct *vma;
  557. struct prio_tree_iter iter;
  558. int referenced = 0;
  559. /*
  560. * The caller's checks on page->mapping and !PageAnon have made
  561. * sure that this is a file page: the check for page->mapping
  562. * excludes the case just before it gets set on an anon page.
  563. */
  564. BUG_ON(PageAnon(page));
  565. /*
  566. * The page lock not only makes sure that page->mapping cannot
  567. * suddenly be NULLified by truncation, it makes sure that the
  568. * structure at mapping cannot be freed and reused yet,
  569. * so we can safely take mapping->i_mmap_lock.
  570. */
  571. BUG_ON(!PageLocked(page));
  572. spin_lock(&mapping->i_mmap_lock);
  573. /*
  574. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  575. * is more likely to be accurate if we note it after spinning.
  576. */
  577. mapcount = page_mapcount(page);
  578. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  579. unsigned long address = vma_address(page, vma);
  580. if (address == -EFAULT)
  581. continue;
  582. /*
  583. * If we are reclaiming on behalf of a cgroup, skip
  584. * counting on behalf of references from different
  585. * cgroups
  586. */
  587. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  588. continue;
  589. referenced += page_referenced_one(page, vma, address,
  590. &mapcount, vm_flags);
  591. if (!mapcount)
  592. break;
  593. }
  594. spin_unlock(&mapping->i_mmap_lock);
  595. return referenced;
  596. }
  597. /**
  598. * page_referenced - test if the page was referenced
  599. * @page: the page to test
  600. * @is_locked: caller holds lock on the page
  601. * @mem_cont: target memory controller
  602. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  603. *
  604. * Quick test_and_clear_referenced for all mappings to a page,
  605. * returns the number of ptes which referenced the page.
  606. */
  607. int page_referenced(struct page *page,
  608. int is_locked,
  609. struct mem_cgroup *mem_cont,
  610. unsigned long *vm_flags)
  611. {
  612. int referenced = 0;
  613. int we_locked = 0;
  614. *vm_flags = 0;
  615. if (page_mapped(page) && page_rmapping(page)) {
  616. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  617. we_locked = trylock_page(page);
  618. if (!we_locked) {
  619. referenced++;
  620. goto out;
  621. }
  622. }
  623. if (unlikely(PageKsm(page)))
  624. referenced += page_referenced_ksm(page, mem_cont,
  625. vm_flags);
  626. else if (PageAnon(page))
  627. referenced += page_referenced_anon(page, mem_cont,
  628. vm_flags);
  629. else if (page->mapping)
  630. referenced += page_referenced_file(page, mem_cont,
  631. vm_flags);
  632. if (we_locked)
  633. unlock_page(page);
  634. }
  635. out:
  636. if (page_test_and_clear_young(page))
  637. referenced++;
  638. return referenced;
  639. }
  640. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  641. unsigned long address)
  642. {
  643. struct mm_struct *mm = vma->vm_mm;
  644. pte_t *pte;
  645. spinlock_t *ptl;
  646. int ret = 0;
  647. pte = page_check_address(page, mm, address, &ptl, 1);
  648. if (!pte)
  649. goto out;
  650. if (pte_dirty(*pte) || pte_write(*pte)) {
  651. pte_t entry;
  652. flush_cache_page(vma, address, pte_pfn(*pte));
  653. entry = ptep_clear_flush_notify(vma, address, pte);
  654. entry = pte_wrprotect(entry);
  655. entry = pte_mkclean(entry);
  656. set_pte_at(mm, address, pte, entry);
  657. ret = 1;
  658. }
  659. pte_unmap_unlock(pte, ptl);
  660. out:
  661. return ret;
  662. }
  663. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  664. {
  665. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  666. struct vm_area_struct *vma;
  667. struct prio_tree_iter iter;
  668. int ret = 0;
  669. BUG_ON(PageAnon(page));
  670. spin_lock(&mapping->i_mmap_lock);
  671. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  672. if (vma->vm_flags & VM_SHARED) {
  673. unsigned long address = vma_address(page, vma);
  674. if (address == -EFAULT)
  675. continue;
  676. ret += page_mkclean_one(page, vma, address);
  677. }
  678. }
  679. spin_unlock(&mapping->i_mmap_lock);
  680. return ret;
  681. }
  682. int page_mkclean(struct page *page)
  683. {
  684. int ret = 0;
  685. BUG_ON(!PageLocked(page));
  686. if (page_mapped(page)) {
  687. struct address_space *mapping = page_mapping(page);
  688. if (mapping) {
  689. ret = page_mkclean_file(mapping, page);
  690. if (page_test_dirty(page)) {
  691. page_clear_dirty(page, 1);
  692. ret = 1;
  693. }
  694. }
  695. }
  696. return ret;
  697. }
  698. EXPORT_SYMBOL_GPL(page_mkclean);
  699. /**
  700. * page_move_anon_rmap - move a page to our anon_vma
  701. * @page: the page to move to our anon_vma
  702. * @vma: the vma the page belongs to
  703. * @address: the user virtual address mapped
  704. *
  705. * When a page belongs exclusively to one process after a COW event,
  706. * that page can be moved into the anon_vma that belongs to just that
  707. * process, so the rmap code will not search the parent or sibling
  708. * processes.
  709. */
  710. void page_move_anon_rmap(struct page *page,
  711. struct vm_area_struct *vma, unsigned long address)
  712. {
  713. struct anon_vma *anon_vma = vma->anon_vma;
  714. VM_BUG_ON(!PageLocked(page));
  715. VM_BUG_ON(!anon_vma);
  716. VM_BUG_ON(page->index != linear_page_index(vma, address));
  717. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  718. page->mapping = (struct address_space *) anon_vma;
  719. }
  720. /**
  721. * __page_set_anon_rmap - set up new anonymous rmap
  722. * @page: Page to add to rmap
  723. * @vma: VM area to add page to.
  724. * @address: User virtual address of the mapping
  725. * @exclusive: the page is exclusively owned by the current process
  726. */
  727. static void __page_set_anon_rmap(struct page *page,
  728. struct vm_area_struct *vma, unsigned long address, int exclusive)
  729. {
  730. struct anon_vma *anon_vma = vma->anon_vma;
  731. BUG_ON(!anon_vma);
  732. if (PageAnon(page))
  733. return;
  734. /*
  735. * If the page isn't exclusively mapped into this vma,
  736. * we must use the _oldest_ possible anon_vma for the
  737. * page mapping!
  738. */
  739. if (!exclusive)
  740. anon_vma = anon_vma->root;
  741. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  742. page->mapping = (struct address_space *) anon_vma;
  743. page->index = linear_page_index(vma, address);
  744. }
  745. /**
  746. * __page_check_anon_rmap - sanity check anonymous rmap addition
  747. * @page: the page to add the mapping to
  748. * @vma: the vm area in which the mapping is added
  749. * @address: the user virtual address mapped
  750. */
  751. static void __page_check_anon_rmap(struct page *page,
  752. struct vm_area_struct *vma, unsigned long address)
  753. {
  754. #ifdef CONFIG_DEBUG_VM
  755. /*
  756. * The page's anon-rmap details (mapping and index) are guaranteed to
  757. * be set up correctly at this point.
  758. *
  759. * We have exclusion against page_add_anon_rmap because the caller
  760. * always holds the page locked, except if called from page_dup_rmap,
  761. * in which case the page is already known to be setup.
  762. *
  763. * We have exclusion against page_add_new_anon_rmap because those pages
  764. * are initially only visible via the pagetables, and the pte is locked
  765. * over the call to page_add_new_anon_rmap.
  766. */
  767. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  768. BUG_ON(page->index != linear_page_index(vma, address));
  769. #endif
  770. }
  771. /**
  772. * page_add_anon_rmap - add pte mapping to an anonymous page
  773. * @page: the page to add the mapping to
  774. * @vma: the vm area in which the mapping is added
  775. * @address: the user virtual address mapped
  776. *
  777. * The caller needs to hold the pte lock, and the page must be locked in
  778. * the anon_vma case: to serialize mapping,index checking after setting,
  779. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  780. * (but PageKsm is never downgraded to PageAnon).
  781. */
  782. void page_add_anon_rmap(struct page *page,
  783. struct vm_area_struct *vma, unsigned long address)
  784. {
  785. do_page_add_anon_rmap(page, vma, address, 0);
  786. }
  787. /*
  788. * Special version of the above for do_swap_page, which often runs
  789. * into pages that are exclusively owned by the current process.
  790. * Everybody else should continue to use page_add_anon_rmap above.
  791. */
  792. void do_page_add_anon_rmap(struct page *page,
  793. struct vm_area_struct *vma, unsigned long address, int exclusive)
  794. {
  795. int first = atomic_inc_and_test(&page->_mapcount);
  796. if (first) {
  797. if (!PageTransHuge(page))
  798. __inc_zone_page_state(page, NR_ANON_PAGES);
  799. else
  800. __inc_zone_page_state(page,
  801. NR_ANON_TRANSPARENT_HUGEPAGES);
  802. }
  803. if (unlikely(PageKsm(page)))
  804. return;
  805. VM_BUG_ON(!PageLocked(page));
  806. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  807. if (first)
  808. __page_set_anon_rmap(page, vma, address, exclusive);
  809. else
  810. __page_check_anon_rmap(page, vma, address);
  811. }
  812. /**
  813. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  814. * @page: the page to add the mapping to
  815. * @vma: the vm area in which the mapping is added
  816. * @address: the user virtual address mapped
  817. *
  818. * Same as page_add_anon_rmap but must only be called on *new* pages.
  819. * This means the inc-and-test can be bypassed.
  820. * Page does not have to be locked.
  821. */
  822. void page_add_new_anon_rmap(struct page *page,
  823. struct vm_area_struct *vma, unsigned long address)
  824. {
  825. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  826. SetPageSwapBacked(page);
  827. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  828. if (!PageTransHuge(page))
  829. __inc_zone_page_state(page, NR_ANON_PAGES);
  830. else
  831. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  832. __page_set_anon_rmap(page, vma, address, 1);
  833. if (page_evictable(page, vma))
  834. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  835. else
  836. add_page_to_unevictable_list(page);
  837. }
  838. /**
  839. * page_add_file_rmap - add pte mapping to a file page
  840. * @page: the page to add the mapping to
  841. *
  842. * The caller needs to hold the pte lock.
  843. */
  844. void page_add_file_rmap(struct page *page)
  845. {
  846. if (atomic_inc_and_test(&page->_mapcount)) {
  847. __inc_zone_page_state(page, NR_FILE_MAPPED);
  848. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  849. }
  850. }
  851. /**
  852. * page_remove_rmap - take down pte mapping from a page
  853. * @page: page to remove mapping from
  854. *
  855. * The caller needs to hold the pte lock.
  856. */
  857. void page_remove_rmap(struct page *page)
  858. {
  859. /* page still mapped by someone else? */
  860. if (!atomic_add_negative(-1, &page->_mapcount))
  861. return;
  862. /*
  863. * Now that the last pte has gone, s390 must transfer dirty
  864. * flag from storage key to struct page. We can usually skip
  865. * this if the page is anon, so about to be freed; but perhaps
  866. * not if it's in swapcache - there might be another pte slot
  867. * containing the swap entry, but page not yet written to swap.
  868. */
  869. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  870. page_clear_dirty(page, 1);
  871. set_page_dirty(page);
  872. }
  873. /*
  874. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  875. * and not charged by memcg for now.
  876. */
  877. if (unlikely(PageHuge(page)))
  878. return;
  879. if (PageAnon(page)) {
  880. mem_cgroup_uncharge_page(page);
  881. if (!PageTransHuge(page))
  882. __dec_zone_page_state(page, NR_ANON_PAGES);
  883. else
  884. __dec_zone_page_state(page,
  885. NR_ANON_TRANSPARENT_HUGEPAGES);
  886. } else {
  887. __dec_zone_page_state(page, NR_FILE_MAPPED);
  888. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  889. }
  890. /*
  891. * It would be tidy to reset the PageAnon mapping here,
  892. * but that might overwrite a racing page_add_anon_rmap
  893. * which increments mapcount after us but sets mapping
  894. * before us: so leave the reset to free_hot_cold_page,
  895. * and remember that it's only reliable while mapped.
  896. * Leaving it set also helps swapoff to reinstate ptes
  897. * faster for those pages still in swapcache.
  898. */
  899. }
  900. /*
  901. * Subfunctions of try_to_unmap: try_to_unmap_one called
  902. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  903. */
  904. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  905. unsigned long address, enum ttu_flags flags)
  906. {
  907. struct mm_struct *mm = vma->vm_mm;
  908. pte_t *pte;
  909. pte_t pteval;
  910. spinlock_t *ptl;
  911. int ret = SWAP_AGAIN;
  912. pte = page_check_address(page, mm, address, &ptl, 0);
  913. if (!pte)
  914. goto out;
  915. /*
  916. * If the page is mlock()d, we cannot swap it out.
  917. * If it's recently referenced (perhaps page_referenced
  918. * skipped over this mm) then we should reactivate it.
  919. */
  920. if (!(flags & TTU_IGNORE_MLOCK)) {
  921. if (vma->vm_flags & VM_LOCKED)
  922. goto out_mlock;
  923. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  924. goto out_unmap;
  925. }
  926. if (!(flags & TTU_IGNORE_ACCESS)) {
  927. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  928. ret = SWAP_FAIL;
  929. goto out_unmap;
  930. }
  931. }
  932. /* Nuke the page table entry. */
  933. flush_cache_page(vma, address, page_to_pfn(page));
  934. pteval = ptep_clear_flush_notify(vma, address, pte);
  935. /* Move the dirty bit to the physical page now the pte is gone. */
  936. if (pte_dirty(pteval))
  937. set_page_dirty(page);
  938. /* Update high watermark before we lower rss */
  939. update_hiwater_rss(mm);
  940. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  941. if (PageAnon(page))
  942. dec_mm_counter(mm, MM_ANONPAGES);
  943. else
  944. dec_mm_counter(mm, MM_FILEPAGES);
  945. set_pte_at(mm, address, pte,
  946. swp_entry_to_pte(make_hwpoison_entry(page)));
  947. } else if (PageAnon(page)) {
  948. swp_entry_t entry = { .val = page_private(page) };
  949. if (PageSwapCache(page)) {
  950. /*
  951. * Store the swap location in the pte.
  952. * See handle_pte_fault() ...
  953. */
  954. if (swap_duplicate(entry) < 0) {
  955. set_pte_at(mm, address, pte, pteval);
  956. ret = SWAP_FAIL;
  957. goto out_unmap;
  958. }
  959. if (list_empty(&mm->mmlist)) {
  960. spin_lock(&mmlist_lock);
  961. if (list_empty(&mm->mmlist))
  962. list_add(&mm->mmlist, &init_mm.mmlist);
  963. spin_unlock(&mmlist_lock);
  964. }
  965. dec_mm_counter(mm, MM_ANONPAGES);
  966. inc_mm_counter(mm, MM_SWAPENTS);
  967. } else if (PAGE_MIGRATION) {
  968. /*
  969. * Store the pfn of the page in a special migration
  970. * pte. do_swap_page() will wait until the migration
  971. * pte is removed and then restart fault handling.
  972. */
  973. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  974. entry = make_migration_entry(page, pte_write(pteval));
  975. }
  976. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  977. BUG_ON(pte_file(*pte));
  978. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  979. /* Establish migration entry for a file page */
  980. swp_entry_t entry;
  981. entry = make_migration_entry(page, pte_write(pteval));
  982. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  983. } else
  984. dec_mm_counter(mm, MM_FILEPAGES);
  985. page_remove_rmap(page);
  986. page_cache_release(page);
  987. out_unmap:
  988. pte_unmap_unlock(pte, ptl);
  989. out:
  990. return ret;
  991. out_mlock:
  992. pte_unmap_unlock(pte, ptl);
  993. /*
  994. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  995. * unstable result and race. Plus, We can't wait here because
  996. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  997. * if trylock failed, the page remain in evictable lru and later
  998. * vmscan could retry to move the page to unevictable lru if the
  999. * page is actually mlocked.
  1000. */
  1001. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1002. if (vma->vm_flags & VM_LOCKED) {
  1003. mlock_vma_page(page);
  1004. ret = SWAP_MLOCK;
  1005. }
  1006. up_read(&vma->vm_mm->mmap_sem);
  1007. }
  1008. return ret;
  1009. }
  1010. /*
  1011. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1012. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1013. * Consequently, given a particular page and its ->index, we cannot locate the
  1014. * ptes which are mapping that page without an exhaustive linear search.
  1015. *
  1016. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1017. * maps the file to which the target page belongs. The ->vm_private_data field
  1018. * holds the current cursor into that scan. Successive searches will circulate
  1019. * around the vma's virtual address space.
  1020. *
  1021. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1022. * more scanning pressure is placed against them as well. Eventually pages
  1023. * will become fully unmapped and are eligible for eviction.
  1024. *
  1025. * For very sparsely populated VMAs this is a little inefficient - chances are
  1026. * there there won't be many ptes located within the scan cluster. In this case
  1027. * maybe we could scan further - to the end of the pte page, perhaps.
  1028. *
  1029. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1030. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1031. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1032. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1033. */
  1034. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1035. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1036. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1037. struct vm_area_struct *vma, struct page *check_page)
  1038. {
  1039. struct mm_struct *mm = vma->vm_mm;
  1040. pgd_t *pgd;
  1041. pud_t *pud;
  1042. pmd_t *pmd;
  1043. pte_t *pte;
  1044. pte_t pteval;
  1045. spinlock_t *ptl;
  1046. struct page *page;
  1047. unsigned long address;
  1048. unsigned long end;
  1049. int ret = SWAP_AGAIN;
  1050. int locked_vma = 0;
  1051. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1052. end = address + CLUSTER_SIZE;
  1053. if (address < vma->vm_start)
  1054. address = vma->vm_start;
  1055. if (end > vma->vm_end)
  1056. end = vma->vm_end;
  1057. pgd = pgd_offset(mm, address);
  1058. if (!pgd_present(*pgd))
  1059. return ret;
  1060. pud = pud_offset(pgd, address);
  1061. if (!pud_present(*pud))
  1062. return ret;
  1063. pmd = pmd_offset(pud, address);
  1064. if (!pmd_present(*pmd))
  1065. return ret;
  1066. /*
  1067. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1068. * keep the sem while scanning the cluster for mlocking pages.
  1069. */
  1070. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1071. locked_vma = (vma->vm_flags & VM_LOCKED);
  1072. if (!locked_vma)
  1073. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1074. }
  1075. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1076. /* Update high watermark before we lower rss */
  1077. update_hiwater_rss(mm);
  1078. for (; address < end; pte++, address += PAGE_SIZE) {
  1079. if (!pte_present(*pte))
  1080. continue;
  1081. page = vm_normal_page(vma, address, *pte);
  1082. BUG_ON(!page || PageAnon(page));
  1083. if (locked_vma) {
  1084. mlock_vma_page(page); /* no-op if already mlocked */
  1085. if (page == check_page)
  1086. ret = SWAP_MLOCK;
  1087. continue; /* don't unmap */
  1088. }
  1089. if (ptep_clear_flush_young_notify(vma, address, pte))
  1090. continue;
  1091. /* Nuke the page table entry. */
  1092. flush_cache_page(vma, address, pte_pfn(*pte));
  1093. pteval = ptep_clear_flush_notify(vma, address, pte);
  1094. /* If nonlinear, store the file page offset in the pte. */
  1095. if (page->index != linear_page_index(vma, address))
  1096. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1097. /* Move the dirty bit to the physical page now the pte is gone. */
  1098. if (pte_dirty(pteval))
  1099. set_page_dirty(page);
  1100. page_remove_rmap(page);
  1101. page_cache_release(page);
  1102. dec_mm_counter(mm, MM_FILEPAGES);
  1103. (*mapcount)--;
  1104. }
  1105. pte_unmap_unlock(pte - 1, ptl);
  1106. if (locked_vma)
  1107. up_read(&vma->vm_mm->mmap_sem);
  1108. return ret;
  1109. }
  1110. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1111. {
  1112. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1113. if (!maybe_stack)
  1114. return false;
  1115. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1116. VM_STACK_INCOMPLETE_SETUP)
  1117. return true;
  1118. return false;
  1119. }
  1120. /**
  1121. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1122. * rmap method
  1123. * @page: the page to unmap/unlock
  1124. * @flags: action and flags
  1125. *
  1126. * Find all the mappings of a page using the mapping pointer and the vma chains
  1127. * contained in the anon_vma struct it points to.
  1128. *
  1129. * This function is only called from try_to_unmap/try_to_munlock for
  1130. * anonymous pages.
  1131. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1132. * where the page was found will be held for write. So, we won't recheck
  1133. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1134. * 'LOCKED.
  1135. */
  1136. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1137. {
  1138. struct anon_vma *anon_vma;
  1139. struct anon_vma_chain *avc;
  1140. int ret = SWAP_AGAIN;
  1141. anon_vma = page_lock_anon_vma(page);
  1142. if (!anon_vma)
  1143. return ret;
  1144. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1145. struct vm_area_struct *vma = avc->vma;
  1146. unsigned long address;
  1147. /*
  1148. * During exec, a temporary VMA is setup and later moved.
  1149. * The VMA is moved under the anon_vma lock but not the
  1150. * page tables leading to a race where migration cannot
  1151. * find the migration ptes. Rather than increasing the
  1152. * locking requirements of exec(), migration skips
  1153. * temporary VMAs until after exec() completes.
  1154. */
  1155. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1156. is_vma_temporary_stack(vma))
  1157. continue;
  1158. address = vma_address(page, vma);
  1159. if (address == -EFAULT)
  1160. continue;
  1161. ret = try_to_unmap_one(page, vma, address, flags);
  1162. if (ret != SWAP_AGAIN || !page_mapped(page))
  1163. break;
  1164. }
  1165. page_unlock_anon_vma(anon_vma);
  1166. return ret;
  1167. }
  1168. /**
  1169. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1170. * @page: the page to unmap/unlock
  1171. * @flags: action and flags
  1172. *
  1173. * Find all the mappings of a page using the mapping pointer and the vma chains
  1174. * contained in the address_space struct it points to.
  1175. *
  1176. * This function is only called from try_to_unmap/try_to_munlock for
  1177. * object-based pages.
  1178. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1179. * where the page was found will be held for write. So, we won't recheck
  1180. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1181. * 'LOCKED.
  1182. */
  1183. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1184. {
  1185. struct address_space *mapping = page->mapping;
  1186. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1187. struct vm_area_struct *vma;
  1188. struct prio_tree_iter iter;
  1189. int ret = SWAP_AGAIN;
  1190. unsigned long cursor;
  1191. unsigned long max_nl_cursor = 0;
  1192. unsigned long max_nl_size = 0;
  1193. unsigned int mapcount;
  1194. spin_lock(&mapping->i_mmap_lock);
  1195. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1196. unsigned long address = vma_address(page, vma);
  1197. if (address == -EFAULT)
  1198. continue;
  1199. ret = try_to_unmap_one(page, vma, address, flags);
  1200. if (ret != SWAP_AGAIN || !page_mapped(page))
  1201. goto out;
  1202. }
  1203. if (list_empty(&mapping->i_mmap_nonlinear))
  1204. goto out;
  1205. /*
  1206. * We don't bother to try to find the munlocked page in nonlinears.
  1207. * It's costly. Instead, later, page reclaim logic may call
  1208. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1209. */
  1210. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1211. goto out;
  1212. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1213. shared.vm_set.list) {
  1214. cursor = (unsigned long) vma->vm_private_data;
  1215. if (cursor > max_nl_cursor)
  1216. max_nl_cursor = cursor;
  1217. cursor = vma->vm_end - vma->vm_start;
  1218. if (cursor > max_nl_size)
  1219. max_nl_size = cursor;
  1220. }
  1221. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1222. ret = SWAP_FAIL;
  1223. goto out;
  1224. }
  1225. /*
  1226. * We don't try to search for this page in the nonlinear vmas,
  1227. * and page_referenced wouldn't have found it anyway. Instead
  1228. * just walk the nonlinear vmas trying to age and unmap some.
  1229. * The mapcount of the page we came in with is irrelevant,
  1230. * but even so use it as a guide to how hard we should try?
  1231. */
  1232. mapcount = page_mapcount(page);
  1233. if (!mapcount)
  1234. goto out;
  1235. cond_resched_lock(&mapping->i_mmap_lock);
  1236. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1237. if (max_nl_cursor == 0)
  1238. max_nl_cursor = CLUSTER_SIZE;
  1239. do {
  1240. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1241. shared.vm_set.list) {
  1242. cursor = (unsigned long) vma->vm_private_data;
  1243. while ( cursor < max_nl_cursor &&
  1244. cursor < vma->vm_end - vma->vm_start) {
  1245. if (try_to_unmap_cluster(cursor, &mapcount,
  1246. vma, page) == SWAP_MLOCK)
  1247. ret = SWAP_MLOCK;
  1248. cursor += CLUSTER_SIZE;
  1249. vma->vm_private_data = (void *) cursor;
  1250. if ((int)mapcount <= 0)
  1251. goto out;
  1252. }
  1253. vma->vm_private_data = (void *) max_nl_cursor;
  1254. }
  1255. cond_resched_lock(&mapping->i_mmap_lock);
  1256. max_nl_cursor += CLUSTER_SIZE;
  1257. } while (max_nl_cursor <= max_nl_size);
  1258. /*
  1259. * Don't loop forever (perhaps all the remaining pages are
  1260. * in locked vmas). Reset cursor on all unreserved nonlinear
  1261. * vmas, now forgetting on which ones it had fallen behind.
  1262. */
  1263. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1264. vma->vm_private_data = NULL;
  1265. out:
  1266. spin_unlock(&mapping->i_mmap_lock);
  1267. return ret;
  1268. }
  1269. /**
  1270. * try_to_unmap - try to remove all page table mappings to a page
  1271. * @page: the page to get unmapped
  1272. * @flags: action and flags
  1273. *
  1274. * Tries to remove all the page table entries which are mapping this
  1275. * page, used in the pageout path. Caller must hold the page lock.
  1276. * Return values are:
  1277. *
  1278. * SWAP_SUCCESS - we succeeded in removing all mappings
  1279. * SWAP_AGAIN - we missed a mapping, try again later
  1280. * SWAP_FAIL - the page is unswappable
  1281. * SWAP_MLOCK - page is mlocked.
  1282. */
  1283. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1284. {
  1285. int ret;
  1286. BUG_ON(!PageLocked(page));
  1287. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1288. if (unlikely(PageKsm(page)))
  1289. ret = try_to_unmap_ksm(page, flags);
  1290. else if (PageAnon(page))
  1291. ret = try_to_unmap_anon(page, flags);
  1292. else
  1293. ret = try_to_unmap_file(page, flags);
  1294. if (ret != SWAP_MLOCK && !page_mapped(page))
  1295. ret = SWAP_SUCCESS;
  1296. return ret;
  1297. }
  1298. /**
  1299. * try_to_munlock - try to munlock a page
  1300. * @page: the page to be munlocked
  1301. *
  1302. * Called from munlock code. Checks all of the VMAs mapping the page
  1303. * to make sure nobody else has this page mlocked. The page will be
  1304. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1305. *
  1306. * Return values are:
  1307. *
  1308. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1309. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1310. * SWAP_FAIL - page cannot be located at present
  1311. * SWAP_MLOCK - page is now mlocked.
  1312. */
  1313. int try_to_munlock(struct page *page)
  1314. {
  1315. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1316. if (unlikely(PageKsm(page)))
  1317. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1318. else if (PageAnon(page))
  1319. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1320. else
  1321. return try_to_unmap_file(page, TTU_MUNLOCK);
  1322. }
  1323. /*
  1324. * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
  1325. * if necessary. Be careful to do all the tests under the lock. Once
  1326. * we know we are the last user, nobody else can get a reference and we
  1327. * can do the freeing without the lock.
  1328. */
  1329. void put_anon_vma(struct anon_vma *anon_vma)
  1330. {
  1331. BUG_ON(atomic_read(&anon_vma->refcount) <= 0);
  1332. if (atomic_dec_and_lock(&anon_vma->refcount, &anon_vma->root->lock)) {
  1333. struct anon_vma *root = anon_vma->root;
  1334. int empty = list_empty(&anon_vma->head);
  1335. int last_root_user = 0;
  1336. int root_empty = 0;
  1337. /*
  1338. * The refcount on a non-root anon_vma got dropped. Drop
  1339. * the refcount on the root and check if we need to free it.
  1340. */
  1341. if (empty && anon_vma != root) {
  1342. BUG_ON(atomic_read(&root->refcount) <= 0);
  1343. last_root_user = atomic_dec_and_test(&root->refcount);
  1344. root_empty = list_empty(&root->head);
  1345. }
  1346. anon_vma_unlock(anon_vma);
  1347. if (empty) {
  1348. anon_vma_free(anon_vma);
  1349. if (root_empty && last_root_user)
  1350. anon_vma_free(root);
  1351. }
  1352. }
  1353. }
  1354. #ifdef CONFIG_MIGRATION
  1355. /*
  1356. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1357. * Called by migrate.c to remove migration ptes, but might be used more later.
  1358. */
  1359. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1360. struct vm_area_struct *, unsigned long, void *), void *arg)
  1361. {
  1362. struct anon_vma *anon_vma;
  1363. struct anon_vma_chain *avc;
  1364. int ret = SWAP_AGAIN;
  1365. /*
  1366. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1367. * because that depends on page_mapped(); but not all its usages
  1368. * are holding mmap_sem. Users without mmap_sem are required to
  1369. * take a reference count to prevent the anon_vma disappearing
  1370. */
  1371. anon_vma = page_anon_vma(page);
  1372. if (!anon_vma)
  1373. return ret;
  1374. anon_vma_lock(anon_vma);
  1375. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1376. struct vm_area_struct *vma = avc->vma;
  1377. unsigned long address = vma_address(page, vma);
  1378. if (address == -EFAULT)
  1379. continue;
  1380. ret = rmap_one(page, vma, address, arg);
  1381. if (ret != SWAP_AGAIN)
  1382. break;
  1383. }
  1384. anon_vma_unlock(anon_vma);
  1385. return ret;
  1386. }
  1387. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1388. struct vm_area_struct *, unsigned long, void *), void *arg)
  1389. {
  1390. struct address_space *mapping = page->mapping;
  1391. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1392. struct vm_area_struct *vma;
  1393. struct prio_tree_iter iter;
  1394. int ret = SWAP_AGAIN;
  1395. if (!mapping)
  1396. return ret;
  1397. spin_lock(&mapping->i_mmap_lock);
  1398. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1399. unsigned long address = vma_address(page, vma);
  1400. if (address == -EFAULT)
  1401. continue;
  1402. ret = rmap_one(page, vma, address, arg);
  1403. if (ret != SWAP_AGAIN)
  1404. break;
  1405. }
  1406. /*
  1407. * No nonlinear handling: being always shared, nonlinear vmas
  1408. * never contain migration ptes. Decide what to do about this
  1409. * limitation to linear when we need rmap_walk() on nonlinear.
  1410. */
  1411. spin_unlock(&mapping->i_mmap_lock);
  1412. return ret;
  1413. }
  1414. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1415. struct vm_area_struct *, unsigned long, void *), void *arg)
  1416. {
  1417. VM_BUG_ON(!PageLocked(page));
  1418. if (unlikely(PageKsm(page)))
  1419. return rmap_walk_ksm(page, rmap_one, arg);
  1420. else if (PageAnon(page))
  1421. return rmap_walk_anon(page, rmap_one, arg);
  1422. else
  1423. return rmap_walk_file(page, rmap_one, arg);
  1424. }
  1425. #endif /* CONFIG_MIGRATION */
  1426. #ifdef CONFIG_HUGETLB_PAGE
  1427. /*
  1428. * The following three functions are for anonymous (private mapped) hugepages.
  1429. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1430. * and no lru code, because we handle hugepages differently from common pages.
  1431. */
  1432. static void __hugepage_set_anon_rmap(struct page *page,
  1433. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1434. {
  1435. struct anon_vma *anon_vma = vma->anon_vma;
  1436. BUG_ON(!anon_vma);
  1437. if (PageAnon(page))
  1438. return;
  1439. if (!exclusive)
  1440. anon_vma = anon_vma->root;
  1441. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1442. page->mapping = (struct address_space *) anon_vma;
  1443. page->index = linear_page_index(vma, address);
  1444. }
  1445. void hugepage_add_anon_rmap(struct page *page,
  1446. struct vm_area_struct *vma, unsigned long address)
  1447. {
  1448. struct anon_vma *anon_vma = vma->anon_vma;
  1449. int first;
  1450. BUG_ON(!PageLocked(page));
  1451. BUG_ON(!anon_vma);
  1452. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1453. first = atomic_inc_and_test(&page->_mapcount);
  1454. if (first)
  1455. __hugepage_set_anon_rmap(page, vma, address, 0);
  1456. }
  1457. void hugepage_add_new_anon_rmap(struct page *page,
  1458. struct vm_area_struct *vma, unsigned long address)
  1459. {
  1460. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1461. atomic_set(&page->_mapcount, 0);
  1462. __hugepage_set_anon_rmap(page, vma, address, 1);
  1463. }
  1464. #endif /* CONFIG_HUGETLB_PAGE */