direct.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/slab.h>
  47. #include <linux/nfs_fs.h>
  48. #include <linux/nfs_page.h>
  49. #include <linux/sunrpc/clnt.h>
  50. #include <asm/system.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/atomic.h>
  53. #include "internal.h"
  54. #include "iostat.h"
  55. #define NFSDBG_FACILITY NFSDBG_VFS
  56. static struct kmem_cache *nfs_direct_cachep;
  57. /*
  58. * This represents a set of asynchronous requests that we're waiting on
  59. */
  60. struct nfs_direct_req {
  61. struct kref kref; /* release manager */
  62. /* I/O parameters */
  63. struct nfs_open_context *ctx; /* file open context info */
  64. struct nfs_lock_context *l_ctx; /* Lock context info */
  65. struct kiocb * iocb; /* controlling i/o request */
  66. struct inode * inode; /* target file of i/o */
  67. /* completion state */
  68. atomic_t io_count; /* i/os we're waiting for */
  69. spinlock_t lock; /* protect completion state */
  70. ssize_t count, /* bytes actually processed */
  71. error; /* any reported error */
  72. struct completion completion; /* wait for i/o completion */
  73. /* commit state */
  74. struct list_head rewrite_list; /* saved nfs_write_data structs */
  75. struct nfs_write_data * commit_data; /* special write_data for commits */
  76. int flags;
  77. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  78. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  79. struct nfs_writeverf verf; /* unstable write verifier */
  80. };
  81. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  82. static const struct rpc_call_ops nfs_write_direct_ops;
  83. static inline void get_dreq(struct nfs_direct_req *dreq)
  84. {
  85. atomic_inc(&dreq->io_count);
  86. }
  87. static inline int put_dreq(struct nfs_direct_req *dreq)
  88. {
  89. return atomic_dec_and_test(&dreq->io_count);
  90. }
  91. /**
  92. * nfs_direct_IO - NFS address space operation for direct I/O
  93. * @rw: direction (read or write)
  94. * @iocb: target I/O control block
  95. * @iov: array of vectors that define I/O buffer
  96. * @pos: offset in file to begin the operation
  97. * @nr_segs: size of iovec array
  98. *
  99. * The presence of this routine in the address space ops vector means
  100. * the NFS client supports direct I/O. However, we shunt off direct
  101. * read and write requests before the VFS gets them, so this method
  102. * should never be called.
  103. */
  104. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  105. {
  106. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  107. iocb->ki_filp->f_path.dentry->d_name.name,
  108. (long long) pos, nr_segs);
  109. return -EINVAL;
  110. }
  111. static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
  112. {
  113. unsigned int npages;
  114. unsigned int i;
  115. if (count == 0)
  116. return;
  117. pages += (pgbase >> PAGE_SHIFT);
  118. npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  119. for (i = 0; i < npages; i++) {
  120. struct page *page = pages[i];
  121. if (!PageCompound(page))
  122. set_page_dirty(page);
  123. }
  124. }
  125. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  126. {
  127. unsigned int i;
  128. for (i = 0; i < npages; i++)
  129. page_cache_release(pages[i]);
  130. }
  131. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  132. {
  133. struct nfs_direct_req *dreq;
  134. dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
  135. if (!dreq)
  136. return NULL;
  137. kref_init(&dreq->kref);
  138. kref_get(&dreq->kref);
  139. init_completion(&dreq->completion);
  140. INIT_LIST_HEAD(&dreq->rewrite_list);
  141. dreq->iocb = NULL;
  142. dreq->ctx = NULL;
  143. dreq->l_ctx = NULL;
  144. spin_lock_init(&dreq->lock);
  145. atomic_set(&dreq->io_count, 0);
  146. dreq->count = 0;
  147. dreq->error = 0;
  148. dreq->flags = 0;
  149. return dreq;
  150. }
  151. static void nfs_direct_req_free(struct kref *kref)
  152. {
  153. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  154. if (dreq->l_ctx != NULL)
  155. nfs_put_lock_context(dreq->l_ctx);
  156. if (dreq->ctx != NULL)
  157. put_nfs_open_context(dreq->ctx);
  158. kmem_cache_free(nfs_direct_cachep, dreq);
  159. }
  160. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  161. {
  162. kref_put(&dreq->kref, nfs_direct_req_free);
  163. }
  164. /*
  165. * Collects and returns the final error value/byte-count.
  166. */
  167. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  168. {
  169. ssize_t result = -EIOCBQUEUED;
  170. /* Async requests don't wait here */
  171. if (dreq->iocb)
  172. goto out;
  173. result = wait_for_completion_killable(&dreq->completion);
  174. if (!result)
  175. result = dreq->error;
  176. if (!result)
  177. result = dreq->count;
  178. out:
  179. return (ssize_t) result;
  180. }
  181. /*
  182. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  183. * the iocb is still valid here if this is a synchronous request.
  184. */
  185. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  186. {
  187. if (dreq->iocb) {
  188. long res = (long) dreq->error;
  189. if (!res)
  190. res = (long) dreq->count;
  191. aio_complete(dreq->iocb, res, 0);
  192. }
  193. complete_all(&dreq->completion);
  194. nfs_direct_req_release(dreq);
  195. }
  196. /*
  197. * We must hold a reference to all the pages in this direct read request
  198. * until the RPCs complete. This could be long *after* we are woken up in
  199. * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
  200. */
  201. static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
  202. {
  203. struct nfs_read_data *data = calldata;
  204. nfs_readpage_result(task, data);
  205. }
  206. static void nfs_direct_read_release(void *calldata)
  207. {
  208. struct nfs_read_data *data = calldata;
  209. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  210. int status = data->task.tk_status;
  211. spin_lock(&dreq->lock);
  212. if (unlikely(status < 0)) {
  213. dreq->error = status;
  214. spin_unlock(&dreq->lock);
  215. } else {
  216. dreq->count += data->res.count;
  217. spin_unlock(&dreq->lock);
  218. nfs_direct_dirty_pages(data->pagevec,
  219. data->args.pgbase,
  220. data->res.count);
  221. }
  222. nfs_direct_release_pages(data->pagevec, data->npages);
  223. if (put_dreq(dreq))
  224. nfs_direct_complete(dreq);
  225. nfs_readdata_free(data);
  226. }
  227. static const struct rpc_call_ops nfs_read_direct_ops = {
  228. #if defined(CONFIG_NFS_V4_1)
  229. .rpc_call_prepare = nfs_read_prepare,
  230. #endif /* CONFIG_NFS_V4_1 */
  231. .rpc_call_done = nfs_direct_read_result,
  232. .rpc_release = nfs_direct_read_release,
  233. };
  234. /*
  235. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  236. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  237. * bail and stop sending more reads. Read length accounting is
  238. * handled automatically by nfs_direct_read_result(). Otherwise, if
  239. * no requests have been sent, just return an error.
  240. */
  241. static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
  242. const struct iovec *iov,
  243. loff_t pos)
  244. {
  245. struct nfs_open_context *ctx = dreq->ctx;
  246. struct inode *inode = ctx->path.dentry->d_inode;
  247. unsigned long user_addr = (unsigned long)iov->iov_base;
  248. size_t count = iov->iov_len;
  249. size_t rsize = NFS_SERVER(inode)->rsize;
  250. struct rpc_task *task;
  251. struct rpc_message msg = {
  252. .rpc_cred = ctx->cred,
  253. };
  254. struct rpc_task_setup task_setup_data = {
  255. .rpc_client = NFS_CLIENT(inode),
  256. .rpc_message = &msg,
  257. .callback_ops = &nfs_read_direct_ops,
  258. .workqueue = nfsiod_workqueue,
  259. .flags = RPC_TASK_ASYNC,
  260. };
  261. unsigned int pgbase;
  262. int result;
  263. ssize_t started = 0;
  264. do {
  265. struct nfs_read_data *data;
  266. size_t bytes;
  267. pgbase = user_addr & ~PAGE_MASK;
  268. bytes = min(rsize,count);
  269. result = -ENOMEM;
  270. data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
  271. if (unlikely(!data))
  272. break;
  273. down_read(&current->mm->mmap_sem);
  274. result = get_user_pages(current, current->mm, user_addr,
  275. data->npages, 1, 0, data->pagevec, NULL);
  276. up_read(&current->mm->mmap_sem);
  277. if (result < 0) {
  278. nfs_readdata_free(data);
  279. break;
  280. }
  281. if ((unsigned)result < data->npages) {
  282. bytes = result * PAGE_SIZE;
  283. if (bytes <= pgbase) {
  284. nfs_direct_release_pages(data->pagevec, result);
  285. nfs_readdata_free(data);
  286. break;
  287. }
  288. bytes -= pgbase;
  289. data->npages = result;
  290. }
  291. get_dreq(dreq);
  292. data->req = (struct nfs_page *) dreq;
  293. data->inode = inode;
  294. data->cred = msg.rpc_cred;
  295. data->args.fh = NFS_FH(inode);
  296. data->args.context = ctx;
  297. data->args.lock_context = dreq->l_ctx;
  298. data->args.offset = pos;
  299. data->args.pgbase = pgbase;
  300. data->args.pages = data->pagevec;
  301. data->args.count = bytes;
  302. data->res.fattr = &data->fattr;
  303. data->res.eof = 0;
  304. data->res.count = bytes;
  305. nfs_fattr_init(&data->fattr);
  306. msg.rpc_argp = &data->args;
  307. msg.rpc_resp = &data->res;
  308. task_setup_data.task = &data->task;
  309. task_setup_data.callback_data = data;
  310. NFS_PROTO(inode)->read_setup(data, &msg);
  311. task = rpc_run_task(&task_setup_data);
  312. if (IS_ERR(task))
  313. break;
  314. rpc_put_task(task);
  315. dprintk("NFS: %5u initiated direct read call "
  316. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  317. data->task.tk_pid,
  318. inode->i_sb->s_id,
  319. (long long)NFS_FILEID(inode),
  320. bytes,
  321. (unsigned long long)data->args.offset);
  322. started += bytes;
  323. user_addr += bytes;
  324. pos += bytes;
  325. /* FIXME: Remove this unnecessary math from final patch */
  326. pgbase += bytes;
  327. pgbase &= ~PAGE_MASK;
  328. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  329. count -= bytes;
  330. } while (count != 0);
  331. if (started)
  332. return started;
  333. return result < 0 ? (ssize_t) result : -EFAULT;
  334. }
  335. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  336. const struct iovec *iov,
  337. unsigned long nr_segs,
  338. loff_t pos)
  339. {
  340. ssize_t result = -EINVAL;
  341. size_t requested_bytes = 0;
  342. unsigned long seg;
  343. get_dreq(dreq);
  344. for (seg = 0; seg < nr_segs; seg++) {
  345. const struct iovec *vec = &iov[seg];
  346. result = nfs_direct_read_schedule_segment(dreq, vec, pos);
  347. if (result < 0)
  348. break;
  349. requested_bytes += result;
  350. if ((size_t)result < vec->iov_len)
  351. break;
  352. pos += vec->iov_len;
  353. }
  354. /*
  355. * If no bytes were started, return the error, and let the
  356. * generic layer handle the completion.
  357. */
  358. if (requested_bytes == 0) {
  359. nfs_direct_req_release(dreq);
  360. return result < 0 ? result : -EIO;
  361. }
  362. if (put_dreq(dreq))
  363. nfs_direct_complete(dreq);
  364. return 0;
  365. }
  366. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  367. unsigned long nr_segs, loff_t pos)
  368. {
  369. ssize_t result = -ENOMEM;
  370. struct inode *inode = iocb->ki_filp->f_mapping->host;
  371. struct nfs_direct_req *dreq;
  372. dreq = nfs_direct_req_alloc();
  373. if (dreq == NULL)
  374. goto out;
  375. dreq->inode = inode;
  376. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  377. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  378. if (dreq->l_ctx == NULL)
  379. goto out_release;
  380. if (!is_sync_kiocb(iocb))
  381. dreq->iocb = iocb;
  382. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  383. if (!result)
  384. result = nfs_direct_wait(dreq);
  385. out_release:
  386. nfs_direct_req_release(dreq);
  387. out:
  388. return result;
  389. }
  390. static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
  391. {
  392. while (!list_empty(&dreq->rewrite_list)) {
  393. struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
  394. list_del(&data->pages);
  395. nfs_direct_release_pages(data->pagevec, data->npages);
  396. nfs_writedata_free(data);
  397. }
  398. }
  399. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  400. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  401. {
  402. struct inode *inode = dreq->inode;
  403. struct list_head *p;
  404. struct nfs_write_data *data;
  405. struct rpc_task *task;
  406. struct rpc_message msg = {
  407. .rpc_cred = dreq->ctx->cred,
  408. };
  409. struct rpc_task_setup task_setup_data = {
  410. .rpc_client = NFS_CLIENT(inode),
  411. .rpc_message = &msg,
  412. .callback_ops = &nfs_write_direct_ops,
  413. .workqueue = nfsiod_workqueue,
  414. .flags = RPC_TASK_ASYNC,
  415. };
  416. dreq->count = 0;
  417. get_dreq(dreq);
  418. list_for_each(p, &dreq->rewrite_list) {
  419. data = list_entry(p, struct nfs_write_data, pages);
  420. get_dreq(dreq);
  421. /* Use stable writes */
  422. data->args.stable = NFS_FILE_SYNC;
  423. /*
  424. * Reset data->res.
  425. */
  426. nfs_fattr_init(&data->fattr);
  427. data->res.count = data->args.count;
  428. memset(&data->verf, 0, sizeof(data->verf));
  429. /*
  430. * Reuse data->task; data->args should not have changed
  431. * since the original request was sent.
  432. */
  433. task_setup_data.task = &data->task;
  434. task_setup_data.callback_data = data;
  435. msg.rpc_argp = &data->args;
  436. msg.rpc_resp = &data->res;
  437. NFS_PROTO(inode)->write_setup(data, &msg);
  438. /*
  439. * We're called via an RPC callback, so BKL is already held.
  440. */
  441. task = rpc_run_task(&task_setup_data);
  442. if (!IS_ERR(task))
  443. rpc_put_task(task);
  444. dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  445. data->task.tk_pid,
  446. inode->i_sb->s_id,
  447. (long long)NFS_FILEID(inode),
  448. data->args.count,
  449. (unsigned long long)data->args.offset);
  450. }
  451. if (put_dreq(dreq))
  452. nfs_direct_write_complete(dreq, inode);
  453. }
  454. static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
  455. {
  456. struct nfs_write_data *data = calldata;
  457. /* Call the NFS version-specific code */
  458. NFS_PROTO(data->inode)->commit_done(task, data);
  459. }
  460. static void nfs_direct_commit_release(void *calldata)
  461. {
  462. struct nfs_write_data *data = calldata;
  463. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  464. int status = data->task.tk_status;
  465. if (status < 0) {
  466. dprintk("NFS: %5u commit failed with error %d.\n",
  467. data->task.tk_pid, status);
  468. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  469. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  470. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  471. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  472. }
  473. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  474. nfs_direct_write_complete(dreq, data->inode);
  475. nfs_commit_free(data);
  476. }
  477. static const struct rpc_call_ops nfs_commit_direct_ops = {
  478. #if defined(CONFIG_NFS_V4_1)
  479. .rpc_call_prepare = nfs_write_prepare,
  480. #endif /* CONFIG_NFS_V4_1 */
  481. .rpc_call_done = nfs_direct_commit_result,
  482. .rpc_release = nfs_direct_commit_release,
  483. };
  484. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  485. {
  486. struct nfs_write_data *data = dreq->commit_data;
  487. struct rpc_task *task;
  488. struct rpc_message msg = {
  489. .rpc_argp = &data->args,
  490. .rpc_resp = &data->res,
  491. .rpc_cred = dreq->ctx->cred,
  492. };
  493. struct rpc_task_setup task_setup_data = {
  494. .task = &data->task,
  495. .rpc_client = NFS_CLIENT(dreq->inode),
  496. .rpc_message = &msg,
  497. .callback_ops = &nfs_commit_direct_ops,
  498. .callback_data = data,
  499. .workqueue = nfsiod_workqueue,
  500. .flags = RPC_TASK_ASYNC,
  501. };
  502. data->inode = dreq->inode;
  503. data->cred = msg.rpc_cred;
  504. data->args.fh = NFS_FH(data->inode);
  505. data->args.offset = 0;
  506. data->args.count = 0;
  507. data->args.context = dreq->ctx;
  508. data->args.lock_context = dreq->l_ctx;
  509. data->res.count = 0;
  510. data->res.fattr = &data->fattr;
  511. data->res.verf = &data->verf;
  512. nfs_fattr_init(&data->fattr);
  513. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  514. /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
  515. dreq->commit_data = NULL;
  516. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  517. task = rpc_run_task(&task_setup_data);
  518. if (!IS_ERR(task))
  519. rpc_put_task(task);
  520. }
  521. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  522. {
  523. int flags = dreq->flags;
  524. dreq->flags = 0;
  525. switch (flags) {
  526. case NFS_ODIRECT_DO_COMMIT:
  527. nfs_direct_commit_schedule(dreq);
  528. break;
  529. case NFS_ODIRECT_RESCHED_WRITES:
  530. nfs_direct_write_reschedule(dreq);
  531. break;
  532. default:
  533. if (dreq->commit_data != NULL)
  534. nfs_commit_free(dreq->commit_data);
  535. nfs_direct_free_writedata(dreq);
  536. nfs_zap_mapping(inode, inode->i_mapping);
  537. nfs_direct_complete(dreq);
  538. }
  539. }
  540. static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  541. {
  542. dreq->commit_data = nfs_commitdata_alloc();
  543. if (dreq->commit_data != NULL)
  544. dreq->commit_data->req = (struct nfs_page *) dreq;
  545. }
  546. #else
  547. static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  548. {
  549. dreq->commit_data = NULL;
  550. }
  551. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  552. {
  553. nfs_direct_free_writedata(dreq);
  554. nfs_zap_mapping(inode, inode->i_mapping);
  555. nfs_direct_complete(dreq);
  556. }
  557. #endif
  558. static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
  559. {
  560. struct nfs_write_data *data = calldata;
  561. nfs_writeback_done(task, data);
  562. }
  563. /*
  564. * NB: Return the value of the first error return code. Subsequent
  565. * errors after the first one are ignored.
  566. */
  567. static void nfs_direct_write_release(void *calldata)
  568. {
  569. struct nfs_write_data *data = calldata;
  570. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  571. int status = data->task.tk_status;
  572. spin_lock(&dreq->lock);
  573. if (unlikely(status < 0)) {
  574. /* An error has occurred, so we should not commit */
  575. dreq->flags = 0;
  576. dreq->error = status;
  577. }
  578. if (unlikely(dreq->error != 0))
  579. goto out_unlock;
  580. dreq->count += data->res.count;
  581. if (data->res.verf->committed != NFS_FILE_SYNC) {
  582. switch (dreq->flags) {
  583. case 0:
  584. memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
  585. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  586. break;
  587. case NFS_ODIRECT_DO_COMMIT:
  588. if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
  589. dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
  590. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  591. }
  592. }
  593. }
  594. out_unlock:
  595. spin_unlock(&dreq->lock);
  596. if (put_dreq(dreq))
  597. nfs_direct_write_complete(dreq, data->inode);
  598. }
  599. static const struct rpc_call_ops nfs_write_direct_ops = {
  600. #if defined(CONFIG_NFS_V4_1)
  601. .rpc_call_prepare = nfs_write_prepare,
  602. #endif /* CONFIG_NFS_V4_1 */
  603. .rpc_call_done = nfs_direct_write_result,
  604. .rpc_release = nfs_direct_write_release,
  605. };
  606. /*
  607. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  608. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  609. * bail and stop sending more writes. Write length accounting is
  610. * handled automatically by nfs_direct_write_result(). Otherwise, if
  611. * no requests have been sent, just return an error.
  612. */
  613. static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
  614. const struct iovec *iov,
  615. loff_t pos, int sync)
  616. {
  617. struct nfs_open_context *ctx = dreq->ctx;
  618. struct inode *inode = ctx->path.dentry->d_inode;
  619. unsigned long user_addr = (unsigned long)iov->iov_base;
  620. size_t count = iov->iov_len;
  621. struct rpc_task *task;
  622. struct rpc_message msg = {
  623. .rpc_cred = ctx->cred,
  624. };
  625. struct rpc_task_setup task_setup_data = {
  626. .rpc_client = NFS_CLIENT(inode),
  627. .rpc_message = &msg,
  628. .callback_ops = &nfs_write_direct_ops,
  629. .workqueue = nfsiod_workqueue,
  630. .flags = RPC_TASK_ASYNC,
  631. };
  632. size_t wsize = NFS_SERVER(inode)->wsize;
  633. unsigned int pgbase;
  634. int result;
  635. ssize_t started = 0;
  636. do {
  637. struct nfs_write_data *data;
  638. size_t bytes;
  639. pgbase = user_addr & ~PAGE_MASK;
  640. bytes = min(wsize,count);
  641. result = -ENOMEM;
  642. data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
  643. if (unlikely(!data))
  644. break;
  645. down_read(&current->mm->mmap_sem);
  646. result = get_user_pages(current, current->mm, user_addr,
  647. data->npages, 0, 0, data->pagevec, NULL);
  648. up_read(&current->mm->mmap_sem);
  649. if (result < 0) {
  650. nfs_writedata_free(data);
  651. break;
  652. }
  653. if ((unsigned)result < data->npages) {
  654. bytes = result * PAGE_SIZE;
  655. if (bytes <= pgbase) {
  656. nfs_direct_release_pages(data->pagevec, result);
  657. nfs_writedata_free(data);
  658. break;
  659. }
  660. bytes -= pgbase;
  661. data->npages = result;
  662. }
  663. get_dreq(dreq);
  664. list_move_tail(&data->pages, &dreq->rewrite_list);
  665. data->req = (struct nfs_page *) dreq;
  666. data->inode = inode;
  667. data->cred = msg.rpc_cred;
  668. data->args.fh = NFS_FH(inode);
  669. data->args.context = ctx;
  670. data->args.lock_context = dreq->l_ctx;
  671. data->args.offset = pos;
  672. data->args.pgbase = pgbase;
  673. data->args.pages = data->pagevec;
  674. data->args.count = bytes;
  675. data->args.stable = sync;
  676. data->res.fattr = &data->fattr;
  677. data->res.count = bytes;
  678. data->res.verf = &data->verf;
  679. nfs_fattr_init(&data->fattr);
  680. task_setup_data.task = &data->task;
  681. task_setup_data.callback_data = data;
  682. msg.rpc_argp = &data->args;
  683. msg.rpc_resp = &data->res;
  684. NFS_PROTO(inode)->write_setup(data, &msg);
  685. task = rpc_run_task(&task_setup_data);
  686. if (IS_ERR(task))
  687. break;
  688. rpc_put_task(task);
  689. dprintk("NFS: %5u initiated direct write call "
  690. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  691. data->task.tk_pid,
  692. inode->i_sb->s_id,
  693. (long long)NFS_FILEID(inode),
  694. bytes,
  695. (unsigned long long)data->args.offset);
  696. started += bytes;
  697. user_addr += bytes;
  698. pos += bytes;
  699. /* FIXME: Remove this useless math from the final patch */
  700. pgbase += bytes;
  701. pgbase &= ~PAGE_MASK;
  702. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  703. count -= bytes;
  704. } while (count != 0);
  705. if (started)
  706. return started;
  707. return result < 0 ? (ssize_t) result : -EFAULT;
  708. }
  709. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  710. const struct iovec *iov,
  711. unsigned long nr_segs,
  712. loff_t pos, int sync)
  713. {
  714. ssize_t result = 0;
  715. size_t requested_bytes = 0;
  716. unsigned long seg;
  717. get_dreq(dreq);
  718. for (seg = 0; seg < nr_segs; seg++) {
  719. const struct iovec *vec = &iov[seg];
  720. result = nfs_direct_write_schedule_segment(dreq, vec,
  721. pos, sync);
  722. if (result < 0)
  723. break;
  724. requested_bytes += result;
  725. if ((size_t)result < vec->iov_len)
  726. break;
  727. pos += vec->iov_len;
  728. }
  729. /*
  730. * If no bytes were started, return the error, and let the
  731. * generic layer handle the completion.
  732. */
  733. if (requested_bytes == 0) {
  734. nfs_direct_req_release(dreq);
  735. return result < 0 ? result : -EIO;
  736. }
  737. if (put_dreq(dreq))
  738. nfs_direct_write_complete(dreq, dreq->inode);
  739. return 0;
  740. }
  741. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  742. unsigned long nr_segs, loff_t pos,
  743. size_t count)
  744. {
  745. ssize_t result = -ENOMEM;
  746. struct inode *inode = iocb->ki_filp->f_mapping->host;
  747. struct nfs_direct_req *dreq;
  748. size_t wsize = NFS_SERVER(inode)->wsize;
  749. int sync = NFS_UNSTABLE;
  750. dreq = nfs_direct_req_alloc();
  751. if (!dreq)
  752. goto out;
  753. nfs_alloc_commit_data(dreq);
  754. if (dreq->commit_data == NULL || count <= wsize)
  755. sync = NFS_FILE_SYNC;
  756. dreq->inode = inode;
  757. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  758. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  759. if (dreq->l_ctx == NULL)
  760. goto out_release;
  761. if (!is_sync_kiocb(iocb))
  762. dreq->iocb = iocb;
  763. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
  764. if (!result)
  765. result = nfs_direct_wait(dreq);
  766. out_release:
  767. nfs_direct_req_release(dreq);
  768. out:
  769. return result;
  770. }
  771. /**
  772. * nfs_file_direct_read - file direct read operation for NFS files
  773. * @iocb: target I/O control block
  774. * @iov: vector of user buffers into which to read data
  775. * @nr_segs: size of iov vector
  776. * @pos: byte offset in file where reading starts
  777. *
  778. * We use this function for direct reads instead of calling
  779. * generic_file_aio_read() in order to avoid gfar's check to see if
  780. * the request starts before the end of the file. For that check
  781. * to work, we must generate a GETATTR before each direct read, and
  782. * even then there is a window between the GETATTR and the subsequent
  783. * READ where the file size could change. Our preference is simply
  784. * to do all reads the application wants, and the server will take
  785. * care of managing the end of file boundary.
  786. *
  787. * This function also eliminates unnecessarily updating the file's
  788. * atime locally, as the NFS server sets the file's atime, and this
  789. * client must read the updated atime from the server back into its
  790. * cache.
  791. */
  792. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  793. unsigned long nr_segs, loff_t pos)
  794. {
  795. ssize_t retval = -EINVAL;
  796. struct file *file = iocb->ki_filp;
  797. struct address_space *mapping = file->f_mapping;
  798. size_t count;
  799. count = iov_length(iov, nr_segs);
  800. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  801. dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
  802. file->f_path.dentry->d_parent->d_name.name,
  803. file->f_path.dentry->d_name.name,
  804. count, (long long) pos);
  805. retval = 0;
  806. if (!count)
  807. goto out;
  808. retval = nfs_sync_mapping(mapping);
  809. if (retval)
  810. goto out;
  811. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  812. if (retval > 0)
  813. iocb->ki_pos = pos + retval;
  814. out:
  815. return retval;
  816. }
  817. /**
  818. * nfs_file_direct_write - file direct write operation for NFS files
  819. * @iocb: target I/O control block
  820. * @iov: vector of user buffers from which to write data
  821. * @nr_segs: size of iov vector
  822. * @pos: byte offset in file where writing starts
  823. *
  824. * We use this function for direct writes instead of calling
  825. * generic_file_aio_write() in order to avoid taking the inode
  826. * semaphore and updating the i_size. The NFS server will set
  827. * the new i_size and this client must read the updated size
  828. * back into its cache. We let the server do generic write
  829. * parameter checking and report problems.
  830. *
  831. * We eliminate local atime updates, see direct read above.
  832. *
  833. * We avoid unnecessary page cache invalidations for normal cached
  834. * readers of this file.
  835. *
  836. * Note that O_APPEND is not supported for NFS direct writes, as there
  837. * is no atomic O_APPEND write facility in the NFS protocol.
  838. */
  839. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  840. unsigned long nr_segs, loff_t pos)
  841. {
  842. ssize_t retval = -EINVAL;
  843. struct file *file = iocb->ki_filp;
  844. struct address_space *mapping = file->f_mapping;
  845. size_t count;
  846. count = iov_length(iov, nr_segs);
  847. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  848. dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
  849. file->f_path.dentry->d_parent->d_name.name,
  850. file->f_path.dentry->d_name.name,
  851. count, (long long) pos);
  852. retval = generic_write_checks(file, &pos, &count, 0);
  853. if (retval)
  854. goto out;
  855. retval = -EINVAL;
  856. if ((ssize_t) count < 0)
  857. goto out;
  858. retval = 0;
  859. if (!count)
  860. goto out;
  861. retval = nfs_sync_mapping(mapping);
  862. if (retval)
  863. goto out;
  864. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  865. if (retval > 0)
  866. iocb->ki_pos = pos + retval;
  867. out:
  868. return retval;
  869. }
  870. /**
  871. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  872. *
  873. */
  874. int __init nfs_init_directcache(void)
  875. {
  876. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  877. sizeof(struct nfs_direct_req),
  878. 0, (SLAB_RECLAIM_ACCOUNT|
  879. SLAB_MEM_SPREAD),
  880. NULL);
  881. if (nfs_direct_cachep == NULL)
  882. return -ENOMEM;
  883. return 0;
  884. }
  885. /**
  886. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  887. *
  888. */
  889. void nfs_destroy_directcache(void)
  890. {
  891. kmem_cache_destroy(nfs_direct_cachep);
  892. }