page-writeback.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/pagevec.h>
  36. #include <trace/events/writeback.h>
  37. /*
  38. * Sleep at most 200ms at a time in balance_dirty_pages().
  39. */
  40. #define MAX_PAUSE max(HZ/5, 1)
  41. /*
  42. * Estimate write bandwidth at 200ms intervals.
  43. */
  44. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  45. #define RATELIMIT_CALC_SHIFT 10
  46. /*
  47. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  48. * will look to see if it needs to force writeback or throttling.
  49. */
  50. static long ratelimit_pages = 32;
  51. /* The following parameters are exported via /proc/sys/vm */
  52. /*
  53. * Start background writeback (via writeback threads) at this percentage
  54. */
  55. int dirty_background_ratio = 10;
  56. /*
  57. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  58. * dirty_background_ratio * the amount of dirtyable memory
  59. */
  60. unsigned long dirty_background_bytes;
  61. /*
  62. * free highmem will not be subtracted from the total free memory
  63. * for calculating free ratios if vm_highmem_is_dirtyable is true
  64. */
  65. int vm_highmem_is_dirtyable;
  66. /*
  67. * The generator of dirty data starts writeback at this percentage
  68. */
  69. int vm_dirty_ratio = 20;
  70. /*
  71. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  72. * vm_dirty_ratio * the amount of dirtyable memory
  73. */
  74. unsigned long vm_dirty_bytes;
  75. /*
  76. * The interval between `kupdate'-style writebacks
  77. */
  78. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  79. /*
  80. * The longest time for which data is allowed to remain dirty
  81. */
  82. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  83. /*
  84. * Flag that makes the machine dump writes/reads and block dirtyings.
  85. */
  86. int block_dump;
  87. /*
  88. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  89. * a full sync is triggered after this time elapses without any disk activity.
  90. */
  91. int laptop_mode;
  92. EXPORT_SYMBOL(laptop_mode);
  93. /* End of sysctl-exported parameters */
  94. unsigned long global_dirty_limit;
  95. /*
  96. * Scale the writeback cache size proportional to the relative writeout speeds.
  97. *
  98. * We do this by keeping a floating proportion between BDIs, based on page
  99. * writeback completions [end_page_writeback()]. Those devices that write out
  100. * pages fastest will get the larger share, while the slower will get a smaller
  101. * share.
  102. *
  103. * We use page writeout completions because we are interested in getting rid of
  104. * dirty pages. Having them written out is the primary goal.
  105. *
  106. * We introduce a concept of time, a period over which we measure these events,
  107. * because demand can/will vary over time. The length of this period itself is
  108. * measured in page writeback completions.
  109. *
  110. */
  111. static struct prop_descriptor vm_completions;
  112. /*
  113. * couple the period to the dirty_ratio:
  114. *
  115. * period/2 ~ roundup_pow_of_two(dirty limit)
  116. */
  117. static int calc_period_shift(void)
  118. {
  119. unsigned long dirty_total;
  120. if (vm_dirty_bytes)
  121. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  122. else
  123. dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
  124. 100;
  125. return 2 + ilog2(dirty_total - 1);
  126. }
  127. /*
  128. * update the period when the dirty threshold changes.
  129. */
  130. static void update_completion_period(void)
  131. {
  132. int shift = calc_period_shift();
  133. prop_change_shift(&vm_completions, shift);
  134. writeback_set_ratelimit();
  135. }
  136. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  137. void __user *buffer, size_t *lenp,
  138. loff_t *ppos)
  139. {
  140. int ret;
  141. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  142. if (ret == 0 && write)
  143. dirty_background_bytes = 0;
  144. return ret;
  145. }
  146. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  147. void __user *buffer, size_t *lenp,
  148. loff_t *ppos)
  149. {
  150. int ret;
  151. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  152. if (ret == 0 && write)
  153. dirty_background_ratio = 0;
  154. return ret;
  155. }
  156. int dirty_ratio_handler(struct ctl_table *table, int write,
  157. void __user *buffer, size_t *lenp,
  158. loff_t *ppos)
  159. {
  160. int old_ratio = vm_dirty_ratio;
  161. int ret;
  162. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  163. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  164. update_completion_period();
  165. vm_dirty_bytes = 0;
  166. }
  167. return ret;
  168. }
  169. int dirty_bytes_handler(struct ctl_table *table, int write,
  170. void __user *buffer, size_t *lenp,
  171. loff_t *ppos)
  172. {
  173. unsigned long old_bytes = vm_dirty_bytes;
  174. int ret;
  175. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  176. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  177. update_completion_period();
  178. vm_dirty_ratio = 0;
  179. }
  180. return ret;
  181. }
  182. /*
  183. * Increment the BDI's writeout completion count and the global writeout
  184. * completion count. Called from test_clear_page_writeback().
  185. */
  186. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  187. {
  188. __inc_bdi_stat(bdi, BDI_WRITTEN);
  189. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  190. bdi->max_prop_frac);
  191. }
  192. void bdi_writeout_inc(struct backing_dev_info *bdi)
  193. {
  194. unsigned long flags;
  195. local_irq_save(flags);
  196. __bdi_writeout_inc(bdi);
  197. local_irq_restore(flags);
  198. }
  199. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  200. /*
  201. * Obtain an accurate fraction of the BDI's portion.
  202. */
  203. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  204. long *numerator, long *denominator)
  205. {
  206. prop_fraction_percpu(&vm_completions, &bdi->completions,
  207. numerator, denominator);
  208. }
  209. /*
  210. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  211. * registered backing devices, which, for obvious reasons, can not
  212. * exceed 100%.
  213. */
  214. static unsigned int bdi_min_ratio;
  215. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  216. {
  217. int ret = 0;
  218. spin_lock_bh(&bdi_lock);
  219. if (min_ratio > bdi->max_ratio) {
  220. ret = -EINVAL;
  221. } else {
  222. min_ratio -= bdi->min_ratio;
  223. if (bdi_min_ratio + min_ratio < 100) {
  224. bdi_min_ratio += min_ratio;
  225. bdi->min_ratio += min_ratio;
  226. } else {
  227. ret = -EINVAL;
  228. }
  229. }
  230. spin_unlock_bh(&bdi_lock);
  231. return ret;
  232. }
  233. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  234. {
  235. int ret = 0;
  236. if (max_ratio > 100)
  237. return -EINVAL;
  238. spin_lock_bh(&bdi_lock);
  239. if (bdi->min_ratio > max_ratio) {
  240. ret = -EINVAL;
  241. } else {
  242. bdi->max_ratio = max_ratio;
  243. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  244. }
  245. spin_unlock_bh(&bdi_lock);
  246. return ret;
  247. }
  248. EXPORT_SYMBOL(bdi_set_max_ratio);
  249. /*
  250. * Work out the current dirty-memory clamping and background writeout
  251. * thresholds.
  252. *
  253. * The main aim here is to lower them aggressively if there is a lot of mapped
  254. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  255. * pages. It is better to clamp down on writers than to start swapping, and
  256. * performing lots of scanning.
  257. *
  258. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  259. *
  260. * We don't permit the clamping level to fall below 5% - that is getting rather
  261. * excessive.
  262. *
  263. * We make sure that the background writeout level is below the adjusted
  264. * clamping level.
  265. */
  266. static unsigned long highmem_dirtyable_memory(unsigned long total)
  267. {
  268. #ifdef CONFIG_HIGHMEM
  269. int node;
  270. unsigned long x = 0;
  271. for_each_node_state(node, N_HIGH_MEMORY) {
  272. struct zone *z =
  273. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  274. x += zone_page_state(z, NR_FREE_PAGES) +
  275. zone_reclaimable_pages(z);
  276. }
  277. /*
  278. * Make sure that the number of highmem pages is never larger
  279. * than the number of the total dirtyable memory. This can only
  280. * occur in very strange VM situations but we want to make sure
  281. * that this does not occur.
  282. */
  283. return min(x, total);
  284. #else
  285. return 0;
  286. #endif
  287. }
  288. /**
  289. * determine_dirtyable_memory - amount of memory that may be used
  290. *
  291. * Returns the numebr of pages that can currently be freed and used
  292. * by the kernel for direct mappings.
  293. */
  294. unsigned long determine_dirtyable_memory(void)
  295. {
  296. unsigned long x;
  297. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  298. if (!vm_highmem_is_dirtyable)
  299. x -= highmem_dirtyable_memory(x);
  300. return x + 1; /* Ensure that we never return 0 */
  301. }
  302. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  303. unsigned long bg_thresh)
  304. {
  305. return (thresh + bg_thresh) / 2;
  306. }
  307. static unsigned long hard_dirty_limit(unsigned long thresh)
  308. {
  309. return max(thresh, global_dirty_limit);
  310. }
  311. /*
  312. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  313. *
  314. * Calculate the dirty thresholds based on sysctl parameters
  315. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  316. * - vm.dirty_ratio or vm.dirty_bytes
  317. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  318. * real-time tasks.
  319. */
  320. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  321. {
  322. unsigned long background;
  323. unsigned long dirty;
  324. unsigned long uninitialized_var(available_memory);
  325. struct task_struct *tsk;
  326. if (!vm_dirty_bytes || !dirty_background_bytes)
  327. available_memory = determine_dirtyable_memory();
  328. if (vm_dirty_bytes)
  329. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  330. else
  331. dirty = (vm_dirty_ratio * available_memory) / 100;
  332. if (dirty_background_bytes)
  333. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  334. else
  335. background = (dirty_background_ratio * available_memory) / 100;
  336. if (background >= dirty)
  337. background = dirty / 2;
  338. tsk = current;
  339. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  340. background += background / 4;
  341. dirty += dirty / 4;
  342. }
  343. *pbackground = background;
  344. *pdirty = dirty;
  345. trace_global_dirty_state(background, dirty);
  346. }
  347. /**
  348. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  349. * @bdi: the backing_dev_info to query
  350. * @dirty: global dirty limit in pages
  351. *
  352. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  353. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  354. *
  355. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  356. * when sleeping max_pause per page is not enough to keep the dirty pages under
  357. * control. For example, when the device is completely stalled due to some error
  358. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  359. * In the other normal situations, it acts more gently by throttling the tasks
  360. * more (rather than completely block them) when the bdi dirty pages go high.
  361. *
  362. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  363. * - starving fast devices
  364. * - piling up dirty pages (that will take long time to sync) on slow devices
  365. *
  366. * The bdi's share of dirty limit will be adapting to its throughput and
  367. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  368. */
  369. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  370. {
  371. u64 bdi_dirty;
  372. long numerator, denominator;
  373. /*
  374. * Calculate this BDI's share of the dirty ratio.
  375. */
  376. bdi_writeout_fraction(bdi, &numerator, &denominator);
  377. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  378. bdi_dirty *= numerator;
  379. do_div(bdi_dirty, denominator);
  380. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  381. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  382. bdi_dirty = dirty * bdi->max_ratio / 100;
  383. return bdi_dirty;
  384. }
  385. /*
  386. * Dirty position control.
  387. *
  388. * (o) global/bdi setpoints
  389. *
  390. * We want the dirty pages be balanced around the global/bdi setpoints.
  391. * When the number of dirty pages is higher/lower than the setpoint, the
  392. * dirty position control ratio (and hence task dirty ratelimit) will be
  393. * decreased/increased to bring the dirty pages back to the setpoint.
  394. *
  395. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  396. *
  397. * if (dirty < setpoint) scale up pos_ratio
  398. * if (dirty > setpoint) scale down pos_ratio
  399. *
  400. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  401. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  402. *
  403. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  404. *
  405. * (o) global control line
  406. *
  407. * ^ pos_ratio
  408. * |
  409. * | |<===== global dirty control scope ======>|
  410. * 2.0 .............*
  411. * | .*
  412. * | . *
  413. * | . *
  414. * | . *
  415. * | . *
  416. * | . *
  417. * 1.0 ................................*
  418. * | . . *
  419. * | . . *
  420. * | . . *
  421. * | . . *
  422. * | . . *
  423. * 0 +------------.------------------.----------------------*------------->
  424. * freerun^ setpoint^ limit^ dirty pages
  425. *
  426. * (o) bdi control line
  427. *
  428. * ^ pos_ratio
  429. * |
  430. * | *
  431. * | *
  432. * | *
  433. * | *
  434. * | * |<=========== span ============>|
  435. * 1.0 .......................*
  436. * | . *
  437. * | . *
  438. * | . *
  439. * | . *
  440. * | . *
  441. * | . *
  442. * | . *
  443. * | . *
  444. * | . *
  445. * | . *
  446. * | . *
  447. * 1/4 ...............................................* * * * * * * * * * * *
  448. * | . .
  449. * | . .
  450. * | . .
  451. * 0 +----------------------.-------------------------------.------------->
  452. * bdi_setpoint^ x_intercept^
  453. *
  454. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  455. * be smoothly throttled down to normal if it starts high in situations like
  456. * - start writing to a slow SD card and a fast disk at the same time. The SD
  457. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  458. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  459. */
  460. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  461. unsigned long thresh,
  462. unsigned long bg_thresh,
  463. unsigned long dirty,
  464. unsigned long bdi_thresh,
  465. unsigned long bdi_dirty)
  466. {
  467. unsigned long write_bw = bdi->avg_write_bandwidth;
  468. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  469. unsigned long limit = hard_dirty_limit(thresh);
  470. unsigned long x_intercept;
  471. unsigned long setpoint; /* dirty pages' target balance point */
  472. unsigned long bdi_setpoint;
  473. unsigned long span;
  474. long long pos_ratio; /* for scaling up/down the rate limit */
  475. long x;
  476. if (unlikely(dirty >= limit))
  477. return 0;
  478. /*
  479. * global setpoint
  480. *
  481. * setpoint - dirty 3
  482. * f(dirty) := 1.0 + (----------------)
  483. * limit - setpoint
  484. *
  485. * it's a 3rd order polynomial that subjects to
  486. *
  487. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  488. * (2) f(setpoint) = 1.0 => the balance point
  489. * (3) f(limit) = 0 => the hard limit
  490. * (4) df/dx <= 0 => negative feedback control
  491. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  492. * => fast response on large errors; small oscillation near setpoint
  493. */
  494. setpoint = (freerun + limit) / 2;
  495. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  496. limit - setpoint + 1);
  497. pos_ratio = x;
  498. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  499. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  500. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  501. /*
  502. * We have computed basic pos_ratio above based on global situation. If
  503. * the bdi is over/under its share of dirty pages, we want to scale
  504. * pos_ratio further down/up. That is done by the following mechanism.
  505. */
  506. /*
  507. * bdi setpoint
  508. *
  509. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  510. *
  511. * x_intercept - bdi_dirty
  512. * := --------------------------
  513. * x_intercept - bdi_setpoint
  514. *
  515. * The main bdi control line is a linear function that subjects to
  516. *
  517. * (1) f(bdi_setpoint) = 1.0
  518. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  519. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  520. *
  521. * For single bdi case, the dirty pages are observed to fluctuate
  522. * regularly within range
  523. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  524. * for various filesystems, where (2) can yield in a reasonable 12.5%
  525. * fluctuation range for pos_ratio.
  526. *
  527. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  528. * own size, so move the slope over accordingly and choose a slope that
  529. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  530. */
  531. if (unlikely(bdi_thresh > thresh))
  532. bdi_thresh = thresh;
  533. /*
  534. * It's very possible that bdi_thresh is close to 0 not because the
  535. * device is slow, but that it has remained inactive for long time.
  536. * Honour such devices a reasonable good (hopefully IO efficient)
  537. * threshold, so that the occasional writes won't be blocked and active
  538. * writes can rampup the threshold quickly.
  539. */
  540. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  541. /*
  542. * scale global setpoint to bdi's:
  543. * bdi_setpoint = setpoint * bdi_thresh / thresh
  544. */
  545. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  546. bdi_setpoint = setpoint * (u64)x >> 16;
  547. /*
  548. * Use span=(8*write_bw) in single bdi case as indicated by
  549. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  550. *
  551. * bdi_thresh thresh - bdi_thresh
  552. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  553. * thresh thresh
  554. */
  555. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  556. x_intercept = bdi_setpoint + span;
  557. if (bdi_dirty < x_intercept - span / 4) {
  558. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  559. x_intercept - bdi_setpoint + 1);
  560. } else
  561. pos_ratio /= 4;
  562. /*
  563. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  564. * It may push the desired control point of global dirty pages higher
  565. * than setpoint.
  566. */
  567. x_intercept = bdi_thresh / 2;
  568. if (bdi_dirty < x_intercept) {
  569. if (bdi_dirty > x_intercept / 8)
  570. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  571. else
  572. pos_ratio *= 8;
  573. }
  574. return pos_ratio;
  575. }
  576. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  577. unsigned long elapsed,
  578. unsigned long written)
  579. {
  580. const unsigned long period = roundup_pow_of_two(3 * HZ);
  581. unsigned long avg = bdi->avg_write_bandwidth;
  582. unsigned long old = bdi->write_bandwidth;
  583. u64 bw;
  584. /*
  585. * bw = written * HZ / elapsed
  586. *
  587. * bw * elapsed + write_bandwidth * (period - elapsed)
  588. * write_bandwidth = ---------------------------------------------------
  589. * period
  590. */
  591. bw = written - bdi->written_stamp;
  592. bw *= HZ;
  593. if (unlikely(elapsed > period)) {
  594. do_div(bw, elapsed);
  595. avg = bw;
  596. goto out;
  597. }
  598. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  599. bw >>= ilog2(period);
  600. /*
  601. * one more level of smoothing, for filtering out sudden spikes
  602. */
  603. if (avg > old && old >= (unsigned long)bw)
  604. avg -= (avg - old) >> 3;
  605. if (avg < old && old <= (unsigned long)bw)
  606. avg += (old - avg) >> 3;
  607. out:
  608. bdi->write_bandwidth = bw;
  609. bdi->avg_write_bandwidth = avg;
  610. }
  611. /*
  612. * The global dirtyable memory and dirty threshold could be suddenly knocked
  613. * down by a large amount (eg. on the startup of KVM in a swapless system).
  614. * This may throw the system into deep dirty exceeded state and throttle
  615. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  616. * global_dirty_limit for tracking slowly down to the knocked down dirty
  617. * threshold.
  618. */
  619. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  620. {
  621. unsigned long limit = global_dirty_limit;
  622. /*
  623. * Follow up in one step.
  624. */
  625. if (limit < thresh) {
  626. limit = thresh;
  627. goto update;
  628. }
  629. /*
  630. * Follow down slowly. Use the higher one as the target, because thresh
  631. * may drop below dirty. This is exactly the reason to introduce
  632. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  633. */
  634. thresh = max(thresh, dirty);
  635. if (limit > thresh) {
  636. limit -= (limit - thresh) >> 5;
  637. goto update;
  638. }
  639. return;
  640. update:
  641. global_dirty_limit = limit;
  642. }
  643. static void global_update_bandwidth(unsigned long thresh,
  644. unsigned long dirty,
  645. unsigned long now)
  646. {
  647. static DEFINE_SPINLOCK(dirty_lock);
  648. static unsigned long update_time;
  649. /*
  650. * check locklessly first to optimize away locking for the most time
  651. */
  652. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  653. return;
  654. spin_lock(&dirty_lock);
  655. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  656. update_dirty_limit(thresh, dirty);
  657. update_time = now;
  658. }
  659. spin_unlock(&dirty_lock);
  660. }
  661. /*
  662. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  663. *
  664. * Normal bdi tasks will be curbed at or below it in long term.
  665. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  666. */
  667. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  668. unsigned long thresh,
  669. unsigned long bg_thresh,
  670. unsigned long dirty,
  671. unsigned long bdi_thresh,
  672. unsigned long bdi_dirty,
  673. unsigned long dirtied,
  674. unsigned long elapsed)
  675. {
  676. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  677. unsigned long limit = hard_dirty_limit(thresh);
  678. unsigned long setpoint = (freerun + limit) / 2;
  679. unsigned long write_bw = bdi->avg_write_bandwidth;
  680. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  681. unsigned long dirty_rate;
  682. unsigned long task_ratelimit;
  683. unsigned long balanced_dirty_ratelimit;
  684. unsigned long pos_ratio;
  685. unsigned long step;
  686. unsigned long x;
  687. /*
  688. * The dirty rate will match the writeout rate in long term, except
  689. * when dirty pages are truncated by userspace or re-dirtied by FS.
  690. */
  691. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  692. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  693. bdi_thresh, bdi_dirty);
  694. /*
  695. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  696. */
  697. task_ratelimit = (u64)dirty_ratelimit *
  698. pos_ratio >> RATELIMIT_CALC_SHIFT;
  699. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  700. /*
  701. * A linear estimation of the "balanced" throttle rate. The theory is,
  702. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  703. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  704. * formula will yield the balanced rate limit (write_bw / N).
  705. *
  706. * Note that the expanded form is not a pure rate feedback:
  707. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  708. * but also takes pos_ratio into account:
  709. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  710. *
  711. * (1) is not realistic because pos_ratio also takes part in balancing
  712. * the dirty rate. Consider the state
  713. * pos_ratio = 0.5 (3)
  714. * rate = 2 * (write_bw / N) (4)
  715. * If (1) is used, it will stuck in that state! Because each dd will
  716. * be throttled at
  717. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  718. * yielding
  719. * dirty_rate = N * task_ratelimit = write_bw (6)
  720. * put (6) into (1) we get
  721. * rate_(i+1) = rate_(i) (7)
  722. *
  723. * So we end up using (2) to always keep
  724. * rate_(i+1) ~= (write_bw / N) (8)
  725. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  726. * pos_ratio is able to drive itself to 1.0, which is not only where
  727. * the dirty count meet the setpoint, but also where the slope of
  728. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  729. */
  730. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  731. dirty_rate | 1);
  732. /*
  733. * We could safely do this and return immediately:
  734. *
  735. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  736. *
  737. * However to get a more stable dirty_ratelimit, the below elaborated
  738. * code makes use of task_ratelimit to filter out sigular points and
  739. * limit the step size.
  740. *
  741. * The below code essentially only uses the relative value of
  742. *
  743. * task_ratelimit - dirty_ratelimit
  744. * = (pos_ratio - 1) * dirty_ratelimit
  745. *
  746. * which reflects the direction and size of dirty position error.
  747. */
  748. /*
  749. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  750. * task_ratelimit is on the same side of dirty_ratelimit, too.
  751. * For example, when
  752. * - dirty_ratelimit > balanced_dirty_ratelimit
  753. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  754. * lowering dirty_ratelimit will help meet both the position and rate
  755. * control targets. Otherwise, don't update dirty_ratelimit if it will
  756. * only help meet the rate target. After all, what the users ultimately
  757. * feel and care are stable dirty rate and small position error.
  758. *
  759. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  760. * and filter out the sigular points of balanced_dirty_ratelimit. Which
  761. * keeps jumping around randomly and can even leap far away at times
  762. * due to the small 200ms estimation period of dirty_rate (we want to
  763. * keep that period small to reduce time lags).
  764. */
  765. step = 0;
  766. if (dirty < setpoint) {
  767. x = min(bdi->balanced_dirty_ratelimit,
  768. min(balanced_dirty_ratelimit, task_ratelimit));
  769. if (dirty_ratelimit < x)
  770. step = x - dirty_ratelimit;
  771. } else {
  772. x = max(bdi->balanced_dirty_ratelimit,
  773. max(balanced_dirty_ratelimit, task_ratelimit));
  774. if (dirty_ratelimit > x)
  775. step = dirty_ratelimit - x;
  776. }
  777. /*
  778. * Don't pursue 100% rate matching. It's impossible since the balanced
  779. * rate itself is constantly fluctuating. So decrease the track speed
  780. * when it gets close to the target. Helps eliminate pointless tremors.
  781. */
  782. step >>= dirty_ratelimit / (2 * step + 1);
  783. /*
  784. * Limit the tracking speed to avoid overshooting.
  785. */
  786. step = (step + 7) / 8;
  787. if (dirty_ratelimit < balanced_dirty_ratelimit)
  788. dirty_ratelimit += step;
  789. else
  790. dirty_ratelimit -= step;
  791. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  792. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  793. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  794. }
  795. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  796. unsigned long thresh,
  797. unsigned long bg_thresh,
  798. unsigned long dirty,
  799. unsigned long bdi_thresh,
  800. unsigned long bdi_dirty,
  801. unsigned long start_time)
  802. {
  803. unsigned long now = jiffies;
  804. unsigned long elapsed = now - bdi->bw_time_stamp;
  805. unsigned long dirtied;
  806. unsigned long written;
  807. /*
  808. * rate-limit, only update once every 200ms.
  809. */
  810. if (elapsed < BANDWIDTH_INTERVAL)
  811. return;
  812. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  813. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  814. /*
  815. * Skip quiet periods when disk bandwidth is under-utilized.
  816. * (at least 1s idle time between two flusher runs)
  817. */
  818. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  819. goto snapshot;
  820. if (thresh) {
  821. global_update_bandwidth(thresh, dirty, now);
  822. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  823. bdi_thresh, bdi_dirty,
  824. dirtied, elapsed);
  825. }
  826. bdi_update_write_bandwidth(bdi, elapsed, written);
  827. snapshot:
  828. bdi->dirtied_stamp = dirtied;
  829. bdi->written_stamp = written;
  830. bdi->bw_time_stamp = now;
  831. }
  832. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  833. unsigned long thresh,
  834. unsigned long bg_thresh,
  835. unsigned long dirty,
  836. unsigned long bdi_thresh,
  837. unsigned long bdi_dirty,
  838. unsigned long start_time)
  839. {
  840. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  841. return;
  842. spin_lock(&bdi->wb.list_lock);
  843. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  844. bdi_thresh, bdi_dirty, start_time);
  845. spin_unlock(&bdi->wb.list_lock);
  846. }
  847. /*
  848. * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
  849. * will look to see if it needs to start dirty throttling.
  850. *
  851. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  852. * global_page_state() too often. So scale it near-sqrt to the safety margin
  853. * (the number of pages we may dirty without exceeding the dirty limits).
  854. */
  855. static unsigned long dirty_poll_interval(unsigned long dirty,
  856. unsigned long thresh)
  857. {
  858. if (thresh > dirty)
  859. return 1UL << (ilog2(thresh - dirty) >> 1);
  860. return 1;
  861. }
  862. static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
  863. unsigned long bdi_dirty)
  864. {
  865. unsigned long bw = bdi->avg_write_bandwidth;
  866. unsigned long hi = ilog2(bw);
  867. unsigned long lo = ilog2(bdi->dirty_ratelimit);
  868. unsigned long t;
  869. /* target for 20ms max pause on 1-dd case */
  870. t = HZ / 50;
  871. /*
  872. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  873. * overheads.
  874. *
  875. * (N * 20ms) on 2^N concurrent tasks.
  876. */
  877. if (hi > lo)
  878. t += (hi - lo) * (20 * HZ) / 1024;
  879. /*
  880. * Limit pause time for small memory systems. If sleeping for too long
  881. * time, a small pool of dirty/writeback pages may go empty and disk go
  882. * idle.
  883. *
  884. * 8 serves as the safety ratio.
  885. */
  886. t = min(t, bdi_dirty * HZ / (8 * bw + 1));
  887. /*
  888. * The pause time will be settled within range (max_pause/4, max_pause).
  889. * Apply a minimal value of 4 to get a non-zero max_pause/4.
  890. */
  891. return clamp_val(t, 4, MAX_PAUSE);
  892. }
  893. /*
  894. * balance_dirty_pages() must be called by processes which are generating dirty
  895. * data. It looks at the number of dirty pages in the machine and will force
  896. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  897. * If we're over `background_thresh' then the writeback threads are woken to
  898. * perform some writeout.
  899. */
  900. static void balance_dirty_pages(struct address_space *mapping,
  901. unsigned long pages_dirtied)
  902. {
  903. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  904. unsigned long bdi_reclaimable;
  905. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  906. unsigned long bdi_dirty;
  907. unsigned long freerun;
  908. unsigned long background_thresh;
  909. unsigned long dirty_thresh;
  910. unsigned long bdi_thresh;
  911. long period;
  912. long pause = 0;
  913. long uninitialized_var(max_pause);
  914. bool dirty_exceeded = false;
  915. unsigned long task_ratelimit;
  916. unsigned long uninitialized_var(dirty_ratelimit);
  917. unsigned long pos_ratio;
  918. struct backing_dev_info *bdi = mapping->backing_dev_info;
  919. unsigned long start_time = jiffies;
  920. for (;;) {
  921. unsigned long now = jiffies;
  922. /*
  923. * Unstable writes are a feature of certain networked
  924. * filesystems (i.e. NFS) in which data may have been
  925. * written to the server's write cache, but has not yet
  926. * been flushed to permanent storage.
  927. */
  928. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  929. global_page_state(NR_UNSTABLE_NFS);
  930. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  931. global_dirty_limits(&background_thresh, &dirty_thresh);
  932. /*
  933. * Throttle it only when the background writeback cannot
  934. * catch-up. This avoids (excessively) small writeouts
  935. * when the bdi limits are ramping up.
  936. */
  937. freerun = dirty_freerun_ceiling(dirty_thresh,
  938. background_thresh);
  939. if (nr_dirty <= freerun) {
  940. current->dirty_paused_when = now;
  941. current->nr_dirtied = 0;
  942. break;
  943. }
  944. if (unlikely(!writeback_in_progress(bdi)))
  945. bdi_start_background_writeback(bdi);
  946. /*
  947. * bdi_thresh is not treated as some limiting factor as
  948. * dirty_thresh, due to reasons
  949. * - in JBOD setup, bdi_thresh can fluctuate a lot
  950. * - in a system with HDD and USB key, the USB key may somehow
  951. * go into state (bdi_dirty >> bdi_thresh) either because
  952. * bdi_dirty starts high, or because bdi_thresh drops low.
  953. * In this case we don't want to hard throttle the USB key
  954. * dirtiers for 100 seconds until bdi_dirty drops under
  955. * bdi_thresh. Instead the auxiliary bdi control line in
  956. * bdi_position_ratio() will let the dirtier task progress
  957. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  958. */
  959. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  960. /*
  961. * In order to avoid the stacked BDI deadlock we need
  962. * to ensure we accurately count the 'dirty' pages when
  963. * the threshold is low.
  964. *
  965. * Otherwise it would be possible to get thresh+n pages
  966. * reported dirty, even though there are thresh-m pages
  967. * actually dirty; with m+n sitting in the percpu
  968. * deltas.
  969. */
  970. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  971. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  972. bdi_dirty = bdi_reclaimable +
  973. bdi_stat_sum(bdi, BDI_WRITEBACK);
  974. } else {
  975. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  976. bdi_dirty = bdi_reclaimable +
  977. bdi_stat(bdi, BDI_WRITEBACK);
  978. }
  979. dirty_exceeded = (bdi_dirty > bdi_thresh) ||
  980. (nr_dirty > dirty_thresh);
  981. if (dirty_exceeded && !bdi->dirty_exceeded)
  982. bdi->dirty_exceeded = 1;
  983. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  984. nr_dirty, bdi_thresh, bdi_dirty,
  985. start_time);
  986. max_pause = bdi_max_pause(bdi, bdi_dirty);
  987. dirty_ratelimit = bdi->dirty_ratelimit;
  988. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  989. background_thresh, nr_dirty,
  990. bdi_thresh, bdi_dirty);
  991. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  992. RATELIMIT_CALC_SHIFT;
  993. if (unlikely(task_ratelimit == 0)) {
  994. period = max_pause;
  995. pause = max_pause;
  996. goto pause;
  997. }
  998. period = HZ * pages_dirtied / task_ratelimit;
  999. pause = period;
  1000. if (current->dirty_paused_when)
  1001. pause -= now - current->dirty_paused_when;
  1002. /*
  1003. * For less than 1s think time (ext3/4 may block the dirtier
  1004. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1005. * however at much less frequency), try to compensate it in
  1006. * future periods by updating the virtual time; otherwise just
  1007. * do a reset, as it may be a light dirtier.
  1008. */
  1009. if (unlikely(pause <= 0)) {
  1010. trace_balance_dirty_pages(bdi,
  1011. dirty_thresh,
  1012. background_thresh,
  1013. nr_dirty,
  1014. bdi_thresh,
  1015. bdi_dirty,
  1016. dirty_ratelimit,
  1017. task_ratelimit,
  1018. pages_dirtied,
  1019. period,
  1020. pause,
  1021. start_time);
  1022. if (pause < -HZ) {
  1023. current->dirty_paused_when = now;
  1024. current->nr_dirtied = 0;
  1025. } else if (period) {
  1026. current->dirty_paused_when += period;
  1027. current->nr_dirtied = 0;
  1028. }
  1029. pause = 1; /* avoid resetting nr_dirtied_pause below */
  1030. break;
  1031. }
  1032. pause = min(pause, max_pause);
  1033. pause:
  1034. trace_balance_dirty_pages(bdi,
  1035. dirty_thresh,
  1036. background_thresh,
  1037. nr_dirty,
  1038. bdi_thresh,
  1039. bdi_dirty,
  1040. dirty_ratelimit,
  1041. task_ratelimit,
  1042. pages_dirtied,
  1043. period,
  1044. pause,
  1045. start_time);
  1046. __set_current_state(TASK_KILLABLE);
  1047. io_schedule_timeout(pause);
  1048. current->dirty_paused_when = now + pause;
  1049. current->nr_dirtied = 0;
  1050. /*
  1051. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1052. * also keep "1000+ dd on a slow USB stick" under control.
  1053. */
  1054. if (task_ratelimit)
  1055. break;
  1056. /*
  1057. * In the case of an unresponding NFS server and the NFS dirty
  1058. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1059. * to go through, so that tasks on them still remain responsive.
  1060. *
  1061. * In theory 1 page is enough to keep the comsumer-producer
  1062. * pipe going: the flusher cleans 1 page => the task dirties 1
  1063. * more page. However bdi_dirty has accounting errors. So use
  1064. * the larger and more IO friendly bdi_stat_error.
  1065. */
  1066. if (bdi_dirty <= bdi_stat_error(bdi))
  1067. break;
  1068. if (fatal_signal_pending(current))
  1069. break;
  1070. }
  1071. if (!dirty_exceeded && bdi->dirty_exceeded)
  1072. bdi->dirty_exceeded = 0;
  1073. if (pause == 0) { /* in freerun area */
  1074. current->nr_dirtied_pause =
  1075. dirty_poll_interval(nr_dirty, dirty_thresh);
  1076. } else if (period <= max_pause / 4 &&
  1077. pages_dirtied >= current->nr_dirtied_pause) {
  1078. current->nr_dirtied_pause = clamp_val(
  1079. dirty_ratelimit * (max_pause / 2) / HZ,
  1080. pages_dirtied + pages_dirtied / 8,
  1081. pages_dirtied * 4);
  1082. } else if (pause >= max_pause) {
  1083. current->nr_dirtied_pause = 1 | clamp_val(
  1084. dirty_ratelimit * (max_pause / 2) / HZ,
  1085. pages_dirtied / 4,
  1086. pages_dirtied - pages_dirtied / 8);
  1087. }
  1088. if (writeback_in_progress(bdi))
  1089. return;
  1090. /*
  1091. * In laptop mode, we wait until hitting the higher threshold before
  1092. * starting background writeout, and then write out all the way down
  1093. * to the lower threshold. So slow writers cause minimal disk activity.
  1094. *
  1095. * In normal mode, we start background writeout at the lower
  1096. * background_thresh, to keep the amount of dirty memory low.
  1097. */
  1098. if (laptop_mode)
  1099. return;
  1100. if (nr_reclaimable > background_thresh)
  1101. bdi_start_background_writeback(bdi);
  1102. }
  1103. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1104. {
  1105. if (set_page_dirty(page) || page_mkwrite) {
  1106. struct address_space *mapping = page_mapping(page);
  1107. if (mapping)
  1108. balance_dirty_pages_ratelimited(mapping);
  1109. }
  1110. }
  1111. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1112. /*
  1113. * Normal tasks are throttled by
  1114. * loop {
  1115. * dirty tsk->nr_dirtied_pause pages;
  1116. * take a snap in balance_dirty_pages();
  1117. * }
  1118. * However there is a worst case. If every task exit immediately when dirtied
  1119. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1120. * called to throttle the page dirties. The solution is to save the not yet
  1121. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1122. * randomly into the running tasks. This works well for the above worst case,
  1123. * as the new task will pick up and accumulate the old task's leaked dirty
  1124. * count and eventually get throttled.
  1125. */
  1126. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1127. /**
  1128. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  1129. * @mapping: address_space which was dirtied
  1130. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  1131. *
  1132. * Processes which are dirtying memory should call in here once for each page
  1133. * which was newly dirtied. The function will periodically check the system's
  1134. * dirty state and will initiate writeback if needed.
  1135. *
  1136. * On really big machines, get_writeback_state is expensive, so try to avoid
  1137. * calling it too often (ratelimiting). But once we're over the dirty memory
  1138. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1139. * from overshooting the limit by (ratelimit_pages) each.
  1140. */
  1141. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  1142. unsigned long nr_pages_dirtied)
  1143. {
  1144. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1145. int ratelimit;
  1146. int *p;
  1147. if (!bdi_cap_account_dirty(bdi))
  1148. return;
  1149. ratelimit = current->nr_dirtied_pause;
  1150. if (bdi->dirty_exceeded)
  1151. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1152. preempt_disable();
  1153. /*
  1154. * This prevents one CPU to accumulate too many dirtied pages without
  1155. * calling into balance_dirty_pages(), which can happen when there are
  1156. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1157. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1158. */
  1159. p = &__get_cpu_var(bdp_ratelimits);
  1160. if (unlikely(current->nr_dirtied >= ratelimit))
  1161. *p = 0;
  1162. else if (unlikely(*p >= ratelimit_pages)) {
  1163. *p = 0;
  1164. ratelimit = 0;
  1165. }
  1166. /*
  1167. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1168. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1169. * the dirty throttling and livelock other long-run dirtiers.
  1170. */
  1171. p = &__get_cpu_var(dirty_throttle_leaks);
  1172. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1173. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1174. *p -= nr_pages_dirtied;
  1175. current->nr_dirtied += nr_pages_dirtied;
  1176. }
  1177. preempt_enable();
  1178. if (unlikely(current->nr_dirtied >= ratelimit))
  1179. balance_dirty_pages(mapping, current->nr_dirtied);
  1180. }
  1181. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  1182. void throttle_vm_writeout(gfp_t gfp_mask)
  1183. {
  1184. unsigned long background_thresh;
  1185. unsigned long dirty_thresh;
  1186. for ( ; ; ) {
  1187. global_dirty_limits(&background_thresh, &dirty_thresh);
  1188. /*
  1189. * Boost the allowable dirty threshold a bit for page
  1190. * allocators so they don't get DoS'ed by heavy writers
  1191. */
  1192. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1193. if (global_page_state(NR_UNSTABLE_NFS) +
  1194. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1195. break;
  1196. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1197. /*
  1198. * The caller might hold locks which can prevent IO completion
  1199. * or progress in the filesystem. So we cannot just sit here
  1200. * waiting for IO to complete.
  1201. */
  1202. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1203. break;
  1204. }
  1205. }
  1206. /*
  1207. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1208. */
  1209. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1210. void __user *buffer, size_t *length, loff_t *ppos)
  1211. {
  1212. proc_dointvec(table, write, buffer, length, ppos);
  1213. bdi_arm_supers_timer();
  1214. return 0;
  1215. }
  1216. #ifdef CONFIG_BLOCK
  1217. void laptop_mode_timer_fn(unsigned long data)
  1218. {
  1219. struct request_queue *q = (struct request_queue *)data;
  1220. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1221. global_page_state(NR_UNSTABLE_NFS);
  1222. /*
  1223. * We want to write everything out, not just down to the dirty
  1224. * threshold
  1225. */
  1226. if (bdi_has_dirty_io(&q->backing_dev_info))
  1227. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1228. WB_REASON_LAPTOP_TIMER);
  1229. }
  1230. /*
  1231. * We've spun up the disk and we're in laptop mode: schedule writeback
  1232. * of all dirty data a few seconds from now. If the flush is already scheduled
  1233. * then push it back - the user is still using the disk.
  1234. */
  1235. void laptop_io_completion(struct backing_dev_info *info)
  1236. {
  1237. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1238. }
  1239. /*
  1240. * We're in laptop mode and we've just synced. The sync's writes will have
  1241. * caused another writeback to be scheduled by laptop_io_completion.
  1242. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1243. */
  1244. void laptop_sync_completion(void)
  1245. {
  1246. struct backing_dev_info *bdi;
  1247. rcu_read_lock();
  1248. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1249. del_timer(&bdi->laptop_mode_wb_timer);
  1250. rcu_read_unlock();
  1251. }
  1252. #endif
  1253. /*
  1254. * If ratelimit_pages is too high then we can get into dirty-data overload
  1255. * if a large number of processes all perform writes at the same time.
  1256. * If it is too low then SMP machines will call the (expensive)
  1257. * get_writeback_state too often.
  1258. *
  1259. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1260. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1261. * thresholds.
  1262. */
  1263. void writeback_set_ratelimit(void)
  1264. {
  1265. unsigned long background_thresh;
  1266. unsigned long dirty_thresh;
  1267. global_dirty_limits(&background_thresh, &dirty_thresh);
  1268. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1269. if (ratelimit_pages < 16)
  1270. ratelimit_pages = 16;
  1271. }
  1272. static int __cpuinit
  1273. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  1274. {
  1275. writeback_set_ratelimit();
  1276. return NOTIFY_DONE;
  1277. }
  1278. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1279. .notifier_call = ratelimit_handler,
  1280. .next = NULL,
  1281. };
  1282. /*
  1283. * Called early on to tune the page writeback dirty limits.
  1284. *
  1285. * We used to scale dirty pages according to how total memory
  1286. * related to pages that could be allocated for buffers (by
  1287. * comparing nr_free_buffer_pages() to vm_total_pages.
  1288. *
  1289. * However, that was when we used "dirty_ratio" to scale with
  1290. * all memory, and we don't do that any more. "dirty_ratio"
  1291. * is now applied to total non-HIGHPAGE memory (by subtracting
  1292. * totalhigh_pages from vm_total_pages), and as such we can't
  1293. * get into the old insane situation any more where we had
  1294. * large amounts of dirty pages compared to a small amount of
  1295. * non-HIGHMEM memory.
  1296. *
  1297. * But we might still want to scale the dirty_ratio by how
  1298. * much memory the box has..
  1299. */
  1300. void __init page_writeback_init(void)
  1301. {
  1302. int shift;
  1303. writeback_set_ratelimit();
  1304. register_cpu_notifier(&ratelimit_nb);
  1305. shift = calc_period_shift();
  1306. prop_descriptor_init(&vm_completions, shift);
  1307. }
  1308. /**
  1309. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1310. * @mapping: address space structure to write
  1311. * @start: starting page index
  1312. * @end: ending page index (inclusive)
  1313. *
  1314. * This function scans the page range from @start to @end (inclusive) and tags
  1315. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1316. * that write_cache_pages (or whoever calls this function) will then use
  1317. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1318. * used to avoid livelocking of writeback by a process steadily creating new
  1319. * dirty pages in the file (thus it is important for this function to be quick
  1320. * so that it can tag pages faster than a dirtying process can create them).
  1321. */
  1322. /*
  1323. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1324. */
  1325. void tag_pages_for_writeback(struct address_space *mapping,
  1326. pgoff_t start, pgoff_t end)
  1327. {
  1328. #define WRITEBACK_TAG_BATCH 4096
  1329. unsigned long tagged;
  1330. do {
  1331. spin_lock_irq(&mapping->tree_lock);
  1332. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1333. &start, end, WRITEBACK_TAG_BATCH,
  1334. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1335. spin_unlock_irq(&mapping->tree_lock);
  1336. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1337. cond_resched();
  1338. /* We check 'start' to handle wrapping when end == ~0UL */
  1339. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1340. }
  1341. EXPORT_SYMBOL(tag_pages_for_writeback);
  1342. /**
  1343. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1344. * @mapping: address space structure to write
  1345. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1346. * @writepage: function called for each page
  1347. * @data: data passed to writepage function
  1348. *
  1349. * If a page is already under I/O, write_cache_pages() skips it, even
  1350. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1351. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1352. * and msync() need to guarantee that all the data which was dirty at the time
  1353. * the call was made get new I/O started against them. If wbc->sync_mode is
  1354. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1355. * existing IO to complete.
  1356. *
  1357. * To avoid livelocks (when other process dirties new pages), we first tag
  1358. * pages which should be written back with TOWRITE tag and only then start
  1359. * writing them. For data-integrity sync we have to be careful so that we do
  1360. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1361. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1362. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1363. */
  1364. int write_cache_pages(struct address_space *mapping,
  1365. struct writeback_control *wbc, writepage_t writepage,
  1366. void *data)
  1367. {
  1368. int ret = 0;
  1369. int done = 0;
  1370. struct pagevec pvec;
  1371. int nr_pages;
  1372. pgoff_t uninitialized_var(writeback_index);
  1373. pgoff_t index;
  1374. pgoff_t end; /* Inclusive */
  1375. pgoff_t done_index;
  1376. int cycled;
  1377. int range_whole = 0;
  1378. int tag;
  1379. pagevec_init(&pvec, 0);
  1380. if (wbc->range_cyclic) {
  1381. writeback_index = mapping->writeback_index; /* prev offset */
  1382. index = writeback_index;
  1383. if (index == 0)
  1384. cycled = 1;
  1385. else
  1386. cycled = 0;
  1387. end = -1;
  1388. } else {
  1389. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1390. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1391. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1392. range_whole = 1;
  1393. cycled = 1; /* ignore range_cyclic tests */
  1394. }
  1395. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1396. tag = PAGECACHE_TAG_TOWRITE;
  1397. else
  1398. tag = PAGECACHE_TAG_DIRTY;
  1399. retry:
  1400. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1401. tag_pages_for_writeback(mapping, index, end);
  1402. done_index = index;
  1403. while (!done && (index <= end)) {
  1404. int i;
  1405. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1406. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1407. if (nr_pages == 0)
  1408. break;
  1409. for (i = 0; i < nr_pages; i++) {
  1410. struct page *page = pvec.pages[i];
  1411. /*
  1412. * At this point, the page may be truncated or
  1413. * invalidated (changing page->mapping to NULL), or
  1414. * even swizzled back from swapper_space to tmpfs file
  1415. * mapping. However, page->index will not change
  1416. * because we have a reference on the page.
  1417. */
  1418. if (page->index > end) {
  1419. /*
  1420. * can't be range_cyclic (1st pass) because
  1421. * end == -1 in that case.
  1422. */
  1423. done = 1;
  1424. break;
  1425. }
  1426. done_index = page->index;
  1427. lock_page(page);
  1428. /*
  1429. * Page truncated or invalidated. We can freely skip it
  1430. * then, even for data integrity operations: the page
  1431. * has disappeared concurrently, so there could be no
  1432. * real expectation of this data interity operation
  1433. * even if there is now a new, dirty page at the same
  1434. * pagecache address.
  1435. */
  1436. if (unlikely(page->mapping != mapping)) {
  1437. continue_unlock:
  1438. unlock_page(page);
  1439. continue;
  1440. }
  1441. if (!PageDirty(page)) {
  1442. /* someone wrote it for us */
  1443. goto continue_unlock;
  1444. }
  1445. if (PageWriteback(page)) {
  1446. if (wbc->sync_mode != WB_SYNC_NONE)
  1447. wait_on_page_writeback(page);
  1448. else
  1449. goto continue_unlock;
  1450. }
  1451. BUG_ON(PageWriteback(page));
  1452. if (!clear_page_dirty_for_io(page))
  1453. goto continue_unlock;
  1454. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1455. ret = (*writepage)(page, wbc, data);
  1456. if (unlikely(ret)) {
  1457. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1458. unlock_page(page);
  1459. ret = 0;
  1460. } else {
  1461. /*
  1462. * done_index is set past this page,
  1463. * so media errors will not choke
  1464. * background writeout for the entire
  1465. * file. This has consequences for
  1466. * range_cyclic semantics (ie. it may
  1467. * not be suitable for data integrity
  1468. * writeout).
  1469. */
  1470. done_index = page->index + 1;
  1471. done = 1;
  1472. break;
  1473. }
  1474. }
  1475. /*
  1476. * We stop writing back only if we are not doing
  1477. * integrity sync. In case of integrity sync we have to
  1478. * keep going until we have written all the pages
  1479. * we tagged for writeback prior to entering this loop.
  1480. */
  1481. if (--wbc->nr_to_write <= 0 &&
  1482. wbc->sync_mode == WB_SYNC_NONE) {
  1483. done = 1;
  1484. break;
  1485. }
  1486. }
  1487. pagevec_release(&pvec);
  1488. cond_resched();
  1489. }
  1490. if (!cycled && !done) {
  1491. /*
  1492. * range_cyclic:
  1493. * We hit the last page and there is more work to be done: wrap
  1494. * back to the start of the file
  1495. */
  1496. cycled = 1;
  1497. index = 0;
  1498. end = writeback_index - 1;
  1499. goto retry;
  1500. }
  1501. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1502. mapping->writeback_index = done_index;
  1503. return ret;
  1504. }
  1505. EXPORT_SYMBOL(write_cache_pages);
  1506. /*
  1507. * Function used by generic_writepages to call the real writepage
  1508. * function and set the mapping flags on error
  1509. */
  1510. static int __writepage(struct page *page, struct writeback_control *wbc,
  1511. void *data)
  1512. {
  1513. struct address_space *mapping = data;
  1514. int ret = mapping->a_ops->writepage(page, wbc);
  1515. mapping_set_error(mapping, ret);
  1516. return ret;
  1517. }
  1518. /**
  1519. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1520. * @mapping: address space structure to write
  1521. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1522. *
  1523. * This is a library function, which implements the writepages()
  1524. * address_space_operation.
  1525. */
  1526. int generic_writepages(struct address_space *mapping,
  1527. struct writeback_control *wbc)
  1528. {
  1529. struct blk_plug plug;
  1530. int ret;
  1531. /* deal with chardevs and other special file */
  1532. if (!mapping->a_ops->writepage)
  1533. return 0;
  1534. blk_start_plug(&plug);
  1535. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1536. blk_finish_plug(&plug);
  1537. return ret;
  1538. }
  1539. EXPORT_SYMBOL(generic_writepages);
  1540. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1541. {
  1542. int ret;
  1543. if (wbc->nr_to_write <= 0)
  1544. return 0;
  1545. if (mapping->a_ops->writepages)
  1546. ret = mapping->a_ops->writepages(mapping, wbc);
  1547. else
  1548. ret = generic_writepages(mapping, wbc);
  1549. return ret;
  1550. }
  1551. /**
  1552. * write_one_page - write out a single page and optionally wait on I/O
  1553. * @page: the page to write
  1554. * @wait: if true, wait on writeout
  1555. *
  1556. * The page must be locked by the caller and will be unlocked upon return.
  1557. *
  1558. * write_one_page() returns a negative error code if I/O failed.
  1559. */
  1560. int write_one_page(struct page *page, int wait)
  1561. {
  1562. struct address_space *mapping = page->mapping;
  1563. int ret = 0;
  1564. struct writeback_control wbc = {
  1565. .sync_mode = WB_SYNC_ALL,
  1566. .nr_to_write = 1,
  1567. };
  1568. BUG_ON(!PageLocked(page));
  1569. if (wait)
  1570. wait_on_page_writeback(page);
  1571. if (clear_page_dirty_for_io(page)) {
  1572. page_cache_get(page);
  1573. ret = mapping->a_ops->writepage(page, &wbc);
  1574. if (ret == 0 && wait) {
  1575. wait_on_page_writeback(page);
  1576. if (PageError(page))
  1577. ret = -EIO;
  1578. }
  1579. page_cache_release(page);
  1580. } else {
  1581. unlock_page(page);
  1582. }
  1583. return ret;
  1584. }
  1585. EXPORT_SYMBOL(write_one_page);
  1586. /*
  1587. * For address_spaces which do not use buffers nor write back.
  1588. */
  1589. int __set_page_dirty_no_writeback(struct page *page)
  1590. {
  1591. if (!PageDirty(page))
  1592. return !TestSetPageDirty(page);
  1593. return 0;
  1594. }
  1595. /*
  1596. * Helper function for set_page_dirty family.
  1597. * NOTE: This relies on being atomic wrt interrupts.
  1598. */
  1599. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1600. {
  1601. if (mapping_cap_account_dirty(mapping)) {
  1602. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1603. __inc_zone_page_state(page, NR_DIRTIED);
  1604. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1605. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1606. task_io_account_write(PAGE_CACHE_SIZE);
  1607. current->nr_dirtied++;
  1608. this_cpu_inc(bdp_ratelimits);
  1609. }
  1610. }
  1611. EXPORT_SYMBOL(account_page_dirtied);
  1612. /*
  1613. * Helper function for set_page_writeback family.
  1614. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1615. * wrt interrupts.
  1616. */
  1617. void account_page_writeback(struct page *page)
  1618. {
  1619. inc_zone_page_state(page, NR_WRITEBACK);
  1620. }
  1621. EXPORT_SYMBOL(account_page_writeback);
  1622. /*
  1623. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1624. * its radix tree.
  1625. *
  1626. * This is also used when a single buffer is being dirtied: we want to set the
  1627. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1628. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1629. *
  1630. * Most callers have locked the page, which pins the address_space in memory.
  1631. * But zap_pte_range() does not lock the page, however in that case the
  1632. * mapping is pinned by the vma's ->vm_file reference.
  1633. *
  1634. * We take care to handle the case where the page was truncated from the
  1635. * mapping by re-checking page_mapping() inside tree_lock.
  1636. */
  1637. int __set_page_dirty_nobuffers(struct page *page)
  1638. {
  1639. if (!TestSetPageDirty(page)) {
  1640. struct address_space *mapping = page_mapping(page);
  1641. struct address_space *mapping2;
  1642. if (!mapping)
  1643. return 1;
  1644. spin_lock_irq(&mapping->tree_lock);
  1645. mapping2 = page_mapping(page);
  1646. if (mapping2) { /* Race with truncate? */
  1647. BUG_ON(mapping2 != mapping);
  1648. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1649. account_page_dirtied(page, mapping);
  1650. radix_tree_tag_set(&mapping->page_tree,
  1651. page_index(page), PAGECACHE_TAG_DIRTY);
  1652. }
  1653. spin_unlock_irq(&mapping->tree_lock);
  1654. if (mapping->host) {
  1655. /* !PageAnon && !swapper_space */
  1656. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1657. }
  1658. return 1;
  1659. }
  1660. return 0;
  1661. }
  1662. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1663. /*
  1664. * Call this whenever redirtying a page, to de-account the dirty counters
  1665. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1666. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1667. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1668. * control.
  1669. */
  1670. void account_page_redirty(struct page *page)
  1671. {
  1672. struct address_space *mapping = page->mapping;
  1673. if (mapping && mapping_cap_account_dirty(mapping)) {
  1674. current->nr_dirtied--;
  1675. dec_zone_page_state(page, NR_DIRTIED);
  1676. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1677. }
  1678. }
  1679. EXPORT_SYMBOL(account_page_redirty);
  1680. /*
  1681. * When a writepage implementation decides that it doesn't want to write this
  1682. * page for some reason, it should redirty the locked page via
  1683. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1684. */
  1685. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1686. {
  1687. wbc->pages_skipped++;
  1688. account_page_redirty(page);
  1689. return __set_page_dirty_nobuffers(page);
  1690. }
  1691. EXPORT_SYMBOL(redirty_page_for_writepage);
  1692. /*
  1693. * Dirty a page.
  1694. *
  1695. * For pages with a mapping this should be done under the page lock
  1696. * for the benefit of asynchronous memory errors who prefer a consistent
  1697. * dirty state. This rule can be broken in some special cases,
  1698. * but should be better not to.
  1699. *
  1700. * If the mapping doesn't provide a set_page_dirty a_op, then
  1701. * just fall through and assume that it wants buffer_heads.
  1702. */
  1703. int set_page_dirty(struct page *page)
  1704. {
  1705. struct address_space *mapping = page_mapping(page);
  1706. if (likely(mapping)) {
  1707. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1708. /*
  1709. * readahead/lru_deactivate_page could remain
  1710. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1711. * About readahead, if the page is written, the flags would be
  1712. * reset. So no problem.
  1713. * About lru_deactivate_page, if the page is redirty, the flag
  1714. * will be reset. So no problem. but if the page is used by readahead
  1715. * it will confuse readahead and make it restart the size rampup
  1716. * process. But it's a trivial problem.
  1717. */
  1718. ClearPageReclaim(page);
  1719. #ifdef CONFIG_BLOCK
  1720. if (!spd)
  1721. spd = __set_page_dirty_buffers;
  1722. #endif
  1723. return (*spd)(page);
  1724. }
  1725. if (!PageDirty(page)) {
  1726. if (!TestSetPageDirty(page))
  1727. return 1;
  1728. }
  1729. return 0;
  1730. }
  1731. EXPORT_SYMBOL(set_page_dirty);
  1732. /*
  1733. * set_page_dirty() is racy if the caller has no reference against
  1734. * page->mapping->host, and if the page is unlocked. This is because another
  1735. * CPU could truncate the page off the mapping and then free the mapping.
  1736. *
  1737. * Usually, the page _is_ locked, or the caller is a user-space process which
  1738. * holds a reference on the inode by having an open file.
  1739. *
  1740. * In other cases, the page should be locked before running set_page_dirty().
  1741. */
  1742. int set_page_dirty_lock(struct page *page)
  1743. {
  1744. int ret;
  1745. lock_page(page);
  1746. ret = set_page_dirty(page);
  1747. unlock_page(page);
  1748. return ret;
  1749. }
  1750. EXPORT_SYMBOL(set_page_dirty_lock);
  1751. /*
  1752. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1753. * Returns true if the page was previously dirty.
  1754. *
  1755. * This is for preparing to put the page under writeout. We leave the page
  1756. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1757. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1758. * implementation will run either set_page_writeback() or set_page_dirty(),
  1759. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1760. * back into sync.
  1761. *
  1762. * This incoherency between the page's dirty flag and radix-tree tag is
  1763. * unfortunate, but it only exists while the page is locked.
  1764. */
  1765. int clear_page_dirty_for_io(struct page *page)
  1766. {
  1767. struct address_space *mapping = page_mapping(page);
  1768. BUG_ON(!PageLocked(page));
  1769. if (mapping && mapping_cap_account_dirty(mapping)) {
  1770. /*
  1771. * Yes, Virginia, this is indeed insane.
  1772. *
  1773. * We use this sequence to make sure that
  1774. * (a) we account for dirty stats properly
  1775. * (b) we tell the low-level filesystem to
  1776. * mark the whole page dirty if it was
  1777. * dirty in a pagetable. Only to then
  1778. * (c) clean the page again and return 1 to
  1779. * cause the writeback.
  1780. *
  1781. * This way we avoid all nasty races with the
  1782. * dirty bit in multiple places and clearing
  1783. * them concurrently from different threads.
  1784. *
  1785. * Note! Normally the "set_page_dirty(page)"
  1786. * has no effect on the actual dirty bit - since
  1787. * that will already usually be set. But we
  1788. * need the side effects, and it can help us
  1789. * avoid races.
  1790. *
  1791. * We basically use the page "master dirty bit"
  1792. * as a serialization point for all the different
  1793. * threads doing their things.
  1794. */
  1795. if (page_mkclean(page))
  1796. set_page_dirty(page);
  1797. /*
  1798. * We carefully synchronise fault handlers against
  1799. * installing a dirty pte and marking the page dirty
  1800. * at this point. We do this by having them hold the
  1801. * page lock at some point after installing their
  1802. * pte, but before marking the page dirty.
  1803. * Pages are always locked coming in here, so we get
  1804. * the desired exclusion. See mm/memory.c:do_wp_page()
  1805. * for more comments.
  1806. */
  1807. if (TestClearPageDirty(page)) {
  1808. dec_zone_page_state(page, NR_FILE_DIRTY);
  1809. dec_bdi_stat(mapping->backing_dev_info,
  1810. BDI_RECLAIMABLE);
  1811. return 1;
  1812. }
  1813. return 0;
  1814. }
  1815. return TestClearPageDirty(page);
  1816. }
  1817. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1818. int test_clear_page_writeback(struct page *page)
  1819. {
  1820. struct address_space *mapping = page_mapping(page);
  1821. int ret;
  1822. if (mapping) {
  1823. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1824. unsigned long flags;
  1825. spin_lock_irqsave(&mapping->tree_lock, flags);
  1826. ret = TestClearPageWriteback(page);
  1827. if (ret) {
  1828. radix_tree_tag_clear(&mapping->page_tree,
  1829. page_index(page),
  1830. PAGECACHE_TAG_WRITEBACK);
  1831. if (bdi_cap_account_writeback(bdi)) {
  1832. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1833. __bdi_writeout_inc(bdi);
  1834. }
  1835. }
  1836. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1837. } else {
  1838. ret = TestClearPageWriteback(page);
  1839. }
  1840. if (ret) {
  1841. dec_zone_page_state(page, NR_WRITEBACK);
  1842. inc_zone_page_state(page, NR_WRITTEN);
  1843. }
  1844. return ret;
  1845. }
  1846. int test_set_page_writeback(struct page *page)
  1847. {
  1848. struct address_space *mapping = page_mapping(page);
  1849. int ret;
  1850. if (mapping) {
  1851. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1852. unsigned long flags;
  1853. spin_lock_irqsave(&mapping->tree_lock, flags);
  1854. ret = TestSetPageWriteback(page);
  1855. if (!ret) {
  1856. radix_tree_tag_set(&mapping->page_tree,
  1857. page_index(page),
  1858. PAGECACHE_TAG_WRITEBACK);
  1859. if (bdi_cap_account_writeback(bdi))
  1860. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1861. }
  1862. if (!PageDirty(page))
  1863. radix_tree_tag_clear(&mapping->page_tree,
  1864. page_index(page),
  1865. PAGECACHE_TAG_DIRTY);
  1866. radix_tree_tag_clear(&mapping->page_tree,
  1867. page_index(page),
  1868. PAGECACHE_TAG_TOWRITE);
  1869. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1870. } else {
  1871. ret = TestSetPageWriteback(page);
  1872. }
  1873. if (!ret)
  1874. account_page_writeback(page);
  1875. return ret;
  1876. }
  1877. EXPORT_SYMBOL(test_set_page_writeback);
  1878. /*
  1879. * Return true if any of the pages in the mapping are marked with the
  1880. * passed tag.
  1881. */
  1882. int mapping_tagged(struct address_space *mapping, int tag)
  1883. {
  1884. return radix_tree_tagged(&mapping->page_tree, tag);
  1885. }
  1886. EXPORT_SYMBOL(mapping_tagged);