mmu.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "x86.h"
  21. #include "kvm_cache_regs.h"
  22. #include <linux/kvm_host.h>
  23. #include <linux/types.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/module.h>
  28. #include <linux/swap.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/compiler.h>
  31. #include <linux/srcu.h>
  32. #include <asm/page.h>
  33. #include <asm/cmpxchg.h>
  34. #include <asm/io.h>
  35. #include <asm/vmx.h>
  36. /*
  37. * When setting this variable to true it enables Two-Dimensional-Paging
  38. * where the hardware walks 2 page tables:
  39. * 1. the guest-virtual to guest-physical
  40. * 2. while doing 1. it walks guest-physical to host-physical
  41. * If the hardware supports that we don't need to do shadow paging.
  42. */
  43. bool tdp_enabled = false;
  44. #undef MMU_DEBUG
  45. #undef AUDIT
  46. #ifdef AUDIT
  47. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  48. #else
  49. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  50. #endif
  51. #ifdef MMU_DEBUG
  52. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  53. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  54. #else
  55. #define pgprintk(x...) do { } while (0)
  56. #define rmap_printk(x...) do { } while (0)
  57. #endif
  58. #if defined(MMU_DEBUG) || defined(AUDIT)
  59. static int dbg = 0;
  60. module_param(dbg, bool, 0644);
  61. #endif
  62. static int oos_shadow = 1;
  63. module_param(oos_shadow, bool, 0644);
  64. #ifndef MMU_DEBUG
  65. #define ASSERT(x) do { } while (0)
  66. #else
  67. #define ASSERT(x) \
  68. if (!(x)) { \
  69. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  70. __FILE__, __LINE__, #x); \
  71. }
  72. #endif
  73. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  74. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  75. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  76. #define PT64_LEVEL_BITS 9
  77. #define PT64_LEVEL_SHIFT(level) \
  78. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  79. #define PT64_LEVEL_MASK(level) \
  80. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  81. #define PT64_INDEX(address, level)\
  82. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  83. #define PT32_LEVEL_BITS 10
  84. #define PT32_LEVEL_SHIFT(level) \
  85. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  86. #define PT32_LEVEL_MASK(level) \
  87. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define PFERR_PRESENT_MASK (1U << 0)
  111. #define PFERR_WRITE_MASK (1U << 1)
  112. #define PFERR_USER_MASK (1U << 2)
  113. #define PFERR_RSVD_MASK (1U << 3)
  114. #define PFERR_FETCH_MASK (1U << 4)
  115. #define RMAP_EXT 4
  116. #define ACC_EXEC_MASK 1
  117. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  118. #define ACC_USER_MASK PT_USER_MASK
  119. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  120. #define CREATE_TRACE_POINTS
  121. #include "mmutrace.h"
  122. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  123. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  124. struct kvm_rmap_desc {
  125. u64 *sptes[RMAP_EXT];
  126. struct kvm_rmap_desc *more;
  127. };
  128. struct kvm_shadow_walk_iterator {
  129. u64 addr;
  130. hpa_t shadow_addr;
  131. int level;
  132. u64 *sptep;
  133. unsigned index;
  134. };
  135. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  136. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  137. shadow_walk_okay(&(_walker)); \
  138. shadow_walk_next(&(_walker)))
  139. struct kvm_unsync_walk {
  140. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  141. };
  142. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  143. static struct kmem_cache *pte_chain_cache;
  144. static struct kmem_cache *rmap_desc_cache;
  145. static struct kmem_cache *mmu_page_header_cache;
  146. static u64 __read_mostly shadow_trap_nonpresent_pte;
  147. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  148. static u64 __read_mostly shadow_base_present_pte;
  149. static u64 __read_mostly shadow_nx_mask;
  150. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  151. static u64 __read_mostly shadow_user_mask;
  152. static u64 __read_mostly shadow_accessed_mask;
  153. static u64 __read_mostly shadow_dirty_mask;
  154. static inline u64 rsvd_bits(int s, int e)
  155. {
  156. return ((1ULL << (e - s + 1)) - 1) << s;
  157. }
  158. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  159. {
  160. shadow_trap_nonpresent_pte = trap_pte;
  161. shadow_notrap_nonpresent_pte = notrap_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  164. void kvm_mmu_set_base_ptes(u64 base_pte)
  165. {
  166. shadow_base_present_pte = base_pte;
  167. }
  168. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  169. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  170. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  171. {
  172. shadow_user_mask = user_mask;
  173. shadow_accessed_mask = accessed_mask;
  174. shadow_dirty_mask = dirty_mask;
  175. shadow_nx_mask = nx_mask;
  176. shadow_x_mask = x_mask;
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  179. static int is_write_protection(struct kvm_vcpu *vcpu)
  180. {
  181. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  182. }
  183. static int is_cpuid_PSE36(void)
  184. {
  185. return 1;
  186. }
  187. static int is_nx(struct kvm_vcpu *vcpu)
  188. {
  189. return vcpu->arch.shadow_efer & EFER_NX;
  190. }
  191. static int is_shadow_present_pte(u64 pte)
  192. {
  193. return pte != shadow_trap_nonpresent_pte
  194. && pte != shadow_notrap_nonpresent_pte;
  195. }
  196. static int is_large_pte(u64 pte)
  197. {
  198. return pte & PT_PAGE_SIZE_MASK;
  199. }
  200. static int is_writable_pte(unsigned long pte)
  201. {
  202. return pte & PT_WRITABLE_MASK;
  203. }
  204. static int is_dirty_gpte(unsigned long pte)
  205. {
  206. return pte & PT_DIRTY_MASK;
  207. }
  208. static int is_rmap_spte(u64 pte)
  209. {
  210. return is_shadow_present_pte(pte);
  211. }
  212. static int is_last_spte(u64 pte, int level)
  213. {
  214. if (level == PT_PAGE_TABLE_LEVEL)
  215. return 1;
  216. if (is_large_pte(pte))
  217. return 1;
  218. return 0;
  219. }
  220. static pfn_t spte_to_pfn(u64 pte)
  221. {
  222. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  223. }
  224. static gfn_t pse36_gfn_delta(u32 gpte)
  225. {
  226. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  227. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  228. }
  229. static void __set_spte(u64 *sptep, u64 spte)
  230. {
  231. #ifdef CONFIG_X86_64
  232. set_64bit((unsigned long *)sptep, spte);
  233. #else
  234. set_64bit((unsigned long long *)sptep, spte);
  235. #endif
  236. }
  237. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  238. struct kmem_cache *base_cache, int min)
  239. {
  240. void *obj;
  241. if (cache->nobjs >= min)
  242. return 0;
  243. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  244. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  245. if (!obj)
  246. return -ENOMEM;
  247. cache->objects[cache->nobjs++] = obj;
  248. }
  249. return 0;
  250. }
  251. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  252. {
  253. while (mc->nobjs)
  254. kfree(mc->objects[--mc->nobjs]);
  255. }
  256. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  257. int min)
  258. {
  259. struct page *page;
  260. if (cache->nobjs >= min)
  261. return 0;
  262. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  263. page = alloc_page(GFP_KERNEL);
  264. if (!page)
  265. return -ENOMEM;
  266. set_page_private(page, 0);
  267. cache->objects[cache->nobjs++] = page_address(page);
  268. }
  269. return 0;
  270. }
  271. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  272. {
  273. while (mc->nobjs)
  274. free_page((unsigned long)mc->objects[--mc->nobjs]);
  275. }
  276. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  277. {
  278. int r;
  279. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  280. pte_chain_cache, 4);
  281. if (r)
  282. goto out;
  283. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  284. rmap_desc_cache, 4);
  285. if (r)
  286. goto out;
  287. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  288. if (r)
  289. goto out;
  290. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  291. mmu_page_header_cache, 4);
  292. out:
  293. return r;
  294. }
  295. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  296. {
  297. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  298. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  299. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  300. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  301. }
  302. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  303. size_t size)
  304. {
  305. void *p;
  306. BUG_ON(!mc->nobjs);
  307. p = mc->objects[--mc->nobjs];
  308. return p;
  309. }
  310. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  311. {
  312. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  313. sizeof(struct kvm_pte_chain));
  314. }
  315. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  316. {
  317. kfree(pc);
  318. }
  319. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  320. {
  321. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  322. sizeof(struct kvm_rmap_desc));
  323. }
  324. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  325. {
  326. kfree(rd);
  327. }
  328. /*
  329. * Return the pointer to the largepage write count for a given
  330. * gfn, handling slots that are not large page aligned.
  331. */
  332. static int *slot_largepage_idx(gfn_t gfn,
  333. struct kvm_memory_slot *slot,
  334. int level)
  335. {
  336. unsigned long idx;
  337. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  338. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  339. return &slot->lpage_info[level - 2][idx].write_count;
  340. }
  341. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  342. {
  343. struct kvm_memory_slot *slot;
  344. int *write_count;
  345. int i;
  346. gfn = unalias_gfn(kvm, gfn);
  347. slot = gfn_to_memslot_unaliased(kvm, gfn);
  348. for (i = PT_DIRECTORY_LEVEL;
  349. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  350. write_count = slot_largepage_idx(gfn, slot, i);
  351. *write_count += 1;
  352. }
  353. }
  354. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  355. {
  356. struct kvm_memory_slot *slot;
  357. int *write_count;
  358. int i;
  359. gfn = unalias_gfn(kvm, gfn);
  360. for (i = PT_DIRECTORY_LEVEL;
  361. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  362. slot = gfn_to_memslot_unaliased(kvm, gfn);
  363. write_count = slot_largepage_idx(gfn, slot, i);
  364. *write_count -= 1;
  365. WARN_ON(*write_count < 0);
  366. }
  367. }
  368. static int has_wrprotected_page(struct kvm *kvm,
  369. gfn_t gfn,
  370. int level)
  371. {
  372. struct kvm_memory_slot *slot;
  373. int *largepage_idx;
  374. gfn = unalias_gfn(kvm, gfn);
  375. slot = gfn_to_memslot_unaliased(kvm, gfn);
  376. if (slot) {
  377. largepage_idx = slot_largepage_idx(gfn, slot, level);
  378. return *largepage_idx;
  379. }
  380. return 1;
  381. }
  382. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  383. {
  384. unsigned long page_size = PAGE_SIZE;
  385. struct vm_area_struct *vma;
  386. unsigned long addr;
  387. int i, ret = 0;
  388. addr = gfn_to_hva(kvm, gfn);
  389. if (kvm_is_error_hva(addr))
  390. return PT_PAGE_TABLE_LEVEL;
  391. down_read(&current->mm->mmap_sem);
  392. vma = find_vma(current->mm, addr);
  393. if (!vma)
  394. goto out;
  395. page_size = vma_kernel_pagesize(vma);
  396. out:
  397. up_read(&current->mm->mmap_sem);
  398. for (i = PT_PAGE_TABLE_LEVEL;
  399. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  400. if (page_size >= KVM_HPAGE_SIZE(i))
  401. ret = i;
  402. else
  403. break;
  404. }
  405. return ret;
  406. }
  407. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  408. {
  409. struct kvm_memory_slot *slot;
  410. int host_level, level, max_level;
  411. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  412. if (slot && slot->dirty_bitmap)
  413. return PT_PAGE_TABLE_LEVEL;
  414. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  415. if (host_level == PT_PAGE_TABLE_LEVEL)
  416. return host_level;
  417. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  418. kvm_x86_ops->get_lpage_level() : host_level;
  419. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  420. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  421. break;
  422. return level - 1;
  423. }
  424. /*
  425. * Take gfn and return the reverse mapping to it.
  426. * Note: gfn must be unaliased before this function get called
  427. */
  428. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  429. {
  430. struct kvm_memory_slot *slot;
  431. unsigned long idx;
  432. slot = gfn_to_memslot(kvm, gfn);
  433. if (likely(level == PT_PAGE_TABLE_LEVEL))
  434. return &slot->rmap[gfn - slot->base_gfn];
  435. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  436. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  437. return &slot->lpage_info[level - 2][idx].rmap_pde;
  438. }
  439. /*
  440. * Reverse mapping data structures:
  441. *
  442. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  443. * that points to page_address(page).
  444. *
  445. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  446. * containing more mappings.
  447. *
  448. * Returns the number of rmap entries before the spte was added or zero if
  449. * the spte was not added.
  450. *
  451. */
  452. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  453. {
  454. struct kvm_mmu_page *sp;
  455. struct kvm_rmap_desc *desc;
  456. unsigned long *rmapp;
  457. int i, count = 0;
  458. if (!is_rmap_spte(*spte))
  459. return count;
  460. gfn = unalias_gfn(vcpu->kvm, gfn);
  461. sp = page_header(__pa(spte));
  462. sp->gfns[spte - sp->spt] = gfn;
  463. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  464. if (!*rmapp) {
  465. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  466. *rmapp = (unsigned long)spte;
  467. } else if (!(*rmapp & 1)) {
  468. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  469. desc = mmu_alloc_rmap_desc(vcpu);
  470. desc->sptes[0] = (u64 *)*rmapp;
  471. desc->sptes[1] = spte;
  472. *rmapp = (unsigned long)desc | 1;
  473. } else {
  474. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  475. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  476. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  477. desc = desc->more;
  478. count += RMAP_EXT;
  479. }
  480. if (desc->sptes[RMAP_EXT-1]) {
  481. desc->more = mmu_alloc_rmap_desc(vcpu);
  482. desc = desc->more;
  483. }
  484. for (i = 0; desc->sptes[i]; ++i)
  485. ;
  486. desc->sptes[i] = spte;
  487. }
  488. return count;
  489. }
  490. static void rmap_desc_remove_entry(unsigned long *rmapp,
  491. struct kvm_rmap_desc *desc,
  492. int i,
  493. struct kvm_rmap_desc *prev_desc)
  494. {
  495. int j;
  496. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  497. ;
  498. desc->sptes[i] = desc->sptes[j];
  499. desc->sptes[j] = NULL;
  500. if (j != 0)
  501. return;
  502. if (!prev_desc && !desc->more)
  503. *rmapp = (unsigned long)desc->sptes[0];
  504. else
  505. if (prev_desc)
  506. prev_desc->more = desc->more;
  507. else
  508. *rmapp = (unsigned long)desc->more | 1;
  509. mmu_free_rmap_desc(desc);
  510. }
  511. static void rmap_remove(struct kvm *kvm, u64 *spte)
  512. {
  513. struct kvm_rmap_desc *desc;
  514. struct kvm_rmap_desc *prev_desc;
  515. struct kvm_mmu_page *sp;
  516. pfn_t pfn;
  517. unsigned long *rmapp;
  518. int i;
  519. if (!is_rmap_spte(*spte))
  520. return;
  521. sp = page_header(__pa(spte));
  522. pfn = spte_to_pfn(*spte);
  523. if (*spte & shadow_accessed_mask)
  524. kvm_set_pfn_accessed(pfn);
  525. if (is_writable_pte(*spte))
  526. kvm_set_pfn_dirty(pfn);
  527. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  528. if (!*rmapp) {
  529. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  530. BUG();
  531. } else if (!(*rmapp & 1)) {
  532. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  533. if ((u64 *)*rmapp != spte) {
  534. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  535. spte, *spte);
  536. BUG();
  537. }
  538. *rmapp = 0;
  539. } else {
  540. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  541. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  542. prev_desc = NULL;
  543. while (desc) {
  544. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  545. if (desc->sptes[i] == spte) {
  546. rmap_desc_remove_entry(rmapp,
  547. desc, i,
  548. prev_desc);
  549. return;
  550. }
  551. prev_desc = desc;
  552. desc = desc->more;
  553. }
  554. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  555. BUG();
  556. }
  557. }
  558. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  559. {
  560. struct kvm_rmap_desc *desc;
  561. struct kvm_rmap_desc *prev_desc;
  562. u64 *prev_spte;
  563. int i;
  564. if (!*rmapp)
  565. return NULL;
  566. else if (!(*rmapp & 1)) {
  567. if (!spte)
  568. return (u64 *)*rmapp;
  569. return NULL;
  570. }
  571. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  572. prev_desc = NULL;
  573. prev_spte = NULL;
  574. while (desc) {
  575. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  576. if (prev_spte == spte)
  577. return desc->sptes[i];
  578. prev_spte = desc->sptes[i];
  579. }
  580. desc = desc->more;
  581. }
  582. return NULL;
  583. }
  584. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  585. {
  586. unsigned long *rmapp;
  587. u64 *spte;
  588. int i, write_protected = 0;
  589. gfn = unalias_gfn(kvm, gfn);
  590. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  591. spte = rmap_next(kvm, rmapp, NULL);
  592. while (spte) {
  593. BUG_ON(!spte);
  594. BUG_ON(!(*spte & PT_PRESENT_MASK));
  595. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  596. if (is_writable_pte(*spte)) {
  597. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  598. write_protected = 1;
  599. }
  600. spte = rmap_next(kvm, rmapp, spte);
  601. }
  602. if (write_protected) {
  603. pfn_t pfn;
  604. spte = rmap_next(kvm, rmapp, NULL);
  605. pfn = spte_to_pfn(*spte);
  606. kvm_set_pfn_dirty(pfn);
  607. }
  608. /* check for huge page mappings */
  609. for (i = PT_DIRECTORY_LEVEL;
  610. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  611. rmapp = gfn_to_rmap(kvm, gfn, i);
  612. spte = rmap_next(kvm, rmapp, NULL);
  613. while (spte) {
  614. BUG_ON(!spte);
  615. BUG_ON(!(*spte & PT_PRESENT_MASK));
  616. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  617. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  618. if (is_writable_pte(*spte)) {
  619. rmap_remove(kvm, spte);
  620. --kvm->stat.lpages;
  621. __set_spte(spte, shadow_trap_nonpresent_pte);
  622. spte = NULL;
  623. write_protected = 1;
  624. }
  625. spte = rmap_next(kvm, rmapp, spte);
  626. }
  627. }
  628. return write_protected;
  629. }
  630. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  631. unsigned long data)
  632. {
  633. u64 *spte;
  634. int need_tlb_flush = 0;
  635. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  636. BUG_ON(!(*spte & PT_PRESENT_MASK));
  637. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  638. rmap_remove(kvm, spte);
  639. __set_spte(spte, shadow_trap_nonpresent_pte);
  640. need_tlb_flush = 1;
  641. }
  642. return need_tlb_flush;
  643. }
  644. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  645. unsigned long data)
  646. {
  647. int need_flush = 0;
  648. u64 *spte, new_spte;
  649. pte_t *ptep = (pte_t *)data;
  650. pfn_t new_pfn;
  651. WARN_ON(pte_huge(*ptep));
  652. new_pfn = pte_pfn(*ptep);
  653. spte = rmap_next(kvm, rmapp, NULL);
  654. while (spte) {
  655. BUG_ON(!is_shadow_present_pte(*spte));
  656. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  657. need_flush = 1;
  658. if (pte_write(*ptep)) {
  659. rmap_remove(kvm, spte);
  660. __set_spte(spte, shadow_trap_nonpresent_pte);
  661. spte = rmap_next(kvm, rmapp, NULL);
  662. } else {
  663. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  664. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  665. new_spte &= ~PT_WRITABLE_MASK;
  666. new_spte &= ~SPTE_HOST_WRITEABLE;
  667. if (is_writable_pte(*spte))
  668. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  669. __set_spte(spte, new_spte);
  670. spte = rmap_next(kvm, rmapp, spte);
  671. }
  672. }
  673. if (need_flush)
  674. kvm_flush_remote_tlbs(kvm);
  675. return 0;
  676. }
  677. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  678. unsigned long data,
  679. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  680. unsigned long data))
  681. {
  682. int i, j;
  683. int retval = 0;
  684. struct kvm_memslots *slots;
  685. slots = rcu_dereference(kvm->memslots);
  686. for (i = 0; i < slots->nmemslots; i++) {
  687. struct kvm_memory_slot *memslot = &slots->memslots[i];
  688. unsigned long start = memslot->userspace_addr;
  689. unsigned long end;
  690. end = start + (memslot->npages << PAGE_SHIFT);
  691. if (hva >= start && hva < end) {
  692. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  693. retval |= handler(kvm, &memslot->rmap[gfn_offset],
  694. data);
  695. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  696. int idx = gfn_offset;
  697. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  698. retval |= handler(kvm,
  699. &memslot->lpage_info[j][idx].rmap_pde,
  700. data);
  701. }
  702. }
  703. }
  704. return retval;
  705. }
  706. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  707. {
  708. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  709. }
  710. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  711. {
  712. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  713. }
  714. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  715. unsigned long data)
  716. {
  717. u64 *spte;
  718. int young = 0;
  719. /* always return old for EPT */
  720. if (!shadow_accessed_mask)
  721. return 0;
  722. spte = rmap_next(kvm, rmapp, NULL);
  723. while (spte) {
  724. int _young;
  725. u64 _spte = *spte;
  726. BUG_ON(!(_spte & PT_PRESENT_MASK));
  727. _young = _spte & PT_ACCESSED_MASK;
  728. if (_young) {
  729. young = 1;
  730. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  731. }
  732. spte = rmap_next(kvm, rmapp, spte);
  733. }
  734. return young;
  735. }
  736. #define RMAP_RECYCLE_THRESHOLD 1000
  737. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  738. {
  739. unsigned long *rmapp;
  740. struct kvm_mmu_page *sp;
  741. sp = page_header(__pa(spte));
  742. gfn = unalias_gfn(vcpu->kvm, gfn);
  743. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  744. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  745. kvm_flush_remote_tlbs(vcpu->kvm);
  746. }
  747. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  748. {
  749. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  750. }
  751. #ifdef MMU_DEBUG
  752. static int is_empty_shadow_page(u64 *spt)
  753. {
  754. u64 *pos;
  755. u64 *end;
  756. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  757. if (is_shadow_present_pte(*pos)) {
  758. printk(KERN_ERR "%s: %p %llx\n", __func__,
  759. pos, *pos);
  760. return 0;
  761. }
  762. return 1;
  763. }
  764. #endif
  765. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  766. {
  767. ASSERT(is_empty_shadow_page(sp->spt));
  768. list_del(&sp->link);
  769. __free_page(virt_to_page(sp->spt));
  770. __free_page(virt_to_page(sp->gfns));
  771. kfree(sp);
  772. ++kvm->arch.n_free_mmu_pages;
  773. }
  774. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  775. {
  776. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  777. }
  778. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  779. u64 *parent_pte)
  780. {
  781. struct kvm_mmu_page *sp;
  782. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  783. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  784. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  785. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  786. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  787. INIT_LIST_HEAD(&sp->oos_link);
  788. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  789. sp->multimapped = 0;
  790. sp->parent_pte = parent_pte;
  791. --vcpu->kvm->arch.n_free_mmu_pages;
  792. return sp;
  793. }
  794. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  795. struct kvm_mmu_page *sp, u64 *parent_pte)
  796. {
  797. struct kvm_pte_chain *pte_chain;
  798. struct hlist_node *node;
  799. int i;
  800. if (!parent_pte)
  801. return;
  802. if (!sp->multimapped) {
  803. u64 *old = sp->parent_pte;
  804. if (!old) {
  805. sp->parent_pte = parent_pte;
  806. return;
  807. }
  808. sp->multimapped = 1;
  809. pte_chain = mmu_alloc_pte_chain(vcpu);
  810. INIT_HLIST_HEAD(&sp->parent_ptes);
  811. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  812. pte_chain->parent_ptes[0] = old;
  813. }
  814. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  815. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  816. continue;
  817. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  818. if (!pte_chain->parent_ptes[i]) {
  819. pte_chain->parent_ptes[i] = parent_pte;
  820. return;
  821. }
  822. }
  823. pte_chain = mmu_alloc_pte_chain(vcpu);
  824. BUG_ON(!pte_chain);
  825. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  826. pte_chain->parent_ptes[0] = parent_pte;
  827. }
  828. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  829. u64 *parent_pte)
  830. {
  831. struct kvm_pte_chain *pte_chain;
  832. struct hlist_node *node;
  833. int i;
  834. if (!sp->multimapped) {
  835. BUG_ON(sp->parent_pte != parent_pte);
  836. sp->parent_pte = NULL;
  837. return;
  838. }
  839. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  840. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  841. if (!pte_chain->parent_ptes[i])
  842. break;
  843. if (pte_chain->parent_ptes[i] != parent_pte)
  844. continue;
  845. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  846. && pte_chain->parent_ptes[i + 1]) {
  847. pte_chain->parent_ptes[i]
  848. = pte_chain->parent_ptes[i + 1];
  849. ++i;
  850. }
  851. pte_chain->parent_ptes[i] = NULL;
  852. if (i == 0) {
  853. hlist_del(&pte_chain->link);
  854. mmu_free_pte_chain(pte_chain);
  855. if (hlist_empty(&sp->parent_ptes)) {
  856. sp->multimapped = 0;
  857. sp->parent_pte = NULL;
  858. }
  859. }
  860. return;
  861. }
  862. BUG();
  863. }
  864. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  865. mmu_parent_walk_fn fn)
  866. {
  867. struct kvm_pte_chain *pte_chain;
  868. struct hlist_node *node;
  869. struct kvm_mmu_page *parent_sp;
  870. int i;
  871. if (!sp->multimapped && sp->parent_pte) {
  872. parent_sp = page_header(__pa(sp->parent_pte));
  873. fn(vcpu, parent_sp);
  874. mmu_parent_walk(vcpu, parent_sp, fn);
  875. return;
  876. }
  877. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  878. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  879. if (!pte_chain->parent_ptes[i])
  880. break;
  881. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  882. fn(vcpu, parent_sp);
  883. mmu_parent_walk(vcpu, parent_sp, fn);
  884. }
  885. }
  886. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  887. {
  888. unsigned int index;
  889. struct kvm_mmu_page *sp = page_header(__pa(spte));
  890. index = spte - sp->spt;
  891. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  892. sp->unsync_children++;
  893. WARN_ON(!sp->unsync_children);
  894. }
  895. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  896. {
  897. struct kvm_pte_chain *pte_chain;
  898. struct hlist_node *node;
  899. int i;
  900. if (!sp->parent_pte)
  901. return;
  902. if (!sp->multimapped) {
  903. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  904. return;
  905. }
  906. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  907. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  908. if (!pte_chain->parent_ptes[i])
  909. break;
  910. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  911. }
  912. }
  913. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  914. {
  915. kvm_mmu_update_parents_unsync(sp);
  916. return 1;
  917. }
  918. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  919. struct kvm_mmu_page *sp)
  920. {
  921. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  922. kvm_mmu_update_parents_unsync(sp);
  923. }
  924. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  925. struct kvm_mmu_page *sp)
  926. {
  927. int i;
  928. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  929. sp->spt[i] = shadow_trap_nonpresent_pte;
  930. }
  931. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  932. struct kvm_mmu_page *sp)
  933. {
  934. return 1;
  935. }
  936. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  937. {
  938. }
  939. #define KVM_PAGE_ARRAY_NR 16
  940. struct kvm_mmu_pages {
  941. struct mmu_page_and_offset {
  942. struct kvm_mmu_page *sp;
  943. unsigned int idx;
  944. } page[KVM_PAGE_ARRAY_NR];
  945. unsigned int nr;
  946. };
  947. #define for_each_unsync_children(bitmap, idx) \
  948. for (idx = find_first_bit(bitmap, 512); \
  949. idx < 512; \
  950. idx = find_next_bit(bitmap, 512, idx+1))
  951. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  952. int idx)
  953. {
  954. int i;
  955. if (sp->unsync)
  956. for (i=0; i < pvec->nr; i++)
  957. if (pvec->page[i].sp == sp)
  958. return 0;
  959. pvec->page[pvec->nr].sp = sp;
  960. pvec->page[pvec->nr].idx = idx;
  961. pvec->nr++;
  962. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  963. }
  964. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  965. struct kvm_mmu_pages *pvec)
  966. {
  967. int i, ret, nr_unsync_leaf = 0;
  968. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  969. u64 ent = sp->spt[i];
  970. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  971. struct kvm_mmu_page *child;
  972. child = page_header(ent & PT64_BASE_ADDR_MASK);
  973. if (child->unsync_children) {
  974. if (mmu_pages_add(pvec, child, i))
  975. return -ENOSPC;
  976. ret = __mmu_unsync_walk(child, pvec);
  977. if (!ret)
  978. __clear_bit(i, sp->unsync_child_bitmap);
  979. else if (ret > 0)
  980. nr_unsync_leaf += ret;
  981. else
  982. return ret;
  983. }
  984. if (child->unsync) {
  985. nr_unsync_leaf++;
  986. if (mmu_pages_add(pvec, child, i))
  987. return -ENOSPC;
  988. }
  989. }
  990. }
  991. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  992. sp->unsync_children = 0;
  993. return nr_unsync_leaf;
  994. }
  995. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  996. struct kvm_mmu_pages *pvec)
  997. {
  998. if (!sp->unsync_children)
  999. return 0;
  1000. mmu_pages_add(pvec, sp, 0);
  1001. return __mmu_unsync_walk(sp, pvec);
  1002. }
  1003. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  1004. {
  1005. unsigned index;
  1006. struct hlist_head *bucket;
  1007. struct kvm_mmu_page *sp;
  1008. struct hlist_node *node;
  1009. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1010. index = kvm_page_table_hashfn(gfn);
  1011. bucket = &kvm->arch.mmu_page_hash[index];
  1012. hlist_for_each_entry(sp, node, bucket, hash_link)
  1013. if (sp->gfn == gfn && !sp->role.direct
  1014. && !sp->role.invalid) {
  1015. pgprintk("%s: found role %x\n",
  1016. __func__, sp->role.word);
  1017. return sp;
  1018. }
  1019. return NULL;
  1020. }
  1021. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1022. {
  1023. WARN_ON(!sp->unsync);
  1024. sp->unsync = 0;
  1025. --kvm->stat.mmu_unsync;
  1026. }
  1027. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1028. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1029. {
  1030. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  1031. kvm_mmu_zap_page(vcpu->kvm, sp);
  1032. return 1;
  1033. }
  1034. trace_kvm_mmu_sync_page(sp);
  1035. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1036. kvm_flush_remote_tlbs(vcpu->kvm);
  1037. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1038. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1039. kvm_mmu_zap_page(vcpu->kvm, sp);
  1040. return 1;
  1041. }
  1042. kvm_mmu_flush_tlb(vcpu);
  1043. return 0;
  1044. }
  1045. struct mmu_page_path {
  1046. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1047. unsigned int idx[PT64_ROOT_LEVEL-1];
  1048. };
  1049. #define for_each_sp(pvec, sp, parents, i) \
  1050. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1051. sp = pvec.page[i].sp; \
  1052. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1053. i = mmu_pages_next(&pvec, &parents, i))
  1054. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1055. struct mmu_page_path *parents,
  1056. int i)
  1057. {
  1058. int n;
  1059. for (n = i+1; n < pvec->nr; n++) {
  1060. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1061. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1062. parents->idx[0] = pvec->page[n].idx;
  1063. return n;
  1064. }
  1065. parents->parent[sp->role.level-2] = sp;
  1066. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1067. }
  1068. return n;
  1069. }
  1070. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1071. {
  1072. struct kvm_mmu_page *sp;
  1073. unsigned int level = 0;
  1074. do {
  1075. unsigned int idx = parents->idx[level];
  1076. sp = parents->parent[level];
  1077. if (!sp)
  1078. return;
  1079. --sp->unsync_children;
  1080. WARN_ON((int)sp->unsync_children < 0);
  1081. __clear_bit(idx, sp->unsync_child_bitmap);
  1082. level++;
  1083. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1084. }
  1085. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1086. struct mmu_page_path *parents,
  1087. struct kvm_mmu_pages *pvec)
  1088. {
  1089. parents->parent[parent->role.level-1] = NULL;
  1090. pvec->nr = 0;
  1091. }
  1092. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1093. struct kvm_mmu_page *parent)
  1094. {
  1095. int i;
  1096. struct kvm_mmu_page *sp;
  1097. struct mmu_page_path parents;
  1098. struct kvm_mmu_pages pages;
  1099. kvm_mmu_pages_init(parent, &parents, &pages);
  1100. while (mmu_unsync_walk(parent, &pages)) {
  1101. int protected = 0;
  1102. for_each_sp(pages, sp, parents, i)
  1103. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1104. if (protected)
  1105. kvm_flush_remote_tlbs(vcpu->kvm);
  1106. for_each_sp(pages, sp, parents, i) {
  1107. kvm_sync_page(vcpu, sp);
  1108. mmu_pages_clear_parents(&parents);
  1109. }
  1110. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1111. kvm_mmu_pages_init(parent, &parents, &pages);
  1112. }
  1113. }
  1114. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1115. gfn_t gfn,
  1116. gva_t gaddr,
  1117. unsigned level,
  1118. int direct,
  1119. unsigned access,
  1120. u64 *parent_pte)
  1121. {
  1122. union kvm_mmu_page_role role;
  1123. unsigned index;
  1124. unsigned quadrant;
  1125. struct hlist_head *bucket;
  1126. struct kvm_mmu_page *sp;
  1127. struct hlist_node *node, *tmp;
  1128. role = vcpu->arch.mmu.base_role;
  1129. role.level = level;
  1130. role.direct = direct;
  1131. role.access = access;
  1132. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1133. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1134. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1135. role.quadrant = quadrant;
  1136. }
  1137. index = kvm_page_table_hashfn(gfn);
  1138. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1139. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1140. if (sp->gfn == gfn) {
  1141. if (sp->unsync)
  1142. if (kvm_sync_page(vcpu, sp))
  1143. continue;
  1144. if (sp->role.word != role.word)
  1145. continue;
  1146. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1147. if (sp->unsync_children) {
  1148. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1149. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1150. }
  1151. trace_kvm_mmu_get_page(sp, false);
  1152. return sp;
  1153. }
  1154. ++vcpu->kvm->stat.mmu_cache_miss;
  1155. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1156. if (!sp)
  1157. return sp;
  1158. sp->gfn = gfn;
  1159. sp->role = role;
  1160. hlist_add_head(&sp->hash_link, bucket);
  1161. if (!direct) {
  1162. if (rmap_write_protect(vcpu->kvm, gfn))
  1163. kvm_flush_remote_tlbs(vcpu->kvm);
  1164. account_shadowed(vcpu->kvm, gfn);
  1165. }
  1166. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1167. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1168. else
  1169. nonpaging_prefetch_page(vcpu, sp);
  1170. trace_kvm_mmu_get_page(sp, true);
  1171. return sp;
  1172. }
  1173. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1174. struct kvm_vcpu *vcpu, u64 addr)
  1175. {
  1176. iterator->addr = addr;
  1177. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1178. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1179. if (iterator->level == PT32E_ROOT_LEVEL) {
  1180. iterator->shadow_addr
  1181. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1182. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1183. --iterator->level;
  1184. if (!iterator->shadow_addr)
  1185. iterator->level = 0;
  1186. }
  1187. }
  1188. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1189. {
  1190. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1191. return false;
  1192. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1193. if (is_large_pte(*iterator->sptep))
  1194. return false;
  1195. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1196. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1197. return true;
  1198. }
  1199. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1200. {
  1201. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1202. --iterator->level;
  1203. }
  1204. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1205. struct kvm_mmu_page *sp)
  1206. {
  1207. unsigned i;
  1208. u64 *pt;
  1209. u64 ent;
  1210. pt = sp->spt;
  1211. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1212. ent = pt[i];
  1213. if (is_shadow_present_pte(ent)) {
  1214. if (!is_last_spte(ent, sp->role.level)) {
  1215. ent &= PT64_BASE_ADDR_MASK;
  1216. mmu_page_remove_parent_pte(page_header(ent),
  1217. &pt[i]);
  1218. } else {
  1219. if (is_large_pte(ent))
  1220. --kvm->stat.lpages;
  1221. rmap_remove(kvm, &pt[i]);
  1222. }
  1223. }
  1224. pt[i] = shadow_trap_nonpresent_pte;
  1225. }
  1226. }
  1227. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1228. {
  1229. mmu_page_remove_parent_pte(sp, parent_pte);
  1230. }
  1231. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1232. {
  1233. int i;
  1234. struct kvm_vcpu *vcpu;
  1235. kvm_for_each_vcpu(i, vcpu, kvm)
  1236. vcpu->arch.last_pte_updated = NULL;
  1237. }
  1238. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1239. {
  1240. u64 *parent_pte;
  1241. while (sp->multimapped || sp->parent_pte) {
  1242. if (!sp->multimapped)
  1243. parent_pte = sp->parent_pte;
  1244. else {
  1245. struct kvm_pte_chain *chain;
  1246. chain = container_of(sp->parent_ptes.first,
  1247. struct kvm_pte_chain, link);
  1248. parent_pte = chain->parent_ptes[0];
  1249. }
  1250. BUG_ON(!parent_pte);
  1251. kvm_mmu_put_page(sp, parent_pte);
  1252. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1253. }
  1254. }
  1255. static int mmu_zap_unsync_children(struct kvm *kvm,
  1256. struct kvm_mmu_page *parent)
  1257. {
  1258. int i, zapped = 0;
  1259. struct mmu_page_path parents;
  1260. struct kvm_mmu_pages pages;
  1261. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1262. return 0;
  1263. kvm_mmu_pages_init(parent, &parents, &pages);
  1264. while (mmu_unsync_walk(parent, &pages)) {
  1265. struct kvm_mmu_page *sp;
  1266. for_each_sp(pages, sp, parents, i) {
  1267. kvm_mmu_zap_page(kvm, sp);
  1268. mmu_pages_clear_parents(&parents);
  1269. }
  1270. zapped += pages.nr;
  1271. kvm_mmu_pages_init(parent, &parents, &pages);
  1272. }
  1273. return zapped;
  1274. }
  1275. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1276. {
  1277. int ret;
  1278. trace_kvm_mmu_zap_page(sp);
  1279. ++kvm->stat.mmu_shadow_zapped;
  1280. ret = mmu_zap_unsync_children(kvm, sp);
  1281. kvm_mmu_page_unlink_children(kvm, sp);
  1282. kvm_mmu_unlink_parents(kvm, sp);
  1283. kvm_flush_remote_tlbs(kvm);
  1284. if (!sp->role.invalid && !sp->role.direct)
  1285. unaccount_shadowed(kvm, sp->gfn);
  1286. if (sp->unsync)
  1287. kvm_unlink_unsync_page(kvm, sp);
  1288. if (!sp->root_count) {
  1289. hlist_del(&sp->hash_link);
  1290. kvm_mmu_free_page(kvm, sp);
  1291. } else {
  1292. sp->role.invalid = 1;
  1293. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1294. kvm_reload_remote_mmus(kvm);
  1295. }
  1296. kvm_mmu_reset_last_pte_updated(kvm);
  1297. return ret;
  1298. }
  1299. /*
  1300. * Changing the number of mmu pages allocated to the vm
  1301. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1302. */
  1303. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1304. {
  1305. int used_pages;
  1306. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1307. used_pages = max(0, used_pages);
  1308. /*
  1309. * If we set the number of mmu pages to be smaller be than the
  1310. * number of actived pages , we must to free some mmu pages before we
  1311. * change the value
  1312. */
  1313. if (used_pages > kvm_nr_mmu_pages) {
  1314. while (used_pages > kvm_nr_mmu_pages) {
  1315. struct kvm_mmu_page *page;
  1316. page = container_of(kvm->arch.active_mmu_pages.prev,
  1317. struct kvm_mmu_page, link);
  1318. kvm_mmu_zap_page(kvm, page);
  1319. used_pages--;
  1320. }
  1321. kvm->arch.n_free_mmu_pages = 0;
  1322. }
  1323. else
  1324. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1325. - kvm->arch.n_alloc_mmu_pages;
  1326. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1327. }
  1328. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1329. {
  1330. unsigned index;
  1331. struct hlist_head *bucket;
  1332. struct kvm_mmu_page *sp;
  1333. struct hlist_node *node, *n;
  1334. int r;
  1335. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1336. r = 0;
  1337. index = kvm_page_table_hashfn(gfn);
  1338. bucket = &kvm->arch.mmu_page_hash[index];
  1339. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1340. if (sp->gfn == gfn && !sp->role.direct) {
  1341. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1342. sp->role.word);
  1343. r = 1;
  1344. if (kvm_mmu_zap_page(kvm, sp))
  1345. n = bucket->first;
  1346. }
  1347. return r;
  1348. }
  1349. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1350. {
  1351. unsigned index;
  1352. struct hlist_head *bucket;
  1353. struct kvm_mmu_page *sp;
  1354. struct hlist_node *node, *nn;
  1355. index = kvm_page_table_hashfn(gfn);
  1356. bucket = &kvm->arch.mmu_page_hash[index];
  1357. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1358. if (sp->gfn == gfn && !sp->role.direct
  1359. && !sp->role.invalid) {
  1360. pgprintk("%s: zap %lx %x\n",
  1361. __func__, gfn, sp->role.word);
  1362. kvm_mmu_zap_page(kvm, sp);
  1363. }
  1364. }
  1365. }
  1366. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1367. {
  1368. int slot = memslot_id(kvm, gfn);
  1369. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1370. __set_bit(slot, sp->slot_bitmap);
  1371. }
  1372. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1373. {
  1374. int i;
  1375. u64 *pt = sp->spt;
  1376. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1377. return;
  1378. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1379. if (pt[i] == shadow_notrap_nonpresent_pte)
  1380. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1381. }
  1382. }
  1383. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1384. {
  1385. struct page *page;
  1386. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1387. if (gpa == UNMAPPED_GVA)
  1388. return NULL;
  1389. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1390. return page;
  1391. }
  1392. /*
  1393. * The function is based on mtrr_type_lookup() in
  1394. * arch/x86/kernel/cpu/mtrr/generic.c
  1395. */
  1396. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1397. u64 start, u64 end)
  1398. {
  1399. int i;
  1400. u64 base, mask;
  1401. u8 prev_match, curr_match;
  1402. int num_var_ranges = KVM_NR_VAR_MTRR;
  1403. if (!mtrr_state->enabled)
  1404. return 0xFF;
  1405. /* Make end inclusive end, instead of exclusive */
  1406. end--;
  1407. /* Look in fixed ranges. Just return the type as per start */
  1408. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1409. int idx;
  1410. if (start < 0x80000) {
  1411. idx = 0;
  1412. idx += (start >> 16);
  1413. return mtrr_state->fixed_ranges[idx];
  1414. } else if (start < 0xC0000) {
  1415. idx = 1 * 8;
  1416. idx += ((start - 0x80000) >> 14);
  1417. return mtrr_state->fixed_ranges[idx];
  1418. } else if (start < 0x1000000) {
  1419. idx = 3 * 8;
  1420. idx += ((start - 0xC0000) >> 12);
  1421. return mtrr_state->fixed_ranges[idx];
  1422. }
  1423. }
  1424. /*
  1425. * Look in variable ranges
  1426. * Look of multiple ranges matching this address and pick type
  1427. * as per MTRR precedence
  1428. */
  1429. if (!(mtrr_state->enabled & 2))
  1430. return mtrr_state->def_type;
  1431. prev_match = 0xFF;
  1432. for (i = 0; i < num_var_ranges; ++i) {
  1433. unsigned short start_state, end_state;
  1434. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1435. continue;
  1436. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1437. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1438. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1439. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1440. start_state = ((start & mask) == (base & mask));
  1441. end_state = ((end & mask) == (base & mask));
  1442. if (start_state != end_state)
  1443. return 0xFE;
  1444. if ((start & mask) != (base & mask))
  1445. continue;
  1446. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1447. if (prev_match == 0xFF) {
  1448. prev_match = curr_match;
  1449. continue;
  1450. }
  1451. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1452. curr_match == MTRR_TYPE_UNCACHABLE)
  1453. return MTRR_TYPE_UNCACHABLE;
  1454. if ((prev_match == MTRR_TYPE_WRBACK &&
  1455. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1456. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1457. curr_match == MTRR_TYPE_WRBACK)) {
  1458. prev_match = MTRR_TYPE_WRTHROUGH;
  1459. curr_match = MTRR_TYPE_WRTHROUGH;
  1460. }
  1461. if (prev_match != curr_match)
  1462. return MTRR_TYPE_UNCACHABLE;
  1463. }
  1464. if (prev_match != 0xFF)
  1465. return prev_match;
  1466. return mtrr_state->def_type;
  1467. }
  1468. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1469. {
  1470. u8 mtrr;
  1471. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1472. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1473. if (mtrr == 0xfe || mtrr == 0xff)
  1474. mtrr = MTRR_TYPE_WRBACK;
  1475. return mtrr;
  1476. }
  1477. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1478. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1479. {
  1480. unsigned index;
  1481. struct hlist_head *bucket;
  1482. struct kvm_mmu_page *s;
  1483. struct hlist_node *node, *n;
  1484. trace_kvm_mmu_unsync_page(sp);
  1485. index = kvm_page_table_hashfn(sp->gfn);
  1486. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1487. /* don't unsync if pagetable is shadowed with multiple roles */
  1488. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1489. if (s->gfn != sp->gfn || s->role.direct)
  1490. continue;
  1491. if (s->role.word != sp->role.word)
  1492. return 1;
  1493. }
  1494. ++vcpu->kvm->stat.mmu_unsync;
  1495. sp->unsync = 1;
  1496. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1497. mmu_convert_notrap(sp);
  1498. return 0;
  1499. }
  1500. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1501. bool can_unsync)
  1502. {
  1503. struct kvm_mmu_page *shadow;
  1504. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1505. if (shadow) {
  1506. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1507. return 1;
  1508. if (shadow->unsync)
  1509. return 0;
  1510. if (can_unsync && oos_shadow)
  1511. return kvm_unsync_page(vcpu, shadow);
  1512. return 1;
  1513. }
  1514. return 0;
  1515. }
  1516. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1517. unsigned pte_access, int user_fault,
  1518. int write_fault, int dirty, int level,
  1519. gfn_t gfn, pfn_t pfn, bool speculative,
  1520. bool can_unsync, bool reset_host_protection)
  1521. {
  1522. u64 spte;
  1523. int ret = 0;
  1524. /*
  1525. * We don't set the accessed bit, since we sometimes want to see
  1526. * whether the guest actually used the pte (in order to detect
  1527. * demand paging).
  1528. */
  1529. spte = shadow_base_present_pte | shadow_dirty_mask;
  1530. if (!speculative)
  1531. spte |= shadow_accessed_mask;
  1532. if (!dirty)
  1533. pte_access &= ~ACC_WRITE_MASK;
  1534. if (pte_access & ACC_EXEC_MASK)
  1535. spte |= shadow_x_mask;
  1536. else
  1537. spte |= shadow_nx_mask;
  1538. if (pte_access & ACC_USER_MASK)
  1539. spte |= shadow_user_mask;
  1540. if (level > PT_PAGE_TABLE_LEVEL)
  1541. spte |= PT_PAGE_SIZE_MASK;
  1542. if (tdp_enabled)
  1543. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1544. kvm_is_mmio_pfn(pfn));
  1545. if (reset_host_protection)
  1546. spte |= SPTE_HOST_WRITEABLE;
  1547. spte |= (u64)pfn << PAGE_SHIFT;
  1548. if ((pte_access & ACC_WRITE_MASK)
  1549. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1550. if (level > PT_PAGE_TABLE_LEVEL &&
  1551. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1552. ret = 1;
  1553. spte = shadow_trap_nonpresent_pte;
  1554. goto set_pte;
  1555. }
  1556. spte |= PT_WRITABLE_MASK;
  1557. /*
  1558. * Optimization: for pte sync, if spte was writable the hash
  1559. * lookup is unnecessary (and expensive). Write protection
  1560. * is responsibility of mmu_get_page / kvm_sync_page.
  1561. * Same reasoning can be applied to dirty page accounting.
  1562. */
  1563. if (!can_unsync && is_writable_pte(*sptep))
  1564. goto set_pte;
  1565. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1566. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1567. __func__, gfn);
  1568. ret = 1;
  1569. pte_access &= ~ACC_WRITE_MASK;
  1570. if (is_writable_pte(spte))
  1571. spte &= ~PT_WRITABLE_MASK;
  1572. }
  1573. }
  1574. if (pte_access & ACC_WRITE_MASK)
  1575. mark_page_dirty(vcpu->kvm, gfn);
  1576. set_pte:
  1577. __set_spte(sptep, spte);
  1578. return ret;
  1579. }
  1580. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1581. unsigned pt_access, unsigned pte_access,
  1582. int user_fault, int write_fault, int dirty,
  1583. int *ptwrite, int level, gfn_t gfn,
  1584. pfn_t pfn, bool speculative,
  1585. bool reset_host_protection)
  1586. {
  1587. int was_rmapped = 0;
  1588. int was_writable = is_writable_pte(*sptep);
  1589. int rmap_count;
  1590. pgprintk("%s: spte %llx access %x write_fault %d"
  1591. " user_fault %d gfn %lx\n",
  1592. __func__, *sptep, pt_access,
  1593. write_fault, user_fault, gfn);
  1594. if (is_rmap_spte(*sptep)) {
  1595. /*
  1596. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1597. * the parent of the now unreachable PTE.
  1598. */
  1599. if (level > PT_PAGE_TABLE_LEVEL &&
  1600. !is_large_pte(*sptep)) {
  1601. struct kvm_mmu_page *child;
  1602. u64 pte = *sptep;
  1603. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1604. mmu_page_remove_parent_pte(child, sptep);
  1605. } else if (pfn != spte_to_pfn(*sptep)) {
  1606. pgprintk("hfn old %lx new %lx\n",
  1607. spte_to_pfn(*sptep), pfn);
  1608. rmap_remove(vcpu->kvm, sptep);
  1609. } else
  1610. was_rmapped = 1;
  1611. }
  1612. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1613. dirty, level, gfn, pfn, speculative, true,
  1614. reset_host_protection)) {
  1615. if (write_fault)
  1616. *ptwrite = 1;
  1617. kvm_x86_ops->tlb_flush(vcpu);
  1618. }
  1619. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1620. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1621. is_large_pte(*sptep)? "2MB" : "4kB",
  1622. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1623. *sptep, sptep);
  1624. if (!was_rmapped && is_large_pte(*sptep))
  1625. ++vcpu->kvm->stat.lpages;
  1626. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1627. if (!was_rmapped) {
  1628. rmap_count = rmap_add(vcpu, sptep, gfn);
  1629. kvm_release_pfn_clean(pfn);
  1630. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1631. rmap_recycle(vcpu, sptep, gfn);
  1632. } else {
  1633. if (was_writable)
  1634. kvm_release_pfn_dirty(pfn);
  1635. else
  1636. kvm_release_pfn_clean(pfn);
  1637. }
  1638. if (speculative) {
  1639. vcpu->arch.last_pte_updated = sptep;
  1640. vcpu->arch.last_pte_gfn = gfn;
  1641. }
  1642. }
  1643. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1644. {
  1645. }
  1646. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1647. int level, gfn_t gfn, pfn_t pfn)
  1648. {
  1649. struct kvm_shadow_walk_iterator iterator;
  1650. struct kvm_mmu_page *sp;
  1651. int pt_write = 0;
  1652. gfn_t pseudo_gfn;
  1653. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1654. if (iterator.level == level) {
  1655. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1656. 0, write, 1, &pt_write,
  1657. level, gfn, pfn, false, true);
  1658. ++vcpu->stat.pf_fixed;
  1659. break;
  1660. }
  1661. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1662. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1663. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1664. iterator.level - 1,
  1665. 1, ACC_ALL, iterator.sptep);
  1666. if (!sp) {
  1667. pgprintk("nonpaging_map: ENOMEM\n");
  1668. kvm_release_pfn_clean(pfn);
  1669. return -ENOMEM;
  1670. }
  1671. __set_spte(iterator.sptep,
  1672. __pa(sp->spt)
  1673. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1674. | shadow_user_mask | shadow_x_mask);
  1675. }
  1676. }
  1677. return pt_write;
  1678. }
  1679. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1680. {
  1681. int r;
  1682. int level;
  1683. pfn_t pfn;
  1684. unsigned long mmu_seq;
  1685. level = mapping_level(vcpu, gfn);
  1686. /*
  1687. * This path builds a PAE pagetable - so we can map 2mb pages at
  1688. * maximum. Therefore check if the level is larger than that.
  1689. */
  1690. if (level > PT_DIRECTORY_LEVEL)
  1691. level = PT_DIRECTORY_LEVEL;
  1692. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1693. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1694. smp_rmb();
  1695. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1696. /* mmio */
  1697. if (is_error_pfn(pfn)) {
  1698. kvm_release_pfn_clean(pfn);
  1699. return 1;
  1700. }
  1701. spin_lock(&vcpu->kvm->mmu_lock);
  1702. if (mmu_notifier_retry(vcpu, mmu_seq))
  1703. goto out_unlock;
  1704. kvm_mmu_free_some_pages(vcpu);
  1705. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1706. spin_unlock(&vcpu->kvm->mmu_lock);
  1707. return r;
  1708. out_unlock:
  1709. spin_unlock(&vcpu->kvm->mmu_lock);
  1710. kvm_release_pfn_clean(pfn);
  1711. return 0;
  1712. }
  1713. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1714. {
  1715. int i;
  1716. struct kvm_mmu_page *sp;
  1717. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1718. return;
  1719. spin_lock(&vcpu->kvm->mmu_lock);
  1720. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1721. hpa_t root = vcpu->arch.mmu.root_hpa;
  1722. sp = page_header(root);
  1723. --sp->root_count;
  1724. if (!sp->root_count && sp->role.invalid)
  1725. kvm_mmu_zap_page(vcpu->kvm, sp);
  1726. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1727. spin_unlock(&vcpu->kvm->mmu_lock);
  1728. return;
  1729. }
  1730. for (i = 0; i < 4; ++i) {
  1731. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1732. if (root) {
  1733. root &= PT64_BASE_ADDR_MASK;
  1734. sp = page_header(root);
  1735. --sp->root_count;
  1736. if (!sp->root_count && sp->role.invalid)
  1737. kvm_mmu_zap_page(vcpu->kvm, sp);
  1738. }
  1739. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1740. }
  1741. spin_unlock(&vcpu->kvm->mmu_lock);
  1742. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1743. }
  1744. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1745. {
  1746. int ret = 0;
  1747. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1748. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1749. ret = 1;
  1750. }
  1751. return ret;
  1752. }
  1753. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1754. {
  1755. int i;
  1756. gfn_t root_gfn;
  1757. struct kvm_mmu_page *sp;
  1758. int direct = 0;
  1759. u64 pdptr;
  1760. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1761. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1762. hpa_t root = vcpu->arch.mmu.root_hpa;
  1763. ASSERT(!VALID_PAGE(root));
  1764. if (tdp_enabled)
  1765. direct = 1;
  1766. if (mmu_check_root(vcpu, root_gfn))
  1767. return 1;
  1768. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1769. PT64_ROOT_LEVEL, direct,
  1770. ACC_ALL, NULL);
  1771. root = __pa(sp->spt);
  1772. ++sp->root_count;
  1773. vcpu->arch.mmu.root_hpa = root;
  1774. return 0;
  1775. }
  1776. direct = !is_paging(vcpu);
  1777. if (tdp_enabled)
  1778. direct = 1;
  1779. for (i = 0; i < 4; ++i) {
  1780. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1781. ASSERT(!VALID_PAGE(root));
  1782. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1783. pdptr = kvm_pdptr_read(vcpu, i);
  1784. if (!is_present_gpte(pdptr)) {
  1785. vcpu->arch.mmu.pae_root[i] = 0;
  1786. continue;
  1787. }
  1788. root_gfn = pdptr >> PAGE_SHIFT;
  1789. } else if (vcpu->arch.mmu.root_level == 0)
  1790. root_gfn = 0;
  1791. if (mmu_check_root(vcpu, root_gfn))
  1792. return 1;
  1793. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1794. PT32_ROOT_LEVEL, direct,
  1795. ACC_ALL, NULL);
  1796. root = __pa(sp->spt);
  1797. ++sp->root_count;
  1798. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1799. }
  1800. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1801. return 0;
  1802. }
  1803. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1804. {
  1805. int i;
  1806. struct kvm_mmu_page *sp;
  1807. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1808. return;
  1809. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1810. hpa_t root = vcpu->arch.mmu.root_hpa;
  1811. sp = page_header(root);
  1812. mmu_sync_children(vcpu, sp);
  1813. return;
  1814. }
  1815. for (i = 0; i < 4; ++i) {
  1816. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1817. if (root && VALID_PAGE(root)) {
  1818. root &= PT64_BASE_ADDR_MASK;
  1819. sp = page_header(root);
  1820. mmu_sync_children(vcpu, sp);
  1821. }
  1822. }
  1823. }
  1824. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1825. {
  1826. spin_lock(&vcpu->kvm->mmu_lock);
  1827. mmu_sync_roots(vcpu);
  1828. spin_unlock(&vcpu->kvm->mmu_lock);
  1829. }
  1830. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1831. {
  1832. return vaddr;
  1833. }
  1834. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1835. u32 error_code)
  1836. {
  1837. gfn_t gfn;
  1838. int r;
  1839. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1840. r = mmu_topup_memory_caches(vcpu);
  1841. if (r)
  1842. return r;
  1843. ASSERT(vcpu);
  1844. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1845. gfn = gva >> PAGE_SHIFT;
  1846. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1847. error_code & PFERR_WRITE_MASK, gfn);
  1848. }
  1849. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1850. u32 error_code)
  1851. {
  1852. pfn_t pfn;
  1853. int r;
  1854. int level;
  1855. gfn_t gfn = gpa >> PAGE_SHIFT;
  1856. unsigned long mmu_seq;
  1857. ASSERT(vcpu);
  1858. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1859. r = mmu_topup_memory_caches(vcpu);
  1860. if (r)
  1861. return r;
  1862. level = mapping_level(vcpu, gfn);
  1863. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1864. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1865. smp_rmb();
  1866. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1867. if (is_error_pfn(pfn)) {
  1868. kvm_release_pfn_clean(pfn);
  1869. return 1;
  1870. }
  1871. spin_lock(&vcpu->kvm->mmu_lock);
  1872. if (mmu_notifier_retry(vcpu, mmu_seq))
  1873. goto out_unlock;
  1874. kvm_mmu_free_some_pages(vcpu);
  1875. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1876. level, gfn, pfn);
  1877. spin_unlock(&vcpu->kvm->mmu_lock);
  1878. return r;
  1879. out_unlock:
  1880. spin_unlock(&vcpu->kvm->mmu_lock);
  1881. kvm_release_pfn_clean(pfn);
  1882. return 0;
  1883. }
  1884. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1885. {
  1886. mmu_free_roots(vcpu);
  1887. }
  1888. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1889. {
  1890. struct kvm_mmu *context = &vcpu->arch.mmu;
  1891. context->new_cr3 = nonpaging_new_cr3;
  1892. context->page_fault = nonpaging_page_fault;
  1893. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1894. context->free = nonpaging_free;
  1895. context->prefetch_page = nonpaging_prefetch_page;
  1896. context->sync_page = nonpaging_sync_page;
  1897. context->invlpg = nonpaging_invlpg;
  1898. context->root_level = 0;
  1899. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1900. context->root_hpa = INVALID_PAGE;
  1901. return 0;
  1902. }
  1903. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1904. {
  1905. ++vcpu->stat.tlb_flush;
  1906. kvm_x86_ops->tlb_flush(vcpu);
  1907. }
  1908. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1909. {
  1910. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1911. mmu_free_roots(vcpu);
  1912. }
  1913. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1914. u64 addr,
  1915. u32 err_code)
  1916. {
  1917. kvm_inject_page_fault(vcpu, addr, err_code);
  1918. }
  1919. static void paging_free(struct kvm_vcpu *vcpu)
  1920. {
  1921. nonpaging_free(vcpu);
  1922. }
  1923. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1924. {
  1925. int bit7;
  1926. bit7 = (gpte >> 7) & 1;
  1927. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1928. }
  1929. #define PTTYPE 64
  1930. #include "paging_tmpl.h"
  1931. #undef PTTYPE
  1932. #define PTTYPE 32
  1933. #include "paging_tmpl.h"
  1934. #undef PTTYPE
  1935. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1936. {
  1937. struct kvm_mmu *context = &vcpu->arch.mmu;
  1938. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1939. u64 exb_bit_rsvd = 0;
  1940. if (!is_nx(vcpu))
  1941. exb_bit_rsvd = rsvd_bits(63, 63);
  1942. switch (level) {
  1943. case PT32_ROOT_LEVEL:
  1944. /* no rsvd bits for 2 level 4K page table entries */
  1945. context->rsvd_bits_mask[0][1] = 0;
  1946. context->rsvd_bits_mask[0][0] = 0;
  1947. if (is_cpuid_PSE36())
  1948. /* 36bits PSE 4MB page */
  1949. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1950. else
  1951. /* 32 bits PSE 4MB page */
  1952. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1953. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1954. break;
  1955. case PT32E_ROOT_LEVEL:
  1956. context->rsvd_bits_mask[0][2] =
  1957. rsvd_bits(maxphyaddr, 63) |
  1958. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1959. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1960. rsvd_bits(maxphyaddr, 62); /* PDE */
  1961. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1962. rsvd_bits(maxphyaddr, 62); /* PTE */
  1963. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1964. rsvd_bits(maxphyaddr, 62) |
  1965. rsvd_bits(13, 20); /* large page */
  1966. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1967. break;
  1968. case PT64_ROOT_LEVEL:
  1969. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1970. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1971. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1972. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1973. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1974. rsvd_bits(maxphyaddr, 51);
  1975. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1976. rsvd_bits(maxphyaddr, 51);
  1977. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1978. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  1979. rsvd_bits(maxphyaddr, 51) |
  1980. rsvd_bits(13, 29);
  1981. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1982. rsvd_bits(maxphyaddr, 51) |
  1983. rsvd_bits(13, 20); /* large page */
  1984. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1985. break;
  1986. }
  1987. }
  1988. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1989. {
  1990. struct kvm_mmu *context = &vcpu->arch.mmu;
  1991. ASSERT(is_pae(vcpu));
  1992. context->new_cr3 = paging_new_cr3;
  1993. context->page_fault = paging64_page_fault;
  1994. context->gva_to_gpa = paging64_gva_to_gpa;
  1995. context->prefetch_page = paging64_prefetch_page;
  1996. context->sync_page = paging64_sync_page;
  1997. context->invlpg = paging64_invlpg;
  1998. context->free = paging_free;
  1999. context->root_level = level;
  2000. context->shadow_root_level = level;
  2001. context->root_hpa = INVALID_PAGE;
  2002. return 0;
  2003. }
  2004. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2005. {
  2006. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2007. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2008. }
  2009. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2010. {
  2011. struct kvm_mmu *context = &vcpu->arch.mmu;
  2012. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2013. context->new_cr3 = paging_new_cr3;
  2014. context->page_fault = paging32_page_fault;
  2015. context->gva_to_gpa = paging32_gva_to_gpa;
  2016. context->free = paging_free;
  2017. context->prefetch_page = paging32_prefetch_page;
  2018. context->sync_page = paging32_sync_page;
  2019. context->invlpg = paging32_invlpg;
  2020. context->root_level = PT32_ROOT_LEVEL;
  2021. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2022. context->root_hpa = INVALID_PAGE;
  2023. return 0;
  2024. }
  2025. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2026. {
  2027. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2028. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2029. }
  2030. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2031. {
  2032. struct kvm_mmu *context = &vcpu->arch.mmu;
  2033. context->new_cr3 = nonpaging_new_cr3;
  2034. context->page_fault = tdp_page_fault;
  2035. context->free = nonpaging_free;
  2036. context->prefetch_page = nonpaging_prefetch_page;
  2037. context->sync_page = nonpaging_sync_page;
  2038. context->invlpg = nonpaging_invlpg;
  2039. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2040. context->root_hpa = INVALID_PAGE;
  2041. if (!is_paging(vcpu)) {
  2042. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2043. context->root_level = 0;
  2044. } else if (is_long_mode(vcpu)) {
  2045. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2046. context->gva_to_gpa = paging64_gva_to_gpa;
  2047. context->root_level = PT64_ROOT_LEVEL;
  2048. } else if (is_pae(vcpu)) {
  2049. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2050. context->gva_to_gpa = paging64_gva_to_gpa;
  2051. context->root_level = PT32E_ROOT_LEVEL;
  2052. } else {
  2053. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2054. context->gva_to_gpa = paging32_gva_to_gpa;
  2055. context->root_level = PT32_ROOT_LEVEL;
  2056. }
  2057. return 0;
  2058. }
  2059. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2060. {
  2061. int r;
  2062. ASSERT(vcpu);
  2063. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2064. if (!is_paging(vcpu))
  2065. r = nonpaging_init_context(vcpu);
  2066. else if (is_long_mode(vcpu))
  2067. r = paging64_init_context(vcpu);
  2068. else if (is_pae(vcpu))
  2069. r = paging32E_init_context(vcpu);
  2070. else
  2071. r = paging32_init_context(vcpu);
  2072. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  2073. return r;
  2074. }
  2075. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2076. {
  2077. vcpu->arch.update_pte.pfn = bad_pfn;
  2078. if (tdp_enabled)
  2079. return init_kvm_tdp_mmu(vcpu);
  2080. else
  2081. return init_kvm_softmmu(vcpu);
  2082. }
  2083. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2084. {
  2085. ASSERT(vcpu);
  2086. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2087. vcpu->arch.mmu.free(vcpu);
  2088. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2089. }
  2090. }
  2091. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2092. {
  2093. destroy_kvm_mmu(vcpu);
  2094. return init_kvm_mmu(vcpu);
  2095. }
  2096. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2097. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2098. {
  2099. int r;
  2100. r = mmu_topup_memory_caches(vcpu);
  2101. if (r)
  2102. goto out;
  2103. spin_lock(&vcpu->kvm->mmu_lock);
  2104. kvm_mmu_free_some_pages(vcpu);
  2105. r = mmu_alloc_roots(vcpu);
  2106. mmu_sync_roots(vcpu);
  2107. spin_unlock(&vcpu->kvm->mmu_lock);
  2108. if (r)
  2109. goto out;
  2110. /* set_cr3() should ensure TLB has been flushed */
  2111. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2112. out:
  2113. return r;
  2114. }
  2115. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2116. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2117. {
  2118. mmu_free_roots(vcpu);
  2119. }
  2120. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2121. struct kvm_mmu_page *sp,
  2122. u64 *spte)
  2123. {
  2124. u64 pte;
  2125. struct kvm_mmu_page *child;
  2126. pte = *spte;
  2127. if (is_shadow_present_pte(pte)) {
  2128. if (is_last_spte(pte, sp->role.level))
  2129. rmap_remove(vcpu->kvm, spte);
  2130. else {
  2131. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2132. mmu_page_remove_parent_pte(child, spte);
  2133. }
  2134. }
  2135. __set_spte(spte, shadow_trap_nonpresent_pte);
  2136. if (is_large_pte(pte))
  2137. --vcpu->kvm->stat.lpages;
  2138. }
  2139. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2140. struct kvm_mmu_page *sp,
  2141. u64 *spte,
  2142. const void *new)
  2143. {
  2144. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2145. ++vcpu->kvm->stat.mmu_pde_zapped;
  2146. return;
  2147. }
  2148. ++vcpu->kvm->stat.mmu_pte_updated;
  2149. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2150. paging32_update_pte(vcpu, sp, spte, new);
  2151. else
  2152. paging64_update_pte(vcpu, sp, spte, new);
  2153. }
  2154. static bool need_remote_flush(u64 old, u64 new)
  2155. {
  2156. if (!is_shadow_present_pte(old))
  2157. return false;
  2158. if (!is_shadow_present_pte(new))
  2159. return true;
  2160. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2161. return true;
  2162. old ^= PT64_NX_MASK;
  2163. new ^= PT64_NX_MASK;
  2164. return (old & ~new & PT64_PERM_MASK) != 0;
  2165. }
  2166. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2167. {
  2168. if (need_remote_flush(old, new))
  2169. kvm_flush_remote_tlbs(vcpu->kvm);
  2170. else
  2171. kvm_mmu_flush_tlb(vcpu);
  2172. }
  2173. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2174. {
  2175. u64 *spte = vcpu->arch.last_pte_updated;
  2176. return !!(spte && (*spte & shadow_accessed_mask));
  2177. }
  2178. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2179. const u8 *new, int bytes)
  2180. {
  2181. gfn_t gfn;
  2182. int r;
  2183. u64 gpte = 0;
  2184. pfn_t pfn;
  2185. if (bytes != 4 && bytes != 8)
  2186. return;
  2187. /*
  2188. * Assume that the pte write on a page table of the same type
  2189. * as the current vcpu paging mode. This is nearly always true
  2190. * (might be false while changing modes). Note it is verified later
  2191. * by update_pte().
  2192. */
  2193. if (is_pae(vcpu)) {
  2194. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2195. if ((bytes == 4) && (gpa % 4 == 0)) {
  2196. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2197. if (r)
  2198. return;
  2199. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2200. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2201. memcpy((void *)&gpte, new, 8);
  2202. }
  2203. } else {
  2204. if ((bytes == 4) && (gpa % 4 == 0))
  2205. memcpy((void *)&gpte, new, 4);
  2206. }
  2207. if (!is_present_gpte(gpte))
  2208. return;
  2209. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2210. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2211. smp_rmb();
  2212. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2213. if (is_error_pfn(pfn)) {
  2214. kvm_release_pfn_clean(pfn);
  2215. return;
  2216. }
  2217. vcpu->arch.update_pte.gfn = gfn;
  2218. vcpu->arch.update_pte.pfn = pfn;
  2219. }
  2220. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2221. {
  2222. u64 *spte = vcpu->arch.last_pte_updated;
  2223. if (spte
  2224. && vcpu->arch.last_pte_gfn == gfn
  2225. && shadow_accessed_mask
  2226. && !(*spte & shadow_accessed_mask)
  2227. && is_shadow_present_pte(*spte))
  2228. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2229. }
  2230. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2231. const u8 *new, int bytes,
  2232. bool guest_initiated)
  2233. {
  2234. gfn_t gfn = gpa >> PAGE_SHIFT;
  2235. struct kvm_mmu_page *sp;
  2236. struct hlist_node *node, *n;
  2237. struct hlist_head *bucket;
  2238. unsigned index;
  2239. u64 entry, gentry;
  2240. u64 *spte;
  2241. unsigned offset = offset_in_page(gpa);
  2242. unsigned pte_size;
  2243. unsigned page_offset;
  2244. unsigned misaligned;
  2245. unsigned quadrant;
  2246. int level;
  2247. int flooded = 0;
  2248. int npte;
  2249. int r;
  2250. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2251. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2252. spin_lock(&vcpu->kvm->mmu_lock);
  2253. kvm_mmu_access_page(vcpu, gfn);
  2254. kvm_mmu_free_some_pages(vcpu);
  2255. ++vcpu->kvm->stat.mmu_pte_write;
  2256. kvm_mmu_audit(vcpu, "pre pte write");
  2257. if (guest_initiated) {
  2258. if (gfn == vcpu->arch.last_pt_write_gfn
  2259. && !last_updated_pte_accessed(vcpu)) {
  2260. ++vcpu->arch.last_pt_write_count;
  2261. if (vcpu->arch.last_pt_write_count >= 3)
  2262. flooded = 1;
  2263. } else {
  2264. vcpu->arch.last_pt_write_gfn = gfn;
  2265. vcpu->arch.last_pt_write_count = 1;
  2266. vcpu->arch.last_pte_updated = NULL;
  2267. }
  2268. }
  2269. index = kvm_page_table_hashfn(gfn);
  2270. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2271. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2272. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2273. continue;
  2274. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2275. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2276. misaligned |= bytes < 4;
  2277. if (misaligned || flooded) {
  2278. /*
  2279. * Misaligned accesses are too much trouble to fix
  2280. * up; also, they usually indicate a page is not used
  2281. * as a page table.
  2282. *
  2283. * If we're seeing too many writes to a page,
  2284. * it may no longer be a page table, or we may be
  2285. * forking, in which case it is better to unmap the
  2286. * page.
  2287. */
  2288. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2289. gpa, bytes, sp->role.word);
  2290. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2291. n = bucket->first;
  2292. ++vcpu->kvm->stat.mmu_flooded;
  2293. continue;
  2294. }
  2295. page_offset = offset;
  2296. level = sp->role.level;
  2297. npte = 1;
  2298. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2299. page_offset <<= 1; /* 32->64 */
  2300. /*
  2301. * A 32-bit pde maps 4MB while the shadow pdes map
  2302. * only 2MB. So we need to double the offset again
  2303. * and zap two pdes instead of one.
  2304. */
  2305. if (level == PT32_ROOT_LEVEL) {
  2306. page_offset &= ~7; /* kill rounding error */
  2307. page_offset <<= 1;
  2308. npte = 2;
  2309. }
  2310. quadrant = page_offset >> PAGE_SHIFT;
  2311. page_offset &= ~PAGE_MASK;
  2312. if (quadrant != sp->role.quadrant)
  2313. continue;
  2314. }
  2315. spte = &sp->spt[page_offset / sizeof(*spte)];
  2316. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2317. gentry = 0;
  2318. r = kvm_read_guest_atomic(vcpu->kvm,
  2319. gpa & ~(u64)(pte_size - 1),
  2320. &gentry, pte_size);
  2321. new = (const void *)&gentry;
  2322. if (r < 0)
  2323. new = NULL;
  2324. }
  2325. while (npte--) {
  2326. entry = *spte;
  2327. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2328. if (new)
  2329. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2330. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2331. ++spte;
  2332. }
  2333. }
  2334. kvm_mmu_audit(vcpu, "post pte write");
  2335. spin_unlock(&vcpu->kvm->mmu_lock);
  2336. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2337. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2338. vcpu->arch.update_pte.pfn = bad_pfn;
  2339. }
  2340. }
  2341. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2342. {
  2343. gpa_t gpa;
  2344. int r;
  2345. if (tdp_enabled)
  2346. return 0;
  2347. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2348. spin_lock(&vcpu->kvm->mmu_lock);
  2349. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2350. spin_unlock(&vcpu->kvm->mmu_lock);
  2351. return r;
  2352. }
  2353. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2354. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2355. {
  2356. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2357. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2358. struct kvm_mmu_page *sp;
  2359. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2360. struct kvm_mmu_page, link);
  2361. kvm_mmu_zap_page(vcpu->kvm, sp);
  2362. ++vcpu->kvm->stat.mmu_recycled;
  2363. }
  2364. }
  2365. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2366. {
  2367. int r;
  2368. enum emulation_result er;
  2369. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2370. if (r < 0)
  2371. goto out;
  2372. if (!r) {
  2373. r = 1;
  2374. goto out;
  2375. }
  2376. r = mmu_topup_memory_caches(vcpu);
  2377. if (r)
  2378. goto out;
  2379. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2380. switch (er) {
  2381. case EMULATE_DONE:
  2382. return 1;
  2383. case EMULATE_DO_MMIO:
  2384. ++vcpu->stat.mmio_exits;
  2385. return 0;
  2386. case EMULATE_FAIL:
  2387. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2388. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2389. vcpu->run->internal.ndata = 0;
  2390. return 0;
  2391. default:
  2392. BUG();
  2393. }
  2394. out:
  2395. return r;
  2396. }
  2397. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2398. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2399. {
  2400. vcpu->arch.mmu.invlpg(vcpu, gva);
  2401. kvm_mmu_flush_tlb(vcpu);
  2402. ++vcpu->stat.invlpg;
  2403. }
  2404. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2405. void kvm_enable_tdp(void)
  2406. {
  2407. tdp_enabled = true;
  2408. }
  2409. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2410. void kvm_disable_tdp(void)
  2411. {
  2412. tdp_enabled = false;
  2413. }
  2414. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2415. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2416. {
  2417. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2418. }
  2419. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2420. {
  2421. struct page *page;
  2422. int i;
  2423. ASSERT(vcpu);
  2424. /*
  2425. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2426. * Therefore we need to allocate shadow page tables in the first
  2427. * 4GB of memory, which happens to fit the DMA32 zone.
  2428. */
  2429. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2430. if (!page)
  2431. goto error_1;
  2432. vcpu->arch.mmu.pae_root = page_address(page);
  2433. for (i = 0; i < 4; ++i)
  2434. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2435. return 0;
  2436. error_1:
  2437. free_mmu_pages(vcpu);
  2438. return -ENOMEM;
  2439. }
  2440. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2441. {
  2442. ASSERT(vcpu);
  2443. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2444. return alloc_mmu_pages(vcpu);
  2445. }
  2446. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2447. {
  2448. ASSERT(vcpu);
  2449. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2450. return init_kvm_mmu(vcpu);
  2451. }
  2452. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2453. {
  2454. ASSERT(vcpu);
  2455. destroy_kvm_mmu(vcpu);
  2456. free_mmu_pages(vcpu);
  2457. mmu_free_memory_caches(vcpu);
  2458. }
  2459. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2460. {
  2461. struct kvm_mmu_page *sp;
  2462. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2463. int i;
  2464. u64 *pt;
  2465. if (!test_bit(slot, sp->slot_bitmap))
  2466. continue;
  2467. pt = sp->spt;
  2468. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2469. /* avoid RMW */
  2470. if (pt[i] & PT_WRITABLE_MASK)
  2471. pt[i] &= ~PT_WRITABLE_MASK;
  2472. }
  2473. kvm_flush_remote_tlbs(kvm);
  2474. }
  2475. void kvm_mmu_zap_all(struct kvm *kvm)
  2476. {
  2477. struct kvm_mmu_page *sp, *node;
  2478. spin_lock(&kvm->mmu_lock);
  2479. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2480. if (kvm_mmu_zap_page(kvm, sp))
  2481. node = container_of(kvm->arch.active_mmu_pages.next,
  2482. struct kvm_mmu_page, link);
  2483. spin_unlock(&kvm->mmu_lock);
  2484. kvm_flush_remote_tlbs(kvm);
  2485. }
  2486. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2487. {
  2488. struct kvm_mmu_page *page;
  2489. page = container_of(kvm->arch.active_mmu_pages.prev,
  2490. struct kvm_mmu_page, link);
  2491. kvm_mmu_zap_page(kvm, page);
  2492. }
  2493. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2494. {
  2495. struct kvm *kvm;
  2496. struct kvm *kvm_freed = NULL;
  2497. int cache_count = 0;
  2498. spin_lock(&kvm_lock);
  2499. list_for_each_entry(kvm, &vm_list, vm_list) {
  2500. int npages, idx;
  2501. idx = srcu_read_lock(&kvm->srcu);
  2502. spin_lock(&kvm->mmu_lock);
  2503. npages = kvm->arch.n_alloc_mmu_pages -
  2504. kvm->arch.n_free_mmu_pages;
  2505. cache_count += npages;
  2506. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2507. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2508. cache_count--;
  2509. kvm_freed = kvm;
  2510. }
  2511. nr_to_scan--;
  2512. spin_unlock(&kvm->mmu_lock);
  2513. srcu_read_unlock(&kvm->srcu, idx);
  2514. }
  2515. if (kvm_freed)
  2516. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2517. spin_unlock(&kvm_lock);
  2518. return cache_count;
  2519. }
  2520. static struct shrinker mmu_shrinker = {
  2521. .shrink = mmu_shrink,
  2522. .seeks = DEFAULT_SEEKS * 10,
  2523. };
  2524. static void mmu_destroy_caches(void)
  2525. {
  2526. if (pte_chain_cache)
  2527. kmem_cache_destroy(pte_chain_cache);
  2528. if (rmap_desc_cache)
  2529. kmem_cache_destroy(rmap_desc_cache);
  2530. if (mmu_page_header_cache)
  2531. kmem_cache_destroy(mmu_page_header_cache);
  2532. }
  2533. void kvm_mmu_module_exit(void)
  2534. {
  2535. mmu_destroy_caches();
  2536. unregister_shrinker(&mmu_shrinker);
  2537. }
  2538. int kvm_mmu_module_init(void)
  2539. {
  2540. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2541. sizeof(struct kvm_pte_chain),
  2542. 0, 0, NULL);
  2543. if (!pte_chain_cache)
  2544. goto nomem;
  2545. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2546. sizeof(struct kvm_rmap_desc),
  2547. 0, 0, NULL);
  2548. if (!rmap_desc_cache)
  2549. goto nomem;
  2550. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2551. sizeof(struct kvm_mmu_page),
  2552. 0, 0, NULL);
  2553. if (!mmu_page_header_cache)
  2554. goto nomem;
  2555. register_shrinker(&mmu_shrinker);
  2556. return 0;
  2557. nomem:
  2558. mmu_destroy_caches();
  2559. return -ENOMEM;
  2560. }
  2561. /*
  2562. * Caculate mmu pages needed for kvm.
  2563. */
  2564. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2565. {
  2566. int i;
  2567. unsigned int nr_mmu_pages;
  2568. unsigned int nr_pages = 0;
  2569. struct kvm_memslots *slots;
  2570. slots = rcu_dereference(kvm->memslots);
  2571. for (i = 0; i < slots->nmemslots; i++)
  2572. nr_pages += slots->memslots[i].npages;
  2573. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2574. nr_mmu_pages = max(nr_mmu_pages,
  2575. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2576. return nr_mmu_pages;
  2577. }
  2578. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2579. unsigned len)
  2580. {
  2581. if (len > buffer->len)
  2582. return NULL;
  2583. return buffer->ptr;
  2584. }
  2585. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2586. unsigned len)
  2587. {
  2588. void *ret;
  2589. ret = pv_mmu_peek_buffer(buffer, len);
  2590. if (!ret)
  2591. return ret;
  2592. buffer->ptr += len;
  2593. buffer->len -= len;
  2594. buffer->processed += len;
  2595. return ret;
  2596. }
  2597. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2598. gpa_t addr, gpa_t value)
  2599. {
  2600. int bytes = 8;
  2601. int r;
  2602. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2603. bytes = 4;
  2604. r = mmu_topup_memory_caches(vcpu);
  2605. if (r)
  2606. return r;
  2607. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2608. return -EFAULT;
  2609. return 1;
  2610. }
  2611. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2612. {
  2613. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2614. return 1;
  2615. }
  2616. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2617. {
  2618. spin_lock(&vcpu->kvm->mmu_lock);
  2619. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2620. spin_unlock(&vcpu->kvm->mmu_lock);
  2621. return 1;
  2622. }
  2623. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2624. struct kvm_pv_mmu_op_buffer *buffer)
  2625. {
  2626. struct kvm_mmu_op_header *header;
  2627. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2628. if (!header)
  2629. return 0;
  2630. switch (header->op) {
  2631. case KVM_MMU_OP_WRITE_PTE: {
  2632. struct kvm_mmu_op_write_pte *wpte;
  2633. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2634. if (!wpte)
  2635. return 0;
  2636. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2637. wpte->pte_val);
  2638. }
  2639. case KVM_MMU_OP_FLUSH_TLB: {
  2640. struct kvm_mmu_op_flush_tlb *ftlb;
  2641. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2642. if (!ftlb)
  2643. return 0;
  2644. return kvm_pv_mmu_flush_tlb(vcpu);
  2645. }
  2646. case KVM_MMU_OP_RELEASE_PT: {
  2647. struct kvm_mmu_op_release_pt *rpt;
  2648. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2649. if (!rpt)
  2650. return 0;
  2651. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2652. }
  2653. default: return 0;
  2654. }
  2655. }
  2656. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2657. gpa_t addr, unsigned long *ret)
  2658. {
  2659. int r;
  2660. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2661. buffer->ptr = buffer->buf;
  2662. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2663. buffer->processed = 0;
  2664. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2665. if (r)
  2666. goto out;
  2667. while (buffer->len) {
  2668. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2669. if (r < 0)
  2670. goto out;
  2671. if (r == 0)
  2672. break;
  2673. }
  2674. r = 1;
  2675. out:
  2676. *ret = buffer->processed;
  2677. return r;
  2678. }
  2679. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2680. {
  2681. struct kvm_shadow_walk_iterator iterator;
  2682. int nr_sptes = 0;
  2683. spin_lock(&vcpu->kvm->mmu_lock);
  2684. for_each_shadow_entry(vcpu, addr, iterator) {
  2685. sptes[iterator.level-1] = *iterator.sptep;
  2686. nr_sptes++;
  2687. if (!is_shadow_present_pte(*iterator.sptep))
  2688. break;
  2689. }
  2690. spin_unlock(&vcpu->kvm->mmu_lock);
  2691. return nr_sptes;
  2692. }
  2693. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2694. #ifdef AUDIT
  2695. static const char *audit_msg;
  2696. static gva_t canonicalize(gva_t gva)
  2697. {
  2698. #ifdef CONFIG_X86_64
  2699. gva = (long long)(gva << 16) >> 16;
  2700. #endif
  2701. return gva;
  2702. }
  2703. typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
  2704. u64 *sptep);
  2705. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2706. inspect_spte_fn fn)
  2707. {
  2708. int i;
  2709. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2710. u64 ent = sp->spt[i];
  2711. if (is_shadow_present_pte(ent)) {
  2712. if (!is_last_spte(ent, sp->role.level)) {
  2713. struct kvm_mmu_page *child;
  2714. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2715. __mmu_spte_walk(kvm, child, fn);
  2716. } else
  2717. fn(kvm, sp, &sp->spt[i]);
  2718. }
  2719. }
  2720. }
  2721. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2722. {
  2723. int i;
  2724. struct kvm_mmu_page *sp;
  2725. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2726. return;
  2727. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2728. hpa_t root = vcpu->arch.mmu.root_hpa;
  2729. sp = page_header(root);
  2730. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2731. return;
  2732. }
  2733. for (i = 0; i < 4; ++i) {
  2734. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2735. if (root && VALID_PAGE(root)) {
  2736. root &= PT64_BASE_ADDR_MASK;
  2737. sp = page_header(root);
  2738. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2739. }
  2740. }
  2741. return;
  2742. }
  2743. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2744. gva_t va, int level)
  2745. {
  2746. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2747. int i;
  2748. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2749. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2750. u64 ent = pt[i];
  2751. if (ent == shadow_trap_nonpresent_pte)
  2752. continue;
  2753. va = canonicalize(va);
  2754. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2755. audit_mappings_page(vcpu, ent, va, level - 1);
  2756. else {
  2757. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2758. gfn_t gfn = gpa >> PAGE_SHIFT;
  2759. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2760. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2761. if (is_error_pfn(pfn)) {
  2762. kvm_release_pfn_clean(pfn);
  2763. continue;
  2764. }
  2765. if (is_shadow_present_pte(ent)
  2766. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2767. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2768. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2769. audit_msg, vcpu->arch.mmu.root_level,
  2770. va, gpa, hpa, ent,
  2771. is_shadow_present_pte(ent));
  2772. else if (ent == shadow_notrap_nonpresent_pte
  2773. && !is_error_hpa(hpa))
  2774. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2775. " valid guest gva %lx\n", audit_msg, va);
  2776. kvm_release_pfn_clean(pfn);
  2777. }
  2778. }
  2779. }
  2780. static void audit_mappings(struct kvm_vcpu *vcpu)
  2781. {
  2782. unsigned i;
  2783. if (vcpu->arch.mmu.root_level == 4)
  2784. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2785. else
  2786. for (i = 0; i < 4; ++i)
  2787. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2788. audit_mappings_page(vcpu,
  2789. vcpu->arch.mmu.pae_root[i],
  2790. i << 30,
  2791. 2);
  2792. }
  2793. static int count_rmaps(struct kvm_vcpu *vcpu)
  2794. {
  2795. int nmaps = 0;
  2796. int i, j, k, idx;
  2797. idx = srcu_read_lock(&kvm->srcu);
  2798. slots = rcu_dereference(kvm->memslots);
  2799. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2800. struct kvm_memory_slot *m = &slots->memslots[i];
  2801. struct kvm_rmap_desc *d;
  2802. for (j = 0; j < m->npages; ++j) {
  2803. unsigned long *rmapp = &m->rmap[j];
  2804. if (!*rmapp)
  2805. continue;
  2806. if (!(*rmapp & 1)) {
  2807. ++nmaps;
  2808. continue;
  2809. }
  2810. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2811. while (d) {
  2812. for (k = 0; k < RMAP_EXT; ++k)
  2813. if (d->sptes[k])
  2814. ++nmaps;
  2815. else
  2816. break;
  2817. d = d->more;
  2818. }
  2819. }
  2820. }
  2821. srcu_read_unlock(&kvm->srcu, idx);
  2822. return nmaps;
  2823. }
  2824. void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
  2825. {
  2826. unsigned long *rmapp;
  2827. struct kvm_mmu_page *rev_sp;
  2828. gfn_t gfn;
  2829. if (*sptep & PT_WRITABLE_MASK) {
  2830. rev_sp = page_header(__pa(sptep));
  2831. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2832. if (!gfn_to_memslot(kvm, gfn)) {
  2833. if (!printk_ratelimit())
  2834. return;
  2835. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2836. audit_msg, gfn);
  2837. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2838. audit_msg, sptep - rev_sp->spt,
  2839. rev_sp->gfn);
  2840. dump_stack();
  2841. return;
  2842. }
  2843. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2844. is_large_pte(*sptep));
  2845. if (!*rmapp) {
  2846. if (!printk_ratelimit())
  2847. return;
  2848. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2849. audit_msg, *sptep);
  2850. dump_stack();
  2851. }
  2852. }
  2853. }
  2854. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2855. {
  2856. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2857. }
  2858. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2859. {
  2860. struct kvm_mmu_page *sp;
  2861. int i;
  2862. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2863. u64 *pt = sp->spt;
  2864. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2865. continue;
  2866. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2867. u64 ent = pt[i];
  2868. if (!(ent & PT_PRESENT_MASK))
  2869. continue;
  2870. if (!(ent & PT_WRITABLE_MASK))
  2871. continue;
  2872. inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
  2873. }
  2874. }
  2875. return;
  2876. }
  2877. static void audit_rmap(struct kvm_vcpu *vcpu)
  2878. {
  2879. check_writable_mappings_rmap(vcpu);
  2880. count_rmaps(vcpu);
  2881. }
  2882. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2883. {
  2884. struct kvm_mmu_page *sp;
  2885. struct kvm_memory_slot *slot;
  2886. unsigned long *rmapp;
  2887. u64 *spte;
  2888. gfn_t gfn;
  2889. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2890. if (sp->role.direct)
  2891. continue;
  2892. if (sp->unsync)
  2893. continue;
  2894. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2895. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2896. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2897. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2898. while (spte) {
  2899. if (*spte & PT_WRITABLE_MASK)
  2900. printk(KERN_ERR "%s: (%s) shadow page has "
  2901. "writable mappings: gfn %lx role %x\n",
  2902. __func__, audit_msg, sp->gfn,
  2903. sp->role.word);
  2904. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2905. }
  2906. }
  2907. }
  2908. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2909. {
  2910. int olddbg = dbg;
  2911. dbg = 0;
  2912. audit_msg = msg;
  2913. audit_rmap(vcpu);
  2914. audit_write_protection(vcpu);
  2915. if (strcmp("pre pte write", audit_msg) != 0)
  2916. audit_mappings(vcpu);
  2917. audit_writable_sptes_have_rmaps(vcpu);
  2918. dbg = olddbg;
  2919. }
  2920. #endif