ntp.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983
  1. /*
  2. * NTP state machine interfaces and logic.
  3. *
  4. * This code was mainly moved from kernel/timer.c and kernel/time.c
  5. * Please see those files for relevant copyright info and historical
  6. * changelogs.
  7. */
  8. #include <linux/capability.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/hrtimer.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/math64.h>
  14. #include <linux/timex.h>
  15. #include <linux/time.h>
  16. #include <linux/mm.h>
  17. #include <linux/module.h>
  18. #include "tick-internal.h"
  19. /*
  20. * NTP timekeeping variables:
  21. */
  22. /* USER_HZ period (usecs): */
  23. unsigned long tick_usec = TICK_USEC;
  24. /* ACTHZ period (nsecs): */
  25. unsigned long tick_nsec;
  26. u64 tick_length;
  27. static u64 tick_length_base;
  28. static struct hrtimer leap_timer;
  29. #define MAX_TICKADJ 500LL /* usecs */
  30. #define MAX_TICKADJ_SCALED \
  31. (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  32. /*
  33. * phase-lock loop variables
  34. */
  35. /*
  36. * clock synchronization status
  37. *
  38. * (TIME_ERROR prevents overwriting the CMOS clock)
  39. */
  40. static int time_state = TIME_OK;
  41. /* clock status bits: */
  42. static int time_status = STA_UNSYNC;
  43. /* TAI offset (secs): */
  44. static long time_tai;
  45. /* time adjustment (nsecs): */
  46. static s64 time_offset;
  47. /* pll time constant: */
  48. static long time_constant = 2;
  49. /* maximum error (usecs): */
  50. static long time_maxerror = NTP_PHASE_LIMIT;
  51. /* estimated error (usecs): */
  52. static long time_esterror = NTP_PHASE_LIMIT;
  53. /* frequency offset (scaled nsecs/secs): */
  54. static s64 time_freq;
  55. /* time at last adjustment (secs): */
  56. static long time_reftime;
  57. static long time_adjust;
  58. /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
  59. static s64 ntp_tick_adj;
  60. #ifdef CONFIG_NTP_PPS
  61. /*
  62. * The following variables are used when a pulse-per-second (PPS) signal
  63. * is available. They establish the engineering parameters of the clock
  64. * discipline loop when controlled by the PPS signal.
  65. */
  66. #define PPS_VALID 10 /* PPS signal watchdog max (s) */
  67. #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
  68. #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
  69. #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
  70. #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
  71. increase pps_shift or consecutive bad
  72. intervals to decrease it */
  73. #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
  74. static int pps_valid; /* signal watchdog counter */
  75. static long pps_tf[3]; /* phase median filter */
  76. static long pps_jitter; /* current jitter (ns) */
  77. static struct timespec pps_fbase; /* beginning of the last freq interval */
  78. static int pps_shift; /* current interval duration (s) (shift) */
  79. static int pps_intcnt; /* interval counter */
  80. static s64 pps_freq; /* frequency offset (scaled ns/s) */
  81. static long pps_stabil; /* current stability (scaled ns/s) */
  82. /*
  83. * PPS signal quality monitors
  84. */
  85. static long pps_calcnt; /* calibration intervals */
  86. static long pps_jitcnt; /* jitter limit exceeded */
  87. static long pps_stbcnt; /* stability limit exceeded */
  88. static long pps_errcnt; /* calibration errors */
  89. /* PPS kernel consumer compensates the whole phase error immediately.
  90. * Otherwise, reduce the offset by a fixed factor times the time constant.
  91. */
  92. static inline s64 ntp_offset_chunk(s64 offset)
  93. {
  94. if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
  95. return offset;
  96. else
  97. return shift_right(offset, SHIFT_PLL + time_constant);
  98. }
  99. static inline void pps_reset_freq_interval(void)
  100. {
  101. /* the PPS calibration interval may end
  102. surprisingly early */
  103. pps_shift = PPS_INTMIN;
  104. pps_intcnt = 0;
  105. }
  106. /**
  107. * pps_clear - Clears the PPS state variables
  108. *
  109. * Must be called while holding a write on the xtime_lock
  110. */
  111. static inline void pps_clear(void)
  112. {
  113. pps_reset_freq_interval();
  114. pps_tf[0] = 0;
  115. pps_tf[1] = 0;
  116. pps_tf[2] = 0;
  117. pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
  118. pps_freq = 0;
  119. }
  120. /* Decrease pps_valid to indicate that another second has passed since
  121. * the last PPS signal. When it reaches 0, indicate that PPS signal is
  122. * missing.
  123. *
  124. * Must be called while holding a write on the xtime_lock
  125. */
  126. static inline void pps_dec_valid(void)
  127. {
  128. if (pps_valid > 0)
  129. pps_valid--;
  130. else {
  131. time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
  132. STA_PPSWANDER | STA_PPSERROR);
  133. pps_clear();
  134. }
  135. }
  136. static inline void pps_set_freq(s64 freq)
  137. {
  138. pps_freq = freq;
  139. }
  140. static inline int is_error_status(int status)
  141. {
  142. return (time_status & (STA_UNSYNC|STA_CLOCKERR))
  143. /* PPS signal lost when either PPS time or
  144. * PPS frequency synchronization requested
  145. */
  146. || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
  147. && !(time_status & STA_PPSSIGNAL))
  148. /* PPS jitter exceeded when
  149. * PPS time synchronization requested */
  150. || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
  151. == (STA_PPSTIME|STA_PPSJITTER))
  152. /* PPS wander exceeded or calibration error when
  153. * PPS frequency synchronization requested
  154. */
  155. || ((time_status & STA_PPSFREQ)
  156. && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
  157. }
  158. static inline void pps_fill_timex(struct timex *txc)
  159. {
  160. txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
  161. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  162. txc->jitter = pps_jitter;
  163. if (!(time_status & STA_NANO))
  164. txc->jitter /= NSEC_PER_USEC;
  165. txc->shift = pps_shift;
  166. txc->stabil = pps_stabil;
  167. txc->jitcnt = pps_jitcnt;
  168. txc->calcnt = pps_calcnt;
  169. txc->errcnt = pps_errcnt;
  170. txc->stbcnt = pps_stbcnt;
  171. }
  172. #else /* !CONFIG_NTP_PPS */
  173. static inline s64 ntp_offset_chunk(s64 offset)
  174. {
  175. return shift_right(offset, SHIFT_PLL + time_constant);
  176. }
  177. static inline void pps_reset_freq_interval(void) {}
  178. static inline void pps_clear(void) {}
  179. static inline void pps_dec_valid(void) {}
  180. static inline void pps_set_freq(s64 freq) {}
  181. static inline int is_error_status(int status)
  182. {
  183. return status & (STA_UNSYNC|STA_CLOCKERR);
  184. }
  185. static inline void pps_fill_timex(struct timex *txc)
  186. {
  187. /* PPS is not implemented, so these are zero */
  188. txc->ppsfreq = 0;
  189. txc->jitter = 0;
  190. txc->shift = 0;
  191. txc->stabil = 0;
  192. txc->jitcnt = 0;
  193. txc->calcnt = 0;
  194. txc->errcnt = 0;
  195. txc->stbcnt = 0;
  196. }
  197. #endif /* CONFIG_NTP_PPS */
  198. /**
  199. * ntp_synced - Returns 1 if the NTP status is not UNSYNC
  200. *
  201. */
  202. static inline int ntp_synced(void)
  203. {
  204. return !(time_status & STA_UNSYNC);
  205. }
  206. /*
  207. * NTP methods:
  208. */
  209. /*
  210. * Update (tick_length, tick_length_base, tick_nsec), based
  211. * on (tick_usec, ntp_tick_adj, time_freq):
  212. */
  213. static void ntp_update_frequency(void)
  214. {
  215. u64 second_length;
  216. u64 new_base;
  217. second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
  218. << NTP_SCALE_SHIFT;
  219. second_length += ntp_tick_adj;
  220. second_length += time_freq;
  221. tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
  222. new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
  223. /*
  224. * Don't wait for the next second_overflow, apply
  225. * the change to the tick length immediately:
  226. */
  227. tick_length += new_base - tick_length_base;
  228. tick_length_base = new_base;
  229. }
  230. static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
  231. {
  232. time_status &= ~STA_MODE;
  233. if (secs < MINSEC)
  234. return 0;
  235. if (!(time_status & STA_FLL) && (secs <= MAXSEC))
  236. return 0;
  237. time_status |= STA_MODE;
  238. return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
  239. }
  240. static void ntp_update_offset(long offset)
  241. {
  242. s64 freq_adj;
  243. s64 offset64;
  244. long secs;
  245. if (!(time_status & STA_PLL))
  246. return;
  247. if (!(time_status & STA_NANO))
  248. offset *= NSEC_PER_USEC;
  249. /*
  250. * Scale the phase adjustment and
  251. * clamp to the operating range.
  252. */
  253. offset = min(offset, MAXPHASE);
  254. offset = max(offset, -MAXPHASE);
  255. /*
  256. * Select how the frequency is to be controlled
  257. * and in which mode (PLL or FLL).
  258. */
  259. secs = get_seconds() - time_reftime;
  260. if (unlikely(time_status & STA_FREQHOLD))
  261. secs = 0;
  262. time_reftime = get_seconds();
  263. offset64 = offset;
  264. freq_adj = ntp_update_offset_fll(offset64, secs);
  265. /*
  266. * Clamp update interval to reduce PLL gain with low
  267. * sampling rate (e.g. intermittent network connection)
  268. * to avoid instability.
  269. */
  270. if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
  271. secs = 1 << (SHIFT_PLL + 1 + time_constant);
  272. freq_adj += (offset64 * secs) <<
  273. (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
  274. freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
  275. time_freq = max(freq_adj, -MAXFREQ_SCALED);
  276. time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
  277. }
  278. /**
  279. * ntp_clear - Clears the NTP state variables
  280. *
  281. * Must be called while holding a write on the xtime_lock
  282. */
  283. void ntp_clear(void)
  284. {
  285. time_adjust = 0; /* stop active adjtime() */
  286. time_status |= STA_UNSYNC;
  287. time_maxerror = NTP_PHASE_LIMIT;
  288. time_esterror = NTP_PHASE_LIMIT;
  289. ntp_update_frequency();
  290. tick_length = tick_length_base;
  291. time_offset = 0;
  292. /* Clear PPS state variables */
  293. pps_clear();
  294. }
  295. /*
  296. * Leap second processing. If in leap-insert state at the end of the
  297. * day, the system clock is set back one second; if in leap-delete
  298. * state, the system clock is set ahead one second.
  299. */
  300. static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
  301. {
  302. enum hrtimer_restart res = HRTIMER_NORESTART;
  303. write_seqlock(&xtime_lock);
  304. switch (time_state) {
  305. case TIME_OK:
  306. break;
  307. case TIME_INS:
  308. timekeeping_leap_insert(-1);
  309. time_state = TIME_OOP;
  310. printk(KERN_NOTICE
  311. "Clock: inserting leap second 23:59:60 UTC\n");
  312. hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
  313. res = HRTIMER_RESTART;
  314. break;
  315. case TIME_DEL:
  316. timekeeping_leap_insert(1);
  317. time_tai--;
  318. time_state = TIME_WAIT;
  319. printk(KERN_NOTICE
  320. "Clock: deleting leap second 23:59:59 UTC\n");
  321. break;
  322. case TIME_OOP:
  323. time_tai++;
  324. time_state = TIME_WAIT;
  325. /* fall through */
  326. case TIME_WAIT:
  327. if (!(time_status & (STA_INS | STA_DEL)))
  328. time_state = TIME_OK;
  329. break;
  330. }
  331. write_sequnlock(&xtime_lock);
  332. return res;
  333. }
  334. /*
  335. * this routine handles the overflow of the microsecond field
  336. *
  337. * The tricky bits of code to handle the accurate clock support
  338. * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
  339. * They were originally developed for SUN and DEC kernels.
  340. * All the kudos should go to Dave for this stuff.
  341. */
  342. void second_overflow(void)
  343. {
  344. s64 delta;
  345. /* Bump the maxerror field */
  346. time_maxerror += MAXFREQ / NSEC_PER_USEC;
  347. if (time_maxerror > NTP_PHASE_LIMIT) {
  348. time_maxerror = NTP_PHASE_LIMIT;
  349. time_status |= STA_UNSYNC;
  350. }
  351. /* Compute the phase adjustment for the next second */
  352. tick_length = tick_length_base;
  353. delta = ntp_offset_chunk(time_offset);
  354. time_offset -= delta;
  355. tick_length += delta;
  356. /* Check PPS signal */
  357. pps_dec_valid();
  358. if (!time_adjust)
  359. return;
  360. if (time_adjust > MAX_TICKADJ) {
  361. time_adjust -= MAX_TICKADJ;
  362. tick_length += MAX_TICKADJ_SCALED;
  363. return;
  364. }
  365. if (time_adjust < -MAX_TICKADJ) {
  366. time_adjust += MAX_TICKADJ;
  367. tick_length -= MAX_TICKADJ_SCALED;
  368. return;
  369. }
  370. tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
  371. << NTP_SCALE_SHIFT;
  372. time_adjust = 0;
  373. }
  374. #ifdef CONFIG_GENERIC_CMOS_UPDATE
  375. /* Disable the cmos update - used by virtualization and embedded */
  376. int no_sync_cmos_clock __read_mostly;
  377. static void sync_cmos_clock(struct work_struct *work);
  378. static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
  379. static void sync_cmos_clock(struct work_struct *work)
  380. {
  381. struct timespec now, next;
  382. int fail = 1;
  383. /*
  384. * If we have an externally synchronized Linux clock, then update
  385. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  386. * called as close as possible to 500 ms before the new second starts.
  387. * This code is run on a timer. If the clock is set, that timer
  388. * may not expire at the correct time. Thus, we adjust...
  389. */
  390. if (!ntp_synced()) {
  391. /*
  392. * Not synced, exit, do not restart a timer (if one is
  393. * running, let it run out).
  394. */
  395. return;
  396. }
  397. getnstimeofday(&now);
  398. if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
  399. fail = update_persistent_clock(now);
  400. next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
  401. if (next.tv_nsec <= 0)
  402. next.tv_nsec += NSEC_PER_SEC;
  403. if (!fail)
  404. next.tv_sec = 659;
  405. else
  406. next.tv_sec = 0;
  407. if (next.tv_nsec >= NSEC_PER_SEC) {
  408. next.tv_sec++;
  409. next.tv_nsec -= NSEC_PER_SEC;
  410. }
  411. schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
  412. }
  413. static void notify_cmos_timer(void)
  414. {
  415. if (!no_sync_cmos_clock)
  416. schedule_delayed_work(&sync_cmos_work, 0);
  417. }
  418. #else
  419. static inline void notify_cmos_timer(void) { }
  420. #endif
  421. /*
  422. * Start the leap seconds timer:
  423. */
  424. static inline void ntp_start_leap_timer(struct timespec *ts)
  425. {
  426. long now = ts->tv_sec;
  427. if (time_status & STA_INS) {
  428. time_state = TIME_INS;
  429. now += 86400 - now % 86400;
  430. hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
  431. return;
  432. }
  433. if (time_status & STA_DEL) {
  434. time_state = TIME_DEL;
  435. now += 86400 - (now + 1) % 86400;
  436. hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
  437. }
  438. }
  439. /*
  440. * Propagate a new txc->status value into the NTP state:
  441. */
  442. static inline void process_adj_status(struct timex *txc, struct timespec *ts)
  443. {
  444. if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
  445. time_state = TIME_OK;
  446. time_status = STA_UNSYNC;
  447. /* restart PPS frequency calibration */
  448. pps_reset_freq_interval();
  449. }
  450. /*
  451. * If we turn on PLL adjustments then reset the
  452. * reference time to current time.
  453. */
  454. if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
  455. time_reftime = get_seconds();
  456. /* only set allowed bits */
  457. time_status &= STA_RONLY;
  458. time_status |= txc->status & ~STA_RONLY;
  459. switch (time_state) {
  460. case TIME_OK:
  461. ntp_start_leap_timer(ts);
  462. break;
  463. case TIME_INS:
  464. case TIME_DEL:
  465. time_state = TIME_OK;
  466. ntp_start_leap_timer(ts);
  467. case TIME_WAIT:
  468. if (!(time_status & (STA_INS | STA_DEL)))
  469. time_state = TIME_OK;
  470. break;
  471. case TIME_OOP:
  472. hrtimer_restart(&leap_timer);
  473. break;
  474. }
  475. }
  476. /*
  477. * Called with the xtime lock held, so we can access and modify
  478. * all the global NTP state:
  479. */
  480. static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
  481. {
  482. if (txc->modes & ADJ_STATUS)
  483. process_adj_status(txc, ts);
  484. if (txc->modes & ADJ_NANO)
  485. time_status |= STA_NANO;
  486. if (txc->modes & ADJ_MICRO)
  487. time_status &= ~STA_NANO;
  488. if (txc->modes & ADJ_FREQUENCY) {
  489. time_freq = txc->freq * PPM_SCALE;
  490. time_freq = min(time_freq, MAXFREQ_SCALED);
  491. time_freq = max(time_freq, -MAXFREQ_SCALED);
  492. /* update pps_freq */
  493. pps_set_freq(time_freq);
  494. }
  495. if (txc->modes & ADJ_MAXERROR)
  496. time_maxerror = txc->maxerror;
  497. if (txc->modes & ADJ_ESTERROR)
  498. time_esterror = txc->esterror;
  499. if (txc->modes & ADJ_TIMECONST) {
  500. time_constant = txc->constant;
  501. if (!(time_status & STA_NANO))
  502. time_constant += 4;
  503. time_constant = min(time_constant, (long)MAXTC);
  504. time_constant = max(time_constant, 0l);
  505. }
  506. if (txc->modes & ADJ_TAI && txc->constant > 0)
  507. time_tai = txc->constant;
  508. if (txc->modes & ADJ_OFFSET)
  509. ntp_update_offset(txc->offset);
  510. if (txc->modes & ADJ_TICK)
  511. tick_usec = txc->tick;
  512. if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
  513. ntp_update_frequency();
  514. }
  515. /*
  516. * adjtimex mainly allows reading (and writing, if superuser) of
  517. * kernel time-keeping variables. used by xntpd.
  518. */
  519. int do_adjtimex(struct timex *txc)
  520. {
  521. struct timespec ts;
  522. int result;
  523. /* Validate the data before disabling interrupts */
  524. if (txc->modes & ADJ_ADJTIME) {
  525. /* singleshot must not be used with any other mode bits */
  526. if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
  527. return -EINVAL;
  528. if (!(txc->modes & ADJ_OFFSET_READONLY) &&
  529. !capable(CAP_SYS_TIME))
  530. return -EPERM;
  531. } else {
  532. /* In order to modify anything, you gotta be super-user! */
  533. if (txc->modes && !capable(CAP_SYS_TIME))
  534. return -EPERM;
  535. /*
  536. * if the quartz is off by more than 10% then
  537. * something is VERY wrong!
  538. */
  539. if (txc->modes & ADJ_TICK &&
  540. (txc->tick < 900000/USER_HZ ||
  541. txc->tick > 1100000/USER_HZ))
  542. return -EINVAL;
  543. if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
  544. hrtimer_cancel(&leap_timer);
  545. }
  546. if (txc->modes & ADJ_SETOFFSET) {
  547. struct timespec delta;
  548. delta.tv_sec = txc->time.tv_sec;
  549. delta.tv_nsec = txc->time.tv_usec;
  550. if (!capable(CAP_SYS_TIME))
  551. return -EPERM;
  552. if (!(txc->modes & ADJ_NANO))
  553. delta.tv_nsec *= 1000;
  554. result = timekeeping_inject_offset(&delta);
  555. if (result)
  556. return result;
  557. }
  558. getnstimeofday(&ts);
  559. write_seqlock_irq(&xtime_lock);
  560. if (txc->modes & ADJ_ADJTIME) {
  561. long save_adjust = time_adjust;
  562. if (!(txc->modes & ADJ_OFFSET_READONLY)) {
  563. /* adjtime() is independent from ntp_adjtime() */
  564. time_adjust = txc->offset;
  565. ntp_update_frequency();
  566. }
  567. txc->offset = save_adjust;
  568. } else {
  569. /* If there are input parameters, then process them: */
  570. if (txc->modes)
  571. process_adjtimex_modes(txc, &ts);
  572. txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
  573. NTP_SCALE_SHIFT);
  574. if (!(time_status & STA_NANO))
  575. txc->offset /= NSEC_PER_USEC;
  576. }
  577. result = time_state; /* mostly `TIME_OK' */
  578. /* check for errors */
  579. if (is_error_status(time_status))
  580. result = TIME_ERROR;
  581. txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
  582. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  583. txc->maxerror = time_maxerror;
  584. txc->esterror = time_esterror;
  585. txc->status = time_status;
  586. txc->constant = time_constant;
  587. txc->precision = 1;
  588. txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
  589. txc->tick = tick_usec;
  590. txc->tai = time_tai;
  591. /* fill PPS status fields */
  592. pps_fill_timex(txc);
  593. write_sequnlock_irq(&xtime_lock);
  594. txc->time.tv_sec = ts.tv_sec;
  595. txc->time.tv_usec = ts.tv_nsec;
  596. if (!(time_status & STA_NANO))
  597. txc->time.tv_usec /= NSEC_PER_USEC;
  598. notify_cmos_timer();
  599. return result;
  600. }
  601. #ifdef CONFIG_NTP_PPS
  602. /* actually struct pps_normtime is good old struct timespec, but it is
  603. * semantically different (and it is the reason why it was invented):
  604. * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
  605. * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
  606. struct pps_normtime {
  607. __kernel_time_t sec; /* seconds */
  608. long nsec; /* nanoseconds */
  609. };
  610. /* normalize the timestamp so that nsec is in the
  611. ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
  612. static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
  613. {
  614. struct pps_normtime norm = {
  615. .sec = ts.tv_sec,
  616. .nsec = ts.tv_nsec
  617. };
  618. if (norm.nsec > (NSEC_PER_SEC >> 1)) {
  619. norm.nsec -= NSEC_PER_SEC;
  620. norm.sec++;
  621. }
  622. return norm;
  623. }
  624. /* get current phase correction and jitter */
  625. static inline long pps_phase_filter_get(long *jitter)
  626. {
  627. *jitter = pps_tf[0] - pps_tf[1];
  628. if (*jitter < 0)
  629. *jitter = -*jitter;
  630. /* TODO: test various filters */
  631. return pps_tf[0];
  632. }
  633. /* add the sample to the phase filter */
  634. static inline void pps_phase_filter_add(long err)
  635. {
  636. pps_tf[2] = pps_tf[1];
  637. pps_tf[1] = pps_tf[0];
  638. pps_tf[0] = err;
  639. }
  640. /* decrease frequency calibration interval length.
  641. * It is halved after four consecutive unstable intervals.
  642. */
  643. static inline void pps_dec_freq_interval(void)
  644. {
  645. if (--pps_intcnt <= -PPS_INTCOUNT) {
  646. pps_intcnt = -PPS_INTCOUNT;
  647. if (pps_shift > PPS_INTMIN) {
  648. pps_shift--;
  649. pps_intcnt = 0;
  650. }
  651. }
  652. }
  653. /* increase frequency calibration interval length.
  654. * It is doubled after four consecutive stable intervals.
  655. */
  656. static inline void pps_inc_freq_interval(void)
  657. {
  658. if (++pps_intcnt >= PPS_INTCOUNT) {
  659. pps_intcnt = PPS_INTCOUNT;
  660. if (pps_shift < PPS_INTMAX) {
  661. pps_shift++;
  662. pps_intcnt = 0;
  663. }
  664. }
  665. }
  666. /* update clock frequency based on MONOTONIC_RAW clock PPS signal
  667. * timestamps
  668. *
  669. * At the end of the calibration interval the difference between the
  670. * first and last MONOTONIC_RAW clock timestamps divided by the length
  671. * of the interval becomes the frequency update. If the interval was
  672. * too long, the data are discarded.
  673. * Returns the difference between old and new frequency values.
  674. */
  675. static long hardpps_update_freq(struct pps_normtime freq_norm)
  676. {
  677. long delta, delta_mod;
  678. s64 ftemp;
  679. /* check if the frequency interval was too long */
  680. if (freq_norm.sec > (2 << pps_shift)) {
  681. time_status |= STA_PPSERROR;
  682. pps_errcnt++;
  683. pps_dec_freq_interval();
  684. pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
  685. freq_norm.sec);
  686. return 0;
  687. }
  688. /* here the raw frequency offset and wander (stability) is
  689. * calculated. If the wander is less than the wander threshold
  690. * the interval is increased; otherwise it is decreased.
  691. */
  692. ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
  693. freq_norm.sec);
  694. delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
  695. pps_freq = ftemp;
  696. if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
  697. pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
  698. time_status |= STA_PPSWANDER;
  699. pps_stbcnt++;
  700. pps_dec_freq_interval();
  701. } else { /* good sample */
  702. pps_inc_freq_interval();
  703. }
  704. /* the stability metric is calculated as the average of recent
  705. * frequency changes, but is used only for performance
  706. * monitoring
  707. */
  708. delta_mod = delta;
  709. if (delta_mod < 0)
  710. delta_mod = -delta_mod;
  711. pps_stabil += (div_s64(((s64)delta_mod) <<
  712. (NTP_SCALE_SHIFT - SHIFT_USEC),
  713. NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
  714. /* if enabled, the system clock frequency is updated */
  715. if ((time_status & STA_PPSFREQ) != 0 &&
  716. (time_status & STA_FREQHOLD) == 0) {
  717. time_freq = pps_freq;
  718. ntp_update_frequency();
  719. }
  720. return delta;
  721. }
  722. /* correct REALTIME clock phase error against PPS signal */
  723. static void hardpps_update_phase(long error)
  724. {
  725. long correction = -error;
  726. long jitter;
  727. /* add the sample to the median filter */
  728. pps_phase_filter_add(correction);
  729. correction = pps_phase_filter_get(&jitter);
  730. /* Nominal jitter is due to PPS signal noise. If it exceeds the
  731. * threshold, the sample is discarded; otherwise, if so enabled,
  732. * the time offset is updated.
  733. */
  734. if (jitter > (pps_jitter << PPS_POPCORN)) {
  735. pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
  736. jitter, (pps_jitter << PPS_POPCORN));
  737. time_status |= STA_PPSJITTER;
  738. pps_jitcnt++;
  739. } else if (time_status & STA_PPSTIME) {
  740. /* correct the time using the phase offset */
  741. time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
  742. NTP_INTERVAL_FREQ);
  743. /* cancel running adjtime() */
  744. time_adjust = 0;
  745. }
  746. /* update jitter */
  747. pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
  748. }
  749. /*
  750. * hardpps() - discipline CPU clock oscillator to external PPS signal
  751. *
  752. * This routine is called at each PPS signal arrival in order to
  753. * discipline the CPU clock oscillator to the PPS signal. It takes two
  754. * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
  755. * is used to correct clock phase error and the latter is used to
  756. * correct the frequency.
  757. *
  758. * This code is based on David Mills's reference nanokernel
  759. * implementation. It was mostly rewritten but keeps the same idea.
  760. */
  761. void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
  762. {
  763. struct pps_normtime pts_norm, freq_norm;
  764. unsigned long flags;
  765. pts_norm = pps_normalize_ts(*phase_ts);
  766. write_seqlock_irqsave(&xtime_lock, flags);
  767. /* clear the error bits, they will be set again if needed */
  768. time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
  769. /* indicate signal presence */
  770. time_status |= STA_PPSSIGNAL;
  771. pps_valid = PPS_VALID;
  772. /* when called for the first time,
  773. * just start the frequency interval */
  774. if (unlikely(pps_fbase.tv_sec == 0)) {
  775. pps_fbase = *raw_ts;
  776. write_sequnlock_irqrestore(&xtime_lock, flags);
  777. return;
  778. }
  779. /* ok, now we have a base for frequency calculation */
  780. freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
  781. /* check that the signal is in the range
  782. * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
  783. if ((freq_norm.sec == 0) ||
  784. (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
  785. (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
  786. time_status |= STA_PPSJITTER;
  787. /* restart the frequency calibration interval */
  788. pps_fbase = *raw_ts;
  789. write_sequnlock_irqrestore(&xtime_lock, flags);
  790. pr_err("hardpps: PPSJITTER: bad pulse\n");
  791. return;
  792. }
  793. /* signal is ok */
  794. /* check if the current frequency interval is finished */
  795. if (freq_norm.sec >= (1 << pps_shift)) {
  796. pps_calcnt++;
  797. /* restart the frequency calibration interval */
  798. pps_fbase = *raw_ts;
  799. hardpps_update_freq(freq_norm);
  800. }
  801. hardpps_update_phase(pts_norm.nsec);
  802. write_sequnlock_irqrestore(&xtime_lock, flags);
  803. }
  804. EXPORT_SYMBOL(hardpps);
  805. #endif /* CONFIG_NTP_PPS */
  806. static int __init ntp_tick_adj_setup(char *str)
  807. {
  808. ntp_tick_adj = simple_strtol(str, NULL, 0);
  809. ntp_tick_adj <<= NTP_SCALE_SHIFT;
  810. return 1;
  811. }
  812. __setup("ntp_tick_adj=", ntp_tick_adj_setup);
  813. void __init ntp_init(void)
  814. {
  815. ntp_clear();
  816. hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
  817. leap_timer.function = ntp_leap_second;
  818. }