setup_64.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/a.out.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/ioport.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/initrd.h>
  22. #include <linux/highmem.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <asm/processor.h>
  26. #include <linux/console.h>
  27. #include <linux/seq_file.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/pci.h>
  31. #include <linux/efi.h>
  32. #include <linux/acpi.h>
  33. #include <linux/kallsyms.h>
  34. #include <linux/edd.h>
  35. #include <linux/mmzone.h>
  36. #include <linux/kexec.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/dmi.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/ctype.h>
  41. #include <linux/uaccess.h>
  42. #include <asm/mtrr.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/system.h>
  45. #include <asm/vsyscall.h>
  46. #include <asm/io.h>
  47. #include <asm/smp.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <video/edid.h>
  51. #include <asm/e820.h>
  52. #include <asm/dma.h>
  53. #include <asm/gart.h>
  54. #include <asm/mpspec.h>
  55. #include <asm/mmu_context.h>
  56. #include <asm/proto.h>
  57. #include <asm/setup.h>
  58. #include <asm/mach_apic.h>
  59. #include <asm/numa.h>
  60. #include <asm/sections.h>
  61. #include <asm/dmi.h>
  62. #include <asm/cacheflush.h>
  63. #include <asm/mce.h>
  64. #include <asm/ds.h>
  65. #include <asm/topology.h>
  66. #ifdef CONFIG_PARAVIRT
  67. #include <asm/paravirt.h>
  68. #else
  69. #define ARCH_SETUP
  70. #endif
  71. /*
  72. * Machine setup..
  73. */
  74. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  75. EXPORT_SYMBOL(boot_cpu_data);
  76. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  77. unsigned long mmu_cr4_features;
  78. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  79. int bootloader_type;
  80. unsigned long saved_video_mode;
  81. int force_mwait __cpuinitdata;
  82. /*
  83. * Early DMI memory
  84. */
  85. int dmi_alloc_index;
  86. char dmi_alloc_data[DMI_MAX_DATA];
  87. /*
  88. * Setup options
  89. */
  90. struct screen_info screen_info;
  91. EXPORT_SYMBOL(screen_info);
  92. struct sys_desc_table_struct {
  93. unsigned short length;
  94. unsigned char table[0];
  95. };
  96. struct edid_info edid_info;
  97. EXPORT_SYMBOL_GPL(edid_info);
  98. extern int root_mountflags;
  99. char __initdata command_line[COMMAND_LINE_SIZE];
  100. struct resource standard_io_resources[] = {
  101. { .name = "dma1", .start = 0x00, .end = 0x1f,
  102. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  103. { .name = "pic1", .start = 0x20, .end = 0x21,
  104. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  105. { .name = "timer0", .start = 0x40, .end = 0x43,
  106. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  107. { .name = "timer1", .start = 0x50, .end = 0x53,
  108. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  109. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  110. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  111. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  112. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  113. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  114. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  115. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  116. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  117. { .name = "fpu", .start = 0xf0, .end = 0xff,
  118. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  119. };
  120. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  121. static struct resource data_resource = {
  122. .name = "Kernel data",
  123. .start = 0,
  124. .end = 0,
  125. .flags = IORESOURCE_RAM,
  126. };
  127. static struct resource code_resource = {
  128. .name = "Kernel code",
  129. .start = 0,
  130. .end = 0,
  131. .flags = IORESOURCE_RAM,
  132. };
  133. static struct resource bss_resource = {
  134. .name = "Kernel bss",
  135. .start = 0,
  136. .end = 0,
  137. .flags = IORESOURCE_RAM,
  138. };
  139. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
  140. #ifdef CONFIG_PROC_VMCORE
  141. /* elfcorehdr= specifies the location of elf core header
  142. * stored by the crashed kernel. This option will be passed
  143. * by kexec loader to the capture kernel.
  144. */
  145. static int __init setup_elfcorehdr(char *arg)
  146. {
  147. char *end;
  148. if (!arg)
  149. return -EINVAL;
  150. elfcorehdr_addr = memparse(arg, &end);
  151. return end > arg ? 0 : -EINVAL;
  152. }
  153. early_param("elfcorehdr", setup_elfcorehdr);
  154. #endif
  155. #ifndef CONFIG_NUMA
  156. static void __init
  157. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  158. {
  159. unsigned long bootmap_size, bootmap;
  160. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  161. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  162. if (bootmap == -1L)
  163. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  164. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  165. e820_register_active_regions(0, start_pfn, end_pfn);
  166. free_bootmem_with_active_regions(0, end_pfn);
  167. reserve_bootmem(bootmap, bootmap_size);
  168. }
  169. #endif
  170. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  171. struct edd edd;
  172. #ifdef CONFIG_EDD_MODULE
  173. EXPORT_SYMBOL(edd);
  174. #endif
  175. /**
  176. * copy_edd() - Copy the BIOS EDD information
  177. * from boot_params into a safe place.
  178. *
  179. */
  180. static inline void copy_edd(void)
  181. {
  182. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  183. sizeof(edd.mbr_signature));
  184. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  185. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  186. edd.edd_info_nr = boot_params.eddbuf_entries;
  187. }
  188. #else
  189. static inline void copy_edd(void)
  190. {
  191. }
  192. #endif
  193. #ifdef CONFIG_KEXEC
  194. static void __init reserve_crashkernel(void)
  195. {
  196. unsigned long long free_mem;
  197. unsigned long long crash_size, crash_base;
  198. int ret;
  199. free_mem =
  200. ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  201. ret = parse_crashkernel(boot_command_line, free_mem,
  202. &crash_size, &crash_base);
  203. if (ret == 0 && crash_size) {
  204. if (crash_base > 0) {
  205. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  206. "for crashkernel (System RAM: %ldMB)\n",
  207. (unsigned long)(crash_size >> 20),
  208. (unsigned long)(crash_base >> 20),
  209. (unsigned long)(free_mem >> 20));
  210. crashk_res.start = crash_base;
  211. crashk_res.end = crash_base + crash_size - 1;
  212. reserve_bootmem(crash_base, crash_size);
  213. } else
  214. printk(KERN_INFO "crashkernel reservation failed - "
  215. "you have to specify a base address\n");
  216. }
  217. }
  218. #else
  219. static inline void __init reserve_crashkernel(void)
  220. {}
  221. #endif
  222. /* Overridden in paravirt.c if CONFIG_PARAVIRT */
  223. void __attribute__((weak)) __init memory_setup(void)
  224. {
  225. machine_specific_memory_setup();
  226. }
  227. void __init setup_arch(char **cmdline_p)
  228. {
  229. unsigned i;
  230. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  231. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  232. screen_info = boot_params.screen_info;
  233. edid_info = boot_params.edid_info;
  234. saved_video_mode = boot_params.hdr.vid_mode;
  235. bootloader_type = boot_params.hdr.type_of_loader;
  236. #ifdef CONFIG_BLK_DEV_RAM
  237. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  238. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  239. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  240. #endif
  241. #ifdef CONFIG_EFI
  242. if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
  243. "EL64", 4))
  244. efi_enabled = 1;
  245. #endif
  246. ARCH_SETUP
  247. memory_setup();
  248. copy_edd();
  249. if (!boot_params.hdr.root_flags)
  250. root_mountflags &= ~MS_RDONLY;
  251. init_mm.start_code = (unsigned long) &_text;
  252. init_mm.end_code = (unsigned long) &_etext;
  253. init_mm.end_data = (unsigned long) &_edata;
  254. init_mm.brk = (unsigned long) &_end;
  255. code_resource.start = virt_to_phys(&_text);
  256. code_resource.end = virt_to_phys(&_etext)-1;
  257. data_resource.start = virt_to_phys(&_etext);
  258. data_resource.end = virt_to_phys(&_edata)-1;
  259. bss_resource.start = virt_to_phys(&__bss_start);
  260. bss_resource.end = virt_to_phys(&__bss_stop)-1;
  261. early_identify_cpu(&boot_cpu_data);
  262. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  263. *cmdline_p = command_line;
  264. parse_early_param();
  265. finish_e820_parsing();
  266. early_gart_iommu_check();
  267. e820_register_active_regions(0, 0, -1UL);
  268. /*
  269. * partially used pages are not usable - thus
  270. * we are rounding upwards:
  271. */
  272. end_pfn = e820_end_of_ram();
  273. /* update e820 for memory not covered by WB MTRRs */
  274. mtrr_bp_init();
  275. if (mtrr_trim_uncached_memory(end_pfn)) {
  276. e820_register_active_regions(0, 0, -1UL);
  277. end_pfn = e820_end_of_ram();
  278. }
  279. num_physpages = end_pfn;
  280. check_efer();
  281. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  282. if (efi_enabled)
  283. efi_init();
  284. dmi_scan_machine();
  285. io_delay_init();
  286. #ifdef CONFIG_SMP
  287. /* setup to use the early static init tables during kernel startup */
  288. x86_cpu_to_apicid_early_ptr = (void *)&x86_cpu_to_apicid_init;
  289. #ifdef CONFIG_NUMA
  290. x86_cpu_to_node_map_early_ptr = (void *)&x86_cpu_to_node_map_init;
  291. #endif
  292. x86_bios_cpu_apicid_early_ptr = (void *)&x86_bios_cpu_apicid_init;
  293. #endif
  294. #ifdef CONFIG_ACPI
  295. /*
  296. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  297. * Call this early for SRAT node setup.
  298. */
  299. acpi_boot_table_init();
  300. #endif
  301. /* How many end-of-memory variables you have, grandma! */
  302. max_low_pfn = end_pfn;
  303. max_pfn = end_pfn;
  304. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  305. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  306. remove_all_active_ranges();
  307. #ifdef CONFIG_ACPI_NUMA
  308. /*
  309. * Parse SRAT to discover nodes.
  310. */
  311. acpi_numa_init();
  312. #endif
  313. #ifdef CONFIG_NUMA
  314. numa_initmem_init(0, end_pfn);
  315. #else
  316. contig_initmem_init(0, end_pfn);
  317. #endif
  318. early_res_to_bootmem();
  319. #ifdef CONFIG_ACPI_SLEEP
  320. /*
  321. * Reserve low memory region for sleep support.
  322. */
  323. acpi_reserve_bootmem();
  324. #endif
  325. if (efi_enabled) {
  326. efi_map_memmap();
  327. efi_reserve_bootmem();
  328. }
  329. /*
  330. * Find and reserve possible boot-time SMP configuration:
  331. */
  332. find_smp_config();
  333. #ifdef CONFIG_BLK_DEV_INITRD
  334. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  335. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  336. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  337. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  338. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  339. if (ramdisk_end <= end_of_mem) {
  340. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  341. initrd_start = ramdisk_image + PAGE_OFFSET;
  342. initrd_end = initrd_start+ramdisk_size;
  343. } else {
  344. /* Assumes everything on node 0 */
  345. free_bootmem(ramdisk_image, ramdisk_size);
  346. printk(KERN_ERR "initrd extends beyond end of memory "
  347. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  348. ramdisk_end, end_of_mem);
  349. initrd_start = 0;
  350. }
  351. }
  352. #endif
  353. reserve_crashkernel();
  354. paging_init();
  355. map_vsyscall();
  356. early_quirks();
  357. /*
  358. * set this early, so we dont allocate cpu0
  359. * if MADT list doesnt list BSP first
  360. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  361. */
  362. cpu_set(0, cpu_present_map);
  363. #ifdef CONFIG_ACPI
  364. /*
  365. * Read APIC and some other early information from ACPI tables.
  366. */
  367. acpi_boot_init();
  368. #endif
  369. init_cpu_to_node();
  370. /*
  371. * get boot-time SMP configuration:
  372. */
  373. if (smp_found_config)
  374. get_smp_config();
  375. init_apic_mappings();
  376. ioapic_init_mappings();
  377. /*
  378. * We trust e820 completely. No explicit ROM probing in memory.
  379. */
  380. e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
  381. e820_mark_nosave_regions();
  382. /* request I/O space for devices used on all i[345]86 PCs */
  383. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  384. request_resource(&ioport_resource, &standard_io_resources[i]);
  385. e820_setup_gap();
  386. #ifdef CONFIG_VT
  387. #if defined(CONFIG_VGA_CONSOLE)
  388. if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
  389. conswitchp = &vga_con;
  390. #elif defined(CONFIG_DUMMY_CONSOLE)
  391. conswitchp = &dummy_con;
  392. #endif
  393. #endif
  394. }
  395. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  396. {
  397. unsigned int *v;
  398. if (c->extended_cpuid_level < 0x80000004)
  399. return 0;
  400. v = (unsigned int *) c->x86_model_id;
  401. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  402. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  403. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  404. c->x86_model_id[48] = 0;
  405. return 1;
  406. }
  407. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  408. {
  409. unsigned int n, dummy, eax, ebx, ecx, edx;
  410. n = c->extended_cpuid_level;
  411. if (n >= 0x80000005) {
  412. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  413. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
  414. "D cache %dK (%d bytes/line)\n",
  415. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  416. c->x86_cache_size = (ecx>>24) + (edx>>24);
  417. /* On K8 L1 TLB is inclusive, so don't count it */
  418. c->x86_tlbsize = 0;
  419. }
  420. if (n >= 0x80000006) {
  421. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  422. ecx = cpuid_ecx(0x80000006);
  423. c->x86_cache_size = ecx >> 16;
  424. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  425. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  426. c->x86_cache_size, ecx & 0xFF);
  427. }
  428. if (n >= 0x80000008) {
  429. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  430. c->x86_virt_bits = (eax >> 8) & 0xff;
  431. c->x86_phys_bits = eax & 0xff;
  432. }
  433. }
  434. #ifdef CONFIG_NUMA
  435. static int nearby_node(int apicid)
  436. {
  437. int i, node;
  438. for (i = apicid - 1; i >= 0; i--) {
  439. node = apicid_to_node[i];
  440. if (node != NUMA_NO_NODE && node_online(node))
  441. return node;
  442. }
  443. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  444. node = apicid_to_node[i];
  445. if (node != NUMA_NO_NODE && node_online(node))
  446. return node;
  447. }
  448. return first_node(node_online_map); /* Shouldn't happen */
  449. }
  450. #endif
  451. /*
  452. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  453. * Assumes number of cores is a power of two.
  454. */
  455. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  456. {
  457. #ifdef CONFIG_SMP
  458. unsigned bits;
  459. #ifdef CONFIG_NUMA
  460. int cpu = smp_processor_id();
  461. int node = 0;
  462. unsigned apicid = hard_smp_processor_id();
  463. #endif
  464. bits = c->x86_coreid_bits;
  465. /* Low order bits define the core id (index of core in socket) */
  466. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  467. /* Convert the APIC ID into the socket ID */
  468. c->phys_proc_id = phys_pkg_id(bits);
  469. #ifdef CONFIG_NUMA
  470. node = c->phys_proc_id;
  471. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  472. node = apicid_to_node[apicid];
  473. if (!node_online(node)) {
  474. /* Two possibilities here:
  475. - The CPU is missing memory and no node was created.
  476. In that case try picking one from a nearby CPU
  477. - The APIC IDs differ from the HyperTransport node IDs
  478. which the K8 northbridge parsing fills in.
  479. Assume they are all increased by a constant offset,
  480. but in the same order as the HT nodeids.
  481. If that doesn't result in a usable node fall back to the
  482. path for the previous case. */
  483. int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
  484. if (ht_nodeid >= 0 &&
  485. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  486. node = apicid_to_node[ht_nodeid];
  487. /* Pick a nearby node */
  488. if (!node_online(node))
  489. node = nearby_node(apicid);
  490. }
  491. numa_set_node(cpu, node);
  492. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  493. #endif
  494. #endif
  495. }
  496. static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
  497. {
  498. #ifdef CONFIG_SMP
  499. unsigned bits, ecx;
  500. /* Multi core CPU? */
  501. if (c->extended_cpuid_level < 0x80000008)
  502. return;
  503. ecx = cpuid_ecx(0x80000008);
  504. c->x86_max_cores = (ecx & 0xff) + 1;
  505. /* CPU telling us the core id bits shift? */
  506. bits = (ecx >> 12) & 0xF;
  507. /* Otherwise recompute */
  508. if (bits == 0) {
  509. while ((1 << bits) < c->x86_max_cores)
  510. bits++;
  511. }
  512. c->x86_coreid_bits = bits;
  513. #endif
  514. }
  515. #define ENABLE_C1E_MASK 0x18000000
  516. #define CPUID_PROCESSOR_SIGNATURE 1
  517. #define CPUID_XFAM 0x0ff00000
  518. #define CPUID_XFAM_K8 0x00000000
  519. #define CPUID_XFAM_10H 0x00100000
  520. #define CPUID_XFAM_11H 0x00200000
  521. #define CPUID_XMOD 0x000f0000
  522. #define CPUID_XMOD_REV_F 0x00040000
  523. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  524. static __cpuinit int amd_apic_timer_broken(void)
  525. {
  526. u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  527. switch (eax & CPUID_XFAM) {
  528. case CPUID_XFAM_K8:
  529. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  530. break;
  531. case CPUID_XFAM_10H:
  532. case CPUID_XFAM_11H:
  533. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  534. if (lo & ENABLE_C1E_MASK)
  535. return 1;
  536. break;
  537. default:
  538. /* err on the side of caution */
  539. return 1;
  540. }
  541. return 0;
  542. }
  543. static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
  544. {
  545. early_init_amd_mc(c);
  546. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  547. if (c->x86_power & (1<<8))
  548. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  549. }
  550. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  551. {
  552. unsigned level;
  553. #ifdef CONFIG_SMP
  554. unsigned long value;
  555. /*
  556. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  557. * bit 6 of msr C001_0015
  558. *
  559. * Errata 63 for SH-B3 steppings
  560. * Errata 122 for all steppings (F+ have it disabled by default)
  561. */
  562. if (c->x86 == 15) {
  563. rdmsrl(MSR_K8_HWCR, value);
  564. value |= 1 << 6;
  565. wrmsrl(MSR_K8_HWCR, value);
  566. }
  567. #endif
  568. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  569. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  570. clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
  571. /* On C+ stepping K8 rep microcode works well for copy/memset */
  572. level = cpuid_eax(1);
  573. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
  574. level >= 0x0f58))
  575. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  576. if (c->x86 == 0x10 || c->x86 == 0x11)
  577. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  578. /* Enable workaround for FXSAVE leak */
  579. if (c->x86 >= 6)
  580. set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
  581. level = get_model_name(c);
  582. if (!level) {
  583. switch (c->x86) {
  584. case 15:
  585. /* Should distinguish Models here, but this is only
  586. a fallback anyways. */
  587. strcpy(c->x86_model_id, "Hammer");
  588. break;
  589. }
  590. }
  591. display_cacheinfo(c);
  592. /* Multi core CPU? */
  593. if (c->extended_cpuid_level >= 0x80000008)
  594. amd_detect_cmp(c);
  595. if (c->extended_cpuid_level >= 0x80000006 &&
  596. (cpuid_edx(0x80000006) & 0xf000))
  597. num_cache_leaves = 4;
  598. else
  599. num_cache_leaves = 3;
  600. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  601. set_cpu_cap(c, X86_FEATURE_K8);
  602. /* MFENCE stops RDTSC speculation */
  603. set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
  604. if (amd_apic_timer_broken())
  605. disable_apic_timer = 1;
  606. }
  607. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  608. {
  609. #ifdef CONFIG_SMP
  610. u32 eax, ebx, ecx, edx;
  611. int index_msb, core_bits;
  612. cpuid(1, &eax, &ebx, &ecx, &edx);
  613. if (!cpu_has(c, X86_FEATURE_HT))
  614. return;
  615. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  616. goto out;
  617. smp_num_siblings = (ebx & 0xff0000) >> 16;
  618. if (smp_num_siblings == 1) {
  619. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  620. } else if (smp_num_siblings > 1) {
  621. if (smp_num_siblings > NR_CPUS) {
  622. printk(KERN_WARNING "CPU: Unsupported number of "
  623. "siblings %d", smp_num_siblings);
  624. smp_num_siblings = 1;
  625. return;
  626. }
  627. index_msb = get_count_order(smp_num_siblings);
  628. c->phys_proc_id = phys_pkg_id(index_msb);
  629. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  630. index_msb = get_count_order(smp_num_siblings);
  631. core_bits = get_count_order(c->x86_max_cores);
  632. c->cpu_core_id = phys_pkg_id(index_msb) &
  633. ((1 << core_bits) - 1);
  634. }
  635. out:
  636. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  637. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  638. c->phys_proc_id);
  639. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  640. c->cpu_core_id);
  641. }
  642. #endif
  643. }
  644. /*
  645. * find out the number of processor cores on the die
  646. */
  647. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  648. {
  649. unsigned int eax, t;
  650. if (c->cpuid_level < 4)
  651. return 1;
  652. cpuid_count(4, 0, &eax, &t, &t, &t);
  653. if (eax & 0x1f)
  654. return ((eax >> 26) + 1);
  655. else
  656. return 1;
  657. }
  658. static void srat_detect_node(void)
  659. {
  660. #ifdef CONFIG_NUMA
  661. unsigned node;
  662. int cpu = smp_processor_id();
  663. int apicid = hard_smp_processor_id();
  664. /* Don't do the funky fallback heuristics the AMD version employs
  665. for now. */
  666. node = apicid_to_node[apicid];
  667. if (node == NUMA_NO_NODE)
  668. node = first_node(node_online_map);
  669. numa_set_node(cpu, node);
  670. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  671. #endif
  672. }
  673. static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
  674. {
  675. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  676. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  677. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  678. }
  679. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  680. {
  681. /* Cache sizes */
  682. unsigned n;
  683. init_intel_cacheinfo(c);
  684. if (c->cpuid_level > 9) {
  685. unsigned eax = cpuid_eax(10);
  686. /* Check for version and the number of counters */
  687. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  688. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  689. }
  690. if (cpu_has_ds) {
  691. unsigned int l1, l2;
  692. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  693. if (!(l1 & (1<<11)))
  694. set_cpu_cap(c, X86_FEATURE_BTS);
  695. if (!(l1 & (1<<12)))
  696. set_cpu_cap(c, X86_FEATURE_PEBS);
  697. }
  698. if (cpu_has_bts)
  699. ds_init_intel(c);
  700. n = c->extended_cpuid_level;
  701. if (n >= 0x80000008) {
  702. unsigned eax = cpuid_eax(0x80000008);
  703. c->x86_virt_bits = (eax >> 8) & 0xff;
  704. c->x86_phys_bits = eax & 0xff;
  705. /* CPUID workaround for Intel 0F34 CPU */
  706. if (c->x86_vendor == X86_VENDOR_INTEL &&
  707. c->x86 == 0xF && c->x86_model == 0x3 &&
  708. c->x86_mask == 0x4)
  709. c->x86_phys_bits = 36;
  710. }
  711. if (c->x86 == 15)
  712. c->x86_cache_alignment = c->x86_clflush_size * 2;
  713. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  714. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  715. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  716. if (c->x86 == 6)
  717. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  718. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  719. c->x86_max_cores = intel_num_cpu_cores(c);
  720. srat_detect_node();
  721. }
  722. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  723. {
  724. char *v = c->x86_vendor_id;
  725. if (!strcmp(v, "AuthenticAMD"))
  726. c->x86_vendor = X86_VENDOR_AMD;
  727. else if (!strcmp(v, "GenuineIntel"))
  728. c->x86_vendor = X86_VENDOR_INTEL;
  729. else
  730. c->x86_vendor = X86_VENDOR_UNKNOWN;
  731. }
  732. struct cpu_model_info {
  733. int vendor;
  734. int family;
  735. char *model_names[16];
  736. };
  737. /* Do some early cpuid on the boot CPU to get some parameter that are
  738. needed before check_bugs. Everything advanced is in identify_cpu
  739. below. */
  740. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  741. {
  742. u32 tfms, xlvl;
  743. c->loops_per_jiffy = loops_per_jiffy;
  744. c->x86_cache_size = -1;
  745. c->x86_vendor = X86_VENDOR_UNKNOWN;
  746. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  747. c->x86_vendor_id[0] = '\0'; /* Unset */
  748. c->x86_model_id[0] = '\0'; /* Unset */
  749. c->x86_clflush_size = 64;
  750. c->x86_cache_alignment = c->x86_clflush_size;
  751. c->x86_max_cores = 1;
  752. c->x86_coreid_bits = 0;
  753. c->extended_cpuid_level = 0;
  754. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  755. /* Get vendor name */
  756. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  757. (unsigned int *)&c->x86_vendor_id[0],
  758. (unsigned int *)&c->x86_vendor_id[8],
  759. (unsigned int *)&c->x86_vendor_id[4]);
  760. get_cpu_vendor(c);
  761. /* Initialize the standard set of capabilities */
  762. /* Note that the vendor-specific code below might override */
  763. /* Intel-defined flags: level 0x00000001 */
  764. if (c->cpuid_level >= 0x00000001) {
  765. __u32 misc;
  766. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  767. &c->x86_capability[0]);
  768. c->x86 = (tfms >> 8) & 0xf;
  769. c->x86_model = (tfms >> 4) & 0xf;
  770. c->x86_mask = tfms & 0xf;
  771. if (c->x86 == 0xf)
  772. c->x86 += (tfms >> 20) & 0xff;
  773. if (c->x86 >= 0x6)
  774. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  775. if (c->x86_capability[0] & (1<<19))
  776. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  777. } else {
  778. /* Have CPUID level 0 only - unheard of */
  779. c->x86 = 4;
  780. }
  781. #ifdef CONFIG_SMP
  782. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  783. #endif
  784. /* AMD-defined flags: level 0x80000001 */
  785. xlvl = cpuid_eax(0x80000000);
  786. c->extended_cpuid_level = xlvl;
  787. if ((xlvl & 0xffff0000) == 0x80000000) {
  788. if (xlvl >= 0x80000001) {
  789. c->x86_capability[1] = cpuid_edx(0x80000001);
  790. c->x86_capability[6] = cpuid_ecx(0x80000001);
  791. }
  792. if (xlvl >= 0x80000004)
  793. get_model_name(c); /* Default name */
  794. }
  795. /* Transmeta-defined flags: level 0x80860001 */
  796. xlvl = cpuid_eax(0x80860000);
  797. if ((xlvl & 0xffff0000) == 0x80860000) {
  798. /* Don't set x86_cpuid_level here for now to not confuse. */
  799. if (xlvl >= 0x80860001)
  800. c->x86_capability[2] = cpuid_edx(0x80860001);
  801. }
  802. c->extended_cpuid_level = cpuid_eax(0x80000000);
  803. if (c->extended_cpuid_level >= 0x80000007)
  804. c->x86_power = cpuid_edx(0x80000007);
  805. switch (c->x86_vendor) {
  806. case X86_VENDOR_AMD:
  807. early_init_amd(c);
  808. break;
  809. case X86_VENDOR_INTEL:
  810. early_init_intel(c);
  811. break;
  812. }
  813. }
  814. /*
  815. * This does the hard work of actually picking apart the CPU stuff...
  816. */
  817. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  818. {
  819. int i;
  820. early_identify_cpu(c);
  821. init_scattered_cpuid_features(c);
  822. c->apicid = phys_pkg_id(0);
  823. /*
  824. * Vendor-specific initialization. In this section we
  825. * canonicalize the feature flags, meaning if there are
  826. * features a certain CPU supports which CPUID doesn't
  827. * tell us, CPUID claiming incorrect flags, or other bugs,
  828. * we handle them here.
  829. *
  830. * At the end of this section, c->x86_capability better
  831. * indicate the features this CPU genuinely supports!
  832. */
  833. switch (c->x86_vendor) {
  834. case X86_VENDOR_AMD:
  835. init_amd(c);
  836. break;
  837. case X86_VENDOR_INTEL:
  838. init_intel(c);
  839. break;
  840. case X86_VENDOR_UNKNOWN:
  841. default:
  842. display_cacheinfo(c);
  843. break;
  844. }
  845. detect_ht(c);
  846. /*
  847. * On SMP, boot_cpu_data holds the common feature set between
  848. * all CPUs; so make sure that we indicate which features are
  849. * common between the CPUs. The first time this routine gets
  850. * executed, c == &boot_cpu_data.
  851. */
  852. if (c != &boot_cpu_data) {
  853. /* AND the already accumulated flags with these */
  854. for (i = 0; i < NCAPINTS; i++)
  855. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  856. }
  857. /* Clear all flags overriden by options */
  858. for (i = 0; i < NCAPINTS; i++)
  859. c->x86_capability[i] ^= cleared_cpu_caps[i];
  860. #ifdef CONFIG_X86_MCE
  861. mcheck_init(c);
  862. #endif
  863. select_idle_routine(c);
  864. if (c != &boot_cpu_data)
  865. mtrr_ap_init();
  866. #ifdef CONFIG_NUMA
  867. numa_add_cpu(smp_processor_id());
  868. #endif
  869. }
  870. static __init int setup_noclflush(char *arg)
  871. {
  872. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  873. return 1;
  874. }
  875. __setup("noclflush", setup_noclflush);
  876. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  877. {
  878. if (c->x86_model_id[0])
  879. printk(KERN_INFO "%s", c->x86_model_id);
  880. if (c->x86_mask || c->cpuid_level >= 0)
  881. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  882. else
  883. printk(KERN_CONT "\n");
  884. }
  885. static __init int setup_disablecpuid(char *arg)
  886. {
  887. int bit;
  888. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  889. setup_clear_cpu_cap(bit);
  890. else
  891. return 0;
  892. return 1;
  893. }
  894. __setup("clearcpuid=", setup_disablecpuid);
  895. /*
  896. * Get CPU information for use by the procfs.
  897. */
  898. static int show_cpuinfo(struct seq_file *m, void *v)
  899. {
  900. struct cpuinfo_x86 *c = v;
  901. int cpu = 0, i;
  902. /*
  903. * These flag bits must match the definitions in <asm/cpufeature.h>.
  904. * NULL means this bit is undefined or reserved; either way it doesn't
  905. * have meaning as far as Linux is concerned. Note that it's important
  906. * to realize there is a difference between this table and CPUID -- if
  907. * applications want to get the raw CPUID data, they should access
  908. * /dev/cpu/<cpu_nr>/cpuid instead.
  909. */
  910. static const char *const x86_cap_flags[] = {
  911. /* Intel-defined */
  912. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  913. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  914. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  915. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
  916. /* AMD-defined */
  917. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  918. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  919. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  920. NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
  921. "3dnowext", "3dnow",
  922. /* Transmeta-defined */
  923. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  924. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  925. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  926. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  927. /* Other (Linux-defined) */
  928. "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
  929. NULL, NULL, NULL, NULL,
  930. "constant_tsc", "up", NULL, "arch_perfmon",
  931. "pebs", "bts", NULL, "sync_rdtsc",
  932. "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  933. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  934. /* Intel-defined (#2) */
  935. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  936. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  937. NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
  938. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  939. /* VIA/Cyrix/Centaur-defined */
  940. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  941. "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
  942. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  943. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  944. /* AMD-defined (#2) */
  945. "lahf_lm", "cmp_legacy", "svm", "extapic",
  946. "cr8_legacy", "abm", "sse4a", "misalignsse",
  947. "3dnowprefetch", "osvw", "ibs", "sse5",
  948. "skinit", "wdt", NULL, NULL,
  949. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  950. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  951. /* Auxiliary (Linux-defined) */
  952. "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  953. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  954. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  955. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  956. };
  957. static const char *const x86_power_flags[] = {
  958. "ts", /* temperature sensor */
  959. "fid", /* frequency id control */
  960. "vid", /* voltage id control */
  961. "ttp", /* thermal trip */
  962. "tm",
  963. "stc",
  964. "100mhzsteps",
  965. "hwpstate",
  966. "", /* tsc invariant mapped to constant_tsc */
  967. /* nothing */
  968. };
  969. #ifdef CONFIG_SMP
  970. cpu = c->cpu_index;
  971. #endif
  972. seq_printf(m, "processor\t: %u\n"
  973. "vendor_id\t: %s\n"
  974. "cpu family\t: %d\n"
  975. "model\t\t: %d\n"
  976. "model name\t: %s\n",
  977. (unsigned)cpu,
  978. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  979. c->x86,
  980. (int)c->x86_model,
  981. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  982. if (c->x86_mask || c->cpuid_level >= 0)
  983. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  984. else
  985. seq_printf(m, "stepping\t: unknown\n");
  986. if (cpu_has(c, X86_FEATURE_TSC)) {
  987. unsigned int freq = cpufreq_quick_get((unsigned)cpu);
  988. if (!freq)
  989. freq = cpu_khz;
  990. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  991. freq / 1000, (freq % 1000));
  992. }
  993. /* Cache size */
  994. if (c->x86_cache_size >= 0)
  995. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  996. #ifdef CONFIG_SMP
  997. if (smp_num_siblings * c->x86_max_cores > 1) {
  998. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  999. seq_printf(m, "siblings\t: %d\n",
  1000. cpus_weight(per_cpu(cpu_core_map, cpu)));
  1001. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  1002. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  1003. }
  1004. #endif
  1005. seq_printf(m,
  1006. "fpu\t\t: yes\n"
  1007. "fpu_exception\t: yes\n"
  1008. "cpuid level\t: %d\n"
  1009. "wp\t\t: yes\n"
  1010. "flags\t\t:",
  1011. c->cpuid_level);
  1012. for (i = 0; i < 32*NCAPINTS; i++)
  1013. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  1014. seq_printf(m, " %s", x86_cap_flags[i]);
  1015. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  1016. c->loops_per_jiffy/(500000/HZ),
  1017. (c->loops_per_jiffy/(5000/HZ)) % 100);
  1018. if (c->x86_tlbsize > 0)
  1019. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  1020. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  1021. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  1022. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  1023. c->x86_phys_bits, c->x86_virt_bits);
  1024. seq_printf(m, "power management:");
  1025. for (i = 0; i < 32; i++) {
  1026. if (c->x86_power & (1 << i)) {
  1027. if (i < ARRAY_SIZE(x86_power_flags) &&
  1028. x86_power_flags[i])
  1029. seq_printf(m, "%s%s",
  1030. x86_power_flags[i][0]?" ":"",
  1031. x86_power_flags[i]);
  1032. else
  1033. seq_printf(m, " [%d]", i);
  1034. }
  1035. }
  1036. seq_printf(m, "\n\n");
  1037. return 0;
  1038. }
  1039. static void *c_start(struct seq_file *m, loff_t *pos)
  1040. {
  1041. if (*pos == 0) /* just in case, cpu 0 is not the first */
  1042. *pos = first_cpu(cpu_online_map);
  1043. if ((*pos) < NR_CPUS && cpu_online(*pos))
  1044. return &cpu_data(*pos);
  1045. return NULL;
  1046. }
  1047. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1048. {
  1049. *pos = next_cpu(*pos, cpu_online_map);
  1050. return c_start(m, pos);
  1051. }
  1052. static void c_stop(struct seq_file *m, void *v)
  1053. {
  1054. }
  1055. struct seq_operations cpuinfo_op = {
  1056. .start = c_start,
  1057. .next = c_next,
  1058. .stop = c_stop,
  1059. .show = show_cpuinfo,
  1060. };