mtd_dataflash.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943
  1. /*
  2. * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
  3. *
  4. * Largely derived from at91_dataflash.c:
  5. * Copyright (C) 2003-2005 SAN People (Pty) Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/delay.h>
  16. #include <linux/device.h>
  17. #include <linux/mutex.h>
  18. #include <linux/err.h>
  19. #include <linux/math64.h>
  20. #include <linux/of.h>
  21. #include <linux/of_device.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/spi/flash.h>
  24. #include <linux/mtd/mtd.h>
  25. #include <linux/mtd/partitions.h>
  26. /*
  27. * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
  28. * each chip, which may be used for double buffered I/O; but this driver
  29. * doesn't (yet) use these for any kind of i/o overlap or prefetching.
  30. *
  31. * Sometimes DataFlash is packaged in MMC-format cards, although the
  32. * MMC stack can't (yet?) distinguish between MMC and DataFlash
  33. * protocols during enumeration.
  34. */
  35. /* reads can bypass the buffers */
  36. #define OP_READ_CONTINUOUS 0xE8
  37. #define OP_READ_PAGE 0xD2
  38. /* group B requests can run even while status reports "busy" */
  39. #define OP_READ_STATUS 0xD7 /* group B */
  40. /* move data between host and buffer */
  41. #define OP_READ_BUFFER1 0xD4 /* group B */
  42. #define OP_READ_BUFFER2 0xD6 /* group B */
  43. #define OP_WRITE_BUFFER1 0x84 /* group B */
  44. #define OP_WRITE_BUFFER2 0x87 /* group B */
  45. /* erasing flash */
  46. #define OP_ERASE_PAGE 0x81
  47. #define OP_ERASE_BLOCK 0x50
  48. /* move data between buffer and flash */
  49. #define OP_TRANSFER_BUF1 0x53
  50. #define OP_TRANSFER_BUF2 0x55
  51. #define OP_MREAD_BUFFER1 0xD4
  52. #define OP_MREAD_BUFFER2 0xD6
  53. #define OP_MWERASE_BUFFER1 0x83
  54. #define OP_MWERASE_BUFFER2 0x86
  55. #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
  56. #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
  57. /* write to buffer, then write-erase to flash */
  58. #define OP_PROGRAM_VIA_BUF1 0x82
  59. #define OP_PROGRAM_VIA_BUF2 0x85
  60. /* compare buffer to flash */
  61. #define OP_COMPARE_BUF1 0x60
  62. #define OP_COMPARE_BUF2 0x61
  63. /* read flash to buffer, then write-erase to flash */
  64. #define OP_REWRITE_VIA_BUF1 0x58
  65. #define OP_REWRITE_VIA_BUF2 0x59
  66. /* newer chips report JEDEC manufacturer and device IDs; chip
  67. * serial number and OTP bits; and per-sector writeprotect.
  68. */
  69. #define OP_READ_ID 0x9F
  70. #define OP_READ_SECURITY 0x77
  71. #define OP_WRITE_SECURITY_REVC 0x9A
  72. #define OP_WRITE_SECURITY 0x9B /* revision D */
  73. struct dataflash {
  74. uint8_t command[4];
  75. char name[24];
  76. unsigned partitioned:1;
  77. unsigned short page_offset; /* offset in flash address */
  78. unsigned int page_size; /* of bytes per page */
  79. struct mutex lock;
  80. struct spi_device *spi;
  81. struct mtd_info mtd;
  82. };
  83. #ifdef CONFIG_OF
  84. static const struct of_device_id dataflash_dt_ids[] = {
  85. { .compatible = "atmel,at45", },
  86. { .compatible = "atmel,dataflash", },
  87. { /* sentinel */ }
  88. };
  89. #else
  90. #define dataflash_dt_ids NULL
  91. #endif
  92. /* ......................................................................... */
  93. /*
  94. * Return the status of the DataFlash device.
  95. */
  96. static inline int dataflash_status(struct spi_device *spi)
  97. {
  98. /* NOTE: at45db321c over 25 MHz wants to write
  99. * a dummy byte after the opcode...
  100. */
  101. return spi_w8r8(spi, OP_READ_STATUS);
  102. }
  103. /*
  104. * Poll the DataFlash device until it is READY.
  105. * This usually takes 5-20 msec or so; more for sector erase.
  106. */
  107. static int dataflash_waitready(struct spi_device *spi)
  108. {
  109. int status;
  110. for (;;) {
  111. status = dataflash_status(spi);
  112. if (status < 0) {
  113. pr_debug("%s: status %d?\n",
  114. dev_name(&spi->dev), status);
  115. status = 0;
  116. }
  117. if (status & (1 << 7)) /* RDY/nBSY */
  118. return status;
  119. msleep(3);
  120. }
  121. }
  122. /* ......................................................................... */
  123. /*
  124. * Erase pages of flash.
  125. */
  126. static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
  127. {
  128. struct dataflash *priv = mtd->priv;
  129. struct spi_device *spi = priv->spi;
  130. struct spi_transfer x = { .tx_dma = 0, };
  131. struct spi_message msg;
  132. unsigned blocksize = priv->page_size << 3;
  133. uint8_t *command;
  134. uint32_t rem;
  135. pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
  136. dev_name(&spi->dev), (long long)instr->addr,
  137. (long long)instr->len);
  138. div_u64_rem(instr->len, priv->page_size, &rem);
  139. if (rem)
  140. return -EINVAL;
  141. div_u64_rem(instr->addr, priv->page_size, &rem);
  142. if (rem)
  143. return -EINVAL;
  144. spi_message_init(&msg);
  145. x.tx_buf = command = priv->command;
  146. x.len = 4;
  147. spi_message_add_tail(&x, &msg);
  148. mutex_lock(&priv->lock);
  149. while (instr->len > 0) {
  150. unsigned int pageaddr;
  151. int status;
  152. int do_block;
  153. /* Calculate flash page address; use block erase (for speed) if
  154. * we're at a block boundary and need to erase the whole block.
  155. */
  156. pageaddr = div_u64(instr->addr, priv->page_size);
  157. do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
  158. pageaddr = pageaddr << priv->page_offset;
  159. command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
  160. command[1] = (uint8_t)(pageaddr >> 16);
  161. command[2] = (uint8_t)(pageaddr >> 8);
  162. command[3] = 0;
  163. pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
  164. do_block ? "block" : "page",
  165. command[0], command[1], command[2], command[3],
  166. pageaddr);
  167. status = spi_sync(spi, &msg);
  168. (void) dataflash_waitready(spi);
  169. if (status < 0) {
  170. printk(KERN_ERR "%s: erase %x, err %d\n",
  171. dev_name(&spi->dev), pageaddr, status);
  172. /* REVISIT: can retry instr->retries times; or
  173. * giveup and instr->fail_addr = instr->addr;
  174. */
  175. continue;
  176. }
  177. if (do_block) {
  178. instr->addr += blocksize;
  179. instr->len -= blocksize;
  180. } else {
  181. instr->addr += priv->page_size;
  182. instr->len -= priv->page_size;
  183. }
  184. }
  185. mutex_unlock(&priv->lock);
  186. /* Inform MTD subsystem that erase is complete */
  187. instr->state = MTD_ERASE_DONE;
  188. mtd_erase_callback(instr);
  189. return 0;
  190. }
  191. /*
  192. * Read from the DataFlash device.
  193. * from : Start offset in flash device
  194. * len : Amount to read
  195. * retlen : About of data actually read
  196. * buf : Buffer containing the data
  197. */
  198. static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
  199. size_t *retlen, u_char *buf)
  200. {
  201. struct dataflash *priv = mtd->priv;
  202. struct spi_transfer x[2] = { { .tx_dma = 0, }, };
  203. struct spi_message msg;
  204. unsigned int addr;
  205. uint8_t *command;
  206. int status;
  207. pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
  208. (unsigned)from, (unsigned)(from + len));
  209. /* Sanity checks */
  210. if (!len)
  211. return 0;
  212. /* Calculate flash page/byte address */
  213. addr = (((unsigned)from / priv->page_size) << priv->page_offset)
  214. + ((unsigned)from % priv->page_size);
  215. command = priv->command;
  216. pr_debug("READ: (%x) %x %x %x\n",
  217. command[0], command[1], command[2], command[3]);
  218. spi_message_init(&msg);
  219. x[0].tx_buf = command;
  220. x[0].len = 8;
  221. spi_message_add_tail(&x[0], &msg);
  222. x[1].rx_buf = buf;
  223. x[1].len = len;
  224. spi_message_add_tail(&x[1], &msg);
  225. mutex_lock(&priv->lock);
  226. /* Continuous read, max clock = f(car) which may be less than
  227. * the peak rate available. Some chips support commands with
  228. * fewer "don't care" bytes. Both buffers stay unchanged.
  229. */
  230. command[0] = OP_READ_CONTINUOUS;
  231. command[1] = (uint8_t)(addr >> 16);
  232. command[2] = (uint8_t)(addr >> 8);
  233. command[3] = (uint8_t)(addr >> 0);
  234. /* plus 4 "don't care" bytes */
  235. status = spi_sync(priv->spi, &msg);
  236. mutex_unlock(&priv->lock);
  237. if (status >= 0) {
  238. *retlen = msg.actual_length - 8;
  239. status = 0;
  240. } else
  241. pr_debug("%s: read %x..%x --> %d\n",
  242. dev_name(&priv->spi->dev),
  243. (unsigned)from, (unsigned)(from + len),
  244. status);
  245. return status;
  246. }
  247. /*
  248. * Write to the DataFlash device.
  249. * to : Start offset in flash device
  250. * len : Amount to write
  251. * retlen : Amount of data actually written
  252. * buf : Buffer containing the data
  253. */
  254. static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
  255. size_t * retlen, const u_char * buf)
  256. {
  257. struct dataflash *priv = mtd->priv;
  258. struct spi_device *spi = priv->spi;
  259. struct spi_transfer x[2] = { { .tx_dma = 0, }, };
  260. struct spi_message msg;
  261. unsigned int pageaddr, addr, offset, writelen;
  262. size_t remaining = len;
  263. u_char *writebuf = (u_char *) buf;
  264. int status = -EINVAL;
  265. uint8_t *command;
  266. pr_debug("%s: write 0x%x..0x%x\n",
  267. dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
  268. /* Sanity checks */
  269. if (!len)
  270. return 0;
  271. spi_message_init(&msg);
  272. x[0].tx_buf = command = priv->command;
  273. x[0].len = 4;
  274. spi_message_add_tail(&x[0], &msg);
  275. pageaddr = ((unsigned)to / priv->page_size);
  276. offset = ((unsigned)to % priv->page_size);
  277. if (offset + len > priv->page_size)
  278. writelen = priv->page_size - offset;
  279. else
  280. writelen = len;
  281. mutex_lock(&priv->lock);
  282. while (remaining > 0) {
  283. pr_debug("write @ %i:%i len=%i\n",
  284. pageaddr, offset, writelen);
  285. /* REVISIT:
  286. * (a) each page in a sector must be rewritten at least
  287. * once every 10K sibling erase/program operations.
  288. * (b) for pages that are already erased, we could
  289. * use WRITE+MWRITE not PROGRAM for ~30% speedup.
  290. * (c) WRITE to buffer could be done while waiting for
  291. * a previous MWRITE/MWERASE to complete ...
  292. * (d) error handling here seems to be mostly missing.
  293. *
  294. * Two persistent bits per page, plus a per-sector counter,
  295. * could support (a) and (b) ... we might consider using
  296. * the second half of sector zero, which is just one block,
  297. * to track that state. (On AT91, that sector should also
  298. * support boot-from-DataFlash.)
  299. */
  300. addr = pageaddr << priv->page_offset;
  301. /* (1) Maybe transfer partial page to Buffer1 */
  302. if (writelen != priv->page_size) {
  303. command[0] = OP_TRANSFER_BUF1;
  304. command[1] = (addr & 0x00FF0000) >> 16;
  305. command[2] = (addr & 0x0000FF00) >> 8;
  306. command[3] = 0;
  307. pr_debug("TRANSFER: (%x) %x %x %x\n",
  308. command[0], command[1], command[2], command[3]);
  309. status = spi_sync(spi, &msg);
  310. if (status < 0)
  311. pr_debug("%s: xfer %u -> %d\n",
  312. dev_name(&spi->dev), addr, status);
  313. (void) dataflash_waitready(priv->spi);
  314. }
  315. /* (2) Program full page via Buffer1 */
  316. addr += offset;
  317. command[0] = OP_PROGRAM_VIA_BUF1;
  318. command[1] = (addr & 0x00FF0000) >> 16;
  319. command[2] = (addr & 0x0000FF00) >> 8;
  320. command[3] = (addr & 0x000000FF);
  321. pr_debug("PROGRAM: (%x) %x %x %x\n",
  322. command[0], command[1], command[2], command[3]);
  323. x[1].tx_buf = writebuf;
  324. x[1].len = writelen;
  325. spi_message_add_tail(x + 1, &msg);
  326. status = spi_sync(spi, &msg);
  327. spi_transfer_del(x + 1);
  328. if (status < 0)
  329. pr_debug("%s: pgm %u/%u -> %d\n",
  330. dev_name(&spi->dev), addr, writelen, status);
  331. (void) dataflash_waitready(priv->spi);
  332. #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
  333. /* (3) Compare to Buffer1 */
  334. addr = pageaddr << priv->page_offset;
  335. command[0] = OP_COMPARE_BUF1;
  336. command[1] = (addr & 0x00FF0000) >> 16;
  337. command[2] = (addr & 0x0000FF00) >> 8;
  338. command[3] = 0;
  339. pr_debug("COMPARE: (%x) %x %x %x\n",
  340. command[0], command[1], command[2], command[3]);
  341. status = spi_sync(spi, &msg);
  342. if (status < 0)
  343. pr_debug("%s: compare %u -> %d\n",
  344. dev_name(&spi->dev), addr, status);
  345. status = dataflash_waitready(priv->spi);
  346. /* Check result of the compare operation */
  347. if (status & (1 << 6)) {
  348. printk(KERN_ERR "%s: compare page %u, err %d\n",
  349. dev_name(&spi->dev), pageaddr, status);
  350. remaining = 0;
  351. status = -EIO;
  352. break;
  353. } else
  354. status = 0;
  355. #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
  356. remaining = remaining - writelen;
  357. pageaddr++;
  358. offset = 0;
  359. writebuf += writelen;
  360. *retlen += writelen;
  361. if (remaining > priv->page_size)
  362. writelen = priv->page_size;
  363. else
  364. writelen = remaining;
  365. }
  366. mutex_unlock(&priv->lock);
  367. return status;
  368. }
  369. /* ......................................................................... */
  370. #ifdef CONFIG_MTD_DATAFLASH_OTP
  371. static int dataflash_get_otp_info(struct mtd_info *mtd,
  372. struct otp_info *info, size_t len)
  373. {
  374. /* Report both blocks as identical: bytes 0..64, locked.
  375. * Unless the user block changed from all-ones, we can't
  376. * tell whether it's still writable; so we assume it isn't.
  377. */
  378. info->start = 0;
  379. info->length = 64;
  380. info->locked = 1;
  381. return sizeof(*info);
  382. }
  383. static ssize_t otp_read(struct spi_device *spi, unsigned base,
  384. uint8_t *buf, loff_t off, size_t len)
  385. {
  386. struct spi_message m;
  387. size_t l;
  388. uint8_t *scratch;
  389. struct spi_transfer t;
  390. int status;
  391. if (off > 64)
  392. return -EINVAL;
  393. if ((off + len) > 64)
  394. len = 64 - off;
  395. if (len == 0)
  396. return len;
  397. spi_message_init(&m);
  398. l = 4 + base + off + len;
  399. scratch = kzalloc(l, GFP_KERNEL);
  400. if (!scratch)
  401. return -ENOMEM;
  402. /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
  403. * IN: ignore 4 bytes, data bytes 0..N (max 127)
  404. */
  405. scratch[0] = OP_READ_SECURITY;
  406. memset(&t, 0, sizeof t);
  407. t.tx_buf = scratch;
  408. t.rx_buf = scratch;
  409. t.len = l;
  410. spi_message_add_tail(&t, &m);
  411. dataflash_waitready(spi);
  412. status = spi_sync(spi, &m);
  413. if (status >= 0) {
  414. memcpy(buf, scratch + 4 + base + off, len);
  415. status = len;
  416. }
  417. kfree(scratch);
  418. return status;
  419. }
  420. static int dataflash_read_fact_otp(struct mtd_info *mtd,
  421. loff_t from, size_t len, size_t *retlen, u_char *buf)
  422. {
  423. struct dataflash *priv = mtd->priv;
  424. int status;
  425. /* 64 bytes, from 0..63 ... start at 64 on-chip */
  426. mutex_lock(&priv->lock);
  427. status = otp_read(priv->spi, 64, buf, from, len);
  428. mutex_unlock(&priv->lock);
  429. if (status < 0)
  430. return status;
  431. *retlen = status;
  432. return 0;
  433. }
  434. static int dataflash_read_user_otp(struct mtd_info *mtd,
  435. loff_t from, size_t len, size_t *retlen, u_char *buf)
  436. {
  437. struct dataflash *priv = mtd->priv;
  438. int status;
  439. /* 64 bytes, from 0..63 ... start at 0 on-chip */
  440. mutex_lock(&priv->lock);
  441. status = otp_read(priv->spi, 0, buf, from, len);
  442. mutex_unlock(&priv->lock);
  443. if (status < 0)
  444. return status;
  445. *retlen = status;
  446. return 0;
  447. }
  448. static int dataflash_write_user_otp(struct mtd_info *mtd,
  449. loff_t from, size_t len, size_t *retlen, u_char *buf)
  450. {
  451. struct spi_message m;
  452. const size_t l = 4 + 64;
  453. uint8_t *scratch;
  454. struct spi_transfer t;
  455. struct dataflash *priv = mtd->priv;
  456. int status;
  457. if (len > 64)
  458. return -EINVAL;
  459. /* Strictly speaking, we *could* truncate the write ... but
  460. * let's not do that for the only write that's ever possible.
  461. */
  462. if ((from + len) > 64)
  463. return -EINVAL;
  464. /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
  465. * IN: ignore all
  466. */
  467. scratch = kzalloc(l, GFP_KERNEL);
  468. if (!scratch)
  469. return -ENOMEM;
  470. scratch[0] = OP_WRITE_SECURITY;
  471. memcpy(scratch + 4 + from, buf, len);
  472. spi_message_init(&m);
  473. memset(&t, 0, sizeof t);
  474. t.tx_buf = scratch;
  475. t.len = l;
  476. spi_message_add_tail(&t, &m);
  477. /* Write the OTP bits, if they've not yet been written.
  478. * This modifies SRAM buffer1.
  479. */
  480. mutex_lock(&priv->lock);
  481. dataflash_waitready(priv->spi);
  482. status = spi_sync(priv->spi, &m);
  483. mutex_unlock(&priv->lock);
  484. kfree(scratch);
  485. if (status >= 0) {
  486. status = 0;
  487. *retlen = len;
  488. }
  489. return status;
  490. }
  491. static char *otp_setup(struct mtd_info *device, char revision)
  492. {
  493. device->_get_fact_prot_info = dataflash_get_otp_info;
  494. device->_read_fact_prot_reg = dataflash_read_fact_otp;
  495. device->_get_user_prot_info = dataflash_get_otp_info;
  496. device->_read_user_prot_reg = dataflash_read_user_otp;
  497. /* rev c parts (at45db321c and at45db1281 only!) use a
  498. * different write procedure; not (yet?) implemented.
  499. */
  500. if (revision > 'c')
  501. device->_write_user_prot_reg = dataflash_write_user_otp;
  502. return ", OTP";
  503. }
  504. #else
  505. static char *otp_setup(struct mtd_info *device, char revision)
  506. {
  507. return " (OTP)";
  508. }
  509. #endif
  510. /* ......................................................................... */
  511. /*
  512. * Register DataFlash device with MTD subsystem.
  513. */
  514. static int __devinit
  515. add_dataflash_otp(struct spi_device *spi, char *name,
  516. int nr_pages, int pagesize, int pageoffset, char revision)
  517. {
  518. struct dataflash *priv;
  519. struct mtd_info *device;
  520. struct mtd_part_parser_data ppdata;
  521. struct flash_platform_data *pdata = spi->dev.platform_data;
  522. char *otp_tag = "";
  523. int err = 0;
  524. priv = kzalloc(sizeof *priv, GFP_KERNEL);
  525. if (!priv)
  526. return -ENOMEM;
  527. mutex_init(&priv->lock);
  528. priv->spi = spi;
  529. priv->page_size = pagesize;
  530. priv->page_offset = pageoffset;
  531. /* name must be usable with cmdlinepart */
  532. sprintf(priv->name, "spi%d.%d-%s",
  533. spi->master->bus_num, spi->chip_select,
  534. name);
  535. device = &priv->mtd;
  536. device->name = (pdata && pdata->name) ? pdata->name : priv->name;
  537. device->size = nr_pages * pagesize;
  538. device->erasesize = pagesize;
  539. device->writesize = pagesize;
  540. device->owner = THIS_MODULE;
  541. device->type = MTD_DATAFLASH;
  542. device->flags = MTD_WRITEABLE;
  543. device->_erase = dataflash_erase;
  544. device->_read = dataflash_read;
  545. device->_write = dataflash_write;
  546. device->priv = priv;
  547. device->dev.parent = &spi->dev;
  548. if (revision >= 'c')
  549. otp_tag = otp_setup(device, revision);
  550. dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
  551. name, (long long)((device->size + 1023) >> 10),
  552. pagesize, otp_tag);
  553. dev_set_drvdata(&spi->dev, priv);
  554. ppdata.of_node = spi->dev.of_node;
  555. err = mtd_device_parse_register(device, NULL, &ppdata,
  556. pdata ? pdata->parts : NULL,
  557. pdata ? pdata->nr_parts : 0);
  558. if (!err)
  559. return 0;
  560. dev_set_drvdata(&spi->dev, NULL);
  561. kfree(priv);
  562. return err;
  563. }
  564. static inline int __devinit
  565. add_dataflash(struct spi_device *spi, char *name,
  566. int nr_pages, int pagesize, int pageoffset)
  567. {
  568. return add_dataflash_otp(spi, name, nr_pages, pagesize,
  569. pageoffset, 0);
  570. }
  571. struct flash_info {
  572. char *name;
  573. /* JEDEC id has a high byte of zero plus three data bytes:
  574. * the manufacturer id, then a two byte device id.
  575. */
  576. uint32_t jedec_id;
  577. /* The size listed here is what works with OP_ERASE_PAGE. */
  578. unsigned nr_pages;
  579. uint16_t pagesize;
  580. uint16_t pageoffset;
  581. uint16_t flags;
  582. #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
  583. #define IS_POW2PS 0x0001 /* uses 2^N byte pages */
  584. };
  585. static struct flash_info __devinitdata dataflash_data [] = {
  586. /*
  587. * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
  588. * one with IS_POW2PS and the other without. The entry with the
  589. * non-2^N byte page size can't name exact chip revisions without
  590. * losing backwards compatibility for cmdlinepart.
  591. *
  592. * These newer chips also support 128-byte security registers (with
  593. * 64 bytes one-time-programmable) and software write-protection.
  594. */
  595. { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
  596. { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
  597. { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
  598. { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
  599. { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
  600. { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
  601. { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
  602. { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
  603. { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
  604. { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
  605. { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
  606. { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
  607. { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
  608. { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
  609. { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
  610. };
  611. static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
  612. {
  613. int tmp;
  614. uint8_t code = OP_READ_ID;
  615. uint8_t id[3];
  616. uint32_t jedec;
  617. struct flash_info *info;
  618. int status;
  619. /* JEDEC also defines an optional "extended device information"
  620. * string for after vendor-specific data, after the three bytes
  621. * we use here. Supporting some chips might require using it.
  622. *
  623. * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
  624. * That's not an error; only rev C and newer chips handle it, and
  625. * only Atmel sells these chips.
  626. */
  627. tmp = spi_write_then_read(spi, &code, 1, id, 3);
  628. if (tmp < 0) {
  629. pr_debug("%s: error %d reading JEDEC ID\n",
  630. dev_name(&spi->dev), tmp);
  631. return ERR_PTR(tmp);
  632. }
  633. if (id[0] != 0x1f)
  634. return NULL;
  635. jedec = id[0];
  636. jedec = jedec << 8;
  637. jedec |= id[1];
  638. jedec = jedec << 8;
  639. jedec |= id[2];
  640. for (tmp = 0, info = dataflash_data;
  641. tmp < ARRAY_SIZE(dataflash_data);
  642. tmp++, info++) {
  643. if (info->jedec_id == jedec) {
  644. pr_debug("%s: OTP, sector protect%s\n",
  645. dev_name(&spi->dev),
  646. (info->flags & SUP_POW2PS)
  647. ? ", binary pagesize" : ""
  648. );
  649. if (info->flags & SUP_POW2PS) {
  650. status = dataflash_status(spi);
  651. if (status < 0) {
  652. pr_debug("%s: status error %d\n",
  653. dev_name(&spi->dev), status);
  654. return ERR_PTR(status);
  655. }
  656. if (status & 0x1) {
  657. if (info->flags & IS_POW2PS)
  658. return info;
  659. } else {
  660. if (!(info->flags & IS_POW2PS))
  661. return info;
  662. }
  663. } else
  664. return info;
  665. }
  666. }
  667. /*
  668. * Treat other chips as errors ... we won't know the right page
  669. * size (it might be binary) even when we can tell which density
  670. * class is involved (legacy chip id scheme).
  671. */
  672. dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
  673. return ERR_PTR(-ENODEV);
  674. }
  675. /*
  676. * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
  677. * or else the ID code embedded in the status bits:
  678. *
  679. * Device Density ID code #Pages PageSize Offset
  680. * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
  681. * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
  682. * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
  683. * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
  684. * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
  685. * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
  686. * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
  687. * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
  688. */
  689. static int __devinit dataflash_probe(struct spi_device *spi)
  690. {
  691. int status;
  692. struct flash_info *info;
  693. /*
  694. * Try to detect dataflash by JEDEC ID.
  695. * If it succeeds we know we have either a C or D part.
  696. * D will support power of 2 pagesize option.
  697. * Both support the security register, though with different
  698. * write procedures.
  699. */
  700. info = jedec_probe(spi);
  701. if (IS_ERR(info))
  702. return PTR_ERR(info);
  703. if (info != NULL)
  704. return add_dataflash_otp(spi, info->name, info->nr_pages,
  705. info->pagesize, info->pageoffset,
  706. (info->flags & SUP_POW2PS) ? 'd' : 'c');
  707. /*
  708. * Older chips support only legacy commands, identifing
  709. * capacity using bits in the status byte.
  710. */
  711. status = dataflash_status(spi);
  712. if (status <= 0 || status == 0xff) {
  713. pr_debug("%s: status error %d\n",
  714. dev_name(&spi->dev), status);
  715. if (status == 0 || status == 0xff)
  716. status = -ENODEV;
  717. return status;
  718. }
  719. /* if there's a device there, assume it's dataflash.
  720. * board setup should have set spi->max_speed_max to
  721. * match f(car) for continuous reads, mode 0 or 3.
  722. */
  723. switch (status & 0x3c) {
  724. case 0x0c: /* 0 0 1 1 x x */
  725. status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
  726. break;
  727. case 0x14: /* 0 1 0 1 x x */
  728. status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
  729. break;
  730. case 0x1c: /* 0 1 1 1 x x */
  731. status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
  732. break;
  733. case 0x24: /* 1 0 0 1 x x */
  734. status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
  735. break;
  736. case 0x2c: /* 1 0 1 1 x x */
  737. status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
  738. break;
  739. case 0x34: /* 1 1 0 1 x x */
  740. status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
  741. break;
  742. case 0x38: /* 1 1 1 x x x */
  743. case 0x3c:
  744. status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
  745. break;
  746. /* obsolete AT45DB1282 not (yet?) supported */
  747. default:
  748. pr_debug("%s: unsupported device (%x)\n", dev_name(&spi->dev),
  749. status & 0x3c);
  750. status = -ENODEV;
  751. }
  752. if (status < 0)
  753. pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
  754. status);
  755. return status;
  756. }
  757. static int __devexit dataflash_remove(struct spi_device *spi)
  758. {
  759. struct dataflash *flash = dev_get_drvdata(&spi->dev);
  760. int status;
  761. pr_debug("%s: remove\n", dev_name(&spi->dev));
  762. status = mtd_device_unregister(&flash->mtd);
  763. if (status == 0) {
  764. dev_set_drvdata(&spi->dev, NULL);
  765. kfree(flash);
  766. }
  767. return status;
  768. }
  769. static struct spi_driver dataflash_driver = {
  770. .driver = {
  771. .name = "mtd_dataflash",
  772. .owner = THIS_MODULE,
  773. .of_match_table = dataflash_dt_ids,
  774. },
  775. .probe = dataflash_probe,
  776. .remove = __devexit_p(dataflash_remove),
  777. /* FIXME: investigate suspend and resume... */
  778. };
  779. module_spi_driver(dataflash_driver);
  780. MODULE_LICENSE("GPL");
  781. MODULE_AUTHOR("Andrew Victor, David Brownell");
  782. MODULE_DESCRIPTION("MTD DataFlash driver");
  783. MODULE_ALIAS("spi:mtd_dataflash");