sched.c 218 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. #include "sched_cpupri.h"
  75. /*
  76. * Convert user-nice values [ -20 ... 0 ... 19 ]
  77. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  78. * and back.
  79. */
  80. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  81. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  82. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  83. /*
  84. * 'User priority' is the nice value converted to something we
  85. * can work with better when scaling various scheduler parameters,
  86. * it's a [ 0 ... 39 ] range.
  87. */
  88. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  89. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  90. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  91. /*
  92. * Helpers for converting nanosecond timing to jiffy resolution
  93. */
  94. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. /*
  105. * single value that denotes runtime == period, ie unlimited time.
  106. */
  107. #define RUNTIME_INF ((u64)~0ULL)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. struct rt_bandwidth {
  145. /* nests inside the rq lock: */
  146. spinlock_t rt_runtime_lock;
  147. ktime_t rt_period;
  148. u64 rt_runtime;
  149. struct hrtimer rt_period_timer;
  150. };
  151. static struct rt_bandwidth def_rt_bandwidth;
  152. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  153. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  154. {
  155. struct rt_bandwidth *rt_b =
  156. container_of(timer, struct rt_bandwidth, rt_period_timer);
  157. ktime_t now;
  158. int overrun;
  159. int idle = 0;
  160. for (;;) {
  161. now = hrtimer_cb_get_time(timer);
  162. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  163. if (!overrun)
  164. break;
  165. idle = do_sched_rt_period_timer(rt_b, overrun);
  166. }
  167. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  168. }
  169. static
  170. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  171. {
  172. rt_b->rt_period = ns_to_ktime(period);
  173. rt_b->rt_runtime = runtime;
  174. spin_lock_init(&rt_b->rt_runtime_lock);
  175. hrtimer_init(&rt_b->rt_period_timer,
  176. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  177. rt_b->rt_period_timer.function = sched_rt_period_timer;
  178. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  179. }
  180. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  181. {
  182. ktime_t now;
  183. if (rt_b->rt_runtime == RUNTIME_INF)
  184. return;
  185. if (hrtimer_active(&rt_b->rt_period_timer))
  186. return;
  187. spin_lock(&rt_b->rt_runtime_lock);
  188. for (;;) {
  189. if (hrtimer_active(&rt_b->rt_period_timer))
  190. break;
  191. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  192. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  193. hrtimer_start(&rt_b->rt_period_timer,
  194. rt_b->rt_period_timer.expires,
  195. HRTIMER_MODE_ABS);
  196. }
  197. spin_unlock(&rt_b->rt_runtime_lock);
  198. }
  199. #ifdef CONFIG_RT_GROUP_SCHED
  200. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  201. {
  202. hrtimer_cancel(&rt_b->rt_period_timer);
  203. }
  204. #endif
  205. /*
  206. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  207. * detach_destroy_domains and partition_sched_domains.
  208. */
  209. static DEFINE_MUTEX(sched_domains_mutex);
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. struct task_group *parent;
  234. struct list_head siblings;
  235. struct list_head children;
  236. };
  237. #ifdef CONFIG_USER_SCHED
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_FAIR_GROUP_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_FAIR_GROUP_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_USER_SCHED
  263. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  264. #else /* !CONFIG_USER_SCHED */
  265. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  266. #endif /* CONFIG_USER_SCHED */
  267. /*
  268. * A weight of 0 or 1 can cause arithmetics problems.
  269. * A weight of a cfs_rq is the sum of weights of which entities
  270. * are queued on this cfs_rq, so a weight of a entity should not be
  271. * too large, so as the shares value of a task group.
  272. * (The default weight is 1024 - so there's no practical
  273. * limitation from this.)
  274. */
  275. #define MIN_SHARES 2
  276. #define MAX_SHARES (1UL << 18)
  277. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  278. #endif
  279. /* Default task group.
  280. * Every task in system belong to this group at bootup.
  281. */
  282. struct task_group init_task_group;
  283. /* return group to which a task belongs */
  284. static inline struct task_group *task_group(struct task_struct *p)
  285. {
  286. struct task_group *tg;
  287. #ifdef CONFIG_USER_SCHED
  288. tg = p->user->tg;
  289. #elif defined(CONFIG_CGROUP_SCHED)
  290. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  291. struct task_group, css);
  292. #else
  293. tg = &init_task_group;
  294. #endif
  295. return tg;
  296. }
  297. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  298. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  299. {
  300. #ifdef CONFIG_FAIR_GROUP_SCHED
  301. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  302. p->se.parent = task_group(p)->se[cpu];
  303. #endif
  304. #ifdef CONFIG_RT_GROUP_SCHED
  305. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  306. p->rt.parent = task_group(p)->rt_se[cpu];
  307. #endif
  308. }
  309. #else
  310. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  311. static inline struct task_group *task_group(struct task_struct *p)
  312. {
  313. return NULL;
  314. }
  315. #endif /* CONFIG_GROUP_SCHED */
  316. /* CFS-related fields in a runqueue */
  317. struct cfs_rq {
  318. struct load_weight load;
  319. unsigned long nr_running;
  320. u64 exec_clock;
  321. u64 min_vruntime;
  322. u64 pair_start;
  323. struct rb_root tasks_timeline;
  324. struct rb_node *rb_leftmost;
  325. struct list_head tasks;
  326. struct list_head *balance_iterator;
  327. /*
  328. * 'curr' points to currently running entity on this cfs_rq.
  329. * It is set to NULL otherwise (i.e when none are currently running).
  330. */
  331. struct sched_entity *curr, *next;
  332. unsigned long nr_spread_over;
  333. #ifdef CONFIG_FAIR_GROUP_SCHED
  334. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  335. /*
  336. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  337. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  338. * (like users, containers etc.)
  339. *
  340. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  341. * list is used during load balance.
  342. */
  343. struct list_head leaf_cfs_rq_list;
  344. struct task_group *tg; /* group that "owns" this runqueue */
  345. #ifdef CONFIG_SMP
  346. /*
  347. * the part of load.weight contributed by tasks
  348. */
  349. unsigned long task_weight;
  350. /*
  351. * h_load = weight * f(tg)
  352. *
  353. * Where f(tg) is the recursive weight fraction assigned to
  354. * this group.
  355. */
  356. unsigned long h_load;
  357. /*
  358. * this cpu's part of tg->shares
  359. */
  360. unsigned long shares;
  361. #endif
  362. #endif
  363. };
  364. /* Real-Time classes' related field in a runqueue: */
  365. struct rt_rq {
  366. struct rt_prio_array active;
  367. unsigned long rt_nr_running;
  368. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  369. int highest_prio; /* highest queued rt task prio */
  370. #endif
  371. #ifdef CONFIG_SMP
  372. unsigned long rt_nr_migratory;
  373. int overloaded;
  374. #endif
  375. int rt_throttled;
  376. u64 rt_time;
  377. u64 rt_runtime;
  378. /* Nests inside the rq lock: */
  379. spinlock_t rt_runtime_lock;
  380. #ifdef CONFIG_RT_GROUP_SCHED
  381. unsigned long rt_nr_boosted;
  382. struct rq *rq;
  383. struct list_head leaf_rt_rq_list;
  384. struct task_group *tg;
  385. struct sched_rt_entity *rt_se;
  386. #endif
  387. };
  388. #ifdef CONFIG_SMP
  389. /*
  390. * We add the notion of a root-domain which will be used to define per-domain
  391. * variables. Each exclusive cpuset essentially defines an island domain by
  392. * fully partitioning the member cpus from any other cpuset. Whenever a new
  393. * exclusive cpuset is created, we also create and attach a new root-domain
  394. * object.
  395. *
  396. */
  397. struct root_domain {
  398. atomic_t refcount;
  399. cpumask_t span;
  400. cpumask_t online;
  401. /*
  402. * The "RT overload" flag: it gets set if a CPU has more than
  403. * one runnable RT task.
  404. */
  405. cpumask_t rto_mask;
  406. atomic_t rto_count;
  407. #ifdef CONFIG_SMP
  408. struct cpupri cpupri;
  409. #endif
  410. };
  411. /*
  412. * By default the system creates a single root-domain with all cpus as
  413. * members (mimicking the global state we have today).
  414. */
  415. static struct root_domain def_root_domain;
  416. #endif
  417. /*
  418. * This is the main, per-CPU runqueue data structure.
  419. *
  420. * Locking rule: those places that want to lock multiple runqueues
  421. * (such as the load balancing or the thread migration code), lock
  422. * acquire operations must be ordered by ascending &runqueue.
  423. */
  424. struct rq {
  425. /* runqueue lock: */
  426. spinlock_t lock;
  427. /*
  428. * nr_running and cpu_load should be in the same cacheline because
  429. * remote CPUs use both these fields when doing load calculation.
  430. */
  431. unsigned long nr_running;
  432. #define CPU_LOAD_IDX_MAX 5
  433. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  434. unsigned char idle_at_tick;
  435. #ifdef CONFIG_NO_HZ
  436. unsigned long last_tick_seen;
  437. unsigned char in_nohz_recently;
  438. #endif
  439. /* capture load from *all* tasks on this cpu: */
  440. struct load_weight load;
  441. unsigned long nr_load_updates;
  442. u64 nr_switches;
  443. struct cfs_rq cfs;
  444. struct rt_rq rt;
  445. #ifdef CONFIG_FAIR_GROUP_SCHED
  446. /* list of leaf cfs_rq on this cpu: */
  447. struct list_head leaf_cfs_rq_list;
  448. #endif
  449. #ifdef CONFIG_RT_GROUP_SCHED
  450. struct list_head leaf_rt_rq_list;
  451. #endif
  452. /*
  453. * This is part of a global counter where only the total sum
  454. * over all CPUs matters. A task can increase this counter on
  455. * one CPU and if it got migrated afterwards it may decrease
  456. * it on another CPU. Always updated under the runqueue lock:
  457. */
  458. unsigned long nr_uninterruptible;
  459. struct task_struct *curr, *idle;
  460. unsigned long next_balance;
  461. struct mm_struct *prev_mm;
  462. u64 clock;
  463. atomic_t nr_iowait;
  464. #ifdef CONFIG_SMP
  465. struct root_domain *rd;
  466. struct sched_domain *sd;
  467. /* For active balancing */
  468. int active_balance;
  469. int push_cpu;
  470. /* cpu of this runqueue: */
  471. int cpu;
  472. int online;
  473. unsigned long avg_load_per_task;
  474. struct task_struct *migration_thread;
  475. struct list_head migration_queue;
  476. #endif
  477. #ifdef CONFIG_SCHED_HRTICK
  478. unsigned long hrtick_flags;
  479. ktime_t hrtick_expire;
  480. struct hrtimer hrtick_timer;
  481. #endif
  482. #ifdef CONFIG_SCHEDSTATS
  483. /* latency stats */
  484. struct sched_info rq_sched_info;
  485. /* sys_sched_yield() stats */
  486. unsigned int yld_exp_empty;
  487. unsigned int yld_act_empty;
  488. unsigned int yld_both_empty;
  489. unsigned int yld_count;
  490. /* schedule() stats */
  491. unsigned int sched_switch;
  492. unsigned int sched_count;
  493. unsigned int sched_goidle;
  494. /* try_to_wake_up() stats */
  495. unsigned int ttwu_count;
  496. unsigned int ttwu_local;
  497. /* BKL stats */
  498. unsigned int bkl_count;
  499. #endif
  500. struct lock_class_key rq_lock_key;
  501. };
  502. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  503. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  504. {
  505. rq->curr->sched_class->check_preempt_curr(rq, p);
  506. }
  507. static inline int cpu_of(struct rq *rq)
  508. {
  509. #ifdef CONFIG_SMP
  510. return rq->cpu;
  511. #else
  512. return 0;
  513. #endif
  514. }
  515. /*
  516. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  517. * See detach_destroy_domains: synchronize_sched for details.
  518. *
  519. * The domain tree of any CPU may only be accessed from within
  520. * preempt-disabled sections.
  521. */
  522. #define for_each_domain(cpu, __sd) \
  523. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  524. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  525. #define this_rq() (&__get_cpu_var(runqueues))
  526. #define task_rq(p) cpu_rq(task_cpu(p))
  527. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  528. static inline void update_rq_clock(struct rq *rq)
  529. {
  530. rq->clock = sched_clock_cpu(cpu_of(rq));
  531. }
  532. /*
  533. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  534. */
  535. #ifdef CONFIG_SCHED_DEBUG
  536. # define const_debug __read_mostly
  537. #else
  538. # define const_debug static const
  539. #endif
  540. /*
  541. * Debugging: various feature bits
  542. */
  543. #define SCHED_FEAT(name, enabled) \
  544. __SCHED_FEAT_##name ,
  545. enum {
  546. #include "sched_features.h"
  547. };
  548. #undef SCHED_FEAT
  549. #define SCHED_FEAT(name, enabled) \
  550. (1UL << __SCHED_FEAT_##name) * enabled |
  551. const_debug unsigned int sysctl_sched_features =
  552. #include "sched_features.h"
  553. 0;
  554. #undef SCHED_FEAT
  555. #ifdef CONFIG_SCHED_DEBUG
  556. #define SCHED_FEAT(name, enabled) \
  557. #name ,
  558. static __read_mostly char *sched_feat_names[] = {
  559. #include "sched_features.h"
  560. NULL
  561. };
  562. #undef SCHED_FEAT
  563. static int sched_feat_open(struct inode *inode, struct file *filp)
  564. {
  565. filp->private_data = inode->i_private;
  566. return 0;
  567. }
  568. static ssize_t
  569. sched_feat_read(struct file *filp, char __user *ubuf,
  570. size_t cnt, loff_t *ppos)
  571. {
  572. char *buf;
  573. int r = 0;
  574. int len = 0;
  575. int i;
  576. for (i = 0; sched_feat_names[i]; i++) {
  577. len += strlen(sched_feat_names[i]);
  578. len += 4;
  579. }
  580. buf = kmalloc(len + 2, GFP_KERNEL);
  581. if (!buf)
  582. return -ENOMEM;
  583. for (i = 0; sched_feat_names[i]; i++) {
  584. if (sysctl_sched_features & (1UL << i))
  585. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  586. else
  587. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  588. }
  589. r += sprintf(buf + r, "\n");
  590. WARN_ON(r >= len + 2);
  591. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  592. kfree(buf);
  593. return r;
  594. }
  595. static ssize_t
  596. sched_feat_write(struct file *filp, const char __user *ubuf,
  597. size_t cnt, loff_t *ppos)
  598. {
  599. char buf[64];
  600. char *cmp = buf;
  601. int neg = 0;
  602. int i;
  603. if (cnt > 63)
  604. cnt = 63;
  605. if (copy_from_user(&buf, ubuf, cnt))
  606. return -EFAULT;
  607. buf[cnt] = 0;
  608. if (strncmp(buf, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. int len = strlen(sched_feat_names[i]);
  614. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  615. if (neg)
  616. sysctl_sched_features &= ~(1UL << i);
  617. else
  618. sysctl_sched_features |= (1UL << i);
  619. break;
  620. }
  621. }
  622. if (!sched_feat_names[i])
  623. return -EINVAL;
  624. filp->f_pos += cnt;
  625. return cnt;
  626. }
  627. static struct file_operations sched_feat_fops = {
  628. .open = sched_feat_open,
  629. .read = sched_feat_read,
  630. .write = sched_feat_write,
  631. };
  632. static __init int sched_init_debug(void)
  633. {
  634. debugfs_create_file("sched_features", 0644, NULL, NULL,
  635. &sched_feat_fops);
  636. return 0;
  637. }
  638. late_initcall(sched_init_debug);
  639. #endif
  640. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  641. /*
  642. * Number of tasks to iterate in a single balance run.
  643. * Limited because this is done with IRQs disabled.
  644. */
  645. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  646. /*
  647. * ratelimit for updating the group shares.
  648. * default: 0.5ms
  649. */
  650. const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
  651. /*
  652. * period over which we measure -rt task cpu usage in us.
  653. * default: 1s
  654. */
  655. unsigned int sysctl_sched_rt_period = 1000000;
  656. static __read_mostly int scheduler_running;
  657. /*
  658. * part of the period that we allow rt tasks to run in us.
  659. * default: 0.95s
  660. */
  661. int sysctl_sched_rt_runtime = 950000;
  662. static inline u64 global_rt_period(void)
  663. {
  664. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  665. }
  666. static inline u64 global_rt_runtime(void)
  667. {
  668. if (sysctl_sched_rt_period < 0)
  669. return RUNTIME_INF;
  670. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  671. }
  672. #ifndef prepare_arch_switch
  673. # define prepare_arch_switch(next) do { } while (0)
  674. #endif
  675. #ifndef finish_arch_switch
  676. # define finish_arch_switch(prev) do { } while (0)
  677. #endif
  678. static inline int task_current(struct rq *rq, struct task_struct *p)
  679. {
  680. return rq->curr == p;
  681. }
  682. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  683. static inline int task_running(struct rq *rq, struct task_struct *p)
  684. {
  685. return task_current(rq, p);
  686. }
  687. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  688. {
  689. }
  690. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  691. {
  692. #ifdef CONFIG_DEBUG_SPINLOCK
  693. /* this is a valid case when another task releases the spinlock */
  694. rq->lock.owner = current;
  695. #endif
  696. /*
  697. * If we are tracking spinlock dependencies then we have to
  698. * fix up the runqueue lock - which gets 'carried over' from
  699. * prev into current:
  700. */
  701. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  702. spin_unlock_irq(&rq->lock);
  703. }
  704. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  705. static inline int task_running(struct rq *rq, struct task_struct *p)
  706. {
  707. #ifdef CONFIG_SMP
  708. return p->oncpu;
  709. #else
  710. return task_current(rq, p);
  711. #endif
  712. }
  713. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  714. {
  715. #ifdef CONFIG_SMP
  716. /*
  717. * We can optimise this out completely for !SMP, because the
  718. * SMP rebalancing from interrupt is the only thing that cares
  719. * here.
  720. */
  721. next->oncpu = 1;
  722. #endif
  723. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  724. spin_unlock_irq(&rq->lock);
  725. #else
  726. spin_unlock(&rq->lock);
  727. #endif
  728. }
  729. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  730. {
  731. #ifdef CONFIG_SMP
  732. /*
  733. * After ->oncpu is cleared, the task can be moved to a different CPU.
  734. * We must ensure this doesn't happen until the switch is completely
  735. * finished.
  736. */
  737. smp_wmb();
  738. prev->oncpu = 0;
  739. #endif
  740. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  741. local_irq_enable();
  742. #endif
  743. }
  744. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  745. /*
  746. * __task_rq_lock - lock the runqueue a given task resides on.
  747. * Must be called interrupts disabled.
  748. */
  749. static inline struct rq *__task_rq_lock(struct task_struct *p)
  750. __acquires(rq->lock)
  751. {
  752. for (;;) {
  753. struct rq *rq = task_rq(p);
  754. spin_lock(&rq->lock);
  755. if (likely(rq == task_rq(p)))
  756. return rq;
  757. spin_unlock(&rq->lock);
  758. }
  759. }
  760. /*
  761. * task_rq_lock - lock the runqueue a given task resides on and disable
  762. * interrupts. Note the ordering: we can safely lookup the task_rq without
  763. * explicitly disabling preemption.
  764. */
  765. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  766. __acquires(rq->lock)
  767. {
  768. struct rq *rq;
  769. for (;;) {
  770. local_irq_save(*flags);
  771. rq = task_rq(p);
  772. spin_lock(&rq->lock);
  773. if (likely(rq == task_rq(p)))
  774. return rq;
  775. spin_unlock_irqrestore(&rq->lock, *flags);
  776. }
  777. }
  778. static void __task_rq_unlock(struct rq *rq)
  779. __releases(rq->lock)
  780. {
  781. spin_unlock(&rq->lock);
  782. }
  783. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  784. __releases(rq->lock)
  785. {
  786. spin_unlock_irqrestore(&rq->lock, *flags);
  787. }
  788. /*
  789. * this_rq_lock - lock this runqueue and disable interrupts.
  790. */
  791. static struct rq *this_rq_lock(void)
  792. __acquires(rq->lock)
  793. {
  794. struct rq *rq;
  795. local_irq_disable();
  796. rq = this_rq();
  797. spin_lock(&rq->lock);
  798. return rq;
  799. }
  800. static void __resched_task(struct task_struct *p, int tif_bit);
  801. static inline void resched_task(struct task_struct *p)
  802. {
  803. __resched_task(p, TIF_NEED_RESCHED);
  804. }
  805. #ifdef CONFIG_SCHED_HRTICK
  806. /*
  807. * Use HR-timers to deliver accurate preemption points.
  808. *
  809. * Its all a bit involved since we cannot program an hrt while holding the
  810. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  811. * reschedule event.
  812. *
  813. * When we get rescheduled we reprogram the hrtick_timer outside of the
  814. * rq->lock.
  815. */
  816. static inline void resched_hrt(struct task_struct *p)
  817. {
  818. __resched_task(p, TIF_HRTICK_RESCHED);
  819. }
  820. static inline void resched_rq(struct rq *rq)
  821. {
  822. unsigned long flags;
  823. spin_lock_irqsave(&rq->lock, flags);
  824. resched_task(rq->curr);
  825. spin_unlock_irqrestore(&rq->lock, flags);
  826. }
  827. enum {
  828. HRTICK_SET, /* re-programm hrtick_timer */
  829. HRTICK_RESET, /* not a new slice */
  830. HRTICK_BLOCK, /* stop hrtick operations */
  831. };
  832. /*
  833. * Use hrtick when:
  834. * - enabled by features
  835. * - hrtimer is actually high res
  836. */
  837. static inline int hrtick_enabled(struct rq *rq)
  838. {
  839. if (!sched_feat(HRTICK))
  840. return 0;
  841. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  842. return 0;
  843. return hrtimer_is_hres_active(&rq->hrtick_timer);
  844. }
  845. /*
  846. * Called to set the hrtick timer state.
  847. *
  848. * called with rq->lock held and irqs disabled
  849. */
  850. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  851. {
  852. assert_spin_locked(&rq->lock);
  853. /*
  854. * preempt at: now + delay
  855. */
  856. rq->hrtick_expire =
  857. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  858. /*
  859. * indicate we need to program the timer
  860. */
  861. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  862. if (reset)
  863. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  864. /*
  865. * New slices are called from the schedule path and don't need a
  866. * forced reschedule.
  867. */
  868. if (reset)
  869. resched_hrt(rq->curr);
  870. }
  871. static void hrtick_clear(struct rq *rq)
  872. {
  873. if (hrtimer_active(&rq->hrtick_timer))
  874. hrtimer_cancel(&rq->hrtick_timer);
  875. }
  876. /*
  877. * Update the timer from the possible pending state.
  878. */
  879. static void hrtick_set(struct rq *rq)
  880. {
  881. ktime_t time;
  882. int set, reset;
  883. unsigned long flags;
  884. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  885. spin_lock_irqsave(&rq->lock, flags);
  886. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  887. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  888. time = rq->hrtick_expire;
  889. clear_thread_flag(TIF_HRTICK_RESCHED);
  890. spin_unlock_irqrestore(&rq->lock, flags);
  891. if (set) {
  892. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  893. if (reset && !hrtimer_active(&rq->hrtick_timer))
  894. resched_rq(rq);
  895. } else
  896. hrtick_clear(rq);
  897. }
  898. /*
  899. * High-resolution timer tick.
  900. * Runs from hardirq context with interrupts disabled.
  901. */
  902. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  903. {
  904. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  905. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  906. spin_lock(&rq->lock);
  907. update_rq_clock(rq);
  908. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  909. spin_unlock(&rq->lock);
  910. return HRTIMER_NORESTART;
  911. }
  912. #ifdef CONFIG_SMP
  913. static void hotplug_hrtick_disable(int cpu)
  914. {
  915. struct rq *rq = cpu_rq(cpu);
  916. unsigned long flags;
  917. spin_lock_irqsave(&rq->lock, flags);
  918. rq->hrtick_flags = 0;
  919. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  920. spin_unlock_irqrestore(&rq->lock, flags);
  921. hrtick_clear(rq);
  922. }
  923. static void hotplug_hrtick_enable(int cpu)
  924. {
  925. struct rq *rq = cpu_rq(cpu);
  926. unsigned long flags;
  927. spin_lock_irqsave(&rq->lock, flags);
  928. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  929. spin_unlock_irqrestore(&rq->lock, flags);
  930. }
  931. static int
  932. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  933. {
  934. int cpu = (int)(long)hcpu;
  935. switch (action) {
  936. case CPU_UP_CANCELED:
  937. case CPU_UP_CANCELED_FROZEN:
  938. case CPU_DOWN_PREPARE:
  939. case CPU_DOWN_PREPARE_FROZEN:
  940. case CPU_DEAD:
  941. case CPU_DEAD_FROZEN:
  942. hotplug_hrtick_disable(cpu);
  943. return NOTIFY_OK;
  944. case CPU_UP_PREPARE:
  945. case CPU_UP_PREPARE_FROZEN:
  946. case CPU_DOWN_FAILED:
  947. case CPU_DOWN_FAILED_FROZEN:
  948. case CPU_ONLINE:
  949. case CPU_ONLINE_FROZEN:
  950. hotplug_hrtick_enable(cpu);
  951. return NOTIFY_OK;
  952. }
  953. return NOTIFY_DONE;
  954. }
  955. static void init_hrtick(void)
  956. {
  957. hotcpu_notifier(hotplug_hrtick, 0);
  958. }
  959. #endif /* CONFIG_SMP */
  960. static void init_rq_hrtick(struct rq *rq)
  961. {
  962. rq->hrtick_flags = 0;
  963. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  964. rq->hrtick_timer.function = hrtick;
  965. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  966. }
  967. void hrtick_resched(void)
  968. {
  969. struct rq *rq;
  970. unsigned long flags;
  971. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  972. return;
  973. local_irq_save(flags);
  974. rq = cpu_rq(smp_processor_id());
  975. hrtick_set(rq);
  976. local_irq_restore(flags);
  977. }
  978. #else
  979. static inline void hrtick_clear(struct rq *rq)
  980. {
  981. }
  982. static inline void hrtick_set(struct rq *rq)
  983. {
  984. }
  985. static inline void init_rq_hrtick(struct rq *rq)
  986. {
  987. }
  988. void hrtick_resched(void)
  989. {
  990. }
  991. static inline void init_hrtick(void)
  992. {
  993. }
  994. #endif
  995. /*
  996. * resched_task - mark a task 'to be rescheduled now'.
  997. *
  998. * On UP this means the setting of the need_resched flag, on SMP it
  999. * might also involve a cross-CPU call to trigger the scheduler on
  1000. * the target CPU.
  1001. */
  1002. #ifdef CONFIG_SMP
  1003. #ifndef tsk_is_polling
  1004. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1005. #endif
  1006. static void __resched_task(struct task_struct *p, int tif_bit)
  1007. {
  1008. int cpu;
  1009. assert_spin_locked(&task_rq(p)->lock);
  1010. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1011. return;
  1012. set_tsk_thread_flag(p, tif_bit);
  1013. cpu = task_cpu(p);
  1014. if (cpu == smp_processor_id())
  1015. return;
  1016. /* NEED_RESCHED must be visible before we test polling */
  1017. smp_mb();
  1018. if (!tsk_is_polling(p))
  1019. smp_send_reschedule(cpu);
  1020. }
  1021. static void resched_cpu(int cpu)
  1022. {
  1023. struct rq *rq = cpu_rq(cpu);
  1024. unsigned long flags;
  1025. if (!spin_trylock_irqsave(&rq->lock, flags))
  1026. return;
  1027. resched_task(cpu_curr(cpu));
  1028. spin_unlock_irqrestore(&rq->lock, flags);
  1029. }
  1030. #ifdef CONFIG_NO_HZ
  1031. /*
  1032. * When add_timer_on() enqueues a timer into the timer wheel of an
  1033. * idle CPU then this timer might expire before the next timer event
  1034. * which is scheduled to wake up that CPU. In case of a completely
  1035. * idle system the next event might even be infinite time into the
  1036. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1037. * leaves the inner idle loop so the newly added timer is taken into
  1038. * account when the CPU goes back to idle and evaluates the timer
  1039. * wheel for the next timer event.
  1040. */
  1041. void wake_up_idle_cpu(int cpu)
  1042. {
  1043. struct rq *rq = cpu_rq(cpu);
  1044. if (cpu == smp_processor_id())
  1045. return;
  1046. /*
  1047. * This is safe, as this function is called with the timer
  1048. * wheel base lock of (cpu) held. When the CPU is on the way
  1049. * to idle and has not yet set rq->curr to idle then it will
  1050. * be serialized on the timer wheel base lock and take the new
  1051. * timer into account automatically.
  1052. */
  1053. if (rq->curr != rq->idle)
  1054. return;
  1055. /*
  1056. * We can set TIF_RESCHED on the idle task of the other CPU
  1057. * lockless. The worst case is that the other CPU runs the
  1058. * idle task through an additional NOOP schedule()
  1059. */
  1060. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1061. /* NEED_RESCHED must be visible before we test polling */
  1062. smp_mb();
  1063. if (!tsk_is_polling(rq->idle))
  1064. smp_send_reschedule(cpu);
  1065. }
  1066. #endif /* CONFIG_NO_HZ */
  1067. #else /* !CONFIG_SMP */
  1068. static void __resched_task(struct task_struct *p, int tif_bit)
  1069. {
  1070. assert_spin_locked(&task_rq(p)->lock);
  1071. set_tsk_thread_flag(p, tif_bit);
  1072. }
  1073. #endif /* CONFIG_SMP */
  1074. #if BITS_PER_LONG == 32
  1075. # define WMULT_CONST (~0UL)
  1076. #else
  1077. # define WMULT_CONST (1UL << 32)
  1078. #endif
  1079. #define WMULT_SHIFT 32
  1080. /*
  1081. * Shift right and round:
  1082. */
  1083. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1084. /*
  1085. * delta *= weight / lw
  1086. */
  1087. static unsigned long
  1088. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1089. struct load_weight *lw)
  1090. {
  1091. u64 tmp;
  1092. if (!lw->inv_weight) {
  1093. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1094. lw->inv_weight = 1;
  1095. else
  1096. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1097. / (lw->weight+1);
  1098. }
  1099. tmp = (u64)delta_exec * weight;
  1100. /*
  1101. * Check whether we'd overflow the 64-bit multiplication:
  1102. */
  1103. if (unlikely(tmp > WMULT_CONST))
  1104. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1105. WMULT_SHIFT/2);
  1106. else
  1107. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1108. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1109. }
  1110. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1111. {
  1112. lw->weight += inc;
  1113. lw->inv_weight = 0;
  1114. }
  1115. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1116. {
  1117. lw->weight -= dec;
  1118. lw->inv_weight = 0;
  1119. }
  1120. /*
  1121. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1122. * of tasks with abnormal "nice" values across CPUs the contribution that
  1123. * each task makes to its run queue's load is weighted according to its
  1124. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1125. * scaled version of the new time slice allocation that they receive on time
  1126. * slice expiry etc.
  1127. */
  1128. #define WEIGHT_IDLEPRIO 2
  1129. #define WMULT_IDLEPRIO (1 << 31)
  1130. /*
  1131. * Nice levels are multiplicative, with a gentle 10% change for every
  1132. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1133. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1134. * that remained on nice 0.
  1135. *
  1136. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1137. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1138. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1139. * If a task goes up by ~10% and another task goes down by ~10% then
  1140. * the relative distance between them is ~25%.)
  1141. */
  1142. static const int prio_to_weight[40] = {
  1143. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1144. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1145. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1146. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1147. /* 0 */ 1024, 820, 655, 526, 423,
  1148. /* 5 */ 335, 272, 215, 172, 137,
  1149. /* 10 */ 110, 87, 70, 56, 45,
  1150. /* 15 */ 36, 29, 23, 18, 15,
  1151. };
  1152. /*
  1153. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1154. *
  1155. * In cases where the weight does not change often, we can use the
  1156. * precalculated inverse to speed up arithmetics by turning divisions
  1157. * into multiplications:
  1158. */
  1159. static const u32 prio_to_wmult[40] = {
  1160. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1161. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1162. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1163. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1164. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1165. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1166. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1167. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1168. };
  1169. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1170. /*
  1171. * runqueue iterator, to support SMP load-balancing between different
  1172. * scheduling classes, without having to expose their internal data
  1173. * structures to the load-balancing proper:
  1174. */
  1175. struct rq_iterator {
  1176. void *arg;
  1177. struct task_struct *(*start)(void *);
  1178. struct task_struct *(*next)(void *);
  1179. };
  1180. #ifdef CONFIG_SMP
  1181. static unsigned long
  1182. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1183. unsigned long max_load_move, struct sched_domain *sd,
  1184. enum cpu_idle_type idle, int *all_pinned,
  1185. int *this_best_prio, struct rq_iterator *iterator);
  1186. static int
  1187. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1188. struct sched_domain *sd, enum cpu_idle_type idle,
  1189. struct rq_iterator *iterator);
  1190. #endif
  1191. #ifdef CONFIG_CGROUP_CPUACCT
  1192. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1193. #else
  1194. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1195. #endif
  1196. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1197. {
  1198. update_load_add(&rq->load, load);
  1199. }
  1200. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1201. {
  1202. update_load_sub(&rq->load, load);
  1203. }
  1204. #ifdef CONFIG_SMP
  1205. static unsigned long source_load(int cpu, int type);
  1206. static unsigned long target_load(int cpu, int type);
  1207. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1208. static unsigned long cpu_avg_load_per_task(int cpu)
  1209. {
  1210. struct rq *rq = cpu_rq(cpu);
  1211. if (rq->nr_running)
  1212. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1213. return rq->avg_load_per_task;
  1214. }
  1215. #ifdef CONFIG_FAIR_GROUP_SCHED
  1216. typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
  1217. /*
  1218. * Iterate the full tree, calling @down when first entering a node and @up when
  1219. * leaving it for the final time.
  1220. */
  1221. static void
  1222. walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
  1223. {
  1224. struct task_group *parent, *child;
  1225. rcu_read_lock();
  1226. parent = &root_task_group;
  1227. down:
  1228. (*down)(parent, cpu, sd);
  1229. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1230. parent = child;
  1231. goto down;
  1232. up:
  1233. continue;
  1234. }
  1235. (*up)(parent, cpu, sd);
  1236. child = parent;
  1237. parent = parent->parent;
  1238. if (parent)
  1239. goto up;
  1240. rcu_read_unlock();
  1241. }
  1242. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1243. /*
  1244. * Calculate and set the cpu's group shares.
  1245. */
  1246. static void
  1247. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1248. unsigned long sd_shares, unsigned long sd_rq_weight)
  1249. {
  1250. int boost = 0;
  1251. unsigned long shares;
  1252. unsigned long rq_weight;
  1253. if (!tg->se[cpu])
  1254. return;
  1255. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1256. /*
  1257. * If there are currently no tasks on the cpu pretend there is one of
  1258. * average load so that when a new task gets to run here it will not
  1259. * get delayed by group starvation.
  1260. */
  1261. if (!rq_weight) {
  1262. boost = 1;
  1263. rq_weight = NICE_0_LOAD;
  1264. }
  1265. if (unlikely(rq_weight > sd_rq_weight))
  1266. rq_weight = sd_rq_weight;
  1267. /*
  1268. * \Sum shares * rq_weight
  1269. * shares = -----------------------
  1270. * \Sum rq_weight
  1271. *
  1272. */
  1273. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1274. /*
  1275. * record the actual number of shares, not the boosted amount.
  1276. */
  1277. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1278. if (shares < MIN_SHARES)
  1279. shares = MIN_SHARES;
  1280. else if (shares > MAX_SHARES)
  1281. shares = MAX_SHARES;
  1282. __set_se_shares(tg->se[cpu], shares);
  1283. }
  1284. /*
  1285. * Re-compute the task group their per cpu shares over the given domain.
  1286. * This needs to be done in a bottom-up fashion because the rq weight of a
  1287. * parent group depends on the shares of its child groups.
  1288. */
  1289. static void
  1290. tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1291. {
  1292. unsigned long rq_weight = 0;
  1293. unsigned long shares = 0;
  1294. int i;
  1295. for_each_cpu_mask(i, sd->span) {
  1296. rq_weight += tg->cfs_rq[i]->load.weight;
  1297. shares += tg->cfs_rq[i]->shares;
  1298. }
  1299. if ((!shares && rq_weight) || shares > tg->shares)
  1300. shares = tg->shares;
  1301. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1302. shares = tg->shares;
  1303. if (!rq_weight)
  1304. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1305. for_each_cpu_mask(i, sd->span) {
  1306. struct rq *rq = cpu_rq(i);
  1307. unsigned long flags;
  1308. spin_lock_irqsave(&rq->lock, flags);
  1309. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1310. spin_unlock_irqrestore(&rq->lock, flags);
  1311. }
  1312. }
  1313. /*
  1314. * Compute the cpu's hierarchical load factor for each task group.
  1315. * This needs to be done in a top-down fashion because the load of a child
  1316. * group is a fraction of its parents load.
  1317. */
  1318. static void
  1319. tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1320. {
  1321. unsigned long load;
  1322. if (!tg->parent) {
  1323. load = cpu_rq(cpu)->load.weight;
  1324. } else {
  1325. load = tg->parent->cfs_rq[cpu]->h_load;
  1326. load *= tg->cfs_rq[cpu]->shares;
  1327. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1328. }
  1329. tg->cfs_rq[cpu]->h_load = load;
  1330. }
  1331. static void
  1332. tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
  1333. {
  1334. }
  1335. static void update_shares(struct sched_domain *sd)
  1336. {
  1337. u64 now = cpu_clock(raw_smp_processor_id());
  1338. s64 elapsed = now - sd->last_update;
  1339. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1340. sd->last_update = now;
  1341. walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
  1342. }
  1343. }
  1344. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1345. {
  1346. spin_unlock(&rq->lock);
  1347. update_shares(sd);
  1348. spin_lock(&rq->lock);
  1349. }
  1350. static void update_h_load(int cpu)
  1351. {
  1352. walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
  1353. }
  1354. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1355. {
  1356. cfs_rq->shares = shares;
  1357. }
  1358. #else
  1359. static inline void update_shares(struct sched_domain *sd)
  1360. {
  1361. }
  1362. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1363. {
  1364. }
  1365. #endif
  1366. #endif
  1367. #include "sched_stats.h"
  1368. #include "sched_idletask.c"
  1369. #include "sched_fair.c"
  1370. #include "sched_rt.c"
  1371. #ifdef CONFIG_SCHED_DEBUG
  1372. # include "sched_debug.c"
  1373. #endif
  1374. #define sched_class_highest (&rt_sched_class)
  1375. #define for_each_class(class) \
  1376. for (class = sched_class_highest; class; class = class->next)
  1377. static void inc_nr_running(struct rq *rq)
  1378. {
  1379. rq->nr_running++;
  1380. }
  1381. static void dec_nr_running(struct rq *rq)
  1382. {
  1383. rq->nr_running--;
  1384. }
  1385. static void set_load_weight(struct task_struct *p)
  1386. {
  1387. if (task_has_rt_policy(p)) {
  1388. p->se.load.weight = prio_to_weight[0] * 2;
  1389. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1390. return;
  1391. }
  1392. /*
  1393. * SCHED_IDLE tasks get minimal weight:
  1394. */
  1395. if (p->policy == SCHED_IDLE) {
  1396. p->se.load.weight = WEIGHT_IDLEPRIO;
  1397. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1398. return;
  1399. }
  1400. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1401. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1402. }
  1403. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1404. {
  1405. sched_info_queued(p);
  1406. p->sched_class->enqueue_task(rq, p, wakeup);
  1407. p->se.on_rq = 1;
  1408. }
  1409. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1410. {
  1411. p->sched_class->dequeue_task(rq, p, sleep);
  1412. p->se.on_rq = 0;
  1413. }
  1414. /*
  1415. * __normal_prio - return the priority that is based on the static prio
  1416. */
  1417. static inline int __normal_prio(struct task_struct *p)
  1418. {
  1419. return p->static_prio;
  1420. }
  1421. /*
  1422. * Calculate the expected normal priority: i.e. priority
  1423. * without taking RT-inheritance into account. Might be
  1424. * boosted by interactivity modifiers. Changes upon fork,
  1425. * setprio syscalls, and whenever the interactivity
  1426. * estimator recalculates.
  1427. */
  1428. static inline int normal_prio(struct task_struct *p)
  1429. {
  1430. int prio;
  1431. if (task_has_rt_policy(p))
  1432. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1433. else
  1434. prio = __normal_prio(p);
  1435. return prio;
  1436. }
  1437. /*
  1438. * Calculate the current priority, i.e. the priority
  1439. * taken into account by the scheduler. This value might
  1440. * be boosted by RT tasks, or might be boosted by
  1441. * interactivity modifiers. Will be RT if the task got
  1442. * RT-boosted. If not then it returns p->normal_prio.
  1443. */
  1444. static int effective_prio(struct task_struct *p)
  1445. {
  1446. p->normal_prio = normal_prio(p);
  1447. /*
  1448. * If we are RT tasks or we were boosted to RT priority,
  1449. * keep the priority unchanged. Otherwise, update priority
  1450. * to the normal priority:
  1451. */
  1452. if (!rt_prio(p->prio))
  1453. return p->normal_prio;
  1454. return p->prio;
  1455. }
  1456. /*
  1457. * activate_task - move a task to the runqueue.
  1458. */
  1459. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1460. {
  1461. if (task_contributes_to_load(p))
  1462. rq->nr_uninterruptible--;
  1463. enqueue_task(rq, p, wakeup);
  1464. inc_nr_running(rq);
  1465. }
  1466. /*
  1467. * deactivate_task - remove a task from the runqueue.
  1468. */
  1469. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1470. {
  1471. if (task_contributes_to_load(p))
  1472. rq->nr_uninterruptible++;
  1473. dequeue_task(rq, p, sleep);
  1474. dec_nr_running(rq);
  1475. }
  1476. /**
  1477. * task_curr - is this task currently executing on a CPU?
  1478. * @p: the task in question.
  1479. */
  1480. inline int task_curr(const struct task_struct *p)
  1481. {
  1482. return cpu_curr(task_cpu(p)) == p;
  1483. }
  1484. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1485. {
  1486. set_task_rq(p, cpu);
  1487. #ifdef CONFIG_SMP
  1488. /*
  1489. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1490. * successfuly executed on another CPU. We must ensure that updates of
  1491. * per-task data have been completed by this moment.
  1492. */
  1493. smp_wmb();
  1494. task_thread_info(p)->cpu = cpu;
  1495. #endif
  1496. }
  1497. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1498. const struct sched_class *prev_class,
  1499. int oldprio, int running)
  1500. {
  1501. if (prev_class != p->sched_class) {
  1502. if (prev_class->switched_from)
  1503. prev_class->switched_from(rq, p, running);
  1504. p->sched_class->switched_to(rq, p, running);
  1505. } else
  1506. p->sched_class->prio_changed(rq, p, oldprio, running);
  1507. }
  1508. #ifdef CONFIG_SMP
  1509. /* Used instead of source_load when we know the type == 0 */
  1510. static unsigned long weighted_cpuload(const int cpu)
  1511. {
  1512. return cpu_rq(cpu)->load.weight;
  1513. }
  1514. /*
  1515. * Is this task likely cache-hot:
  1516. */
  1517. static int
  1518. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1519. {
  1520. s64 delta;
  1521. /*
  1522. * Buddy candidates are cache hot:
  1523. */
  1524. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1525. return 1;
  1526. if (p->sched_class != &fair_sched_class)
  1527. return 0;
  1528. if (sysctl_sched_migration_cost == -1)
  1529. return 1;
  1530. if (sysctl_sched_migration_cost == 0)
  1531. return 0;
  1532. delta = now - p->se.exec_start;
  1533. return delta < (s64)sysctl_sched_migration_cost;
  1534. }
  1535. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1536. {
  1537. int old_cpu = task_cpu(p);
  1538. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1539. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1540. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1541. u64 clock_offset;
  1542. clock_offset = old_rq->clock - new_rq->clock;
  1543. #ifdef CONFIG_SCHEDSTATS
  1544. if (p->se.wait_start)
  1545. p->se.wait_start -= clock_offset;
  1546. if (p->se.sleep_start)
  1547. p->se.sleep_start -= clock_offset;
  1548. if (p->se.block_start)
  1549. p->se.block_start -= clock_offset;
  1550. if (old_cpu != new_cpu) {
  1551. schedstat_inc(p, se.nr_migrations);
  1552. if (task_hot(p, old_rq->clock, NULL))
  1553. schedstat_inc(p, se.nr_forced2_migrations);
  1554. }
  1555. #endif
  1556. p->se.vruntime -= old_cfsrq->min_vruntime -
  1557. new_cfsrq->min_vruntime;
  1558. __set_task_cpu(p, new_cpu);
  1559. }
  1560. struct migration_req {
  1561. struct list_head list;
  1562. struct task_struct *task;
  1563. int dest_cpu;
  1564. struct completion done;
  1565. };
  1566. /*
  1567. * The task's runqueue lock must be held.
  1568. * Returns true if you have to wait for migration thread.
  1569. */
  1570. static int
  1571. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1572. {
  1573. struct rq *rq = task_rq(p);
  1574. /*
  1575. * If the task is not on a runqueue (and not running), then
  1576. * it is sufficient to simply update the task's cpu field.
  1577. */
  1578. if (!p->se.on_rq && !task_running(rq, p)) {
  1579. set_task_cpu(p, dest_cpu);
  1580. return 0;
  1581. }
  1582. init_completion(&req->done);
  1583. req->task = p;
  1584. req->dest_cpu = dest_cpu;
  1585. list_add(&req->list, &rq->migration_queue);
  1586. return 1;
  1587. }
  1588. /*
  1589. * wait_task_inactive - wait for a thread to unschedule.
  1590. *
  1591. * The caller must ensure that the task *will* unschedule sometime soon,
  1592. * else this function might spin for a *long* time. This function can't
  1593. * be called with interrupts off, or it may introduce deadlock with
  1594. * smp_call_function() if an IPI is sent by the same process we are
  1595. * waiting to become inactive.
  1596. */
  1597. void wait_task_inactive(struct task_struct *p)
  1598. {
  1599. unsigned long flags;
  1600. int running, on_rq;
  1601. struct rq *rq;
  1602. for (;;) {
  1603. /*
  1604. * We do the initial early heuristics without holding
  1605. * any task-queue locks at all. We'll only try to get
  1606. * the runqueue lock when things look like they will
  1607. * work out!
  1608. */
  1609. rq = task_rq(p);
  1610. /*
  1611. * If the task is actively running on another CPU
  1612. * still, just relax and busy-wait without holding
  1613. * any locks.
  1614. *
  1615. * NOTE! Since we don't hold any locks, it's not
  1616. * even sure that "rq" stays as the right runqueue!
  1617. * But we don't care, since "task_running()" will
  1618. * return false if the runqueue has changed and p
  1619. * is actually now running somewhere else!
  1620. */
  1621. while (task_running(rq, p))
  1622. cpu_relax();
  1623. /*
  1624. * Ok, time to look more closely! We need the rq
  1625. * lock now, to be *sure*. If we're wrong, we'll
  1626. * just go back and repeat.
  1627. */
  1628. rq = task_rq_lock(p, &flags);
  1629. running = task_running(rq, p);
  1630. on_rq = p->se.on_rq;
  1631. task_rq_unlock(rq, &flags);
  1632. /*
  1633. * Was it really running after all now that we
  1634. * checked with the proper locks actually held?
  1635. *
  1636. * Oops. Go back and try again..
  1637. */
  1638. if (unlikely(running)) {
  1639. cpu_relax();
  1640. continue;
  1641. }
  1642. /*
  1643. * It's not enough that it's not actively running,
  1644. * it must be off the runqueue _entirely_, and not
  1645. * preempted!
  1646. *
  1647. * So if it wa still runnable (but just not actively
  1648. * running right now), it's preempted, and we should
  1649. * yield - it could be a while.
  1650. */
  1651. if (unlikely(on_rq)) {
  1652. schedule_timeout_uninterruptible(1);
  1653. continue;
  1654. }
  1655. /*
  1656. * Ahh, all good. It wasn't running, and it wasn't
  1657. * runnable, which means that it will never become
  1658. * running in the future either. We're all done!
  1659. */
  1660. break;
  1661. }
  1662. }
  1663. /***
  1664. * kick_process - kick a running thread to enter/exit the kernel
  1665. * @p: the to-be-kicked thread
  1666. *
  1667. * Cause a process which is running on another CPU to enter
  1668. * kernel-mode, without any delay. (to get signals handled.)
  1669. *
  1670. * NOTE: this function doesnt have to take the runqueue lock,
  1671. * because all it wants to ensure is that the remote task enters
  1672. * the kernel. If the IPI races and the task has been migrated
  1673. * to another CPU then no harm is done and the purpose has been
  1674. * achieved as well.
  1675. */
  1676. void kick_process(struct task_struct *p)
  1677. {
  1678. int cpu;
  1679. preempt_disable();
  1680. cpu = task_cpu(p);
  1681. if ((cpu != smp_processor_id()) && task_curr(p))
  1682. smp_send_reschedule(cpu);
  1683. preempt_enable();
  1684. }
  1685. /*
  1686. * Return a low guess at the load of a migration-source cpu weighted
  1687. * according to the scheduling class and "nice" value.
  1688. *
  1689. * We want to under-estimate the load of migration sources, to
  1690. * balance conservatively.
  1691. */
  1692. static unsigned long source_load(int cpu, int type)
  1693. {
  1694. struct rq *rq = cpu_rq(cpu);
  1695. unsigned long total = weighted_cpuload(cpu);
  1696. if (type == 0 || !sched_feat(LB_BIAS))
  1697. return total;
  1698. return min(rq->cpu_load[type-1], total);
  1699. }
  1700. /*
  1701. * Return a high guess at the load of a migration-target cpu weighted
  1702. * according to the scheduling class and "nice" value.
  1703. */
  1704. static unsigned long target_load(int cpu, int type)
  1705. {
  1706. struct rq *rq = cpu_rq(cpu);
  1707. unsigned long total = weighted_cpuload(cpu);
  1708. if (type == 0 || !sched_feat(LB_BIAS))
  1709. return total;
  1710. return max(rq->cpu_load[type-1], total);
  1711. }
  1712. /*
  1713. * find_idlest_group finds and returns the least busy CPU group within the
  1714. * domain.
  1715. */
  1716. static struct sched_group *
  1717. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1718. {
  1719. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1720. unsigned long min_load = ULONG_MAX, this_load = 0;
  1721. int load_idx = sd->forkexec_idx;
  1722. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1723. do {
  1724. unsigned long load, avg_load;
  1725. int local_group;
  1726. int i;
  1727. /* Skip over this group if it has no CPUs allowed */
  1728. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1729. continue;
  1730. local_group = cpu_isset(this_cpu, group->cpumask);
  1731. /* Tally up the load of all CPUs in the group */
  1732. avg_load = 0;
  1733. for_each_cpu_mask(i, group->cpumask) {
  1734. /* Bias balancing toward cpus of our domain */
  1735. if (local_group)
  1736. load = source_load(i, load_idx);
  1737. else
  1738. load = target_load(i, load_idx);
  1739. avg_load += load;
  1740. }
  1741. /* Adjust by relative CPU power of the group */
  1742. avg_load = sg_div_cpu_power(group,
  1743. avg_load * SCHED_LOAD_SCALE);
  1744. if (local_group) {
  1745. this_load = avg_load;
  1746. this = group;
  1747. } else if (avg_load < min_load) {
  1748. min_load = avg_load;
  1749. idlest = group;
  1750. }
  1751. } while (group = group->next, group != sd->groups);
  1752. if (!idlest || 100*this_load < imbalance*min_load)
  1753. return NULL;
  1754. return idlest;
  1755. }
  1756. /*
  1757. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1758. */
  1759. static int
  1760. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1761. cpumask_t *tmp)
  1762. {
  1763. unsigned long load, min_load = ULONG_MAX;
  1764. int idlest = -1;
  1765. int i;
  1766. /* Traverse only the allowed CPUs */
  1767. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1768. for_each_cpu_mask(i, *tmp) {
  1769. load = weighted_cpuload(i);
  1770. if (load < min_load || (load == min_load && i == this_cpu)) {
  1771. min_load = load;
  1772. idlest = i;
  1773. }
  1774. }
  1775. return idlest;
  1776. }
  1777. /*
  1778. * sched_balance_self: balance the current task (running on cpu) in domains
  1779. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1780. * SD_BALANCE_EXEC.
  1781. *
  1782. * Balance, ie. select the least loaded group.
  1783. *
  1784. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1785. *
  1786. * preempt must be disabled.
  1787. */
  1788. static int sched_balance_self(int cpu, int flag)
  1789. {
  1790. struct task_struct *t = current;
  1791. struct sched_domain *tmp, *sd = NULL;
  1792. for_each_domain(cpu, tmp) {
  1793. /*
  1794. * If power savings logic is enabled for a domain, stop there.
  1795. */
  1796. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1797. break;
  1798. if (tmp->flags & flag)
  1799. sd = tmp;
  1800. }
  1801. if (sd)
  1802. update_shares(sd);
  1803. while (sd) {
  1804. cpumask_t span, tmpmask;
  1805. struct sched_group *group;
  1806. int new_cpu, weight;
  1807. if (!(sd->flags & flag)) {
  1808. sd = sd->child;
  1809. continue;
  1810. }
  1811. span = sd->span;
  1812. group = find_idlest_group(sd, t, cpu);
  1813. if (!group) {
  1814. sd = sd->child;
  1815. continue;
  1816. }
  1817. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1818. if (new_cpu == -1 || new_cpu == cpu) {
  1819. /* Now try balancing at a lower domain level of cpu */
  1820. sd = sd->child;
  1821. continue;
  1822. }
  1823. /* Now try balancing at a lower domain level of new_cpu */
  1824. cpu = new_cpu;
  1825. sd = NULL;
  1826. weight = cpus_weight(span);
  1827. for_each_domain(cpu, tmp) {
  1828. if (weight <= cpus_weight(tmp->span))
  1829. break;
  1830. if (tmp->flags & flag)
  1831. sd = tmp;
  1832. }
  1833. /* while loop will break here if sd == NULL */
  1834. }
  1835. return cpu;
  1836. }
  1837. #endif /* CONFIG_SMP */
  1838. /***
  1839. * try_to_wake_up - wake up a thread
  1840. * @p: the to-be-woken-up thread
  1841. * @state: the mask of task states that can be woken
  1842. * @sync: do a synchronous wakeup?
  1843. *
  1844. * Put it on the run-queue if it's not already there. The "current"
  1845. * thread is always on the run-queue (except when the actual
  1846. * re-schedule is in progress), and as such you're allowed to do
  1847. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1848. * runnable without the overhead of this.
  1849. *
  1850. * returns failure only if the task is already active.
  1851. */
  1852. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1853. {
  1854. int cpu, orig_cpu, this_cpu, success = 0;
  1855. unsigned long flags;
  1856. long old_state;
  1857. struct rq *rq;
  1858. if (!sched_feat(SYNC_WAKEUPS))
  1859. sync = 0;
  1860. #ifdef CONFIG_SMP
  1861. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1862. struct sched_domain *sd;
  1863. this_cpu = raw_smp_processor_id();
  1864. cpu = task_cpu(p);
  1865. for_each_domain(this_cpu, sd) {
  1866. if (cpu_isset(cpu, sd->span)) {
  1867. update_shares(sd);
  1868. break;
  1869. }
  1870. }
  1871. }
  1872. #endif
  1873. smp_wmb();
  1874. rq = task_rq_lock(p, &flags);
  1875. old_state = p->state;
  1876. if (!(old_state & state))
  1877. goto out;
  1878. if (p->se.on_rq)
  1879. goto out_running;
  1880. cpu = task_cpu(p);
  1881. orig_cpu = cpu;
  1882. this_cpu = smp_processor_id();
  1883. #ifdef CONFIG_SMP
  1884. if (unlikely(task_running(rq, p)))
  1885. goto out_activate;
  1886. cpu = p->sched_class->select_task_rq(p, sync);
  1887. if (cpu != orig_cpu) {
  1888. set_task_cpu(p, cpu);
  1889. task_rq_unlock(rq, &flags);
  1890. /* might preempt at this point */
  1891. rq = task_rq_lock(p, &flags);
  1892. old_state = p->state;
  1893. if (!(old_state & state))
  1894. goto out;
  1895. if (p->se.on_rq)
  1896. goto out_running;
  1897. this_cpu = smp_processor_id();
  1898. cpu = task_cpu(p);
  1899. }
  1900. #ifdef CONFIG_SCHEDSTATS
  1901. schedstat_inc(rq, ttwu_count);
  1902. if (cpu == this_cpu)
  1903. schedstat_inc(rq, ttwu_local);
  1904. else {
  1905. struct sched_domain *sd;
  1906. for_each_domain(this_cpu, sd) {
  1907. if (cpu_isset(cpu, sd->span)) {
  1908. schedstat_inc(sd, ttwu_wake_remote);
  1909. break;
  1910. }
  1911. }
  1912. }
  1913. #endif /* CONFIG_SCHEDSTATS */
  1914. out_activate:
  1915. #endif /* CONFIG_SMP */
  1916. schedstat_inc(p, se.nr_wakeups);
  1917. if (sync)
  1918. schedstat_inc(p, se.nr_wakeups_sync);
  1919. if (orig_cpu != cpu)
  1920. schedstat_inc(p, se.nr_wakeups_migrate);
  1921. if (cpu == this_cpu)
  1922. schedstat_inc(p, se.nr_wakeups_local);
  1923. else
  1924. schedstat_inc(p, se.nr_wakeups_remote);
  1925. update_rq_clock(rq);
  1926. activate_task(rq, p, 1);
  1927. success = 1;
  1928. out_running:
  1929. check_preempt_curr(rq, p);
  1930. p->state = TASK_RUNNING;
  1931. #ifdef CONFIG_SMP
  1932. if (p->sched_class->task_wake_up)
  1933. p->sched_class->task_wake_up(rq, p);
  1934. #endif
  1935. out:
  1936. task_rq_unlock(rq, &flags);
  1937. return success;
  1938. }
  1939. int wake_up_process(struct task_struct *p)
  1940. {
  1941. return try_to_wake_up(p, TASK_ALL, 0);
  1942. }
  1943. EXPORT_SYMBOL(wake_up_process);
  1944. int wake_up_state(struct task_struct *p, unsigned int state)
  1945. {
  1946. return try_to_wake_up(p, state, 0);
  1947. }
  1948. /*
  1949. * Perform scheduler related setup for a newly forked process p.
  1950. * p is forked by current.
  1951. *
  1952. * __sched_fork() is basic setup used by init_idle() too:
  1953. */
  1954. static void __sched_fork(struct task_struct *p)
  1955. {
  1956. p->se.exec_start = 0;
  1957. p->se.sum_exec_runtime = 0;
  1958. p->se.prev_sum_exec_runtime = 0;
  1959. p->se.last_wakeup = 0;
  1960. p->se.avg_overlap = 0;
  1961. #ifdef CONFIG_SCHEDSTATS
  1962. p->se.wait_start = 0;
  1963. p->se.sum_sleep_runtime = 0;
  1964. p->se.sleep_start = 0;
  1965. p->se.block_start = 0;
  1966. p->se.sleep_max = 0;
  1967. p->se.block_max = 0;
  1968. p->se.exec_max = 0;
  1969. p->se.slice_max = 0;
  1970. p->se.wait_max = 0;
  1971. #endif
  1972. INIT_LIST_HEAD(&p->rt.run_list);
  1973. p->se.on_rq = 0;
  1974. INIT_LIST_HEAD(&p->se.group_node);
  1975. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1976. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1977. #endif
  1978. /*
  1979. * We mark the process as running here, but have not actually
  1980. * inserted it onto the runqueue yet. This guarantees that
  1981. * nobody will actually run it, and a signal or other external
  1982. * event cannot wake it up and insert it on the runqueue either.
  1983. */
  1984. p->state = TASK_RUNNING;
  1985. }
  1986. /*
  1987. * fork()/clone()-time setup:
  1988. */
  1989. void sched_fork(struct task_struct *p, int clone_flags)
  1990. {
  1991. int cpu = get_cpu();
  1992. __sched_fork(p);
  1993. #ifdef CONFIG_SMP
  1994. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1995. #endif
  1996. set_task_cpu(p, cpu);
  1997. /*
  1998. * Make sure we do not leak PI boosting priority to the child:
  1999. */
  2000. p->prio = current->normal_prio;
  2001. if (!rt_prio(p->prio))
  2002. p->sched_class = &fair_sched_class;
  2003. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2004. if (likely(sched_info_on()))
  2005. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2006. #endif
  2007. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2008. p->oncpu = 0;
  2009. #endif
  2010. #ifdef CONFIG_PREEMPT
  2011. /* Want to start with kernel preemption disabled. */
  2012. task_thread_info(p)->preempt_count = 1;
  2013. #endif
  2014. put_cpu();
  2015. }
  2016. /*
  2017. * wake_up_new_task - wake up a newly created task for the first time.
  2018. *
  2019. * This function will do some initial scheduler statistics housekeeping
  2020. * that must be done for every newly created context, then puts the task
  2021. * on the runqueue and wakes it.
  2022. */
  2023. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2024. {
  2025. unsigned long flags;
  2026. struct rq *rq;
  2027. rq = task_rq_lock(p, &flags);
  2028. BUG_ON(p->state != TASK_RUNNING);
  2029. update_rq_clock(rq);
  2030. p->prio = effective_prio(p);
  2031. if (!p->sched_class->task_new || !current->se.on_rq) {
  2032. activate_task(rq, p, 0);
  2033. } else {
  2034. /*
  2035. * Let the scheduling class do new task startup
  2036. * management (if any):
  2037. */
  2038. p->sched_class->task_new(rq, p);
  2039. inc_nr_running(rq);
  2040. }
  2041. check_preempt_curr(rq, p);
  2042. #ifdef CONFIG_SMP
  2043. if (p->sched_class->task_wake_up)
  2044. p->sched_class->task_wake_up(rq, p);
  2045. #endif
  2046. task_rq_unlock(rq, &flags);
  2047. }
  2048. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2049. /**
  2050. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2051. * @notifier: notifier struct to register
  2052. */
  2053. void preempt_notifier_register(struct preempt_notifier *notifier)
  2054. {
  2055. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2056. }
  2057. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2058. /**
  2059. * preempt_notifier_unregister - no longer interested in preemption notifications
  2060. * @notifier: notifier struct to unregister
  2061. *
  2062. * This is safe to call from within a preemption notifier.
  2063. */
  2064. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2065. {
  2066. hlist_del(&notifier->link);
  2067. }
  2068. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2069. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2070. {
  2071. struct preempt_notifier *notifier;
  2072. struct hlist_node *node;
  2073. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2074. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2075. }
  2076. static void
  2077. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2078. struct task_struct *next)
  2079. {
  2080. struct preempt_notifier *notifier;
  2081. struct hlist_node *node;
  2082. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2083. notifier->ops->sched_out(notifier, next);
  2084. }
  2085. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2086. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2087. {
  2088. }
  2089. static void
  2090. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2091. struct task_struct *next)
  2092. {
  2093. }
  2094. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2095. /**
  2096. * prepare_task_switch - prepare to switch tasks
  2097. * @rq: the runqueue preparing to switch
  2098. * @prev: the current task that is being switched out
  2099. * @next: the task we are going to switch to.
  2100. *
  2101. * This is called with the rq lock held and interrupts off. It must
  2102. * be paired with a subsequent finish_task_switch after the context
  2103. * switch.
  2104. *
  2105. * prepare_task_switch sets up locking and calls architecture specific
  2106. * hooks.
  2107. */
  2108. static inline void
  2109. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2110. struct task_struct *next)
  2111. {
  2112. fire_sched_out_preempt_notifiers(prev, next);
  2113. prepare_lock_switch(rq, next);
  2114. prepare_arch_switch(next);
  2115. }
  2116. /**
  2117. * finish_task_switch - clean up after a task-switch
  2118. * @rq: runqueue associated with task-switch
  2119. * @prev: the thread we just switched away from.
  2120. *
  2121. * finish_task_switch must be called after the context switch, paired
  2122. * with a prepare_task_switch call before the context switch.
  2123. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2124. * and do any other architecture-specific cleanup actions.
  2125. *
  2126. * Note that we may have delayed dropping an mm in context_switch(). If
  2127. * so, we finish that here outside of the runqueue lock. (Doing it
  2128. * with the lock held can cause deadlocks; see schedule() for
  2129. * details.)
  2130. */
  2131. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2132. __releases(rq->lock)
  2133. {
  2134. struct mm_struct *mm = rq->prev_mm;
  2135. long prev_state;
  2136. rq->prev_mm = NULL;
  2137. /*
  2138. * A task struct has one reference for the use as "current".
  2139. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2140. * schedule one last time. The schedule call will never return, and
  2141. * the scheduled task must drop that reference.
  2142. * The test for TASK_DEAD must occur while the runqueue locks are
  2143. * still held, otherwise prev could be scheduled on another cpu, die
  2144. * there before we look at prev->state, and then the reference would
  2145. * be dropped twice.
  2146. * Manfred Spraul <manfred@colorfullife.com>
  2147. */
  2148. prev_state = prev->state;
  2149. finish_arch_switch(prev);
  2150. finish_lock_switch(rq, prev);
  2151. #ifdef CONFIG_SMP
  2152. if (current->sched_class->post_schedule)
  2153. current->sched_class->post_schedule(rq);
  2154. #endif
  2155. fire_sched_in_preempt_notifiers(current);
  2156. if (mm)
  2157. mmdrop(mm);
  2158. if (unlikely(prev_state == TASK_DEAD)) {
  2159. /*
  2160. * Remove function-return probe instances associated with this
  2161. * task and put them back on the free list.
  2162. */
  2163. kprobe_flush_task(prev);
  2164. put_task_struct(prev);
  2165. }
  2166. }
  2167. /**
  2168. * schedule_tail - first thing a freshly forked thread must call.
  2169. * @prev: the thread we just switched away from.
  2170. */
  2171. asmlinkage void schedule_tail(struct task_struct *prev)
  2172. __releases(rq->lock)
  2173. {
  2174. struct rq *rq = this_rq();
  2175. finish_task_switch(rq, prev);
  2176. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2177. /* In this case, finish_task_switch does not reenable preemption */
  2178. preempt_enable();
  2179. #endif
  2180. if (current->set_child_tid)
  2181. put_user(task_pid_vnr(current), current->set_child_tid);
  2182. }
  2183. /*
  2184. * context_switch - switch to the new MM and the new
  2185. * thread's register state.
  2186. */
  2187. static inline void
  2188. context_switch(struct rq *rq, struct task_struct *prev,
  2189. struct task_struct *next)
  2190. {
  2191. struct mm_struct *mm, *oldmm;
  2192. prepare_task_switch(rq, prev, next);
  2193. mm = next->mm;
  2194. oldmm = prev->active_mm;
  2195. /*
  2196. * For paravirt, this is coupled with an exit in switch_to to
  2197. * combine the page table reload and the switch backend into
  2198. * one hypercall.
  2199. */
  2200. arch_enter_lazy_cpu_mode();
  2201. if (unlikely(!mm)) {
  2202. next->active_mm = oldmm;
  2203. atomic_inc(&oldmm->mm_count);
  2204. enter_lazy_tlb(oldmm, next);
  2205. } else
  2206. switch_mm(oldmm, mm, next);
  2207. if (unlikely(!prev->mm)) {
  2208. prev->active_mm = NULL;
  2209. rq->prev_mm = oldmm;
  2210. }
  2211. /*
  2212. * Since the runqueue lock will be released by the next
  2213. * task (which is an invalid locking op but in the case
  2214. * of the scheduler it's an obvious special-case), so we
  2215. * do an early lockdep release here:
  2216. */
  2217. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2218. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2219. #endif
  2220. /* Here we just switch the register state and the stack. */
  2221. switch_to(prev, next, prev);
  2222. barrier();
  2223. /*
  2224. * this_rq must be evaluated again because prev may have moved
  2225. * CPUs since it called schedule(), thus the 'rq' on its stack
  2226. * frame will be invalid.
  2227. */
  2228. finish_task_switch(this_rq(), prev);
  2229. }
  2230. /*
  2231. * nr_running, nr_uninterruptible and nr_context_switches:
  2232. *
  2233. * externally visible scheduler statistics: current number of runnable
  2234. * threads, current number of uninterruptible-sleeping threads, total
  2235. * number of context switches performed since bootup.
  2236. */
  2237. unsigned long nr_running(void)
  2238. {
  2239. unsigned long i, sum = 0;
  2240. for_each_online_cpu(i)
  2241. sum += cpu_rq(i)->nr_running;
  2242. return sum;
  2243. }
  2244. unsigned long nr_uninterruptible(void)
  2245. {
  2246. unsigned long i, sum = 0;
  2247. for_each_possible_cpu(i)
  2248. sum += cpu_rq(i)->nr_uninterruptible;
  2249. /*
  2250. * Since we read the counters lockless, it might be slightly
  2251. * inaccurate. Do not allow it to go below zero though:
  2252. */
  2253. if (unlikely((long)sum < 0))
  2254. sum = 0;
  2255. return sum;
  2256. }
  2257. unsigned long long nr_context_switches(void)
  2258. {
  2259. int i;
  2260. unsigned long long sum = 0;
  2261. for_each_possible_cpu(i)
  2262. sum += cpu_rq(i)->nr_switches;
  2263. return sum;
  2264. }
  2265. unsigned long nr_iowait(void)
  2266. {
  2267. unsigned long i, sum = 0;
  2268. for_each_possible_cpu(i)
  2269. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2270. return sum;
  2271. }
  2272. unsigned long nr_active(void)
  2273. {
  2274. unsigned long i, running = 0, uninterruptible = 0;
  2275. for_each_online_cpu(i) {
  2276. running += cpu_rq(i)->nr_running;
  2277. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2278. }
  2279. if (unlikely((long)uninterruptible < 0))
  2280. uninterruptible = 0;
  2281. return running + uninterruptible;
  2282. }
  2283. /*
  2284. * Update rq->cpu_load[] statistics. This function is usually called every
  2285. * scheduler tick (TICK_NSEC).
  2286. */
  2287. static void update_cpu_load(struct rq *this_rq)
  2288. {
  2289. unsigned long this_load = this_rq->load.weight;
  2290. int i, scale;
  2291. this_rq->nr_load_updates++;
  2292. /* Update our load: */
  2293. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2294. unsigned long old_load, new_load;
  2295. /* scale is effectively 1 << i now, and >> i divides by scale */
  2296. old_load = this_rq->cpu_load[i];
  2297. new_load = this_load;
  2298. /*
  2299. * Round up the averaging division if load is increasing. This
  2300. * prevents us from getting stuck on 9 if the load is 10, for
  2301. * example.
  2302. */
  2303. if (new_load > old_load)
  2304. new_load += scale-1;
  2305. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2306. }
  2307. }
  2308. #ifdef CONFIG_SMP
  2309. /*
  2310. * double_rq_lock - safely lock two runqueues
  2311. *
  2312. * Note this does not disable interrupts like task_rq_lock,
  2313. * you need to do so manually before calling.
  2314. */
  2315. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2316. __acquires(rq1->lock)
  2317. __acquires(rq2->lock)
  2318. {
  2319. BUG_ON(!irqs_disabled());
  2320. if (rq1 == rq2) {
  2321. spin_lock(&rq1->lock);
  2322. __acquire(rq2->lock); /* Fake it out ;) */
  2323. } else {
  2324. if (rq1 < rq2) {
  2325. spin_lock(&rq1->lock);
  2326. spin_lock(&rq2->lock);
  2327. } else {
  2328. spin_lock(&rq2->lock);
  2329. spin_lock(&rq1->lock);
  2330. }
  2331. }
  2332. update_rq_clock(rq1);
  2333. update_rq_clock(rq2);
  2334. }
  2335. /*
  2336. * double_rq_unlock - safely unlock two runqueues
  2337. *
  2338. * Note this does not restore interrupts like task_rq_unlock,
  2339. * you need to do so manually after calling.
  2340. */
  2341. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2342. __releases(rq1->lock)
  2343. __releases(rq2->lock)
  2344. {
  2345. spin_unlock(&rq1->lock);
  2346. if (rq1 != rq2)
  2347. spin_unlock(&rq2->lock);
  2348. else
  2349. __release(rq2->lock);
  2350. }
  2351. /*
  2352. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2353. */
  2354. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2355. __releases(this_rq->lock)
  2356. __acquires(busiest->lock)
  2357. __acquires(this_rq->lock)
  2358. {
  2359. int ret = 0;
  2360. if (unlikely(!irqs_disabled())) {
  2361. /* printk() doesn't work good under rq->lock */
  2362. spin_unlock(&this_rq->lock);
  2363. BUG_ON(1);
  2364. }
  2365. if (unlikely(!spin_trylock(&busiest->lock))) {
  2366. if (busiest < this_rq) {
  2367. spin_unlock(&this_rq->lock);
  2368. spin_lock(&busiest->lock);
  2369. spin_lock(&this_rq->lock);
  2370. ret = 1;
  2371. } else
  2372. spin_lock(&busiest->lock);
  2373. }
  2374. return ret;
  2375. }
  2376. /*
  2377. * If dest_cpu is allowed for this process, migrate the task to it.
  2378. * This is accomplished by forcing the cpu_allowed mask to only
  2379. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2380. * the cpu_allowed mask is restored.
  2381. */
  2382. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2383. {
  2384. struct migration_req req;
  2385. unsigned long flags;
  2386. struct rq *rq;
  2387. rq = task_rq_lock(p, &flags);
  2388. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2389. || unlikely(cpu_is_offline(dest_cpu)))
  2390. goto out;
  2391. /* force the process onto the specified CPU */
  2392. if (migrate_task(p, dest_cpu, &req)) {
  2393. /* Need to wait for migration thread (might exit: take ref). */
  2394. struct task_struct *mt = rq->migration_thread;
  2395. get_task_struct(mt);
  2396. task_rq_unlock(rq, &flags);
  2397. wake_up_process(mt);
  2398. put_task_struct(mt);
  2399. wait_for_completion(&req.done);
  2400. return;
  2401. }
  2402. out:
  2403. task_rq_unlock(rq, &flags);
  2404. }
  2405. /*
  2406. * sched_exec - execve() is a valuable balancing opportunity, because at
  2407. * this point the task has the smallest effective memory and cache footprint.
  2408. */
  2409. void sched_exec(void)
  2410. {
  2411. int new_cpu, this_cpu = get_cpu();
  2412. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2413. put_cpu();
  2414. if (new_cpu != this_cpu)
  2415. sched_migrate_task(current, new_cpu);
  2416. }
  2417. /*
  2418. * pull_task - move a task from a remote runqueue to the local runqueue.
  2419. * Both runqueues must be locked.
  2420. */
  2421. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2422. struct rq *this_rq, int this_cpu)
  2423. {
  2424. deactivate_task(src_rq, p, 0);
  2425. set_task_cpu(p, this_cpu);
  2426. activate_task(this_rq, p, 0);
  2427. /*
  2428. * Note that idle threads have a prio of MAX_PRIO, for this test
  2429. * to be always true for them.
  2430. */
  2431. check_preempt_curr(this_rq, p);
  2432. }
  2433. /*
  2434. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2435. */
  2436. static
  2437. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2438. struct sched_domain *sd, enum cpu_idle_type idle,
  2439. int *all_pinned)
  2440. {
  2441. /*
  2442. * We do not migrate tasks that are:
  2443. * 1) running (obviously), or
  2444. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2445. * 3) are cache-hot on their current CPU.
  2446. */
  2447. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2448. schedstat_inc(p, se.nr_failed_migrations_affine);
  2449. return 0;
  2450. }
  2451. *all_pinned = 0;
  2452. if (task_running(rq, p)) {
  2453. schedstat_inc(p, se.nr_failed_migrations_running);
  2454. return 0;
  2455. }
  2456. /*
  2457. * Aggressive migration if:
  2458. * 1) task is cache cold, or
  2459. * 2) too many balance attempts have failed.
  2460. */
  2461. if (!task_hot(p, rq->clock, sd) ||
  2462. sd->nr_balance_failed > sd->cache_nice_tries) {
  2463. #ifdef CONFIG_SCHEDSTATS
  2464. if (task_hot(p, rq->clock, sd)) {
  2465. schedstat_inc(sd, lb_hot_gained[idle]);
  2466. schedstat_inc(p, se.nr_forced_migrations);
  2467. }
  2468. #endif
  2469. return 1;
  2470. }
  2471. if (task_hot(p, rq->clock, sd)) {
  2472. schedstat_inc(p, se.nr_failed_migrations_hot);
  2473. return 0;
  2474. }
  2475. return 1;
  2476. }
  2477. static unsigned long
  2478. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2479. unsigned long max_load_move, struct sched_domain *sd,
  2480. enum cpu_idle_type idle, int *all_pinned,
  2481. int *this_best_prio, struct rq_iterator *iterator)
  2482. {
  2483. int loops = 0, pulled = 0, pinned = 0;
  2484. struct task_struct *p;
  2485. long rem_load_move = max_load_move;
  2486. if (max_load_move == 0)
  2487. goto out;
  2488. pinned = 1;
  2489. /*
  2490. * Start the load-balancing iterator:
  2491. */
  2492. p = iterator->start(iterator->arg);
  2493. next:
  2494. if (!p || loops++ > sysctl_sched_nr_migrate)
  2495. goto out;
  2496. if ((p->se.load.weight >> 1) > rem_load_move ||
  2497. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2498. p = iterator->next(iterator->arg);
  2499. goto next;
  2500. }
  2501. pull_task(busiest, p, this_rq, this_cpu);
  2502. pulled++;
  2503. rem_load_move -= p->se.load.weight;
  2504. /*
  2505. * We only want to steal up to the prescribed amount of weighted load.
  2506. */
  2507. if (rem_load_move > 0) {
  2508. if (p->prio < *this_best_prio)
  2509. *this_best_prio = p->prio;
  2510. p = iterator->next(iterator->arg);
  2511. goto next;
  2512. }
  2513. out:
  2514. /*
  2515. * Right now, this is one of only two places pull_task() is called,
  2516. * so we can safely collect pull_task() stats here rather than
  2517. * inside pull_task().
  2518. */
  2519. schedstat_add(sd, lb_gained[idle], pulled);
  2520. if (all_pinned)
  2521. *all_pinned = pinned;
  2522. return max_load_move - rem_load_move;
  2523. }
  2524. /*
  2525. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2526. * this_rq, as part of a balancing operation within domain "sd".
  2527. * Returns 1 if successful and 0 otherwise.
  2528. *
  2529. * Called with both runqueues locked.
  2530. */
  2531. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2532. unsigned long max_load_move,
  2533. struct sched_domain *sd, enum cpu_idle_type idle,
  2534. int *all_pinned)
  2535. {
  2536. const struct sched_class *class = sched_class_highest;
  2537. unsigned long total_load_moved = 0;
  2538. int this_best_prio = this_rq->curr->prio;
  2539. do {
  2540. total_load_moved +=
  2541. class->load_balance(this_rq, this_cpu, busiest,
  2542. max_load_move - total_load_moved,
  2543. sd, idle, all_pinned, &this_best_prio);
  2544. class = class->next;
  2545. } while (class && max_load_move > total_load_moved);
  2546. return total_load_moved > 0;
  2547. }
  2548. static int
  2549. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2550. struct sched_domain *sd, enum cpu_idle_type idle,
  2551. struct rq_iterator *iterator)
  2552. {
  2553. struct task_struct *p = iterator->start(iterator->arg);
  2554. int pinned = 0;
  2555. while (p) {
  2556. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2557. pull_task(busiest, p, this_rq, this_cpu);
  2558. /*
  2559. * Right now, this is only the second place pull_task()
  2560. * is called, so we can safely collect pull_task()
  2561. * stats here rather than inside pull_task().
  2562. */
  2563. schedstat_inc(sd, lb_gained[idle]);
  2564. return 1;
  2565. }
  2566. p = iterator->next(iterator->arg);
  2567. }
  2568. return 0;
  2569. }
  2570. /*
  2571. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2572. * part of active balancing operations within "domain".
  2573. * Returns 1 if successful and 0 otherwise.
  2574. *
  2575. * Called with both runqueues locked.
  2576. */
  2577. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2578. struct sched_domain *sd, enum cpu_idle_type idle)
  2579. {
  2580. const struct sched_class *class;
  2581. for (class = sched_class_highest; class; class = class->next)
  2582. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2583. return 1;
  2584. return 0;
  2585. }
  2586. /*
  2587. * find_busiest_group finds and returns the busiest CPU group within the
  2588. * domain. It calculates and returns the amount of weighted load which
  2589. * should be moved to restore balance via the imbalance parameter.
  2590. */
  2591. static struct sched_group *
  2592. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2593. unsigned long *imbalance, enum cpu_idle_type idle,
  2594. int *sd_idle, const cpumask_t *cpus, int *balance)
  2595. {
  2596. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2597. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2598. unsigned long max_pull;
  2599. unsigned long busiest_load_per_task, busiest_nr_running;
  2600. unsigned long this_load_per_task, this_nr_running;
  2601. int load_idx, group_imb = 0;
  2602. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2603. int power_savings_balance = 1;
  2604. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2605. unsigned long min_nr_running = ULONG_MAX;
  2606. struct sched_group *group_min = NULL, *group_leader = NULL;
  2607. #endif
  2608. max_load = this_load = total_load = total_pwr = 0;
  2609. busiest_load_per_task = busiest_nr_running = 0;
  2610. this_load_per_task = this_nr_running = 0;
  2611. if (idle == CPU_NOT_IDLE)
  2612. load_idx = sd->busy_idx;
  2613. else if (idle == CPU_NEWLY_IDLE)
  2614. load_idx = sd->newidle_idx;
  2615. else
  2616. load_idx = sd->idle_idx;
  2617. do {
  2618. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2619. int local_group;
  2620. int i;
  2621. int __group_imb = 0;
  2622. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2623. unsigned long sum_nr_running, sum_weighted_load;
  2624. unsigned long sum_avg_load_per_task;
  2625. unsigned long avg_load_per_task;
  2626. local_group = cpu_isset(this_cpu, group->cpumask);
  2627. if (local_group)
  2628. balance_cpu = first_cpu(group->cpumask);
  2629. /* Tally up the load of all CPUs in the group */
  2630. sum_weighted_load = sum_nr_running = avg_load = 0;
  2631. sum_avg_load_per_task = avg_load_per_task = 0;
  2632. max_cpu_load = 0;
  2633. min_cpu_load = ~0UL;
  2634. for_each_cpu_mask(i, group->cpumask) {
  2635. struct rq *rq;
  2636. if (!cpu_isset(i, *cpus))
  2637. continue;
  2638. rq = cpu_rq(i);
  2639. if (*sd_idle && rq->nr_running)
  2640. *sd_idle = 0;
  2641. /* Bias balancing toward cpus of our domain */
  2642. if (local_group) {
  2643. if (idle_cpu(i) && !first_idle_cpu) {
  2644. first_idle_cpu = 1;
  2645. balance_cpu = i;
  2646. }
  2647. load = target_load(i, load_idx);
  2648. } else {
  2649. load = source_load(i, load_idx);
  2650. if (load > max_cpu_load)
  2651. max_cpu_load = load;
  2652. if (min_cpu_load > load)
  2653. min_cpu_load = load;
  2654. }
  2655. avg_load += load;
  2656. sum_nr_running += rq->nr_running;
  2657. sum_weighted_load += weighted_cpuload(i);
  2658. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2659. }
  2660. /*
  2661. * First idle cpu or the first cpu(busiest) in this sched group
  2662. * is eligible for doing load balancing at this and above
  2663. * domains. In the newly idle case, we will allow all the cpu's
  2664. * to do the newly idle load balance.
  2665. */
  2666. if (idle != CPU_NEWLY_IDLE && local_group &&
  2667. balance_cpu != this_cpu && balance) {
  2668. *balance = 0;
  2669. goto ret;
  2670. }
  2671. total_load += avg_load;
  2672. total_pwr += group->__cpu_power;
  2673. /* Adjust by relative CPU power of the group */
  2674. avg_load = sg_div_cpu_power(group,
  2675. avg_load * SCHED_LOAD_SCALE);
  2676. /*
  2677. * Consider the group unbalanced when the imbalance is larger
  2678. * than the average weight of two tasks.
  2679. *
  2680. * APZ: with cgroup the avg task weight can vary wildly and
  2681. * might not be a suitable number - should we keep a
  2682. * normalized nr_running number somewhere that negates
  2683. * the hierarchy?
  2684. */
  2685. avg_load_per_task = sg_div_cpu_power(group,
  2686. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2687. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2688. __group_imb = 1;
  2689. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2690. if (local_group) {
  2691. this_load = avg_load;
  2692. this = group;
  2693. this_nr_running = sum_nr_running;
  2694. this_load_per_task = sum_weighted_load;
  2695. } else if (avg_load > max_load &&
  2696. (sum_nr_running > group_capacity || __group_imb)) {
  2697. max_load = avg_load;
  2698. busiest = group;
  2699. busiest_nr_running = sum_nr_running;
  2700. busiest_load_per_task = sum_weighted_load;
  2701. group_imb = __group_imb;
  2702. }
  2703. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2704. /*
  2705. * Busy processors will not participate in power savings
  2706. * balance.
  2707. */
  2708. if (idle == CPU_NOT_IDLE ||
  2709. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2710. goto group_next;
  2711. /*
  2712. * If the local group is idle or completely loaded
  2713. * no need to do power savings balance at this domain
  2714. */
  2715. if (local_group && (this_nr_running >= group_capacity ||
  2716. !this_nr_running))
  2717. power_savings_balance = 0;
  2718. /*
  2719. * If a group is already running at full capacity or idle,
  2720. * don't include that group in power savings calculations
  2721. */
  2722. if (!power_savings_balance || sum_nr_running >= group_capacity
  2723. || !sum_nr_running)
  2724. goto group_next;
  2725. /*
  2726. * Calculate the group which has the least non-idle load.
  2727. * This is the group from where we need to pick up the load
  2728. * for saving power
  2729. */
  2730. if ((sum_nr_running < min_nr_running) ||
  2731. (sum_nr_running == min_nr_running &&
  2732. first_cpu(group->cpumask) <
  2733. first_cpu(group_min->cpumask))) {
  2734. group_min = group;
  2735. min_nr_running = sum_nr_running;
  2736. min_load_per_task = sum_weighted_load /
  2737. sum_nr_running;
  2738. }
  2739. /*
  2740. * Calculate the group which is almost near its
  2741. * capacity but still has some space to pick up some load
  2742. * from other group and save more power
  2743. */
  2744. if (sum_nr_running <= group_capacity - 1) {
  2745. if (sum_nr_running > leader_nr_running ||
  2746. (sum_nr_running == leader_nr_running &&
  2747. first_cpu(group->cpumask) >
  2748. first_cpu(group_leader->cpumask))) {
  2749. group_leader = group;
  2750. leader_nr_running = sum_nr_running;
  2751. }
  2752. }
  2753. group_next:
  2754. #endif
  2755. group = group->next;
  2756. } while (group != sd->groups);
  2757. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2758. goto out_balanced;
  2759. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2760. if (this_load >= avg_load ||
  2761. 100*max_load <= sd->imbalance_pct*this_load)
  2762. goto out_balanced;
  2763. busiest_load_per_task /= busiest_nr_running;
  2764. if (group_imb)
  2765. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2766. /*
  2767. * We're trying to get all the cpus to the average_load, so we don't
  2768. * want to push ourselves above the average load, nor do we wish to
  2769. * reduce the max loaded cpu below the average load, as either of these
  2770. * actions would just result in more rebalancing later, and ping-pong
  2771. * tasks around. Thus we look for the minimum possible imbalance.
  2772. * Negative imbalances (*we* are more loaded than anyone else) will
  2773. * be counted as no imbalance for these purposes -- we can't fix that
  2774. * by pulling tasks to us. Be careful of negative numbers as they'll
  2775. * appear as very large values with unsigned longs.
  2776. */
  2777. if (max_load <= busiest_load_per_task)
  2778. goto out_balanced;
  2779. /*
  2780. * In the presence of smp nice balancing, certain scenarios can have
  2781. * max load less than avg load(as we skip the groups at or below
  2782. * its cpu_power, while calculating max_load..)
  2783. */
  2784. if (max_load < avg_load) {
  2785. *imbalance = 0;
  2786. goto small_imbalance;
  2787. }
  2788. /* Don't want to pull so many tasks that a group would go idle */
  2789. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2790. /* How much load to actually move to equalise the imbalance */
  2791. *imbalance = min(max_pull * busiest->__cpu_power,
  2792. (avg_load - this_load) * this->__cpu_power)
  2793. / SCHED_LOAD_SCALE;
  2794. /*
  2795. * if *imbalance is less than the average load per runnable task
  2796. * there is no gaurantee that any tasks will be moved so we'll have
  2797. * a think about bumping its value to force at least one task to be
  2798. * moved
  2799. */
  2800. if (*imbalance < busiest_load_per_task) {
  2801. unsigned long tmp, pwr_now, pwr_move;
  2802. unsigned int imbn;
  2803. small_imbalance:
  2804. pwr_move = pwr_now = 0;
  2805. imbn = 2;
  2806. if (this_nr_running) {
  2807. this_load_per_task /= this_nr_running;
  2808. if (busiest_load_per_task > this_load_per_task)
  2809. imbn = 1;
  2810. } else
  2811. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2812. if (max_load - this_load + 2*busiest_load_per_task >=
  2813. busiest_load_per_task * imbn) {
  2814. *imbalance = busiest_load_per_task;
  2815. return busiest;
  2816. }
  2817. /*
  2818. * OK, we don't have enough imbalance to justify moving tasks,
  2819. * however we may be able to increase total CPU power used by
  2820. * moving them.
  2821. */
  2822. pwr_now += busiest->__cpu_power *
  2823. min(busiest_load_per_task, max_load);
  2824. pwr_now += this->__cpu_power *
  2825. min(this_load_per_task, this_load);
  2826. pwr_now /= SCHED_LOAD_SCALE;
  2827. /* Amount of load we'd subtract */
  2828. tmp = sg_div_cpu_power(busiest,
  2829. busiest_load_per_task * SCHED_LOAD_SCALE);
  2830. if (max_load > tmp)
  2831. pwr_move += busiest->__cpu_power *
  2832. min(busiest_load_per_task, max_load - tmp);
  2833. /* Amount of load we'd add */
  2834. if (max_load * busiest->__cpu_power <
  2835. busiest_load_per_task * SCHED_LOAD_SCALE)
  2836. tmp = sg_div_cpu_power(this,
  2837. max_load * busiest->__cpu_power);
  2838. else
  2839. tmp = sg_div_cpu_power(this,
  2840. busiest_load_per_task * SCHED_LOAD_SCALE);
  2841. pwr_move += this->__cpu_power *
  2842. min(this_load_per_task, this_load + tmp);
  2843. pwr_move /= SCHED_LOAD_SCALE;
  2844. /* Move if we gain throughput */
  2845. if (pwr_move > pwr_now)
  2846. *imbalance = busiest_load_per_task;
  2847. }
  2848. return busiest;
  2849. out_balanced:
  2850. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2851. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2852. goto ret;
  2853. if (this == group_leader && group_leader != group_min) {
  2854. *imbalance = min_load_per_task;
  2855. return group_min;
  2856. }
  2857. #endif
  2858. ret:
  2859. *imbalance = 0;
  2860. return NULL;
  2861. }
  2862. /*
  2863. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2864. */
  2865. static struct rq *
  2866. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2867. unsigned long imbalance, const cpumask_t *cpus)
  2868. {
  2869. struct rq *busiest = NULL, *rq;
  2870. unsigned long max_load = 0;
  2871. int i;
  2872. for_each_cpu_mask(i, group->cpumask) {
  2873. unsigned long wl;
  2874. if (!cpu_isset(i, *cpus))
  2875. continue;
  2876. rq = cpu_rq(i);
  2877. wl = weighted_cpuload(i);
  2878. if (rq->nr_running == 1 && wl > imbalance)
  2879. continue;
  2880. if (wl > max_load) {
  2881. max_load = wl;
  2882. busiest = rq;
  2883. }
  2884. }
  2885. return busiest;
  2886. }
  2887. /*
  2888. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2889. * so long as it is large enough.
  2890. */
  2891. #define MAX_PINNED_INTERVAL 512
  2892. /*
  2893. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2894. * tasks if there is an imbalance.
  2895. */
  2896. static int load_balance(int this_cpu, struct rq *this_rq,
  2897. struct sched_domain *sd, enum cpu_idle_type idle,
  2898. int *balance, cpumask_t *cpus)
  2899. {
  2900. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2901. struct sched_group *group;
  2902. unsigned long imbalance;
  2903. struct rq *busiest;
  2904. unsigned long flags;
  2905. cpus_setall(*cpus);
  2906. /*
  2907. * When power savings policy is enabled for the parent domain, idle
  2908. * sibling can pick up load irrespective of busy siblings. In this case,
  2909. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2910. * portraying it as CPU_NOT_IDLE.
  2911. */
  2912. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2913. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2914. sd_idle = 1;
  2915. schedstat_inc(sd, lb_count[idle]);
  2916. redo:
  2917. update_shares(sd);
  2918. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2919. cpus, balance);
  2920. if (*balance == 0)
  2921. goto out_balanced;
  2922. if (!group) {
  2923. schedstat_inc(sd, lb_nobusyg[idle]);
  2924. goto out_balanced;
  2925. }
  2926. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2927. if (!busiest) {
  2928. schedstat_inc(sd, lb_nobusyq[idle]);
  2929. goto out_balanced;
  2930. }
  2931. BUG_ON(busiest == this_rq);
  2932. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2933. ld_moved = 0;
  2934. if (busiest->nr_running > 1) {
  2935. /*
  2936. * Attempt to move tasks. If find_busiest_group has found
  2937. * an imbalance but busiest->nr_running <= 1, the group is
  2938. * still unbalanced. ld_moved simply stays zero, so it is
  2939. * correctly treated as an imbalance.
  2940. */
  2941. local_irq_save(flags);
  2942. double_rq_lock(this_rq, busiest);
  2943. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2944. imbalance, sd, idle, &all_pinned);
  2945. double_rq_unlock(this_rq, busiest);
  2946. local_irq_restore(flags);
  2947. /*
  2948. * some other cpu did the load balance for us.
  2949. */
  2950. if (ld_moved && this_cpu != smp_processor_id())
  2951. resched_cpu(this_cpu);
  2952. /* All tasks on this runqueue were pinned by CPU affinity */
  2953. if (unlikely(all_pinned)) {
  2954. cpu_clear(cpu_of(busiest), *cpus);
  2955. if (!cpus_empty(*cpus))
  2956. goto redo;
  2957. goto out_balanced;
  2958. }
  2959. }
  2960. if (!ld_moved) {
  2961. schedstat_inc(sd, lb_failed[idle]);
  2962. sd->nr_balance_failed++;
  2963. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2964. spin_lock_irqsave(&busiest->lock, flags);
  2965. /* don't kick the migration_thread, if the curr
  2966. * task on busiest cpu can't be moved to this_cpu
  2967. */
  2968. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2969. spin_unlock_irqrestore(&busiest->lock, flags);
  2970. all_pinned = 1;
  2971. goto out_one_pinned;
  2972. }
  2973. if (!busiest->active_balance) {
  2974. busiest->active_balance = 1;
  2975. busiest->push_cpu = this_cpu;
  2976. active_balance = 1;
  2977. }
  2978. spin_unlock_irqrestore(&busiest->lock, flags);
  2979. if (active_balance)
  2980. wake_up_process(busiest->migration_thread);
  2981. /*
  2982. * We've kicked active balancing, reset the failure
  2983. * counter.
  2984. */
  2985. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2986. }
  2987. } else
  2988. sd->nr_balance_failed = 0;
  2989. if (likely(!active_balance)) {
  2990. /* We were unbalanced, so reset the balancing interval */
  2991. sd->balance_interval = sd->min_interval;
  2992. } else {
  2993. /*
  2994. * If we've begun active balancing, start to back off. This
  2995. * case may not be covered by the all_pinned logic if there
  2996. * is only 1 task on the busy runqueue (because we don't call
  2997. * move_tasks).
  2998. */
  2999. if (sd->balance_interval < sd->max_interval)
  3000. sd->balance_interval *= 2;
  3001. }
  3002. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3003. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3004. ld_moved = -1;
  3005. goto out;
  3006. out_balanced:
  3007. schedstat_inc(sd, lb_balanced[idle]);
  3008. sd->nr_balance_failed = 0;
  3009. out_one_pinned:
  3010. /* tune up the balancing interval */
  3011. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3012. (sd->balance_interval < sd->max_interval))
  3013. sd->balance_interval *= 2;
  3014. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3015. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3016. ld_moved = -1;
  3017. else
  3018. ld_moved = 0;
  3019. out:
  3020. if (ld_moved)
  3021. update_shares(sd);
  3022. return ld_moved;
  3023. }
  3024. /*
  3025. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3026. * tasks if there is an imbalance.
  3027. *
  3028. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3029. * this_rq is locked.
  3030. */
  3031. static int
  3032. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3033. cpumask_t *cpus)
  3034. {
  3035. struct sched_group *group;
  3036. struct rq *busiest = NULL;
  3037. unsigned long imbalance;
  3038. int ld_moved = 0;
  3039. int sd_idle = 0;
  3040. int all_pinned = 0;
  3041. cpus_setall(*cpus);
  3042. /*
  3043. * When power savings policy is enabled for the parent domain, idle
  3044. * sibling can pick up load irrespective of busy siblings. In this case,
  3045. * let the state of idle sibling percolate up as IDLE, instead of
  3046. * portraying it as CPU_NOT_IDLE.
  3047. */
  3048. if (sd->flags & SD_SHARE_CPUPOWER &&
  3049. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3050. sd_idle = 1;
  3051. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3052. redo:
  3053. update_shares_locked(this_rq, sd);
  3054. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3055. &sd_idle, cpus, NULL);
  3056. if (!group) {
  3057. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3058. goto out_balanced;
  3059. }
  3060. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3061. if (!busiest) {
  3062. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3063. goto out_balanced;
  3064. }
  3065. BUG_ON(busiest == this_rq);
  3066. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3067. ld_moved = 0;
  3068. if (busiest->nr_running > 1) {
  3069. /* Attempt to move tasks */
  3070. double_lock_balance(this_rq, busiest);
  3071. /* this_rq->clock is already updated */
  3072. update_rq_clock(busiest);
  3073. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3074. imbalance, sd, CPU_NEWLY_IDLE,
  3075. &all_pinned);
  3076. spin_unlock(&busiest->lock);
  3077. if (unlikely(all_pinned)) {
  3078. cpu_clear(cpu_of(busiest), *cpus);
  3079. if (!cpus_empty(*cpus))
  3080. goto redo;
  3081. }
  3082. }
  3083. if (!ld_moved) {
  3084. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3085. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3086. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3087. return -1;
  3088. } else
  3089. sd->nr_balance_failed = 0;
  3090. update_shares_locked(this_rq, sd);
  3091. return ld_moved;
  3092. out_balanced:
  3093. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3094. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3095. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3096. return -1;
  3097. sd->nr_balance_failed = 0;
  3098. return 0;
  3099. }
  3100. /*
  3101. * idle_balance is called by schedule() if this_cpu is about to become
  3102. * idle. Attempts to pull tasks from other CPUs.
  3103. */
  3104. static void idle_balance(int this_cpu, struct rq *this_rq)
  3105. {
  3106. struct sched_domain *sd;
  3107. int pulled_task = -1;
  3108. unsigned long next_balance = jiffies + HZ;
  3109. cpumask_t tmpmask;
  3110. for_each_domain(this_cpu, sd) {
  3111. unsigned long interval;
  3112. if (!(sd->flags & SD_LOAD_BALANCE))
  3113. continue;
  3114. if (sd->flags & SD_BALANCE_NEWIDLE)
  3115. /* If we've pulled tasks over stop searching: */
  3116. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3117. sd, &tmpmask);
  3118. interval = msecs_to_jiffies(sd->balance_interval);
  3119. if (time_after(next_balance, sd->last_balance + interval))
  3120. next_balance = sd->last_balance + interval;
  3121. if (pulled_task)
  3122. break;
  3123. }
  3124. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3125. /*
  3126. * We are going idle. next_balance may be set based on
  3127. * a busy processor. So reset next_balance.
  3128. */
  3129. this_rq->next_balance = next_balance;
  3130. }
  3131. }
  3132. /*
  3133. * active_load_balance is run by migration threads. It pushes running tasks
  3134. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3135. * running on each physical CPU where possible, and avoids physical /
  3136. * logical imbalances.
  3137. *
  3138. * Called with busiest_rq locked.
  3139. */
  3140. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3141. {
  3142. int target_cpu = busiest_rq->push_cpu;
  3143. struct sched_domain *sd;
  3144. struct rq *target_rq;
  3145. /* Is there any task to move? */
  3146. if (busiest_rq->nr_running <= 1)
  3147. return;
  3148. target_rq = cpu_rq(target_cpu);
  3149. /*
  3150. * This condition is "impossible", if it occurs
  3151. * we need to fix it. Originally reported by
  3152. * Bjorn Helgaas on a 128-cpu setup.
  3153. */
  3154. BUG_ON(busiest_rq == target_rq);
  3155. /* move a task from busiest_rq to target_rq */
  3156. double_lock_balance(busiest_rq, target_rq);
  3157. update_rq_clock(busiest_rq);
  3158. update_rq_clock(target_rq);
  3159. /* Search for an sd spanning us and the target CPU. */
  3160. for_each_domain(target_cpu, sd) {
  3161. if ((sd->flags & SD_LOAD_BALANCE) &&
  3162. cpu_isset(busiest_cpu, sd->span))
  3163. break;
  3164. }
  3165. if (likely(sd)) {
  3166. schedstat_inc(sd, alb_count);
  3167. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3168. sd, CPU_IDLE))
  3169. schedstat_inc(sd, alb_pushed);
  3170. else
  3171. schedstat_inc(sd, alb_failed);
  3172. }
  3173. spin_unlock(&target_rq->lock);
  3174. }
  3175. #ifdef CONFIG_NO_HZ
  3176. static struct {
  3177. atomic_t load_balancer;
  3178. cpumask_t cpu_mask;
  3179. } nohz ____cacheline_aligned = {
  3180. .load_balancer = ATOMIC_INIT(-1),
  3181. .cpu_mask = CPU_MASK_NONE,
  3182. };
  3183. /*
  3184. * This routine will try to nominate the ilb (idle load balancing)
  3185. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3186. * load balancing on behalf of all those cpus. If all the cpus in the system
  3187. * go into this tickless mode, then there will be no ilb owner (as there is
  3188. * no need for one) and all the cpus will sleep till the next wakeup event
  3189. * arrives...
  3190. *
  3191. * For the ilb owner, tick is not stopped. And this tick will be used
  3192. * for idle load balancing. ilb owner will still be part of
  3193. * nohz.cpu_mask..
  3194. *
  3195. * While stopping the tick, this cpu will become the ilb owner if there
  3196. * is no other owner. And will be the owner till that cpu becomes busy
  3197. * or if all cpus in the system stop their ticks at which point
  3198. * there is no need for ilb owner.
  3199. *
  3200. * When the ilb owner becomes busy, it nominates another owner, during the
  3201. * next busy scheduler_tick()
  3202. */
  3203. int select_nohz_load_balancer(int stop_tick)
  3204. {
  3205. int cpu = smp_processor_id();
  3206. if (stop_tick) {
  3207. cpu_set(cpu, nohz.cpu_mask);
  3208. cpu_rq(cpu)->in_nohz_recently = 1;
  3209. /*
  3210. * If we are going offline and still the leader, give up!
  3211. */
  3212. if (cpu_is_offline(cpu) &&
  3213. atomic_read(&nohz.load_balancer) == cpu) {
  3214. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3215. BUG();
  3216. return 0;
  3217. }
  3218. /* time for ilb owner also to sleep */
  3219. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3220. if (atomic_read(&nohz.load_balancer) == cpu)
  3221. atomic_set(&nohz.load_balancer, -1);
  3222. return 0;
  3223. }
  3224. if (atomic_read(&nohz.load_balancer) == -1) {
  3225. /* make me the ilb owner */
  3226. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3227. return 1;
  3228. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3229. return 1;
  3230. } else {
  3231. if (!cpu_isset(cpu, nohz.cpu_mask))
  3232. return 0;
  3233. cpu_clear(cpu, nohz.cpu_mask);
  3234. if (atomic_read(&nohz.load_balancer) == cpu)
  3235. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3236. BUG();
  3237. }
  3238. return 0;
  3239. }
  3240. #endif
  3241. static DEFINE_SPINLOCK(balancing);
  3242. /*
  3243. * It checks each scheduling domain to see if it is due to be balanced,
  3244. * and initiates a balancing operation if so.
  3245. *
  3246. * Balancing parameters are set up in arch_init_sched_domains.
  3247. */
  3248. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3249. {
  3250. int balance = 1;
  3251. struct rq *rq = cpu_rq(cpu);
  3252. unsigned long interval;
  3253. struct sched_domain *sd;
  3254. /* Earliest time when we have to do rebalance again */
  3255. unsigned long next_balance = jiffies + 60*HZ;
  3256. int update_next_balance = 0;
  3257. int need_serialize;
  3258. cpumask_t tmp;
  3259. for_each_domain(cpu, sd) {
  3260. if (!(sd->flags & SD_LOAD_BALANCE))
  3261. continue;
  3262. interval = sd->balance_interval;
  3263. if (idle != CPU_IDLE)
  3264. interval *= sd->busy_factor;
  3265. /* scale ms to jiffies */
  3266. interval = msecs_to_jiffies(interval);
  3267. if (unlikely(!interval))
  3268. interval = 1;
  3269. if (interval > HZ*NR_CPUS/10)
  3270. interval = HZ*NR_CPUS/10;
  3271. need_serialize = sd->flags & SD_SERIALIZE;
  3272. if (need_serialize) {
  3273. if (!spin_trylock(&balancing))
  3274. goto out;
  3275. }
  3276. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3277. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3278. /*
  3279. * We've pulled tasks over so either we're no
  3280. * longer idle, or one of our SMT siblings is
  3281. * not idle.
  3282. */
  3283. idle = CPU_NOT_IDLE;
  3284. }
  3285. sd->last_balance = jiffies;
  3286. }
  3287. if (need_serialize)
  3288. spin_unlock(&balancing);
  3289. out:
  3290. if (time_after(next_balance, sd->last_balance + interval)) {
  3291. next_balance = sd->last_balance + interval;
  3292. update_next_balance = 1;
  3293. }
  3294. /*
  3295. * Stop the load balance at this level. There is another
  3296. * CPU in our sched group which is doing load balancing more
  3297. * actively.
  3298. */
  3299. if (!balance)
  3300. break;
  3301. }
  3302. /*
  3303. * next_balance will be updated only when there is a need.
  3304. * When the cpu is attached to null domain for ex, it will not be
  3305. * updated.
  3306. */
  3307. if (likely(update_next_balance))
  3308. rq->next_balance = next_balance;
  3309. }
  3310. /*
  3311. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3312. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3313. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3314. */
  3315. static void run_rebalance_domains(struct softirq_action *h)
  3316. {
  3317. int this_cpu = smp_processor_id();
  3318. struct rq *this_rq = cpu_rq(this_cpu);
  3319. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3320. CPU_IDLE : CPU_NOT_IDLE;
  3321. rebalance_domains(this_cpu, idle);
  3322. #ifdef CONFIG_NO_HZ
  3323. /*
  3324. * If this cpu is the owner for idle load balancing, then do the
  3325. * balancing on behalf of the other idle cpus whose ticks are
  3326. * stopped.
  3327. */
  3328. if (this_rq->idle_at_tick &&
  3329. atomic_read(&nohz.load_balancer) == this_cpu) {
  3330. cpumask_t cpus = nohz.cpu_mask;
  3331. struct rq *rq;
  3332. int balance_cpu;
  3333. cpu_clear(this_cpu, cpus);
  3334. for_each_cpu_mask(balance_cpu, cpus) {
  3335. /*
  3336. * If this cpu gets work to do, stop the load balancing
  3337. * work being done for other cpus. Next load
  3338. * balancing owner will pick it up.
  3339. */
  3340. if (need_resched())
  3341. break;
  3342. rebalance_domains(balance_cpu, CPU_IDLE);
  3343. rq = cpu_rq(balance_cpu);
  3344. if (time_after(this_rq->next_balance, rq->next_balance))
  3345. this_rq->next_balance = rq->next_balance;
  3346. }
  3347. }
  3348. #endif
  3349. }
  3350. /*
  3351. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3352. *
  3353. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3354. * idle load balancing owner or decide to stop the periodic load balancing,
  3355. * if the whole system is idle.
  3356. */
  3357. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3358. {
  3359. #ifdef CONFIG_NO_HZ
  3360. /*
  3361. * If we were in the nohz mode recently and busy at the current
  3362. * scheduler tick, then check if we need to nominate new idle
  3363. * load balancer.
  3364. */
  3365. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3366. rq->in_nohz_recently = 0;
  3367. if (atomic_read(&nohz.load_balancer) == cpu) {
  3368. cpu_clear(cpu, nohz.cpu_mask);
  3369. atomic_set(&nohz.load_balancer, -1);
  3370. }
  3371. if (atomic_read(&nohz.load_balancer) == -1) {
  3372. /*
  3373. * simple selection for now: Nominate the
  3374. * first cpu in the nohz list to be the next
  3375. * ilb owner.
  3376. *
  3377. * TBD: Traverse the sched domains and nominate
  3378. * the nearest cpu in the nohz.cpu_mask.
  3379. */
  3380. int ilb = first_cpu(nohz.cpu_mask);
  3381. if (ilb < nr_cpu_ids)
  3382. resched_cpu(ilb);
  3383. }
  3384. }
  3385. /*
  3386. * If this cpu is idle and doing idle load balancing for all the
  3387. * cpus with ticks stopped, is it time for that to stop?
  3388. */
  3389. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3390. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3391. resched_cpu(cpu);
  3392. return;
  3393. }
  3394. /*
  3395. * If this cpu is idle and the idle load balancing is done by
  3396. * someone else, then no need raise the SCHED_SOFTIRQ
  3397. */
  3398. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3399. cpu_isset(cpu, nohz.cpu_mask))
  3400. return;
  3401. #endif
  3402. if (time_after_eq(jiffies, rq->next_balance))
  3403. raise_softirq(SCHED_SOFTIRQ);
  3404. }
  3405. #else /* CONFIG_SMP */
  3406. /*
  3407. * on UP we do not need to balance between CPUs:
  3408. */
  3409. static inline void idle_balance(int cpu, struct rq *rq)
  3410. {
  3411. }
  3412. #endif
  3413. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3414. EXPORT_PER_CPU_SYMBOL(kstat);
  3415. /*
  3416. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3417. * that have not yet been banked in case the task is currently running.
  3418. */
  3419. unsigned long long task_sched_runtime(struct task_struct *p)
  3420. {
  3421. unsigned long flags;
  3422. u64 ns, delta_exec;
  3423. struct rq *rq;
  3424. rq = task_rq_lock(p, &flags);
  3425. ns = p->se.sum_exec_runtime;
  3426. if (task_current(rq, p)) {
  3427. update_rq_clock(rq);
  3428. delta_exec = rq->clock - p->se.exec_start;
  3429. if ((s64)delta_exec > 0)
  3430. ns += delta_exec;
  3431. }
  3432. task_rq_unlock(rq, &flags);
  3433. return ns;
  3434. }
  3435. /*
  3436. * Account user cpu time to a process.
  3437. * @p: the process that the cpu time gets accounted to
  3438. * @cputime: the cpu time spent in user space since the last update
  3439. */
  3440. void account_user_time(struct task_struct *p, cputime_t cputime)
  3441. {
  3442. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3443. cputime64_t tmp;
  3444. p->utime = cputime_add(p->utime, cputime);
  3445. /* Add user time to cpustat. */
  3446. tmp = cputime_to_cputime64(cputime);
  3447. if (TASK_NICE(p) > 0)
  3448. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3449. else
  3450. cpustat->user = cputime64_add(cpustat->user, tmp);
  3451. }
  3452. /*
  3453. * Account guest cpu time to a process.
  3454. * @p: the process that the cpu time gets accounted to
  3455. * @cputime: the cpu time spent in virtual machine since the last update
  3456. */
  3457. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3458. {
  3459. cputime64_t tmp;
  3460. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3461. tmp = cputime_to_cputime64(cputime);
  3462. p->utime = cputime_add(p->utime, cputime);
  3463. p->gtime = cputime_add(p->gtime, cputime);
  3464. cpustat->user = cputime64_add(cpustat->user, tmp);
  3465. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3466. }
  3467. /*
  3468. * Account scaled user cpu time to a process.
  3469. * @p: the process that the cpu time gets accounted to
  3470. * @cputime: the cpu time spent in user space since the last update
  3471. */
  3472. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3473. {
  3474. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3475. }
  3476. /*
  3477. * Account system cpu time to a process.
  3478. * @p: the process that the cpu time gets accounted to
  3479. * @hardirq_offset: the offset to subtract from hardirq_count()
  3480. * @cputime: the cpu time spent in kernel space since the last update
  3481. */
  3482. void account_system_time(struct task_struct *p, int hardirq_offset,
  3483. cputime_t cputime)
  3484. {
  3485. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3486. struct rq *rq = this_rq();
  3487. cputime64_t tmp;
  3488. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3489. account_guest_time(p, cputime);
  3490. return;
  3491. }
  3492. p->stime = cputime_add(p->stime, cputime);
  3493. /* Add system time to cpustat. */
  3494. tmp = cputime_to_cputime64(cputime);
  3495. if (hardirq_count() - hardirq_offset)
  3496. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3497. else if (softirq_count())
  3498. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3499. else if (p != rq->idle)
  3500. cpustat->system = cputime64_add(cpustat->system, tmp);
  3501. else if (atomic_read(&rq->nr_iowait) > 0)
  3502. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3503. else
  3504. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3505. /* Account for system time used */
  3506. acct_update_integrals(p);
  3507. }
  3508. /*
  3509. * Account scaled system cpu time to a process.
  3510. * @p: the process that the cpu time gets accounted to
  3511. * @hardirq_offset: the offset to subtract from hardirq_count()
  3512. * @cputime: the cpu time spent in kernel space since the last update
  3513. */
  3514. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3515. {
  3516. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3517. }
  3518. /*
  3519. * Account for involuntary wait time.
  3520. * @p: the process from which the cpu time has been stolen
  3521. * @steal: the cpu time spent in involuntary wait
  3522. */
  3523. void account_steal_time(struct task_struct *p, cputime_t steal)
  3524. {
  3525. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3526. cputime64_t tmp = cputime_to_cputime64(steal);
  3527. struct rq *rq = this_rq();
  3528. if (p == rq->idle) {
  3529. p->stime = cputime_add(p->stime, steal);
  3530. if (atomic_read(&rq->nr_iowait) > 0)
  3531. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3532. else
  3533. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3534. } else
  3535. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3536. }
  3537. /*
  3538. * This function gets called by the timer code, with HZ frequency.
  3539. * We call it with interrupts disabled.
  3540. *
  3541. * It also gets called by the fork code, when changing the parent's
  3542. * timeslices.
  3543. */
  3544. void scheduler_tick(void)
  3545. {
  3546. int cpu = smp_processor_id();
  3547. struct rq *rq = cpu_rq(cpu);
  3548. struct task_struct *curr = rq->curr;
  3549. sched_clock_tick();
  3550. spin_lock(&rq->lock);
  3551. update_rq_clock(rq);
  3552. update_cpu_load(rq);
  3553. curr->sched_class->task_tick(rq, curr, 0);
  3554. spin_unlock(&rq->lock);
  3555. #ifdef CONFIG_SMP
  3556. rq->idle_at_tick = idle_cpu(cpu);
  3557. trigger_load_balance(rq, cpu);
  3558. #endif
  3559. }
  3560. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3561. void __kprobes add_preempt_count(int val)
  3562. {
  3563. /*
  3564. * Underflow?
  3565. */
  3566. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3567. return;
  3568. preempt_count() += val;
  3569. /*
  3570. * Spinlock count overflowing soon?
  3571. */
  3572. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3573. PREEMPT_MASK - 10);
  3574. }
  3575. EXPORT_SYMBOL(add_preempt_count);
  3576. void __kprobes sub_preempt_count(int val)
  3577. {
  3578. /*
  3579. * Underflow?
  3580. */
  3581. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3582. return;
  3583. /*
  3584. * Is the spinlock portion underflowing?
  3585. */
  3586. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3587. !(preempt_count() & PREEMPT_MASK)))
  3588. return;
  3589. preempt_count() -= val;
  3590. }
  3591. EXPORT_SYMBOL(sub_preempt_count);
  3592. #endif
  3593. /*
  3594. * Print scheduling while atomic bug:
  3595. */
  3596. static noinline void __schedule_bug(struct task_struct *prev)
  3597. {
  3598. struct pt_regs *regs = get_irq_regs();
  3599. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3600. prev->comm, prev->pid, preempt_count());
  3601. debug_show_held_locks(prev);
  3602. print_modules();
  3603. if (irqs_disabled())
  3604. print_irqtrace_events(prev);
  3605. if (regs)
  3606. show_regs(regs);
  3607. else
  3608. dump_stack();
  3609. }
  3610. /*
  3611. * Various schedule()-time debugging checks and statistics:
  3612. */
  3613. static inline void schedule_debug(struct task_struct *prev)
  3614. {
  3615. /*
  3616. * Test if we are atomic. Since do_exit() needs to call into
  3617. * schedule() atomically, we ignore that path for now.
  3618. * Otherwise, whine if we are scheduling when we should not be.
  3619. */
  3620. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3621. __schedule_bug(prev);
  3622. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3623. schedstat_inc(this_rq(), sched_count);
  3624. #ifdef CONFIG_SCHEDSTATS
  3625. if (unlikely(prev->lock_depth >= 0)) {
  3626. schedstat_inc(this_rq(), bkl_count);
  3627. schedstat_inc(prev, sched_info.bkl_count);
  3628. }
  3629. #endif
  3630. }
  3631. /*
  3632. * Pick up the highest-prio task:
  3633. */
  3634. static inline struct task_struct *
  3635. pick_next_task(struct rq *rq, struct task_struct *prev)
  3636. {
  3637. const struct sched_class *class;
  3638. struct task_struct *p;
  3639. /*
  3640. * Optimization: we know that if all tasks are in
  3641. * the fair class we can call that function directly:
  3642. */
  3643. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3644. p = fair_sched_class.pick_next_task(rq);
  3645. if (likely(p))
  3646. return p;
  3647. }
  3648. class = sched_class_highest;
  3649. for ( ; ; ) {
  3650. p = class->pick_next_task(rq);
  3651. if (p)
  3652. return p;
  3653. /*
  3654. * Will never be NULL as the idle class always
  3655. * returns a non-NULL p:
  3656. */
  3657. class = class->next;
  3658. }
  3659. }
  3660. /*
  3661. * schedule() is the main scheduler function.
  3662. */
  3663. asmlinkage void __sched schedule(void)
  3664. {
  3665. struct task_struct *prev, *next;
  3666. unsigned long *switch_count;
  3667. struct rq *rq;
  3668. int cpu, hrtick = sched_feat(HRTICK);
  3669. need_resched:
  3670. preempt_disable();
  3671. cpu = smp_processor_id();
  3672. rq = cpu_rq(cpu);
  3673. rcu_qsctr_inc(cpu);
  3674. prev = rq->curr;
  3675. switch_count = &prev->nivcsw;
  3676. release_kernel_lock(prev);
  3677. need_resched_nonpreemptible:
  3678. schedule_debug(prev);
  3679. if (hrtick)
  3680. hrtick_clear(rq);
  3681. /*
  3682. * Do the rq-clock update outside the rq lock:
  3683. */
  3684. local_irq_disable();
  3685. update_rq_clock(rq);
  3686. spin_lock(&rq->lock);
  3687. clear_tsk_need_resched(prev);
  3688. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3689. if (unlikely(signal_pending_state(prev->state, prev)))
  3690. prev->state = TASK_RUNNING;
  3691. else
  3692. deactivate_task(rq, prev, 1);
  3693. switch_count = &prev->nvcsw;
  3694. }
  3695. #ifdef CONFIG_SMP
  3696. if (prev->sched_class->pre_schedule)
  3697. prev->sched_class->pre_schedule(rq, prev);
  3698. #endif
  3699. if (unlikely(!rq->nr_running))
  3700. idle_balance(cpu, rq);
  3701. prev->sched_class->put_prev_task(rq, prev);
  3702. next = pick_next_task(rq, prev);
  3703. if (likely(prev != next)) {
  3704. sched_info_switch(prev, next);
  3705. rq->nr_switches++;
  3706. rq->curr = next;
  3707. ++*switch_count;
  3708. context_switch(rq, prev, next); /* unlocks the rq */
  3709. /*
  3710. * the context switch might have flipped the stack from under
  3711. * us, hence refresh the local variables.
  3712. */
  3713. cpu = smp_processor_id();
  3714. rq = cpu_rq(cpu);
  3715. } else
  3716. spin_unlock_irq(&rq->lock);
  3717. if (hrtick)
  3718. hrtick_set(rq);
  3719. if (unlikely(reacquire_kernel_lock(current) < 0))
  3720. goto need_resched_nonpreemptible;
  3721. preempt_enable_no_resched();
  3722. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3723. goto need_resched;
  3724. }
  3725. EXPORT_SYMBOL(schedule);
  3726. #ifdef CONFIG_PREEMPT
  3727. /*
  3728. * this is the entry point to schedule() from in-kernel preemption
  3729. * off of preempt_enable. Kernel preemptions off return from interrupt
  3730. * occur there and call schedule directly.
  3731. */
  3732. asmlinkage void __sched preempt_schedule(void)
  3733. {
  3734. struct thread_info *ti = current_thread_info();
  3735. /*
  3736. * If there is a non-zero preempt_count or interrupts are disabled,
  3737. * we do not want to preempt the current task. Just return..
  3738. */
  3739. if (likely(ti->preempt_count || irqs_disabled()))
  3740. return;
  3741. do {
  3742. add_preempt_count(PREEMPT_ACTIVE);
  3743. schedule();
  3744. sub_preempt_count(PREEMPT_ACTIVE);
  3745. /*
  3746. * Check again in case we missed a preemption opportunity
  3747. * between schedule and now.
  3748. */
  3749. barrier();
  3750. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3751. }
  3752. EXPORT_SYMBOL(preempt_schedule);
  3753. /*
  3754. * this is the entry point to schedule() from kernel preemption
  3755. * off of irq context.
  3756. * Note, that this is called and return with irqs disabled. This will
  3757. * protect us against recursive calling from irq.
  3758. */
  3759. asmlinkage void __sched preempt_schedule_irq(void)
  3760. {
  3761. struct thread_info *ti = current_thread_info();
  3762. /* Catch callers which need to be fixed */
  3763. BUG_ON(ti->preempt_count || !irqs_disabled());
  3764. do {
  3765. add_preempt_count(PREEMPT_ACTIVE);
  3766. local_irq_enable();
  3767. schedule();
  3768. local_irq_disable();
  3769. sub_preempt_count(PREEMPT_ACTIVE);
  3770. /*
  3771. * Check again in case we missed a preemption opportunity
  3772. * between schedule and now.
  3773. */
  3774. barrier();
  3775. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3776. }
  3777. #endif /* CONFIG_PREEMPT */
  3778. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3779. void *key)
  3780. {
  3781. return try_to_wake_up(curr->private, mode, sync);
  3782. }
  3783. EXPORT_SYMBOL(default_wake_function);
  3784. /*
  3785. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3786. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3787. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3788. *
  3789. * There are circumstances in which we can try to wake a task which has already
  3790. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3791. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3792. */
  3793. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3794. int nr_exclusive, int sync, void *key)
  3795. {
  3796. wait_queue_t *curr, *next;
  3797. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3798. unsigned flags = curr->flags;
  3799. if (curr->func(curr, mode, sync, key) &&
  3800. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3801. break;
  3802. }
  3803. }
  3804. /**
  3805. * __wake_up - wake up threads blocked on a waitqueue.
  3806. * @q: the waitqueue
  3807. * @mode: which threads
  3808. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3809. * @key: is directly passed to the wakeup function
  3810. */
  3811. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3812. int nr_exclusive, void *key)
  3813. {
  3814. unsigned long flags;
  3815. spin_lock_irqsave(&q->lock, flags);
  3816. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3817. spin_unlock_irqrestore(&q->lock, flags);
  3818. }
  3819. EXPORT_SYMBOL(__wake_up);
  3820. /*
  3821. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3822. */
  3823. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3824. {
  3825. __wake_up_common(q, mode, 1, 0, NULL);
  3826. }
  3827. /**
  3828. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3829. * @q: the waitqueue
  3830. * @mode: which threads
  3831. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3832. *
  3833. * The sync wakeup differs that the waker knows that it will schedule
  3834. * away soon, so while the target thread will be woken up, it will not
  3835. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3836. * with each other. This can prevent needless bouncing between CPUs.
  3837. *
  3838. * On UP it can prevent extra preemption.
  3839. */
  3840. void
  3841. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3842. {
  3843. unsigned long flags;
  3844. int sync = 1;
  3845. if (unlikely(!q))
  3846. return;
  3847. if (unlikely(!nr_exclusive))
  3848. sync = 0;
  3849. spin_lock_irqsave(&q->lock, flags);
  3850. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3851. spin_unlock_irqrestore(&q->lock, flags);
  3852. }
  3853. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3854. void complete(struct completion *x)
  3855. {
  3856. unsigned long flags;
  3857. spin_lock_irqsave(&x->wait.lock, flags);
  3858. x->done++;
  3859. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3860. spin_unlock_irqrestore(&x->wait.lock, flags);
  3861. }
  3862. EXPORT_SYMBOL(complete);
  3863. void complete_all(struct completion *x)
  3864. {
  3865. unsigned long flags;
  3866. spin_lock_irqsave(&x->wait.lock, flags);
  3867. x->done += UINT_MAX/2;
  3868. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3869. spin_unlock_irqrestore(&x->wait.lock, flags);
  3870. }
  3871. EXPORT_SYMBOL(complete_all);
  3872. static inline long __sched
  3873. do_wait_for_common(struct completion *x, long timeout, int state)
  3874. {
  3875. if (!x->done) {
  3876. DECLARE_WAITQUEUE(wait, current);
  3877. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3878. __add_wait_queue_tail(&x->wait, &wait);
  3879. do {
  3880. if ((state == TASK_INTERRUPTIBLE &&
  3881. signal_pending(current)) ||
  3882. (state == TASK_KILLABLE &&
  3883. fatal_signal_pending(current))) {
  3884. timeout = -ERESTARTSYS;
  3885. break;
  3886. }
  3887. __set_current_state(state);
  3888. spin_unlock_irq(&x->wait.lock);
  3889. timeout = schedule_timeout(timeout);
  3890. spin_lock_irq(&x->wait.lock);
  3891. } while (!x->done && timeout);
  3892. __remove_wait_queue(&x->wait, &wait);
  3893. if (!x->done)
  3894. return timeout;
  3895. }
  3896. x->done--;
  3897. return timeout ?: 1;
  3898. }
  3899. static long __sched
  3900. wait_for_common(struct completion *x, long timeout, int state)
  3901. {
  3902. might_sleep();
  3903. spin_lock_irq(&x->wait.lock);
  3904. timeout = do_wait_for_common(x, timeout, state);
  3905. spin_unlock_irq(&x->wait.lock);
  3906. return timeout;
  3907. }
  3908. void __sched wait_for_completion(struct completion *x)
  3909. {
  3910. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3911. }
  3912. EXPORT_SYMBOL(wait_for_completion);
  3913. unsigned long __sched
  3914. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3915. {
  3916. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3917. }
  3918. EXPORT_SYMBOL(wait_for_completion_timeout);
  3919. int __sched wait_for_completion_interruptible(struct completion *x)
  3920. {
  3921. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3922. if (t == -ERESTARTSYS)
  3923. return t;
  3924. return 0;
  3925. }
  3926. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3927. unsigned long __sched
  3928. wait_for_completion_interruptible_timeout(struct completion *x,
  3929. unsigned long timeout)
  3930. {
  3931. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3932. }
  3933. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3934. int __sched wait_for_completion_killable(struct completion *x)
  3935. {
  3936. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3937. if (t == -ERESTARTSYS)
  3938. return t;
  3939. return 0;
  3940. }
  3941. EXPORT_SYMBOL(wait_for_completion_killable);
  3942. static long __sched
  3943. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3944. {
  3945. unsigned long flags;
  3946. wait_queue_t wait;
  3947. init_waitqueue_entry(&wait, current);
  3948. __set_current_state(state);
  3949. spin_lock_irqsave(&q->lock, flags);
  3950. __add_wait_queue(q, &wait);
  3951. spin_unlock(&q->lock);
  3952. timeout = schedule_timeout(timeout);
  3953. spin_lock_irq(&q->lock);
  3954. __remove_wait_queue(q, &wait);
  3955. spin_unlock_irqrestore(&q->lock, flags);
  3956. return timeout;
  3957. }
  3958. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3959. {
  3960. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3961. }
  3962. EXPORT_SYMBOL(interruptible_sleep_on);
  3963. long __sched
  3964. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3965. {
  3966. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3967. }
  3968. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3969. void __sched sleep_on(wait_queue_head_t *q)
  3970. {
  3971. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3972. }
  3973. EXPORT_SYMBOL(sleep_on);
  3974. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3975. {
  3976. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3977. }
  3978. EXPORT_SYMBOL(sleep_on_timeout);
  3979. #ifdef CONFIG_RT_MUTEXES
  3980. /*
  3981. * rt_mutex_setprio - set the current priority of a task
  3982. * @p: task
  3983. * @prio: prio value (kernel-internal form)
  3984. *
  3985. * This function changes the 'effective' priority of a task. It does
  3986. * not touch ->normal_prio like __setscheduler().
  3987. *
  3988. * Used by the rt_mutex code to implement priority inheritance logic.
  3989. */
  3990. void rt_mutex_setprio(struct task_struct *p, int prio)
  3991. {
  3992. unsigned long flags;
  3993. int oldprio, on_rq, running;
  3994. struct rq *rq;
  3995. const struct sched_class *prev_class = p->sched_class;
  3996. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3997. rq = task_rq_lock(p, &flags);
  3998. update_rq_clock(rq);
  3999. oldprio = p->prio;
  4000. on_rq = p->se.on_rq;
  4001. running = task_current(rq, p);
  4002. if (on_rq)
  4003. dequeue_task(rq, p, 0);
  4004. if (running)
  4005. p->sched_class->put_prev_task(rq, p);
  4006. if (rt_prio(prio))
  4007. p->sched_class = &rt_sched_class;
  4008. else
  4009. p->sched_class = &fair_sched_class;
  4010. p->prio = prio;
  4011. if (running)
  4012. p->sched_class->set_curr_task(rq);
  4013. if (on_rq) {
  4014. enqueue_task(rq, p, 0);
  4015. check_class_changed(rq, p, prev_class, oldprio, running);
  4016. }
  4017. task_rq_unlock(rq, &flags);
  4018. }
  4019. #endif
  4020. void set_user_nice(struct task_struct *p, long nice)
  4021. {
  4022. int old_prio, delta, on_rq;
  4023. unsigned long flags;
  4024. struct rq *rq;
  4025. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4026. return;
  4027. /*
  4028. * We have to be careful, if called from sys_setpriority(),
  4029. * the task might be in the middle of scheduling on another CPU.
  4030. */
  4031. rq = task_rq_lock(p, &flags);
  4032. update_rq_clock(rq);
  4033. /*
  4034. * The RT priorities are set via sched_setscheduler(), but we still
  4035. * allow the 'normal' nice value to be set - but as expected
  4036. * it wont have any effect on scheduling until the task is
  4037. * SCHED_FIFO/SCHED_RR:
  4038. */
  4039. if (task_has_rt_policy(p)) {
  4040. p->static_prio = NICE_TO_PRIO(nice);
  4041. goto out_unlock;
  4042. }
  4043. on_rq = p->se.on_rq;
  4044. if (on_rq)
  4045. dequeue_task(rq, p, 0);
  4046. p->static_prio = NICE_TO_PRIO(nice);
  4047. set_load_weight(p);
  4048. old_prio = p->prio;
  4049. p->prio = effective_prio(p);
  4050. delta = p->prio - old_prio;
  4051. if (on_rq) {
  4052. enqueue_task(rq, p, 0);
  4053. /*
  4054. * If the task increased its priority or is running and
  4055. * lowered its priority, then reschedule its CPU:
  4056. */
  4057. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4058. resched_task(rq->curr);
  4059. }
  4060. out_unlock:
  4061. task_rq_unlock(rq, &flags);
  4062. }
  4063. EXPORT_SYMBOL(set_user_nice);
  4064. /*
  4065. * can_nice - check if a task can reduce its nice value
  4066. * @p: task
  4067. * @nice: nice value
  4068. */
  4069. int can_nice(const struct task_struct *p, const int nice)
  4070. {
  4071. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4072. int nice_rlim = 20 - nice;
  4073. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4074. capable(CAP_SYS_NICE));
  4075. }
  4076. #ifdef __ARCH_WANT_SYS_NICE
  4077. /*
  4078. * sys_nice - change the priority of the current process.
  4079. * @increment: priority increment
  4080. *
  4081. * sys_setpriority is a more generic, but much slower function that
  4082. * does similar things.
  4083. */
  4084. asmlinkage long sys_nice(int increment)
  4085. {
  4086. long nice, retval;
  4087. /*
  4088. * Setpriority might change our priority at the same moment.
  4089. * We don't have to worry. Conceptually one call occurs first
  4090. * and we have a single winner.
  4091. */
  4092. if (increment < -40)
  4093. increment = -40;
  4094. if (increment > 40)
  4095. increment = 40;
  4096. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4097. if (nice < -20)
  4098. nice = -20;
  4099. if (nice > 19)
  4100. nice = 19;
  4101. if (increment < 0 && !can_nice(current, nice))
  4102. return -EPERM;
  4103. retval = security_task_setnice(current, nice);
  4104. if (retval)
  4105. return retval;
  4106. set_user_nice(current, nice);
  4107. return 0;
  4108. }
  4109. #endif
  4110. /**
  4111. * task_prio - return the priority value of a given task.
  4112. * @p: the task in question.
  4113. *
  4114. * This is the priority value as seen by users in /proc.
  4115. * RT tasks are offset by -200. Normal tasks are centered
  4116. * around 0, value goes from -16 to +15.
  4117. */
  4118. int task_prio(const struct task_struct *p)
  4119. {
  4120. return p->prio - MAX_RT_PRIO;
  4121. }
  4122. /**
  4123. * task_nice - return the nice value of a given task.
  4124. * @p: the task in question.
  4125. */
  4126. int task_nice(const struct task_struct *p)
  4127. {
  4128. return TASK_NICE(p);
  4129. }
  4130. EXPORT_SYMBOL(task_nice);
  4131. /**
  4132. * idle_cpu - is a given cpu idle currently?
  4133. * @cpu: the processor in question.
  4134. */
  4135. int idle_cpu(int cpu)
  4136. {
  4137. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4138. }
  4139. /**
  4140. * idle_task - return the idle task for a given cpu.
  4141. * @cpu: the processor in question.
  4142. */
  4143. struct task_struct *idle_task(int cpu)
  4144. {
  4145. return cpu_rq(cpu)->idle;
  4146. }
  4147. /**
  4148. * find_process_by_pid - find a process with a matching PID value.
  4149. * @pid: the pid in question.
  4150. */
  4151. static struct task_struct *find_process_by_pid(pid_t pid)
  4152. {
  4153. return pid ? find_task_by_vpid(pid) : current;
  4154. }
  4155. /* Actually do priority change: must hold rq lock. */
  4156. static void
  4157. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4158. {
  4159. BUG_ON(p->se.on_rq);
  4160. p->policy = policy;
  4161. switch (p->policy) {
  4162. case SCHED_NORMAL:
  4163. case SCHED_BATCH:
  4164. case SCHED_IDLE:
  4165. p->sched_class = &fair_sched_class;
  4166. break;
  4167. case SCHED_FIFO:
  4168. case SCHED_RR:
  4169. p->sched_class = &rt_sched_class;
  4170. break;
  4171. }
  4172. p->rt_priority = prio;
  4173. p->normal_prio = normal_prio(p);
  4174. /* we are holding p->pi_lock already */
  4175. p->prio = rt_mutex_getprio(p);
  4176. set_load_weight(p);
  4177. }
  4178. /**
  4179. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4180. * @p: the task in question.
  4181. * @policy: new policy.
  4182. * @param: structure containing the new RT priority.
  4183. *
  4184. * NOTE that the task may be already dead.
  4185. */
  4186. int sched_setscheduler(struct task_struct *p, int policy,
  4187. struct sched_param *param)
  4188. {
  4189. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4190. unsigned long flags;
  4191. const struct sched_class *prev_class = p->sched_class;
  4192. struct rq *rq;
  4193. /* may grab non-irq protected spin_locks */
  4194. BUG_ON(in_interrupt());
  4195. recheck:
  4196. /* double check policy once rq lock held */
  4197. if (policy < 0)
  4198. policy = oldpolicy = p->policy;
  4199. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4200. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4201. policy != SCHED_IDLE)
  4202. return -EINVAL;
  4203. /*
  4204. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4205. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4206. * SCHED_BATCH and SCHED_IDLE is 0.
  4207. */
  4208. if (param->sched_priority < 0 ||
  4209. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4210. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4211. return -EINVAL;
  4212. if (rt_policy(policy) != (param->sched_priority != 0))
  4213. return -EINVAL;
  4214. /*
  4215. * Allow unprivileged RT tasks to decrease priority:
  4216. */
  4217. if (!capable(CAP_SYS_NICE)) {
  4218. if (rt_policy(policy)) {
  4219. unsigned long rlim_rtprio;
  4220. if (!lock_task_sighand(p, &flags))
  4221. return -ESRCH;
  4222. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4223. unlock_task_sighand(p, &flags);
  4224. /* can't set/change the rt policy */
  4225. if (policy != p->policy && !rlim_rtprio)
  4226. return -EPERM;
  4227. /* can't increase priority */
  4228. if (param->sched_priority > p->rt_priority &&
  4229. param->sched_priority > rlim_rtprio)
  4230. return -EPERM;
  4231. }
  4232. /*
  4233. * Like positive nice levels, dont allow tasks to
  4234. * move out of SCHED_IDLE either:
  4235. */
  4236. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4237. return -EPERM;
  4238. /* can't change other user's priorities */
  4239. if ((current->euid != p->euid) &&
  4240. (current->euid != p->uid))
  4241. return -EPERM;
  4242. }
  4243. #ifdef CONFIG_RT_GROUP_SCHED
  4244. /*
  4245. * Do not allow realtime tasks into groups that have no runtime
  4246. * assigned.
  4247. */
  4248. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4249. return -EPERM;
  4250. #endif
  4251. retval = security_task_setscheduler(p, policy, param);
  4252. if (retval)
  4253. return retval;
  4254. /*
  4255. * make sure no PI-waiters arrive (or leave) while we are
  4256. * changing the priority of the task:
  4257. */
  4258. spin_lock_irqsave(&p->pi_lock, flags);
  4259. /*
  4260. * To be able to change p->policy safely, the apropriate
  4261. * runqueue lock must be held.
  4262. */
  4263. rq = __task_rq_lock(p);
  4264. /* recheck policy now with rq lock held */
  4265. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4266. policy = oldpolicy = -1;
  4267. __task_rq_unlock(rq);
  4268. spin_unlock_irqrestore(&p->pi_lock, flags);
  4269. goto recheck;
  4270. }
  4271. update_rq_clock(rq);
  4272. on_rq = p->se.on_rq;
  4273. running = task_current(rq, p);
  4274. if (on_rq)
  4275. deactivate_task(rq, p, 0);
  4276. if (running)
  4277. p->sched_class->put_prev_task(rq, p);
  4278. oldprio = p->prio;
  4279. __setscheduler(rq, p, policy, param->sched_priority);
  4280. if (running)
  4281. p->sched_class->set_curr_task(rq);
  4282. if (on_rq) {
  4283. activate_task(rq, p, 0);
  4284. check_class_changed(rq, p, prev_class, oldprio, running);
  4285. }
  4286. __task_rq_unlock(rq);
  4287. spin_unlock_irqrestore(&p->pi_lock, flags);
  4288. rt_mutex_adjust_pi(p);
  4289. return 0;
  4290. }
  4291. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4292. static int
  4293. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4294. {
  4295. struct sched_param lparam;
  4296. struct task_struct *p;
  4297. int retval;
  4298. if (!param || pid < 0)
  4299. return -EINVAL;
  4300. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4301. return -EFAULT;
  4302. rcu_read_lock();
  4303. retval = -ESRCH;
  4304. p = find_process_by_pid(pid);
  4305. if (p != NULL)
  4306. retval = sched_setscheduler(p, policy, &lparam);
  4307. rcu_read_unlock();
  4308. return retval;
  4309. }
  4310. /**
  4311. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4312. * @pid: the pid in question.
  4313. * @policy: new policy.
  4314. * @param: structure containing the new RT priority.
  4315. */
  4316. asmlinkage long
  4317. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4318. {
  4319. /* negative values for policy are not valid */
  4320. if (policy < 0)
  4321. return -EINVAL;
  4322. return do_sched_setscheduler(pid, policy, param);
  4323. }
  4324. /**
  4325. * sys_sched_setparam - set/change the RT priority of a thread
  4326. * @pid: the pid in question.
  4327. * @param: structure containing the new RT priority.
  4328. */
  4329. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4330. {
  4331. return do_sched_setscheduler(pid, -1, param);
  4332. }
  4333. /**
  4334. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4335. * @pid: the pid in question.
  4336. */
  4337. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4338. {
  4339. struct task_struct *p;
  4340. int retval;
  4341. if (pid < 0)
  4342. return -EINVAL;
  4343. retval = -ESRCH;
  4344. read_lock(&tasklist_lock);
  4345. p = find_process_by_pid(pid);
  4346. if (p) {
  4347. retval = security_task_getscheduler(p);
  4348. if (!retval)
  4349. retval = p->policy;
  4350. }
  4351. read_unlock(&tasklist_lock);
  4352. return retval;
  4353. }
  4354. /**
  4355. * sys_sched_getscheduler - get the RT priority of a thread
  4356. * @pid: the pid in question.
  4357. * @param: structure containing the RT priority.
  4358. */
  4359. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4360. {
  4361. struct sched_param lp;
  4362. struct task_struct *p;
  4363. int retval;
  4364. if (!param || pid < 0)
  4365. return -EINVAL;
  4366. read_lock(&tasklist_lock);
  4367. p = find_process_by_pid(pid);
  4368. retval = -ESRCH;
  4369. if (!p)
  4370. goto out_unlock;
  4371. retval = security_task_getscheduler(p);
  4372. if (retval)
  4373. goto out_unlock;
  4374. lp.sched_priority = p->rt_priority;
  4375. read_unlock(&tasklist_lock);
  4376. /*
  4377. * This one might sleep, we cannot do it with a spinlock held ...
  4378. */
  4379. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4380. return retval;
  4381. out_unlock:
  4382. read_unlock(&tasklist_lock);
  4383. return retval;
  4384. }
  4385. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4386. {
  4387. cpumask_t cpus_allowed;
  4388. cpumask_t new_mask = *in_mask;
  4389. struct task_struct *p;
  4390. int retval;
  4391. get_online_cpus();
  4392. read_lock(&tasklist_lock);
  4393. p = find_process_by_pid(pid);
  4394. if (!p) {
  4395. read_unlock(&tasklist_lock);
  4396. put_online_cpus();
  4397. return -ESRCH;
  4398. }
  4399. /*
  4400. * It is not safe to call set_cpus_allowed with the
  4401. * tasklist_lock held. We will bump the task_struct's
  4402. * usage count and then drop tasklist_lock.
  4403. */
  4404. get_task_struct(p);
  4405. read_unlock(&tasklist_lock);
  4406. retval = -EPERM;
  4407. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4408. !capable(CAP_SYS_NICE))
  4409. goto out_unlock;
  4410. retval = security_task_setscheduler(p, 0, NULL);
  4411. if (retval)
  4412. goto out_unlock;
  4413. cpuset_cpus_allowed(p, &cpus_allowed);
  4414. cpus_and(new_mask, new_mask, cpus_allowed);
  4415. again:
  4416. retval = set_cpus_allowed_ptr(p, &new_mask);
  4417. if (!retval) {
  4418. cpuset_cpus_allowed(p, &cpus_allowed);
  4419. if (!cpus_subset(new_mask, cpus_allowed)) {
  4420. /*
  4421. * We must have raced with a concurrent cpuset
  4422. * update. Just reset the cpus_allowed to the
  4423. * cpuset's cpus_allowed
  4424. */
  4425. new_mask = cpus_allowed;
  4426. goto again;
  4427. }
  4428. }
  4429. out_unlock:
  4430. put_task_struct(p);
  4431. put_online_cpus();
  4432. return retval;
  4433. }
  4434. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4435. cpumask_t *new_mask)
  4436. {
  4437. if (len < sizeof(cpumask_t)) {
  4438. memset(new_mask, 0, sizeof(cpumask_t));
  4439. } else if (len > sizeof(cpumask_t)) {
  4440. len = sizeof(cpumask_t);
  4441. }
  4442. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4443. }
  4444. /**
  4445. * sys_sched_setaffinity - set the cpu affinity of a process
  4446. * @pid: pid of the process
  4447. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4448. * @user_mask_ptr: user-space pointer to the new cpu mask
  4449. */
  4450. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4451. unsigned long __user *user_mask_ptr)
  4452. {
  4453. cpumask_t new_mask;
  4454. int retval;
  4455. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4456. if (retval)
  4457. return retval;
  4458. return sched_setaffinity(pid, &new_mask);
  4459. }
  4460. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4461. {
  4462. struct task_struct *p;
  4463. int retval;
  4464. get_online_cpus();
  4465. read_lock(&tasklist_lock);
  4466. retval = -ESRCH;
  4467. p = find_process_by_pid(pid);
  4468. if (!p)
  4469. goto out_unlock;
  4470. retval = security_task_getscheduler(p);
  4471. if (retval)
  4472. goto out_unlock;
  4473. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4474. out_unlock:
  4475. read_unlock(&tasklist_lock);
  4476. put_online_cpus();
  4477. return retval;
  4478. }
  4479. /**
  4480. * sys_sched_getaffinity - get the cpu affinity of a process
  4481. * @pid: pid of the process
  4482. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4483. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4484. */
  4485. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4486. unsigned long __user *user_mask_ptr)
  4487. {
  4488. int ret;
  4489. cpumask_t mask;
  4490. if (len < sizeof(cpumask_t))
  4491. return -EINVAL;
  4492. ret = sched_getaffinity(pid, &mask);
  4493. if (ret < 0)
  4494. return ret;
  4495. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4496. return -EFAULT;
  4497. return sizeof(cpumask_t);
  4498. }
  4499. /**
  4500. * sys_sched_yield - yield the current processor to other threads.
  4501. *
  4502. * This function yields the current CPU to other tasks. If there are no
  4503. * other threads running on this CPU then this function will return.
  4504. */
  4505. asmlinkage long sys_sched_yield(void)
  4506. {
  4507. struct rq *rq = this_rq_lock();
  4508. schedstat_inc(rq, yld_count);
  4509. current->sched_class->yield_task(rq);
  4510. /*
  4511. * Since we are going to call schedule() anyway, there's
  4512. * no need to preempt or enable interrupts:
  4513. */
  4514. __release(rq->lock);
  4515. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4516. _raw_spin_unlock(&rq->lock);
  4517. preempt_enable_no_resched();
  4518. schedule();
  4519. return 0;
  4520. }
  4521. static void __cond_resched(void)
  4522. {
  4523. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4524. __might_sleep(__FILE__, __LINE__);
  4525. #endif
  4526. /*
  4527. * The BKS might be reacquired before we have dropped
  4528. * PREEMPT_ACTIVE, which could trigger a second
  4529. * cond_resched() call.
  4530. */
  4531. do {
  4532. add_preempt_count(PREEMPT_ACTIVE);
  4533. schedule();
  4534. sub_preempt_count(PREEMPT_ACTIVE);
  4535. } while (need_resched());
  4536. }
  4537. int __sched _cond_resched(void)
  4538. {
  4539. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4540. system_state == SYSTEM_RUNNING) {
  4541. __cond_resched();
  4542. return 1;
  4543. }
  4544. return 0;
  4545. }
  4546. EXPORT_SYMBOL(_cond_resched);
  4547. /*
  4548. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4549. * call schedule, and on return reacquire the lock.
  4550. *
  4551. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4552. * operations here to prevent schedule() from being called twice (once via
  4553. * spin_unlock(), once by hand).
  4554. */
  4555. int cond_resched_lock(spinlock_t *lock)
  4556. {
  4557. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4558. int ret = 0;
  4559. if (spin_needbreak(lock) || resched) {
  4560. spin_unlock(lock);
  4561. if (resched && need_resched())
  4562. __cond_resched();
  4563. else
  4564. cpu_relax();
  4565. ret = 1;
  4566. spin_lock(lock);
  4567. }
  4568. return ret;
  4569. }
  4570. EXPORT_SYMBOL(cond_resched_lock);
  4571. int __sched cond_resched_softirq(void)
  4572. {
  4573. BUG_ON(!in_softirq());
  4574. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4575. local_bh_enable();
  4576. __cond_resched();
  4577. local_bh_disable();
  4578. return 1;
  4579. }
  4580. return 0;
  4581. }
  4582. EXPORT_SYMBOL(cond_resched_softirq);
  4583. /**
  4584. * yield - yield the current processor to other threads.
  4585. *
  4586. * This is a shortcut for kernel-space yielding - it marks the
  4587. * thread runnable and calls sys_sched_yield().
  4588. */
  4589. void __sched yield(void)
  4590. {
  4591. set_current_state(TASK_RUNNING);
  4592. sys_sched_yield();
  4593. }
  4594. EXPORT_SYMBOL(yield);
  4595. /*
  4596. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4597. * that process accounting knows that this is a task in IO wait state.
  4598. *
  4599. * But don't do that if it is a deliberate, throttling IO wait (this task
  4600. * has set its backing_dev_info: the queue against which it should throttle)
  4601. */
  4602. void __sched io_schedule(void)
  4603. {
  4604. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4605. delayacct_blkio_start();
  4606. atomic_inc(&rq->nr_iowait);
  4607. schedule();
  4608. atomic_dec(&rq->nr_iowait);
  4609. delayacct_blkio_end();
  4610. }
  4611. EXPORT_SYMBOL(io_schedule);
  4612. long __sched io_schedule_timeout(long timeout)
  4613. {
  4614. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4615. long ret;
  4616. delayacct_blkio_start();
  4617. atomic_inc(&rq->nr_iowait);
  4618. ret = schedule_timeout(timeout);
  4619. atomic_dec(&rq->nr_iowait);
  4620. delayacct_blkio_end();
  4621. return ret;
  4622. }
  4623. /**
  4624. * sys_sched_get_priority_max - return maximum RT priority.
  4625. * @policy: scheduling class.
  4626. *
  4627. * this syscall returns the maximum rt_priority that can be used
  4628. * by a given scheduling class.
  4629. */
  4630. asmlinkage long sys_sched_get_priority_max(int policy)
  4631. {
  4632. int ret = -EINVAL;
  4633. switch (policy) {
  4634. case SCHED_FIFO:
  4635. case SCHED_RR:
  4636. ret = MAX_USER_RT_PRIO-1;
  4637. break;
  4638. case SCHED_NORMAL:
  4639. case SCHED_BATCH:
  4640. case SCHED_IDLE:
  4641. ret = 0;
  4642. break;
  4643. }
  4644. return ret;
  4645. }
  4646. /**
  4647. * sys_sched_get_priority_min - return minimum RT priority.
  4648. * @policy: scheduling class.
  4649. *
  4650. * this syscall returns the minimum rt_priority that can be used
  4651. * by a given scheduling class.
  4652. */
  4653. asmlinkage long sys_sched_get_priority_min(int policy)
  4654. {
  4655. int ret = -EINVAL;
  4656. switch (policy) {
  4657. case SCHED_FIFO:
  4658. case SCHED_RR:
  4659. ret = 1;
  4660. break;
  4661. case SCHED_NORMAL:
  4662. case SCHED_BATCH:
  4663. case SCHED_IDLE:
  4664. ret = 0;
  4665. }
  4666. return ret;
  4667. }
  4668. /**
  4669. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4670. * @pid: pid of the process.
  4671. * @interval: userspace pointer to the timeslice value.
  4672. *
  4673. * this syscall writes the default timeslice value of a given process
  4674. * into the user-space timespec buffer. A value of '0' means infinity.
  4675. */
  4676. asmlinkage
  4677. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4678. {
  4679. struct task_struct *p;
  4680. unsigned int time_slice;
  4681. int retval;
  4682. struct timespec t;
  4683. if (pid < 0)
  4684. return -EINVAL;
  4685. retval = -ESRCH;
  4686. read_lock(&tasklist_lock);
  4687. p = find_process_by_pid(pid);
  4688. if (!p)
  4689. goto out_unlock;
  4690. retval = security_task_getscheduler(p);
  4691. if (retval)
  4692. goto out_unlock;
  4693. /*
  4694. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4695. * tasks that are on an otherwise idle runqueue:
  4696. */
  4697. time_slice = 0;
  4698. if (p->policy == SCHED_RR) {
  4699. time_slice = DEF_TIMESLICE;
  4700. } else if (p->policy != SCHED_FIFO) {
  4701. struct sched_entity *se = &p->se;
  4702. unsigned long flags;
  4703. struct rq *rq;
  4704. rq = task_rq_lock(p, &flags);
  4705. if (rq->cfs.load.weight)
  4706. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4707. task_rq_unlock(rq, &flags);
  4708. }
  4709. read_unlock(&tasklist_lock);
  4710. jiffies_to_timespec(time_slice, &t);
  4711. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4712. return retval;
  4713. out_unlock:
  4714. read_unlock(&tasklist_lock);
  4715. return retval;
  4716. }
  4717. static const char stat_nam[] = "RSDTtZX";
  4718. void sched_show_task(struct task_struct *p)
  4719. {
  4720. unsigned long free = 0;
  4721. unsigned state;
  4722. state = p->state ? __ffs(p->state) + 1 : 0;
  4723. printk(KERN_INFO "%-13.13s %c", p->comm,
  4724. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4725. #if BITS_PER_LONG == 32
  4726. if (state == TASK_RUNNING)
  4727. printk(KERN_CONT " running ");
  4728. else
  4729. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4730. #else
  4731. if (state == TASK_RUNNING)
  4732. printk(KERN_CONT " running task ");
  4733. else
  4734. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4735. #endif
  4736. #ifdef CONFIG_DEBUG_STACK_USAGE
  4737. {
  4738. unsigned long *n = end_of_stack(p);
  4739. while (!*n)
  4740. n++;
  4741. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4742. }
  4743. #endif
  4744. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4745. task_pid_nr(p), task_pid_nr(p->real_parent));
  4746. show_stack(p, NULL);
  4747. }
  4748. void show_state_filter(unsigned long state_filter)
  4749. {
  4750. struct task_struct *g, *p;
  4751. #if BITS_PER_LONG == 32
  4752. printk(KERN_INFO
  4753. " task PC stack pid father\n");
  4754. #else
  4755. printk(KERN_INFO
  4756. " task PC stack pid father\n");
  4757. #endif
  4758. read_lock(&tasklist_lock);
  4759. do_each_thread(g, p) {
  4760. /*
  4761. * reset the NMI-timeout, listing all files on a slow
  4762. * console might take alot of time:
  4763. */
  4764. touch_nmi_watchdog();
  4765. if (!state_filter || (p->state & state_filter))
  4766. sched_show_task(p);
  4767. } while_each_thread(g, p);
  4768. touch_all_softlockup_watchdogs();
  4769. #ifdef CONFIG_SCHED_DEBUG
  4770. sysrq_sched_debug_show();
  4771. #endif
  4772. read_unlock(&tasklist_lock);
  4773. /*
  4774. * Only show locks if all tasks are dumped:
  4775. */
  4776. if (state_filter == -1)
  4777. debug_show_all_locks();
  4778. }
  4779. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4780. {
  4781. idle->sched_class = &idle_sched_class;
  4782. }
  4783. /**
  4784. * init_idle - set up an idle thread for a given CPU
  4785. * @idle: task in question
  4786. * @cpu: cpu the idle task belongs to
  4787. *
  4788. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4789. * flag, to make booting more robust.
  4790. */
  4791. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4792. {
  4793. struct rq *rq = cpu_rq(cpu);
  4794. unsigned long flags;
  4795. __sched_fork(idle);
  4796. idle->se.exec_start = sched_clock();
  4797. idle->prio = idle->normal_prio = MAX_PRIO;
  4798. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4799. __set_task_cpu(idle, cpu);
  4800. spin_lock_irqsave(&rq->lock, flags);
  4801. rq->curr = rq->idle = idle;
  4802. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4803. idle->oncpu = 1;
  4804. #endif
  4805. spin_unlock_irqrestore(&rq->lock, flags);
  4806. /* Set the preempt count _outside_ the spinlocks! */
  4807. #if defined(CONFIG_PREEMPT)
  4808. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4809. #else
  4810. task_thread_info(idle)->preempt_count = 0;
  4811. #endif
  4812. /*
  4813. * The idle tasks have their own, simple scheduling class:
  4814. */
  4815. idle->sched_class = &idle_sched_class;
  4816. }
  4817. /*
  4818. * In a system that switches off the HZ timer nohz_cpu_mask
  4819. * indicates which cpus entered this state. This is used
  4820. * in the rcu update to wait only for active cpus. For system
  4821. * which do not switch off the HZ timer nohz_cpu_mask should
  4822. * always be CPU_MASK_NONE.
  4823. */
  4824. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4825. /*
  4826. * Increase the granularity value when there are more CPUs,
  4827. * because with more CPUs the 'effective latency' as visible
  4828. * to users decreases. But the relationship is not linear,
  4829. * so pick a second-best guess by going with the log2 of the
  4830. * number of CPUs.
  4831. *
  4832. * This idea comes from the SD scheduler of Con Kolivas:
  4833. */
  4834. static inline void sched_init_granularity(void)
  4835. {
  4836. unsigned int factor = 1 + ilog2(num_online_cpus());
  4837. const unsigned long limit = 200000000;
  4838. sysctl_sched_min_granularity *= factor;
  4839. if (sysctl_sched_min_granularity > limit)
  4840. sysctl_sched_min_granularity = limit;
  4841. sysctl_sched_latency *= factor;
  4842. if (sysctl_sched_latency > limit)
  4843. sysctl_sched_latency = limit;
  4844. sysctl_sched_wakeup_granularity *= factor;
  4845. }
  4846. #ifdef CONFIG_SMP
  4847. /*
  4848. * This is how migration works:
  4849. *
  4850. * 1) we queue a struct migration_req structure in the source CPU's
  4851. * runqueue and wake up that CPU's migration thread.
  4852. * 2) we down() the locked semaphore => thread blocks.
  4853. * 3) migration thread wakes up (implicitly it forces the migrated
  4854. * thread off the CPU)
  4855. * 4) it gets the migration request and checks whether the migrated
  4856. * task is still in the wrong runqueue.
  4857. * 5) if it's in the wrong runqueue then the migration thread removes
  4858. * it and puts it into the right queue.
  4859. * 6) migration thread up()s the semaphore.
  4860. * 7) we wake up and the migration is done.
  4861. */
  4862. /*
  4863. * Change a given task's CPU affinity. Migrate the thread to a
  4864. * proper CPU and schedule it away if the CPU it's executing on
  4865. * is removed from the allowed bitmask.
  4866. *
  4867. * NOTE: the caller must have a valid reference to the task, the
  4868. * task must not exit() & deallocate itself prematurely. The
  4869. * call is not atomic; no spinlocks may be held.
  4870. */
  4871. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4872. {
  4873. struct migration_req req;
  4874. unsigned long flags;
  4875. struct rq *rq;
  4876. int ret = 0;
  4877. rq = task_rq_lock(p, &flags);
  4878. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4879. ret = -EINVAL;
  4880. goto out;
  4881. }
  4882. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4883. !cpus_equal(p->cpus_allowed, *new_mask))) {
  4884. ret = -EINVAL;
  4885. goto out;
  4886. }
  4887. if (p->sched_class->set_cpus_allowed)
  4888. p->sched_class->set_cpus_allowed(p, new_mask);
  4889. else {
  4890. p->cpus_allowed = *new_mask;
  4891. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4892. }
  4893. /* Can the task run on the task's current CPU? If so, we're done */
  4894. if (cpu_isset(task_cpu(p), *new_mask))
  4895. goto out;
  4896. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4897. /* Need help from migration thread: drop lock and wait. */
  4898. task_rq_unlock(rq, &flags);
  4899. wake_up_process(rq->migration_thread);
  4900. wait_for_completion(&req.done);
  4901. tlb_migrate_finish(p->mm);
  4902. return 0;
  4903. }
  4904. out:
  4905. task_rq_unlock(rq, &flags);
  4906. return ret;
  4907. }
  4908. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4909. /*
  4910. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4911. * this because either it can't run here any more (set_cpus_allowed()
  4912. * away from this CPU, or CPU going down), or because we're
  4913. * attempting to rebalance this task on exec (sched_exec).
  4914. *
  4915. * So we race with normal scheduler movements, but that's OK, as long
  4916. * as the task is no longer on this CPU.
  4917. *
  4918. * Returns non-zero if task was successfully migrated.
  4919. */
  4920. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4921. {
  4922. struct rq *rq_dest, *rq_src;
  4923. int ret = 0, on_rq;
  4924. if (unlikely(cpu_is_offline(dest_cpu)))
  4925. return ret;
  4926. rq_src = cpu_rq(src_cpu);
  4927. rq_dest = cpu_rq(dest_cpu);
  4928. double_rq_lock(rq_src, rq_dest);
  4929. /* Already moved. */
  4930. if (task_cpu(p) != src_cpu)
  4931. goto out;
  4932. /* Affinity changed (again). */
  4933. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4934. goto out;
  4935. on_rq = p->se.on_rq;
  4936. if (on_rq)
  4937. deactivate_task(rq_src, p, 0);
  4938. set_task_cpu(p, dest_cpu);
  4939. if (on_rq) {
  4940. activate_task(rq_dest, p, 0);
  4941. check_preempt_curr(rq_dest, p);
  4942. }
  4943. ret = 1;
  4944. out:
  4945. double_rq_unlock(rq_src, rq_dest);
  4946. return ret;
  4947. }
  4948. /*
  4949. * migration_thread - this is a highprio system thread that performs
  4950. * thread migration by bumping thread off CPU then 'pushing' onto
  4951. * another runqueue.
  4952. */
  4953. static int migration_thread(void *data)
  4954. {
  4955. int cpu = (long)data;
  4956. struct rq *rq;
  4957. rq = cpu_rq(cpu);
  4958. BUG_ON(rq->migration_thread != current);
  4959. set_current_state(TASK_INTERRUPTIBLE);
  4960. while (!kthread_should_stop()) {
  4961. struct migration_req *req;
  4962. struct list_head *head;
  4963. spin_lock_irq(&rq->lock);
  4964. if (cpu_is_offline(cpu)) {
  4965. spin_unlock_irq(&rq->lock);
  4966. goto wait_to_die;
  4967. }
  4968. if (rq->active_balance) {
  4969. active_load_balance(rq, cpu);
  4970. rq->active_balance = 0;
  4971. }
  4972. head = &rq->migration_queue;
  4973. if (list_empty(head)) {
  4974. spin_unlock_irq(&rq->lock);
  4975. schedule();
  4976. set_current_state(TASK_INTERRUPTIBLE);
  4977. continue;
  4978. }
  4979. req = list_entry(head->next, struct migration_req, list);
  4980. list_del_init(head->next);
  4981. spin_unlock(&rq->lock);
  4982. __migrate_task(req->task, cpu, req->dest_cpu);
  4983. local_irq_enable();
  4984. complete(&req->done);
  4985. }
  4986. __set_current_state(TASK_RUNNING);
  4987. return 0;
  4988. wait_to_die:
  4989. /* Wait for kthread_stop */
  4990. set_current_state(TASK_INTERRUPTIBLE);
  4991. while (!kthread_should_stop()) {
  4992. schedule();
  4993. set_current_state(TASK_INTERRUPTIBLE);
  4994. }
  4995. __set_current_state(TASK_RUNNING);
  4996. return 0;
  4997. }
  4998. #ifdef CONFIG_HOTPLUG_CPU
  4999. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5000. {
  5001. int ret;
  5002. local_irq_disable();
  5003. ret = __migrate_task(p, src_cpu, dest_cpu);
  5004. local_irq_enable();
  5005. return ret;
  5006. }
  5007. /*
  5008. * Figure out where task on dead CPU should go, use force if necessary.
  5009. * NOTE: interrupts should be disabled by the caller
  5010. */
  5011. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5012. {
  5013. unsigned long flags;
  5014. cpumask_t mask;
  5015. struct rq *rq;
  5016. int dest_cpu;
  5017. do {
  5018. /* On same node? */
  5019. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5020. cpus_and(mask, mask, p->cpus_allowed);
  5021. dest_cpu = any_online_cpu(mask);
  5022. /* On any allowed CPU? */
  5023. if (dest_cpu >= nr_cpu_ids)
  5024. dest_cpu = any_online_cpu(p->cpus_allowed);
  5025. /* No more Mr. Nice Guy. */
  5026. if (dest_cpu >= nr_cpu_ids) {
  5027. cpumask_t cpus_allowed;
  5028. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5029. /*
  5030. * Try to stay on the same cpuset, where the
  5031. * current cpuset may be a subset of all cpus.
  5032. * The cpuset_cpus_allowed_locked() variant of
  5033. * cpuset_cpus_allowed() will not block. It must be
  5034. * called within calls to cpuset_lock/cpuset_unlock.
  5035. */
  5036. rq = task_rq_lock(p, &flags);
  5037. p->cpus_allowed = cpus_allowed;
  5038. dest_cpu = any_online_cpu(p->cpus_allowed);
  5039. task_rq_unlock(rq, &flags);
  5040. /*
  5041. * Don't tell them about moving exiting tasks or
  5042. * kernel threads (both mm NULL), since they never
  5043. * leave kernel.
  5044. */
  5045. if (p->mm && printk_ratelimit()) {
  5046. printk(KERN_INFO "process %d (%s) no "
  5047. "longer affine to cpu%d\n",
  5048. task_pid_nr(p), p->comm, dead_cpu);
  5049. }
  5050. }
  5051. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5052. }
  5053. /*
  5054. * While a dead CPU has no uninterruptible tasks queued at this point,
  5055. * it might still have a nonzero ->nr_uninterruptible counter, because
  5056. * for performance reasons the counter is not stricly tracking tasks to
  5057. * their home CPUs. So we just add the counter to another CPU's counter,
  5058. * to keep the global sum constant after CPU-down:
  5059. */
  5060. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5061. {
  5062. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5063. unsigned long flags;
  5064. local_irq_save(flags);
  5065. double_rq_lock(rq_src, rq_dest);
  5066. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5067. rq_src->nr_uninterruptible = 0;
  5068. double_rq_unlock(rq_src, rq_dest);
  5069. local_irq_restore(flags);
  5070. }
  5071. /* Run through task list and migrate tasks from the dead cpu. */
  5072. static void migrate_live_tasks(int src_cpu)
  5073. {
  5074. struct task_struct *p, *t;
  5075. read_lock(&tasklist_lock);
  5076. do_each_thread(t, p) {
  5077. if (p == current)
  5078. continue;
  5079. if (task_cpu(p) == src_cpu)
  5080. move_task_off_dead_cpu(src_cpu, p);
  5081. } while_each_thread(t, p);
  5082. read_unlock(&tasklist_lock);
  5083. }
  5084. /*
  5085. * Schedules idle task to be the next runnable task on current CPU.
  5086. * It does so by boosting its priority to highest possible.
  5087. * Used by CPU offline code.
  5088. */
  5089. void sched_idle_next(void)
  5090. {
  5091. int this_cpu = smp_processor_id();
  5092. struct rq *rq = cpu_rq(this_cpu);
  5093. struct task_struct *p = rq->idle;
  5094. unsigned long flags;
  5095. /* cpu has to be offline */
  5096. BUG_ON(cpu_online(this_cpu));
  5097. /*
  5098. * Strictly not necessary since rest of the CPUs are stopped by now
  5099. * and interrupts disabled on the current cpu.
  5100. */
  5101. spin_lock_irqsave(&rq->lock, flags);
  5102. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5103. update_rq_clock(rq);
  5104. activate_task(rq, p, 0);
  5105. spin_unlock_irqrestore(&rq->lock, flags);
  5106. }
  5107. /*
  5108. * Ensures that the idle task is using init_mm right before its cpu goes
  5109. * offline.
  5110. */
  5111. void idle_task_exit(void)
  5112. {
  5113. struct mm_struct *mm = current->active_mm;
  5114. BUG_ON(cpu_online(smp_processor_id()));
  5115. if (mm != &init_mm)
  5116. switch_mm(mm, &init_mm, current);
  5117. mmdrop(mm);
  5118. }
  5119. /* called under rq->lock with disabled interrupts */
  5120. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5121. {
  5122. struct rq *rq = cpu_rq(dead_cpu);
  5123. /* Must be exiting, otherwise would be on tasklist. */
  5124. BUG_ON(!p->exit_state);
  5125. /* Cannot have done final schedule yet: would have vanished. */
  5126. BUG_ON(p->state == TASK_DEAD);
  5127. get_task_struct(p);
  5128. /*
  5129. * Drop lock around migration; if someone else moves it,
  5130. * that's OK. No task can be added to this CPU, so iteration is
  5131. * fine.
  5132. */
  5133. spin_unlock_irq(&rq->lock);
  5134. move_task_off_dead_cpu(dead_cpu, p);
  5135. spin_lock_irq(&rq->lock);
  5136. put_task_struct(p);
  5137. }
  5138. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5139. static void migrate_dead_tasks(unsigned int dead_cpu)
  5140. {
  5141. struct rq *rq = cpu_rq(dead_cpu);
  5142. struct task_struct *next;
  5143. for ( ; ; ) {
  5144. if (!rq->nr_running)
  5145. break;
  5146. update_rq_clock(rq);
  5147. next = pick_next_task(rq, rq->curr);
  5148. if (!next)
  5149. break;
  5150. migrate_dead(dead_cpu, next);
  5151. }
  5152. }
  5153. #endif /* CONFIG_HOTPLUG_CPU */
  5154. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5155. static struct ctl_table sd_ctl_dir[] = {
  5156. {
  5157. .procname = "sched_domain",
  5158. .mode = 0555,
  5159. },
  5160. {0, },
  5161. };
  5162. static struct ctl_table sd_ctl_root[] = {
  5163. {
  5164. .ctl_name = CTL_KERN,
  5165. .procname = "kernel",
  5166. .mode = 0555,
  5167. .child = sd_ctl_dir,
  5168. },
  5169. {0, },
  5170. };
  5171. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5172. {
  5173. struct ctl_table *entry =
  5174. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5175. return entry;
  5176. }
  5177. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5178. {
  5179. struct ctl_table *entry;
  5180. /*
  5181. * In the intermediate directories, both the child directory and
  5182. * procname are dynamically allocated and could fail but the mode
  5183. * will always be set. In the lowest directory the names are
  5184. * static strings and all have proc handlers.
  5185. */
  5186. for (entry = *tablep; entry->mode; entry++) {
  5187. if (entry->child)
  5188. sd_free_ctl_entry(&entry->child);
  5189. if (entry->proc_handler == NULL)
  5190. kfree(entry->procname);
  5191. }
  5192. kfree(*tablep);
  5193. *tablep = NULL;
  5194. }
  5195. static void
  5196. set_table_entry(struct ctl_table *entry,
  5197. const char *procname, void *data, int maxlen,
  5198. mode_t mode, proc_handler *proc_handler)
  5199. {
  5200. entry->procname = procname;
  5201. entry->data = data;
  5202. entry->maxlen = maxlen;
  5203. entry->mode = mode;
  5204. entry->proc_handler = proc_handler;
  5205. }
  5206. static struct ctl_table *
  5207. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5208. {
  5209. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5210. if (table == NULL)
  5211. return NULL;
  5212. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5213. sizeof(long), 0644, proc_doulongvec_minmax);
  5214. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5215. sizeof(long), 0644, proc_doulongvec_minmax);
  5216. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5217. sizeof(int), 0644, proc_dointvec_minmax);
  5218. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5219. sizeof(int), 0644, proc_dointvec_minmax);
  5220. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5221. sizeof(int), 0644, proc_dointvec_minmax);
  5222. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5223. sizeof(int), 0644, proc_dointvec_minmax);
  5224. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5225. sizeof(int), 0644, proc_dointvec_minmax);
  5226. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5227. sizeof(int), 0644, proc_dointvec_minmax);
  5228. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5229. sizeof(int), 0644, proc_dointvec_minmax);
  5230. set_table_entry(&table[9], "cache_nice_tries",
  5231. &sd->cache_nice_tries,
  5232. sizeof(int), 0644, proc_dointvec_minmax);
  5233. set_table_entry(&table[10], "flags", &sd->flags,
  5234. sizeof(int), 0644, proc_dointvec_minmax);
  5235. /* &table[11] is terminator */
  5236. return table;
  5237. }
  5238. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5239. {
  5240. struct ctl_table *entry, *table;
  5241. struct sched_domain *sd;
  5242. int domain_num = 0, i;
  5243. char buf[32];
  5244. for_each_domain(cpu, sd)
  5245. domain_num++;
  5246. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5247. if (table == NULL)
  5248. return NULL;
  5249. i = 0;
  5250. for_each_domain(cpu, sd) {
  5251. snprintf(buf, 32, "domain%d", i);
  5252. entry->procname = kstrdup(buf, GFP_KERNEL);
  5253. entry->mode = 0555;
  5254. entry->child = sd_alloc_ctl_domain_table(sd);
  5255. entry++;
  5256. i++;
  5257. }
  5258. return table;
  5259. }
  5260. static struct ctl_table_header *sd_sysctl_header;
  5261. static void register_sched_domain_sysctl(void)
  5262. {
  5263. int i, cpu_num = num_online_cpus();
  5264. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5265. char buf[32];
  5266. WARN_ON(sd_ctl_dir[0].child);
  5267. sd_ctl_dir[0].child = entry;
  5268. if (entry == NULL)
  5269. return;
  5270. for_each_online_cpu(i) {
  5271. snprintf(buf, 32, "cpu%d", i);
  5272. entry->procname = kstrdup(buf, GFP_KERNEL);
  5273. entry->mode = 0555;
  5274. entry->child = sd_alloc_ctl_cpu_table(i);
  5275. entry++;
  5276. }
  5277. WARN_ON(sd_sysctl_header);
  5278. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5279. }
  5280. /* may be called multiple times per register */
  5281. static void unregister_sched_domain_sysctl(void)
  5282. {
  5283. if (sd_sysctl_header)
  5284. unregister_sysctl_table(sd_sysctl_header);
  5285. sd_sysctl_header = NULL;
  5286. if (sd_ctl_dir[0].child)
  5287. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5288. }
  5289. #else
  5290. static void register_sched_domain_sysctl(void)
  5291. {
  5292. }
  5293. static void unregister_sched_domain_sysctl(void)
  5294. {
  5295. }
  5296. #endif
  5297. static void set_rq_online(struct rq *rq)
  5298. {
  5299. if (!rq->online) {
  5300. const struct sched_class *class;
  5301. cpu_set(rq->cpu, rq->rd->online);
  5302. rq->online = 1;
  5303. for_each_class(class) {
  5304. if (class->rq_online)
  5305. class->rq_online(rq);
  5306. }
  5307. }
  5308. }
  5309. static void set_rq_offline(struct rq *rq)
  5310. {
  5311. if (rq->online) {
  5312. const struct sched_class *class;
  5313. for_each_class(class) {
  5314. if (class->rq_offline)
  5315. class->rq_offline(rq);
  5316. }
  5317. cpu_clear(rq->cpu, rq->rd->online);
  5318. rq->online = 0;
  5319. }
  5320. }
  5321. /*
  5322. * migration_call - callback that gets triggered when a CPU is added.
  5323. * Here we can start up the necessary migration thread for the new CPU.
  5324. */
  5325. static int __cpuinit
  5326. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5327. {
  5328. struct task_struct *p;
  5329. int cpu = (long)hcpu;
  5330. unsigned long flags;
  5331. struct rq *rq;
  5332. switch (action) {
  5333. case CPU_UP_PREPARE:
  5334. case CPU_UP_PREPARE_FROZEN:
  5335. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5336. if (IS_ERR(p))
  5337. return NOTIFY_BAD;
  5338. kthread_bind(p, cpu);
  5339. /* Must be high prio: stop_machine expects to yield to it. */
  5340. rq = task_rq_lock(p, &flags);
  5341. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5342. task_rq_unlock(rq, &flags);
  5343. cpu_rq(cpu)->migration_thread = p;
  5344. break;
  5345. case CPU_ONLINE:
  5346. case CPU_ONLINE_FROZEN:
  5347. /* Strictly unnecessary, as first user will wake it. */
  5348. wake_up_process(cpu_rq(cpu)->migration_thread);
  5349. /* Update our root-domain */
  5350. rq = cpu_rq(cpu);
  5351. spin_lock_irqsave(&rq->lock, flags);
  5352. if (rq->rd) {
  5353. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5354. set_rq_online(rq);
  5355. }
  5356. spin_unlock_irqrestore(&rq->lock, flags);
  5357. break;
  5358. #ifdef CONFIG_HOTPLUG_CPU
  5359. case CPU_UP_CANCELED:
  5360. case CPU_UP_CANCELED_FROZEN:
  5361. if (!cpu_rq(cpu)->migration_thread)
  5362. break;
  5363. /* Unbind it from offline cpu so it can run. Fall thru. */
  5364. kthread_bind(cpu_rq(cpu)->migration_thread,
  5365. any_online_cpu(cpu_online_map));
  5366. kthread_stop(cpu_rq(cpu)->migration_thread);
  5367. cpu_rq(cpu)->migration_thread = NULL;
  5368. break;
  5369. case CPU_DEAD:
  5370. case CPU_DEAD_FROZEN:
  5371. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5372. migrate_live_tasks(cpu);
  5373. rq = cpu_rq(cpu);
  5374. kthread_stop(rq->migration_thread);
  5375. rq->migration_thread = NULL;
  5376. /* Idle task back to normal (off runqueue, low prio) */
  5377. spin_lock_irq(&rq->lock);
  5378. update_rq_clock(rq);
  5379. deactivate_task(rq, rq->idle, 0);
  5380. rq->idle->static_prio = MAX_PRIO;
  5381. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5382. rq->idle->sched_class = &idle_sched_class;
  5383. migrate_dead_tasks(cpu);
  5384. spin_unlock_irq(&rq->lock);
  5385. cpuset_unlock();
  5386. migrate_nr_uninterruptible(rq);
  5387. BUG_ON(rq->nr_running != 0);
  5388. /*
  5389. * No need to migrate the tasks: it was best-effort if
  5390. * they didn't take sched_hotcpu_mutex. Just wake up
  5391. * the requestors.
  5392. */
  5393. spin_lock_irq(&rq->lock);
  5394. while (!list_empty(&rq->migration_queue)) {
  5395. struct migration_req *req;
  5396. req = list_entry(rq->migration_queue.next,
  5397. struct migration_req, list);
  5398. list_del_init(&req->list);
  5399. complete(&req->done);
  5400. }
  5401. spin_unlock_irq(&rq->lock);
  5402. break;
  5403. case CPU_DYING:
  5404. case CPU_DYING_FROZEN:
  5405. /* Update our root-domain */
  5406. rq = cpu_rq(cpu);
  5407. spin_lock_irqsave(&rq->lock, flags);
  5408. if (rq->rd) {
  5409. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5410. set_rq_offline(rq);
  5411. }
  5412. spin_unlock_irqrestore(&rq->lock, flags);
  5413. break;
  5414. #endif
  5415. }
  5416. return NOTIFY_OK;
  5417. }
  5418. /* Register at highest priority so that task migration (migrate_all_tasks)
  5419. * happens before everything else.
  5420. */
  5421. static struct notifier_block __cpuinitdata migration_notifier = {
  5422. .notifier_call = migration_call,
  5423. .priority = 10
  5424. };
  5425. void __init migration_init(void)
  5426. {
  5427. void *cpu = (void *)(long)smp_processor_id();
  5428. int err;
  5429. /* Start one for the boot CPU: */
  5430. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5431. BUG_ON(err == NOTIFY_BAD);
  5432. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5433. register_cpu_notifier(&migration_notifier);
  5434. }
  5435. #endif
  5436. #ifdef CONFIG_SMP
  5437. #ifdef CONFIG_SCHED_DEBUG
  5438. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5439. {
  5440. switch (lvl) {
  5441. case SD_LV_NONE:
  5442. return "NONE";
  5443. case SD_LV_SIBLING:
  5444. return "SIBLING";
  5445. case SD_LV_MC:
  5446. return "MC";
  5447. case SD_LV_CPU:
  5448. return "CPU";
  5449. case SD_LV_NODE:
  5450. return "NODE";
  5451. case SD_LV_ALLNODES:
  5452. return "ALLNODES";
  5453. case SD_LV_MAX:
  5454. return "MAX";
  5455. }
  5456. return "MAX";
  5457. }
  5458. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5459. cpumask_t *groupmask)
  5460. {
  5461. struct sched_group *group = sd->groups;
  5462. char str[256];
  5463. cpulist_scnprintf(str, sizeof(str), sd->span);
  5464. cpus_clear(*groupmask);
  5465. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5466. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5467. printk("does not load-balance\n");
  5468. if (sd->parent)
  5469. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5470. " has parent");
  5471. return -1;
  5472. }
  5473. printk(KERN_CONT "span %s level %s\n",
  5474. str, sd_level_to_string(sd->level));
  5475. if (!cpu_isset(cpu, sd->span)) {
  5476. printk(KERN_ERR "ERROR: domain->span does not contain "
  5477. "CPU%d\n", cpu);
  5478. }
  5479. if (!cpu_isset(cpu, group->cpumask)) {
  5480. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5481. " CPU%d\n", cpu);
  5482. }
  5483. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5484. do {
  5485. if (!group) {
  5486. printk("\n");
  5487. printk(KERN_ERR "ERROR: group is NULL\n");
  5488. break;
  5489. }
  5490. if (!group->__cpu_power) {
  5491. printk(KERN_CONT "\n");
  5492. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5493. "set\n");
  5494. break;
  5495. }
  5496. if (!cpus_weight(group->cpumask)) {
  5497. printk(KERN_CONT "\n");
  5498. printk(KERN_ERR "ERROR: empty group\n");
  5499. break;
  5500. }
  5501. if (cpus_intersects(*groupmask, group->cpumask)) {
  5502. printk(KERN_CONT "\n");
  5503. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5504. break;
  5505. }
  5506. cpus_or(*groupmask, *groupmask, group->cpumask);
  5507. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5508. printk(KERN_CONT " %s", str);
  5509. group = group->next;
  5510. } while (group != sd->groups);
  5511. printk(KERN_CONT "\n");
  5512. if (!cpus_equal(sd->span, *groupmask))
  5513. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5514. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5515. printk(KERN_ERR "ERROR: parent span is not a superset "
  5516. "of domain->span\n");
  5517. return 0;
  5518. }
  5519. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5520. {
  5521. cpumask_t *groupmask;
  5522. int level = 0;
  5523. if (!sd) {
  5524. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5525. return;
  5526. }
  5527. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5528. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5529. if (!groupmask) {
  5530. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5531. return;
  5532. }
  5533. for (;;) {
  5534. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5535. break;
  5536. level++;
  5537. sd = sd->parent;
  5538. if (!sd)
  5539. break;
  5540. }
  5541. kfree(groupmask);
  5542. }
  5543. #else /* !CONFIG_SCHED_DEBUG */
  5544. # define sched_domain_debug(sd, cpu) do { } while (0)
  5545. #endif /* CONFIG_SCHED_DEBUG */
  5546. static int sd_degenerate(struct sched_domain *sd)
  5547. {
  5548. if (cpus_weight(sd->span) == 1)
  5549. return 1;
  5550. /* Following flags need at least 2 groups */
  5551. if (sd->flags & (SD_LOAD_BALANCE |
  5552. SD_BALANCE_NEWIDLE |
  5553. SD_BALANCE_FORK |
  5554. SD_BALANCE_EXEC |
  5555. SD_SHARE_CPUPOWER |
  5556. SD_SHARE_PKG_RESOURCES)) {
  5557. if (sd->groups != sd->groups->next)
  5558. return 0;
  5559. }
  5560. /* Following flags don't use groups */
  5561. if (sd->flags & (SD_WAKE_IDLE |
  5562. SD_WAKE_AFFINE |
  5563. SD_WAKE_BALANCE))
  5564. return 0;
  5565. return 1;
  5566. }
  5567. static int
  5568. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5569. {
  5570. unsigned long cflags = sd->flags, pflags = parent->flags;
  5571. if (sd_degenerate(parent))
  5572. return 1;
  5573. if (!cpus_equal(sd->span, parent->span))
  5574. return 0;
  5575. /* Does parent contain flags not in child? */
  5576. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5577. if (cflags & SD_WAKE_AFFINE)
  5578. pflags &= ~SD_WAKE_BALANCE;
  5579. /* Flags needing groups don't count if only 1 group in parent */
  5580. if (parent->groups == parent->groups->next) {
  5581. pflags &= ~(SD_LOAD_BALANCE |
  5582. SD_BALANCE_NEWIDLE |
  5583. SD_BALANCE_FORK |
  5584. SD_BALANCE_EXEC |
  5585. SD_SHARE_CPUPOWER |
  5586. SD_SHARE_PKG_RESOURCES);
  5587. }
  5588. if (~cflags & pflags)
  5589. return 0;
  5590. return 1;
  5591. }
  5592. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5593. {
  5594. unsigned long flags;
  5595. spin_lock_irqsave(&rq->lock, flags);
  5596. if (rq->rd) {
  5597. struct root_domain *old_rd = rq->rd;
  5598. if (cpu_isset(rq->cpu, old_rd->online))
  5599. set_rq_offline(rq);
  5600. cpu_clear(rq->cpu, old_rd->span);
  5601. if (atomic_dec_and_test(&old_rd->refcount))
  5602. kfree(old_rd);
  5603. }
  5604. atomic_inc(&rd->refcount);
  5605. rq->rd = rd;
  5606. cpu_set(rq->cpu, rd->span);
  5607. if (cpu_isset(rq->cpu, cpu_online_map))
  5608. set_rq_online(rq);
  5609. spin_unlock_irqrestore(&rq->lock, flags);
  5610. }
  5611. static void init_rootdomain(struct root_domain *rd)
  5612. {
  5613. memset(rd, 0, sizeof(*rd));
  5614. cpus_clear(rd->span);
  5615. cpus_clear(rd->online);
  5616. cpupri_init(&rd->cpupri);
  5617. }
  5618. static void init_defrootdomain(void)
  5619. {
  5620. init_rootdomain(&def_root_domain);
  5621. atomic_set(&def_root_domain.refcount, 1);
  5622. }
  5623. static struct root_domain *alloc_rootdomain(void)
  5624. {
  5625. struct root_domain *rd;
  5626. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5627. if (!rd)
  5628. return NULL;
  5629. init_rootdomain(rd);
  5630. return rd;
  5631. }
  5632. /*
  5633. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5634. * hold the hotplug lock.
  5635. */
  5636. static void
  5637. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5638. {
  5639. struct rq *rq = cpu_rq(cpu);
  5640. struct sched_domain *tmp;
  5641. /* Remove the sched domains which do not contribute to scheduling. */
  5642. for (tmp = sd; tmp; tmp = tmp->parent) {
  5643. struct sched_domain *parent = tmp->parent;
  5644. if (!parent)
  5645. break;
  5646. if (sd_parent_degenerate(tmp, parent)) {
  5647. tmp->parent = parent->parent;
  5648. if (parent->parent)
  5649. parent->parent->child = tmp;
  5650. }
  5651. }
  5652. if (sd && sd_degenerate(sd)) {
  5653. sd = sd->parent;
  5654. if (sd)
  5655. sd->child = NULL;
  5656. }
  5657. sched_domain_debug(sd, cpu);
  5658. rq_attach_root(rq, rd);
  5659. rcu_assign_pointer(rq->sd, sd);
  5660. }
  5661. /* cpus with isolated domains */
  5662. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5663. /* Setup the mask of cpus configured for isolated domains */
  5664. static int __init isolated_cpu_setup(char *str)
  5665. {
  5666. int ints[NR_CPUS], i;
  5667. str = get_options(str, ARRAY_SIZE(ints), ints);
  5668. cpus_clear(cpu_isolated_map);
  5669. for (i = 1; i <= ints[0]; i++)
  5670. if (ints[i] < NR_CPUS)
  5671. cpu_set(ints[i], cpu_isolated_map);
  5672. return 1;
  5673. }
  5674. __setup("isolcpus=", isolated_cpu_setup);
  5675. /*
  5676. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5677. * to a function which identifies what group(along with sched group) a CPU
  5678. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5679. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5680. *
  5681. * init_sched_build_groups will build a circular linked list of the groups
  5682. * covered by the given span, and will set each group's ->cpumask correctly,
  5683. * and ->cpu_power to 0.
  5684. */
  5685. static void
  5686. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5687. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5688. struct sched_group **sg,
  5689. cpumask_t *tmpmask),
  5690. cpumask_t *covered, cpumask_t *tmpmask)
  5691. {
  5692. struct sched_group *first = NULL, *last = NULL;
  5693. int i;
  5694. cpus_clear(*covered);
  5695. for_each_cpu_mask(i, *span) {
  5696. struct sched_group *sg;
  5697. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5698. int j;
  5699. if (cpu_isset(i, *covered))
  5700. continue;
  5701. cpus_clear(sg->cpumask);
  5702. sg->__cpu_power = 0;
  5703. for_each_cpu_mask(j, *span) {
  5704. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5705. continue;
  5706. cpu_set(j, *covered);
  5707. cpu_set(j, sg->cpumask);
  5708. }
  5709. if (!first)
  5710. first = sg;
  5711. if (last)
  5712. last->next = sg;
  5713. last = sg;
  5714. }
  5715. last->next = first;
  5716. }
  5717. #define SD_NODES_PER_DOMAIN 16
  5718. #ifdef CONFIG_NUMA
  5719. /**
  5720. * find_next_best_node - find the next node to include in a sched_domain
  5721. * @node: node whose sched_domain we're building
  5722. * @used_nodes: nodes already in the sched_domain
  5723. *
  5724. * Find the next node to include in a given scheduling domain. Simply
  5725. * finds the closest node not already in the @used_nodes map.
  5726. *
  5727. * Should use nodemask_t.
  5728. */
  5729. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5730. {
  5731. int i, n, val, min_val, best_node = 0;
  5732. min_val = INT_MAX;
  5733. for (i = 0; i < MAX_NUMNODES; i++) {
  5734. /* Start at @node */
  5735. n = (node + i) % MAX_NUMNODES;
  5736. if (!nr_cpus_node(n))
  5737. continue;
  5738. /* Skip already used nodes */
  5739. if (node_isset(n, *used_nodes))
  5740. continue;
  5741. /* Simple min distance search */
  5742. val = node_distance(node, n);
  5743. if (val < min_val) {
  5744. min_val = val;
  5745. best_node = n;
  5746. }
  5747. }
  5748. node_set(best_node, *used_nodes);
  5749. return best_node;
  5750. }
  5751. /**
  5752. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5753. * @node: node whose cpumask we're constructing
  5754. * @span: resulting cpumask
  5755. *
  5756. * Given a node, construct a good cpumask for its sched_domain to span. It
  5757. * should be one that prevents unnecessary balancing, but also spreads tasks
  5758. * out optimally.
  5759. */
  5760. static void sched_domain_node_span(int node, cpumask_t *span)
  5761. {
  5762. nodemask_t used_nodes;
  5763. node_to_cpumask_ptr(nodemask, node);
  5764. int i;
  5765. cpus_clear(*span);
  5766. nodes_clear(used_nodes);
  5767. cpus_or(*span, *span, *nodemask);
  5768. node_set(node, used_nodes);
  5769. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5770. int next_node = find_next_best_node(node, &used_nodes);
  5771. node_to_cpumask_ptr_next(nodemask, next_node);
  5772. cpus_or(*span, *span, *nodemask);
  5773. }
  5774. }
  5775. #endif /* CONFIG_NUMA */
  5776. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5777. /*
  5778. * SMT sched-domains:
  5779. */
  5780. #ifdef CONFIG_SCHED_SMT
  5781. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5782. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5783. static int
  5784. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5785. cpumask_t *unused)
  5786. {
  5787. if (sg)
  5788. *sg = &per_cpu(sched_group_cpus, cpu);
  5789. return cpu;
  5790. }
  5791. #endif /* CONFIG_SCHED_SMT */
  5792. /*
  5793. * multi-core sched-domains:
  5794. */
  5795. #ifdef CONFIG_SCHED_MC
  5796. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5797. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5798. #endif /* CONFIG_SCHED_MC */
  5799. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5800. static int
  5801. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5802. cpumask_t *mask)
  5803. {
  5804. int group;
  5805. *mask = per_cpu(cpu_sibling_map, cpu);
  5806. cpus_and(*mask, *mask, *cpu_map);
  5807. group = first_cpu(*mask);
  5808. if (sg)
  5809. *sg = &per_cpu(sched_group_core, group);
  5810. return group;
  5811. }
  5812. #elif defined(CONFIG_SCHED_MC)
  5813. static int
  5814. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5815. cpumask_t *unused)
  5816. {
  5817. if (sg)
  5818. *sg = &per_cpu(sched_group_core, cpu);
  5819. return cpu;
  5820. }
  5821. #endif
  5822. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5823. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5824. static int
  5825. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5826. cpumask_t *mask)
  5827. {
  5828. int group;
  5829. #ifdef CONFIG_SCHED_MC
  5830. *mask = cpu_coregroup_map(cpu);
  5831. cpus_and(*mask, *mask, *cpu_map);
  5832. group = first_cpu(*mask);
  5833. #elif defined(CONFIG_SCHED_SMT)
  5834. *mask = per_cpu(cpu_sibling_map, cpu);
  5835. cpus_and(*mask, *mask, *cpu_map);
  5836. group = first_cpu(*mask);
  5837. #else
  5838. group = cpu;
  5839. #endif
  5840. if (sg)
  5841. *sg = &per_cpu(sched_group_phys, group);
  5842. return group;
  5843. }
  5844. #ifdef CONFIG_NUMA
  5845. /*
  5846. * The init_sched_build_groups can't handle what we want to do with node
  5847. * groups, so roll our own. Now each node has its own list of groups which
  5848. * gets dynamically allocated.
  5849. */
  5850. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5851. static struct sched_group ***sched_group_nodes_bycpu;
  5852. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5853. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5854. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5855. struct sched_group **sg, cpumask_t *nodemask)
  5856. {
  5857. int group;
  5858. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5859. cpus_and(*nodemask, *nodemask, *cpu_map);
  5860. group = first_cpu(*nodemask);
  5861. if (sg)
  5862. *sg = &per_cpu(sched_group_allnodes, group);
  5863. return group;
  5864. }
  5865. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5866. {
  5867. struct sched_group *sg = group_head;
  5868. int j;
  5869. if (!sg)
  5870. return;
  5871. do {
  5872. for_each_cpu_mask(j, sg->cpumask) {
  5873. struct sched_domain *sd;
  5874. sd = &per_cpu(phys_domains, j);
  5875. if (j != first_cpu(sd->groups->cpumask)) {
  5876. /*
  5877. * Only add "power" once for each
  5878. * physical package.
  5879. */
  5880. continue;
  5881. }
  5882. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5883. }
  5884. sg = sg->next;
  5885. } while (sg != group_head);
  5886. }
  5887. #endif /* CONFIG_NUMA */
  5888. #ifdef CONFIG_NUMA
  5889. /* Free memory allocated for various sched_group structures */
  5890. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5891. {
  5892. int cpu, i;
  5893. for_each_cpu_mask(cpu, *cpu_map) {
  5894. struct sched_group **sched_group_nodes
  5895. = sched_group_nodes_bycpu[cpu];
  5896. if (!sched_group_nodes)
  5897. continue;
  5898. for (i = 0; i < MAX_NUMNODES; i++) {
  5899. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5900. *nodemask = node_to_cpumask(i);
  5901. cpus_and(*nodemask, *nodemask, *cpu_map);
  5902. if (cpus_empty(*nodemask))
  5903. continue;
  5904. if (sg == NULL)
  5905. continue;
  5906. sg = sg->next;
  5907. next_sg:
  5908. oldsg = sg;
  5909. sg = sg->next;
  5910. kfree(oldsg);
  5911. if (oldsg != sched_group_nodes[i])
  5912. goto next_sg;
  5913. }
  5914. kfree(sched_group_nodes);
  5915. sched_group_nodes_bycpu[cpu] = NULL;
  5916. }
  5917. }
  5918. #else /* !CONFIG_NUMA */
  5919. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5920. {
  5921. }
  5922. #endif /* CONFIG_NUMA */
  5923. /*
  5924. * Initialize sched groups cpu_power.
  5925. *
  5926. * cpu_power indicates the capacity of sched group, which is used while
  5927. * distributing the load between different sched groups in a sched domain.
  5928. * Typically cpu_power for all the groups in a sched domain will be same unless
  5929. * there are asymmetries in the topology. If there are asymmetries, group
  5930. * having more cpu_power will pickup more load compared to the group having
  5931. * less cpu_power.
  5932. *
  5933. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5934. * the maximum number of tasks a group can handle in the presence of other idle
  5935. * or lightly loaded groups in the same sched domain.
  5936. */
  5937. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5938. {
  5939. struct sched_domain *child;
  5940. struct sched_group *group;
  5941. WARN_ON(!sd || !sd->groups);
  5942. if (cpu != first_cpu(sd->groups->cpumask))
  5943. return;
  5944. child = sd->child;
  5945. sd->groups->__cpu_power = 0;
  5946. /*
  5947. * For perf policy, if the groups in child domain share resources
  5948. * (for example cores sharing some portions of the cache hierarchy
  5949. * or SMT), then set this domain groups cpu_power such that each group
  5950. * can handle only one task, when there are other idle groups in the
  5951. * same sched domain.
  5952. */
  5953. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5954. (child->flags &
  5955. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5956. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5957. return;
  5958. }
  5959. /*
  5960. * add cpu_power of each child group to this groups cpu_power
  5961. */
  5962. group = child->groups;
  5963. do {
  5964. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5965. group = group->next;
  5966. } while (group != child->groups);
  5967. }
  5968. /*
  5969. * Initializers for schedule domains
  5970. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5971. */
  5972. #define SD_INIT(sd, type) sd_init_##type(sd)
  5973. #define SD_INIT_FUNC(type) \
  5974. static noinline void sd_init_##type(struct sched_domain *sd) \
  5975. { \
  5976. memset(sd, 0, sizeof(*sd)); \
  5977. *sd = SD_##type##_INIT; \
  5978. sd->level = SD_LV_##type; \
  5979. }
  5980. SD_INIT_FUNC(CPU)
  5981. #ifdef CONFIG_NUMA
  5982. SD_INIT_FUNC(ALLNODES)
  5983. SD_INIT_FUNC(NODE)
  5984. #endif
  5985. #ifdef CONFIG_SCHED_SMT
  5986. SD_INIT_FUNC(SIBLING)
  5987. #endif
  5988. #ifdef CONFIG_SCHED_MC
  5989. SD_INIT_FUNC(MC)
  5990. #endif
  5991. /*
  5992. * To minimize stack usage kmalloc room for cpumasks and share the
  5993. * space as the usage in build_sched_domains() dictates. Used only
  5994. * if the amount of space is significant.
  5995. */
  5996. struct allmasks {
  5997. cpumask_t tmpmask; /* make this one first */
  5998. union {
  5999. cpumask_t nodemask;
  6000. cpumask_t this_sibling_map;
  6001. cpumask_t this_core_map;
  6002. };
  6003. cpumask_t send_covered;
  6004. #ifdef CONFIG_NUMA
  6005. cpumask_t domainspan;
  6006. cpumask_t covered;
  6007. cpumask_t notcovered;
  6008. #endif
  6009. };
  6010. #if NR_CPUS > 128
  6011. #define SCHED_CPUMASK_ALLOC 1
  6012. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6013. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6014. #else
  6015. #define SCHED_CPUMASK_ALLOC 0
  6016. #define SCHED_CPUMASK_FREE(v)
  6017. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6018. #endif
  6019. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6020. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6021. static int default_relax_domain_level = -1;
  6022. static int __init setup_relax_domain_level(char *str)
  6023. {
  6024. unsigned long val;
  6025. val = simple_strtoul(str, NULL, 0);
  6026. if (val < SD_LV_MAX)
  6027. default_relax_domain_level = val;
  6028. return 1;
  6029. }
  6030. __setup("relax_domain_level=", setup_relax_domain_level);
  6031. static void set_domain_attribute(struct sched_domain *sd,
  6032. struct sched_domain_attr *attr)
  6033. {
  6034. int request;
  6035. if (!attr || attr->relax_domain_level < 0) {
  6036. if (default_relax_domain_level < 0)
  6037. return;
  6038. else
  6039. request = default_relax_domain_level;
  6040. } else
  6041. request = attr->relax_domain_level;
  6042. if (request < sd->level) {
  6043. /* turn off idle balance on this domain */
  6044. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6045. } else {
  6046. /* turn on idle balance on this domain */
  6047. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6048. }
  6049. }
  6050. /*
  6051. * Build sched domains for a given set of cpus and attach the sched domains
  6052. * to the individual cpus
  6053. */
  6054. static int __build_sched_domains(const cpumask_t *cpu_map,
  6055. struct sched_domain_attr *attr)
  6056. {
  6057. int i;
  6058. struct root_domain *rd;
  6059. SCHED_CPUMASK_DECLARE(allmasks);
  6060. cpumask_t *tmpmask;
  6061. #ifdef CONFIG_NUMA
  6062. struct sched_group **sched_group_nodes = NULL;
  6063. int sd_allnodes = 0;
  6064. /*
  6065. * Allocate the per-node list of sched groups
  6066. */
  6067. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  6068. GFP_KERNEL);
  6069. if (!sched_group_nodes) {
  6070. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6071. return -ENOMEM;
  6072. }
  6073. #endif
  6074. rd = alloc_rootdomain();
  6075. if (!rd) {
  6076. printk(KERN_WARNING "Cannot alloc root domain\n");
  6077. #ifdef CONFIG_NUMA
  6078. kfree(sched_group_nodes);
  6079. #endif
  6080. return -ENOMEM;
  6081. }
  6082. #if SCHED_CPUMASK_ALLOC
  6083. /* get space for all scratch cpumask variables */
  6084. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6085. if (!allmasks) {
  6086. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6087. kfree(rd);
  6088. #ifdef CONFIG_NUMA
  6089. kfree(sched_group_nodes);
  6090. #endif
  6091. return -ENOMEM;
  6092. }
  6093. #endif
  6094. tmpmask = (cpumask_t *)allmasks;
  6095. #ifdef CONFIG_NUMA
  6096. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6097. #endif
  6098. /*
  6099. * Set up domains for cpus specified by the cpu_map.
  6100. */
  6101. for_each_cpu_mask(i, *cpu_map) {
  6102. struct sched_domain *sd = NULL, *p;
  6103. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6104. *nodemask = node_to_cpumask(cpu_to_node(i));
  6105. cpus_and(*nodemask, *nodemask, *cpu_map);
  6106. #ifdef CONFIG_NUMA
  6107. if (cpus_weight(*cpu_map) >
  6108. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6109. sd = &per_cpu(allnodes_domains, i);
  6110. SD_INIT(sd, ALLNODES);
  6111. set_domain_attribute(sd, attr);
  6112. sd->span = *cpu_map;
  6113. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6114. p = sd;
  6115. sd_allnodes = 1;
  6116. } else
  6117. p = NULL;
  6118. sd = &per_cpu(node_domains, i);
  6119. SD_INIT(sd, NODE);
  6120. set_domain_attribute(sd, attr);
  6121. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6122. sd->parent = p;
  6123. if (p)
  6124. p->child = sd;
  6125. cpus_and(sd->span, sd->span, *cpu_map);
  6126. #endif
  6127. p = sd;
  6128. sd = &per_cpu(phys_domains, i);
  6129. SD_INIT(sd, CPU);
  6130. set_domain_attribute(sd, attr);
  6131. sd->span = *nodemask;
  6132. sd->parent = p;
  6133. if (p)
  6134. p->child = sd;
  6135. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6136. #ifdef CONFIG_SCHED_MC
  6137. p = sd;
  6138. sd = &per_cpu(core_domains, i);
  6139. SD_INIT(sd, MC);
  6140. set_domain_attribute(sd, attr);
  6141. sd->span = cpu_coregroup_map(i);
  6142. cpus_and(sd->span, sd->span, *cpu_map);
  6143. sd->parent = p;
  6144. p->child = sd;
  6145. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6146. #endif
  6147. #ifdef CONFIG_SCHED_SMT
  6148. p = sd;
  6149. sd = &per_cpu(cpu_domains, i);
  6150. SD_INIT(sd, SIBLING);
  6151. set_domain_attribute(sd, attr);
  6152. sd->span = per_cpu(cpu_sibling_map, i);
  6153. cpus_and(sd->span, sd->span, *cpu_map);
  6154. sd->parent = p;
  6155. p->child = sd;
  6156. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6157. #endif
  6158. }
  6159. #ifdef CONFIG_SCHED_SMT
  6160. /* Set up CPU (sibling) groups */
  6161. for_each_cpu_mask(i, *cpu_map) {
  6162. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6163. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6164. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6165. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6166. if (i != first_cpu(*this_sibling_map))
  6167. continue;
  6168. init_sched_build_groups(this_sibling_map, cpu_map,
  6169. &cpu_to_cpu_group,
  6170. send_covered, tmpmask);
  6171. }
  6172. #endif
  6173. #ifdef CONFIG_SCHED_MC
  6174. /* Set up multi-core groups */
  6175. for_each_cpu_mask(i, *cpu_map) {
  6176. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6177. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6178. *this_core_map = cpu_coregroup_map(i);
  6179. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6180. if (i != first_cpu(*this_core_map))
  6181. continue;
  6182. init_sched_build_groups(this_core_map, cpu_map,
  6183. &cpu_to_core_group,
  6184. send_covered, tmpmask);
  6185. }
  6186. #endif
  6187. /* Set up physical groups */
  6188. for (i = 0; i < MAX_NUMNODES; i++) {
  6189. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6190. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6191. *nodemask = node_to_cpumask(i);
  6192. cpus_and(*nodemask, *nodemask, *cpu_map);
  6193. if (cpus_empty(*nodemask))
  6194. continue;
  6195. init_sched_build_groups(nodemask, cpu_map,
  6196. &cpu_to_phys_group,
  6197. send_covered, tmpmask);
  6198. }
  6199. #ifdef CONFIG_NUMA
  6200. /* Set up node groups */
  6201. if (sd_allnodes) {
  6202. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6203. init_sched_build_groups(cpu_map, cpu_map,
  6204. &cpu_to_allnodes_group,
  6205. send_covered, tmpmask);
  6206. }
  6207. for (i = 0; i < MAX_NUMNODES; i++) {
  6208. /* Set up node groups */
  6209. struct sched_group *sg, *prev;
  6210. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6211. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6212. SCHED_CPUMASK_VAR(covered, allmasks);
  6213. int j;
  6214. *nodemask = node_to_cpumask(i);
  6215. cpus_clear(*covered);
  6216. cpus_and(*nodemask, *nodemask, *cpu_map);
  6217. if (cpus_empty(*nodemask)) {
  6218. sched_group_nodes[i] = NULL;
  6219. continue;
  6220. }
  6221. sched_domain_node_span(i, domainspan);
  6222. cpus_and(*domainspan, *domainspan, *cpu_map);
  6223. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6224. if (!sg) {
  6225. printk(KERN_WARNING "Can not alloc domain group for "
  6226. "node %d\n", i);
  6227. goto error;
  6228. }
  6229. sched_group_nodes[i] = sg;
  6230. for_each_cpu_mask(j, *nodemask) {
  6231. struct sched_domain *sd;
  6232. sd = &per_cpu(node_domains, j);
  6233. sd->groups = sg;
  6234. }
  6235. sg->__cpu_power = 0;
  6236. sg->cpumask = *nodemask;
  6237. sg->next = sg;
  6238. cpus_or(*covered, *covered, *nodemask);
  6239. prev = sg;
  6240. for (j = 0; j < MAX_NUMNODES; j++) {
  6241. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6242. int n = (i + j) % MAX_NUMNODES;
  6243. node_to_cpumask_ptr(pnodemask, n);
  6244. cpus_complement(*notcovered, *covered);
  6245. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6246. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6247. if (cpus_empty(*tmpmask))
  6248. break;
  6249. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6250. if (cpus_empty(*tmpmask))
  6251. continue;
  6252. sg = kmalloc_node(sizeof(struct sched_group),
  6253. GFP_KERNEL, i);
  6254. if (!sg) {
  6255. printk(KERN_WARNING
  6256. "Can not alloc domain group for node %d\n", j);
  6257. goto error;
  6258. }
  6259. sg->__cpu_power = 0;
  6260. sg->cpumask = *tmpmask;
  6261. sg->next = prev->next;
  6262. cpus_or(*covered, *covered, *tmpmask);
  6263. prev->next = sg;
  6264. prev = sg;
  6265. }
  6266. }
  6267. #endif
  6268. /* Calculate CPU power for physical packages and nodes */
  6269. #ifdef CONFIG_SCHED_SMT
  6270. for_each_cpu_mask(i, *cpu_map) {
  6271. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6272. init_sched_groups_power(i, sd);
  6273. }
  6274. #endif
  6275. #ifdef CONFIG_SCHED_MC
  6276. for_each_cpu_mask(i, *cpu_map) {
  6277. struct sched_domain *sd = &per_cpu(core_domains, i);
  6278. init_sched_groups_power(i, sd);
  6279. }
  6280. #endif
  6281. for_each_cpu_mask(i, *cpu_map) {
  6282. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6283. init_sched_groups_power(i, sd);
  6284. }
  6285. #ifdef CONFIG_NUMA
  6286. for (i = 0; i < MAX_NUMNODES; i++)
  6287. init_numa_sched_groups_power(sched_group_nodes[i]);
  6288. if (sd_allnodes) {
  6289. struct sched_group *sg;
  6290. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6291. tmpmask);
  6292. init_numa_sched_groups_power(sg);
  6293. }
  6294. #endif
  6295. /* Attach the domains */
  6296. for_each_cpu_mask(i, *cpu_map) {
  6297. struct sched_domain *sd;
  6298. #ifdef CONFIG_SCHED_SMT
  6299. sd = &per_cpu(cpu_domains, i);
  6300. #elif defined(CONFIG_SCHED_MC)
  6301. sd = &per_cpu(core_domains, i);
  6302. #else
  6303. sd = &per_cpu(phys_domains, i);
  6304. #endif
  6305. cpu_attach_domain(sd, rd, i);
  6306. }
  6307. SCHED_CPUMASK_FREE((void *)allmasks);
  6308. return 0;
  6309. #ifdef CONFIG_NUMA
  6310. error:
  6311. free_sched_groups(cpu_map, tmpmask);
  6312. SCHED_CPUMASK_FREE((void *)allmasks);
  6313. return -ENOMEM;
  6314. #endif
  6315. }
  6316. static int build_sched_domains(const cpumask_t *cpu_map)
  6317. {
  6318. return __build_sched_domains(cpu_map, NULL);
  6319. }
  6320. static cpumask_t *doms_cur; /* current sched domains */
  6321. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6322. static struct sched_domain_attr *dattr_cur;
  6323. /* attribues of custom domains in 'doms_cur' */
  6324. /*
  6325. * Special case: If a kmalloc of a doms_cur partition (array of
  6326. * cpumask_t) fails, then fallback to a single sched domain,
  6327. * as determined by the single cpumask_t fallback_doms.
  6328. */
  6329. static cpumask_t fallback_doms;
  6330. void __attribute__((weak)) arch_update_cpu_topology(void)
  6331. {
  6332. }
  6333. /*
  6334. * Free current domain masks.
  6335. * Called after all cpus are attached to NULL domain.
  6336. */
  6337. static void free_sched_domains(void)
  6338. {
  6339. ndoms_cur = 0;
  6340. if (doms_cur != &fallback_doms)
  6341. kfree(doms_cur);
  6342. doms_cur = &fallback_doms;
  6343. }
  6344. /*
  6345. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6346. * For now this just excludes isolated cpus, but could be used to
  6347. * exclude other special cases in the future.
  6348. */
  6349. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6350. {
  6351. int err;
  6352. arch_update_cpu_topology();
  6353. ndoms_cur = 1;
  6354. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6355. if (!doms_cur)
  6356. doms_cur = &fallback_doms;
  6357. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6358. dattr_cur = NULL;
  6359. err = build_sched_domains(doms_cur);
  6360. register_sched_domain_sysctl();
  6361. return err;
  6362. }
  6363. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6364. cpumask_t *tmpmask)
  6365. {
  6366. free_sched_groups(cpu_map, tmpmask);
  6367. }
  6368. /*
  6369. * Detach sched domains from a group of cpus specified in cpu_map
  6370. * These cpus will now be attached to the NULL domain
  6371. */
  6372. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6373. {
  6374. cpumask_t tmpmask;
  6375. int i;
  6376. unregister_sched_domain_sysctl();
  6377. for_each_cpu_mask(i, *cpu_map)
  6378. cpu_attach_domain(NULL, &def_root_domain, i);
  6379. synchronize_sched();
  6380. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6381. }
  6382. /* handle null as "default" */
  6383. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6384. struct sched_domain_attr *new, int idx_new)
  6385. {
  6386. struct sched_domain_attr tmp;
  6387. /* fast path */
  6388. if (!new && !cur)
  6389. return 1;
  6390. tmp = SD_ATTR_INIT;
  6391. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6392. new ? (new + idx_new) : &tmp,
  6393. sizeof(struct sched_domain_attr));
  6394. }
  6395. /*
  6396. * Partition sched domains as specified by the 'ndoms_new'
  6397. * cpumasks in the array doms_new[] of cpumasks. This compares
  6398. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6399. * It destroys each deleted domain and builds each new domain.
  6400. *
  6401. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6402. * The masks don't intersect (don't overlap.) We should setup one
  6403. * sched domain for each mask. CPUs not in any of the cpumasks will
  6404. * not be load balanced. If the same cpumask appears both in the
  6405. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6406. * it as it is.
  6407. *
  6408. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6409. * ownership of it and will kfree it when done with it. If the caller
  6410. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6411. * and partition_sched_domains() will fallback to the single partition
  6412. * 'fallback_doms'.
  6413. *
  6414. * Call with hotplug lock held
  6415. */
  6416. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6417. struct sched_domain_attr *dattr_new)
  6418. {
  6419. int i, j;
  6420. mutex_lock(&sched_domains_mutex);
  6421. /* always unregister in case we don't destroy any domains */
  6422. unregister_sched_domain_sysctl();
  6423. if (doms_new == NULL) {
  6424. ndoms_new = 1;
  6425. doms_new = &fallback_doms;
  6426. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6427. dattr_new = NULL;
  6428. }
  6429. /* Destroy deleted domains */
  6430. for (i = 0; i < ndoms_cur; i++) {
  6431. for (j = 0; j < ndoms_new; j++) {
  6432. if (cpus_equal(doms_cur[i], doms_new[j])
  6433. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6434. goto match1;
  6435. }
  6436. /* no match - a current sched domain not in new doms_new[] */
  6437. detach_destroy_domains(doms_cur + i);
  6438. match1:
  6439. ;
  6440. }
  6441. /* Build new domains */
  6442. for (i = 0; i < ndoms_new; i++) {
  6443. for (j = 0; j < ndoms_cur; j++) {
  6444. if (cpus_equal(doms_new[i], doms_cur[j])
  6445. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6446. goto match2;
  6447. }
  6448. /* no match - add a new doms_new */
  6449. __build_sched_domains(doms_new + i,
  6450. dattr_new ? dattr_new + i : NULL);
  6451. match2:
  6452. ;
  6453. }
  6454. /* Remember the new sched domains */
  6455. if (doms_cur != &fallback_doms)
  6456. kfree(doms_cur);
  6457. kfree(dattr_cur); /* kfree(NULL) is safe */
  6458. doms_cur = doms_new;
  6459. dattr_cur = dattr_new;
  6460. ndoms_cur = ndoms_new;
  6461. register_sched_domain_sysctl();
  6462. mutex_unlock(&sched_domains_mutex);
  6463. }
  6464. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6465. int arch_reinit_sched_domains(void)
  6466. {
  6467. int err;
  6468. get_online_cpus();
  6469. mutex_lock(&sched_domains_mutex);
  6470. detach_destroy_domains(&cpu_online_map);
  6471. free_sched_domains();
  6472. err = arch_init_sched_domains(&cpu_online_map);
  6473. mutex_unlock(&sched_domains_mutex);
  6474. put_online_cpus();
  6475. return err;
  6476. }
  6477. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6478. {
  6479. int ret;
  6480. if (buf[0] != '0' && buf[0] != '1')
  6481. return -EINVAL;
  6482. if (smt)
  6483. sched_smt_power_savings = (buf[0] == '1');
  6484. else
  6485. sched_mc_power_savings = (buf[0] == '1');
  6486. ret = arch_reinit_sched_domains();
  6487. return ret ? ret : count;
  6488. }
  6489. #ifdef CONFIG_SCHED_MC
  6490. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6491. {
  6492. return sprintf(page, "%u\n", sched_mc_power_savings);
  6493. }
  6494. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6495. const char *buf, size_t count)
  6496. {
  6497. return sched_power_savings_store(buf, count, 0);
  6498. }
  6499. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6500. sched_mc_power_savings_store);
  6501. #endif
  6502. #ifdef CONFIG_SCHED_SMT
  6503. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6504. {
  6505. return sprintf(page, "%u\n", sched_smt_power_savings);
  6506. }
  6507. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6508. const char *buf, size_t count)
  6509. {
  6510. return sched_power_savings_store(buf, count, 1);
  6511. }
  6512. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6513. sched_smt_power_savings_store);
  6514. #endif
  6515. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6516. {
  6517. int err = 0;
  6518. #ifdef CONFIG_SCHED_SMT
  6519. if (smt_capable())
  6520. err = sysfs_create_file(&cls->kset.kobj,
  6521. &attr_sched_smt_power_savings.attr);
  6522. #endif
  6523. #ifdef CONFIG_SCHED_MC
  6524. if (!err && mc_capable())
  6525. err = sysfs_create_file(&cls->kset.kobj,
  6526. &attr_sched_mc_power_savings.attr);
  6527. #endif
  6528. return err;
  6529. }
  6530. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6531. /*
  6532. * Force a reinitialization of the sched domains hierarchy. The domains
  6533. * and groups cannot be updated in place without racing with the balancing
  6534. * code, so we temporarily attach all running cpus to the NULL domain
  6535. * which will prevent rebalancing while the sched domains are recalculated.
  6536. */
  6537. static int update_sched_domains(struct notifier_block *nfb,
  6538. unsigned long action, void *hcpu)
  6539. {
  6540. int cpu = (int)(long)hcpu;
  6541. switch (action) {
  6542. case CPU_DOWN_PREPARE:
  6543. case CPU_DOWN_PREPARE_FROZEN:
  6544. disable_runtime(cpu_rq(cpu));
  6545. /* fall-through */
  6546. case CPU_UP_PREPARE:
  6547. case CPU_UP_PREPARE_FROZEN:
  6548. detach_destroy_domains(&cpu_online_map);
  6549. free_sched_domains();
  6550. return NOTIFY_OK;
  6551. case CPU_DOWN_FAILED:
  6552. case CPU_DOWN_FAILED_FROZEN:
  6553. case CPU_ONLINE:
  6554. case CPU_ONLINE_FROZEN:
  6555. enable_runtime(cpu_rq(cpu));
  6556. /* fall-through */
  6557. case CPU_UP_CANCELED:
  6558. case CPU_UP_CANCELED_FROZEN:
  6559. case CPU_DEAD:
  6560. case CPU_DEAD_FROZEN:
  6561. /*
  6562. * Fall through and re-initialise the domains.
  6563. */
  6564. break;
  6565. default:
  6566. return NOTIFY_DONE;
  6567. }
  6568. #ifndef CONFIG_CPUSETS
  6569. /*
  6570. * Create default domain partitioning if cpusets are disabled.
  6571. * Otherwise we let cpusets rebuild the domains based on the
  6572. * current setup.
  6573. */
  6574. /* The hotplug lock is already held by cpu_up/cpu_down */
  6575. arch_init_sched_domains(&cpu_online_map);
  6576. #endif
  6577. return NOTIFY_OK;
  6578. }
  6579. void __init sched_init_smp(void)
  6580. {
  6581. cpumask_t non_isolated_cpus;
  6582. #if defined(CONFIG_NUMA)
  6583. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6584. GFP_KERNEL);
  6585. BUG_ON(sched_group_nodes_bycpu == NULL);
  6586. #endif
  6587. get_online_cpus();
  6588. mutex_lock(&sched_domains_mutex);
  6589. arch_init_sched_domains(&cpu_online_map);
  6590. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6591. if (cpus_empty(non_isolated_cpus))
  6592. cpu_set(smp_processor_id(), non_isolated_cpus);
  6593. mutex_unlock(&sched_domains_mutex);
  6594. put_online_cpus();
  6595. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6596. hotcpu_notifier(update_sched_domains, 0);
  6597. init_hrtick();
  6598. /* Move init over to a non-isolated CPU */
  6599. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6600. BUG();
  6601. sched_init_granularity();
  6602. }
  6603. #else
  6604. void __init sched_init_smp(void)
  6605. {
  6606. sched_init_granularity();
  6607. }
  6608. #endif /* CONFIG_SMP */
  6609. int in_sched_functions(unsigned long addr)
  6610. {
  6611. return in_lock_functions(addr) ||
  6612. (addr >= (unsigned long)__sched_text_start
  6613. && addr < (unsigned long)__sched_text_end);
  6614. }
  6615. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6616. {
  6617. cfs_rq->tasks_timeline = RB_ROOT;
  6618. INIT_LIST_HEAD(&cfs_rq->tasks);
  6619. #ifdef CONFIG_FAIR_GROUP_SCHED
  6620. cfs_rq->rq = rq;
  6621. #endif
  6622. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6623. }
  6624. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6625. {
  6626. struct rt_prio_array *array;
  6627. int i;
  6628. array = &rt_rq->active;
  6629. for (i = 0; i < MAX_RT_PRIO; i++) {
  6630. INIT_LIST_HEAD(array->queue + i);
  6631. __clear_bit(i, array->bitmap);
  6632. }
  6633. /* delimiter for bitsearch: */
  6634. __set_bit(MAX_RT_PRIO, array->bitmap);
  6635. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6636. rt_rq->highest_prio = MAX_RT_PRIO;
  6637. #endif
  6638. #ifdef CONFIG_SMP
  6639. rt_rq->rt_nr_migratory = 0;
  6640. rt_rq->overloaded = 0;
  6641. #endif
  6642. rt_rq->rt_time = 0;
  6643. rt_rq->rt_throttled = 0;
  6644. rt_rq->rt_runtime = 0;
  6645. spin_lock_init(&rt_rq->rt_runtime_lock);
  6646. #ifdef CONFIG_RT_GROUP_SCHED
  6647. rt_rq->rt_nr_boosted = 0;
  6648. rt_rq->rq = rq;
  6649. #endif
  6650. }
  6651. #ifdef CONFIG_FAIR_GROUP_SCHED
  6652. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6653. struct sched_entity *se, int cpu, int add,
  6654. struct sched_entity *parent)
  6655. {
  6656. struct rq *rq = cpu_rq(cpu);
  6657. tg->cfs_rq[cpu] = cfs_rq;
  6658. init_cfs_rq(cfs_rq, rq);
  6659. cfs_rq->tg = tg;
  6660. if (add)
  6661. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6662. tg->se[cpu] = se;
  6663. /* se could be NULL for init_task_group */
  6664. if (!se)
  6665. return;
  6666. if (!parent)
  6667. se->cfs_rq = &rq->cfs;
  6668. else
  6669. se->cfs_rq = parent->my_q;
  6670. se->my_q = cfs_rq;
  6671. se->load.weight = tg->shares;
  6672. se->load.inv_weight = 0;
  6673. se->parent = parent;
  6674. }
  6675. #endif
  6676. #ifdef CONFIG_RT_GROUP_SCHED
  6677. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6678. struct sched_rt_entity *rt_se, int cpu, int add,
  6679. struct sched_rt_entity *parent)
  6680. {
  6681. struct rq *rq = cpu_rq(cpu);
  6682. tg->rt_rq[cpu] = rt_rq;
  6683. init_rt_rq(rt_rq, rq);
  6684. rt_rq->tg = tg;
  6685. rt_rq->rt_se = rt_se;
  6686. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6687. if (add)
  6688. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6689. tg->rt_se[cpu] = rt_se;
  6690. if (!rt_se)
  6691. return;
  6692. if (!parent)
  6693. rt_se->rt_rq = &rq->rt;
  6694. else
  6695. rt_se->rt_rq = parent->my_q;
  6696. rt_se->my_q = rt_rq;
  6697. rt_se->parent = parent;
  6698. INIT_LIST_HEAD(&rt_se->run_list);
  6699. }
  6700. #endif
  6701. void __init sched_init(void)
  6702. {
  6703. int i, j;
  6704. unsigned long alloc_size = 0, ptr;
  6705. #ifdef CONFIG_FAIR_GROUP_SCHED
  6706. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6707. #endif
  6708. #ifdef CONFIG_RT_GROUP_SCHED
  6709. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6710. #endif
  6711. #ifdef CONFIG_USER_SCHED
  6712. alloc_size *= 2;
  6713. #endif
  6714. /*
  6715. * As sched_init() is called before page_alloc is setup,
  6716. * we use alloc_bootmem().
  6717. */
  6718. if (alloc_size) {
  6719. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6720. #ifdef CONFIG_FAIR_GROUP_SCHED
  6721. init_task_group.se = (struct sched_entity **)ptr;
  6722. ptr += nr_cpu_ids * sizeof(void **);
  6723. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6724. ptr += nr_cpu_ids * sizeof(void **);
  6725. #ifdef CONFIG_USER_SCHED
  6726. root_task_group.se = (struct sched_entity **)ptr;
  6727. ptr += nr_cpu_ids * sizeof(void **);
  6728. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6729. ptr += nr_cpu_ids * sizeof(void **);
  6730. #endif /* CONFIG_USER_SCHED */
  6731. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6732. #ifdef CONFIG_RT_GROUP_SCHED
  6733. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6734. ptr += nr_cpu_ids * sizeof(void **);
  6735. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6736. ptr += nr_cpu_ids * sizeof(void **);
  6737. #ifdef CONFIG_USER_SCHED
  6738. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6739. ptr += nr_cpu_ids * sizeof(void **);
  6740. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6741. ptr += nr_cpu_ids * sizeof(void **);
  6742. #endif /* CONFIG_USER_SCHED */
  6743. #endif /* CONFIG_RT_GROUP_SCHED */
  6744. }
  6745. #ifdef CONFIG_SMP
  6746. init_defrootdomain();
  6747. #endif
  6748. init_rt_bandwidth(&def_rt_bandwidth,
  6749. global_rt_period(), global_rt_runtime());
  6750. #ifdef CONFIG_RT_GROUP_SCHED
  6751. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6752. global_rt_period(), global_rt_runtime());
  6753. #ifdef CONFIG_USER_SCHED
  6754. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6755. global_rt_period(), RUNTIME_INF);
  6756. #endif /* CONFIG_USER_SCHED */
  6757. #endif /* CONFIG_RT_GROUP_SCHED */
  6758. #ifdef CONFIG_GROUP_SCHED
  6759. list_add(&init_task_group.list, &task_groups);
  6760. INIT_LIST_HEAD(&init_task_group.children);
  6761. #ifdef CONFIG_USER_SCHED
  6762. INIT_LIST_HEAD(&root_task_group.children);
  6763. init_task_group.parent = &root_task_group;
  6764. list_add(&init_task_group.siblings, &root_task_group.children);
  6765. #endif /* CONFIG_USER_SCHED */
  6766. #endif /* CONFIG_GROUP_SCHED */
  6767. for_each_possible_cpu(i) {
  6768. struct rq *rq;
  6769. rq = cpu_rq(i);
  6770. spin_lock_init(&rq->lock);
  6771. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6772. rq->nr_running = 0;
  6773. init_cfs_rq(&rq->cfs, rq);
  6774. init_rt_rq(&rq->rt, rq);
  6775. #ifdef CONFIG_FAIR_GROUP_SCHED
  6776. init_task_group.shares = init_task_group_load;
  6777. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6778. #ifdef CONFIG_CGROUP_SCHED
  6779. /*
  6780. * How much cpu bandwidth does init_task_group get?
  6781. *
  6782. * In case of task-groups formed thr' the cgroup filesystem, it
  6783. * gets 100% of the cpu resources in the system. This overall
  6784. * system cpu resource is divided among the tasks of
  6785. * init_task_group and its child task-groups in a fair manner,
  6786. * based on each entity's (task or task-group's) weight
  6787. * (se->load.weight).
  6788. *
  6789. * In other words, if init_task_group has 10 tasks of weight
  6790. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6791. * then A0's share of the cpu resource is:
  6792. *
  6793. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6794. *
  6795. * We achieve this by letting init_task_group's tasks sit
  6796. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6797. */
  6798. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6799. #elif defined CONFIG_USER_SCHED
  6800. root_task_group.shares = NICE_0_LOAD;
  6801. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6802. /*
  6803. * In case of task-groups formed thr' the user id of tasks,
  6804. * init_task_group represents tasks belonging to root user.
  6805. * Hence it forms a sibling of all subsequent groups formed.
  6806. * In this case, init_task_group gets only a fraction of overall
  6807. * system cpu resource, based on the weight assigned to root
  6808. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6809. * by letting tasks of init_task_group sit in a separate cfs_rq
  6810. * (init_cfs_rq) and having one entity represent this group of
  6811. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6812. */
  6813. init_tg_cfs_entry(&init_task_group,
  6814. &per_cpu(init_cfs_rq, i),
  6815. &per_cpu(init_sched_entity, i), i, 1,
  6816. root_task_group.se[i]);
  6817. #endif
  6818. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6819. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6820. #ifdef CONFIG_RT_GROUP_SCHED
  6821. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6822. #ifdef CONFIG_CGROUP_SCHED
  6823. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6824. #elif defined CONFIG_USER_SCHED
  6825. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6826. init_tg_rt_entry(&init_task_group,
  6827. &per_cpu(init_rt_rq, i),
  6828. &per_cpu(init_sched_rt_entity, i), i, 1,
  6829. root_task_group.rt_se[i]);
  6830. #endif
  6831. #endif
  6832. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6833. rq->cpu_load[j] = 0;
  6834. #ifdef CONFIG_SMP
  6835. rq->sd = NULL;
  6836. rq->rd = NULL;
  6837. rq->active_balance = 0;
  6838. rq->next_balance = jiffies;
  6839. rq->push_cpu = 0;
  6840. rq->cpu = i;
  6841. rq->online = 0;
  6842. rq->migration_thread = NULL;
  6843. INIT_LIST_HEAD(&rq->migration_queue);
  6844. rq_attach_root(rq, &def_root_domain);
  6845. #endif
  6846. init_rq_hrtick(rq);
  6847. atomic_set(&rq->nr_iowait, 0);
  6848. }
  6849. set_load_weight(&init_task);
  6850. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6851. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6852. #endif
  6853. #ifdef CONFIG_SMP
  6854. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6855. #endif
  6856. #ifdef CONFIG_RT_MUTEXES
  6857. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6858. #endif
  6859. /*
  6860. * The boot idle thread does lazy MMU switching as well:
  6861. */
  6862. atomic_inc(&init_mm.mm_count);
  6863. enter_lazy_tlb(&init_mm, current);
  6864. /*
  6865. * Make us the idle thread. Technically, schedule() should not be
  6866. * called from this thread, however somewhere below it might be,
  6867. * but because we are the idle thread, we just pick up running again
  6868. * when this runqueue becomes "idle".
  6869. */
  6870. init_idle(current, smp_processor_id());
  6871. /*
  6872. * During early bootup we pretend to be a normal task:
  6873. */
  6874. current->sched_class = &fair_sched_class;
  6875. scheduler_running = 1;
  6876. }
  6877. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6878. void __might_sleep(char *file, int line)
  6879. {
  6880. #ifdef in_atomic
  6881. static unsigned long prev_jiffy; /* ratelimiting */
  6882. if ((in_atomic() || irqs_disabled()) &&
  6883. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6884. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6885. return;
  6886. prev_jiffy = jiffies;
  6887. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6888. " context at %s:%d\n", file, line);
  6889. printk("in_atomic():%d, irqs_disabled():%d\n",
  6890. in_atomic(), irqs_disabled());
  6891. debug_show_held_locks(current);
  6892. if (irqs_disabled())
  6893. print_irqtrace_events(current);
  6894. dump_stack();
  6895. }
  6896. #endif
  6897. }
  6898. EXPORT_SYMBOL(__might_sleep);
  6899. #endif
  6900. #ifdef CONFIG_MAGIC_SYSRQ
  6901. static void normalize_task(struct rq *rq, struct task_struct *p)
  6902. {
  6903. int on_rq;
  6904. update_rq_clock(rq);
  6905. on_rq = p->se.on_rq;
  6906. if (on_rq)
  6907. deactivate_task(rq, p, 0);
  6908. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6909. if (on_rq) {
  6910. activate_task(rq, p, 0);
  6911. resched_task(rq->curr);
  6912. }
  6913. }
  6914. void normalize_rt_tasks(void)
  6915. {
  6916. struct task_struct *g, *p;
  6917. unsigned long flags;
  6918. struct rq *rq;
  6919. read_lock_irqsave(&tasklist_lock, flags);
  6920. do_each_thread(g, p) {
  6921. /*
  6922. * Only normalize user tasks:
  6923. */
  6924. if (!p->mm)
  6925. continue;
  6926. p->se.exec_start = 0;
  6927. #ifdef CONFIG_SCHEDSTATS
  6928. p->se.wait_start = 0;
  6929. p->se.sleep_start = 0;
  6930. p->se.block_start = 0;
  6931. #endif
  6932. if (!rt_task(p)) {
  6933. /*
  6934. * Renice negative nice level userspace
  6935. * tasks back to 0:
  6936. */
  6937. if (TASK_NICE(p) < 0 && p->mm)
  6938. set_user_nice(p, 0);
  6939. continue;
  6940. }
  6941. spin_lock(&p->pi_lock);
  6942. rq = __task_rq_lock(p);
  6943. normalize_task(rq, p);
  6944. __task_rq_unlock(rq);
  6945. spin_unlock(&p->pi_lock);
  6946. } while_each_thread(g, p);
  6947. read_unlock_irqrestore(&tasklist_lock, flags);
  6948. }
  6949. #endif /* CONFIG_MAGIC_SYSRQ */
  6950. #ifdef CONFIG_IA64
  6951. /*
  6952. * These functions are only useful for the IA64 MCA handling.
  6953. *
  6954. * They can only be called when the whole system has been
  6955. * stopped - every CPU needs to be quiescent, and no scheduling
  6956. * activity can take place. Using them for anything else would
  6957. * be a serious bug, and as a result, they aren't even visible
  6958. * under any other configuration.
  6959. */
  6960. /**
  6961. * curr_task - return the current task for a given cpu.
  6962. * @cpu: the processor in question.
  6963. *
  6964. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6965. */
  6966. struct task_struct *curr_task(int cpu)
  6967. {
  6968. return cpu_curr(cpu);
  6969. }
  6970. /**
  6971. * set_curr_task - set the current task for a given cpu.
  6972. * @cpu: the processor in question.
  6973. * @p: the task pointer to set.
  6974. *
  6975. * Description: This function must only be used when non-maskable interrupts
  6976. * are serviced on a separate stack. It allows the architecture to switch the
  6977. * notion of the current task on a cpu in a non-blocking manner. This function
  6978. * must be called with all CPU's synchronized, and interrupts disabled, the
  6979. * and caller must save the original value of the current task (see
  6980. * curr_task() above) and restore that value before reenabling interrupts and
  6981. * re-starting the system.
  6982. *
  6983. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6984. */
  6985. void set_curr_task(int cpu, struct task_struct *p)
  6986. {
  6987. cpu_curr(cpu) = p;
  6988. }
  6989. #endif
  6990. #ifdef CONFIG_FAIR_GROUP_SCHED
  6991. static void free_fair_sched_group(struct task_group *tg)
  6992. {
  6993. int i;
  6994. for_each_possible_cpu(i) {
  6995. if (tg->cfs_rq)
  6996. kfree(tg->cfs_rq[i]);
  6997. if (tg->se)
  6998. kfree(tg->se[i]);
  6999. }
  7000. kfree(tg->cfs_rq);
  7001. kfree(tg->se);
  7002. }
  7003. static
  7004. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7005. {
  7006. struct cfs_rq *cfs_rq;
  7007. struct sched_entity *se, *parent_se;
  7008. struct rq *rq;
  7009. int i;
  7010. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7011. if (!tg->cfs_rq)
  7012. goto err;
  7013. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7014. if (!tg->se)
  7015. goto err;
  7016. tg->shares = NICE_0_LOAD;
  7017. for_each_possible_cpu(i) {
  7018. rq = cpu_rq(i);
  7019. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7020. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7021. if (!cfs_rq)
  7022. goto err;
  7023. se = kmalloc_node(sizeof(struct sched_entity),
  7024. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7025. if (!se)
  7026. goto err;
  7027. parent_se = parent ? parent->se[i] : NULL;
  7028. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7029. }
  7030. return 1;
  7031. err:
  7032. return 0;
  7033. }
  7034. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7035. {
  7036. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7037. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7038. }
  7039. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7040. {
  7041. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7042. }
  7043. #else /* !CONFG_FAIR_GROUP_SCHED */
  7044. static inline void free_fair_sched_group(struct task_group *tg)
  7045. {
  7046. }
  7047. static inline
  7048. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7049. {
  7050. return 1;
  7051. }
  7052. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7053. {
  7054. }
  7055. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7056. {
  7057. }
  7058. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7059. #ifdef CONFIG_RT_GROUP_SCHED
  7060. static void free_rt_sched_group(struct task_group *tg)
  7061. {
  7062. int i;
  7063. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7064. for_each_possible_cpu(i) {
  7065. if (tg->rt_rq)
  7066. kfree(tg->rt_rq[i]);
  7067. if (tg->rt_se)
  7068. kfree(tg->rt_se[i]);
  7069. }
  7070. kfree(tg->rt_rq);
  7071. kfree(tg->rt_se);
  7072. }
  7073. static
  7074. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7075. {
  7076. struct rt_rq *rt_rq;
  7077. struct sched_rt_entity *rt_se, *parent_se;
  7078. struct rq *rq;
  7079. int i;
  7080. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7081. if (!tg->rt_rq)
  7082. goto err;
  7083. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7084. if (!tg->rt_se)
  7085. goto err;
  7086. init_rt_bandwidth(&tg->rt_bandwidth,
  7087. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7088. for_each_possible_cpu(i) {
  7089. rq = cpu_rq(i);
  7090. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7091. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7092. if (!rt_rq)
  7093. goto err;
  7094. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7095. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7096. if (!rt_se)
  7097. goto err;
  7098. parent_se = parent ? parent->rt_se[i] : NULL;
  7099. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7100. }
  7101. return 1;
  7102. err:
  7103. return 0;
  7104. }
  7105. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7106. {
  7107. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7108. &cpu_rq(cpu)->leaf_rt_rq_list);
  7109. }
  7110. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7111. {
  7112. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7113. }
  7114. #else /* !CONFIG_RT_GROUP_SCHED */
  7115. static inline void free_rt_sched_group(struct task_group *tg)
  7116. {
  7117. }
  7118. static inline
  7119. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7120. {
  7121. return 1;
  7122. }
  7123. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7124. {
  7125. }
  7126. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7127. {
  7128. }
  7129. #endif /* CONFIG_RT_GROUP_SCHED */
  7130. #ifdef CONFIG_GROUP_SCHED
  7131. static void free_sched_group(struct task_group *tg)
  7132. {
  7133. free_fair_sched_group(tg);
  7134. free_rt_sched_group(tg);
  7135. kfree(tg);
  7136. }
  7137. /* allocate runqueue etc for a new task group */
  7138. struct task_group *sched_create_group(struct task_group *parent)
  7139. {
  7140. struct task_group *tg;
  7141. unsigned long flags;
  7142. int i;
  7143. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7144. if (!tg)
  7145. return ERR_PTR(-ENOMEM);
  7146. if (!alloc_fair_sched_group(tg, parent))
  7147. goto err;
  7148. if (!alloc_rt_sched_group(tg, parent))
  7149. goto err;
  7150. spin_lock_irqsave(&task_group_lock, flags);
  7151. for_each_possible_cpu(i) {
  7152. register_fair_sched_group(tg, i);
  7153. register_rt_sched_group(tg, i);
  7154. }
  7155. list_add_rcu(&tg->list, &task_groups);
  7156. WARN_ON(!parent); /* root should already exist */
  7157. tg->parent = parent;
  7158. list_add_rcu(&tg->siblings, &parent->children);
  7159. INIT_LIST_HEAD(&tg->children);
  7160. spin_unlock_irqrestore(&task_group_lock, flags);
  7161. return tg;
  7162. err:
  7163. free_sched_group(tg);
  7164. return ERR_PTR(-ENOMEM);
  7165. }
  7166. /* rcu callback to free various structures associated with a task group */
  7167. static void free_sched_group_rcu(struct rcu_head *rhp)
  7168. {
  7169. /* now it should be safe to free those cfs_rqs */
  7170. free_sched_group(container_of(rhp, struct task_group, rcu));
  7171. }
  7172. /* Destroy runqueue etc associated with a task group */
  7173. void sched_destroy_group(struct task_group *tg)
  7174. {
  7175. unsigned long flags;
  7176. int i;
  7177. spin_lock_irqsave(&task_group_lock, flags);
  7178. for_each_possible_cpu(i) {
  7179. unregister_fair_sched_group(tg, i);
  7180. unregister_rt_sched_group(tg, i);
  7181. }
  7182. list_del_rcu(&tg->list);
  7183. list_del_rcu(&tg->siblings);
  7184. spin_unlock_irqrestore(&task_group_lock, flags);
  7185. /* wait for possible concurrent references to cfs_rqs complete */
  7186. call_rcu(&tg->rcu, free_sched_group_rcu);
  7187. }
  7188. /* change task's runqueue when it moves between groups.
  7189. * The caller of this function should have put the task in its new group
  7190. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7191. * reflect its new group.
  7192. */
  7193. void sched_move_task(struct task_struct *tsk)
  7194. {
  7195. int on_rq, running;
  7196. unsigned long flags;
  7197. struct rq *rq;
  7198. rq = task_rq_lock(tsk, &flags);
  7199. update_rq_clock(rq);
  7200. running = task_current(rq, tsk);
  7201. on_rq = tsk->se.on_rq;
  7202. if (on_rq)
  7203. dequeue_task(rq, tsk, 0);
  7204. if (unlikely(running))
  7205. tsk->sched_class->put_prev_task(rq, tsk);
  7206. set_task_rq(tsk, task_cpu(tsk));
  7207. #ifdef CONFIG_FAIR_GROUP_SCHED
  7208. if (tsk->sched_class->moved_group)
  7209. tsk->sched_class->moved_group(tsk);
  7210. #endif
  7211. if (unlikely(running))
  7212. tsk->sched_class->set_curr_task(rq);
  7213. if (on_rq)
  7214. enqueue_task(rq, tsk, 0);
  7215. task_rq_unlock(rq, &flags);
  7216. }
  7217. #endif /* CONFIG_GROUP_SCHED */
  7218. #ifdef CONFIG_FAIR_GROUP_SCHED
  7219. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7220. {
  7221. struct cfs_rq *cfs_rq = se->cfs_rq;
  7222. int on_rq;
  7223. on_rq = se->on_rq;
  7224. if (on_rq)
  7225. dequeue_entity(cfs_rq, se, 0);
  7226. se->load.weight = shares;
  7227. se->load.inv_weight = 0;
  7228. if (on_rq)
  7229. enqueue_entity(cfs_rq, se, 0);
  7230. }
  7231. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7232. {
  7233. struct cfs_rq *cfs_rq = se->cfs_rq;
  7234. struct rq *rq = cfs_rq->rq;
  7235. unsigned long flags;
  7236. spin_lock_irqsave(&rq->lock, flags);
  7237. __set_se_shares(se, shares);
  7238. spin_unlock_irqrestore(&rq->lock, flags);
  7239. }
  7240. static DEFINE_MUTEX(shares_mutex);
  7241. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7242. {
  7243. int i;
  7244. unsigned long flags;
  7245. /*
  7246. * We can't change the weight of the root cgroup.
  7247. */
  7248. if (!tg->se[0])
  7249. return -EINVAL;
  7250. if (shares < MIN_SHARES)
  7251. shares = MIN_SHARES;
  7252. else if (shares > MAX_SHARES)
  7253. shares = MAX_SHARES;
  7254. mutex_lock(&shares_mutex);
  7255. if (tg->shares == shares)
  7256. goto done;
  7257. spin_lock_irqsave(&task_group_lock, flags);
  7258. for_each_possible_cpu(i)
  7259. unregister_fair_sched_group(tg, i);
  7260. list_del_rcu(&tg->siblings);
  7261. spin_unlock_irqrestore(&task_group_lock, flags);
  7262. /* wait for any ongoing reference to this group to finish */
  7263. synchronize_sched();
  7264. /*
  7265. * Now we are free to modify the group's share on each cpu
  7266. * w/o tripping rebalance_share or load_balance_fair.
  7267. */
  7268. tg->shares = shares;
  7269. for_each_possible_cpu(i) {
  7270. /*
  7271. * force a rebalance
  7272. */
  7273. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7274. set_se_shares(tg->se[i], shares);
  7275. }
  7276. /*
  7277. * Enable load balance activity on this group, by inserting it back on
  7278. * each cpu's rq->leaf_cfs_rq_list.
  7279. */
  7280. spin_lock_irqsave(&task_group_lock, flags);
  7281. for_each_possible_cpu(i)
  7282. register_fair_sched_group(tg, i);
  7283. list_add_rcu(&tg->siblings, &tg->parent->children);
  7284. spin_unlock_irqrestore(&task_group_lock, flags);
  7285. done:
  7286. mutex_unlock(&shares_mutex);
  7287. return 0;
  7288. }
  7289. unsigned long sched_group_shares(struct task_group *tg)
  7290. {
  7291. return tg->shares;
  7292. }
  7293. #endif
  7294. #ifdef CONFIG_RT_GROUP_SCHED
  7295. /*
  7296. * Ensure that the real time constraints are schedulable.
  7297. */
  7298. static DEFINE_MUTEX(rt_constraints_mutex);
  7299. static unsigned long to_ratio(u64 period, u64 runtime)
  7300. {
  7301. if (runtime == RUNTIME_INF)
  7302. return 1ULL << 16;
  7303. return div64_u64(runtime << 16, period);
  7304. }
  7305. #ifdef CONFIG_CGROUP_SCHED
  7306. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7307. {
  7308. struct task_group *tgi, *parent = tg->parent;
  7309. unsigned long total = 0;
  7310. if (!parent) {
  7311. if (global_rt_period() < period)
  7312. return 0;
  7313. return to_ratio(period, runtime) <
  7314. to_ratio(global_rt_period(), global_rt_runtime());
  7315. }
  7316. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7317. return 0;
  7318. rcu_read_lock();
  7319. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7320. if (tgi == tg)
  7321. continue;
  7322. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7323. tgi->rt_bandwidth.rt_runtime);
  7324. }
  7325. rcu_read_unlock();
  7326. return total + to_ratio(period, runtime) <=
  7327. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7328. parent->rt_bandwidth.rt_runtime);
  7329. }
  7330. #elif defined CONFIG_USER_SCHED
  7331. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7332. {
  7333. struct task_group *tgi;
  7334. unsigned long total = 0;
  7335. unsigned long global_ratio =
  7336. to_ratio(global_rt_period(), global_rt_runtime());
  7337. rcu_read_lock();
  7338. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7339. if (tgi == tg)
  7340. continue;
  7341. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7342. tgi->rt_bandwidth.rt_runtime);
  7343. }
  7344. rcu_read_unlock();
  7345. return total + to_ratio(period, runtime) < global_ratio;
  7346. }
  7347. #endif
  7348. /* Must be called with tasklist_lock held */
  7349. static inline int tg_has_rt_tasks(struct task_group *tg)
  7350. {
  7351. struct task_struct *g, *p;
  7352. do_each_thread(g, p) {
  7353. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7354. return 1;
  7355. } while_each_thread(g, p);
  7356. return 0;
  7357. }
  7358. static int tg_set_bandwidth(struct task_group *tg,
  7359. u64 rt_period, u64 rt_runtime)
  7360. {
  7361. int i, err = 0;
  7362. mutex_lock(&rt_constraints_mutex);
  7363. read_lock(&tasklist_lock);
  7364. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7365. err = -EBUSY;
  7366. goto unlock;
  7367. }
  7368. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7369. err = -EINVAL;
  7370. goto unlock;
  7371. }
  7372. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7373. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7374. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7375. for_each_possible_cpu(i) {
  7376. struct rt_rq *rt_rq = tg->rt_rq[i];
  7377. spin_lock(&rt_rq->rt_runtime_lock);
  7378. rt_rq->rt_runtime = rt_runtime;
  7379. spin_unlock(&rt_rq->rt_runtime_lock);
  7380. }
  7381. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7382. unlock:
  7383. read_unlock(&tasklist_lock);
  7384. mutex_unlock(&rt_constraints_mutex);
  7385. return err;
  7386. }
  7387. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7388. {
  7389. u64 rt_runtime, rt_period;
  7390. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7391. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7392. if (rt_runtime_us < 0)
  7393. rt_runtime = RUNTIME_INF;
  7394. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7395. }
  7396. long sched_group_rt_runtime(struct task_group *tg)
  7397. {
  7398. u64 rt_runtime_us;
  7399. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7400. return -1;
  7401. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7402. do_div(rt_runtime_us, NSEC_PER_USEC);
  7403. return rt_runtime_us;
  7404. }
  7405. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7406. {
  7407. u64 rt_runtime, rt_period;
  7408. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7409. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7410. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7411. }
  7412. long sched_group_rt_period(struct task_group *tg)
  7413. {
  7414. u64 rt_period_us;
  7415. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7416. do_div(rt_period_us, NSEC_PER_USEC);
  7417. return rt_period_us;
  7418. }
  7419. static int sched_rt_global_constraints(void)
  7420. {
  7421. struct task_group *tg = &root_task_group;
  7422. u64 rt_runtime, rt_period;
  7423. int ret = 0;
  7424. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7425. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7426. mutex_lock(&rt_constraints_mutex);
  7427. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7428. ret = -EINVAL;
  7429. mutex_unlock(&rt_constraints_mutex);
  7430. return ret;
  7431. }
  7432. #else /* !CONFIG_RT_GROUP_SCHED */
  7433. static int sched_rt_global_constraints(void)
  7434. {
  7435. unsigned long flags;
  7436. int i;
  7437. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7438. for_each_possible_cpu(i) {
  7439. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7440. spin_lock(&rt_rq->rt_runtime_lock);
  7441. rt_rq->rt_runtime = global_rt_runtime();
  7442. spin_unlock(&rt_rq->rt_runtime_lock);
  7443. }
  7444. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7445. return 0;
  7446. }
  7447. #endif /* CONFIG_RT_GROUP_SCHED */
  7448. int sched_rt_handler(struct ctl_table *table, int write,
  7449. struct file *filp, void __user *buffer, size_t *lenp,
  7450. loff_t *ppos)
  7451. {
  7452. int ret;
  7453. int old_period, old_runtime;
  7454. static DEFINE_MUTEX(mutex);
  7455. mutex_lock(&mutex);
  7456. old_period = sysctl_sched_rt_period;
  7457. old_runtime = sysctl_sched_rt_runtime;
  7458. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7459. if (!ret && write) {
  7460. ret = sched_rt_global_constraints();
  7461. if (ret) {
  7462. sysctl_sched_rt_period = old_period;
  7463. sysctl_sched_rt_runtime = old_runtime;
  7464. } else {
  7465. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7466. def_rt_bandwidth.rt_period =
  7467. ns_to_ktime(global_rt_period());
  7468. }
  7469. }
  7470. mutex_unlock(&mutex);
  7471. return ret;
  7472. }
  7473. #ifdef CONFIG_CGROUP_SCHED
  7474. /* return corresponding task_group object of a cgroup */
  7475. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7476. {
  7477. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7478. struct task_group, css);
  7479. }
  7480. static struct cgroup_subsys_state *
  7481. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7482. {
  7483. struct task_group *tg, *parent;
  7484. if (!cgrp->parent) {
  7485. /* This is early initialization for the top cgroup */
  7486. init_task_group.css.cgroup = cgrp;
  7487. return &init_task_group.css;
  7488. }
  7489. parent = cgroup_tg(cgrp->parent);
  7490. tg = sched_create_group(parent);
  7491. if (IS_ERR(tg))
  7492. return ERR_PTR(-ENOMEM);
  7493. /* Bind the cgroup to task_group object we just created */
  7494. tg->css.cgroup = cgrp;
  7495. return &tg->css;
  7496. }
  7497. static void
  7498. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7499. {
  7500. struct task_group *tg = cgroup_tg(cgrp);
  7501. sched_destroy_group(tg);
  7502. }
  7503. static int
  7504. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7505. struct task_struct *tsk)
  7506. {
  7507. #ifdef CONFIG_RT_GROUP_SCHED
  7508. /* Don't accept realtime tasks when there is no way for them to run */
  7509. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7510. return -EINVAL;
  7511. #else
  7512. /* We don't support RT-tasks being in separate groups */
  7513. if (tsk->sched_class != &fair_sched_class)
  7514. return -EINVAL;
  7515. #endif
  7516. return 0;
  7517. }
  7518. static void
  7519. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7520. struct cgroup *old_cont, struct task_struct *tsk)
  7521. {
  7522. sched_move_task(tsk);
  7523. }
  7524. #ifdef CONFIG_FAIR_GROUP_SCHED
  7525. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7526. u64 shareval)
  7527. {
  7528. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7529. }
  7530. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7531. {
  7532. struct task_group *tg = cgroup_tg(cgrp);
  7533. return (u64) tg->shares;
  7534. }
  7535. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7536. #ifdef CONFIG_RT_GROUP_SCHED
  7537. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7538. s64 val)
  7539. {
  7540. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7541. }
  7542. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7543. {
  7544. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7545. }
  7546. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7547. u64 rt_period_us)
  7548. {
  7549. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7550. }
  7551. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7552. {
  7553. return sched_group_rt_period(cgroup_tg(cgrp));
  7554. }
  7555. #endif /* CONFIG_RT_GROUP_SCHED */
  7556. static struct cftype cpu_files[] = {
  7557. #ifdef CONFIG_FAIR_GROUP_SCHED
  7558. {
  7559. .name = "shares",
  7560. .read_u64 = cpu_shares_read_u64,
  7561. .write_u64 = cpu_shares_write_u64,
  7562. },
  7563. #endif
  7564. #ifdef CONFIG_RT_GROUP_SCHED
  7565. {
  7566. .name = "rt_runtime_us",
  7567. .read_s64 = cpu_rt_runtime_read,
  7568. .write_s64 = cpu_rt_runtime_write,
  7569. },
  7570. {
  7571. .name = "rt_period_us",
  7572. .read_u64 = cpu_rt_period_read_uint,
  7573. .write_u64 = cpu_rt_period_write_uint,
  7574. },
  7575. #endif
  7576. };
  7577. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7578. {
  7579. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7580. }
  7581. struct cgroup_subsys cpu_cgroup_subsys = {
  7582. .name = "cpu",
  7583. .create = cpu_cgroup_create,
  7584. .destroy = cpu_cgroup_destroy,
  7585. .can_attach = cpu_cgroup_can_attach,
  7586. .attach = cpu_cgroup_attach,
  7587. .populate = cpu_cgroup_populate,
  7588. .subsys_id = cpu_cgroup_subsys_id,
  7589. .early_init = 1,
  7590. };
  7591. #endif /* CONFIG_CGROUP_SCHED */
  7592. #ifdef CONFIG_CGROUP_CPUACCT
  7593. /*
  7594. * CPU accounting code for task groups.
  7595. *
  7596. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7597. * (balbir@in.ibm.com).
  7598. */
  7599. /* track cpu usage of a group of tasks */
  7600. struct cpuacct {
  7601. struct cgroup_subsys_state css;
  7602. /* cpuusage holds pointer to a u64-type object on every cpu */
  7603. u64 *cpuusage;
  7604. };
  7605. struct cgroup_subsys cpuacct_subsys;
  7606. /* return cpu accounting group corresponding to this container */
  7607. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7608. {
  7609. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7610. struct cpuacct, css);
  7611. }
  7612. /* return cpu accounting group to which this task belongs */
  7613. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7614. {
  7615. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7616. struct cpuacct, css);
  7617. }
  7618. /* create a new cpu accounting group */
  7619. static struct cgroup_subsys_state *cpuacct_create(
  7620. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7621. {
  7622. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7623. if (!ca)
  7624. return ERR_PTR(-ENOMEM);
  7625. ca->cpuusage = alloc_percpu(u64);
  7626. if (!ca->cpuusage) {
  7627. kfree(ca);
  7628. return ERR_PTR(-ENOMEM);
  7629. }
  7630. return &ca->css;
  7631. }
  7632. /* destroy an existing cpu accounting group */
  7633. static void
  7634. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7635. {
  7636. struct cpuacct *ca = cgroup_ca(cgrp);
  7637. free_percpu(ca->cpuusage);
  7638. kfree(ca);
  7639. }
  7640. /* return total cpu usage (in nanoseconds) of a group */
  7641. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7642. {
  7643. struct cpuacct *ca = cgroup_ca(cgrp);
  7644. u64 totalcpuusage = 0;
  7645. int i;
  7646. for_each_possible_cpu(i) {
  7647. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7648. /*
  7649. * Take rq->lock to make 64-bit addition safe on 32-bit
  7650. * platforms.
  7651. */
  7652. spin_lock_irq(&cpu_rq(i)->lock);
  7653. totalcpuusage += *cpuusage;
  7654. spin_unlock_irq(&cpu_rq(i)->lock);
  7655. }
  7656. return totalcpuusage;
  7657. }
  7658. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7659. u64 reset)
  7660. {
  7661. struct cpuacct *ca = cgroup_ca(cgrp);
  7662. int err = 0;
  7663. int i;
  7664. if (reset) {
  7665. err = -EINVAL;
  7666. goto out;
  7667. }
  7668. for_each_possible_cpu(i) {
  7669. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7670. spin_lock_irq(&cpu_rq(i)->lock);
  7671. *cpuusage = 0;
  7672. spin_unlock_irq(&cpu_rq(i)->lock);
  7673. }
  7674. out:
  7675. return err;
  7676. }
  7677. static struct cftype files[] = {
  7678. {
  7679. .name = "usage",
  7680. .read_u64 = cpuusage_read,
  7681. .write_u64 = cpuusage_write,
  7682. },
  7683. };
  7684. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7685. {
  7686. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7687. }
  7688. /*
  7689. * charge this task's execution time to its accounting group.
  7690. *
  7691. * called with rq->lock held.
  7692. */
  7693. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7694. {
  7695. struct cpuacct *ca;
  7696. if (!cpuacct_subsys.active)
  7697. return;
  7698. ca = task_ca(tsk);
  7699. if (ca) {
  7700. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7701. *cpuusage += cputime;
  7702. }
  7703. }
  7704. struct cgroup_subsys cpuacct_subsys = {
  7705. .name = "cpuacct",
  7706. .create = cpuacct_create,
  7707. .destroy = cpuacct_destroy,
  7708. .populate = cpuacct_populate,
  7709. .subsys_id = cpuacct_subsys_id,
  7710. };
  7711. #endif /* CONFIG_CGROUP_CPUACCT */