md.c 118 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/devfs_fs_kernel.h>
  34. #include <linux/buffer_head.h> /* for invalidate_bdev */
  35. #include <linux/suspend.h>
  36. #include <linux/poll.h>
  37. #include <linux/init.h>
  38. #include <linux/file.h>
  39. #ifdef CONFIG_KMOD
  40. #include <linux/kmod.h>
  41. #endif
  42. #include <asm/unaligned.h>
  43. #define MAJOR_NR MD_MAJOR
  44. #define MD_DRIVER
  45. /* 63 partitions with the alternate major number (mdp) */
  46. #define MdpMinorShift 6
  47. #define DEBUG 0
  48. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  49. #ifndef MODULE
  50. static void autostart_arrays (int part);
  51. #endif
  52. static LIST_HEAD(pers_list);
  53. static DEFINE_SPINLOCK(pers_lock);
  54. /*
  55. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  56. * is 1000 KB/sec, so the extra system load does not show up that much.
  57. * Increase it if you want to have more _guaranteed_ speed. Note that
  58. * the RAID driver will use the maximum available bandwidth if the IO
  59. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  60. * speed limit - in case reconstruction slows down your system despite
  61. * idle IO detection.
  62. *
  63. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  64. */
  65. static int sysctl_speed_limit_min = 1000;
  66. static int sysctl_speed_limit_max = 200000;
  67. static struct ctl_table_header *raid_table_header;
  68. static ctl_table raid_table[] = {
  69. {
  70. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  71. .procname = "speed_limit_min",
  72. .data = &sysctl_speed_limit_min,
  73. .maxlen = sizeof(int),
  74. .mode = 0644,
  75. .proc_handler = &proc_dointvec,
  76. },
  77. {
  78. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  79. .procname = "speed_limit_max",
  80. .data = &sysctl_speed_limit_max,
  81. .maxlen = sizeof(int),
  82. .mode = 0644,
  83. .proc_handler = &proc_dointvec,
  84. },
  85. { .ctl_name = 0 }
  86. };
  87. static ctl_table raid_dir_table[] = {
  88. {
  89. .ctl_name = DEV_RAID,
  90. .procname = "raid",
  91. .maxlen = 0,
  92. .mode = 0555,
  93. .child = raid_table,
  94. },
  95. { .ctl_name = 0 }
  96. };
  97. static ctl_table raid_root_table[] = {
  98. {
  99. .ctl_name = CTL_DEV,
  100. .procname = "dev",
  101. .maxlen = 0,
  102. .mode = 0555,
  103. .child = raid_dir_table,
  104. },
  105. { .ctl_name = 0 }
  106. };
  107. static struct block_device_operations md_fops;
  108. static int start_readonly;
  109. /*
  110. * We have a system wide 'event count' that is incremented
  111. * on any 'interesting' event, and readers of /proc/mdstat
  112. * can use 'poll' or 'select' to find out when the event
  113. * count increases.
  114. *
  115. * Events are:
  116. * start array, stop array, error, add device, remove device,
  117. * start build, activate spare
  118. */
  119. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  120. static atomic_t md_event_count;
  121. static void md_new_event(mddev_t *mddev)
  122. {
  123. atomic_inc(&md_event_count);
  124. wake_up(&md_event_waiters);
  125. }
  126. /*
  127. * Enables to iterate over all existing md arrays
  128. * all_mddevs_lock protects this list.
  129. */
  130. static LIST_HEAD(all_mddevs);
  131. static DEFINE_SPINLOCK(all_mddevs_lock);
  132. /*
  133. * iterates through all used mddevs in the system.
  134. * We take care to grab the all_mddevs_lock whenever navigating
  135. * the list, and to always hold a refcount when unlocked.
  136. * Any code which breaks out of this loop while own
  137. * a reference to the current mddev and must mddev_put it.
  138. */
  139. #define ITERATE_MDDEV(mddev,tmp) \
  140. \
  141. for (({ spin_lock(&all_mddevs_lock); \
  142. tmp = all_mddevs.next; \
  143. mddev = NULL;}); \
  144. ({ if (tmp != &all_mddevs) \
  145. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  146. spin_unlock(&all_mddevs_lock); \
  147. if (mddev) mddev_put(mddev); \
  148. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  149. tmp != &all_mddevs;}); \
  150. ({ spin_lock(&all_mddevs_lock); \
  151. tmp = tmp->next;}) \
  152. )
  153. static int md_fail_request (request_queue_t *q, struct bio *bio)
  154. {
  155. bio_io_error(bio, bio->bi_size);
  156. return 0;
  157. }
  158. static inline mddev_t *mddev_get(mddev_t *mddev)
  159. {
  160. atomic_inc(&mddev->active);
  161. return mddev;
  162. }
  163. static void mddev_put(mddev_t *mddev)
  164. {
  165. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  166. return;
  167. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  168. list_del(&mddev->all_mddevs);
  169. blk_put_queue(mddev->queue);
  170. kobject_unregister(&mddev->kobj);
  171. }
  172. spin_unlock(&all_mddevs_lock);
  173. }
  174. static mddev_t * mddev_find(dev_t unit)
  175. {
  176. mddev_t *mddev, *new = NULL;
  177. retry:
  178. spin_lock(&all_mddevs_lock);
  179. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  180. if (mddev->unit == unit) {
  181. mddev_get(mddev);
  182. spin_unlock(&all_mddevs_lock);
  183. kfree(new);
  184. return mddev;
  185. }
  186. if (new) {
  187. list_add(&new->all_mddevs, &all_mddevs);
  188. spin_unlock(&all_mddevs_lock);
  189. return new;
  190. }
  191. spin_unlock(&all_mddevs_lock);
  192. new = kzalloc(sizeof(*new), GFP_KERNEL);
  193. if (!new)
  194. return NULL;
  195. new->unit = unit;
  196. if (MAJOR(unit) == MD_MAJOR)
  197. new->md_minor = MINOR(unit);
  198. else
  199. new->md_minor = MINOR(unit) >> MdpMinorShift;
  200. init_MUTEX(&new->reconfig_sem);
  201. INIT_LIST_HEAD(&new->disks);
  202. INIT_LIST_HEAD(&new->all_mddevs);
  203. init_timer(&new->safemode_timer);
  204. atomic_set(&new->active, 1);
  205. spin_lock_init(&new->write_lock);
  206. init_waitqueue_head(&new->sb_wait);
  207. new->queue = blk_alloc_queue(GFP_KERNEL);
  208. if (!new->queue) {
  209. kfree(new);
  210. return NULL;
  211. }
  212. blk_queue_make_request(new->queue, md_fail_request);
  213. goto retry;
  214. }
  215. static inline int mddev_lock(mddev_t * mddev)
  216. {
  217. return down_interruptible(&mddev->reconfig_sem);
  218. }
  219. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  220. {
  221. down(&mddev->reconfig_sem);
  222. }
  223. static inline int mddev_trylock(mddev_t * mddev)
  224. {
  225. return down_trylock(&mddev->reconfig_sem);
  226. }
  227. static inline void mddev_unlock(mddev_t * mddev)
  228. {
  229. up(&mddev->reconfig_sem);
  230. md_wakeup_thread(mddev->thread);
  231. }
  232. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  233. {
  234. mdk_rdev_t * rdev;
  235. struct list_head *tmp;
  236. ITERATE_RDEV(mddev,rdev,tmp) {
  237. if (rdev->desc_nr == nr)
  238. return rdev;
  239. }
  240. return NULL;
  241. }
  242. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  243. {
  244. struct list_head *tmp;
  245. mdk_rdev_t *rdev;
  246. ITERATE_RDEV(mddev,rdev,tmp) {
  247. if (rdev->bdev->bd_dev == dev)
  248. return rdev;
  249. }
  250. return NULL;
  251. }
  252. static struct mdk_personality *find_pers(int level, char *clevel)
  253. {
  254. struct mdk_personality *pers;
  255. list_for_each_entry(pers, &pers_list, list) {
  256. if (level != LEVEL_NONE && pers->level == level)
  257. return pers;
  258. if (strcmp(pers->name, clevel)==0)
  259. return pers;
  260. }
  261. return NULL;
  262. }
  263. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  264. {
  265. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  266. return MD_NEW_SIZE_BLOCKS(size);
  267. }
  268. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  269. {
  270. sector_t size;
  271. size = rdev->sb_offset;
  272. if (chunk_size)
  273. size &= ~((sector_t)chunk_size/1024 - 1);
  274. return size;
  275. }
  276. static int alloc_disk_sb(mdk_rdev_t * rdev)
  277. {
  278. if (rdev->sb_page)
  279. MD_BUG();
  280. rdev->sb_page = alloc_page(GFP_KERNEL);
  281. if (!rdev->sb_page) {
  282. printk(KERN_ALERT "md: out of memory.\n");
  283. return -EINVAL;
  284. }
  285. return 0;
  286. }
  287. static void free_disk_sb(mdk_rdev_t * rdev)
  288. {
  289. if (rdev->sb_page) {
  290. put_page(rdev->sb_page);
  291. rdev->sb_loaded = 0;
  292. rdev->sb_page = NULL;
  293. rdev->sb_offset = 0;
  294. rdev->size = 0;
  295. }
  296. }
  297. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  298. {
  299. mdk_rdev_t *rdev = bio->bi_private;
  300. mddev_t *mddev = rdev->mddev;
  301. if (bio->bi_size)
  302. return 1;
  303. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  304. md_error(mddev, rdev);
  305. if (atomic_dec_and_test(&mddev->pending_writes))
  306. wake_up(&mddev->sb_wait);
  307. bio_put(bio);
  308. return 0;
  309. }
  310. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  311. {
  312. struct bio *bio2 = bio->bi_private;
  313. mdk_rdev_t *rdev = bio2->bi_private;
  314. mddev_t *mddev = rdev->mddev;
  315. if (bio->bi_size)
  316. return 1;
  317. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  318. error == -EOPNOTSUPP) {
  319. unsigned long flags;
  320. /* barriers don't appear to be supported :-( */
  321. set_bit(BarriersNotsupp, &rdev->flags);
  322. mddev->barriers_work = 0;
  323. spin_lock_irqsave(&mddev->write_lock, flags);
  324. bio2->bi_next = mddev->biolist;
  325. mddev->biolist = bio2;
  326. spin_unlock_irqrestore(&mddev->write_lock, flags);
  327. wake_up(&mddev->sb_wait);
  328. bio_put(bio);
  329. return 0;
  330. }
  331. bio_put(bio2);
  332. bio->bi_private = rdev;
  333. return super_written(bio, bytes_done, error);
  334. }
  335. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  336. sector_t sector, int size, struct page *page)
  337. {
  338. /* write first size bytes of page to sector of rdev
  339. * Increment mddev->pending_writes before returning
  340. * and decrement it on completion, waking up sb_wait
  341. * if zero is reached.
  342. * If an error occurred, call md_error
  343. *
  344. * As we might need to resubmit the request if BIO_RW_BARRIER
  345. * causes ENOTSUPP, we allocate a spare bio...
  346. */
  347. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  348. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  349. bio->bi_bdev = rdev->bdev;
  350. bio->bi_sector = sector;
  351. bio_add_page(bio, page, size, 0);
  352. bio->bi_private = rdev;
  353. bio->bi_end_io = super_written;
  354. bio->bi_rw = rw;
  355. atomic_inc(&mddev->pending_writes);
  356. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  357. struct bio *rbio;
  358. rw |= (1<<BIO_RW_BARRIER);
  359. rbio = bio_clone(bio, GFP_NOIO);
  360. rbio->bi_private = bio;
  361. rbio->bi_end_io = super_written_barrier;
  362. submit_bio(rw, rbio);
  363. } else
  364. submit_bio(rw, bio);
  365. }
  366. void md_super_wait(mddev_t *mddev)
  367. {
  368. /* wait for all superblock writes that were scheduled to complete.
  369. * if any had to be retried (due to BARRIER problems), retry them
  370. */
  371. DEFINE_WAIT(wq);
  372. for(;;) {
  373. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  374. if (atomic_read(&mddev->pending_writes)==0)
  375. break;
  376. while (mddev->biolist) {
  377. struct bio *bio;
  378. spin_lock_irq(&mddev->write_lock);
  379. bio = mddev->biolist;
  380. mddev->biolist = bio->bi_next ;
  381. bio->bi_next = NULL;
  382. spin_unlock_irq(&mddev->write_lock);
  383. submit_bio(bio->bi_rw, bio);
  384. }
  385. schedule();
  386. }
  387. finish_wait(&mddev->sb_wait, &wq);
  388. }
  389. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  390. {
  391. if (bio->bi_size)
  392. return 1;
  393. complete((struct completion*)bio->bi_private);
  394. return 0;
  395. }
  396. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  397. struct page *page, int rw)
  398. {
  399. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  400. struct completion event;
  401. int ret;
  402. rw |= (1 << BIO_RW_SYNC);
  403. bio->bi_bdev = bdev;
  404. bio->bi_sector = sector;
  405. bio_add_page(bio, page, size, 0);
  406. init_completion(&event);
  407. bio->bi_private = &event;
  408. bio->bi_end_io = bi_complete;
  409. submit_bio(rw, bio);
  410. wait_for_completion(&event);
  411. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  412. bio_put(bio);
  413. return ret;
  414. }
  415. EXPORT_SYMBOL_GPL(sync_page_io);
  416. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  417. {
  418. char b[BDEVNAME_SIZE];
  419. if (!rdev->sb_page) {
  420. MD_BUG();
  421. return -EINVAL;
  422. }
  423. if (rdev->sb_loaded)
  424. return 0;
  425. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  426. goto fail;
  427. rdev->sb_loaded = 1;
  428. return 0;
  429. fail:
  430. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  431. bdevname(rdev->bdev,b));
  432. return -EINVAL;
  433. }
  434. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  435. {
  436. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  437. (sb1->set_uuid1 == sb2->set_uuid1) &&
  438. (sb1->set_uuid2 == sb2->set_uuid2) &&
  439. (sb1->set_uuid3 == sb2->set_uuid3))
  440. return 1;
  441. return 0;
  442. }
  443. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  444. {
  445. int ret;
  446. mdp_super_t *tmp1, *tmp2;
  447. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  448. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  449. if (!tmp1 || !tmp2) {
  450. ret = 0;
  451. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  452. goto abort;
  453. }
  454. *tmp1 = *sb1;
  455. *tmp2 = *sb2;
  456. /*
  457. * nr_disks is not constant
  458. */
  459. tmp1->nr_disks = 0;
  460. tmp2->nr_disks = 0;
  461. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  462. ret = 0;
  463. else
  464. ret = 1;
  465. abort:
  466. kfree(tmp1);
  467. kfree(tmp2);
  468. return ret;
  469. }
  470. static unsigned int calc_sb_csum(mdp_super_t * sb)
  471. {
  472. unsigned int disk_csum, csum;
  473. disk_csum = sb->sb_csum;
  474. sb->sb_csum = 0;
  475. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  476. sb->sb_csum = disk_csum;
  477. return csum;
  478. }
  479. /*
  480. * Handle superblock details.
  481. * We want to be able to handle multiple superblock formats
  482. * so we have a common interface to them all, and an array of
  483. * different handlers.
  484. * We rely on user-space to write the initial superblock, and support
  485. * reading and updating of superblocks.
  486. * Interface methods are:
  487. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  488. * loads and validates a superblock on dev.
  489. * if refdev != NULL, compare superblocks on both devices
  490. * Return:
  491. * 0 - dev has a superblock that is compatible with refdev
  492. * 1 - dev has a superblock that is compatible and newer than refdev
  493. * so dev should be used as the refdev in future
  494. * -EINVAL superblock incompatible or invalid
  495. * -othererror e.g. -EIO
  496. *
  497. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  498. * Verify that dev is acceptable into mddev.
  499. * The first time, mddev->raid_disks will be 0, and data from
  500. * dev should be merged in. Subsequent calls check that dev
  501. * is new enough. Return 0 or -EINVAL
  502. *
  503. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  504. * Update the superblock for rdev with data in mddev
  505. * This does not write to disc.
  506. *
  507. */
  508. struct super_type {
  509. char *name;
  510. struct module *owner;
  511. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  512. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  513. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  514. };
  515. /*
  516. * load_super for 0.90.0
  517. */
  518. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  519. {
  520. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  521. mdp_super_t *sb;
  522. int ret;
  523. sector_t sb_offset;
  524. /*
  525. * Calculate the position of the superblock,
  526. * it's at the end of the disk.
  527. *
  528. * It also happens to be a multiple of 4Kb.
  529. */
  530. sb_offset = calc_dev_sboffset(rdev->bdev);
  531. rdev->sb_offset = sb_offset;
  532. ret = read_disk_sb(rdev, MD_SB_BYTES);
  533. if (ret) return ret;
  534. ret = -EINVAL;
  535. bdevname(rdev->bdev, b);
  536. sb = (mdp_super_t*)page_address(rdev->sb_page);
  537. if (sb->md_magic != MD_SB_MAGIC) {
  538. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  539. b);
  540. goto abort;
  541. }
  542. if (sb->major_version != 0 ||
  543. sb->minor_version != 90) {
  544. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  545. sb->major_version, sb->minor_version,
  546. b);
  547. goto abort;
  548. }
  549. if (sb->raid_disks <= 0)
  550. goto abort;
  551. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  552. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  553. b);
  554. goto abort;
  555. }
  556. rdev->preferred_minor = sb->md_minor;
  557. rdev->data_offset = 0;
  558. rdev->sb_size = MD_SB_BYTES;
  559. if (sb->level == LEVEL_MULTIPATH)
  560. rdev->desc_nr = -1;
  561. else
  562. rdev->desc_nr = sb->this_disk.number;
  563. if (refdev == 0)
  564. ret = 1;
  565. else {
  566. __u64 ev1, ev2;
  567. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  568. if (!uuid_equal(refsb, sb)) {
  569. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  570. b, bdevname(refdev->bdev,b2));
  571. goto abort;
  572. }
  573. if (!sb_equal(refsb, sb)) {
  574. printk(KERN_WARNING "md: %s has same UUID"
  575. " but different superblock to %s\n",
  576. b, bdevname(refdev->bdev, b2));
  577. goto abort;
  578. }
  579. ev1 = md_event(sb);
  580. ev2 = md_event(refsb);
  581. if (ev1 > ev2)
  582. ret = 1;
  583. else
  584. ret = 0;
  585. }
  586. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  587. if (rdev->size < sb->size && sb->level > 1)
  588. /* "this cannot possibly happen" ... */
  589. ret = -EINVAL;
  590. abort:
  591. return ret;
  592. }
  593. /*
  594. * validate_super for 0.90.0
  595. */
  596. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  597. {
  598. mdp_disk_t *desc;
  599. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  600. rdev->raid_disk = -1;
  601. rdev->flags = 0;
  602. if (mddev->raid_disks == 0) {
  603. mddev->major_version = 0;
  604. mddev->minor_version = sb->minor_version;
  605. mddev->patch_version = sb->patch_version;
  606. mddev->persistent = ! sb->not_persistent;
  607. mddev->chunk_size = sb->chunk_size;
  608. mddev->ctime = sb->ctime;
  609. mddev->utime = sb->utime;
  610. mddev->level = sb->level;
  611. mddev->clevel[0] = 0;
  612. mddev->layout = sb->layout;
  613. mddev->raid_disks = sb->raid_disks;
  614. mddev->size = sb->size;
  615. mddev->events = md_event(sb);
  616. mddev->bitmap_offset = 0;
  617. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  618. if (sb->state & (1<<MD_SB_CLEAN))
  619. mddev->recovery_cp = MaxSector;
  620. else {
  621. if (sb->events_hi == sb->cp_events_hi &&
  622. sb->events_lo == sb->cp_events_lo) {
  623. mddev->recovery_cp = sb->recovery_cp;
  624. } else
  625. mddev->recovery_cp = 0;
  626. }
  627. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  628. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  629. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  630. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  631. mddev->max_disks = MD_SB_DISKS;
  632. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  633. mddev->bitmap_file == NULL) {
  634. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
  635. && mddev->level != 10) {
  636. /* FIXME use a better test */
  637. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  638. return -EINVAL;
  639. }
  640. mddev->bitmap_offset = mddev->default_bitmap_offset;
  641. }
  642. } else if (mddev->pers == NULL) {
  643. /* Insist on good event counter while assembling */
  644. __u64 ev1 = md_event(sb);
  645. ++ev1;
  646. if (ev1 < mddev->events)
  647. return -EINVAL;
  648. } else if (mddev->bitmap) {
  649. /* if adding to array with a bitmap, then we can accept an
  650. * older device ... but not too old.
  651. */
  652. __u64 ev1 = md_event(sb);
  653. if (ev1 < mddev->bitmap->events_cleared)
  654. return 0;
  655. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  656. return 0;
  657. if (mddev->level != LEVEL_MULTIPATH) {
  658. desc = sb->disks + rdev->desc_nr;
  659. if (desc->state & (1<<MD_DISK_FAULTY))
  660. set_bit(Faulty, &rdev->flags);
  661. else if (desc->state & (1<<MD_DISK_SYNC) &&
  662. desc->raid_disk < mddev->raid_disks) {
  663. set_bit(In_sync, &rdev->flags);
  664. rdev->raid_disk = desc->raid_disk;
  665. }
  666. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  667. set_bit(WriteMostly, &rdev->flags);
  668. } else /* MULTIPATH are always insync */
  669. set_bit(In_sync, &rdev->flags);
  670. return 0;
  671. }
  672. /*
  673. * sync_super for 0.90.0
  674. */
  675. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  676. {
  677. mdp_super_t *sb;
  678. struct list_head *tmp;
  679. mdk_rdev_t *rdev2;
  680. int next_spare = mddev->raid_disks;
  681. /* make rdev->sb match mddev data..
  682. *
  683. * 1/ zero out disks
  684. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  685. * 3/ any empty disks < next_spare become removed
  686. *
  687. * disks[0] gets initialised to REMOVED because
  688. * we cannot be sure from other fields if it has
  689. * been initialised or not.
  690. */
  691. int i;
  692. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  693. rdev->sb_size = MD_SB_BYTES;
  694. sb = (mdp_super_t*)page_address(rdev->sb_page);
  695. memset(sb, 0, sizeof(*sb));
  696. sb->md_magic = MD_SB_MAGIC;
  697. sb->major_version = mddev->major_version;
  698. sb->minor_version = mddev->minor_version;
  699. sb->patch_version = mddev->patch_version;
  700. sb->gvalid_words = 0; /* ignored */
  701. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  702. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  703. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  704. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  705. sb->ctime = mddev->ctime;
  706. sb->level = mddev->level;
  707. sb->size = mddev->size;
  708. sb->raid_disks = mddev->raid_disks;
  709. sb->md_minor = mddev->md_minor;
  710. sb->not_persistent = !mddev->persistent;
  711. sb->utime = mddev->utime;
  712. sb->state = 0;
  713. sb->events_hi = (mddev->events>>32);
  714. sb->events_lo = (u32)mddev->events;
  715. if (mddev->in_sync)
  716. {
  717. sb->recovery_cp = mddev->recovery_cp;
  718. sb->cp_events_hi = (mddev->events>>32);
  719. sb->cp_events_lo = (u32)mddev->events;
  720. if (mddev->recovery_cp == MaxSector)
  721. sb->state = (1<< MD_SB_CLEAN);
  722. } else
  723. sb->recovery_cp = 0;
  724. sb->layout = mddev->layout;
  725. sb->chunk_size = mddev->chunk_size;
  726. if (mddev->bitmap && mddev->bitmap_file == NULL)
  727. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  728. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  729. ITERATE_RDEV(mddev,rdev2,tmp) {
  730. mdp_disk_t *d;
  731. int desc_nr;
  732. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  733. && !test_bit(Faulty, &rdev2->flags))
  734. desc_nr = rdev2->raid_disk;
  735. else
  736. desc_nr = next_spare++;
  737. rdev2->desc_nr = desc_nr;
  738. d = &sb->disks[rdev2->desc_nr];
  739. nr_disks++;
  740. d->number = rdev2->desc_nr;
  741. d->major = MAJOR(rdev2->bdev->bd_dev);
  742. d->minor = MINOR(rdev2->bdev->bd_dev);
  743. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  744. && !test_bit(Faulty, &rdev2->flags))
  745. d->raid_disk = rdev2->raid_disk;
  746. else
  747. d->raid_disk = rdev2->desc_nr; /* compatibility */
  748. if (test_bit(Faulty, &rdev2->flags)) {
  749. d->state = (1<<MD_DISK_FAULTY);
  750. failed++;
  751. } else if (test_bit(In_sync, &rdev2->flags)) {
  752. d->state = (1<<MD_DISK_ACTIVE);
  753. d->state |= (1<<MD_DISK_SYNC);
  754. active++;
  755. working++;
  756. } else {
  757. d->state = 0;
  758. spare++;
  759. working++;
  760. }
  761. if (test_bit(WriteMostly, &rdev2->flags))
  762. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  763. }
  764. /* now set the "removed" and "faulty" bits on any missing devices */
  765. for (i=0 ; i < mddev->raid_disks ; i++) {
  766. mdp_disk_t *d = &sb->disks[i];
  767. if (d->state == 0 && d->number == 0) {
  768. d->number = i;
  769. d->raid_disk = i;
  770. d->state = (1<<MD_DISK_REMOVED);
  771. d->state |= (1<<MD_DISK_FAULTY);
  772. failed++;
  773. }
  774. }
  775. sb->nr_disks = nr_disks;
  776. sb->active_disks = active;
  777. sb->working_disks = working;
  778. sb->failed_disks = failed;
  779. sb->spare_disks = spare;
  780. sb->this_disk = sb->disks[rdev->desc_nr];
  781. sb->sb_csum = calc_sb_csum(sb);
  782. }
  783. /*
  784. * version 1 superblock
  785. */
  786. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  787. {
  788. unsigned int disk_csum, csum;
  789. unsigned long long newcsum;
  790. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  791. unsigned int *isuper = (unsigned int*)sb;
  792. int i;
  793. disk_csum = sb->sb_csum;
  794. sb->sb_csum = 0;
  795. newcsum = 0;
  796. for (i=0; size>=4; size -= 4 )
  797. newcsum += le32_to_cpu(*isuper++);
  798. if (size == 2)
  799. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  800. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  801. sb->sb_csum = disk_csum;
  802. return cpu_to_le32(csum);
  803. }
  804. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  805. {
  806. struct mdp_superblock_1 *sb;
  807. int ret;
  808. sector_t sb_offset;
  809. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  810. int bmask;
  811. /*
  812. * Calculate the position of the superblock.
  813. * It is always aligned to a 4K boundary and
  814. * depeding on minor_version, it can be:
  815. * 0: At least 8K, but less than 12K, from end of device
  816. * 1: At start of device
  817. * 2: 4K from start of device.
  818. */
  819. switch(minor_version) {
  820. case 0:
  821. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  822. sb_offset -= 8*2;
  823. sb_offset &= ~(sector_t)(4*2-1);
  824. /* convert from sectors to K */
  825. sb_offset /= 2;
  826. break;
  827. case 1:
  828. sb_offset = 0;
  829. break;
  830. case 2:
  831. sb_offset = 4;
  832. break;
  833. default:
  834. return -EINVAL;
  835. }
  836. rdev->sb_offset = sb_offset;
  837. /* superblock is rarely larger than 1K, but it can be larger,
  838. * and it is safe to read 4k, so we do that
  839. */
  840. ret = read_disk_sb(rdev, 4096);
  841. if (ret) return ret;
  842. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  843. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  844. sb->major_version != cpu_to_le32(1) ||
  845. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  846. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  847. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  848. return -EINVAL;
  849. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  850. printk("md: invalid superblock checksum on %s\n",
  851. bdevname(rdev->bdev,b));
  852. return -EINVAL;
  853. }
  854. if (le64_to_cpu(sb->data_size) < 10) {
  855. printk("md: data_size too small on %s\n",
  856. bdevname(rdev->bdev,b));
  857. return -EINVAL;
  858. }
  859. rdev->preferred_minor = 0xffff;
  860. rdev->data_offset = le64_to_cpu(sb->data_offset);
  861. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  862. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  863. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  864. if (rdev->sb_size & bmask)
  865. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  866. if (refdev == 0)
  867. return 1;
  868. else {
  869. __u64 ev1, ev2;
  870. struct mdp_superblock_1 *refsb =
  871. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  872. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  873. sb->level != refsb->level ||
  874. sb->layout != refsb->layout ||
  875. sb->chunksize != refsb->chunksize) {
  876. printk(KERN_WARNING "md: %s has strangely different"
  877. " superblock to %s\n",
  878. bdevname(rdev->bdev,b),
  879. bdevname(refdev->bdev,b2));
  880. return -EINVAL;
  881. }
  882. ev1 = le64_to_cpu(sb->events);
  883. ev2 = le64_to_cpu(refsb->events);
  884. if (ev1 > ev2)
  885. return 1;
  886. }
  887. if (minor_version)
  888. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  889. else
  890. rdev->size = rdev->sb_offset;
  891. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  892. return -EINVAL;
  893. rdev->size = le64_to_cpu(sb->data_size)/2;
  894. if (le32_to_cpu(sb->chunksize))
  895. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  896. if (le32_to_cpu(sb->size) > rdev->size*2)
  897. return -EINVAL;
  898. return 0;
  899. }
  900. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  901. {
  902. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  903. rdev->raid_disk = -1;
  904. rdev->flags = 0;
  905. if (mddev->raid_disks == 0) {
  906. mddev->major_version = 1;
  907. mddev->patch_version = 0;
  908. mddev->persistent = 1;
  909. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  910. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  911. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  912. mddev->level = le32_to_cpu(sb->level);
  913. mddev->clevel[0] = 0;
  914. mddev->layout = le32_to_cpu(sb->layout);
  915. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  916. mddev->size = le64_to_cpu(sb->size)/2;
  917. mddev->events = le64_to_cpu(sb->events);
  918. mddev->bitmap_offset = 0;
  919. mddev->default_bitmap_offset = 1024;
  920. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  921. memcpy(mddev->uuid, sb->set_uuid, 16);
  922. mddev->max_disks = (4096-256)/2;
  923. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  924. mddev->bitmap_file == NULL ) {
  925. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
  926. && mddev->level != 10) {
  927. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  928. return -EINVAL;
  929. }
  930. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  931. }
  932. } else if (mddev->pers == NULL) {
  933. /* Insist of good event counter while assembling */
  934. __u64 ev1 = le64_to_cpu(sb->events);
  935. ++ev1;
  936. if (ev1 < mddev->events)
  937. return -EINVAL;
  938. } else if (mddev->bitmap) {
  939. /* If adding to array with a bitmap, then we can accept an
  940. * older device, but not too old.
  941. */
  942. __u64 ev1 = le64_to_cpu(sb->events);
  943. if (ev1 < mddev->bitmap->events_cleared)
  944. return 0;
  945. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  946. return 0;
  947. if (mddev->level != LEVEL_MULTIPATH) {
  948. int role;
  949. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  950. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  951. switch(role) {
  952. case 0xffff: /* spare */
  953. break;
  954. case 0xfffe: /* faulty */
  955. set_bit(Faulty, &rdev->flags);
  956. break;
  957. default:
  958. set_bit(In_sync, &rdev->flags);
  959. rdev->raid_disk = role;
  960. break;
  961. }
  962. if (sb->devflags & WriteMostly1)
  963. set_bit(WriteMostly, &rdev->flags);
  964. } else /* MULTIPATH are always insync */
  965. set_bit(In_sync, &rdev->flags);
  966. return 0;
  967. }
  968. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  969. {
  970. struct mdp_superblock_1 *sb;
  971. struct list_head *tmp;
  972. mdk_rdev_t *rdev2;
  973. int max_dev, i;
  974. /* make rdev->sb match mddev and rdev data. */
  975. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  976. sb->feature_map = 0;
  977. sb->pad0 = 0;
  978. memset(sb->pad1, 0, sizeof(sb->pad1));
  979. memset(sb->pad2, 0, sizeof(sb->pad2));
  980. memset(sb->pad3, 0, sizeof(sb->pad3));
  981. sb->utime = cpu_to_le64((__u64)mddev->utime);
  982. sb->events = cpu_to_le64(mddev->events);
  983. if (mddev->in_sync)
  984. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  985. else
  986. sb->resync_offset = cpu_to_le64(0);
  987. sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
  988. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  989. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  990. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  991. }
  992. max_dev = 0;
  993. ITERATE_RDEV(mddev,rdev2,tmp)
  994. if (rdev2->desc_nr+1 > max_dev)
  995. max_dev = rdev2->desc_nr+1;
  996. sb->max_dev = cpu_to_le32(max_dev);
  997. for (i=0; i<max_dev;i++)
  998. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  999. ITERATE_RDEV(mddev,rdev2,tmp) {
  1000. i = rdev2->desc_nr;
  1001. if (test_bit(Faulty, &rdev2->flags))
  1002. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1003. else if (test_bit(In_sync, &rdev2->flags))
  1004. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1005. else
  1006. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1007. }
  1008. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  1009. sb->sb_csum = calc_sb_1_csum(sb);
  1010. }
  1011. static struct super_type super_types[] = {
  1012. [0] = {
  1013. .name = "0.90.0",
  1014. .owner = THIS_MODULE,
  1015. .load_super = super_90_load,
  1016. .validate_super = super_90_validate,
  1017. .sync_super = super_90_sync,
  1018. },
  1019. [1] = {
  1020. .name = "md-1",
  1021. .owner = THIS_MODULE,
  1022. .load_super = super_1_load,
  1023. .validate_super = super_1_validate,
  1024. .sync_super = super_1_sync,
  1025. },
  1026. };
  1027. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  1028. {
  1029. struct list_head *tmp;
  1030. mdk_rdev_t *rdev;
  1031. ITERATE_RDEV(mddev,rdev,tmp)
  1032. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  1033. return rdev;
  1034. return NULL;
  1035. }
  1036. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1037. {
  1038. struct list_head *tmp;
  1039. mdk_rdev_t *rdev;
  1040. ITERATE_RDEV(mddev1,rdev,tmp)
  1041. if (match_dev_unit(mddev2, rdev))
  1042. return 1;
  1043. return 0;
  1044. }
  1045. static LIST_HEAD(pending_raid_disks);
  1046. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1047. {
  1048. mdk_rdev_t *same_pdev;
  1049. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1050. struct kobject *ko;
  1051. if (rdev->mddev) {
  1052. MD_BUG();
  1053. return -EINVAL;
  1054. }
  1055. /* make sure rdev->size exceeds mddev->size */
  1056. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1057. if (mddev->pers)
  1058. /* Cannot change size, so fail */
  1059. return -ENOSPC;
  1060. else
  1061. mddev->size = rdev->size;
  1062. }
  1063. same_pdev = match_dev_unit(mddev, rdev);
  1064. if (same_pdev)
  1065. printk(KERN_WARNING
  1066. "%s: WARNING: %s appears to be on the same physical"
  1067. " disk as %s. True\n protection against single-disk"
  1068. " failure might be compromised.\n",
  1069. mdname(mddev), bdevname(rdev->bdev,b),
  1070. bdevname(same_pdev->bdev,b2));
  1071. /* Verify rdev->desc_nr is unique.
  1072. * If it is -1, assign a free number, else
  1073. * check number is not in use
  1074. */
  1075. if (rdev->desc_nr < 0) {
  1076. int choice = 0;
  1077. if (mddev->pers) choice = mddev->raid_disks;
  1078. while (find_rdev_nr(mddev, choice))
  1079. choice++;
  1080. rdev->desc_nr = choice;
  1081. } else {
  1082. if (find_rdev_nr(mddev, rdev->desc_nr))
  1083. return -EBUSY;
  1084. }
  1085. bdevname(rdev->bdev,b);
  1086. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1087. return -ENOMEM;
  1088. list_add(&rdev->same_set, &mddev->disks);
  1089. rdev->mddev = mddev;
  1090. printk(KERN_INFO "md: bind<%s>\n", b);
  1091. rdev->kobj.parent = &mddev->kobj;
  1092. kobject_add(&rdev->kobj);
  1093. if (rdev->bdev->bd_part)
  1094. ko = &rdev->bdev->bd_part->kobj;
  1095. else
  1096. ko = &rdev->bdev->bd_disk->kobj;
  1097. sysfs_create_link(&rdev->kobj, ko, "block");
  1098. return 0;
  1099. }
  1100. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1101. {
  1102. char b[BDEVNAME_SIZE];
  1103. if (!rdev->mddev) {
  1104. MD_BUG();
  1105. return;
  1106. }
  1107. list_del_init(&rdev->same_set);
  1108. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1109. rdev->mddev = NULL;
  1110. sysfs_remove_link(&rdev->kobj, "block");
  1111. kobject_del(&rdev->kobj);
  1112. }
  1113. /*
  1114. * prevent the device from being mounted, repartitioned or
  1115. * otherwise reused by a RAID array (or any other kernel
  1116. * subsystem), by bd_claiming the device.
  1117. */
  1118. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1119. {
  1120. int err = 0;
  1121. struct block_device *bdev;
  1122. char b[BDEVNAME_SIZE];
  1123. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1124. if (IS_ERR(bdev)) {
  1125. printk(KERN_ERR "md: could not open %s.\n",
  1126. __bdevname(dev, b));
  1127. return PTR_ERR(bdev);
  1128. }
  1129. err = bd_claim(bdev, rdev);
  1130. if (err) {
  1131. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1132. bdevname(bdev, b));
  1133. blkdev_put(bdev);
  1134. return err;
  1135. }
  1136. rdev->bdev = bdev;
  1137. return err;
  1138. }
  1139. static void unlock_rdev(mdk_rdev_t *rdev)
  1140. {
  1141. struct block_device *bdev = rdev->bdev;
  1142. rdev->bdev = NULL;
  1143. if (!bdev)
  1144. MD_BUG();
  1145. bd_release(bdev);
  1146. blkdev_put(bdev);
  1147. }
  1148. void md_autodetect_dev(dev_t dev);
  1149. static void export_rdev(mdk_rdev_t * rdev)
  1150. {
  1151. char b[BDEVNAME_SIZE];
  1152. printk(KERN_INFO "md: export_rdev(%s)\n",
  1153. bdevname(rdev->bdev,b));
  1154. if (rdev->mddev)
  1155. MD_BUG();
  1156. free_disk_sb(rdev);
  1157. list_del_init(&rdev->same_set);
  1158. #ifndef MODULE
  1159. md_autodetect_dev(rdev->bdev->bd_dev);
  1160. #endif
  1161. unlock_rdev(rdev);
  1162. kobject_put(&rdev->kobj);
  1163. }
  1164. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1165. {
  1166. unbind_rdev_from_array(rdev);
  1167. export_rdev(rdev);
  1168. }
  1169. static void export_array(mddev_t *mddev)
  1170. {
  1171. struct list_head *tmp;
  1172. mdk_rdev_t *rdev;
  1173. ITERATE_RDEV(mddev,rdev,tmp) {
  1174. if (!rdev->mddev) {
  1175. MD_BUG();
  1176. continue;
  1177. }
  1178. kick_rdev_from_array(rdev);
  1179. }
  1180. if (!list_empty(&mddev->disks))
  1181. MD_BUG();
  1182. mddev->raid_disks = 0;
  1183. mddev->major_version = 0;
  1184. }
  1185. static void print_desc(mdp_disk_t *desc)
  1186. {
  1187. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1188. desc->major,desc->minor,desc->raid_disk,desc->state);
  1189. }
  1190. static void print_sb(mdp_super_t *sb)
  1191. {
  1192. int i;
  1193. printk(KERN_INFO
  1194. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1195. sb->major_version, sb->minor_version, sb->patch_version,
  1196. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1197. sb->ctime);
  1198. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1199. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1200. sb->md_minor, sb->layout, sb->chunk_size);
  1201. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1202. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1203. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1204. sb->failed_disks, sb->spare_disks,
  1205. sb->sb_csum, (unsigned long)sb->events_lo);
  1206. printk(KERN_INFO);
  1207. for (i = 0; i < MD_SB_DISKS; i++) {
  1208. mdp_disk_t *desc;
  1209. desc = sb->disks + i;
  1210. if (desc->number || desc->major || desc->minor ||
  1211. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1212. printk(" D %2d: ", i);
  1213. print_desc(desc);
  1214. }
  1215. }
  1216. printk(KERN_INFO "md: THIS: ");
  1217. print_desc(&sb->this_disk);
  1218. }
  1219. static void print_rdev(mdk_rdev_t *rdev)
  1220. {
  1221. char b[BDEVNAME_SIZE];
  1222. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1223. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1224. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1225. rdev->desc_nr);
  1226. if (rdev->sb_loaded) {
  1227. printk(KERN_INFO "md: rdev superblock:\n");
  1228. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1229. } else
  1230. printk(KERN_INFO "md: no rdev superblock!\n");
  1231. }
  1232. void md_print_devices(void)
  1233. {
  1234. struct list_head *tmp, *tmp2;
  1235. mdk_rdev_t *rdev;
  1236. mddev_t *mddev;
  1237. char b[BDEVNAME_SIZE];
  1238. printk("\n");
  1239. printk("md: **********************************\n");
  1240. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1241. printk("md: **********************************\n");
  1242. ITERATE_MDDEV(mddev,tmp) {
  1243. if (mddev->bitmap)
  1244. bitmap_print_sb(mddev->bitmap);
  1245. else
  1246. printk("%s: ", mdname(mddev));
  1247. ITERATE_RDEV(mddev,rdev,tmp2)
  1248. printk("<%s>", bdevname(rdev->bdev,b));
  1249. printk("\n");
  1250. ITERATE_RDEV(mddev,rdev,tmp2)
  1251. print_rdev(rdev);
  1252. }
  1253. printk("md: **********************************\n");
  1254. printk("\n");
  1255. }
  1256. static void sync_sbs(mddev_t * mddev)
  1257. {
  1258. mdk_rdev_t *rdev;
  1259. struct list_head *tmp;
  1260. ITERATE_RDEV(mddev,rdev,tmp) {
  1261. super_types[mddev->major_version].
  1262. sync_super(mddev, rdev);
  1263. rdev->sb_loaded = 1;
  1264. }
  1265. }
  1266. static void md_update_sb(mddev_t * mddev)
  1267. {
  1268. int err;
  1269. struct list_head *tmp;
  1270. mdk_rdev_t *rdev;
  1271. int sync_req;
  1272. repeat:
  1273. spin_lock_irq(&mddev->write_lock);
  1274. sync_req = mddev->in_sync;
  1275. mddev->utime = get_seconds();
  1276. mddev->events ++;
  1277. if (!mddev->events) {
  1278. /*
  1279. * oops, this 64-bit counter should never wrap.
  1280. * Either we are in around ~1 trillion A.C., assuming
  1281. * 1 reboot per second, or we have a bug:
  1282. */
  1283. MD_BUG();
  1284. mddev->events --;
  1285. }
  1286. mddev->sb_dirty = 2;
  1287. sync_sbs(mddev);
  1288. /*
  1289. * do not write anything to disk if using
  1290. * nonpersistent superblocks
  1291. */
  1292. if (!mddev->persistent) {
  1293. mddev->sb_dirty = 0;
  1294. spin_unlock_irq(&mddev->write_lock);
  1295. wake_up(&mddev->sb_wait);
  1296. return;
  1297. }
  1298. spin_unlock_irq(&mddev->write_lock);
  1299. dprintk(KERN_INFO
  1300. "md: updating %s RAID superblock on device (in sync %d)\n",
  1301. mdname(mddev),mddev->in_sync);
  1302. err = bitmap_update_sb(mddev->bitmap);
  1303. ITERATE_RDEV(mddev,rdev,tmp) {
  1304. char b[BDEVNAME_SIZE];
  1305. dprintk(KERN_INFO "md: ");
  1306. if (test_bit(Faulty, &rdev->flags))
  1307. dprintk("(skipping faulty ");
  1308. dprintk("%s ", bdevname(rdev->bdev,b));
  1309. if (!test_bit(Faulty, &rdev->flags)) {
  1310. md_super_write(mddev,rdev,
  1311. rdev->sb_offset<<1, rdev->sb_size,
  1312. rdev->sb_page);
  1313. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1314. bdevname(rdev->bdev,b),
  1315. (unsigned long long)rdev->sb_offset);
  1316. } else
  1317. dprintk(")\n");
  1318. if (mddev->level == LEVEL_MULTIPATH)
  1319. /* only need to write one superblock... */
  1320. break;
  1321. }
  1322. md_super_wait(mddev);
  1323. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1324. spin_lock_irq(&mddev->write_lock);
  1325. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1326. /* have to write it out again */
  1327. spin_unlock_irq(&mddev->write_lock);
  1328. goto repeat;
  1329. }
  1330. mddev->sb_dirty = 0;
  1331. spin_unlock_irq(&mddev->write_lock);
  1332. wake_up(&mddev->sb_wait);
  1333. }
  1334. /* words written to sysfs files may, or my not, be \n terminated.
  1335. * We want to accept with case. For this we use cmd_match.
  1336. */
  1337. static int cmd_match(const char *cmd, const char *str)
  1338. {
  1339. /* See if cmd, written into a sysfs file, matches
  1340. * str. They must either be the same, or cmd can
  1341. * have a trailing newline
  1342. */
  1343. while (*cmd && *str && *cmd == *str) {
  1344. cmd++;
  1345. str++;
  1346. }
  1347. if (*cmd == '\n')
  1348. cmd++;
  1349. if (*str || *cmd)
  1350. return 0;
  1351. return 1;
  1352. }
  1353. struct rdev_sysfs_entry {
  1354. struct attribute attr;
  1355. ssize_t (*show)(mdk_rdev_t *, char *);
  1356. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1357. };
  1358. static ssize_t
  1359. state_show(mdk_rdev_t *rdev, char *page)
  1360. {
  1361. char *sep = "";
  1362. int len=0;
  1363. if (test_bit(Faulty, &rdev->flags)) {
  1364. len+= sprintf(page+len, "%sfaulty",sep);
  1365. sep = ",";
  1366. }
  1367. if (test_bit(In_sync, &rdev->flags)) {
  1368. len += sprintf(page+len, "%sin_sync",sep);
  1369. sep = ",";
  1370. }
  1371. if (!test_bit(Faulty, &rdev->flags) &&
  1372. !test_bit(In_sync, &rdev->flags)) {
  1373. len += sprintf(page+len, "%sspare", sep);
  1374. sep = ",";
  1375. }
  1376. return len+sprintf(page+len, "\n");
  1377. }
  1378. static struct rdev_sysfs_entry
  1379. rdev_state = __ATTR_RO(state);
  1380. static ssize_t
  1381. super_show(mdk_rdev_t *rdev, char *page)
  1382. {
  1383. if (rdev->sb_loaded && rdev->sb_size) {
  1384. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1385. return rdev->sb_size;
  1386. } else
  1387. return 0;
  1388. }
  1389. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1390. static ssize_t
  1391. errors_show(mdk_rdev_t *rdev, char *page)
  1392. {
  1393. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1394. }
  1395. static ssize_t
  1396. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1397. {
  1398. char *e;
  1399. unsigned long n = simple_strtoul(buf, &e, 10);
  1400. if (*buf && (*e == 0 || *e == '\n')) {
  1401. atomic_set(&rdev->corrected_errors, n);
  1402. return len;
  1403. }
  1404. return -EINVAL;
  1405. }
  1406. static struct rdev_sysfs_entry rdev_errors =
  1407. __ATTR(errors, 0644, errors_show, errors_store);
  1408. static ssize_t
  1409. slot_show(mdk_rdev_t *rdev, char *page)
  1410. {
  1411. if (rdev->raid_disk < 0)
  1412. return sprintf(page, "none\n");
  1413. else
  1414. return sprintf(page, "%d\n", rdev->raid_disk);
  1415. }
  1416. static ssize_t
  1417. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1418. {
  1419. char *e;
  1420. int slot = simple_strtoul(buf, &e, 10);
  1421. if (strncmp(buf, "none", 4)==0)
  1422. slot = -1;
  1423. else if (e==buf || (*e && *e!= '\n'))
  1424. return -EINVAL;
  1425. if (rdev->mddev->pers)
  1426. /* Cannot set slot in active array (yet) */
  1427. return -EBUSY;
  1428. if (slot >= rdev->mddev->raid_disks)
  1429. return -ENOSPC;
  1430. rdev->raid_disk = slot;
  1431. /* assume it is working */
  1432. rdev->flags = 0;
  1433. set_bit(In_sync, &rdev->flags);
  1434. return len;
  1435. }
  1436. static struct rdev_sysfs_entry rdev_slot =
  1437. __ATTR(slot, 0644, slot_show, slot_store);
  1438. static ssize_t
  1439. offset_show(mdk_rdev_t *rdev, char *page)
  1440. {
  1441. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1442. }
  1443. static ssize_t
  1444. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1445. {
  1446. char *e;
  1447. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1448. if (e==buf || (*e && *e != '\n'))
  1449. return -EINVAL;
  1450. if (rdev->mddev->pers)
  1451. return -EBUSY;
  1452. rdev->data_offset = offset;
  1453. return len;
  1454. }
  1455. static struct rdev_sysfs_entry rdev_offset =
  1456. __ATTR(offset, 0644, offset_show, offset_store);
  1457. static ssize_t
  1458. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1459. {
  1460. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1461. }
  1462. static ssize_t
  1463. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1464. {
  1465. char *e;
  1466. unsigned long long size = simple_strtoull(buf, &e, 10);
  1467. if (e==buf || (*e && *e != '\n'))
  1468. return -EINVAL;
  1469. if (rdev->mddev->pers)
  1470. return -EBUSY;
  1471. rdev->size = size;
  1472. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1473. rdev->mddev->size = size;
  1474. return len;
  1475. }
  1476. static struct rdev_sysfs_entry rdev_size =
  1477. __ATTR(size, 0644, rdev_size_show, rdev_size_store);
  1478. static struct attribute *rdev_default_attrs[] = {
  1479. &rdev_state.attr,
  1480. &rdev_super.attr,
  1481. &rdev_errors.attr,
  1482. &rdev_slot.attr,
  1483. &rdev_offset.attr,
  1484. &rdev_size.attr,
  1485. NULL,
  1486. };
  1487. static ssize_t
  1488. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1489. {
  1490. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1491. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1492. if (!entry->show)
  1493. return -EIO;
  1494. return entry->show(rdev, page);
  1495. }
  1496. static ssize_t
  1497. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1498. const char *page, size_t length)
  1499. {
  1500. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1501. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1502. if (!entry->store)
  1503. return -EIO;
  1504. return entry->store(rdev, page, length);
  1505. }
  1506. static void rdev_free(struct kobject *ko)
  1507. {
  1508. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1509. kfree(rdev);
  1510. }
  1511. static struct sysfs_ops rdev_sysfs_ops = {
  1512. .show = rdev_attr_show,
  1513. .store = rdev_attr_store,
  1514. };
  1515. static struct kobj_type rdev_ktype = {
  1516. .release = rdev_free,
  1517. .sysfs_ops = &rdev_sysfs_ops,
  1518. .default_attrs = rdev_default_attrs,
  1519. };
  1520. /*
  1521. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1522. *
  1523. * mark the device faulty if:
  1524. *
  1525. * - the device is nonexistent (zero size)
  1526. * - the device has no valid superblock
  1527. *
  1528. * a faulty rdev _never_ has rdev->sb set.
  1529. */
  1530. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1531. {
  1532. char b[BDEVNAME_SIZE];
  1533. int err;
  1534. mdk_rdev_t *rdev;
  1535. sector_t size;
  1536. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1537. if (!rdev) {
  1538. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1539. return ERR_PTR(-ENOMEM);
  1540. }
  1541. if ((err = alloc_disk_sb(rdev)))
  1542. goto abort_free;
  1543. err = lock_rdev(rdev, newdev);
  1544. if (err)
  1545. goto abort_free;
  1546. rdev->kobj.parent = NULL;
  1547. rdev->kobj.ktype = &rdev_ktype;
  1548. kobject_init(&rdev->kobj);
  1549. rdev->desc_nr = -1;
  1550. rdev->flags = 0;
  1551. rdev->data_offset = 0;
  1552. atomic_set(&rdev->nr_pending, 0);
  1553. atomic_set(&rdev->read_errors, 0);
  1554. atomic_set(&rdev->corrected_errors, 0);
  1555. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1556. if (!size) {
  1557. printk(KERN_WARNING
  1558. "md: %s has zero or unknown size, marking faulty!\n",
  1559. bdevname(rdev->bdev,b));
  1560. err = -EINVAL;
  1561. goto abort_free;
  1562. }
  1563. if (super_format >= 0) {
  1564. err = super_types[super_format].
  1565. load_super(rdev, NULL, super_minor);
  1566. if (err == -EINVAL) {
  1567. printk(KERN_WARNING
  1568. "md: %s has invalid sb, not importing!\n",
  1569. bdevname(rdev->bdev,b));
  1570. goto abort_free;
  1571. }
  1572. if (err < 0) {
  1573. printk(KERN_WARNING
  1574. "md: could not read %s's sb, not importing!\n",
  1575. bdevname(rdev->bdev,b));
  1576. goto abort_free;
  1577. }
  1578. }
  1579. INIT_LIST_HEAD(&rdev->same_set);
  1580. return rdev;
  1581. abort_free:
  1582. if (rdev->sb_page) {
  1583. if (rdev->bdev)
  1584. unlock_rdev(rdev);
  1585. free_disk_sb(rdev);
  1586. }
  1587. kfree(rdev);
  1588. return ERR_PTR(err);
  1589. }
  1590. /*
  1591. * Check a full RAID array for plausibility
  1592. */
  1593. static void analyze_sbs(mddev_t * mddev)
  1594. {
  1595. int i;
  1596. struct list_head *tmp;
  1597. mdk_rdev_t *rdev, *freshest;
  1598. char b[BDEVNAME_SIZE];
  1599. freshest = NULL;
  1600. ITERATE_RDEV(mddev,rdev,tmp)
  1601. switch (super_types[mddev->major_version].
  1602. load_super(rdev, freshest, mddev->minor_version)) {
  1603. case 1:
  1604. freshest = rdev;
  1605. break;
  1606. case 0:
  1607. break;
  1608. default:
  1609. printk( KERN_ERR \
  1610. "md: fatal superblock inconsistency in %s"
  1611. " -- removing from array\n",
  1612. bdevname(rdev->bdev,b));
  1613. kick_rdev_from_array(rdev);
  1614. }
  1615. super_types[mddev->major_version].
  1616. validate_super(mddev, freshest);
  1617. i = 0;
  1618. ITERATE_RDEV(mddev,rdev,tmp) {
  1619. if (rdev != freshest)
  1620. if (super_types[mddev->major_version].
  1621. validate_super(mddev, rdev)) {
  1622. printk(KERN_WARNING "md: kicking non-fresh %s"
  1623. " from array!\n",
  1624. bdevname(rdev->bdev,b));
  1625. kick_rdev_from_array(rdev);
  1626. continue;
  1627. }
  1628. if (mddev->level == LEVEL_MULTIPATH) {
  1629. rdev->desc_nr = i++;
  1630. rdev->raid_disk = rdev->desc_nr;
  1631. set_bit(In_sync, &rdev->flags);
  1632. }
  1633. }
  1634. if (mddev->recovery_cp != MaxSector &&
  1635. mddev->level >= 1)
  1636. printk(KERN_ERR "md: %s: raid array is not clean"
  1637. " -- starting background reconstruction\n",
  1638. mdname(mddev));
  1639. }
  1640. static ssize_t
  1641. level_show(mddev_t *mddev, char *page)
  1642. {
  1643. struct mdk_personality *p = mddev->pers;
  1644. if (p)
  1645. return sprintf(page, "%s\n", p->name);
  1646. else if (mddev->clevel[0])
  1647. return sprintf(page, "%s\n", mddev->clevel);
  1648. else if (mddev->level != LEVEL_NONE)
  1649. return sprintf(page, "%d\n", mddev->level);
  1650. else
  1651. return 0;
  1652. }
  1653. static ssize_t
  1654. level_store(mddev_t *mddev, const char *buf, size_t len)
  1655. {
  1656. int rv = len;
  1657. if (mddev->pers)
  1658. return -EBUSY;
  1659. if (len == 0)
  1660. return 0;
  1661. if (len >= sizeof(mddev->clevel))
  1662. return -ENOSPC;
  1663. strncpy(mddev->clevel, buf, len);
  1664. if (mddev->clevel[len-1] == '\n')
  1665. len--;
  1666. mddev->clevel[len] = 0;
  1667. mddev->level = LEVEL_NONE;
  1668. return rv;
  1669. }
  1670. static struct md_sysfs_entry md_level =
  1671. __ATTR(level, 0644, level_show, level_store);
  1672. static ssize_t
  1673. raid_disks_show(mddev_t *mddev, char *page)
  1674. {
  1675. if (mddev->raid_disks == 0)
  1676. return 0;
  1677. return sprintf(page, "%d\n", mddev->raid_disks);
  1678. }
  1679. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  1680. static ssize_t
  1681. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  1682. {
  1683. /* can only set raid_disks if array is not yet active */
  1684. char *e;
  1685. int rv = 0;
  1686. unsigned long n = simple_strtoul(buf, &e, 10);
  1687. if (!*buf || (*e && *e != '\n'))
  1688. return -EINVAL;
  1689. if (mddev->pers)
  1690. rv = update_raid_disks(mddev, n);
  1691. else
  1692. mddev->raid_disks = n;
  1693. return rv ? rv : len;
  1694. }
  1695. static struct md_sysfs_entry md_raid_disks =
  1696. __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
  1697. static ssize_t
  1698. chunk_size_show(mddev_t *mddev, char *page)
  1699. {
  1700. return sprintf(page, "%d\n", mddev->chunk_size);
  1701. }
  1702. static ssize_t
  1703. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  1704. {
  1705. /* can only set chunk_size if array is not yet active */
  1706. char *e;
  1707. unsigned long n = simple_strtoul(buf, &e, 10);
  1708. if (mddev->pers)
  1709. return -EBUSY;
  1710. if (!*buf || (*e && *e != '\n'))
  1711. return -EINVAL;
  1712. mddev->chunk_size = n;
  1713. return len;
  1714. }
  1715. static struct md_sysfs_entry md_chunk_size =
  1716. __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
  1717. static ssize_t
  1718. size_show(mddev_t *mddev, char *page)
  1719. {
  1720. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  1721. }
  1722. static int update_size(mddev_t *mddev, unsigned long size);
  1723. static ssize_t
  1724. size_store(mddev_t *mddev, const char *buf, size_t len)
  1725. {
  1726. /* If array is inactive, we can reduce the component size, but
  1727. * not increase it (except from 0).
  1728. * If array is active, we can try an on-line resize
  1729. */
  1730. char *e;
  1731. int err = 0;
  1732. unsigned long long size = simple_strtoull(buf, &e, 10);
  1733. if (!*buf || *buf == '\n' ||
  1734. (*e && *e != '\n'))
  1735. return -EINVAL;
  1736. if (mddev->pers) {
  1737. err = update_size(mddev, size);
  1738. md_update_sb(mddev);
  1739. } else {
  1740. if (mddev->size == 0 ||
  1741. mddev->size > size)
  1742. mddev->size = size;
  1743. else
  1744. err = -ENOSPC;
  1745. }
  1746. return err ? err : len;
  1747. }
  1748. static struct md_sysfs_entry md_size =
  1749. __ATTR(component_size, 0644, size_show, size_store);
  1750. /* Metdata version.
  1751. * This is either 'none' for arrays with externally managed metadata,
  1752. * or N.M for internally known formats
  1753. */
  1754. static ssize_t
  1755. metadata_show(mddev_t *mddev, char *page)
  1756. {
  1757. if (mddev->persistent)
  1758. return sprintf(page, "%d.%d\n",
  1759. mddev->major_version, mddev->minor_version);
  1760. else
  1761. return sprintf(page, "none\n");
  1762. }
  1763. static ssize_t
  1764. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  1765. {
  1766. int major, minor;
  1767. char *e;
  1768. if (!list_empty(&mddev->disks))
  1769. return -EBUSY;
  1770. if (cmd_match(buf, "none")) {
  1771. mddev->persistent = 0;
  1772. mddev->major_version = 0;
  1773. mddev->minor_version = 90;
  1774. return len;
  1775. }
  1776. major = simple_strtoul(buf, &e, 10);
  1777. if (e==buf || *e != '.')
  1778. return -EINVAL;
  1779. buf = e+1;
  1780. minor = simple_strtoul(buf, &e, 10);
  1781. if (e==buf || *e != '\n')
  1782. return -EINVAL;
  1783. if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
  1784. super_types[major].name == NULL)
  1785. return -ENOENT;
  1786. mddev->major_version = major;
  1787. mddev->minor_version = minor;
  1788. mddev->persistent = 1;
  1789. return len;
  1790. }
  1791. static struct md_sysfs_entry md_metadata =
  1792. __ATTR(metadata_version, 0644, metadata_show, metadata_store);
  1793. static ssize_t
  1794. action_show(mddev_t *mddev, char *page)
  1795. {
  1796. char *type = "idle";
  1797. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1798. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  1799. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  1800. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1801. type = "resync";
  1802. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1803. type = "check";
  1804. else
  1805. type = "repair";
  1806. } else
  1807. type = "recover";
  1808. }
  1809. return sprintf(page, "%s\n", type);
  1810. }
  1811. static ssize_t
  1812. action_store(mddev_t *mddev, const char *page, size_t len)
  1813. {
  1814. if (!mddev->pers || !mddev->pers->sync_request)
  1815. return -EINVAL;
  1816. if (cmd_match(page, "idle")) {
  1817. if (mddev->sync_thread) {
  1818. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1819. md_unregister_thread(mddev->sync_thread);
  1820. mddev->sync_thread = NULL;
  1821. mddev->recovery = 0;
  1822. }
  1823. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1824. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  1825. return -EBUSY;
  1826. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  1827. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1828. else {
  1829. if (cmd_match(page, "check"))
  1830. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  1831. else if (cmd_match(page, "repair"))
  1832. return -EINVAL;
  1833. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  1834. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  1835. }
  1836. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1837. md_wakeup_thread(mddev->thread);
  1838. return len;
  1839. }
  1840. static ssize_t
  1841. mismatch_cnt_show(mddev_t *mddev, char *page)
  1842. {
  1843. return sprintf(page, "%llu\n",
  1844. (unsigned long long) mddev->resync_mismatches);
  1845. }
  1846. static struct md_sysfs_entry
  1847. md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  1848. static struct md_sysfs_entry
  1849. md_mismatches = __ATTR_RO(mismatch_cnt);
  1850. static struct attribute *md_default_attrs[] = {
  1851. &md_level.attr,
  1852. &md_raid_disks.attr,
  1853. &md_chunk_size.attr,
  1854. &md_size.attr,
  1855. &md_metadata.attr,
  1856. NULL,
  1857. };
  1858. static struct attribute *md_redundancy_attrs[] = {
  1859. &md_scan_mode.attr,
  1860. &md_mismatches.attr,
  1861. NULL,
  1862. };
  1863. static struct attribute_group md_redundancy_group = {
  1864. .name = NULL,
  1865. .attrs = md_redundancy_attrs,
  1866. };
  1867. static ssize_t
  1868. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1869. {
  1870. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1871. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1872. ssize_t rv;
  1873. if (!entry->show)
  1874. return -EIO;
  1875. mddev_lock(mddev);
  1876. rv = entry->show(mddev, page);
  1877. mddev_unlock(mddev);
  1878. return rv;
  1879. }
  1880. static ssize_t
  1881. md_attr_store(struct kobject *kobj, struct attribute *attr,
  1882. const char *page, size_t length)
  1883. {
  1884. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1885. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1886. ssize_t rv;
  1887. if (!entry->store)
  1888. return -EIO;
  1889. mddev_lock(mddev);
  1890. rv = entry->store(mddev, page, length);
  1891. mddev_unlock(mddev);
  1892. return rv;
  1893. }
  1894. static void md_free(struct kobject *ko)
  1895. {
  1896. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  1897. kfree(mddev);
  1898. }
  1899. static struct sysfs_ops md_sysfs_ops = {
  1900. .show = md_attr_show,
  1901. .store = md_attr_store,
  1902. };
  1903. static struct kobj_type md_ktype = {
  1904. .release = md_free,
  1905. .sysfs_ops = &md_sysfs_ops,
  1906. .default_attrs = md_default_attrs,
  1907. };
  1908. int mdp_major = 0;
  1909. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1910. {
  1911. static DECLARE_MUTEX(disks_sem);
  1912. mddev_t *mddev = mddev_find(dev);
  1913. struct gendisk *disk;
  1914. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1915. int shift = partitioned ? MdpMinorShift : 0;
  1916. int unit = MINOR(dev) >> shift;
  1917. if (!mddev)
  1918. return NULL;
  1919. down(&disks_sem);
  1920. if (mddev->gendisk) {
  1921. up(&disks_sem);
  1922. mddev_put(mddev);
  1923. return NULL;
  1924. }
  1925. disk = alloc_disk(1 << shift);
  1926. if (!disk) {
  1927. up(&disks_sem);
  1928. mddev_put(mddev);
  1929. return NULL;
  1930. }
  1931. disk->major = MAJOR(dev);
  1932. disk->first_minor = unit << shift;
  1933. if (partitioned) {
  1934. sprintf(disk->disk_name, "md_d%d", unit);
  1935. sprintf(disk->devfs_name, "md/d%d", unit);
  1936. } else {
  1937. sprintf(disk->disk_name, "md%d", unit);
  1938. sprintf(disk->devfs_name, "md/%d", unit);
  1939. }
  1940. disk->fops = &md_fops;
  1941. disk->private_data = mddev;
  1942. disk->queue = mddev->queue;
  1943. add_disk(disk);
  1944. mddev->gendisk = disk;
  1945. up(&disks_sem);
  1946. mddev->kobj.parent = &disk->kobj;
  1947. mddev->kobj.k_name = NULL;
  1948. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  1949. mddev->kobj.ktype = &md_ktype;
  1950. kobject_register(&mddev->kobj);
  1951. return NULL;
  1952. }
  1953. void md_wakeup_thread(mdk_thread_t *thread);
  1954. static void md_safemode_timeout(unsigned long data)
  1955. {
  1956. mddev_t *mddev = (mddev_t *) data;
  1957. mddev->safemode = 1;
  1958. md_wakeup_thread(mddev->thread);
  1959. }
  1960. static int start_dirty_degraded;
  1961. static int do_md_run(mddev_t * mddev)
  1962. {
  1963. int err;
  1964. int chunk_size;
  1965. struct list_head *tmp;
  1966. mdk_rdev_t *rdev;
  1967. struct gendisk *disk;
  1968. struct mdk_personality *pers;
  1969. char b[BDEVNAME_SIZE];
  1970. if (list_empty(&mddev->disks))
  1971. /* cannot run an array with no devices.. */
  1972. return -EINVAL;
  1973. if (mddev->pers)
  1974. return -EBUSY;
  1975. /*
  1976. * Analyze all RAID superblock(s)
  1977. */
  1978. if (!mddev->raid_disks)
  1979. analyze_sbs(mddev);
  1980. chunk_size = mddev->chunk_size;
  1981. if (chunk_size) {
  1982. if (chunk_size > MAX_CHUNK_SIZE) {
  1983. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1984. chunk_size, MAX_CHUNK_SIZE);
  1985. return -EINVAL;
  1986. }
  1987. /*
  1988. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1989. */
  1990. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1991. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1992. return -EINVAL;
  1993. }
  1994. if (chunk_size < PAGE_SIZE) {
  1995. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1996. chunk_size, PAGE_SIZE);
  1997. return -EINVAL;
  1998. }
  1999. /* devices must have minimum size of one chunk */
  2000. ITERATE_RDEV(mddev,rdev,tmp) {
  2001. if (test_bit(Faulty, &rdev->flags))
  2002. continue;
  2003. if (rdev->size < chunk_size / 1024) {
  2004. printk(KERN_WARNING
  2005. "md: Dev %s smaller than chunk_size:"
  2006. " %lluk < %dk\n",
  2007. bdevname(rdev->bdev,b),
  2008. (unsigned long long)rdev->size,
  2009. chunk_size / 1024);
  2010. return -EINVAL;
  2011. }
  2012. }
  2013. }
  2014. #ifdef CONFIG_KMOD
  2015. if (mddev->level != LEVEL_NONE)
  2016. request_module("md-level-%d", mddev->level);
  2017. else if (mddev->clevel[0])
  2018. request_module("md-%s", mddev->clevel);
  2019. #endif
  2020. /*
  2021. * Drop all container device buffers, from now on
  2022. * the only valid external interface is through the md
  2023. * device.
  2024. * Also find largest hardsector size
  2025. */
  2026. ITERATE_RDEV(mddev,rdev,tmp) {
  2027. if (test_bit(Faulty, &rdev->flags))
  2028. continue;
  2029. sync_blockdev(rdev->bdev);
  2030. invalidate_bdev(rdev->bdev, 0);
  2031. }
  2032. md_probe(mddev->unit, NULL, NULL);
  2033. disk = mddev->gendisk;
  2034. if (!disk)
  2035. return -ENOMEM;
  2036. spin_lock(&pers_lock);
  2037. pers = find_pers(mddev->level, mddev->clevel);
  2038. if (!pers || !try_module_get(pers->owner)) {
  2039. spin_unlock(&pers_lock);
  2040. if (mddev->level != LEVEL_NONE)
  2041. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2042. mddev->level);
  2043. else
  2044. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2045. mddev->clevel);
  2046. return -EINVAL;
  2047. }
  2048. mddev->pers = pers;
  2049. spin_unlock(&pers_lock);
  2050. mddev->level = pers->level;
  2051. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2052. mddev->recovery = 0;
  2053. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  2054. mddev->barriers_work = 1;
  2055. mddev->ok_start_degraded = start_dirty_degraded;
  2056. if (start_readonly)
  2057. mddev->ro = 2; /* read-only, but switch on first write */
  2058. err = mddev->pers->run(mddev);
  2059. if (!err && mddev->pers->sync_request) {
  2060. err = bitmap_create(mddev);
  2061. if (err) {
  2062. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  2063. mdname(mddev), err);
  2064. mddev->pers->stop(mddev);
  2065. }
  2066. }
  2067. if (err) {
  2068. printk(KERN_ERR "md: pers->run() failed ...\n");
  2069. module_put(mddev->pers->owner);
  2070. mddev->pers = NULL;
  2071. bitmap_destroy(mddev);
  2072. return err;
  2073. }
  2074. if (mddev->pers->sync_request)
  2075. sysfs_create_group(&mddev->kobj, &md_redundancy_group);
  2076. else if (mddev->ro == 2) /* auto-readonly not meaningful */
  2077. mddev->ro = 0;
  2078. atomic_set(&mddev->writes_pending,0);
  2079. mddev->safemode = 0;
  2080. mddev->safemode_timer.function = md_safemode_timeout;
  2081. mddev->safemode_timer.data = (unsigned long) mddev;
  2082. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  2083. mddev->in_sync = 1;
  2084. ITERATE_RDEV(mddev,rdev,tmp)
  2085. if (rdev->raid_disk >= 0) {
  2086. char nm[20];
  2087. sprintf(nm, "rd%d", rdev->raid_disk);
  2088. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  2089. }
  2090. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2091. md_wakeup_thread(mddev->thread);
  2092. if (mddev->sb_dirty)
  2093. md_update_sb(mddev);
  2094. set_capacity(disk, mddev->array_size<<1);
  2095. /* If we call blk_queue_make_request here, it will
  2096. * re-initialise max_sectors etc which may have been
  2097. * refined inside -> run. So just set the bits we need to set.
  2098. * Most initialisation happended when we called
  2099. * blk_queue_make_request(..., md_fail_request)
  2100. * earlier.
  2101. */
  2102. mddev->queue->queuedata = mddev;
  2103. mddev->queue->make_request_fn = mddev->pers->make_request;
  2104. mddev->changed = 1;
  2105. md_new_event(mddev);
  2106. return 0;
  2107. }
  2108. static int restart_array(mddev_t *mddev)
  2109. {
  2110. struct gendisk *disk = mddev->gendisk;
  2111. int err;
  2112. /*
  2113. * Complain if it has no devices
  2114. */
  2115. err = -ENXIO;
  2116. if (list_empty(&mddev->disks))
  2117. goto out;
  2118. if (mddev->pers) {
  2119. err = -EBUSY;
  2120. if (!mddev->ro)
  2121. goto out;
  2122. mddev->safemode = 0;
  2123. mddev->ro = 0;
  2124. set_disk_ro(disk, 0);
  2125. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  2126. mdname(mddev));
  2127. /*
  2128. * Kick recovery or resync if necessary
  2129. */
  2130. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2131. md_wakeup_thread(mddev->thread);
  2132. err = 0;
  2133. } else {
  2134. printk(KERN_ERR "md: %s has no personality assigned.\n",
  2135. mdname(mddev));
  2136. err = -EINVAL;
  2137. }
  2138. out:
  2139. return err;
  2140. }
  2141. static int do_md_stop(mddev_t * mddev, int ro)
  2142. {
  2143. int err = 0;
  2144. struct gendisk *disk = mddev->gendisk;
  2145. if (mddev->pers) {
  2146. if (atomic_read(&mddev->active)>2) {
  2147. printk("md: %s still in use.\n",mdname(mddev));
  2148. return -EBUSY;
  2149. }
  2150. if (mddev->sync_thread) {
  2151. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2152. md_unregister_thread(mddev->sync_thread);
  2153. mddev->sync_thread = NULL;
  2154. }
  2155. del_timer_sync(&mddev->safemode_timer);
  2156. invalidate_partition(disk, 0);
  2157. if (ro) {
  2158. err = -ENXIO;
  2159. if (mddev->ro==1)
  2160. goto out;
  2161. mddev->ro = 1;
  2162. } else {
  2163. bitmap_flush(mddev);
  2164. md_super_wait(mddev);
  2165. if (mddev->ro)
  2166. set_disk_ro(disk, 0);
  2167. blk_queue_make_request(mddev->queue, md_fail_request);
  2168. mddev->pers->stop(mddev);
  2169. if (mddev->pers->sync_request)
  2170. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  2171. module_put(mddev->pers->owner);
  2172. mddev->pers = NULL;
  2173. if (mddev->ro)
  2174. mddev->ro = 0;
  2175. }
  2176. if (!mddev->in_sync) {
  2177. /* mark array as shutdown cleanly */
  2178. mddev->in_sync = 1;
  2179. md_update_sb(mddev);
  2180. }
  2181. if (ro)
  2182. set_disk_ro(disk, 1);
  2183. }
  2184. bitmap_destroy(mddev);
  2185. if (mddev->bitmap_file) {
  2186. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  2187. fput(mddev->bitmap_file);
  2188. mddev->bitmap_file = NULL;
  2189. }
  2190. mddev->bitmap_offset = 0;
  2191. /*
  2192. * Free resources if final stop
  2193. */
  2194. if (!ro) {
  2195. mdk_rdev_t *rdev;
  2196. struct list_head *tmp;
  2197. struct gendisk *disk;
  2198. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  2199. ITERATE_RDEV(mddev,rdev,tmp)
  2200. if (rdev->raid_disk >= 0) {
  2201. char nm[20];
  2202. sprintf(nm, "rd%d", rdev->raid_disk);
  2203. sysfs_remove_link(&mddev->kobj, nm);
  2204. }
  2205. export_array(mddev);
  2206. mddev->array_size = 0;
  2207. disk = mddev->gendisk;
  2208. if (disk)
  2209. set_capacity(disk, 0);
  2210. mddev->changed = 1;
  2211. } else
  2212. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  2213. mdname(mddev));
  2214. err = 0;
  2215. md_new_event(mddev);
  2216. out:
  2217. return err;
  2218. }
  2219. static void autorun_array(mddev_t *mddev)
  2220. {
  2221. mdk_rdev_t *rdev;
  2222. struct list_head *tmp;
  2223. int err;
  2224. if (list_empty(&mddev->disks))
  2225. return;
  2226. printk(KERN_INFO "md: running: ");
  2227. ITERATE_RDEV(mddev,rdev,tmp) {
  2228. char b[BDEVNAME_SIZE];
  2229. printk("<%s>", bdevname(rdev->bdev,b));
  2230. }
  2231. printk("\n");
  2232. err = do_md_run (mddev);
  2233. if (err) {
  2234. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  2235. do_md_stop (mddev, 0);
  2236. }
  2237. }
  2238. /*
  2239. * lets try to run arrays based on all disks that have arrived
  2240. * until now. (those are in pending_raid_disks)
  2241. *
  2242. * the method: pick the first pending disk, collect all disks with
  2243. * the same UUID, remove all from the pending list and put them into
  2244. * the 'same_array' list. Then order this list based on superblock
  2245. * update time (freshest comes first), kick out 'old' disks and
  2246. * compare superblocks. If everything's fine then run it.
  2247. *
  2248. * If "unit" is allocated, then bump its reference count
  2249. */
  2250. static void autorun_devices(int part)
  2251. {
  2252. struct list_head candidates;
  2253. struct list_head *tmp;
  2254. mdk_rdev_t *rdev0, *rdev;
  2255. mddev_t *mddev;
  2256. char b[BDEVNAME_SIZE];
  2257. printk(KERN_INFO "md: autorun ...\n");
  2258. while (!list_empty(&pending_raid_disks)) {
  2259. dev_t dev;
  2260. rdev0 = list_entry(pending_raid_disks.next,
  2261. mdk_rdev_t, same_set);
  2262. printk(KERN_INFO "md: considering %s ...\n",
  2263. bdevname(rdev0->bdev,b));
  2264. INIT_LIST_HEAD(&candidates);
  2265. ITERATE_RDEV_PENDING(rdev,tmp)
  2266. if (super_90_load(rdev, rdev0, 0) >= 0) {
  2267. printk(KERN_INFO "md: adding %s ...\n",
  2268. bdevname(rdev->bdev,b));
  2269. list_move(&rdev->same_set, &candidates);
  2270. }
  2271. /*
  2272. * now we have a set of devices, with all of them having
  2273. * mostly sane superblocks. It's time to allocate the
  2274. * mddev.
  2275. */
  2276. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  2277. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  2278. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  2279. break;
  2280. }
  2281. if (part)
  2282. dev = MKDEV(mdp_major,
  2283. rdev0->preferred_minor << MdpMinorShift);
  2284. else
  2285. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  2286. md_probe(dev, NULL, NULL);
  2287. mddev = mddev_find(dev);
  2288. if (!mddev) {
  2289. printk(KERN_ERR
  2290. "md: cannot allocate memory for md drive.\n");
  2291. break;
  2292. }
  2293. if (mddev_lock(mddev))
  2294. printk(KERN_WARNING "md: %s locked, cannot run\n",
  2295. mdname(mddev));
  2296. else if (mddev->raid_disks || mddev->major_version
  2297. || !list_empty(&mddev->disks)) {
  2298. printk(KERN_WARNING
  2299. "md: %s already running, cannot run %s\n",
  2300. mdname(mddev), bdevname(rdev0->bdev,b));
  2301. mddev_unlock(mddev);
  2302. } else {
  2303. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  2304. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  2305. list_del_init(&rdev->same_set);
  2306. if (bind_rdev_to_array(rdev, mddev))
  2307. export_rdev(rdev);
  2308. }
  2309. autorun_array(mddev);
  2310. mddev_unlock(mddev);
  2311. }
  2312. /* on success, candidates will be empty, on error
  2313. * it won't...
  2314. */
  2315. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  2316. export_rdev(rdev);
  2317. mddev_put(mddev);
  2318. }
  2319. printk(KERN_INFO "md: ... autorun DONE.\n");
  2320. }
  2321. /*
  2322. * import RAID devices based on one partition
  2323. * if possible, the array gets run as well.
  2324. */
  2325. static int autostart_array(dev_t startdev)
  2326. {
  2327. char b[BDEVNAME_SIZE];
  2328. int err = -EINVAL, i;
  2329. mdp_super_t *sb = NULL;
  2330. mdk_rdev_t *start_rdev = NULL, *rdev;
  2331. start_rdev = md_import_device(startdev, 0, 0);
  2332. if (IS_ERR(start_rdev))
  2333. return err;
  2334. /* NOTE: this can only work for 0.90.0 superblocks */
  2335. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  2336. if (sb->major_version != 0 ||
  2337. sb->minor_version != 90 ) {
  2338. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  2339. export_rdev(start_rdev);
  2340. return err;
  2341. }
  2342. if (test_bit(Faulty, &start_rdev->flags)) {
  2343. printk(KERN_WARNING
  2344. "md: can not autostart based on faulty %s!\n",
  2345. bdevname(start_rdev->bdev,b));
  2346. export_rdev(start_rdev);
  2347. return err;
  2348. }
  2349. list_add(&start_rdev->same_set, &pending_raid_disks);
  2350. for (i = 0; i < MD_SB_DISKS; i++) {
  2351. mdp_disk_t *desc = sb->disks + i;
  2352. dev_t dev = MKDEV(desc->major, desc->minor);
  2353. if (!dev)
  2354. continue;
  2355. if (dev == startdev)
  2356. continue;
  2357. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  2358. continue;
  2359. rdev = md_import_device(dev, 0, 0);
  2360. if (IS_ERR(rdev))
  2361. continue;
  2362. list_add(&rdev->same_set, &pending_raid_disks);
  2363. }
  2364. /*
  2365. * possibly return codes
  2366. */
  2367. autorun_devices(0);
  2368. return 0;
  2369. }
  2370. static int get_version(void __user * arg)
  2371. {
  2372. mdu_version_t ver;
  2373. ver.major = MD_MAJOR_VERSION;
  2374. ver.minor = MD_MINOR_VERSION;
  2375. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  2376. if (copy_to_user(arg, &ver, sizeof(ver)))
  2377. return -EFAULT;
  2378. return 0;
  2379. }
  2380. static int get_array_info(mddev_t * mddev, void __user * arg)
  2381. {
  2382. mdu_array_info_t info;
  2383. int nr,working,active,failed,spare;
  2384. mdk_rdev_t *rdev;
  2385. struct list_head *tmp;
  2386. nr=working=active=failed=spare=0;
  2387. ITERATE_RDEV(mddev,rdev,tmp) {
  2388. nr++;
  2389. if (test_bit(Faulty, &rdev->flags))
  2390. failed++;
  2391. else {
  2392. working++;
  2393. if (test_bit(In_sync, &rdev->flags))
  2394. active++;
  2395. else
  2396. spare++;
  2397. }
  2398. }
  2399. info.major_version = mddev->major_version;
  2400. info.minor_version = mddev->minor_version;
  2401. info.patch_version = MD_PATCHLEVEL_VERSION;
  2402. info.ctime = mddev->ctime;
  2403. info.level = mddev->level;
  2404. info.size = mddev->size;
  2405. info.nr_disks = nr;
  2406. info.raid_disks = mddev->raid_disks;
  2407. info.md_minor = mddev->md_minor;
  2408. info.not_persistent= !mddev->persistent;
  2409. info.utime = mddev->utime;
  2410. info.state = 0;
  2411. if (mddev->in_sync)
  2412. info.state = (1<<MD_SB_CLEAN);
  2413. if (mddev->bitmap && mddev->bitmap_offset)
  2414. info.state = (1<<MD_SB_BITMAP_PRESENT);
  2415. info.active_disks = active;
  2416. info.working_disks = working;
  2417. info.failed_disks = failed;
  2418. info.spare_disks = spare;
  2419. info.layout = mddev->layout;
  2420. info.chunk_size = mddev->chunk_size;
  2421. if (copy_to_user(arg, &info, sizeof(info)))
  2422. return -EFAULT;
  2423. return 0;
  2424. }
  2425. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  2426. {
  2427. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  2428. char *ptr, *buf = NULL;
  2429. int err = -ENOMEM;
  2430. file = kmalloc(sizeof(*file), GFP_KERNEL);
  2431. if (!file)
  2432. goto out;
  2433. /* bitmap disabled, zero the first byte and copy out */
  2434. if (!mddev->bitmap || !mddev->bitmap->file) {
  2435. file->pathname[0] = '\0';
  2436. goto copy_out;
  2437. }
  2438. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  2439. if (!buf)
  2440. goto out;
  2441. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  2442. if (!ptr)
  2443. goto out;
  2444. strcpy(file->pathname, ptr);
  2445. copy_out:
  2446. err = 0;
  2447. if (copy_to_user(arg, file, sizeof(*file)))
  2448. err = -EFAULT;
  2449. out:
  2450. kfree(buf);
  2451. kfree(file);
  2452. return err;
  2453. }
  2454. static int get_disk_info(mddev_t * mddev, void __user * arg)
  2455. {
  2456. mdu_disk_info_t info;
  2457. unsigned int nr;
  2458. mdk_rdev_t *rdev;
  2459. if (copy_from_user(&info, arg, sizeof(info)))
  2460. return -EFAULT;
  2461. nr = info.number;
  2462. rdev = find_rdev_nr(mddev, nr);
  2463. if (rdev) {
  2464. info.major = MAJOR(rdev->bdev->bd_dev);
  2465. info.minor = MINOR(rdev->bdev->bd_dev);
  2466. info.raid_disk = rdev->raid_disk;
  2467. info.state = 0;
  2468. if (test_bit(Faulty, &rdev->flags))
  2469. info.state |= (1<<MD_DISK_FAULTY);
  2470. else if (test_bit(In_sync, &rdev->flags)) {
  2471. info.state |= (1<<MD_DISK_ACTIVE);
  2472. info.state |= (1<<MD_DISK_SYNC);
  2473. }
  2474. if (test_bit(WriteMostly, &rdev->flags))
  2475. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  2476. } else {
  2477. info.major = info.minor = 0;
  2478. info.raid_disk = -1;
  2479. info.state = (1<<MD_DISK_REMOVED);
  2480. }
  2481. if (copy_to_user(arg, &info, sizeof(info)))
  2482. return -EFAULT;
  2483. return 0;
  2484. }
  2485. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  2486. {
  2487. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2488. mdk_rdev_t *rdev;
  2489. dev_t dev = MKDEV(info->major,info->minor);
  2490. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  2491. return -EOVERFLOW;
  2492. if (!mddev->raid_disks) {
  2493. int err;
  2494. /* expecting a device which has a superblock */
  2495. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  2496. if (IS_ERR(rdev)) {
  2497. printk(KERN_WARNING
  2498. "md: md_import_device returned %ld\n",
  2499. PTR_ERR(rdev));
  2500. return PTR_ERR(rdev);
  2501. }
  2502. if (!list_empty(&mddev->disks)) {
  2503. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2504. mdk_rdev_t, same_set);
  2505. int err = super_types[mddev->major_version]
  2506. .load_super(rdev, rdev0, mddev->minor_version);
  2507. if (err < 0) {
  2508. printk(KERN_WARNING
  2509. "md: %s has different UUID to %s\n",
  2510. bdevname(rdev->bdev,b),
  2511. bdevname(rdev0->bdev,b2));
  2512. export_rdev(rdev);
  2513. return -EINVAL;
  2514. }
  2515. }
  2516. err = bind_rdev_to_array(rdev, mddev);
  2517. if (err)
  2518. export_rdev(rdev);
  2519. return err;
  2520. }
  2521. /*
  2522. * add_new_disk can be used once the array is assembled
  2523. * to add "hot spares". They must already have a superblock
  2524. * written
  2525. */
  2526. if (mddev->pers) {
  2527. int err;
  2528. if (!mddev->pers->hot_add_disk) {
  2529. printk(KERN_WARNING
  2530. "%s: personality does not support diskops!\n",
  2531. mdname(mddev));
  2532. return -EINVAL;
  2533. }
  2534. if (mddev->persistent)
  2535. rdev = md_import_device(dev, mddev->major_version,
  2536. mddev->minor_version);
  2537. else
  2538. rdev = md_import_device(dev, -1, -1);
  2539. if (IS_ERR(rdev)) {
  2540. printk(KERN_WARNING
  2541. "md: md_import_device returned %ld\n",
  2542. PTR_ERR(rdev));
  2543. return PTR_ERR(rdev);
  2544. }
  2545. /* set save_raid_disk if appropriate */
  2546. if (!mddev->persistent) {
  2547. if (info->state & (1<<MD_DISK_SYNC) &&
  2548. info->raid_disk < mddev->raid_disks)
  2549. rdev->raid_disk = info->raid_disk;
  2550. else
  2551. rdev->raid_disk = -1;
  2552. } else
  2553. super_types[mddev->major_version].
  2554. validate_super(mddev, rdev);
  2555. rdev->saved_raid_disk = rdev->raid_disk;
  2556. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  2557. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2558. set_bit(WriteMostly, &rdev->flags);
  2559. rdev->raid_disk = -1;
  2560. err = bind_rdev_to_array(rdev, mddev);
  2561. if (err)
  2562. export_rdev(rdev);
  2563. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2564. md_wakeup_thread(mddev->thread);
  2565. return err;
  2566. }
  2567. /* otherwise, add_new_disk is only allowed
  2568. * for major_version==0 superblocks
  2569. */
  2570. if (mddev->major_version != 0) {
  2571. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  2572. mdname(mddev));
  2573. return -EINVAL;
  2574. }
  2575. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  2576. int err;
  2577. rdev = md_import_device (dev, -1, 0);
  2578. if (IS_ERR(rdev)) {
  2579. printk(KERN_WARNING
  2580. "md: error, md_import_device() returned %ld\n",
  2581. PTR_ERR(rdev));
  2582. return PTR_ERR(rdev);
  2583. }
  2584. rdev->desc_nr = info->number;
  2585. if (info->raid_disk < mddev->raid_disks)
  2586. rdev->raid_disk = info->raid_disk;
  2587. else
  2588. rdev->raid_disk = -1;
  2589. rdev->flags = 0;
  2590. if (rdev->raid_disk < mddev->raid_disks)
  2591. if (info->state & (1<<MD_DISK_SYNC))
  2592. set_bit(In_sync, &rdev->flags);
  2593. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2594. set_bit(WriteMostly, &rdev->flags);
  2595. if (!mddev->persistent) {
  2596. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  2597. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2598. } else
  2599. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2600. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  2601. err = bind_rdev_to_array(rdev, mddev);
  2602. if (err) {
  2603. export_rdev(rdev);
  2604. return err;
  2605. }
  2606. }
  2607. return 0;
  2608. }
  2609. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  2610. {
  2611. char b[BDEVNAME_SIZE];
  2612. mdk_rdev_t *rdev;
  2613. if (!mddev->pers)
  2614. return -ENODEV;
  2615. rdev = find_rdev(mddev, dev);
  2616. if (!rdev)
  2617. return -ENXIO;
  2618. if (rdev->raid_disk >= 0)
  2619. goto busy;
  2620. kick_rdev_from_array(rdev);
  2621. md_update_sb(mddev);
  2622. md_new_event(mddev);
  2623. return 0;
  2624. busy:
  2625. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2626. bdevname(rdev->bdev,b), mdname(mddev));
  2627. return -EBUSY;
  2628. }
  2629. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2630. {
  2631. char b[BDEVNAME_SIZE];
  2632. int err;
  2633. unsigned int size;
  2634. mdk_rdev_t *rdev;
  2635. if (!mddev->pers)
  2636. return -ENODEV;
  2637. if (mddev->major_version != 0) {
  2638. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2639. " version-0 superblocks.\n",
  2640. mdname(mddev));
  2641. return -EINVAL;
  2642. }
  2643. if (!mddev->pers->hot_add_disk) {
  2644. printk(KERN_WARNING
  2645. "%s: personality does not support diskops!\n",
  2646. mdname(mddev));
  2647. return -EINVAL;
  2648. }
  2649. rdev = md_import_device (dev, -1, 0);
  2650. if (IS_ERR(rdev)) {
  2651. printk(KERN_WARNING
  2652. "md: error, md_import_device() returned %ld\n",
  2653. PTR_ERR(rdev));
  2654. return -EINVAL;
  2655. }
  2656. if (mddev->persistent)
  2657. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2658. else
  2659. rdev->sb_offset =
  2660. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2661. size = calc_dev_size(rdev, mddev->chunk_size);
  2662. rdev->size = size;
  2663. if (test_bit(Faulty, &rdev->flags)) {
  2664. printk(KERN_WARNING
  2665. "md: can not hot-add faulty %s disk to %s!\n",
  2666. bdevname(rdev->bdev,b), mdname(mddev));
  2667. err = -EINVAL;
  2668. goto abort_export;
  2669. }
  2670. clear_bit(In_sync, &rdev->flags);
  2671. rdev->desc_nr = -1;
  2672. err = bind_rdev_to_array(rdev, mddev);
  2673. if (err)
  2674. goto abort_export;
  2675. /*
  2676. * The rest should better be atomic, we can have disk failures
  2677. * noticed in interrupt contexts ...
  2678. */
  2679. if (rdev->desc_nr == mddev->max_disks) {
  2680. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2681. mdname(mddev));
  2682. err = -EBUSY;
  2683. goto abort_unbind_export;
  2684. }
  2685. rdev->raid_disk = -1;
  2686. md_update_sb(mddev);
  2687. /*
  2688. * Kick recovery, maybe this spare has to be added to the
  2689. * array immediately.
  2690. */
  2691. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2692. md_wakeup_thread(mddev->thread);
  2693. md_new_event(mddev);
  2694. return 0;
  2695. abort_unbind_export:
  2696. unbind_rdev_from_array(rdev);
  2697. abort_export:
  2698. export_rdev(rdev);
  2699. return err;
  2700. }
  2701. /* similar to deny_write_access, but accounts for our holding a reference
  2702. * to the file ourselves */
  2703. static int deny_bitmap_write_access(struct file * file)
  2704. {
  2705. struct inode *inode = file->f_mapping->host;
  2706. spin_lock(&inode->i_lock);
  2707. if (atomic_read(&inode->i_writecount) > 1) {
  2708. spin_unlock(&inode->i_lock);
  2709. return -ETXTBSY;
  2710. }
  2711. atomic_set(&inode->i_writecount, -1);
  2712. spin_unlock(&inode->i_lock);
  2713. return 0;
  2714. }
  2715. static int set_bitmap_file(mddev_t *mddev, int fd)
  2716. {
  2717. int err;
  2718. if (mddev->pers) {
  2719. if (!mddev->pers->quiesce)
  2720. return -EBUSY;
  2721. if (mddev->recovery || mddev->sync_thread)
  2722. return -EBUSY;
  2723. /* we should be able to change the bitmap.. */
  2724. }
  2725. if (fd >= 0) {
  2726. if (mddev->bitmap)
  2727. return -EEXIST; /* cannot add when bitmap is present */
  2728. mddev->bitmap_file = fget(fd);
  2729. if (mddev->bitmap_file == NULL) {
  2730. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2731. mdname(mddev));
  2732. return -EBADF;
  2733. }
  2734. err = deny_bitmap_write_access(mddev->bitmap_file);
  2735. if (err) {
  2736. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2737. mdname(mddev));
  2738. fput(mddev->bitmap_file);
  2739. mddev->bitmap_file = NULL;
  2740. return err;
  2741. }
  2742. mddev->bitmap_offset = 0; /* file overrides offset */
  2743. } else if (mddev->bitmap == NULL)
  2744. return -ENOENT; /* cannot remove what isn't there */
  2745. err = 0;
  2746. if (mddev->pers) {
  2747. mddev->pers->quiesce(mddev, 1);
  2748. if (fd >= 0)
  2749. err = bitmap_create(mddev);
  2750. if (fd < 0 || err)
  2751. bitmap_destroy(mddev);
  2752. mddev->pers->quiesce(mddev, 0);
  2753. } else if (fd < 0) {
  2754. if (mddev->bitmap_file)
  2755. fput(mddev->bitmap_file);
  2756. mddev->bitmap_file = NULL;
  2757. }
  2758. return err;
  2759. }
  2760. /*
  2761. * set_array_info is used two different ways
  2762. * The original usage is when creating a new array.
  2763. * In this usage, raid_disks is > 0 and it together with
  2764. * level, size, not_persistent,layout,chunksize determine the
  2765. * shape of the array.
  2766. * This will always create an array with a type-0.90.0 superblock.
  2767. * The newer usage is when assembling an array.
  2768. * In this case raid_disks will be 0, and the major_version field is
  2769. * use to determine which style super-blocks are to be found on the devices.
  2770. * The minor and patch _version numbers are also kept incase the
  2771. * super_block handler wishes to interpret them.
  2772. */
  2773. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2774. {
  2775. if (info->raid_disks == 0) {
  2776. /* just setting version number for superblock loading */
  2777. if (info->major_version < 0 ||
  2778. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2779. super_types[info->major_version].name == NULL) {
  2780. /* maybe try to auto-load a module? */
  2781. printk(KERN_INFO
  2782. "md: superblock version %d not known\n",
  2783. info->major_version);
  2784. return -EINVAL;
  2785. }
  2786. mddev->major_version = info->major_version;
  2787. mddev->minor_version = info->minor_version;
  2788. mddev->patch_version = info->patch_version;
  2789. return 0;
  2790. }
  2791. mddev->major_version = MD_MAJOR_VERSION;
  2792. mddev->minor_version = MD_MINOR_VERSION;
  2793. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2794. mddev->ctime = get_seconds();
  2795. mddev->level = info->level;
  2796. mddev->size = info->size;
  2797. mddev->raid_disks = info->raid_disks;
  2798. /* don't set md_minor, it is determined by which /dev/md* was
  2799. * openned
  2800. */
  2801. if (info->state & (1<<MD_SB_CLEAN))
  2802. mddev->recovery_cp = MaxSector;
  2803. else
  2804. mddev->recovery_cp = 0;
  2805. mddev->persistent = ! info->not_persistent;
  2806. mddev->layout = info->layout;
  2807. mddev->chunk_size = info->chunk_size;
  2808. mddev->max_disks = MD_SB_DISKS;
  2809. mddev->sb_dirty = 1;
  2810. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  2811. mddev->bitmap_offset = 0;
  2812. /*
  2813. * Generate a 128 bit UUID
  2814. */
  2815. get_random_bytes(mddev->uuid, 16);
  2816. return 0;
  2817. }
  2818. static int update_size(mddev_t *mddev, unsigned long size)
  2819. {
  2820. mdk_rdev_t * rdev;
  2821. int rv;
  2822. struct list_head *tmp;
  2823. if (mddev->pers->resize == NULL)
  2824. return -EINVAL;
  2825. /* The "size" is the amount of each device that is used.
  2826. * This can only make sense for arrays with redundancy.
  2827. * linear and raid0 always use whatever space is available
  2828. * We can only consider changing the size if no resync
  2829. * or reconstruction is happening, and if the new size
  2830. * is acceptable. It must fit before the sb_offset or,
  2831. * if that is <data_offset, it must fit before the
  2832. * size of each device.
  2833. * If size is zero, we find the largest size that fits.
  2834. */
  2835. if (mddev->sync_thread)
  2836. return -EBUSY;
  2837. ITERATE_RDEV(mddev,rdev,tmp) {
  2838. sector_t avail;
  2839. int fit = (size == 0);
  2840. if (rdev->sb_offset > rdev->data_offset)
  2841. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2842. else
  2843. avail = get_capacity(rdev->bdev->bd_disk)
  2844. - rdev->data_offset;
  2845. if (fit && (size == 0 || size > avail/2))
  2846. size = avail/2;
  2847. if (avail < ((sector_t)size << 1))
  2848. return -ENOSPC;
  2849. }
  2850. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  2851. if (!rv) {
  2852. struct block_device *bdev;
  2853. bdev = bdget_disk(mddev->gendisk, 0);
  2854. if (bdev) {
  2855. down(&bdev->bd_inode->i_sem);
  2856. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2857. up(&bdev->bd_inode->i_sem);
  2858. bdput(bdev);
  2859. }
  2860. }
  2861. return rv;
  2862. }
  2863. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  2864. {
  2865. int rv;
  2866. /* change the number of raid disks */
  2867. if (mddev->pers->reshape == NULL)
  2868. return -EINVAL;
  2869. if (raid_disks <= 0 ||
  2870. raid_disks >= mddev->max_disks)
  2871. return -EINVAL;
  2872. if (mddev->sync_thread)
  2873. return -EBUSY;
  2874. rv = mddev->pers->reshape(mddev, raid_disks);
  2875. if (!rv) {
  2876. struct block_device *bdev;
  2877. bdev = bdget_disk(mddev->gendisk, 0);
  2878. if (bdev) {
  2879. down(&bdev->bd_inode->i_sem);
  2880. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2881. up(&bdev->bd_inode->i_sem);
  2882. bdput(bdev);
  2883. }
  2884. }
  2885. return rv;
  2886. }
  2887. /*
  2888. * update_array_info is used to change the configuration of an
  2889. * on-line array.
  2890. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2891. * fields in the info are checked against the array.
  2892. * Any differences that cannot be handled will cause an error.
  2893. * Normally, only one change can be managed at a time.
  2894. */
  2895. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2896. {
  2897. int rv = 0;
  2898. int cnt = 0;
  2899. int state = 0;
  2900. /* calculate expected state,ignoring low bits */
  2901. if (mddev->bitmap && mddev->bitmap_offset)
  2902. state |= (1 << MD_SB_BITMAP_PRESENT);
  2903. if (mddev->major_version != info->major_version ||
  2904. mddev->minor_version != info->minor_version ||
  2905. /* mddev->patch_version != info->patch_version || */
  2906. mddev->ctime != info->ctime ||
  2907. mddev->level != info->level ||
  2908. /* mddev->layout != info->layout || */
  2909. !mddev->persistent != info->not_persistent||
  2910. mddev->chunk_size != info->chunk_size ||
  2911. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  2912. ((state^info->state) & 0xfffffe00)
  2913. )
  2914. return -EINVAL;
  2915. /* Check there is only one change */
  2916. if (mddev->size != info->size) cnt++;
  2917. if (mddev->raid_disks != info->raid_disks) cnt++;
  2918. if (mddev->layout != info->layout) cnt++;
  2919. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  2920. if (cnt == 0) return 0;
  2921. if (cnt > 1) return -EINVAL;
  2922. if (mddev->layout != info->layout) {
  2923. /* Change layout
  2924. * we don't need to do anything at the md level, the
  2925. * personality will take care of it all.
  2926. */
  2927. if (mddev->pers->reconfig == NULL)
  2928. return -EINVAL;
  2929. else
  2930. return mddev->pers->reconfig(mddev, info->layout, -1);
  2931. }
  2932. if (mddev->size != info->size)
  2933. rv = update_size(mddev, info->size);
  2934. if (mddev->raid_disks != info->raid_disks)
  2935. rv = update_raid_disks(mddev, info->raid_disks);
  2936. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  2937. if (mddev->pers->quiesce == NULL)
  2938. return -EINVAL;
  2939. if (mddev->recovery || mddev->sync_thread)
  2940. return -EBUSY;
  2941. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  2942. /* add the bitmap */
  2943. if (mddev->bitmap)
  2944. return -EEXIST;
  2945. if (mddev->default_bitmap_offset == 0)
  2946. return -EINVAL;
  2947. mddev->bitmap_offset = mddev->default_bitmap_offset;
  2948. mddev->pers->quiesce(mddev, 1);
  2949. rv = bitmap_create(mddev);
  2950. if (rv)
  2951. bitmap_destroy(mddev);
  2952. mddev->pers->quiesce(mddev, 0);
  2953. } else {
  2954. /* remove the bitmap */
  2955. if (!mddev->bitmap)
  2956. return -ENOENT;
  2957. if (mddev->bitmap->file)
  2958. return -EINVAL;
  2959. mddev->pers->quiesce(mddev, 1);
  2960. bitmap_destroy(mddev);
  2961. mddev->pers->quiesce(mddev, 0);
  2962. mddev->bitmap_offset = 0;
  2963. }
  2964. }
  2965. md_update_sb(mddev);
  2966. return rv;
  2967. }
  2968. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2969. {
  2970. mdk_rdev_t *rdev;
  2971. if (mddev->pers == NULL)
  2972. return -ENODEV;
  2973. rdev = find_rdev(mddev, dev);
  2974. if (!rdev)
  2975. return -ENODEV;
  2976. md_error(mddev, rdev);
  2977. return 0;
  2978. }
  2979. static int md_ioctl(struct inode *inode, struct file *file,
  2980. unsigned int cmd, unsigned long arg)
  2981. {
  2982. int err = 0;
  2983. void __user *argp = (void __user *)arg;
  2984. struct hd_geometry __user *loc = argp;
  2985. mddev_t *mddev = NULL;
  2986. if (!capable(CAP_SYS_ADMIN))
  2987. return -EACCES;
  2988. /*
  2989. * Commands dealing with the RAID driver but not any
  2990. * particular array:
  2991. */
  2992. switch (cmd)
  2993. {
  2994. case RAID_VERSION:
  2995. err = get_version(argp);
  2996. goto done;
  2997. case PRINT_RAID_DEBUG:
  2998. err = 0;
  2999. md_print_devices();
  3000. goto done;
  3001. #ifndef MODULE
  3002. case RAID_AUTORUN:
  3003. err = 0;
  3004. autostart_arrays(arg);
  3005. goto done;
  3006. #endif
  3007. default:;
  3008. }
  3009. /*
  3010. * Commands creating/starting a new array:
  3011. */
  3012. mddev = inode->i_bdev->bd_disk->private_data;
  3013. if (!mddev) {
  3014. BUG();
  3015. goto abort;
  3016. }
  3017. if (cmd == START_ARRAY) {
  3018. /* START_ARRAY doesn't need to lock the array as autostart_array
  3019. * does the locking, and it could even be a different array
  3020. */
  3021. static int cnt = 3;
  3022. if (cnt > 0 ) {
  3023. printk(KERN_WARNING
  3024. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  3025. "This will not be supported beyond July 2006\n",
  3026. current->comm, current->pid);
  3027. cnt--;
  3028. }
  3029. err = autostart_array(new_decode_dev(arg));
  3030. if (err) {
  3031. printk(KERN_WARNING "md: autostart failed!\n");
  3032. goto abort;
  3033. }
  3034. goto done;
  3035. }
  3036. err = mddev_lock(mddev);
  3037. if (err) {
  3038. printk(KERN_INFO
  3039. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  3040. err, cmd);
  3041. goto abort;
  3042. }
  3043. switch (cmd)
  3044. {
  3045. case SET_ARRAY_INFO:
  3046. {
  3047. mdu_array_info_t info;
  3048. if (!arg)
  3049. memset(&info, 0, sizeof(info));
  3050. else if (copy_from_user(&info, argp, sizeof(info))) {
  3051. err = -EFAULT;
  3052. goto abort_unlock;
  3053. }
  3054. if (mddev->pers) {
  3055. err = update_array_info(mddev, &info);
  3056. if (err) {
  3057. printk(KERN_WARNING "md: couldn't update"
  3058. " array info. %d\n", err);
  3059. goto abort_unlock;
  3060. }
  3061. goto done_unlock;
  3062. }
  3063. if (!list_empty(&mddev->disks)) {
  3064. printk(KERN_WARNING
  3065. "md: array %s already has disks!\n",
  3066. mdname(mddev));
  3067. err = -EBUSY;
  3068. goto abort_unlock;
  3069. }
  3070. if (mddev->raid_disks) {
  3071. printk(KERN_WARNING
  3072. "md: array %s already initialised!\n",
  3073. mdname(mddev));
  3074. err = -EBUSY;
  3075. goto abort_unlock;
  3076. }
  3077. err = set_array_info(mddev, &info);
  3078. if (err) {
  3079. printk(KERN_WARNING "md: couldn't set"
  3080. " array info. %d\n", err);
  3081. goto abort_unlock;
  3082. }
  3083. }
  3084. goto done_unlock;
  3085. default:;
  3086. }
  3087. /*
  3088. * Commands querying/configuring an existing array:
  3089. */
  3090. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  3091. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  3092. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  3093. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  3094. err = -ENODEV;
  3095. goto abort_unlock;
  3096. }
  3097. /*
  3098. * Commands even a read-only array can execute:
  3099. */
  3100. switch (cmd)
  3101. {
  3102. case GET_ARRAY_INFO:
  3103. err = get_array_info(mddev, argp);
  3104. goto done_unlock;
  3105. case GET_BITMAP_FILE:
  3106. err = get_bitmap_file(mddev, argp);
  3107. goto done_unlock;
  3108. case GET_DISK_INFO:
  3109. err = get_disk_info(mddev, argp);
  3110. goto done_unlock;
  3111. case RESTART_ARRAY_RW:
  3112. err = restart_array(mddev);
  3113. goto done_unlock;
  3114. case STOP_ARRAY:
  3115. err = do_md_stop (mddev, 0);
  3116. goto done_unlock;
  3117. case STOP_ARRAY_RO:
  3118. err = do_md_stop (mddev, 1);
  3119. goto done_unlock;
  3120. /*
  3121. * We have a problem here : there is no easy way to give a CHS
  3122. * virtual geometry. We currently pretend that we have a 2 heads
  3123. * 4 sectors (with a BIG number of cylinders...). This drives
  3124. * dosfs just mad... ;-)
  3125. */
  3126. case HDIO_GETGEO:
  3127. if (!loc) {
  3128. err = -EINVAL;
  3129. goto abort_unlock;
  3130. }
  3131. err = put_user (2, (char __user *) &loc->heads);
  3132. if (err)
  3133. goto abort_unlock;
  3134. err = put_user (4, (char __user *) &loc->sectors);
  3135. if (err)
  3136. goto abort_unlock;
  3137. err = put_user(get_capacity(mddev->gendisk)/8,
  3138. (short __user *) &loc->cylinders);
  3139. if (err)
  3140. goto abort_unlock;
  3141. err = put_user (get_start_sect(inode->i_bdev),
  3142. (long __user *) &loc->start);
  3143. goto done_unlock;
  3144. }
  3145. /*
  3146. * The remaining ioctls are changing the state of the
  3147. * superblock, so we do not allow them on read-only arrays.
  3148. * However non-MD ioctls (e.g. get-size) will still come through
  3149. * here and hit the 'default' below, so only disallow
  3150. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  3151. */
  3152. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  3153. mddev->ro && mddev->pers) {
  3154. if (mddev->ro == 2) {
  3155. mddev->ro = 0;
  3156. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3157. md_wakeup_thread(mddev->thread);
  3158. } else {
  3159. err = -EROFS;
  3160. goto abort_unlock;
  3161. }
  3162. }
  3163. switch (cmd)
  3164. {
  3165. case ADD_NEW_DISK:
  3166. {
  3167. mdu_disk_info_t info;
  3168. if (copy_from_user(&info, argp, sizeof(info)))
  3169. err = -EFAULT;
  3170. else
  3171. err = add_new_disk(mddev, &info);
  3172. goto done_unlock;
  3173. }
  3174. case HOT_REMOVE_DISK:
  3175. err = hot_remove_disk(mddev, new_decode_dev(arg));
  3176. goto done_unlock;
  3177. case HOT_ADD_DISK:
  3178. err = hot_add_disk(mddev, new_decode_dev(arg));
  3179. goto done_unlock;
  3180. case SET_DISK_FAULTY:
  3181. err = set_disk_faulty(mddev, new_decode_dev(arg));
  3182. goto done_unlock;
  3183. case RUN_ARRAY:
  3184. err = do_md_run (mddev);
  3185. goto done_unlock;
  3186. case SET_BITMAP_FILE:
  3187. err = set_bitmap_file(mddev, (int)arg);
  3188. goto done_unlock;
  3189. default:
  3190. if (_IOC_TYPE(cmd) == MD_MAJOR)
  3191. printk(KERN_WARNING "md: %s(pid %d) used"
  3192. " obsolete MD ioctl, upgrade your"
  3193. " software to use new ictls.\n",
  3194. current->comm, current->pid);
  3195. err = -EINVAL;
  3196. goto abort_unlock;
  3197. }
  3198. done_unlock:
  3199. abort_unlock:
  3200. mddev_unlock(mddev);
  3201. return err;
  3202. done:
  3203. if (err)
  3204. MD_BUG();
  3205. abort:
  3206. return err;
  3207. }
  3208. static int md_open(struct inode *inode, struct file *file)
  3209. {
  3210. /*
  3211. * Succeed if we can lock the mddev, which confirms that
  3212. * it isn't being stopped right now.
  3213. */
  3214. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3215. int err;
  3216. if ((err = mddev_lock(mddev)))
  3217. goto out;
  3218. err = 0;
  3219. mddev_get(mddev);
  3220. mddev_unlock(mddev);
  3221. check_disk_change(inode->i_bdev);
  3222. out:
  3223. return err;
  3224. }
  3225. static int md_release(struct inode *inode, struct file * file)
  3226. {
  3227. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3228. if (!mddev)
  3229. BUG();
  3230. mddev_put(mddev);
  3231. return 0;
  3232. }
  3233. static int md_media_changed(struct gendisk *disk)
  3234. {
  3235. mddev_t *mddev = disk->private_data;
  3236. return mddev->changed;
  3237. }
  3238. static int md_revalidate(struct gendisk *disk)
  3239. {
  3240. mddev_t *mddev = disk->private_data;
  3241. mddev->changed = 0;
  3242. return 0;
  3243. }
  3244. static struct block_device_operations md_fops =
  3245. {
  3246. .owner = THIS_MODULE,
  3247. .open = md_open,
  3248. .release = md_release,
  3249. .ioctl = md_ioctl,
  3250. .media_changed = md_media_changed,
  3251. .revalidate_disk= md_revalidate,
  3252. };
  3253. static int md_thread(void * arg)
  3254. {
  3255. mdk_thread_t *thread = arg;
  3256. /*
  3257. * md_thread is a 'system-thread', it's priority should be very
  3258. * high. We avoid resource deadlocks individually in each
  3259. * raid personality. (RAID5 does preallocation) We also use RR and
  3260. * the very same RT priority as kswapd, thus we will never get
  3261. * into a priority inversion deadlock.
  3262. *
  3263. * we definitely have to have equal or higher priority than
  3264. * bdflush, otherwise bdflush will deadlock if there are too
  3265. * many dirty RAID5 blocks.
  3266. */
  3267. allow_signal(SIGKILL);
  3268. while (!kthread_should_stop()) {
  3269. /* We need to wait INTERRUPTIBLE so that
  3270. * we don't add to the load-average.
  3271. * That means we need to be sure no signals are
  3272. * pending
  3273. */
  3274. if (signal_pending(current))
  3275. flush_signals(current);
  3276. wait_event_interruptible_timeout
  3277. (thread->wqueue,
  3278. test_bit(THREAD_WAKEUP, &thread->flags)
  3279. || kthread_should_stop(),
  3280. thread->timeout);
  3281. try_to_freeze();
  3282. clear_bit(THREAD_WAKEUP, &thread->flags);
  3283. thread->run(thread->mddev);
  3284. }
  3285. return 0;
  3286. }
  3287. void md_wakeup_thread(mdk_thread_t *thread)
  3288. {
  3289. if (thread) {
  3290. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  3291. set_bit(THREAD_WAKEUP, &thread->flags);
  3292. wake_up(&thread->wqueue);
  3293. }
  3294. }
  3295. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  3296. const char *name)
  3297. {
  3298. mdk_thread_t *thread;
  3299. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  3300. if (!thread)
  3301. return NULL;
  3302. init_waitqueue_head(&thread->wqueue);
  3303. thread->run = run;
  3304. thread->mddev = mddev;
  3305. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  3306. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  3307. if (IS_ERR(thread->tsk)) {
  3308. kfree(thread);
  3309. return NULL;
  3310. }
  3311. return thread;
  3312. }
  3313. void md_unregister_thread(mdk_thread_t *thread)
  3314. {
  3315. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  3316. kthread_stop(thread->tsk);
  3317. kfree(thread);
  3318. }
  3319. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  3320. {
  3321. if (!mddev) {
  3322. MD_BUG();
  3323. return;
  3324. }
  3325. if (!rdev || test_bit(Faulty, &rdev->flags))
  3326. return;
  3327. /*
  3328. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  3329. mdname(mddev),
  3330. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  3331. __builtin_return_address(0),__builtin_return_address(1),
  3332. __builtin_return_address(2),__builtin_return_address(3));
  3333. */
  3334. if (!mddev->pers->error_handler)
  3335. return;
  3336. mddev->pers->error_handler(mddev,rdev);
  3337. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3338. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3339. md_wakeup_thread(mddev->thread);
  3340. md_new_event(mddev);
  3341. }
  3342. /* seq_file implementation /proc/mdstat */
  3343. static void status_unused(struct seq_file *seq)
  3344. {
  3345. int i = 0;
  3346. mdk_rdev_t *rdev;
  3347. struct list_head *tmp;
  3348. seq_printf(seq, "unused devices: ");
  3349. ITERATE_RDEV_PENDING(rdev,tmp) {
  3350. char b[BDEVNAME_SIZE];
  3351. i++;
  3352. seq_printf(seq, "%s ",
  3353. bdevname(rdev->bdev,b));
  3354. }
  3355. if (!i)
  3356. seq_printf(seq, "<none>");
  3357. seq_printf(seq, "\n");
  3358. }
  3359. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  3360. {
  3361. unsigned long max_blocks, resync, res, dt, db, rt;
  3362. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  3363. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3364. max_blocks = mddev->resync_max_sectors >> 1;
  3365. else
  3366. max_blocks = mddev->size;
  3367. /*
  3368. * Should not happen.
  3369. */
  3370. if (!max_blocks) {
  3371. MD_BUG();
  3372. return;
  3373. }
  3374. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  3375. {
  3376. int i, x = res/50, y = 20-x;
  3377. seq_printf(seq, "[");
  3378. for (i = 0; i < x; i++)
  3379. seq_printf(seq, "=");
  3380. seq_printf(seq, ">");
  3381. for (i = 0; i < y; i++)
  3382. seq_printf(seq, ".");
  3383. seq_printf(seq, "] ");
  3384. }
  3385. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  3386. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  3387. "resync" : "recovery"),
  3388. res/10, res % 10, resync, max_blocks);
  3389. /*
  3390. * We do not want to overflow, so the order of operands and
  3391. * the * 100 / 100 trick are important. We do a +1 to be
  3392. * safe against division by zero. We only estimate anyway.
  3393. *
  3394. * dt: time from mark until now
  3395. * db: blocks written from mark until now
  3396. * rt: remaining time
  3397. */
  3398. dt = ((jiffies - mddev->resync_mark) / HZ);
  3399. if (!dt) dt++;
  3400. db = resync - (mddev->resync_mark_cnt/2);
  3401. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  3402. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  3403. seq_printf(seq, " speed=%ldK/sec", db/dt);
  3404. }
  3405. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  3406. {
  3407. struct list_head *tmp;
  3408. loff_t l = *pos;
  3409. mddev_t *mddev;
  3410. if (l >= 0x10000)
  3411. return NULL;
  3412. if (!l--)
  3413. /* header */
  3414. return (void*)1;
  3415. spin_lock(&all_mddevs_lock);
  3416. list_for_each(tmp,&all_mddevs)
  3417. if (!l--) {
  3418. mddev = list_entry(tmp, mddev_t, all_mddevs);
  3419. mddev_get(mddev);
  3420. spin_unlock(&all_mddevs_lock);
  3421. return mddev;
  3422. }
  3423. spin_unlock(&all_mddevs_lock);
  3424. if (!l--)
  3425. return (void*)2;/* tail */
  3426. return NULL;
  3427. }
  3428. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  3429. {
  3430. struct list_head *tmp;
  3431. mddev_t *next_mddev, *mddev = v;
  3432. ++*pos;
  3433. if (v == (void*)2)
  3434. return NULL;
  3435. spin_lock(&all_mddevs_lock);
  3436. if (v == (void*)1)
  3437. tmp = all_mddevs.next;
  3438. else
  3439. tmp = mddev->all_mddevs.next;
  3440. if (tmp != &all_mddevs)
  3441. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  3442. else {
  3443. next_mddev = (void*)2;
  3444. *pos = 0x10000;
  3445. }
  3446. spin_unlock(&all_mddevs_lock);
  3447. if (v != (void*)1)
  3448. mddev_put(mddev);
  3449. return next_mddev;
  3450. }
  3451. static void md_seq_stop(struct seq_file *seq, void *v)
  3452. {
  3453. mddev_t *mddev = v;
  3454. if (mddev && v != (void*)1 && v != (void*)2)
  3455. mddev_put(mddev);
  3456. }
  3457. struct mdstat_info {
  3458. int event;
  3459. };
  3460. static int md_seq_show(struct seq_file *seq, void *v)
  3461. {
  3462. mddev_t *mddev = v;
  3463. sector_t size;
  3464. struct list_head *tmp2;
  3465. mdk_rdev_t *rdev;
  3466. struct mdstat_info *mi = seq->private;
  3467. struct bitmap *bitmap;
  3468. if (v == (void*)1) {
  3469. struct mdk_personality *pers;
  3470. seq_printf(seq, "Personalities : ");
  3471. spin_lock(&pers_lock);
  3472. list_for_each_entry(pers, &pers_list, list)
  3473. seq_printf(seq, "[%s] ", pers->name);
  3474. spin_unlock(&pers_lock);
  3475. seq_printf(seq, "\n");
  3476. mi->event = atomic_read(&md_event_count);
  3477. return 0;
  3478. }
  3479. if (v == (void*)2) {
  3480. status_unused(seq);
  3481. return 0;
  3482. }
  3483. if (mddev_lock(mddev)!=0)
  3484. return -EINTR;
  3485. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  3486. seq_printf(seq, "%s : %sactive", mdname(mddev),
  3487. mddev->pers ? "" : "in");
  3488. if (mddev->pers) {
  3489. if (mddev->ro==1)
  3490. seq_printf(seq, " (read-only)");
  3491. if (mddev->ro==2)
  3492. seq_printf(seq, "(auto-read-only)");
  3493. seq_printf(seq, " %s", mddev->pers->name);
  3494. }
  3495. size = 0;
  3496. ITERATE_RDEV(mddev,rdev,tmp2) {
  3497. char b[BDEVNAME_SIZE];
  3498. seq_printf(seq, " %s[%d]",
  3499. bdevname(rdev->bdev,b), rdev->desc_nr);
  3500. if (test_bit(WriteMostly, &rdev->flags))
  3501. seq_printf(seq, "(W)");
  3502. if (test_bit(Faulty, &rdev->flags)) {
  3503. seq_printf(seq, "(F)");
  3504. continue;
  3505. } else if (rdev->raid_disk < 0)
  3506. seq_printf(seq, "(S)"); /* spare */
  3507. size += rdev->size;
  3508. }
  3509. if (!list_empty(&mddev->disks)) {
  3510. if (mddev->pers)
  3511. seq_printf(seq, "\n %llu blocks",
  3512. (unsigned long long)mddev->array_size);
  3513. else
  3514. seq_printf(seq, "\n %llu blocks",
  3515. (unsigned long long)size);
  3516. }
  3517. if (mddev->persistent) {
  3518. if (mddev->major_version != 0 ||
  3519. mddev->minor_version != 90) {
  3520. seq_printf(seq," super %d.%d",
  3521. mddev->major_version,
  3522. mddev->minor_version);
  3523. }
  3524. } else
  3525. seq_printf(seq, " super non-persistent");
  3526. if (mddev->pers) {
  3527. mddev->pers->status (seq, mddev);
  3528. seq_printf(seq, "\n ");
  3529. if (mddev->pers->sync_request) {
  3530. if (mddev->curr_resync > 2) {
  3531. status_resync (seq, mddev);
  3532. seq_printf(seq, "\n ");
  3533. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  3534. seq_printf(seq, "\tresync=DELAYED\n ");
  3535. else if (mddev->recovery_cp < MaxSector)
  3536. seq_printf(seq, "\tresync=PENDING\n ");
  3537. }
  3538. } else
  3539. seq_printf(seq, "\n ");
  3540. if ((bitmap = mddev->bitmap)) {
  3541. unsigned long chunk_kb;
  3542. unsigned long flags;
  3543. spin_lock_irqsave(&bitmap->lock, flags);
  3544. chunk_kb = bitmap->chunksize >> 10;
  3545. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  3546. "%lu%s chunk",
  3547. bitmap->pages - bitmap->missing_pages,
  3548. bitmap->pages,
  3549. (bitmap->pages - bitmap->missing_pages)
  3550. << (PAGE_SHIFT - 10),
  3551. chunk_kb ? chunk_kb : bitmap->chunksize,
  3552. chunk_kb ? "KB" : "B");
  3553. if (bitmap->file) {
  3554. seq_printf(seq, ", file: ");
  3555. seq_path(seq, bitmap->file->f_vfsmnt,
  3556. bitmap->file->f_dentry," \t\n");
  3557. }
  3558. seq_printf(seq, "\n");
  3559. spin_unlock_irqrestore(&bitmap->lock, flags);
  3560. }
  3561. seq_printf(seq, "\n");
  3562. }
  3563. mddev_unlock(mddev);
  3564. return 0;
  3565. }
  3566. static struct seq_operations md_seq_ops = {
  3567. .start = md_seq_start,
  3568. .next = md_seq_next,
  3569. .stop = md_seq_stop,
  3570. .show = md_seq_show,
  3571. };
  3572. static int md_seq_open(struct inode *inode, struct file *file)
  3573. {
  3574. int error;
  3575. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  3576. if (mi == NULL)
  3577. return -ENOMEM;
  3578. error = seq_open(file, &md_seq_ops);
  3579. if (error)
  3580. kfree(mi);
  3581. else {
  3582. struct seq_file *p = file->private_data;
  3583. p->private = mi;
  3584. mi->event = atomic_read(&md_event_count);
  3585. }
  3586. return error;
  3587. }
  3588. static int md_seq_release(struct inode *inode, struct file *file)
  3589. {
  3590. struct seq_file *m = file->private_data;
  3591. struct mdstat_info *mi = m->private;
  3592. m->private = NULL;
  3593. kfree(mi);
  3594. return seq_release(inode, file);
  3595. }
  3596. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  3597. {
  3598. struct seq_file *m = filp->private_data;
  3599. struct mdstat_info *mi = m->private;
  3600. int mask;
  3601. poll_wait(filp, &md_event_waiters, wait);
  3602. /* always allow read */
  3603. mask = POLLIN | POLLRDNORM;
  3604. if (mi->event != atomic_read(&md_event_count))
  3605. mask |= POLLERR | POLLPRI;
  3606. return mask;
  3607. }
  3608. static struct file_operations md_seq_fops = {
  3609. .open = md_seq_open,
  3610. .read = seq_read,
  3611. .llseek = seq_lseek,
  3612. .release = md_seq_release,
  3613. .poll = mdstat_poll,
  3614. };
  3615. int register_md_personality(struct mdk_personality *p)
  3616. {
  3617. spin_lock(&pers_lock);
  3618. list_add_tail(&p->list, &pers_list);
  3619. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  3620. spin_unlock(&pers_lock);
  3621. return 0;
  3622. }
  3623. int unregister_md_personality(struct mdk_personality *p)
  3624. {
  3625. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  3626. spin_lock(&pers_lock);
  3627. list_del_init(&p->list);
  3628. spin_unlock(&pers_lock);
  3629. return 0;
  3630. }
  3631. static int is_mddev_idle(mddev_t *mddev)
  3632. {
  3633. mdk_rdev_t * rdev;
  3634. struct list_head *tmp;
  3635. int idle;
  3636. unsigned long curr_events;
  3637. idle = 1;
  3638. ITERATE_RDEV(mddev,rdev,tmp) {
  3639. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  3640. curr_events = disk_stat_read(disk, sectors[0]) +
  3641. disk_stat_read(disk, sectors[1]) -
  3642. atomic_read(&disk->sync_io);
  3643. /* The difference between curr_events and last_events
  3644. * will be affected by any new non-sync IO (making
  3645. * curr_events bigger) and any difference in the amount of
  3646. * in-flight syncio (making current_events bigger or smaller)
  3647. * The amount in-flight is currently limited to
  3648. * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
  3649. * which is at most 4096 sectors.
  3650. * These numbers are fairly fragile and should be made
  3651. * more robust, probably by enforcing the
  3652. * 'window size' that md_do_sync sort-of uses.
  3653. *
  3654. * Note: the following is an unsigned comparison.
  3655. */
  3656. if ((curr_events - rdev->last_events + 4096) > 8192) {
  3657. rdev->last_events = curr_events;
  3658. idle = 0;
  3659. }
  3660. }
  3661. return idle;
  3662. }
  3663. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3664. {
  3665. /* another "blocks" (512byte) blocks have been synced */
  3666. atomic_sub(blocks, &mddev->recovery_active);
  3667. wake_up(&mddev->recovery_wait);
  3668. if (!ok) {
  3669. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3670. md_wakeup_thread(mddev->thread);
  3671. // stop recovery, signal do_sync ....
  3672. }
  3673. }
  3674. /* md_write_start(mddev, bi)
  3675. * If we need to update some array metadata (e.g. 'active' flag
  3676. * in superblock) before writing, schedule a superblock update
  3677. * and wait for it to complete.
  3678. */
  3679. void md_write_start(mddev_t *mddev, struct bio *bi)
  3680. {
  3681. if (bio_data_dir(bi) != WRITE)
  3682. return;
  3683. BUG_ON(mddev->ro == 1);
  3684. if (mddev->ro == 2) {
  3685. /* need to switch to read/write */
  3686. mddev->ro = 0;
  3687. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3688. md_wakeup_thread(mddev->thread);
  3689. }
  3690. atomic_inc(&mddev->writes_pending);
  3691. if (mddev->in_sync) {
  3692. spin_lock_irq(&mddev->write_lock);
  3693. if (mddev->in_sync) {
  3694. mddev->in_sync = 0;
  3695. mddev->sb_dirty = 1;
  3696. md_wakeup_thread(mddev->thread);
  3697. }
  3698. spin_unlock_irq(&mddev->write_lock);
  3699. }
  3700. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3701. }
  3702. void md_write_end(mddev_t *mddev)
  3703. {
  3704. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3705. if (mddev->safemode == 2)
  3706. md_wakeup_thread(mddev->thread);
  3707. else
  3708. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3709. }
  3710. }
  3711. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3712. #define SYNC_MARKS 10
  3713. #define SYNC_MARK_STEP (3*HZ)
  3714. static void md_do_sync(mddev_t *mddev)
  3715. {
  3716. mddev_t *mddev2;
  3717. unsigned int currspeed = 0,
  3718. window;
  3719. sector_t max_sectors,j, io_sectors;
  3720. unsigned long mark[SYNC_MARKS];
  3721. sector_t mark_cnt[SYNC_MARKS];
  3722. int last_mark,m;
  3723. struct list_head *tmp;
  3724. sector_t last_check;
  3725. int skipped = 0;
  3726. /* just incase thread restarts... */
  3727. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  3728. return;
  3729. /* we overload curr_resync somewhat here.
  3730. * 0 == not engaged in resync at all
  3731. * 2 == checking that there is no conflict with another sync
  3732. * 1 == like 2, but have yielded to allow conflicting resync to
  3733. * commense
  3734. * other == active in resync - this many blocks
  3735. *
  3736. * Before starting a resync we must have set curr_resync to
  3737. * 2, and then checked that every "conflicting" array has curr_resync
  3738. * less than ours. When we find one that is the same or higher
  3739. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  3740. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  3741. * This will mean we have to start checking from the beginning again.
  3742. *
  3743. */
  3744. do {
  3745. mddev->curr_resync = 2;
  3746. try_again:
  3747. if (kthread_should_stop()) {
  3748. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3749. goto skip;
  3750. }
  3751. ITERATE_MDDEV(mddev2,tmp) {
  3752. if (mddev2 == mddev)
  3753. continue;
  3754. if (mddev2->curr_resync &&
  3755. match_mddev_units(mddev,mddev2)) {
  3756. DEFINE_WAIT(wq);
  3757. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3758. /* arbitrarily yield */
  3759. mddev->curr_resync = 1;
  3760. wake_up(&resync_wait);
  3761. }
  3762. if (mddev > mddev2 && mddev->curr_resync == 1)
  3763. /* no need to wait here, we can wait the next
  3764. * time 'round when curr_resync == 2
  3765. */
  3766. continue;
  3767. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  3768. if (!kthread_should_stop() &&
  3769. mddev2->curr_resync >= mddev->curr_resync) {
  3770. printk(KERN_INFO "md: delaying resync of %s"
  3771. " until %s has finished resync (they"
  3772. " share one or more physical units)\n",
  3773. mdname(mddev), mdname(mddev2));
  3774. mddev_put(mddev2);
  3775. schedule();
  3776. finish_wait(&resync_wait, &wq);
  3777. goto try_again;
  3778. }
  3779. finish_wait(&resync_wait, &wq);
  3780. }
  3781. }
  3782. } while (mddev->curr_resync < 2);
  3783. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3784. /* resync follows the size requested by the personality,
  3785. * which defaults to physical size, but can be virtual size
  3786. */
  3787. max_sectors = mddev->resync_max_sectors;
  3788. mddev->resync_mismatches = 0;
  3789. } else
  3790. /* recovery follows the physical size of devices */
  3791. max_sectors = mddev->size << 1;
  3792. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3793. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3794. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3795. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  3796. "(but not more than %d KB/sec) for reconstruction.\n",
  3797. sysctl_speed_limit_max);
  3798. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3799. /* we don't use the checkpoint if there's a bitmap */
  3800. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
  3801. && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3802. j = mddev->recovery_cp;
  3803. else
  3804. j = 0;
  3805. io_sectors = 0;
  3806. for (m = 0; m < SYNC_MARKS; m++) {
  3807. mark[m] = jiffies;
  3808. mark_cnt[m] = io_sectors;
  3809. }
  3810. last_mark = 0;
  3811. mddev->resync_mark = mark[last_mark];
  3812. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3813. /*
  3814. * Tune reconstruction:
  3815. */
  3816. window = 32*(PAGE_SIZE/512);
  3817. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3818. window/2,(unsigned long long) max_sectors/2);
  3819. atomic_set(&mddev->recovery_active, 0);
  3820. init_waitqueue_head(&mddev->recovery_wait);
  3821. last_check = 0;
  3822. if (j>2) {
  3823. printk(KERN_INFO
  3824. "md: resuming recovery of %s from checkpoint.\n",
  3825. mdname(mddev));
  3826. mddev->curr_resync = j;
  3827. }
  3828. while (j < max_sectors) {
  3829. sector_t sectors;
  3830. skipped = 0;
  3831. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3832. currspeed < sysctl_speed_limit_min);
  3833. if (sectors == 0) {
  3834. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3835. goto out;
  3836. }
  3837. if (!skipped) { /* actual IO requested */
  3838. io_sectors += sectors;
  3839. atomic_add(sectors, &mddev->recovery_active);
  3840. }
  3841. j += sectors;
  3842. if (j>1) mddev->curr_resync = j;
  3843. if (last_check == 0)
  3844. /* this is the earliers that rebuilt will be
  3845. * visible in /proc/mdstat
  3846. */
  3847. md_new_event(mddev);
  3848. if (last_check + window > io_sectors || j == max_sectors)
  3849. continue;
  3850. last_check = io_sectors;
  3851. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3852. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3853. break;
  3854. repeat:
  3855. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3856. /* step marks */
  3857. int next = (last_mark+1) % SYNC_MARKS;
  3858. mddev->resync_mark = mark[next];
  3859. mddev->resync_mark_cnt = mark_cnt[next];
  3860. mark[next] = jiffies;
  3861. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3862. last_mark = next;
  3863. }
  3864. if (kthread_should_stop()) {
  3865. /*
  3866. * got a signal, exit.
  3867. */
  3868. printk(KERN_INFO
  3869. "md: md_do_sync() got signal ... exiting\n");
  3870. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3871. goto out;
  3872. }
  3873. /*
  3874. * this loop exits only if either when we are slower than
  3875. * the 'hard' speed limit, or the system was IO-idle for
  3876. * a jiffy.
  3877. * the system might be non-idle CPU-wise, but we only care
  3878. * about not overloading the IO subsystem. (things like an
  3879. * e2fsck being done on the RAID array should execute fast)
  3880. */
  3881. mddev->queue->unplug_fn(mddev->queue);
  3882. cond_resched();
  3883. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3884. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3885. if (currspeed > sysctl_speed_limit_min) {
  3886. if ((currspeed > sysctl_speed_limit_max) ||
  3887. !is_mddev_idle(mddev)) {
  3888. msleep(500);
  3889. goto repeat;
  3890. }
  3891. }
  3892. }
  3893. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3894. /*
  3895. * this also signals 'finished resyncing' to md_stop
  3896. */
  3897. out:
  3898. mddev->queue->unplug_fn(mddev->queue);
  3899. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3900. /* tell personality that we are finished */
  3901. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3902. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3903. mddev->curr_resync > 2 &&
  3904. mddev->curr_resync >= mddev->recovery_cp) {
  3905. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3906. printk(KERN_INFO
  3907. "md: checkpointing recovery of %s.\n",
  3908. mdname(mddev));
  3909. mddev->recovery_cp = mddev->curr_resync;
  3910. } else
  3911. mddev->recovery_cp = MaxSector;
  3912. }
  3913. skip:
  3914. mddev->curr_resync = 0;
  3915. wake_up(&resync_wait);
  3916. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3917. md_wakeup_thread(mddev->thread);
  3918. }
  3919. /*
  3920. * This routine is regularly called by all per-raid-array threads to
  3921. * deal with generic issues like resync and super-block update.
  3922. * Raid personalities that don't have a thread (linear/raid0) do not
  3923. * need this as they never do any recovery or update the superblock.
  3924. *
  3925. * It does not do any resync itself, but rather "forks" off other threads
  3926. * to do that as needed.
  3927. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3928. * "->recovery" and create a thread at ->sync_thread.
  3929. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3930. * and wakeups up this thread which will reap the thread and finish up.
  3931. * This thread also removes any faulty devices (with nr_pending == 0).
  3932. *
  3933. * The overall approach is:
  3934. * 1/ if the superblock needs updating, update it.
  3935. * 2/ If a recovery thread is running, don't do anything else.
  3936. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3937. * 4/ If there are any faulty devices, remove them.
  3938. * 5/ If array is degraded, try to add spares devices
  3939. * 6/ If array has spares or is not in-sync, start a resync thread.
  3940. */
  3941. void md_check_recovery(mddev_t *mddev)
  3942. {
  3943. mdk_rdev_t *rdev;
  3944. struct list_head *rtmp;
  3945. if (mddev->bitmap)
  3946. bitmap_daemon_work(mddev->bitmap);
  3947. if (mddev->ro)
  3948. return;
  3949. if (signal_pending(current)) {
  3950. if (mddev->pers->sync_request) {
  3951. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3952. mdname(mddev));
  3953. mddev->safemode = 2;
  3954. }
  3955. flush_signals(current);
  3956. }
  3957. if ( ! (
  3958. mddev->sb_dirty ||
  3959. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3960. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3961. (mddev->safemode == 1) ||
  3962. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3963. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3964. ))
  3965. return;
  3966. if (mddev_trylock(mddev)==0) {
  3967. int spares =0;
  3968. spin_lock_irq(&mddev->write_lock);
  3969. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3970. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3971. mddev->in_sync = 1;
  3972. mddev->sb_dirty = 1;
  3973. }
  3974. if (mddev->safemode == 1)
  3975. mddev->safemode = 0;
  3976. spin_unlock_irq(&mddev->write_lock);
  3977. if (mddev->sb_dirty)
  3978. md_update_sb(mddev);
  3979. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3980. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3981. /* resync/recovery still happening */
  3982. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3983. goto unlock;
  3984. }
  3985. if (mddev->sync_thread) {
  3986. /* resync has finished, collect result */
  3987. md_unregister_thread(mddev->sync_thread);
  3988. mddev->sync_thread = NULL;
  3989. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3990. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3991. /* success...*/
  3992. /* activate any spares */
  3993. mddev->pers->spare_active(mddev);
  3994. }
  3995. md_update_sb(mddev);
  3996. /* if array is no-longer degraded, then any saved_raid_disk
  3997. * information must be scrapped
  3998. */
  3999. if (!mddev->degraded)
  4000. ITERATE_RDEV(mddev,rdev,rtmp)
  4001. rdev->saved_raid_disk = -1;
  4002. mddev->recovery = 0;
  4003. /* flag recovery needed just to double check */
  4004. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4005. md_new_event(mddev);
  4006. goto unlock;
  4007. }
  4008. /* Clear some bits that don't mean anything, but
  4009. * might be left set
  4010. */
  4011. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4012. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4013. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4014. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4015. /* no recovery is running.
  4016. * remove any failed drives, then
  4017. * add spares if possible.
  4018. * Spare are also removed and re-added, to allow
  4019. * the personality to fail the re-add.
  4020. */
  4021. ITERATE_RDEV(mddev,rdev,rtmp)
  4022. if (rdev->raid_disk >= 0 &&
  4023. (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
  4024. atomic_read(&rdev->nr_pending)==0) {
  4025. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  4026. char nm[20];
  4027. sprintf(nm,"rd%d", rdev->raid_disk);
  4028. sysfs_remove_link(&mddev->kobj, nm);
  4029. rdev->raid_disk = -1;
  4030. }
  4031. }
  4032. if (mddev->degraded) {
  4033. ITERATE_RDEV(mddev,rdev,rtmp)
  4034. if (rdev->raid_disk < 0
  4035. && !test_bit(Faulty, &rdev->flags)) {
  4036. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  4037. char nm[20];
  4038. sprintf(nm, "rd%d", rdev->raid_disk);
  4039. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  4040. spares++;
  4041. md_new_event(mddev);
  4042. } else
  4043. break;
  4044. }
  4045. }
  4046. if (spares) {
  4047. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4048. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4049. } else if (mddev->recovery_cp < MaxSector) {
  4050. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4051. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4052. /* nothing to be done ... */
  4053. goto unlock;
  4054. if (mddev->pers->sync_request) {
  4055. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4056. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  4057. /* We are adding a device or devices to an array
  4058. * which has the bitmap stored on all devices.
  4059. * So make sure all bitmap pages get written
  4060. */
  4061. bitmap_write_all(mddev->bitmap);
  4062. }
  4063. mddev->sync_thread = md_register_thread(md_do_sync,
  4064. mddev,
  4065. "%s_resync");
  4066. if (!mddev->sync_thread) {
  4067. printk(KERN_ERR "%s: could not start resync"
  4068. " thread...\n",
  4069. mdname(mddev));
  4070. /* leave the spares where they are, it shouldn't hurt */
  4071. mddev->recovery = 0;
  4072. } else
  4073. md_wakeup_thread(mddev->sync_thread);
  4074. md_new_event(mddev);
  4075. }
  4076. unlock:
  4077. mddev_unlock(mddev);
  4078. }
  4079. }
  4080. static int md_notify_reboot(struct notifier_block *this,
  4081. unsigned long code, void *x)
  4082. {
  4083. struct list_head *tmp;
  4084. mddev_t *mddev;
  4085. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  4086. printk(KERN_INFO "md: stopping all md devices.\n");
  4087. ITERATE_MDDEV(mddev,tmp)
  4088. if (mddev_trylock(mddev)==0)
  4089. do_md_stop (mddev, 1);
  4090. /*
  4091. * certain more exotic SCSI devices are known to be
  4092. * volatile wrt too early system reboots. While the
  4093. * right place to handle this issue is the given
  4094. * driver, we do want to have a safe RAID driver ...
  4095. */
  4096. mdelay(1000*1);
  4097. }
  4098. return NOTIFY_DONE;
  4099. }
  4100. static struct notifier_block md_notifier = {
  4101. .notifier_call = md_notify_reboot,
  4102. .next = NULL,
  4103. .priority = INT_MAX, /* before any real devices */
  4104. };
  4105. static void md_geninit(void)
  4106. {
  4107. struct proc_dir_entry *p;
  4108. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  4109. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  4110. if (p)
  4111. p->proc_fops = &md_seq_fops;
  4112. }
  4113. static int __init md_init(void)
  4114. {
  4115. int minor;
  4116. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  4117. " MD_SB_DISKS=%d\n",
  4118. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  4119. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  4120. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
  4121. BITMAP_MINOR);
  4122. if (register_blkdev(MAJOR_NR, "md"))
  4123. return -1;
  4124. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  4125. unregister_blkdev(MAJOR_NR, "md");
  4126. return -1;
  4127. }
  4128. devfs_mk_dir("md");
  4129. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  4130. md_probe, NULL, NULL);
  4131. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  4132. md_probe, NULL, NULL);
  4133. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  4134. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  4135. S_IFBLK|S_IRUSR|S_IWUSR,
  4136. "md/%d", minor);
  4137. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  4138. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  4139. S_IFBLK|S_IRUSR|S_IWUSR,
  4140. "md/mdp%d", minor);
  4141. register_reboot_notifier(&md_notifier);
  4142. raid_table_header = register_sysctl_table(raid_root_table, 1);
  4143. md_geninit();
  4144. return (0);
  4145. }
  4146. #ifndef MODULE
  4147. /*
  4148. * Searches all registered partitions for autorun RAID arrays
  4149. * at boot time.
  4150. */
  4151. static dev_t detected_devices[128];
  4152. static int dev_cnt;
  4153. void md_autodetect_dev(dev_t dev)
  4154. {
  4155. if (dev_cnt >= 0 && dev_cnt < 127)
  4156. detected_devices[dev_cnt++] = dev;
  4157. }
  4158. static void autostart_arrays(int part)
  4159. {
  4160. mdk_rdev_t *rdev;
  4161. int i;
  4162. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  4163. for (i = 0; i < dev_cnt; i++) {
  4164. dev_t dev = detected_devices[i];
  4165. rdev = md_import_device(dev,0, 0);
  4166. if (IS_ERR(rdev))
  4167. continue;
  4168. if (test_bit(Faulty, &rdev->flags)) {
  4169. MD_BUG();
  4170. continue;
  4171. }
  4172. list_add(&rdev->same_set, &pending_raid_disks);
  4173. }
  4174. dev_cnt = 0;
  4175. autorun_devices(part);
  4176. }
  4177. #endif
  4178. static __exit void md_exit(void)
  4179. {
  4180. mddev_t *mddev;
  4181. struct list_head *tmp;
  4182. int i;
  4183. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  4184. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  4185. for (i=0; i < MAX_MD_DEVS; i++)
  4186. devfs_remove("md/%d", i);
  4187. for (i=0; i < MAX_MD_DEVS; i++)
  4188. devfs_remove("md/d%d", i);
  4189. devfs_remove("md");
  4190. unregister_blkdev(MAJOR_NR,"md");
  4191. unregister_blkdev(mdp_major, "mdp");
  4192. unregister_reboot_notifier(&md_notifier);
  4193. unregister_sysctl_table(raid_table_header);
  4194. remove_proc_entry("mdstat", NULL);
  4195. ITERATE_MDDEV(mddev,tmp) {
  4196. struct gendisk *disk = mddev->gendisk;
  4197. if (!disk)
  4198. continue;
  4199. export_array(mddev);
  4200. del_gendisk(disk);
  4201. put_disk(disk);
  4202. mddev->gendisk = NULL;
  4203. mddev_put(mddev);
  4204. }
  4205. }
  4206. module_init(md_init)
  4207. module_exit(md_exit)
  4208. static int get_ro(char *buffer, struct kernel_param *kp)
  4209. {
  4210. return sprintf(buffer, "%d", start_readonly);
  4211. }
  4212. static int set_ro(const char *val, struct kernel_param *kp)
  4213. {
  4214. char *e;
  4215. int num = simple_strtoul(val, &e, 10);
  4216. if (*val && (*e == '\0' || *e == '\n')) {
  4217. start_readonly = num;
  4218. return 0;
  4219. }
  4220. return -EINVAL;
  4221. }
  4222. module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
  4223. module_param(start_dirty_degraded, int, 0644);
  4224. EXPORT_SYMBOL(register_md_personality);
  4225. EXPORT_SYMBOL(unregister_md_personality);
  4226. EXPORT_SYMBOL(md_error);
  4227. EXPORT_SYMBOL(md_done_sync);
  4228. EXPORT_SYMBOL(md_write_start);
  4229. EXPORT_SYMBOL(md_write_end);
  4230. EXPORT_SYMBOL(md_register_thread);
  4231. EXPORT_SYMBOL(md_unregister_thread);
  4232. EXPORT_SYMBOL(md_wakeup_thread);
  4233. EXPORT_SYMBOL(md_print_devices);
  4234. EXPORT_SYMBOL(md_check_recovery);
  4235. MODULE_LICENSE("GPL");
  4236. MODULE_ALIAS("md");
  4237. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);