atmel_ssc_dai.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801
  1. /*
  2. * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
  3. *
  4. * Copyright (C) 2005 SAN People
  5. * Copyright (C) 2008 Atmel
  6. *
  7. * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
  8. * ATMEL CORP.
  9. *
  10. * Based on at91-ssc.c by
  11. * Frank Mandarino <fmandarino@endrelia.com>
  12. * Based on pxa2xx Platform drivers by
  13. * Liam Girdwood <lrg@slimlogic.co.uk>
  14. *
  15. * This program is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. *
  20. * This program is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  23. * GNU General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public License
  26. * along with this program; if not, write to the Free Software
  27. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  28. */
  29. #include <linux/init.h>
  30. #include <linux/module.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/device.h>
  33. #include <linux/delay.h>
  34. #include <linux/clk.h>
  35. #include <linux/atmel_pdc.h>
  36. #include <linux/atmel-ssc.h>
  37. #include <sound/core.h>
  38. #include <sound/pcm.h>
  39. #include <sound/pcm_params.h>
  40. #include <sound/initval.h>
  41. #include <sound/soc.h>
  42. #include <mach/hardware.h>
  43. #include "atmel-pcm.h"
  44. #include "atmel_ssc_dai.h"
  45. #define NUM_SSC_DEVICES 3
  46. /*
  47. * SSC PDC registers required by the PCM DMA engine.
  48. */
  49. static struct atmel_pdc_regs pdc_tx_reg = {
  50. .xpr = ATMEL_PDC_TPR,
  51. .xcr = ATMEL_PDC_TCR,
  52. .xnpr = ATMEL_PDC_TNPR,
  53. .xncr = ATMEL_PDC_TNCR,
  54. };
  55. static struct atmel_pdc_regs pdc_rx_reg = {
  56. .xpr = ATMEL_PDC_RPR,
  57. .xcr = ATMEL_PDC_RCR,
  58. .xnpr = ATMEL_PDC_RNPR,
  59. .xncr = ATMEL_PDC_RNCR,
  60. };
  61. /*
  62. * SSC & PDC status bits for transmit and receive.
  63. */
  64. static struct atmel_ssc_mask ssc_tx_mask = {
  65. .ssc_enable = SSC_BIT(CR_TXEN),
  66. .ssc_disable = SSC_BIT(CR_TXDIS),
  67. .ssc_endx = SSC_BIT(SR_ENDTX),
  68. .ssc_endbuf = SSC_BIT(SR_TXBUFE),
  69. .pdc_enable = ATMEL_PDC_TXTEN,
  70. .pdc_disable = ATMEL_PDC_TXTDIS,
  71. };
  72. static struct atmel_ssc_mask ssc_rx_mask = {
  73. .ssc_enable = SSC_BIT(CR_RXEN),
  74. .ssc_disable = SSC_BIT(CR_RXDIS),
  75. .ssc_endx = SSC_BIT(SR_ENDRX),
  76. .ssc_endbuf = SSC_BIT(SR_RXBUFF),
  77. .pdc_enable = ATMEL_PDC_RXTEN,
  78. .pdc_disable = ATMEL_PDC_RXTDIS,
  79. };
  80. /*
  81. * DMA parameters.
  82. */
  83. static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
  84. {{
  85. .name = "SSC0 PCM out",
  86. .pdc = &pdc_tx_reg,
  87. .mask = &ssc_tx_mask,
  88. },
  89. {
  90. .name = "SSC0 PCM in",
  91. .pdc = &pdc_rx_reg,
  92. .mask = &ssc_rx_mask,
  93. } },
  94. {{
  95. .name = "SSC1 PCM out",
  96. .pdc = &pdc_tx_reg,
  97. .mask = &ssc_tx_mask,
  98. },
  99. {
  100. .name = "SSC1 PCM in",
  101. .pdc = &pdc_rx_reg,
  102. .mask = &ssc_rx_mask,
  103. } },
  104. {{
  105. .name = "SSC2 PCM out",
  106. .pdc = &pdc_tx_reg,
  107. .mask = &ssc_tx_mask,
  108. },
  109. {
  110. .name = "SSC2 PCM in",
  111. .pdc = &pdc_rx_reg,
  112. .mask = &ssc_rx_mask,
  113. } },
  114. };
  115. static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
  116. {
  117. .name = "ssc0",
  118. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
  119. .dir_mask = SSC_DIR_MASK_UNUSED,
  120. .initialized = 0,
  121. },
  122. {
  123. .name = "ssc1",
  124. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
  125. .dir_mask = SSC_DIR_MASK_UNUSED,
  126. .initialized = 0,
  127. },
  128. {
  129. .name = "ssc2",
  130. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
  131. .dir_mask = SSC_DIR_MASK_UNUSED,
  132. .initialized = 0,
  133. },
  134. };
  135. /*
  136. * SSC interrupt handler. Passes PDC interrupts to the DMA
  137. * interrupt handler in the PCM driver.
  138. */
  139. static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
  140. {
  141. struct atmel_ssc_info *ssc_p = dev_id;
  142. struct atmel_pcm_dma_params *dma_params;
  143. u32 ssc_sr;
  144. u32 ssc_substream_mask;
  145. int i;
  146. ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
  147. & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
  148. /*
  149. * Loop through the substreams attached to this SSC. If
  150. * a DMA-related interrupt occurred on that substream, call
  151. * the DMA interrupt handler function, if one has been
  152. * registered in the dma_params structure by the PCM driver.
  153. */
  154. for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
  155. dma_params = ssc_p->dma_params[i];
  156. if ((dma_params != NULL) &&
  157. (dma_params->dma_intr_handler != NULL)) {
  158. ssc_substream_mask = (dma_params->mask->ssc_endx |
  159. dma_params->mask->ssc_endbuf);
  160. if (ssc_sr & ssc_substream_mask) {
  161. dma_params->dma_intr_handler(ssc_sr,
  162. dma_params->
  163. substream);
  164. }
  165. }
  166. }
  167. return IRQ_HANDLED;
  168. }
  169. /*-------------------------------------------------------------------------*\
  170. * DAI functions
  171. \*-------------------------------------------------------------------------*/
  172. /*
  173. * Startup. Only that one substream allowed in each direction.
  174. */
  175. static int atmel_ssc_startup(struct snd_pcm_substream *substream,
  176. struct snd_soc_dai *dai)
  177. {
  178. struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
  179. int dir_mask;
  180. pr_debug("atmel_ssc_startup: SSC_SR=0x%u\n",
  181. ssc_readl(ssc_p->ssc->regs, SR));
  182. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  183. dir_mask = SSC_DIR_MASK_PLAYBACK;
  184. else
  185. dir_mask = SSC_DIR_MASK_CAPTURE;
  186. spin_lock_irq(&ssc_p->lock);
  187. if (ssc_p->dir_mask & dir_mask) {
  188. spin_unlock_irq(&ssc_p->lock);
  189. return -EBUSY;
  190. }
  191. ssc_p->dir_mask |= dir_mask;
  192. spin_unlock_irq(&ssc_p->lock);
  193. return 0;
  194. }
  195. /*
  196. * Shutdown. Clear DMA parameters and shutdown the SSC if there
  197. * are no other substreams open.
  198. */
  199. static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
  200. struct snd_soc_dai *dai)
  201. {
  202. struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
  203. struct atmel_pcm_dma_params *dma_params;
  204. int dir, dir_mask;
  205. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  206. dir = 0;
  207. else
  208. dir = 1;
  209. dma_params = ssc_p->dma_params[dir];
  210. if (dma_params != NULL) {
  211. ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
  212. pr_debug("atmel_ssc_shutdown: %s disabled SSC_SR=0x%08x\n",
  213. (dir ? "receive" : "transmit"),
  214. ssc_readl(ssc_p->ssc->regs, SR));
  215. dma_params->ssc = NULL;
  216. dma_params->substream = NULL;
  217. ssc_p->dma_params[dir] = NULL;
  218. }
  219. dir_mask = 1 << dir;
  220. spin_lock_irq(&ssc_p->lock);
  221. ssc_p->dir_mask &= ~dir_mask;
  222. if (!ssc_p->dir_mask) {
  223. if (ssc_p->initialized) {
  224. /* Shutdown the SSC clock. */
  225. pr_debug("atmel_ssc_dau: Stopping clock\n");
  226. clk_disable(ssc_p->ssc->clk);
  227. free_irq(ssc_p->ssc->irq, ssc_p);
  228. ssc_p->initialized = 0;
  229. }
  230. /* Reset the SSC */
  231. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
  232. /* Clear the SSC dividers */
  233. ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
  234. }
  235. spin_unlock_irq(&ssc_p->lock);
  236. }
  237. /*
  238. * Record the DAI format for use in hw_params().
  239. */
  240. static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
  241. unsigned int fmt)
  242. {
  243. struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
  244. ssc_p->daifmt = fmt;
  245. return 0;
  246. }
  247. /*
  248. * Record SSC clock dividers for use in hw_params().
  249. */
  250. static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
  251. int div_id, int div)
  252. {
  253. struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
  254. switch (div_id) {
  255. case ATMEL_SSC_CMR_DIV:
  256. /*
  257. * The same master clock divider is used for both
  258. * transmit and receive, so if a value has already
  259. * been set, it must match this value.
  260. */
  261. if (ssc_p->cmr_div == 0)
  262. ssc_p->cmr_div = div;
  263. else
  264. if (div != ssc_p->cmr_div)
  265. return -EBUSY;
  266. break;
  267. case ATMEL_SSC_TCMR_PERIOD:
  268. ssc_p->tcmr_period = div;
  269. break;
  270. case ATMEL_SSC_RCMR_PERIOD:
  271. ssc_p->rcmr_period = div;
  272. break;
  273. default:
  274. return -EINVAL;
  275. }
  276. return 0;
  277. }
  278. /*
  279. * Configure the SSC.
  280. */
  281. static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
  282. struct snd_pcm_hw_params *params,
  283. struct snd_soc_dai *dai)
  284. {
  285. struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
  286. int id = dai->id;
  287. struct atmel_ssc_info *ssc_p = &ssc_info[id];
  288. struct atmel_pcm_dma_params *dma_params;
  289. int dir, channels, bits;
  290. u32 tfmr, rfmr, tcmr, rcmr;
  291. int start_event;
  292. int ret;
  293. /*
  294. * Currently, there is only one set of dma params for
  295. * each direction. If more are added, this code will
  296. * have to be changed to select the proper set.
  297. */
  298. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  299. dir = 0;
  300. else
  301. dir = 1;
  302. dma_params = &ssc_dma_params[id][dir];
  303. dma_params->ssc = ssc_p->ssc;
  304. dma_params->substream = substream;
  305. ssc_p->dma_params[dir] = dma_params;
  306. /*
  307. * The snd_soc_pcm_stream->dma_data field is only used to communicate
  308. * the appropriate DMA parameters to the pcm driver hw_params()
  309. * function. It should not be used for other purposes
  310. * as it is common to all substreams.
  311. */
  312. snd_soc_dai_set_dma_data(rtd->cpu_dai, substream, dma_params);
  313. channels = params_channels(params);
  314. /*
  315. * Determine sample size in bits and the PDC increment.
  316. */
  317. switch (params_format(params)) {
  318. case SNDRV_PCM_FORMAT_S8:
  319. bits = 8;
  320. dma_params->pdc_xfer_size = 1;
  321. break;
  322. case SNDRV_PCM_FORMAT_S16_LE:
  323. bits = 16;
  324. dma_params->pdc_xfer_size = 2;
  325. break;
  326. case SNDRV_PCM_FORMAT_S24_LE:
  327. bits = 24;
  328. dma_params->pdc_xfer_size = 4;
  329. break;
  330. case SNDRV_PCM_FORMAT_S32_LE:
  331. bits = 32;
  332. dma_params->pdc_xfer_size = 4;
  333. break;
  334. default:
  335. printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
  336. return -EINVAL;
  337. }
  338. /*
  339. * The SSC only supports up to 16-bit samples in I2S format, due
  340. * to the size of the Frame Mode Register FSLEN field.
  341. */
  342. if ((ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S
  343. && bits > 16) {
  344. printk(KERN_WARNING
  345. "atmel_ssc_dai: sample size %d "
  346. "is too large for I2S\n", bits);
  347. return -EINVAL;
  348. }
  349. /*
  350. * Compute SSC register settings.
  351. */
  352. switch (ssc_p->daifmt
  353. & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
  354. case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
  355. /*
  356. * I2S format, SSC provides BCLK and LRC clocks.
  357. *
  358. * The SSC transmit and receive clocks are generated
  359. * from the MCK divider, and the BCLK signal
  360. * is output on the SSC TK line.
  361. */
  362. rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
  363. | SSC_BF(RCMR_STTDLY, START_DELAY)
  364. | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
  365. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  366. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  367. | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
  368. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  369. | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
  370. | SSC_BF(RFMR_FSLEN, (bits - 1))
  371. | SSC_BF(RFMR_DATNB, (channels - 1))
  372. | SSC_BIT(RFMR_MSBF)
  373. | SSC_BF(RFMR_LOOP, 0)
  374. | SSC_BF(RFMR_DATLEN, (bits - 1));
  375. tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
  376. | SSC_BF(TCMR_STTDLY, START_DELAY)
  377. | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
  378. | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
  379. | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
  380. | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
  381. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  382. | SSC_BF(TFMR_FSDEN, 0)
  383. | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
  384. | SSC_BF(TFMR_FSLEN, (bits - 1))
  385. | SSC_BF(TFMR_DATNB, (channels - 1))
  386. | SSC_BIT(TFMR_MSBF)
  387. | SSC_BF(TFMR_DATDEF, 0)
  388. | SSC_BF(TFMR_DATLEN, (bits - 1));
  389. break;
  390. case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
  391. /*
  392. * I2S format, CODEC supplies BCLK and LRC clocks.
  393. *
  394. * The SSC transmit clock is obtained from the BCLK signal on
  395. * on the TK line, and the SSC receive clock is
  396. * generated from the transmit clock.
  397. *
  398. * For single channel data, one sample is transferred
  399. * on the falling edge of the LRC clock.
  400. * For two channel data, one sample is
  401. * transferred on both edges of the LRC clock.
  402. */
  403. start_event = ((channels == 1)
  404. ? SSC_START_FALLING_RF
  405. : SSC_START_EDGE_RF);
  406. rcmr = SSC_BF(RCMR_PERIOD, 0)
  407. | SSC_BF(RCMR_STTDLY, START_DELAY)
  408. | SSC_BF(RCMR_START, start_event)
  409. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  410. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  411. | SSC_BF(RCMR_CKS, SSC_CKS_CLOCK);
  412. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  413. | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
  414. | SSC_BF(RFMR_FSLEN, 0)
  415. | SSC_BF(RFMR_DATNB, 0)
  416. | SSC_BIT(RFMR_MSBF)
  417. | SSC_BF(RFMR_LOOP, 0)
  418. | SSC_BF(RFMR_DATLEN, (bits - 1));
  419. tcmr = SSC_BF(TCMR_PERIOD, 0)
  420. | SSC_BF(TCMR_STTDLY, START_DELAY)
  421. | SSC_BF(TCMR_START, start_event)
  422. | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
  423. | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
  424. | SSC_BF(TCMR_CKS, SSC_CKS_PIN);
  425. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  426. | SSC_BF(TFMR_FSDEN, 0)
  427. | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
  428. | SSC_BF(TFMR_FSLEN, 0)
  429. | SSC_BF(TFMR_DATNB, 0)
  430. | SSC_BIT(TFMR_MSBF)
  431. | SSC_BF(TFMR_DATDEF, 0)
  432. | SSC_BF(TFMR_DATLEN, (bits - 1));
  433. break;
  434. case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
  435. /*
  436. * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
  437. *
  438. * The SSC transmit and receive clocks are generated from the
  439. * MCK divider, and the BCLK signal is output
  440. * on the SSC TK line.
  441. */
  442. rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
  443. | SSC_BF(RCMR_STTDLY, 1)
  444. | SSC_BF(RCMR_START, SSC_START_RISING_RF)
  445. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  446. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  447. | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
  448. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  449. | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
  450. | SSC_BF(RFMR_FSLEN, 0)
  451. | SSC_BF(RFMR_DATNB, (channels - 1))
  452. | SSC_BIT(RFMR_MSBF)
  453. | SSC_BF(RFMR_LOOP, 0)
  454. | SSC_BF(RFMR_DATLEN, (bits - 1));
  455. tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
  456. | SSC_BF(TCMR_STTDLY, 1)
  457. | SSC_BF(TCMR_START, SSC_START_RISING_RF)
  458. | SSC_BF(TCMR_CKI, SSC_CKI_RISING)
  459. | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
  460. | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
  461. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  462. | SSC_BF(TFMR_FSDEN, 0)
  463. | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
  464. | SSC_BF(TFMR_FSLEN, 0)
  465. | SSC_BF(TFMR_DATNB, (channels - 1))
  466. | SSC_BIT(TFMR_MSBF)
  467. | SSC_BF(TFMR_DATDEF, 0)
  468. | SSC_BF(TFMR_DATLEN, (bits - 1));
  469. break;
  470. case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
  471. default:
  472. printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
  473. ssc_p->daifmt);
  474. return -EINVAL;
  475. }
  476. pr_debug("atmel_ssc_hw_params: "
  477. "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
  478. rcmr, rfmr, tcmr, tfmr);
  479. if (!ssc_p->initialized) {
  480. /* Enable PMC peripheral clock for this SSC */
  481. pr_debug("atmel_ssc_dai: Starting clock\n");
  482. clk_enable(ssc_p->ssc->clk);
  483. /* Reset the SSC and its PDC registers */
  484. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
  485. ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
  486. ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
  487. ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
  488. ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
  489. ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
  490. ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
  491. ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
  492. ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
  493. ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
  494. ssc_p->name, ssc_p);
  495. if (ret < 0) {
  496. printk(KERN_WARNING
  497. "atmel_ssc_dai: request_irq failure\n");
  498. pr_debug("Atmel_ssc_dai: Stoping clock\n");
  499. clk_disable(ssc_p->ssc->clk);
  500. return ret;
  501. }
  502. ssc_p->initialized = 1;
  503. }
  504. /* set SSC clock mode register */
  505. ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
  506. /* set receive clock mode and format */
  507. ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
  508. ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
  509. /* set transmit clock mode and format */
  510. ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
  511. ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
  512. pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
  513. return 0;
  514. }
  515. static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
  516. struct snd_soc_dai *dai)
  517. {
  518. struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
  519. struct atmel_pcm_dma_params *dma_params;
  520. int dir;
  521. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  522. dir = 0;
  523. else
  524. dir = 1;
  525. dma_params = ssc_p->dma_params[dir];
  526. ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
  527. pr_debug("%s enabled SSC_SR=0x%08x\n",
  528. dir ? "receive" : "transmit",
  529. ssc_readl(ssc_p->ssc->regs, SR));
  530. return 0;
  531. }
  532. #ifdef CONFIG_PM
  533. static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
  534. {
  535. struct atmel_ssc_info *ssc_p;
  536. if (!cpu_dai->active)
  537. return 0;
  538. ssc_p = &ssc_info[cpu_dai->id];
  539. /* Save the status register before disabling transmit and receive */
  540. ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
  541. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
  542. /* Save the current interrupt mask, then disable unmasked interrupts */
  543. ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
  544. ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
  545. ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
  546. ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
  547. ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
  548. ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
  549. ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
  550. return 0;
  551. }
  552. static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
  553. {
  554. struct atmel_ssc_info *ssc_p;
  555. u32 cr;
  556. if (!cpu_dai->active)
  557. return 0;
  558. ssc_p = &ssc_info[cpu_dai->id];
  559. /* restore SSC register settings */
  560. ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
  561. ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
  562. ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
  563. ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
  564. ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
  565. /* re-enable interrupts */
  566. ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
  567. /* Re-enable receive and transmit as appropriate */
  568. cr = 0;
  569. cr |=
  570. (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
  571. cr |=
  572. (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
  573. ssc_writel(ssc_p->ssc->regs, CR, cr);
  574. return 0;
  575. }
  576. #else /* CONFIG_PM */
  577. # define atmel_ssc_suspend NULL
  578. # define atmel_ssc_resume NULL
  579. #endif /* CONFIG_PM */
  580. static int atmel_ssc_probe(struct snd_soc_dai *dai)
  581. {
  582. struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
  583. snd_soc_dai_set_drvdata(dai, ssc_p);
  584. return 0;
  585. }
  586. #define ATMEL_SSC_RATES (SNDRV_PCM_RATE_8000_96000)
  587. #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
  588. SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
  589. static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
  590. .startup = atmel_ssc_startup,
  591. .shutdown = atmel_ssc_shutdown,
  592. .prepare = atmel_ssc_prepare,
  593. .hw_params = atmel_ssc_hw_params,
  594. .set_fmt = atmel_ssc_set_dai_fmt,
  595. .set_clkdiv = atmel_ssc_set_dai_clkdiv,
  596. };
  597. static struct snd_soc_dai_driver atmel_ssc_dai = {
  598. .probe = atmel_ssc_probe,
  599. .suspend = atmel_ssc_suspend,
  600. .resume = atmel_ssc_resume,
  601. .playback = {
  602. .channels_min = 1,
  603. .channels_max = 2,
  604. .rates = ATMEL_SSC_RATES,
  605. .formats = ATMEL_SSC_FORMATS,},
  606. .capture = {
  607. .channels_min = 1,
  608. .channels_max = 2,
  609. .rates = ATMEL_SSC_RATES,
  610. .formats = ATMEL_SSC_FORMATS,},
  611. .ops = &atmel_ssc_dai_ops,
  612. };
  613. static int asoc_ssc_init(struct device *dev)
  614. {
  615. struct platform_device *pdev = to_platform_device(dev);
  616. struct ssc_device *ssc = platform_get_drvdata(pdev);
  617. int ret;
  618. ret = snd_soc_register_dai(dev, &atmel_ssc_dai);
  619. if (ret) {
  620. dev_err(dev, "Could not register DAI: %d\n", ret);
  621. goto err;
  622. }
  623. if (ssc->pdata->use_dma)
  624. ret = atmel_pcm_dma_platform_register(dev);
  625. else
  626. ret = atmel_pcm_pdc_platform_register(dev);
  627. if (ret) {
  628. dev_err(dev, "Could not register PCM: %d\n", ret);
  629. goto err_unregister_dai;
  630. };
  631. return 0;
  632. err_unregister_dai:
  633. snd_soc_unregister_dai(dev);
  634. err:
  635. return ret;
  636. }
  637. static void asoc_ssc_exit(struct device *dev)
  638. {
  639. struct platform_device *pdev = to_platform_device(dev);
  640. struct ssc_device *ssc = platform_get_drvdata(pdev);
  641. if (ssc->pdata->use_dma)
  642. atmel_pcm_dma_platform_unregister(dev);
  643. else
  644. atmel_pcm_pdc_platform_unregister(dev);
  645. snd_soc_unregister_dai(dev);
  646. }
  647. /**
  648. * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
  649. */
  650. int atmel_ssc_set_audio(int ssc_id)
  651. {
  652. struct ssc_device *ssc;
  653. int ret;
  654. /* If we can grab the SSC briefly to parent the DAI device off it */
  655. ssc = ssc_request(ssc_id);
  656. if (IS_ERR(ssc)) {
  657. pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
  658. PTR_ERR(ssc));
  659. return PTR_ERR(ssc);
  660. } else {
  661. ssc_info[ssc_id].ssc = ssc;
  662. }
  663. ret = asoc_ssc_init(&ssc->pdev->dev);
  664. return ret;
  665. }
  666. EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
  667. void atmel_ssc_put_audio(int ssc_id)
  668. {
  669. struct ssc_device *ssc = ssc_info[ssc_id].ssc;
  670. ssc_free(ssc);
  671. asoc_ssc_exit(&ssc->pdev->dev);
  672. }
  673. EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
  674. /* Module information */
  675. MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
  676. MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
  677. MODULE_LICENSE("GPL");