pgtable.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697
  1. #ifndef _ASM_GENERIC_PGTABLE_H
  2. #define _ASM_GENERIC_PGTABLE_H
  3. #ifndef __ASSEMBLY__
  4. #ifdef CONFIG_MMU
  5. #include <linux/mm_types.h>
  6. #include <linux/bug.h>
  7. #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  8. extern int ptep_set_access_flags(struct vm_area_struct *vma,
  9. unsigned long address, pte_t *ptep,
  10. pte_t entry, int dirty);
  11. #endif
  12. #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  13. extern int pmdp_set_access_flags(struct vm_area_struct *vma,
  14. unsigned long address, pmd_t *pmdp,
  15. pmd_t entry, int dirty);
  16. #endif
  17. #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  18. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  19. unsigned long address,
  20. pte_t *ptep)
  21. {
  22. pte_t pte = *ptep;
  23. int r = 1;
  24. if (!pte_young(pte))
  25. r = 0;
  26. else
  27. set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
  28. return r;
  29. }
  30. #endif
  31. #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  32. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  33. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  34. unsigned long address,
  35. pmd_t *pmdp)
  36. {
  37. pmd_t pmd = *pmdp;
  38. int r = 1;
  39. if (!pmd_young(pmd))
  40. r = 0;
  41. else
  42. set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
  43. return r;
  44. }
  45. #else /* CONFIG_TRANSPARENT_HUGEPAGE */
  46. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  47. unsigned long address,
  48. pmd_t *pmdp)
  49. {
  50. BUG();
  51. return 0;
  52. }
  53. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  54. #endif
  55. #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  56. int ptep_clear_flush_young(struct vm_area_struct *vma,
  57. unsigned long address, pte_t *ptep);
  58. #endif
  59. #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
  60. int pmdp_clear_flush_young(struct vm_area_struct *vma,
  61. unsigned long address, pmd_t *pmdp);
  62. #endif
  63. #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
  64. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  65. unsigned long address,
  66. pte_t *ptep)
  67. {
  68. pte_t pte = *ptep;
  69. pte_clear(mm, address, ptep);
  70. return pte;
  71. }
  72. #endif
  73. #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
  74. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  75. static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
  76. unsigned long address,
  77. pmd_t *pmdp)
  78. {
  79. pmd_t pmd = *pmdp;
  80. pmd_clear(pmdp);
  81. return pmd;
  82. }
  83. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  84. #endif
  85. #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  86. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  87. unsigned long address, pte_t *ptep,
  88. int full)
  89. {
  90. pte_t pte;
  91. pte = ptep_get_and_clear(mm, address, ptep);
  92. return pte;
  93. }
  94. #endif
  95. /*
  96. * Some architectures may be able to avoid expensive synchronization
  97. * primitives when modifications are made to PTE's which are already
  98. * not present, or in the process of an address space destruction.
  99. */
  100. #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
  101. static inline void pte_clear_not_present_full(struct mm_struct *mm,
  102. unsigned long address,
  103. pte_t *ptep,
  104. int full)
  105. {
  106. pte_clear(mm, address, ptep);
  107. }
  108. #endif
  109. #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
  110. extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
  111. unsigned long address,
  112. pte_t *ptep);
  113. #endif
  114. #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
  115. extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
  116. unsigned long address,
  117. pmd_t *pmdp);
  118. #endif
  119. #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
  120. struct mm_struct;
  121. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
  122. {
  123. pte_t old_pte = *ptep;
  124. set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
  125. }
  126. #endif
  127. #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
  128. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  129. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  130. unsigned long address, pmd_t *pmdp)
  131. {
  132. pmd_t old_pmd = *pmdp;
  133. set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
  134. }
  135. #else /* CONFIG_TRANSPARENT_HUGEPAGE */
  136. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  137. unsigned long address, pmd_t *pmdp)
  138. {
  139. BUG();
  140. }
  141. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  142. #endif
  143. #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
  144. extern void pmdp_splitting_flush(struct vm_area_struct *vma,
  145. unsigned long address, pmd_t *pmdp);
  146. #endif
  147. #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
  148. extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
  149. #endif
  150. #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
  151. extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
  152. #endif
  153. #ifndef __HAVE_ARCH_PMDP_INVALIDATE
  154. extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
  155. pmd_t *pmdp);
  156. #endif
  157. #ifndef __HAVE_ARCH_PTE_SAME
  158. static inline int pte_same(pte_t pte_a, pte_t pte_b)
  159. {
  160. return pte_val(pte_a) == pte_val(pte_b);
  161. }
  162. #endif
  163. #ifndef __HAVE_ARCH_PMD_SAME
  164. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  165. static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
  166. {
  167. return pmd_val(pmd_a) == pmd_val(pmd_b);
  168. }
  169. #else /* CONFIG_TRANSPARENT_HUGEPAGE */
  170. static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
  171. {
  172. BUG();
  173. return 0;
  174. }
  175. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  176. #endif
  177. #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
  178. #define page_test_and_clear_dirty(pfn, mapped) (0)
  179. #endif
  180. #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
  181. #define pte_maybe_dirty(pte) pte_dirty(pte)
  182. #else
  183. #define pte_maybe_dirty(pte) (1)
  184. #endif
  185. #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
  186. #define page_test_and_clear_young(pfn) (0)
  187. #endif
  188. #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
  189. #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
  190. #endif
  191. #ifndef __HAVE_ARCH_MOVE_PTE
  192. #define move_pte(pte, prot, old_addr, new_addr) (pte)
  193. #endif
  194. #ifndef pte_accessible
  195. # define pte_accessible(pte) ((void)(pte),1)
  196. #endif
  197. #ifndef flush_tlb_fix_spurious_fault
  198. #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
  199. #endif
  200. #ifndef pgprot_noncached
  201. #define pgprot_noncached(prot) (prot)
  202. #endif
  203. #ifndef pgprot_writecombine
  204. #define pgprot_writecombine pgprot_noncached
  205. #endif
  206. /*
  207. * When walking page tables, get the address of the next boundary,
  208. * or the end address of the range if that comes earlier. Although no
  209. * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
  210. */
  211. #define pgd_addr_end(addr, end) \
  212. ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
  213. (__boundary - 1 < (end) - 1)? __boundary: (end); \
  214. })
  215. #ifndef pud_addr_end
  216. #define pud_addr_end(addr, end) \
  217. ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
  218. (__boundary - 1 < (end) - 1)? __boundary: (end); \
  219. })
  220. #endif
  221. #ifndef pmd_addr_end
  222. #define pmd_addr_end(addr, end) \
  223. ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
  224. (__boundary - 1 < (end) - 1)? __boundary: (end); \
  225. })
  226. #endif
  227. /*
  228. * When walking page tables, we usually want to skip any p?d_none entries;
  229. * and any p?d_bad entries - reporting the error before resetting to none.
  230. * Do the tests inline, but report and clear the bad entry in mm/memory.c.
  231. */
  232. void pgd_clear_bad(pgd_t *);
  233. void pud_clear_bad(pud_t *);
  234. void pmd_clear_bad(pmd_t *);
  235. static inline int pgd_none_or_clear_bad(pgd_t *pgd)
  236. {
  237. if (pgd_none(*pgd))
  238. return 1;
  239. if (unlikely(pgd_bad(*pgd))) {
  240. pgd_clear_bad(pgd);
  241. return 1;
  242. }
  243. return 0;
  244. }
  245. static inline int pud_none_or_clear_bad(pud_t *pud)
  246. {
  247. if (pud_none(*pud))
  248. return 1;
  249. if (unlikely(pud_bad(*pud))) {
  250. pud_clear_bad(pud);
  251. return 1;
  252. }
  253. return 0;
  254. }
  255. static inline int pmd_none_or_clear_bad(pmd_t *pmd)
  256. {
  257. if (pmd_none(*pmd))
  258. return 1;
  259. if (unlikely(pmd_bad(*pmd))) {
  260. pmd_clear_bad(pmd);
  261. return 1;
  262. }
  263. return 0;
  264. }
  265. static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
  266. unsigned long addr,
  267. pte_t *ptep)
  268. {
  269. /*
  270. * Get the current pte state, but zero it out to make it
  271. * non-present, preventing the hardware from asynchronously
  272. * updating it.
  273. */
  274. return ptep_get_and_clear(mm, addr, ptep);
  275. }
  276. static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
  277. unsigned long addr,
  278. pte_t *ptep, pte_t pte)
  279. {
  280. /*
  281. * The pte is non-present, so there's no hardware state to
  282. * preserve.
  283. */
  284. set_pte_at(mm, addr, ptep, pte);
  285. }
  286. #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
  287. /*
  288. * Start a pte protection read-modify-write transaction, which
  289. * protects against asynchronous hardware modifications to the pte.
  290. * The intention is not to prevent the hardware from making pte
  291. * updates, but to prevent any updates it may make from being lost.
  292. *
  293. * This does not protect against other software modifications of the
  294. * pte; the appropriate pte lock must be held over the transation.
  295. *
  296. * Note that this interface is intended to be batchable, meaning that
  297. * ptep_modify_prot_commit may not actually update the pte, but merely
  298. * queue the update to be done at some later time. The update must be
  299. * actually committed before the pte lock is released, however.
  300. */
  301. static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
  302. unsigned long addr,
  303. pte_t *ptep)
  304. {
  305. return __ptep_modify_prot_start(mm, addr, ptep);
  306. }
  307. /*
  308. * Commit an update to a pte, leaving any hardware-controlled bits in
  309. * the PTE unmodified.
  310. */
  311. static inline void ptep_modify_prot_commit(struct mm_struct *mm,
  312. unsigned long addr,
  313. pte_t *ptep, pte_t pte)
  314. {
  315. __ptep_modify_prot_commit(mm, addr, ptep, pte);
  316. }
  317. #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
  318. #endif /* CONFIG_MMU */
  319. /*
  320. * A facility to provide lazy MMU batching. This allows PTE updates and
  321. * page invalidations to be delayed until a call to leave lazy MMU mode
  322. * is issued. Some architectures may benefit from doing this, and it is
  323. * beneficial for both shadow and direct mode hypervisors, which may batch
  324. * the PTE updates which happen during this window. Note that using this
  325. * interface requires that read hazards be removed from the code. A read
  326. * hazard could result in the direct mode hypervisor case, since the actual
  327. * write to the page tables may not yet have taken place, so reads though
  328. * a raw PTE pointer after it has been modified are not guaranteed to be
  329. * up to date. This mode can only be entered and left under the protection of
  330. * the page table locks for all page tables which may be modified. In the UP
  331. * case, this is required so that preemption is disabled, and in the SMP case,
  332. * it must synchronize the delayed page table writes properly on other CPUs.
  333. */
  334. #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
  335. #define arch_enter_lazy_mmu_mode() do {} while (0)
  336. #define arch_leave_lazy_mmu_mode() do {} while (0)
  337. #define arch_flush_lazy_mmu_mode() do {} while (0)
  338. #endif
  339. /*
  340. * A facility to provide batching of the reload of page tables and
  341. * other process state with the actual context switch code for
  342. * paravirtualized guests. By convention, only one of the batched
  343. * update (lazy) modes (CPU, MMU) should be active at any given time,
  344. * entry should never be nested, and entry and exits should always be
  345. * paired. This is for sanity of maintaining and reasoning about the
  346. * kernel code. In this case, the exit (end of the context switch) is
  347. * in architecture-specific code, and so doesn't need a generic
  348. * definition.
  349. */
  350. #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
  351. #define arch_start_context_switch(prev) do {} while (0)
  352. #endif
  353. #ifndef __HAVE_PFNMAP_TRACKING
  354. /*
  355. * Interfaces that can be used by architecture code to keep track of
  356. * memory type of pfn mappings specified by the remap_pfn_range,
  357. * vm_insert_pfn.
  358. */
  359. /*
  360. * track_pfn_remap is called when a _new_ pfn mapping is being established
  361. * by remap_pfn_range() for physical range indicated by pfn and size.
  362. */
  363. static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
  364. unsigned long pfn, unsigned long addr,
  365. unsigned long size)
  366. {
  367. return 0;
  368. }
  369. /*
  370. * track_pfn_insert is called when a _new_ single pfn is established
  371. * by vm_insert_pfn().
  372. */
  373. static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
  374. unsigned long pfn)
  375. {
  376. return 0;
  377. }
  378. /*
  379. * track_pfn_copy is called when vma that is covering the pfnmap gets
  380. * copied through copy_page_range().
  381. */
  382. static inline int track_pfn_copy(struct vm_area_struct *vma)
  383. {
  384. return 0;
  385. }
  386. /*
  387. * untrack_pfn_vma is called while unmapping a pfnmap for a region.
  388. * untrack can be called for a specific region indicated by pfn and size or
  389. * can be for the entire vma (in which case pfn, size are zero).
  390. */
  391. static inline void untrack_pfn(struct vm_area_struct *vma,
  392. unsigned long pfn, unsigned long size)
  393. {
  394. }
  395. #else
  396. extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
  397. unsigned long pfn, unsigned long addr,
  398. unsigned long size);
  399. extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
  400. unsigned long pfn);
  401. extern int track_pfn_copy(struct vm_area_struct *vma);
  402. extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
  403. unsigned long size);
  404. #endif
  405. #ifdef __HAVE_COLOR_ZERO_PAGE
  406. static inline int is_zero_pfn(unsigned long pfn)
  407. {
  408. extern unsigned long zero_pfn;
  409. unsigned long offset_from_zero_pfn = pfn - zero_pfn;
  410. return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
  411. }
  412. static inline unsigned long my_zero_pfn(unsigned long addr)
  413. {
  414. return page_to_pfn(ZERO_PAGE(addr));
  415. }
  416. #else
  417. static inline int is_zero_pfn(unsigned long pfn)
  418. {
  419. extern unsigned long zero_pfn;
  420. return pfn == zero_pfn;
  421. }
  422. static inline unsigned long my_zero_pfn(unsigned long addr)
  423. {
  424. extern unsigned long zero_pfn;
  425. return zero_pfn;
  426. }
  427. #endif
  428. #ifdef CONFIG_MMU
  429. #ifndef CONFIG_TRANSPARENT_HUGEPAGE
  430. static inline int pmd_trans_huge(pmd_t pmd)
  431. {
  432. return 0;
  433. }
  434. static inline int pmd_trans_splitting(pmd_t pmd)
  435. {
  436. return 0;
  437. }
  438. #ifndef __HAVE_ARCH_PMD_WRITE
  439. static inline int pmd_write(pmd_t pmd)
  440. {
  441. BUG();
  442. return 0;
  443. }
  444. #endif /* __HAVE_ARCH_PMD_WRITE */
  445. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  446. #ifndef pmd_read_atomic
  447. static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
  448. {
  449. /*
  450. * Depend on compiler for an atomic pmd read. NOTE: this is
  451. * only going to work, if the pmdval_t isn't larger than
  452. * an unsigned long.
  453. */
  454. return *pmdp;
  455. }
  456. #endif
  457. /*
  458. * This function is meant to be used by sites walking pagetables with
  459. * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
  460. * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
  461. * into a null pmd and the transhuge page fault can convert a null pmd
  462. * into an hugepmd or into a regular pmd (if the hugepage allocation
  463. * fails). While holding the mmap_sem in read mode the pmd becomes
  464. * stable and stops changing under us only if it's not null and not a
  465. * transhuge pmd. When those races occurs and this function makes a
  466. * difference vs the standard pmd_none_or_clear_bad, the result is
  467. * undefined so behaving like if the pmd was none is safe (because it
  468. * can return none anyway). The compiler level barrier() is critically
  469. * important to compute the two checks atomically on the same pmdval.
  470. *
  471. * For 32bit kernels with a 64bit large pmd_t this automatically takes
  472. * care of reading the pmd atomically to avoid SMP race conditions
  473. * against pmd_populate() when the mmap_sem is hold for reading by the
  474. * caller (a special atomic read not done by "gcc" as in the generic
  475. * version above, is also needed when THP is disabled because the page
  476. * fault can populate the pmd from under us).
  477. */
  478. static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
  479. {
  480. pmd_t pmdval = pmd_read_atomic(pmd);
  481. /*
  482. * The barrier will stabilize the pmdval in a register or on
  483. * the stack so that it will stop changing under the code.
  484. *
  485. * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
  486. * pmd_read_atomic is allowed to return a not atomic pmdval
  487. * (for example pointing to an hugepage that has never been
  488. * mapped in the pmd). The below checks will only care about
  489. * the low part of the pmd with 32bit PAE x86 anyway, with the
  490. * exception of pmd_none(). So the important thing is that if
  491. * the low part of the pmd is found null, the high part will
  492. * be also null or the pmd_none() check below would be
  493. * confused.
  494. */
  495. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  496. barrier();
  497. #endif
  498. if (pmd_none(pmdval))
  499. return 1;
  500. if (unlikely(pmd_bad(pmdval))) {
  501. if (!pmd_trans_huge(pmdval))
  502. pmd_clear_bad(pmd);
  503. return 1;
  504. }
  505. return 0;
  506. }
  507. /*
  508. * This is a noop if Transparent Hugepage Support is not built into
  509. * the kernel. Otherwise it is equivalent to
  510. * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
  511. * places that already verified the pmd is not none and they want to
  512. * walk ptes while holding the mmap sem in read mode (write mode don't
  513. * need this). If THP is not enabled, the pmd can't go away under the
  514. * code even if MADV_DONTNEED runs, but if THP is enabled we need to
  515. * run a pmd_trans_unstable before walking the ptes after
  516. * split_huge_page_pmd returns (because it may have run when the pmd
  517. * become null, but then a page fault can map in a THP and not a
  518. * regular page).
  519. */
  520. static inline int pmd_trans_unstable(pmd_t *pmd)
  521. {
  522. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  523. return pmd_none_or_trans_huge_or_clear_bad(pmd);
  524. #else
  525. return 0;
  526. #endif
  527. }
  528. #ifdef CONFIG_NUMA_BALANCING
  529. #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
  530. /*
  531. * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
  532. * same bit too). It's set only when _PAGE_PRESET is not set and it's
  533. * never set if _PAGE_PRESENT is set.
  534. *
  535. * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
  536. * fault triggers on those regions if pte/pmd_numa returns true
  537. * (because _PAGE_PRESENT is not set).
  538. */
  539. #ifndef pte_numa
  540. static inline int pte_numa(pte_t pte)
  541. {
  542. return (pte_flags(pte) &
  543. (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
  544. }
  545. #endif
  546. #ifndef pmd_numa
  547. static inline int pmd_numa(pmd_t pmd)
  548. {
  549. return (pmd_flags(pmd) &
  550. (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
  551. }
  552. #endif
  553. /*
  554. * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
  555. * because they're called by the NUMA hinting minor page fault. If we
  556. * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
  557. * would be forced to set it later while filling the TLB after we
  558. * return to userland. That would trigger a second write to memory
  559. * that we optimize away by setting _PAGE_ACCESSED here.
  560. */
  561. #ifndef pte_mknonnuma
  562. static inline pte_t pte_mknonnuma(pte_t pte)
  563. {
  564. pte = pte_clear_flags(pte, _PAGE_NUMA);
  565. return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
  566. }
  567. #endif
  568. #ifndef pmd_mknonnuma
  569. static inline pmd_t pmd_mknonnuma(pmd_t pmd)
  570. {
  571. pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
  572. return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
  573. }
  574. #endif
  575. #ifndef pte_mknuma
  576. static inline pte_t pte_mknuma(pte_t pte)
  577. {
  578. pte = pte_set_flags(pte, _PAGE_NUMA);
  579. return pte_clear_flags(pte, _PAGE_PRESENT);
  580. }
  581. #endif
  582. #ifndef pmd_mknuma
  583. static inline pmd_t pmd_mknuma(pmd_t pmd)
  584. {
  585. pmd = pmd_set_flags(pmd, _PAGE_NUMA);
  586. return pmd_clear_flags(pmd, _PAGE_PRESENT);
  587. }
  588. #endif
  589. #else
  590. extern int pte_numa(pte_t pte);
  591. extern int pmd_numa(pmd_t pmd);
  592. extern pte_t pte_mknonnuma(pte_t pte);
  593. extern pmd_t pmd_mknonnuma(pmd_t pmd);
  594. extern pte_t pte_mknuma(pte_t pte);
  595. extern pmd_t pmd_mknuma(pmd_t pmd);
  596. #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
  597. #else
  598. static inline int pmd_numa(pmd_t pmd)
  599. {
  600. return 0;
  601. }
  602. static inline int pte_numa(pte_t pte)
  603. {
  604. return 0;
  605. }
  606. static inline pte_t pte_mknonnuma(pte_t pte)
  607. {
  608. return pte;
  609. }
  610. static inline pmd_t pmd_mknonnuma(pmd_t pmd)
  611. {
  612. return pmd;
  613. }
  614. static inline pte_t pte_mknuma(pte_t pte)
  615. {
  616. return pte;
  617. }
  618. static inline pmd_t pmd_mknuma(pmd_t pmd)
  619. {
  620. return pmd;
  621. }
  622. #endif /* CONFIG_NUMA_BALANCING */
  623. #endif /* CONFIG_MMU */
  624. #endif /* !__ASSEMBLY__ */
  625. #endif /* _ASM_GENERIC_PGTABLE_H */