namespace.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/acct.h> /* acct_auto_close_mnt */
  19. #include <linux/ramfs.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_fs.h>
  24. #include "pnode.h"
  25. #include "internal.h"
  26. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  27. #define HASH_SIZE (1UL << HASH_SHIFT)
  28. static int event;
  29. static DEFINE_IDA(mnt_id_ida);
  30. static DEFINE_IDA(mnt_group_ida);
  31. static DEFINE_SPINLOCK(mnt_id_lock);
  32. static int mnt_id_start = 0;
  33. static int mnt_group_start = 1;
  34. static struct list_head *mount_hashtable __read_mostly;
  35. static struct kmem_cache *mnt_cache __read_mostly;
  36. static struct rw_semaphore namespace_sem;
  37. /* /sys/fs */
  38. struct kobject *fs_kobj;
  39. EXPORT_SYMBOL_GPL(fs_kobj);
  40. /*
  41. * vfsmount lock may be taken for read to prevent changes to the
  42. * vfsmount hash, ie. during mountpoint lookups or walking back
  43. * up the tree.
  44. *
  45. * It should be taken for write in all cases where the vfsmount
  46. * tree or hash is modified or when a vfsmount structure is modified.
  47. */
  48. DEFINE_BRLOCK(vfsmount_lock);
  49. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  50. {
  51. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  52. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  53. tmp = tmp + (tmp >> HASH_SHIFT);
  54. return tmp & (HASH_SIZE - 1);
  55. }
  56. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  57. /*
  58. * allocation is serialized by namespace_sem, but we need the spinlock to
  59. * serialize with freeing.
  60. */
  61. static int mnt_alloc_id(struct mount *mnt)
  62. {
  63. int res;
  64. retry:
  65. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  66. spin_lock(&mnt_id_lock);
  67. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  68. if (!res)
  69. mnt_id_start = mnt->mnt_id + 1;
  70. spin_unlock(&mnt_id_lock);
  71. if (res == -EAGAIN)
  72. goto retry;
  73. return res;
  74. }
  75. static void mnt_free_id(struct mount *mnt)
  76. {
  77. int id = mnt->mnt_id;
  78. spin_lock(&mnt_id_lock);
  79. ida_remove(&mnt_id_ida, id);
  80. if (mnt_id_start > id)
  81. mnt_id_start = id;
  82. spin_unlock(&mnt_id_lock);
  83. }
  84. /*
  85. * Allocate a new peer group ID
  86. *
  87. * mnt_group_ida is protected by namespace_sem
  88. */
  89. static int mnt_alloc_group_id(struct mount *mnt)
  90. {
  91. int res;
  92. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  93. return -ENOMEM;
  94. res = ida_get_new_above(&mnt_group_ida,
  95. mnt_group_start,
  96. &mnt->mnt_group_id);
  97. if (!res)
  98. mnt_group_start = mnt->mnt_group_id + 1;
  99. return res;
  100. }
  101. /*
  102. * Release a peer group ID
  103. */
  104. void mnt_release_group_id(struct mount *mnt)
  105. {
  106. int id = mnt->mnt_group_id;
  107. ida_remove(&mnt_group_ida, id);
  108. if (mnt_group_start > id)
  109. mnt_group_start = id;
  110. mnt->mnt_group_id = 0;
  111. }
  112. /*
  113. * vfsmount lock must be held for read
  114. */
  115. static inline void mnt_add_count(struct mount *mnt, int n)
  116. {
  117. #ifdef CONFIG_SMP
  118. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  119. #else
  120. preempt_disable();
  121. mnt->mnt_count += n;
  122. preempt_enable();
  123. #endif
  124. }
  125. /*
  126. * vfsmount lock must be held for write
  127. */
  128. unsigned int mnt_get_count(struct mount *mnt)
  129. {
  130. #ifdef CONFIG_SMP
  131. unsigned int count = 0;
  132. int cpu;
  133. for_each_possible_cpu(cpu) {
  134. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  135. }
  136. return count;
  137. #else
  138. return mnt->mnt_count;
  139. #endif
  140. }
  141. static struct mount *alloc_vfsmnt(const char *name)
  142. {
  143. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  144. if (mnt) {
  145. int err;
  146. err = mnt_alloc_id(mnt);
  147. if (err)
  148. goto out_free_cache;
  149. if (name) {
  150. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  151. if (!mnt->mnt_devname)
  152. goto out_free_id;
  153. }
  154. #ifdef CONFIG_SMP
  155. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  156. if (!mnt->mnt_pcp)
  157. goto out_free_devname;
  158. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  159. #else
  160. mnt->mnt_count = 1;
  161. mnt->mnt_writers = 0;
  162. #endif
  163. INIT_LIST_HEAD(&mnt->mnt_hash);
  164. INIT_LIST_HEAD(&mnt->mnt_child);
  165. INIT_LIST_HEAD(&mnt->mnt_mounts);
  166. INIT_LIST_HEAD(&mnt->mnt_list);
  167. INIT_LIST_HEAD(&mnt->mnt_expire);
  168. INIT_LIST_HEAD(&mnt->mnt_share);
  169. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  170. INIT_LIST_HEAD(&mnt->mnt_slave);
  171. #ifdef CONFIG_FSNOTIFY
  172. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  173. #endif
  174. }
  175. return mnt;
  176. #ifdef CONFIG_SMP
  177. out_free_devname:
  178. kfree(mnt->mnt_devname);
  179. #endif
  180. out_free_id:
  181. mnt_free_id(mnt);
  182. out_free_cache:
  183. kmem_cache_free(mnt_cache, mnt);
  184. return NULL;
  185. }
  186. /*
  187. * Most r/o checks on a fs are for operations that take
  188. * discrete amounts of time, like a write() or unlink().
  189. * We must keep track of when those operations start
  190. * (for permission checks) and when they end, so that
  191. * we can determine when writes are able to occur to
  192. * a filesystem.
  193. */
  194. /*
  195. * __mnt_is_readonly: check whether a mount is read-only
  196. * @mnt: the mount to check for its write status
  197. *
  198. * This shouldn't be used directly ouside of the VFS.
  199. * It does not guarantee that the filesystem will stay
  200. * r/w, just that it is right *now*. This can not and
  201. * should not be used in place of IS_RDONLY(inode).
  202. * mnt_want/drop_write() will _keep_ the filesystem
  203. * r/w.
  204. */
  205. int __mnt_is_readonly(struct vfsmount *mnt)
  206. {
  207. if (mnt->mnt_flags & MNT_READONLY)
  208. return 1;
  209. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  210. return 1;
  211. return 0;
  212. }
  213. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  214. static inline void mnt_inc_writers(struct mount *mnt)
  215. {
  216. #ifdef CONFIG_SMP
  217. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  218. #else
  219. mnt->mnt_writers++;
  220. #endif
  221. }
  222. static inline void mnt_dec_writers(struct mount *mnt)
  223. {
  224. #ifdef CONFIG_SMP
  225. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  226. #else
  227. mnt->mnt_writers--;
  228. #endif
  229. }
  230. static unsigned int mnt_get_writers(struct mount *mnt)
  231. {
  232. #ifdef CONFIG_SMP
  233. unsigned int count = 0;
  234. int cpu;
  235. for_each_possible_cpu(cpu) {
  236. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  237. }
  238. return count;
  239. #else
  240. return mnt->mnt_writers;
  241. #endif
  242. }
  243. static int mnt_is_readonly(struct vfsmount *mnt)
  244. {
  245. if (mnt->mnt_sb->s_readonly_remount)
  246. return 1;
  247. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  248. smp_rmb();
  249. return __mnt_is_readonly(mnt);
  250. }
  251. /*
  252. * Most r/o & frozen checks on a fs are for operations that take discrete
  253. * amounts of time, like a write() or unlink(). We must keep track of when
  254. * those operations start (for permission checks) and when they end, so that we
  255. * can determine when writes are able to occur to a filesystem.
  256. */
  257. /**
  258. * __mnt_want_write - get write access to a mount without freeze protection
  259. * @m: the mount on which to take a write
  260. *
  261. * This tells the low-level filesystem that a write is about to be performed to
  262. * it, and makes sure that writes are allowed (mnt it read-write) before
  263. * returning success. This operation does not protect against filesystem being
  264. * frozen. When the write operation is finished, __mnt_drop_write() must be
  265. * called. This is effectively a refcount.
  266. */
  267. int __mnt_want_write(struct vfsmount *m)
  268. {
  269. struct mount *mnt = real_mount(m);
  270. int ret = 0;
  271. preempt_disable();
  272. mnt_inc_writers(mnt);
  273. /*
  274. * The store to mnt_inc_writers must be visible before we pass
  275. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  276. * incremented count after it has set MNT_WRITE_HOLD.
  277. */
  278. smp_mb();
  279. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  280. cpu_relax();
  281. /*
  282. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  283. * be set to match its requirements. So we must not load that until
  284. * MNT_WRITE_HOLD is cleared.
  285. */
  286. smp_rmb();
  287. if (mnt_is_readonly(m)) {
  288. mnt_dec_writers(mnt);
  289. ret = -EROFS;
  290. }
  291. preempt_enable();
  292. return ret;
  293. }
  294. /**
  295. * mnt_want_write - get write access to a mount
  296. * @m: the mount on which to take a write
  297. *
  298. * This tells the low-level filesystem that a write is about to be performed to
  299. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  300. * is not frozen) before returning success. When the write operation is
  301. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  302. */
  303. int mnt_want_write(struct vfsmount *m)
  304. {
  305. int ret;
  306. sb_start_write(m->mnt_sb);
  307. ret = __mnt_want_write(m);
  308. if (ret)
  309. sb_end_write(m->mnt_sb);
  310. return ret;
  311. }
  312. EXPORT_SYMBOL_GPL(mnt_want_write);
  313. /**
  314. * mnt_clone_write - get write access to a mount
  315. * @mnt: the mount on which to take a write
  316. *
  317. * This is effectively like mnt_want_write, except
  318. * it must only be used to take an extra write reference
  319. * on a mountpoint that we already know has a write reference
  320. * on it. This allows some optimisation.
  321. *
  322. * After finished, mnt_drop_write must be called as usual to
  323. * drop the reference.
  324. */
  325. int mnt_clone_write(struct vfsmount *mnt)
  326. {
  327. /* superblock may be r/o */
  328. if (__mnt_is_readonly(mnt))
  329. return -EROFS;
  330. preempt_disable();
  331. mnt_inc_writers(real_mount(mnt));
  332. preempt_enable();
  333. return 0;
  334. }
  335. EXPORT_SYMBOL_GPL(mnt_clone_write);
  336. /**
  337. * __mnt_want_write_file - get write access to a file's mount
  338. * @file: the file who's mount on which to take a write
  339. *
  340. * This is like __mnt_want_write, but it takes a file and can
  341. * do some optimisations if the file is open for write already
  342. */
  343. int __mnt_want_write_file(struct file *file)
  344. {
  345. struct inode *inode = file->f_dentry->d_inode;
  346. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  347. return __mnt_want_write(file->f_path.mnt);
  348. else
  349. return mnt_clone_write(file->f_path.mnt);
  350. }
  351. /**
  352. * mnt_want_write_file - get write access to a file's mount
  353. * @file: the file who's mount on which to take a write
  354. *
  355. * This is like mnt_want_write, but it takes a file and can
  356. * do some optimisations if the file is open for write already
  357. */
  358. int mnt_want_write_file(struct file *file)
  359. {
  360. int ret;
  361. sb_start_write(file->f_path.mnt->mnt_sb);
  362. ret = __mnt_want_write_file(file);
  363. if (ret)
  364. sb_end_write(file->f_path.mnt->mnt_sb);
  365. return ret;
  366. }
  367. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  368. /**
  369. * __mnt_drop_write - give up write access to a mount
  370. * @mnt: the mount on which to give up write access
  371. *
  372. * Tells the low-level filesystem that we are done
  373. * performing writes to it. Must be matched with
  374. * __mnt_want_write() call above.
  375. */
  376. void __mnt_drop_write(struct vfsmount *mnt)
  377. {
  378. preempt_disable();
  379. mnt_dec_writers(real_mount(mnt));
  380. preempt_enable();
  381. }
  382. /**
  383. * mnt_drop_write - give up write access to a mount
  384. * @mnt: the mount on which to give up write access
  385. *
  386. * Tells the low-level filesystem that we are done performing writes to it and
  387. * also allows filesystem to be frozen again. Must be matched with
  388. * mnt_want_write() call above.
  389. */
  390. void mnt_drop_write(struct vfsmount *mnt)
  391. {
  392. __mnt_drop_write(mnt);
  393. sb_end_write(mnt->mnt_sb);
  394. }
  395. EXPORT_SYMBOL_GPL(mnt_drop_write);
  396. void __mnt_drop_write_file(struct file *file)
  397. {
  398. __mnt_drop_write(file->f_path.mnt);
  399. }
  400. void mnt_drop_write_file(struct file *file)
  401. {
  402. mnt_drop_write(file->f_path.mnt);
  403. }
  404. EXPORT_SYMBOL(mnt_drop_write_file);
  405. static int mnt_make_readonly(struct mount *mnt)
  406. {
  407. int ret = 0;
  408. br_write_lock(&vfsmount_lock);
  409. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  410. /*
  411. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  412. * should be visible before we do.
  413. */
  414. smp_mb();
  415. /*
  416. * With writers on hold, if this value is zero, then there are
  417. * definitely no active writers (although held writers may subsequently
  418. * increment the count, they'll have to wait, and decrement it after
  419. * seeing MNT_READONLY).
  420. *
  421. * It is OK to have counter incremented on one CPU and decremented on
  422. * another: the sum will add up correctly. The danger would be when we
  423. * sum up each counter, if we read a counter before it is incremented,
  424. * but then read another CPU's count which it has been subsequently
  425. * decremented from -- we would see more decrements than we should.
  426. * MNT_WRITE_HOLD protects against this scenario, because
  427. * mnt_want_write first increments count, then smp_mb, then spins on
  428. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  429. * we're counting up here.
  430. */
  431. if (mnt_get_writers(mnt) > 0)
  432. ret = -EBUSY;
  433. else
  434. mnt->mnt.mnt_flags |= MNT_READONLY;
  435. /*
  436. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  437. * that become unheld will see MNT_READONLY.
  438. */
  439. smp_wmb();
  440. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  441. br_write_unlock(&vfsmount_lock);
  442. return ret;
  443. }
  444. static void __mnt_unmake_readonly(struct mount *mnt)
  445. {
  446. br_write_lock(&vfsmount_lock);
  447. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  448. br_write_unlock(&vfsmount_lock);
  449. }
  450. int sb_prepare_remount_readonly(struct super_block *sb)
  451. {
  452. struct mount *mnt;
  453. int err = 0;
  454. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  455. if (atomic_long_read(&sb->s_remove_count))
  456. return -EBUSY;
  457. br_write_lock(&vfsmount_lock);
  458. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  459. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  460. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  461. smp_mb();
  462. if (mnt_get_writers(mnt) > 0) {
  463. err = -EBUSY;
  464. break;
  465. }
  466. }
  467. }
  468. if (!err && atomic_long_read(&sb->s_remove_count))
  469. err = -EBUSY;
  470. if (!err) {
  471. sb->s_readonly_remount = 1;
  472. smp_wmb();
  473. }
  474. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  475. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  476. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  477. }
  478. br_write_unlock(&vfsmount_lock);
  479. return err;
  480. }
  481. static void free_vfsmnt(struct mount *mnt)
  482. {
  483. kfree(mnt->mnt_devname);
  484. mnt_free_id(mnt);
  485. #ifdef CONFIG_SMP
  486. free_percpu(mnt->mnt_pcp);
  487. #endif
  488. kmem_cache_free(mnt_cache, mnt);
  489. }
  490. /*
  491. * find the first or last mount at @dentry on vfsmount @mnt depending on
  492. * @dir. If @dir is set return the first mount else return the last mount.
  493. * vfsmount_lock must be held for read or write.
  494. */
  495. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  496. int dir)
  497. {
  498. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  499. struct list_head *tmp = head;
  500. struct mount *p, *found = NULL;
  501. for (;;) {
  502. tmp = dir ? tmp->next : tmp->prev;
  503. p = NULL;
  504. if (tmp == head)
  505. break;
  506. p = list_entry(tmp, struct mount, mnt_hash);
  507. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  508. found = p;
  509. break;
  510. }
  511. }
  512. return found;
  513. }
  514. /*
  515. * lookup_mnt - Return the first child mount mounted at path
  516. *
  517. * "First" means first mounted chronologically. If you create the
  518. * following mounts:
  519. *
  520. * mount /dev/sda1 /mnt
  521. * mount /dev/sda2 /mnt
  522. * mount /dev/sda3 /mnt
  523. *
  524. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  525. * return successively the root dentry and vfsmount of /dev/sda1, then
  526. * /dev/sda2, then /dev/sda3, then NULL.
  527. *
  528. * lookup_mnt takes a reference to the found vfsmount.
  529. */
  530. struct vfsmount *lookup_mnt(struct path *path)
  531. {
  532. struct mount *child_mnt;
  533. br_read_lock(&vfsmount_lock);
  534. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  535. if (child_mnt) {
  536. mnt_add_count(child_mnt, 1);
  537. br_read_unlock(&vfsmount_lock);
  538. return &child_mnt->mnt;
  539. } else {
  540. br_read_unlock(&vfsmount_lock);
  541. return NULL;
  542. }
  543. }
  544. static inline int check_mnt(struct mount *mnt)
  545. {
  546. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  547. }
  548. /*
  549. * vfsmount lock must be held for write
  550. */
  551. static void touch_mnt_namespace(struct mnt_namespace *ns)
  552. {
  553. if (ns) {
  554. ns->event = ++event;
  555. wake_up_interruptible(&ns->poll);
  556. }
  557. }
  558. /*
  559. * vfsmount lock must be held for write
  560. */
  561. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  562. {
  563. if (ns && ns->event != event) {
  564. ns->event = event;
  565. wake_up_interruptible(&ns->poll);
  566. }
  567. }
  568. /*
  569. * Clear dentry's mounted state if it has no remaining mounts.
  570. * vfsmount_lock must be held for write.
  571. */
  572. static void dentry_reset_mounted(struct dentry *dentry)
  573. {
  574. unsigned u;
  575. for (u = 0; u < HASH_SIZE; u++) {
  576. struct mount *p;
  577. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  578. if (p->mnt_mountpoint == dentry)
  579. return;
  580. }
  581. }
  582. spin_lock(&dentry->d_lock);
  583. dentry->d_flags &= ~DCACHE_MOUNTED;
  584. spin_unlock(&dentry->d_lock);
  585. }
  586. /*
  587. * vfsmount lock must be held for write
  588. */
  589. static void detach_mnt(struct mount *mnt, struct path *old_path)
  590. {
  591. old_path->dentry = mnt->mnt_mountpoint;
  592. old_path->mnt = &mnt->mnt_parent->mnt;
  593. mnt->mnt_parent = mnt;
  594. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  595. list_del_init(&mnt->mnt_child);
  596. list_del_init(&mnt->mnt_hash);
  597. dentry_reset_mounted(old_path->dentry);
  598. }
  599. /*
  600. * vfsmount lock must be held for write
  601. */
  602. void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
  603. struct mount *child_mnt)
  604. {
  605. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  606. child_mnt->mnt_mountpoint = dget(dentry);
  607. child_mnt->mnt_parent = mnt;
  608. spin_lock(&dentry->d_lock);
  609. dentry->d_flags |= DCACHE_MOUNTED;
  610. spin_unlock(&dentry->d_lock);
  611. }
  612. /*
  613. * vfsmount lock must be held for write
  614. */
  615. static void attach_mnt(struct mount *mnt, struct path *path)
  616. {
  617. mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
  618. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  619. hash(path->mnt, path->dentry));
  620. list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
  621. }
  622. /*
  623. * vfsmount lock must be held for write
  624. */
  625. static void commit_tree(struct mount *mnt)
  626. {
  627. struct mount *parent = mnt->mnt_parent;
  628. struct mount *m;
  629. LIST_HEAD(head);
  630. struct mnt_namespace *n = parent->mnt_ns;
  631. BUG_ON(parent == mnt);
  632. list_add_tail(&head, &mnt->mnt_list);
  633. list_for_each_entry(m, &head, mnt_list)
  634. m->mnt_ns = n;
  635. list_splice(&head, n->list.prev);
  636. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  637. hash(&parent->mnt, mnt->mnt_mountpoint));
  638. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  639. touch_mnt_namespace(n);
  640. }
  641. static struct mount *next_mnt(struct mount *p, struct mount *root)
  642. {
  643. struct list_head *next = p->mnt_mounts.next;
  644. if (next == &p->mnt_mounts) {
  645. while (1) {
  646. if (p == root)
  647. return NULL;
  648. next = p->mnt_child.next;
  649. if (next != &p->mnt_parent->mnt_mounts)
  650. break;
  651. p = p->mnt_parent;
  652. }
  653. }
  654. return list_entry(next, struct mount, mnt_child);
  655. }
  656. static struct mount *skip_mnt_tree(struct mount *p)
  657. {
  658. struct list_head *prev = p->mnt_mounts.prev;
  659. while (prev != &p->mnt_mounts) {
  660. p = list_entry(prev, struct mount, mnt_child);
  661. prev = p->mnt_mounts.prev;
  662. }
  663. return p;
  664. }
  665. struct vfsmount *
  666. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  667. {
  668. struct mount *mnt;
  669. struct dentry *root;
  670. if (!type)
  671. return ERR_PTR(-ENODEV);
  672. mnt = alloc_vfsmnt(name);
  673. if (!mnt)
  674. return ERR_PTR(-ENOMEM);
  675. if (flags & MS_KERNMOUNT)
  676. mnt->mnt.mnt_flags = MNT_INTERNAL;
  677. root = mount_fs(type, flags, name, data);
  678. if (IS_ERR(root)) {
  679. free_vfsmnt(mnt);
  680. return ERR_CAST(root);
  681. }
  682. mnt->mnt.mnt_root = root;
  683. mnt->mnt.mnt_sb = root->d_sb;
  684. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  685. mnt->mnt_parent = mnt;
  686. br_write_lock(&vfsmount_lock);
  687. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  688. br_write_unlock(&vfsmount_lock);
  689. return &mnt->mnt;
  690. }
  691. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  692. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  693. int flag)
  694. {
  695. struct super_block *sb = old->mnt.mnt_sb;
  696. struct mount *mnt;
  697. int err;
  698. mnt = alloc_vfsmnt(old->mnt_devname);
  699. if (!mnt)
  700. return ERR_PTR(-ENOMEM);
  701. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  702. mnt->mnt_group_id = 0; /* not a peer of original */
  703. else
  704. mnt->mnt_group_id = old->mnt_group_id;
  705. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  706. err = mnt_alloc_group_id(mnt);
  707. if (err)
  708. goto out_free;
  709. }
  710. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  711. atomic_inc(&sb->s_active);
  712. mnt->mnt.mnt_sb = sb;
  713. mnt->mnt.mnt_root = dget(root);
  714. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  715. mnt->mnt_parent = mnt;
  716. br_write_lock(&vfsmount_lock);
  717. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  718. br_write_unlock(&vfsmount_lock);
  719. if ((flag & CL_SLAVE) ||
  720. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  721. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  722. mnt->mnt_master = old;
  723. CLEAR_MNT_SHARED(mnt);
  724. } else if (!(flag & CL_PRIVATE)) {
  725. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  726. list_add(&mnt->mnt_share, &old->mnt_share);
  727. if (IS_MNT_SLAVE(old))
  728. list_add(&mnt->mnt_slave, &old->mnt_slave);
  729. mnt->mnt_master = old->mnt_master;
  730. }
  731. if (flag & CL_MAKE_SHARED)
  732. set_mnt_shared(mnt);
  733. /* stick the duplicate mount on the same expiry list
  734. * as the original if that was on one */
  735. if (flag & CL_EXPIRE) {
  736. if (!list_empty(&old->mnt_expire))
  737. list_add(&mnt->mnt_expire, &old->mnt_expire);
  738. }
  739. return mnt;
  740. out_free:
  741. free_vfsmnt(mnt);
  742. return ERR_PTR(err);
  743. }
  744. static inline void mntfree(struct mount *mnt)
  745. {
  746. struct vfsmount *m = &mnt->mnt;
  747. struct super_block *sb = m->mnt_sb;
  748. /*
  749. * This probably indicates that somebody messed
  750. * up a mnt_want/drop_write() pair. If this
  751. * happens, the filesystem was probably unable
  752. * to make r/w->r/o transitions.
  753. */
  754. /*
  755. * The locking used to deal with mnt_count decrement provides barriers,
  756. * so mnt_get_writers() below is safe.
  757. */
  758. WARN_ON(mnt_get_writers(mnt));
  759. fsnotify_vfsmount_delete(m);
  760. dput(m->mnt_root);
  761. free_vfsmnt(mnt);
  762. deactivate_super(sb);
  763. }
  764. static void mntput_no_expire(struct mount *mnt)
  765. {
  766. put_again:
  767. #ifdef CONFIG_SMP
  768. br_read_lock(&vfsmount_lock);
  769. if (likely(mnt->mnt_ns)) {
  770. /* shouldn't be the last one */
  771. mnt_add_count(mnt, -1);
  772. br_read_unlock(&vfsmount_lock);
  773. return;
  774. }
  775. br_read_unlock(&vfsmount_lock);
  776. br_write_lock(&vfsmount_lock);
  777. mnt_add_count(mnt, -1);
  778. if (mnt_get_count(mnt)) {
  779. br_write_unlock(&vfsmount_lock);
  780. return;
  781. }
  782. #else
  783. mnt_add_count(mnt, -1);
  784. if (likely(mnt_get_count(mnt)))
  785. return;
  786. br_write_lock(&vfsmount_lock);
  787. #endif
  788. if (unlikely(mnt->mnt_pinned)) {
  789. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  790. mnt->mnt_pinned = 0;
  791. br_write_unlock(&vfsmount_lock);
  792. acct_auto_close_mnt(&mnt->mnt);
  793. goto put_again;
  794. }
  795. list_del(&mnt->mnt_instance);
  796. br_write_unlock(&vfsmount_lock);
  797. mntfree(mnt);
  798. }
  799. void mntput(struct vfsmount *mnt)
  800. {
  801. if (mnt) {
  802. struct mount *m = real_mount(mnt);
  803. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  804. if (unlikely(m->mnt_expiry_mark))
  805. m->mnt_expiry_mark = 0;
  806. mntput_no_expire(m);
  807. }
  808. }
  809. EXPORT_SYMBOL(mntput);
  810. struct vfsmount *mntget(struct vfsmount *mnt)
  811. {
  812. if (mnt)
  813. mnt_add_count(real_mount(mnt), 1);
  814. return mnt;
  815. }
  816. EXPORT_SYMBOL(mntget);
  817. void mnt_pin(struct vfsmount *mnt)
  818. {
  819. br_write_lock(&vfsmount_lock);
  820. real_mount(mnt)->mnt_pinned++;
  821. br_write_unlock(&vfsmount_lock);
  822. }
  823. EXPORT_SYMBOL(mnt_pin);
  824. void mnt_unpin(struct vfsmount *m)
  825. {
  826. struct mount *mnt = real_mount(m);
  827. br_write_lock(&vfsmount_lock);
  828. if (mnt->mnt_pinned) {
  829. mnt_add_count(mnt, 1);
  830. mnt->mnt_pinned--;
  831. }
  832. br_write_unlock(&vfsmount_lock);
  833. }
  834. EXPORT_SYMBOL(mnt_unpin);
  835. static inline void mangle(struct seq_file *m, const char *s)
  836. {
  837. seq_escape(m, s, " \t\n\\");
  838. }
  839. /*
  840. * Simple .show_options callback for filesystems which don't want to
  841. * implement more complex mount option showing.
  842. *
  843. * See also save_mount_options().
  844. */
  845. int generic_show_options(struct seq_file *m, struct dentry *root)
  846. {
  847. const char *options;
  848. rcu_read_lock();
  849. options = rcu_dereference(root->d_sb->s_options);
  850. if (options != NULL && options[0]) {
  851. seq_putc(m, ',');
  852. mangle(m, options);
  853. }
  854. rcu_read_unlock();
  855. return 0;
  856. }
  857. EXPORT_SYMBOL(generic_show_options);
  858. /*
  859. * If filesystem uses generic_show_options(), this function should be
  860. * called from the fill_super() callback.
  861. *
  862. * The .remount_fs callback usually needs to be handled in a special
  863. * way, to make sure, that previous options are not overwritten if the
  864. * remount fails.
  865. *
  866. * Also note, that if the filesystem's .remount_fs function doesn't
  867. * reset all options to their default value, but changes only newly
  868. * given options, then the displayed options will not reflect reality
  869. * any more.
  870. */
  871. void save_mount_options(struct super_block *sb, char *options)
  872. {
  873. BUG_ON(sb->s_options);
  874. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  875. }
  876. EXPORT_SYMBOL(save_mount_options);
  877. void replace_mount_options(struct super_block *sb, char *options)
  878. {
  879. char *old = sb->s_options;
  880. rcu_assign_pointer(sb->s_options, options);
  881. if (old) {
  882. synchronize_rcu();
  883. kfree(old);
  884. }
  885. }
  886. EXPORT_SYMBOL(replace_mount_options);
  887. #ifdef CONFIG_PROC_FS
  888. /* iterator; we want it to have access to namespace_sem, thus here... */
  889. static void *m_start(struct seq_file *m, loff_t *pos)
  890. {
  891. struct proc_mounts *p = proc_mounts(m);
  892. down_read(&namespace_sem);
  893. return seq_list_start(&p->ns->list, *pos);
  894. }
  895. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  896. {
  897. struct proc_mounts *p = proc_mounts(m);
  898. return seq_list_next(v, &p->ns->list, pos);
  899. }
  900. static void m_stop(struct seq_file *m, void *v)
  901. {
  902. up_read(&namespace_sem);
  903. }
  904. static int m_show(struct seq_file *m, void *v)
  905. {
  906. struct proc_mounts *p = proc_mounts(m);
  907. struct mount *r = list_entry(v, struct mount, mnt_list);
  908. return p->show(m, &r->mnt);
  909. }
  910. const struct seq_operations mounts_op = {
  911. .start = m_start,
  912. .next = m_next,
  913. .stop = m_stop,
  914. .show = m_show,
  915. };
  916. #endif /* CONFIG_PROC_FS */
  917. /**
  918. * may_umount_tree - check if a mount tree is busy
  919. * @mnt: root of mount tree
  920. *
  921. * This is called to check if a tree of mounts has any
  922. * open files, pwds, chroots or sub mounts that are
  923. * busy.
  924. */
  925. int may_umount_tree(struct vfsmount *m)
  926. {
  927. struct mount *mnt = real_mount(m);
  928. int actual_refs = 0;
  929. int minimum_refs = 0;
  930. struct mount *p;
  931. BUG_ON(!m);
  932. /* write lock needed for mnt_get_count */
  933. br_write_lock(&vfsmount_lock);
  934. for (p = mnt; p; p = next_mnt(p, mnt)) {
  935. actual_refs += mnt_get_count(p);
  936. minimum_refs += 2;
  937. }
  938. br_write_unlock(&vfsmount_lock);
  939. if (actual_refs > minimum_refs)
  940. return 0;
  941. return 1;
  942. }
  943. EXPORT_SYMBOL(may_umount_tree);
  944. /**
  945. * may_umount - check if a mount point is busy
  946. * @mnt: root of mount
  947. *
  948. * This is called to check if a mount point has any
  949. * open files, pwds, chroots or sub mounts. If the
  950. * mount has sub mounts this will return busy
  951. * regardless of whether the sub mounts are busy.
  952. *
  953. * Doesn't take quota and stuff into account. IOW, in some cases it will
  954. * give false negatives. The main reason why it's here is that we need
  955. * a non-destructive way to look for easily umountable filesystems.
  956. */
  957. int may_umount(struct vfsmount *mnt)
  958. {
  959. int ret = 1;
  960. down_read(&namespace_sem);
  961. br_write_lock(&vfsmount_lock);
  962. if (propagate_mount_busy(real_mount(mnt), 2))
  963. ret = 0;
  964. br_write_unlock(&vfsmount_lock);
  965. up_read(&namespace_sem);
  966. return ret;
  967. }
  968. EXPORT_SYMBOL(may_umount);
  969. void release_mounts(struct list_head *head)
  970. {
  971. struct mount *mnt;
  972. while (!list_empty(head)) {
  973. mnt = list_first_entry(head, struct mount, mnt_hash);
  974. list_del_init(&mnt->mnt_hash);
  975. if (mnt_has_parent(mnt)) {
  976. struct dentry *dentry;
  977. struct mount *m;
  978. br_write_lock(&vfsmount_lock);
  979. dentry = mnt->mnt_mountpoint;
  980. m = mnt->mnt_parent;
  981. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  982. mnt->mnt_parent = mnt;
  983. m->mnt_ghosts--;
  984. br_write_unlock(&vfsmount_lock);
  985. dput(dentry);
  986. mntput(&m->mnt);
  987. }
  988. mntput(&mnt->mnt);
  989. }
  990. }
  991. /*
  992. * vfsmount lock must be held for write
  993. * namespace_sem must be held for write
  994. */
  995. void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
  996. {
  997. LIST_HEAD(tmp_list);
  998. struct mount *p;
  999. for (p = mnt; p; p = next_mnt(p, mnt))
  1000. list_move(&p->mnt_hash, &tmp_list);
  1001. if (propagate)
  1002. propagate_umount(&tmp_list);
  1003. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1004. list_del_init(&p->mnt_expire);
  1005. list_del_init(&p->mnt_list);
  1006. __touch_mnt_namespace(p->mnt_ns);
  1007. p->mnt_ns = NULL;
  1008. list_del_init(&p->mnt_child);
  1009. if (mnt_has_parent(p)) {
  1010. p->mnt_parent->mnt_ghosts++;
  1011. dentry_reset_mounted(p->mnt_mountpoint);
  1012. }
  1013. change_mnt_propagation(p, MS_PRIVATE);
  1014. }
  1015. list_splice(&tmp_list, kill);
  1016. }
  1017. static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
  1018. static int do_umount(struct mount *mnt, int flags)
  1019. {
  1020. struct super_block *sb = mnt->mnt.mnt_sb;
  1021. int retval;
  1022. LIST_HEAD(umount_list);
  1023. retval = security_sb_umount(&mnt->mnt, flags);
  1024. if (retval)
  1025. return retval;
  1026. /*
  1027. * Allow userspace to request a mountpoint be expired rather than
  1028. * unmounting unconditionally. Unmount only happens if:
  1029. * (1) the mark is already set (the mark is cleared by mntput())
  1030. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1031. */
  1032. if (flags & MNT_EXPIRE) {
  1033. if (&mnt->mnt == current->fs->root.mnt ||
  1034. flags & (MNT_FORCE | MNT_DETACH))
  1035. return -EINVAL;
  1036. /*
  1037. * probably don't strictly need the lock here if we examined
  1038. * all race cases, but it's a slowpath.
  1039. */
  1040. br_write_lock(&vfsmount_lock);
  1041. if (mnt_get_count(mnt) != 2) {
  1042. br_write_unlock(&vfsmount_lock);
  1043. return -EBUSY;
  1044. }
  1045. br_write_unlock(&vfsmount_lock);
  1046. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1047. return -EAGAIN;
  1048. }
  1049. /*
  1050. * If we may have to abort operations to get out of this
  1051. * mount, and they will themselves hold resources we must
  1052. * allow the fs to do things. In the Unix tradition of
  1053. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1054. * might fail to complete on the first run through as other tasks
  1055. * must return, and the like. Thats for the mount program to worry
  1056. * about for the moment.
  1057. */
  1058. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1059. sb->s_op->umount_begin(sb);
  1060. }
  1061. /*
  1062. * No sense to grab the lock for this test, but test itself looks
  1063. * somewhat bogus. Suggestions for better replacement?
  1064. * Ho-hum... In principle, we might treat that as umount + switch
  1065. * to rootfs. GC would eventually take care of the old vfsmount.
  1066. * Actually it makes sense, especially if rootfs would contain a
  1067. * /reboot - static binary that would close all descriptors and
  1068. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1069. */
  1070. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1071. /*
  1072. * Special case for "unmounting" root ...
  1073. * we just try to remount it readonly.
  1074. */
  1075. down_write(&sb->s_umount);
  1076. if (!(sb->s_flags & MS_RDONLY))
  1077. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1078. up_write(&sb->s_umount);
  1079. return retval;
  1080. }
  1081. down_write(&namespace_sem);
  1082. br_write_lock(&vfsmount_lock);
  1083. event++;
  1084. if (!(flags & MNT_DETACH))
  1085. shrink_submounts(mnt, &umount_list);
  1086. retval = -EBUSY;
  1087. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1088. if (!list_empty(&mnt->mnt_list))
  1089. umount_tree(mnt, 1, &umount_list);
  1090. retval = 0;
  1091. }
  1092. br_write_unlock(&vfsmount_lock);
  1093. up_write(&namespace_sem);
  1094. release_mounts(&umount_list);
  1095. return retval;
  1096. }
  1097. /*
  1098. * Now umount can handle mount points as well as block devices.
  1099. * This is important for filesystems which use unnamed block devices.
  1100. *
  1101. * We now support a flag for forced unmount like the other 'big iron'
  1102. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1103. */
  1104. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1105. {
  1106. struct path path;
  1107. struct mount *mnt;
  1108. int retval;
  1109. int lookup_flags = 0;
  1110. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1111. return -EINVAL;
  1112. if (!(flags & UMOUNT_NOFOLLOW))
  1113. lookup_flags |= LOOKUP_FOLLOW;
  1114. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1115. if (retval)
  1116. goto out;
  1117. mnt = real_mount(path.mnt);
  1118. retval = -EINVAL;
  1119. if (path.dentry != path.mnt->mnt_root)
  1120. goto dput_and_out;
  1121. if (!check_mnt(mnt))
  1122. goto dput_and_out;
  1123. retval = -EPERM;
  1124. if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1125. goto dput_and_out;
  1126. retval = do_umount(mnt, flags);
  1127. dput_and_out:
  1128. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1129. dput(path.dentry);
  1130. mntput_no_expire(mnt);
  1131. out:
  1132. return retval;
  1133. }
  1134. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1135. /*
  1136. * The 2.0 compatible umount. No flags.
  1137. */
  1138. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1139. {
  1140. return sys_umount(name, 0);
  1141. }
  1142. #endif
  1143. static int mount_is_safe(struct path *path)
  1144. {
  1145. if (ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1146. return 0;
  1147. return -EPERM;
  1148. #ifdef notyet
  1149. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1150. return -EPERM;
  1151. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1152. if (current_uid() != path->dentry->d_inode->i_uid)
  1153. return -EPERM;
  1154. }
  1155. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1156. return -EPERM;
  1157. return 0;
  1158. #endif
  1159. }
  1160. static bool mnt_ns_loop(struct path *path)
  1161. {
  1162. /* Could bind mounting the mount namespace inode cause a
  1163. * mount namespace loop?
  1164. */
  1165. struct inode *inode = path->dentry->d_inode;
  1166. struct proc_inode *ei;
  1167. struct mnt_namespace *mnt_ns;
  1168. if (!proc_ns_inode(inode))
  1169. return false;
  1170. ei = PROC_I(inode);
  1171. if (ei->ns_ops != &mntns_operations)
  1172. return false;
  1173. mnt_ns = ei->ns;
  1174. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1175. }
  1176. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1177. int flag)
  1178. {
  1179. struct mount *res, *p, *q, *r;
  1180. struct path path;
  1181. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1182. return ERR_PTR(-EINVAL);
  1183. res = q = clone_mnt(mnt, dentry, flag);
  1184. if (IS_ERR(q))
  1185. return q;
  1186. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1187. p = mnt;
  1188. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1189. struct mount *s;
  1190. if (!is_subdir(r->mnt_mountpoint, dentry))
  1191. continue;
  1192. for (s = r; s; s = next_mnt(s, r)) {
  1193. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1194. s = skip_mnt_tree(s);
  1195. continue;
  1196. }
  1197. while (p != s->mnt_parent) {
  1198. p = p->mnt_parent;
  1199. q = q->mnt_parent;
  1200. }
  1201. p = s;
  1202. path.mnt = &q->mnt;
  1203. path.dentry = p->mnt_mountpoint;
  1204. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1205. if (IS_ERR(q))
  1206. goto out;
  1207. br_write_lock(&vfsmount_lock);
  1208. list_add_tail(&q->mnt_list, &res->mnt_list);
  1209. attach_mnt(q, &path);
  1210. br_write_unlock(&vfsmount_lock);
  1211. }
  1212. }
  1213. return res;
  1214. out:
  1215. if (res) {
  1216. LIST_HEAD(umount_list);
  1217. br_write_lock(&vfsmount_lock);
  1218. umount_tree(res, 0, &umount_list);
  1219. br_write_unlock(&vfsmount_lock);
  1220. release_mounts(&umount_list);
  1221. }
  1222. return q;
  1223. }
  1224. /* Caller should check returned pointer for errors */
  1225. struct vfsmount *collect_mounts(struct path *path)
  1226. {
  1227. struct mount *tree;
  1228. down_write(&namespace_sem);
  1229. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1230. CL_COPY_ALL | CL_PRIVATE);
  1231. up_write(&namespace_sem);
  1232. if (IS_ERR(tree))
  1233. return NULL;
  1234. return &tree->mnt;
  1235. }
  1236. void drop_collected_mounts(struct vfsmount *mnt)
  1237. {
  1238. LIST_HEAD(umount_list);
  1239. down_write(&namespace_sem);
  1240. br_write_lock(&vfsmount_lock);
  1241. umount_tree(real_mount(mnt), 0, &umount_list);
  1242. br_write_unlock(&vfsmount_lock);
  1243. up_write(&namespace_sem);
  1244. release_mounts(&umount_list);
  1245. }
  1246. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1247. struct vfsmount *root)
  1248. {
  1249. struct mount *mnt;
  1250. int res = f(root, arg);
  1251. if (res)
  1252. return res;
  1253. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1254. res = f(&mnt->mnt, arg);
  1255. if (res)
  1256. return res;
  1257. }
  1258. return 0;
  1259. }
  1260. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1261. {
  1262. struct mount *p;
  1263. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1264. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1265. mnt_release_group_id(p);
  1266. }
  1267. }
  1268. static int invent_group_ids(struct mount *mnt, bool recurse)
  1269. {
  1270. struct mount *p;
  1271. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1272. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1273. int err = mnt_alloc_group_id(p);
  1274. if (err) {
  1275. cleanup_group_ids(mnt, p);
  1276. return err;
  1277. }
  1278. }
  1279. }
  1280. return 0;
  1281. }
  1282. /*
  1283. * @source_mnt : mount tree to be attached
  1284. * @nd : place the mount tree @source_mnt is attached
  1285. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1286. * store the parent mount and mountpoint dentry.
  1287. * (done when source_mnt is moved)
  1288. *
  1289. * NOTE: in the table below explains the semantics when a source mount
  1290. * of a given type is attached to a destination mount of a given type.
  1291. * ---------------------------------------------------------------------------
  1292. * | BIND MOUNT OPERATION |
  1293. * |**************************************************************************
  1294. * | source-->| shared | private | slave | unbindable |
  1295. * | dest | | | | |
  1296. * | | | | | | |
  1297. * | v | | | | |
  1298. * |**************************************************************************
  1299. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1300. * | | | | | |
  1301. * |non-shared| shared (+) | private | slave (*) | invalid |
  1302. * ***************************************************************************
  1303. * A bind operation clones the source mount and mounts the clone on the
  1304. * destination mount.
  1305. *
  1306. * (++) the cloned mount is propagated to all the mounts in the propagation
  1307. * tree of the destination mount and the cloned mount is added to
  1308. * the peer group of the source mount.
  1309. * (+) the cloned mount is created under the destination mount and is marked
  1310. * as shared. The cloned mount is added to the peer group of the source
  1311. * mount.
  1312. * (+++) the mount is propagated to all the mounts in the propagation tree
  1313. * of the destination mount and the cloned mount is made slave
  1314. * of the same master as that of the source mount. The cloned mount
  1315. * is marked as 'shared and slave'.
  1316. * (*) the cloned mount is made a slave of the same master as that of the
  1317. * source mount.
  1318. *
  1319. * ---------------------------------------------------------------------------
  1320. * | MOVE MOUNT OPERATION |
  1321. * |**************************************************************************
  1322. * | source-->| shared | private | slave | unbindable |
  1323. * | dest | | | | |
  1324. * | | | | | | |
  1325. * | v | | | | |
  1326. * |**************************************************************************
  1327. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1328. * | | | | | |
  1329. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1330. * ***************************************************************************
  1331. *
  1332. * (+) the mount is moved to the destination. And is then propagated to
  1333. * all the mounts in the propagation tree of the destination mount.
  1334. * (+*) the mount is moved to the destination.
  1335. * (+++) the mount is moved to the destination and is then propagated to
  1336. * all the mounts belonging to the destination mount's propagation tree.
  1337. * the mount is marked as 'shared and slave'.
  1338. * (*) the mount continues to be a slave at the new location.
  1339. *
  1340. * if the source mount is a tree, the operations explained above is
  1341. * applied to each mount in the tree.
  1342. * Must be called without spinlocks held, since this function can sleep
  1343. * in allocations.
  1344. */
  1345. static int attach_recursive_mnt(struct mount *source_mnt,
  1346. struct path *path, struct path *parent_path)
  1347. {
  1348. LIST_HEAD(tree_list);
  1349. struct mount *dest_mnt = real_mount(path->mnt);
  1350. struct dentry *dest_dentry = path->dentry;
  1351. struct mount *child, *p;
  1352. int err;
  1353. if (IS_MNT_SHARED(dest_mnt)) {
  1354. err = invent_group_ids(source_mnt, true);
  1355. if (err)
  1356. goto out;
  1357. }
  1358. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1359. if (err)
  1360. goto out_cleanup_ids;
  1361. br_write_lock(&vfsmount_lock);
  1362. if (IS_MNT_SHARED(dest_mnt)) {
  1363. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1364. set_mnt_shared(p);
  1365. }
  1366. if (parent_path) {
  1367. detach_mnt(source_mnt, parent_path);
  1368. attach_mnt(source_mnt, path);
  1369. touch_mnt_namespace(source_mnt->mnt_ns);
  1370. } else {
  1371. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1372. commit_tree(source_mnt);
  1373. }
  1374. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1375. list_del_init(&child->mnt_hash);
  1376. commit_tree(child);
  1377. }
  1378. br_write_unlock(&vfsmount_lock);
  1379. return 0;
  1380. out_cleanup_ids:
  1381. if (IS_MNT_SHARED(dest_mnt))
  1382. cleanup_group_ids(source_mnt, NULL);
  1383. out:
  1384. return err;
  1385. }
  1386. static int lock_mount(struct path *path)
  1387. {
  1388. struct vfsmount *mnt;
  1389. retry:
  1390. mutex_lock(&path->dentry->d_inode->i_mutex);
  1391. if (unlikely(cant_mount(path->dentry))) {
  1392. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1393. return -ENOENT;
  1394. }
  1395. down_write(&namespace_sem);
  1396. mnt = lookup_mnt(path);
  1397. if (likely(!mnt))
  1398. return 0;
  1399. up_write(&namespace_sem);
  1400. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1401. path_put(path);
  1402. path->mnt = mnt;
  1403. path->dentry = dget(mnt->mnt_root);
  1404. goto retry;
  1405. }
  1406. static void unlock_mount(struct path *path)
  1407. {
  1408. up_write(&namespace_sem);
  1409. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1410. }
  1411. static int graft_tree(struct mount *mnt, struct path *path)
  1412. {
  1413. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1414. return -EINVAL;
  1415. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1416. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1417. return -ENOTDIR;
  1418. if (d_unlinked(path->dentry))
  1419. return -ENOENT;
  1420. return attach_recursive_mnt(mnt, path, NULL);
  1421. }
  1422. /*
  1423. * Sanity check the flags to change_mnt_propagation.
  1424. */
  1425. static int flags_to_propagation_type(int flags)
  1426. {
  1427. int type = flags & ~(MS_REC | MS_SILENT);
  1428. /* Fail if any non-propagation flags are set */
  1429. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1430. return 0;
  1431. /* Only one propagation flag should be set */
  1432. if (!is_power_of_2(type))
  1433. return 0;
  1434. return type;
  1435. }
  1436. /*
  1437. * recursively change the type of the mountpoint.
  1438. */
  1439. static int do_change_type(struct path *path, int flag)
  1440. {
  1441. struct mount *m;
  1442. struct mount *mnt = real_mount(path->mnt);
  1443. int recurse = flag & MS_REC;
  1444. int type;
  1445. int err = 0;
  1446. if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1447. return -EPERM;
  1448. if (path->dentry != path->mnt->mnt_root)
  1449. return -EINVAL;
  1450. type = flags_to_propagation_type(flag);
  1451. if (!type)
  1452. return -EINVAL;
  1453. down_write(&namespace_sem);
  1454. if (type == MS_SHARED) {
  1455. err = invent_group_ids(mnt, recurse);
  1456. if (err)
  1457. goto out_unlock;
  1458. }
  1459. br_write_lock(&vfsmount_lock);
  1460. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1461. change_mnt_propagation(m, type);
  1462. br_write_unlock(&vfsmount_lock);
  1463. out_unlock:
  1464. up_write(&namespace_sem);
  1465. return err;
  1466. }
  1467. /*
  1468. * do loopback mount.
  1469. */
  1470. static int do_loopback(struct path *path, const char *old_name,
  1471. int recurse)
  1472. {
  1473. LIST_HEAD(umount_list);
  1474. struct path old_path;
  1475. struct mount *mnt = NULL, *old;
  1476. int err = mount_is_safe(path);
  1477. if (err)
  1478. return err;
  1479. if (!old_name || !*old_name)
  1480. return -EINVAL;
  1481. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1482. if (err)
  1483. return err;
  1484. err = -EINVAL;
  1485. if (mnt_ns_loop(&old_path))
  1486. goto out;
  1487. err = lock_mount(path);
  1488. if (err)
  1489. goto out;
  1490. old = real_mount(old_path.mnt);
  1491. err = -EINVAL;
  1492. if (IS_MNT_UNBINDABLE(old))
  1493. goto out2;
  1494. if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
  1495. goto out2;
  1496. if (recurse)
  1497. mnt = copy_tree(old, old_path.dentry, 0);
  1498. else
  1499. mnt = clone_mnt(old, old_path.dentry, 0);
  1500. if (IS_ERR(mnt)) {
  1501. err = PTR_ERR(mnt);
  1502. goto out;
  1503. }
  1504. err = graft_tree(mnt, path);
  1505. if (err) {
  1506. br_write_lock(&vfsmount_lock);
  1507. umount_tree(mnt, 0, &umount_list);
  1508. br_write_unlock(&vfsmount_lock);
  1509. }
  1510. out2:
  1511. unlock_mount(path);
  1512. release_mounts(&umount_list);
  1513. out:
  1514. path_put(&old_path);
  1515. return err;
  1516. }
  1517. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1518. {
  1519. int error = 0;
  1520. int readonly_request = 0;
  1521. if (ms_flags & MS_RDONLY)
  1522. readonly_request = 1;
  1523. if (readonly_request == __mnt_is_readonly(mnt))
  1524. return 0;
  1525. if (readonly_request)
  1526. error = mnt_make_readonly(real_mount(mnt));
  1527. else
  1528. __mnt_unmake_readonly(real_mount(mnt));
  1529. return error;
  1530. }
  1531. /*
  1532. * change filesystem flags. dir should be a physical root of filesystem.
  1533. * If you've mounted a non-root directory somewhere and want to do remount
  1534. * on it - tough luck.
  1535. */
  1536. static int do_remount(struct path *path, int flags, int mnt_flags,
  1537. void *data)
  1538. {
  1539. int err;
  1540. struct super_block *sb = path->mnt->mnt_sb;
  1541. struct mount *mnt = real_mount(path->mnt);
  1542. if (!capable(CAP_SYS_ADMIN))
  1543. return -EPERM;
  1544. if (!check_mnt(mnt))
  1545. return -EINVAL;
  1546. if (path->dentry != path->mnt->mnt_root)
  1547. return -EINVAL;
  1548. err = security_sb_remount(sb, data);
  1549. if (err)
  1550. return err;
  1551. down_write(&sb->s_umount);
  1552. if (flags & MS_BIND)
  1553. err = change_mount_flags(path->mnt, flags);
  1554. else
  1555. err = do_remount_sb(sb, flags, data, 0);
  1556. if (!err) {
  1557. br_write_lock(&vfsmount_lock);
  1558. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1559. mnt->mnt.mnt_flags = mnt_flags;
  1560. br_write_unlock(&vfsmount_lock);
  1561. }
  1562. up_write(&sb->s_umount);
  1563. if (!err) {
  1564. br_write_lock(&vfsmount_lock);
  1565. touch_mnt_namespace(mnt->mnt_ns);
  1566. br_write_unlock(&vfsmount_lock);
  1567. }
  1568. return err;
  1569. }
  1570. static inline int tree_contains_unbindable(struct mount *mnt)
  1571. {
  1572. struct mount *p;
  1573. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1574. if (IS_MNT_UNBINDABLE(p))
  1575. return 1;
  1576. }
  1577. return 0;
  1578. }
  1579. static int do_move_mount(struct path *path, const char *old_name)
  1580. {
  1581. struct path old_path, parent_path;
  1582. struct mount *p;
  1583. struct mount *old;
  1584. int err = 0;
  1585. if (!ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
  1586. return -EPERM;
  1587. if (!old_name || !*old_name)
  1588. return -EINVAL;
  1589. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1590. if (err)
  1591. return err;
  1592. err = lock_mount(path);
  1593. if (err < 0)
  1594. goto out;
  1595. old = real_mount(old_path.mnt);
  1596. p = real_mount(path->mnt);
  1597. err = -EINVAL;
  1598. if (!check_mnt(p) || !check_mnt(old))
  1599. goto out1;
  1600. if (d_unlinked(path->dentry))
  1601. goto out1;
  1602. err = -EINVAL;
  1603. if (old_path.dentry != old_path.mnt->mnt_root)
  1604. goto out1;
  1605. if (!mnt_has_parent(old))
  1606. goto out1;
  1607. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1608. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1609. goto out1;
  1610. /*
  1611. * Don't move a mount residing in a shared parent.
  1612. */
  1613. if (IS_MNT_SHARED(old->mnt_parent))
  1614. goto out1;
  1615. /*
  1616. * Don't move a mount tree containing unbindable mounts to a destination
  1617. * mount which is shared.
  1618. */
  1619. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1620. goto out1;
  1621. err = -ELOOP;
  1622. for (; mnt_has_parent(p); p = p->mnt_parent)
  1623. if (p == old)
  1624. goto out1;
  1625. err = attach_recursive_mnt(old, path, &parent_path);
  1626. if (err)
  1627. goto out1;
  1628. /* if the mount is moved, it should no longer be expire
  1629. * automatically */
  1630. list_del_init(&old->mnt_expire);
  1631. out1:
  1632. unlock_mount(path);
  1633. out:
  1634. if (!err)
  1635. path_put(&parent_path);
  1636. path_put(&old_path);
  1637. return err;
  1638. }
  1639. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1640. {
  1641. int err;
  1642. const char *subtype = strchr(fstype, '.');
  1643. if (subtype) {
  1644. subtype++;
  1645. err = -EINVAL;
  1646. if (!subtype[0])
  1647. goto err;
  1648. } else
  1649. subtype = "";
  1650. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1651. err = -ENOMEM;
  1652. if (!mnt->mnt_sb->s_subtype)
  1653. goto err;
  1654. return mnt;
  1655. err:
  1656. mntput(mnt);
  1657. return ERR_PTR(err);
  1658. }
  1659. /*
  1660. * add a mount into a namespace's mount tree
  1661. */
  1662. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1663. {
  1664. int err;
  1665. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1666. err = lock_mount(path);
  1667. if (err)
  1668. return err;
  1669. err = -EINVAL;
  1670. if (unlikely(!check_mnt(real_mount(path->mnt)))) {
  1671. /* that's acceptable only for automounts done in private ns */
  1672. if (!(mnt_flags & MNT_SHRINKABLE))
  1673. goto unlock;
  1674. /* ... and for those we'd better have mountpoint still alive */
  1675. if (!real_mount(path->mnt)->mnt_ns)
  1676. goto unlock;
  1677. }
  1678. /* Refuse the same filesystem on the same mount point */
  1679. err = -EBUSY;
  1680. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1681. path->mnt->mnt_root == path->dentry)
  1682. goto unlock;
  1683. err = -EINVAL;
  1684. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1685. goto unlock;
  1686. newmnt->mnt.mnt_flags = mnt_flags;
  1687. err = graft_tree(newmnt, path);
  1688. unlock:
  1689. unlock_mount(path);
  1690. return err;
  1691. }
  1692. /*
  1693. * create a new mount for userspace and request it to be added into the
  1694. * namespace's tree
  1695. */
  1696. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1697. int mnt_flags, const char *name, void *data)
  1698. {
  1699. struct file_system_type *type;
  1700. struct user_namespace *user_ns;
  1701. struct vfsmount *mnt;
  1702. int err;
  1703. if (!fstype)
  1704. return -EINVAL;
  1705. /* we need capabilities... */
  1706. user_ns = real_mount(path->mnt)->mnt_ns->user_ns;
  1707. if (!ns_capable(user_ns, CAP_SYS_ADMIN))
  1708. return -EPERM;
  1709. type = get_fs_type(fstype);
  1710. if (!type)
  1711. return -ENODEV;
  1712. if (user_ns != &init_user_ns) {
  1713. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1714. put_filesystem(type);
  1715. return -EPERM;
  1716. }
  1717. /* Only in special cases allow devices from mounts
  1718. * created outside the initial user namespace.
  1719. */
  1720. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1721. flags |= MS_NODEV;
  1722. mnt_flags |= MNT_NODEV;
  1723. }
  1724. }
  1725. mnt = vfs_kern_mount(type, flags, name, data);
  1726. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1727. !mnt->mnt_sb->s_subtype)
  1728. mnt = fs_set_subtype(mnt, fstype);
  1729. put_filesystem(type);
  1730. if (IS_ERR(mnt))
  1731. return PTR_ERR(mnt);
  1732. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1733. if (err)
  1734. mntput(mnt);
  1735. return err;
  1736. }
  1737. int finish_automount(struct vfsmount *m, struct path *path)
  1738. {
  1739. struct mount *mnt = real_mount(m);
  1740. int err;
  1741. /* The new mount record should have at least 2 refs to prevent it being
  1742. * expired before we get a chance to add it
  1743. */
  1744. BUG_ON(mnt_get_count(mnt) < 2);
  1745. if (m->mnt_sb == path->mnt->mnt_sb &&
  1746. m->mnt_root == path->dentry) {
  1747. err = -ELOOP;
  1748. goto fail;
  1749. }
  1750. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1751. if (!err)
  1752. return 0;
  1753. fail:
  1754. /* remove m from any expiration list it may be on */
  1755. if (!list_empty(&mnt->mnt_expire)) {
  1756. down_write(&namespace_sem);
  1757. br_write_lock(&vfsmount_lock);
  1758. list_del_init(&mnt->mnt_expire);
  1759. br_write_unlock(&vfsmount_lock);
  1760. up_write(&namespace_sem);
  1761. }
  1762. mntput(m);
  1763. mntput(m);
  1764. return err;
  1765. }
  1766. /**
  1767. * mnt_set_expiry - Put a mount on an expiration list
  1768. * @mnt: The mount to list.
  1769. * @expiry_list: The list to add the mount to.
  1770. */
  1771. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1772. {
  1773. down_write(&namespace_sem);
  1774. br_write_lock(&vfsmount_lock);
  1775. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1776. br_write_unlock(&vfsmount_lock);
  1777. up_write(&namespace_sem);
  1778. }
  1779. EXPORT_SYMBOL(mnt_set_expiry);
  1780. /*
  1781. * process a list of expirable mountpoints with the intent of discarding any
  1782. * mountpoints that aren't in use and haven't been touched since last we came
  1783. * here
  1784. */
  1785. void mark_mounts_for_expiry(struct list_head *mounts)
  1786. {
  1787. struct mount *mnt, *next;
  1788. LIST_HEAD(graveyard);
  1789. LIST_HEAD(umounts);
  1790. if (list_empty(mounts))
  1791. return;
  1792. down_write(&namespace_sem);
  1793. br_write_lock(&vfsmount_lock);
  1794. /* extract from the expiration list every vfsmount that matches the
  1795. * following criteria:
  1796. * - only referenced by its parent vfsmount
  1797. * - still marked for expiry (marked on the last call here; marks are
  1798. * cleared by mntput())
  1799. */
  1800. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1801. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1802. propagate_mount_busy(mnt, 1))
  1803. continue;
  1804. list_move(&mnt->mnt_expire, &graveyard);
  1805. }
  1806. while (!list_empty(&graveyard)) {
  1807. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1808. touch_mnt_namespace(mnt->mnt_ns);
  1809. umount_tree(mnt, 1, &umounts);
  1810. }
  1811. br_write_unlock(&vfsmount_lock);
  1812. up_write(&namespace_sem);
  1813. release_mounts(&umounts);
  1814. }
  1815. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1816. /*
  1817. * Ripoff of 'select_parent()'
  1818. *
  1819. * search the list of submounts for a given mountpoint, and move any
  1820. * shrinkable submounts to the 'graveyard' list.
  1821. */
  1822. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1823. {
  1824. struct mount *this_parent = parent;
  1825. struct list_head *next;
  1826. int found = 0;
  1827. repeat:
  1828. next = this_parent->mnt_mounts.next;
  1829. resume:
  1830. while (next != &this_parent->mnt_mounts) {
  1831. struct list_head *tmp = next;
  1832. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1833. next = tmp->next;
  1834. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1835. continue;
  1836. /*
  1837. * Descend a level if the d_mounts list is non-empty.
  1838. */
  1839. if (!list_empty(&mnt->mnt_mounts)) {
  1840. this_parent = mnt;
  1841. goto repeat;
  1842. }
  1843. if (!propagate_mount_busy(mnt, 1)) {
  1844. list_move_tail(&mnt->mnt_expire, graveyard);
  1845. found++;
  1846. }
  1847. }
  1848. /*
  1849. * All done at this level ... ascend and resume the search
  1850. */
  1851. if (this_parent != parent) {
  1852. next = this_parent->mnt_child.next;
  1853. this_parent = this_parent->mnt_parent;
  1854. goto resume;
  1855. }
  1856. return found;
  1857. }
  1858. /*
  1859. * process a list of expirable mountpoints with the intent of discarding any
  1860. * submounts of a specific parent mountpoint
  1861. *
  1862. * vfsmount_lock must be held for write
  1863. */
  1864. static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
  1865. {
  1866. LIST_HEAD(graveyard);
  1867. struct mount *m;
  1868. /* extract submounts of 'mountpoint' from the expiration list */
  1869. while (select_submounts(mnt, &graveyard)) {
  1870. while (!list_empty(&graveyard)) {
  1871. m = list_first_entry(&graveyard, struct mount,
  1872. mnt_expire);
  1873. touch_mnt_namespace(m->mnt_ns);
  1874. umount_tree(m, 1, umounts);
  1875. }
  1876. }
  1877. }
  1878. /*
  1879. * Some copy_from_user() implementations do not return the exact number of
  1880. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1881. * Note that this function differs from copy_from_user() in that it will oops
  1882. * on bad values of `to', rather than returning a short copy.
  1883. */
  1884. static long exact_copy_from_user(void *to, const void __user * from,
  1885. unsigned long n)
  1886. {
  1887. char *t = to;
  1888. const char __user *f = from;
  1889. char c;
  1890. if (!access_ok(VERIFY_READ, from, n))
  1891. return n;
  1892. while (n) {
  1893. if (__get_user(c, f)) {
  1894. memset(t, 0, n);
  1895. break;
  1896. }
  1897. *t++ = c;
  1898. f++;
  1899. n--;
  1900. }
  1901. return n;
  1902. }
  1903. int copy_mount_options(const void __user * data, unsigned long *where)
  1904. {
  1905. int i;
  1906. unsigned long page;
  1907. unsigned long size;
  1908. *where = 0;
  1909. if (!data)
  1910. return 0;
  1911. if (!(page = __get_free_page(GFP_KERNEL)))
  1912. return -ENOMEM;
  1913. /* We only care that *some* data at the address the user
  1914. * gave us is valid. Just in case, we'll zero
  1915. * the remainder of the page.
  1916. */
  1917. /* copy_from_user cannot cross TASK_SIZE ! */
  1918. size = TASK_SIZE - (unsigned long)data;
  1919. if (size > PAGE_SIZE)
  1920. size = PAGE_SIZE;
  1921. i = size - exact_copy_from_user((void *)page, data, size);
  1922. if (!i) {
  1923. free_page(page);
  1924. return -EFAULT;
  1925. }
  1926. if (i != PAGE_SIZE)
  1927. memset((char *)page + i, 0, PAGE_SIZE - i);
  1928. *where = page;
  1929. return 0;
  1930. }
  1931. int copy_mount_string(const void __user *data, char **where)
  1932. {
  1933. char *tmp;
  1934. if (!data) {
  1935. *where = NULL;
  1936. return 0;
  1937. }
  1938. tmp = strndup_user(data, PAGE_SIZE);
  1939. if (IS_ERR(tmp))
  1940. return PTR_ERR(tmp);
  1941. *where = tmp;
  1942. return 0;
  1943. }
  1944. /*
  1945. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1946. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1947. *
  1948. * data is a (void *) that can point to any structure up to
  1949. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1950. * information (or be NULL).
  1951. *
  1952. * Pre-0.97 versions of mount() didn't have a flags word.
  1953. * When the flags word was introduced its top half was required
  1954. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1955. * Therefore, if this magic number is present, it carries no information
  1956. * and must be discarded.
  1957. */
  1958. long do_mount(const char *dev_name, const char *dir_name,
  1959. const char *type_page, unsigned long flags, void *data_page)
  1960. {
  1961. struct path path;
  1962. int retval = 0;
  1963. int mnt_flags = 0;
  1964. /* Discard magic */
  1965. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1966. flags &= ~MS_MGC_MSK;
  1967. /* Basic sanity checks */
  1968. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1969. return -EINVAL;
  1970. if (data_page)
  1971. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1972. /* ... and get the mountpoint */
  1973. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1974. if (retval)
  1975. return retval;
  1976. retval = security_sb_mount(dev_name, &path,
  1977. type_page, flags, data_page);
  1978. if (retval)
  1979. goto dput_out;
  1980. /* Default to relatime unless overriden */
  1981. if (!(flags & MS_NOATIME))
  1982. mnt_flags |= MNT_RELATIME;
  1983. /* Separate the per-mountpoint flags */
  1984. if (flags & MS_NOSUID)
  1985. mnt_flags |= MNT_NOSUID;
  1986. if (flags & MS_NODEV)
  1987. mnt_flags |= MNT_NODEV;
  1988. if (flags & MS_NOEXEC)
  1989. mnt_flags |= MNT_NOEXEC;
  1990. if (flags & MS_NOATIME)
  1991. mnt_flags |= MNT_NOATIME;
  1992. if (flags & MS_NODIRATIME)
  1993. mnt_flags |= MNT_NODIRATIME;
  1994. if (flags & MS_STRICTATIME)
  1995. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1996. if (flags & MS_RDONLY)
  1997. mnt_flags |= MNT_READONLY;
  1998. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  1999. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2000. MS_STRICTATIME);
  2001. if (flags & MS_REMOUNT)
  2002. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2003. data_page);
  2004. else if (flags & MS_BIND)
  2005. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2006. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2007. retval = do_change_type(&path, flags);
  2008. else if (flags & MS_MOVE)
  2009. retval = do_move_mount(&path, dev_name);
  2010. else
  2011. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2012. dev_name, data_page);
  2013. dput_out:
  2014. path_put(&path);
  2015. return retval;
  2016. }
  2017. static void free_mnt_ns(struct mnt_namespace *ns)
  2018. {
  2019. proc_free_inum(ns->proc_inum);
  2020. put_user_ns(ns->user_ns);
  2021. kfree(ns);
  2022. }
  2023. /*
  2024. * Assign a sequence number so we can detect when we attempt to bind
  2025. * mount a reference to an older mount namespace into the current
  2026. * mount namespace, preventing reference counting loops. A 64bit
  2027. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2028. * is effectively never, so we can ignore the possibility.
  2029. */
  2030. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2031. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2032. {
  2033. struct mnt_namespace *new_ns;
  2034. int ret;
  2035. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2036. if (!new_ns)
  2037. return ERR_PTR(-ENOMEM);
  2038. ret = proc_alloc_inum(&new_ns->proc_inum);
  2039. if (ret) {
  2040. kfree(new_ns);
  2041. return ERR_PTR(ret);
  2042. }
  2043. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2044. atomic_set(&new_ns->count, 1);
  2045. new_ns->root = NULL;
  2046. INIT_LIST_HEAD(&new_ns->list);
  2047. init_waitqueue_head(&new_ns->poll);
  2048. new_ns->event = 0;
  2049. new_ns->user_ns = get_user_ns(user_ns);
  2050. return new_ns;
  2051. }
  2052. /*
  2053. * Allocate a new namespace structure and populate it with contents
  2054. * copied from the namespace of the passed in task structure.
  2055. */
  2056. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2057. struct user_namespace *user_ns, struct fs_struct *fs)
  2058. {
  2059. struct mnt_namespace *new_ns;
  2060. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2061. struct mount *p, *q;
  2062. struct mount *old = mnt_ns->root;
  2063. struct mount *new;
  2064. int copy_flags;
  2065. new_ns = alloc_mnt_ns(user_ns);
  2066. if (IS_ERR(new_ns))
  2067. return new_ns;
  2068. down_write(&namespace_sem);
  2069. /* First pass: copy the tree topology */
  2070. copy_flags = CL_COPY_ALL | CL_EXPIRE;
  2071. if (user_ns != mnt_ns->user_ns)
  2072. copy_flags |= CL_SHARED_TO_SLAVE;
  2073. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2074. if (IS_ERR(new)) {
  2075. up_write(&namespace_sem);
  2076. free_mnt_ns(new_ns);
  2077. return ERR_CAST(new);
  2078. }
  2079. new_ns->root = new;
  2080. br_write_lock(&vfsmount_lock);
  2081. list_add_tail(&new_ns->list, &new->mnt_list);
  2082. br_write_unlock(&vfsmount_lock);
  2083. /*
  2084. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2085. * as belonging to new namespace. We have already acquired a private
  2086. * fs_struct, so tsk->fs->lock is not needed.
  2087. */
  2088. p = old;
  2089. q = new;
  2090. while (p) {
  2091. q->mnt_ns = new_ns;
  2092. if (fs) {
  2093. if (&p->mnt == fs->root.mnt) {
  2094. fs->root.mnt = mntget(&q->mnt);
  2095. rootmnt = &p->mnt;
  2096. }
  2097. if (&p->mnt == fs->pwd.mnt) {
  2098. fs->pwd.mnt = mntget(&q->mnt);
  2099. pwdmnt = &p->mnt;
  2100. }
  2101. }
  2102. p = next_mnt(p, old);
  2103. q = next_mnt(q, new);
  2104. }
  2105. up_write(&namespace_sem);
  2106. if (rootmnt)
  2107. mntput(rootmnt);
  2108. if (pwdmnt)
  2109. mntput(pwdmnt);
  2110. return new_ns;
  2111. }
  2112. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2113. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2114. {
  2115. struct mnt_namespace *new_ns;
  2116. BUG_ON(!ns);
  2117. get_mnt_ns(ns);
  2118. if (!(flags & CLONE_NEWNS))
  2119. return ns;
  2120. new_ns = dup_mnt_ns(ns, user_ns, new_fs);
  2121. put_mnt_ns(ns);
  2122. return new_ns;
  2123. }
  2124. /**
  2125. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2126. * @mnt: pointer to the new root filesystem mountpoint
  2127. */
  2128. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2129. {
  2130. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2131. if (!IS_ERR(new_ns)) {
  2132. struct mount *mnt = real_mount(m);
  2133. mnt->mnt_ns = new_ns;
  2134. new_ns->root = mnt;
  2135. list_add(&new_ns->list, &mnt->mnt_list);
  2136. } else {
  2137. mntput(m);
  2138. }
  2139. return new_ns;
  2140. }
  2141. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2142. {
  2143. struct mnt_namespace *ns;
  2144. struct super_block *s;
  2145. struct path path;
  2146. int err;
  2147. ns = create_mnt_ns(mnt);
  2148. if (IS_ERR(ns))
  2149. return ERR_CAST(ns);
  2150. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2151. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2152. put_mnt_ns(ns);
  2153. if (err)
  2154. return ERR_PTR(err);
  2155. /* trade a vfsmount reference for active sb one */
  2156. s = path.mnt->mnt_sb;
  2157. atomic_inc(&s->s_active);
  2158. mntput(path.mnt);
  2159. /* lock the sucker */
  2160. down_write(&s->s_umount);
  2161. /* ... and return the root of (sub)tree on it */
  2162. return path.dentry;
  2163. }
  2164. EXPORT_SYMBOL(mount_subtree);
  2165. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2166. char __user *, type, unsigned long, flags, void __user *, data)
  2167. {
  2168. int ret;
  2169. char *kernel_type;
  2170. struct filename *kernel_dir;
  2171. char *kernel_dev;
  2172. unsigned long data_page;
  2173. ret = copy_mount_string(type, &kernel_type);
  2174. if (ret < 0)
  2175. goto out_type;
  2176. kernel_dir = getname(dir_name);
  2177. if (IS_ERR(kernel_dir)) {
  2178. ret = PTR_ERR(kernel_dir);
  2179. goto out_dir;
  2180. }
  2181. ret = copy_mount_string(dev_name, &kernel_dev);
  2182. if (ret < 0)
  2183. goto out_dev;
  2184. ret = copy_mount_options(data, &data_page);
  2185. if (ret < 0)
  2186. goto out_data;
  2187. ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
  2188. (void *) data_page);
  2189. free_page(data_page);
  2190. out_data:
  2191. kfree(kernel_dev);
  2192. out_dev:
  2193. putname(kernel_dir);
  2194. out_dir:
  2195. kfree(kernel_type);
  2196. out_type:
  2197. return ret;
  2198. }
  2199. /*
  2200. * Return true if path is reachable from root
  2201. *
  2202. * namespace_sem or vfsmount_lock is held
  2203. */
  2204. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2205. const struct path *root)
  2206. {
  2207. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2208. dentry = mnt->mnt_mountpoint;
  2209. mnt = mnt->mnt_parent;
  2210. }
  2211. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2212. }
  2213. int path_is_under(struct path *path1, struct path *path2)
  2214. {
  2215. int res;
  2216. br_read_lock(&vfsmount_lock);
  2217. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2218. br_read_unlock(&vfsmount_lock);
  2219. return res;
  2220. }
  2221. EXPORT_SYMBOL(path_is_under);
  2222. /*
  2223. * pivot_root Semantics:
  2224. * Moves the root file system of the current process to the directory put_old,
  2225. * makes new_root as the new root file system of the current process, and sets
  2226. * root/cwd of all processes which had them on the current root to new_root.
  2227. *
  2228. * Restrictions:
  2229. * The new_root and put_old must be directories, and must not be on the
  2230. * same file system as the current process root. The put_old must be
  2231. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2232. * pointed to by put_old must yield the same directory as new_root. No other
  2233. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2234. *
  2235. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2236. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2237. * in this situation.
  2238. *
  2239. * Notes:
  2240. * - we don't move root/cwd if they are not at the root (reason: if something
  2241. * cared enough to change them, it's probably wrong to force them elsewhere)
  2242. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2243. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2244. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2245. * first.
  2246. */
  2247. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2248. const char __user *, put_old)
  2249. {
  2250. struct path new, old, parent_path, root_parent, root;
  2251. struct mount *new_mnt, *root_mnt;
  2252. int error;
  2253. if (!ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN))
  2254. return -EPERM;
  2255. error = user_path_dir(new_root, &new);
  2256. if (error)
  2257. goto out0;
  2258. error = user_path_dir(put_old, &old);
  2259. if (error)
  2260. goto out1;
  2261. error = security_sb_pivotroot(&old, &new);
  2262. if (error)
  2263. goto out2;
  2264. get_fs_root(current->fs, &root);
  2265. error = lock_mount(&old);
  2266. if (error)
  2267. goto out3;
  2268. error = -EINVAL;
  2269. new_mnt = real_mount(new.mnt);
  2270. root_mnt = real_mount(root.mnt);
  2271. if (IS_MNT_SHARED(real_mount(old.mnt)) ||
  2272. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2273. IS_MNT_SHARED(root_mnt->mnt_parent))
  2274. goto out4;
  2275. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2276. goto out4;
  2277. error = -ENOENT;
  2278. if (d_unlinked(new.dentry))
  2279. goto out4;
  2280. if (d_unlinked(old.dentry))
  2281. goto out4;
  2282. error = -EBUSY;
  2283. if (new.mnt == root.mnt ||
  2284. old.mnt == root.mnt)
  2285. goto out4; /* loop, on the same file system */
  2286. error = -EINVAL;
  2287. if (root.mnt->mnt_root != root.dentry)
  2288. goto out4; /* not a mountpoint */
  2289. if (!mnt_has_parent(root_mnt))
  2290. goto out4; /* not attached */
  2291. if (new.mnt->mnt_root != new.dentry)
  2292. goto out4; /* not a mountpoint */
  2293. if (!mnt_has_parent(new_mnt))
  2294. goto out4; /* not attached */
  2295. /* make sure we can reach put_old from new_root */
  2296. if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
  2297. goto out4;
  2298. br_write_lock(&vfsmount_lock);
  2299. detach_mnt(new_mnt, &parent_path);
  2300. detach_mnt(root_mnt, &root_parent);
  2301. /* mount old root on put_old */
  2302. attach_mnt(root_mnt, &old);
  2303. /* mount new_root on / */
  2304. attach_mnt(new_mnt, &root_parent);
  2305. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2306. br_write_unlock(&vfsmount_lock);
  2307. chroot_fs_refs(&root, &new);
  2308. error = 0;
  2309. out4:
  2310. unlock_mount(&old);
  2311. if (!error) {
  2312. path_put(&root_parent);
  2313. path_put(&parent_path);
  2314. }
  2315. out3:
  2316. path_put(&root);
  2317. out2:
  2318. path_put(&old);
  2319. out1:
  2320. path_put(&new);
  2321. out0:
  2322. return error;
  2323. }
  2324. static void __init init_mount_tree(void)
  2325. {
  2326. struct vfsmount *mnt;
  2327. struct mnt_namespace *ns;
  2328. struct path root;
  2329. struct file_system_type *type;
  2330. type = get_fs_type("rootfs");
  2331. if (!type)
  2332. panic("Can't find rootfs type");
  2333. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2334. put_filesystem(type);
  2335. if (IS_ERR(mnt))
  2336. panic("Can't create rootfs");
  2337. ns = create_mnt_ns(mnt);
  2338. if (IS_ERR(ns))
  2339. panic("Can't allocate initial namespace");
  2340. init_task.nsproxy->mnt_ns = ns;
  2341. get_mnt_ns(ns);
  2342. root.mnt = mnt;
  2343. root.dentry = mnt->mnt_root;
  2344. set_fs_pwd(current->fs, &root);
  2345. set_fs_root(current->fs, &root);
  2346. }
  2347. void __init mnt_init(void)
  2348. {
  2349. unsigned u;
  2350. int err;
  2351. init_rwsem(&namespace_sem);
  2352. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2353. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2354. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2355. if (!mount_hashtable)
  2356. panic("Failed to allocate mount hash table\n");
  2357. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2358. for (u = 0; u < HASH_SIZE; u++)
  2359. INIT_LIST_HEAD(&mount_hashtable[u]);
  2360. br_lock_init(&vfsmount_lock);
  2361. err = sysfs_init();
  2362. if (err)
  2363. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2364. __func__, err);
  2365. fs_kobj = kobject_create_and_add("fs", NULL);
  2366. if (!fs_kobj)
  2367. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2368. init_rootfs();
  2369. init_mount_tree();
  2370. }
  2371. void put_mnt_ns(struct mnt_namespace *ns)
  2372. {
  2373. LIST_HEAD(umount_list);
  2374. if (!atomic_dec_and_test(&ns->count))
  2375. return;
  2376. down_write(&namespace_sem);
  2377. br_write_lock(&vfsmount_lock);
  2378. umount_tree(ns->root, 0, &umount_list);
  2379. br_write_unlock(&vfsmount_lock);
  2380. up_write(&namespace_sem);
  2381. release_mounts(&umount_list);
  2382. free_mnt_ns(ns);
  2383. }
  2384. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2385. {
  2386. struct vfsmount *mnt;
  2387. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2388. if (!IS_ERR(mnt)) {
  2389. /*
  2390. * it is a longterm mount, don't release mnt until
  2391. * we unmount before file sys is unregistered
  2392. */
  2393. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2394. }
  2395. return mnt;
  2396. }
  2397. EXPORT_SYMBOL_GPL(kern_mount_data);
  2398. void kern_unmount(struct vfsmount *mnt)
  2399. {
  2400. /* release long term mount so mount point can be released */
  2401. if (!IS_ERR_OR_NULL(mnt)) {
  2402. br_write_lock(&vfsmount_lock);
  2403. real_mount(mnt)->mnt_ns = NULL;
  2404. br_write_unlock(&vfsmount_lock);
  2405. mntput(mnt);
  2406. }
  2407. }
  2408. EXPORT_SYMBOL(kern_unmount);
  2409. bool our_mnt(struct vfsmount *mnt)
  2410. {
  2411. return check_mnt(real_mount(mnt));
  2412. }
  2413. static void *mntns_get(struct task_struct *task)
  2414. {
  2415. struct mnt_namespace *ns = NULL;
  2416. struct nsproxy *nsproxy;
  2417. rcu_read_lock();
  2418. nsproxy = task_nsproxy(task);
  2419. if (nsproxy) {
  2420. ns = nsproxy->mnt_ns;
  2421. get_mnt_ns(ns);
  2422. }
  2423. rcu_read_unlock();
  2424. return ns;
  2425. }
  2426. static void mntns_put(void *ns)
  2427. {
  2428. put_mnt_ns(ns);
  2429. }
  2430. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2431. {
  2432. struct fs_struct *fs = current->fs;
  2433. struct mnt_namespace *mnt_ns = ns;
  2434. struct path root;
  2435. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2436. !nsown_capable(CAP_SYS_CHROOT) ||
  2437. !nsown_capable(CAP_SYS_ADMIN))
  2438. return -EPERM;
  2439. if (fs->users != 1)
  2440. return -EINVAL;
  2441. get_mnt_ns(mnt_ns);
  2442. put_mnt_ns(nsproxy->mnt_ns);
  2443. nsproxy->mnt_ns = mnt_ns;
  2444. /* Find the root */
  2445. root.mnt = &mnt_ns->root->mnt;
  2446. root.dentry = mnt_ns->root->mnt.mnt_root;
  2447. path_get(&root);
  2448. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2449. ;
  2450. /* Update the pwd and root */
  2451. set_fs_pwd(fs, &root);
  2452. set_fs_root(fs, &root);
  2453. path_put(&root);
  2454. return 0;
  2455. }
  2456. static unsigned int mntns_inum(void *ns)
  2457. {
  2458. struct mnt_namespace *mnt_ns = ns;
  2459. return mnt_ns->proc_inum;
  2460. }
  2461. const struct proc_ns_operations mntns_operations = {
  2462. .name = "mnt",
  2463. .type = CLONE_NEWNS,
  2464. .get = mntns_get,
  2465. .put = mntns_put,
  2466. .install = mntns_install,
  2467. .inum = mntns_inum,
  2468. };