file.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/falloc.h>
  17. #include <linux/types.h>
  18. #include <linux/uaccess.h>
  19. #include <linux/mount.h>
  20. #include "f2fs.h"
  21. #include "node.h"
  22. #include "segment.h"
  23. #include "xattr.h"
  24. #include "acl.h"
  25. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  26. struct vm_fault *vmf)
  27. {
  28. struct page *page = vmf->page;
  29. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  30. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  31. block_t old_blk_addr;
  32. struct dnode_of_data dn;
  33. int err;
  34. f2fs_balance_fs(sbi);
  35. sb_start_pagefault(inode->i_sb);
  36. mutex_lock_op(sbi, DATA_NEW);
  37. /* block allocation */
  38. set_new_dnode(&dn, inode, NULL, NULL, 0);
  39. err = get_dnode_of_data(&dn, page->index, 0);
  40. if (err) {
  41. mutex_unlock_op(sbi, DATA_NEW);
  42. goto out;
  43. }
  44. old_blk_addr = dn.data_blkaddr;
  45. if (old_blk_addr == NULL_ADDR) {
  46. err = reserve_new_block(&dn);
  47. if (err) {
  48. f2fs_put_dnode(&dn);
  49. mutex_unlock_op(sbi, DATA_NEW);
  50. goto out;
  51. }
  52. }
  53. f2fs_put_dnode(&dn);
  54. mutex_unlock_op(sbi, DATA_NEW);
  55. lock_page(page);
  56. if (page->mapping != inode->i_mapping ||
  57. page_offset(page) >= i_size_read(inode) ||
  58. !PageUptodate(page)) {
  59. unlock_page(page);
  60. err = -EFAULT;
  61. goto out;
  62. }
  63. /*
  64. * check to see if the page is mapped already (no holes)
  65. */
  66. if (PageMappedToDisk(page))
  67. goto out;
  68. /* fill the page */
  69. wait_on_page_writeback(page);
  70. /* page is wholly or partially inside EOF */
  71. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  72. unsigned offset;
  73. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  74. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  75. }
  76. set_page_dirty(page);
  77. SetPageUptodate(page);
  78. file_update_time(vma->vm_file);
  79. out:
  80. sb_end_pagefault(inode->i_sb);
  81. return block_page_mkwrite_return(err);
  82. }
  83. static const struct vm_operations_struct f2fs_file_vm_ops = {
  84. .fault = filemap_fault,
  85. .page_mkwrite = f2fs_vm_page_mkwrite,
  86. };
  87. static int need_to_sync_dir(struct f2fs_sb_info *sbi, struct inode *inode)
  88. {
  89. struct dentry *dentry;
  90. nid_t pino;
  91. inode = igrab(inode);
  92. dentry = d_find_any_alias(inode);
  93. if (!dentry) {
  94. iput(inode);
  95. return 0;
  96. }
  97. pino = dentry->d_parent->d_inode->i_ino;
  98. dput(dentry);
  99. iput(inode);
  100. return !is_checkpointed_node(sbi, pino);
  101. }
  102. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  103. {
  104. struct inode *inode = file->f_mapping->host;
  105. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  106. unsigned long long cur_version;
  107. int ret = 0;
  108. bool need_cp = false;
  109. struct writeback_control wbc = {
  110. .sync_mode = WB_SYNC_ALL,
  111. .nr_to_write = LONG_MAX,
  112. .for_reclaim = 0,
  113. };
  114. if (inode->i_sb->s_flags & MS_RDONLY)
  115. return 0;
  116. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  117. if (ret)
  118. return ret;
  119. mutex_lock(&inode->i_mutex);
  120. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  121. goto out;
  122. mutex_lock(&sbi->cp_mutex);
  123. cur_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
  124. mutex_unlock(&sbi->cp_mutex);
  125. if (F2FS_I(inode)->data_version != cur_version &&
  126. !(inode->i_state & I_DIRTY))
  127. goto out;
  128. F2FS_I(inode)->data_version--;
  129. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  130. need_cp = true;
  131. if (is_inode_flag_set(F2FS_I(inode), FI_NEED_CP))
  132. need_cp = true;
  133. if (!space_for_roll_forward(sbi))
  134. need_cp = true;
  135. if (need_to_sync_dir(sbi, inode))
  136. need_cp = true;
  137. if (need_cp) {
  138. /* all the dirty node pages should be flushed for POR */
  139. ret = f2fs_sync_fs(inode->i_sb, 1);
  140. clear_inode_flag(F2FS_I(inode), FI_NEED_CP);
  141. } else {
  142. /* if there is no written node page, write its inode page */
  143. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  144. ret = f2fs_write_inode(inode, NULL);
  145. if (ret)
  146. goto out;
  147. }
  148. filemap_fdatawait_range(sbi->node_inode->i_mapping,
  149. 0, LONG_MAX);
  150. }
  151. out:
  152. mutex_unlock(&inode->i_mutex);
  153. return ret;
  154. }
  155. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  156. {
  157. file_accessed(file);
  158. vma->vm_ops = &f2fs_file_vm_ops;
  159. return 0;
  160. }
  161. static int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  162. {
  163. int nr_free = 0, ofs = dn->ofs_in_node;
  164. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  165. struct f2fs_node *raw_node;
  166. __le32 *addr;
  167. raw_node = page_address(dn->node_page);
  168. addr = blkaddr_in_node(raw_node) + ofs;
  169. for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
  170. block_t blkaddr = le32_to_cpu(*addr);
  171. if (blkaddr == NULL_ADDR)
  172. continue;
  173. update_extent_cache(NULL_ADDR, dn);
  174. invalidate_blocks(sbi, blkaddr);
  175. dec_valid_block_count(sbi, dn->inode, 1);
  176. nr_free++;
  177. }
  178. if (nr_free) {
  179. set_page_dirty(dn->node_page);
  180. sync_inode_page(dn);
  181. }
  182. dn->ofs_in_node = ofs;
  183. return nr_free;
  184. }
  185. void truncate_data_blocks(struct dnode_of_data *dn)
  186. {
  187. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  188. }
  189. static void truncate_partial_data_page(struct inode *inode, u64 from)
  190. {
  191. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  192. struct page *page;
  193. if (!offset)
  194. return;
  195. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT);
  196. if (IS_ERR(page))
  197. return;
  198. lock_page(page);
  199. wait_on_page_writeback(page);
  200. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  201. set_page_dirty(page);
  202. f2fs_put_page(page, 1);
  203. }
  204. static int truncate_blocks(struct inode *inode, u64 from)
  205. {
  206. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  207. unsigned int blocksize = inode->i_sb->s_blocksize;
  208. struct dnode_of_data dn;
  209. pgoff_t free_from;
  210. int count = 0;
  211. int err;
  212. free_from = (pgoff_t)
  213. ((from + blocksize - 1) >> (sbi->log_blocksize));
  214. mutex_lock_op(sbi, DATA_TRUNC);
  215. set_new_dnode(&dn, inode, NULL, NULL, 0);
  216. err = get_dnode_of_data(&dn, free_from, RDONLY_NODE);
  217. if (err) {
  218. if (err == -ENOENT)
  219. goto free_next;
  220. mutex_unlock_op(sbi, DATA_TRUNC);
  221. return err;
  222. }
  223. if (IS_INODE(dn.node_page))
  224. count = ADDRS_PER_INODE;
  225. else
  226. count = ADDRS_PER_BLOCK;
  227. count -= dn.ofs_in_node;
  228. BUG_ON(count < 0);
  229. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  230. truncate_data_blocks_range(&dn, count);
  231. free_from += count;
  232. }
  233. f2fs_put_dnode(&dn);
  234. free_next:
  235. err = truncate_inode_blocks(inode, free_from);
  236. mutex_unlock_op(sbi, DATA_TRUNC);
  237. /* lastly zero out the first data page */
  238. truncate_partial_data_page(inode, from);
  239. return err;
  240. }
  241. void f2fs_truncate(struct inode *inode)
  242. {
  243. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  244. S_ISLNK(inode->i_mode)))
  245. return;
  246. if (!truncate_blocks(inode, i_size_read(inode))) {
  247. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  248. mark_inode_dirty(inode);
  249. }
  250. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  251. }
  252. static int f2fs_getattr(struct vfsmount *mnt,
  253. struct dentry *dentry, struct kstat *stat)
  254. {
  255. struct inode *inode = dentry->d_inode;
  256. generic_fillattr(inode, stat);
  257. stat->blocks <<= 3;
  258. return 0;
  259. }
  260. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  261. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  262. {
  263. struct f2fs_inode_info *fi = F2FS_I(inode);
  264. unsigned int ia_valid = attr->ia_valid;
  265. if (ia_valid & ATTR_UID)
  266. inode->i_uid = attr->ia_uid;
  267. if (ia_valid & ATTR_GID)
  268. inode->i_gid = attr->ia_gid;
  269. if (ia_valid & ATTR_ATIME)
  270. inode->i_atime = timespec_trunc(attr->ia_atime,
  271. inode->i_sb->s_time_gran);
  272. if (ia_valid & ATTR_MTIME)
  273. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  274. inode->i_sb->s_time_gran);
  275. if (ia_valid & ATTR_CTIME)
  276. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  277. inode->i_sb->s_time_gran);
  278. if (ia_valid & ATTR_MODE) {
  279. umode_t mode = attr->ia_mode;
  280. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  281. mode &= ~S_ISGID;
  282. set_acl_inode(fi, mode);
  283. }
  284. }
  285. #else
  286. #define __setattr_copy setattr_copy
  287. #endif
  288. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  289. {
  290. struct inode *inode = dentry->d_inode;
  291. struct f2fs_inode_info *fi = F2FS_I(inode);
  292. int err;
  293. err = inode_change_ok(inode, attr);
  294. if (err)
  295. return err;
  296. if ((attr->ia_valid & ATTR_SIZE) &&
  297. attr->ia_size != i_size_read(inode)) {
  298. truncate_setsize(inode, attr->ia_size);
  299. f2fs_truncate(inode);
  300. }
  301. __setattr_copy(inode, attr);
  302. if (attr->ia_valid & ATTR_MODE) {
  303. err = f2fs_acl_chmod(inode);
  304. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  305. inode->i_mode = fi->i_acl_mode;
  306. clear_inode_flag(fi, FI_ACL_MODE);
  307. }
  308. }
  309. mark_inode_dirty(inode);
  310. return err;
  311. }
  312. const struct inode_operations f2fs_file_inode_operations = {
  313. .getattr = f2fs_getattr,
  314. .setattr = f2fs_setattr,
  315. .get_acl = f2fs_get_acl,
  316. #ifdef CONFIG_F2FS_FS_XATTR
  317. .setxattr = generic_setxattr,
  318. .getxattr = generic_getxattr,
  319. .listxattr = f2fs_listxattr,
  320. .removexattr = generic_removexattr,
  321. #endif
  322. };
  323. static void fill_zero(struct inode *inode, pgoff_t index,
  324. loff_t start, loff_t len)
  325. {
  326. struct page *page;
  327. if (!len)
  328. return;
  329. page = get_new_data_page(inode, index, false);
  330. if (!IS_ERR(page)) {
  331. wait_on_page_writeback(page);
  332. zero_user(page, start, len);
  333. set_page_dirty(page);
  334. f2fs_put_page(page, 1);
  335. }
  336. }
  337. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  338. {
  339. pgoff_t index;
  340. int err;
  341. for (index = pg_start; index < pg_end; index++) {
  342. struct dnode_of_data dn;
  343. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  344. mutex_lock_op(sbi, DATA_TRUNC);
  345. set_new_dnode(&dn, inode, NULL, NULL, 0);
  346. err = get_dnode_of_data(&dn, index, RDONLY_NODE);
  347. if (err) {
  348. mutex_unlock_op(sbi, DATA_TRUNC);
  349. if (err == -ENOENT)
  350. continue;
  351. return err;
  352. }
  353. if (dn.data_blkaddr != NULL_ADDR)
  354. truncate_data_blocks_range(&dn, 1);
  355. f2fs_put_dnode(&dn);
  356. mutex_unlock_op(sbi, DATA_TRUNC);
  357. }
  358. return 0;
  359. }
  360. static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
  361. {
  362. pgoff_t pg_start, pg_end;
  363. loff_t off_start, off_end;
  364. int ret = 0;
  365. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  366. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  367. off_start = offset & (PAGE_CACHE_SIZE - 1);
  368. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  369. if (pg_start == pg_end) {
  370. fill_zero(inode, pg_start, off_start,
  371. off_end - off_start);
  372. } else {
  373. if (off_start)
  374. fill_zero(inode, pg_start++, off_start,
  375. PAGE_CACHE_SIZE - off_start);
  376. if (off_end)
  377. fill_zero(inode, pg_end, 0, off_end);
  378. if (pg_start < pg_end) {
  379. struct address_space *mapping = inode->i_mapping;
  380. loff_t blk_start, blk_end;
  381. blk_start = pg_start << PAGE_CACHE_SHIFT;
  382. blk_end = pg_end << PAGE_CACHE_SHIFT;
  383. truncate_inode_pages_range(mapping, blk_start,
  384. blk_end - 1);
  385. ret = truncate_hole(inode, pg_start, pg_end);
  386. }
  387. }
  388. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  389. i_size_read(inode) <= (offset + len)) {
  390. i_size_write(inode, offset);
  391. mark_inode_dirty(inode);
  392. }
  393. return ret;
  394. }
  395. static int expand_inode_data(struct inode *inode, loff_t offset,
  396. loff_t len, int mode)
  397. {
  398. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  399. pgoff_t index, pg_start, pg_end;
  400. loff_t new_size = i_size_read(inode);
  401. loff_t off_start, off_end;
  402. int ret = 0;
  403. ret = inode_newsize_ok(inode, (len + offset));
  404. if (ret)
  405. return ret;
  406. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  407. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  408. off_start = offset & (PAGE_CACHE_SIZE - 1);
  409. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  410. for (index = pg_start; index <= pg_end; index++) {
  411. struct dnode_of_data dn;
  412. mutex_lock_op(sbi, DATA_NEW);
  413. set_new_dnode(&dn, inode, NULL, NULL, 0);
  414. ret = get_dnode_of_data(&dn, index, 0);
  415. if (ret) {
  416. mutex_unlock_op(sbi, DATA_NEW);
  417. break;
  418. }
  419. if (dn.data_blkaddr == NULL_ADDR) {
  420. ret = reserve_new_block(&dn);
  421. if (ret) {
  422. f2fs_put_dnode(&dn);
  423. mutex_unlock_op(sbi, DATA_NEW);
  424. break;
  425. }
  426. }
  427. f2fs_put_dnode(&dn);
  428. mutex_unlock_op(sbi, DATA_NEW);
  429. if (pg_start == pg_end)
  430. new_size = offset + len;
  431. else if (index == pg_start && off_start)
  432. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  433. else if (index == pg_end)
  434. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  435. else
  436. new_size += PAGE_CACHE_SIZE;
  437. }
  438. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  439. i_size_read(inode) < new_size) {
  440. i_size_write(inode, new_size);
  441. mark_inode_dirty(inode);
  442. }
  443. return ret;
  444. }
  445. static long f2fs_fallocate(struct file *file, int mode,
  446. loff_t offset, loff_t len)
  447. {
  448. struct inode *inode = file->f_path.dentry->d_inode;
  449. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  450. long ret;
  451. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  452. return -EOPNOTSUPP;
  453. if (mode & FALLOC_FL_PUNCH_HOLE)
  454. ret = punch_hole(inode, offset, len, mode);
  455. else
  456. ret = expand_inode_data(inode, offset, len, mode);
  457. f2fs_balance_fs(sbi);
  458. return ret;
  459. }
  460. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  461. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  462. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  463. {
  464. if (S_ISDIR(mode))
  465. return flags;
  466. else if (S_ISREG(mode))
  467. return flags & F2FS_REG_FLMASK;
  468. else
  469. return flags & F2FS_OTHER_FLMASK;
  470. }
  471. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  472. {
  473. struct inode *inode = filp->f_dentry->d_inode;
  474. struct f2fs_inode_info *fi = F2FS_I(inode);
  475. unsigned int flags;
  476. int ret;
  477. switch (cmd) {
  478. case FS_IOC_GETFLAGS:
  479. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  480. return put_user(flags, (int __user *) arg);
  481. case FS_IOC_SETFLAGS:
  482. {
  483. unsigned int oldflags;
  484. ret = mnt_want_write(filp->f_path.mnt);
  485. if (ret)
  486. return ret;
  487. if (!inode_owner_or_capable(inode)) {
  488. ret = -EACCES;
  489. goto out;
  490. }
  491. if (get_user(flags, (int __user *) arg)) {
  492. ret = -EFAULT;
  493. goto out;
  494. }
  495. flags = f2fs_mask_flags(inode->i_mode, flags);
  496. mutex_lock(&inode->i_mutex);
  497. oldflags = fi->i_flags;
  498. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  499. if (!capable(CAP_LINUX_IMMUTABLE)) {
  500. mutex_unlock(&inode->i_mutex);
  501. ret = -EPERM;
  502. goto out;
  503. }
  504. }
  505. flags = flags & FS_FL_USER_MODIFIABLE;
  506. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  507. fi->i_flags = flags;
  508. mutex_unlock(&inode->i_mutex);
  509. f2fs_set_inode_flags(inode);
  510. inode->i_ctime = CURRENT_TIME;
  511. mark_inode_dirty(inode);
  512. out:
  513. mnt_drop_write(filp->f_path.mnt);
  514. return ret;
  515. }
  516. default:
  517. return -ENOTTY;
  518. }
  519. }
  520. const struct file_operations f2fs_file_operations = {
  521. .llseek = generic_file_llseek,
  522. .read = do_sync_read,
  523. .write = do_sync_write,
  524. .aio_read = generic_file_aio_read,
  525. .aio_write = generic_file_aio_write,
  526. .open = generic_file_open,
  527. .mmap = f2fs_file_mmap,
  528. .fsync = f2fs_sync_file,
  529. .fallocate = f2fs_fallocate,
  530. .unlocked_ioctl = f2fs_ioctl,
  531. .splice_read = generic_file_splice_read,
  532. .splice_write = generic_file_splice_write,
  533. };