inode.c 144 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  16. * (jj@sunsite.ms.mff.cuni.cz)
  17. *
  18. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19. */
  20. #include <linux/fs.h>
  21. #include <linux/time.h>
  22. #include <linux/jbd2.h>
  23. #include <linux/highuid.h>
  24. #include <linux/pagemap.h>
  25. #include <linux/quotaops.h>
  26. #include <linux/string.h>
  27. #include <linux/buffer_head.h>
  28. #include <linux/writeback.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/mpage.h>
  31. #include <linux/namei.h>
  32. #include <linux/uio.h>
  33. #include <linux/bio.h>
  34. #include <linux/workqueue.h>
  35. #include <linux/kernel.h>
  36. #include <linux/printk.h>
  37. #include <linux/slab.h>
  38. #include <linux/ratelimit.h>
  39. #include "ext4_jbd2.h"
  40. #include "xattr.h"
  41. #include "acl.h"
  42. #include "truncate.h"
  43. #include <trace/events/ext4.h>
  44. #define MPAGE_DA_EXTENT_TAIL 0x01
  45. static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  46. struct ext4_inode_info *ei)
  47. {
  48. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  49. __u16 csum_lo;
  50. __u16 csum_hi = 0;
  51. __u32 csum;
  52. csum_lo = raw->i_checksum_lo;
  53. raw->i_checksum_lo = 0;
  54. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  55. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  56. csum_hi = raw->i_checksum_hi;
  57. raw->i_checksum_hi = 0;
  58. }
  59. csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  60. EXT4_INODE_SIZE(inode->i_sb));
  61. raw->i_checksum_lo = csum_lo;
  62. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  63. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  64. raw->i_checksum_hi = csum_hi;
  65. return csum;
  66. }
  67. static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  68. struct ext4_inode_info *ei)
  69. {
  70. __u32 provided, calculated;
  71. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  72. cpu_to_le32(EXT4_OS_LINUX) ||
  73. !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  74. EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  75. return 1;
  76. provided = le16_to_cpu(raw->i_checksum_lo);
  77. calculated = ext4_inode_csum(inode, raw, ei);
  78. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  79. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  80. provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  81. else
  82. calculated &= 0xFFFF;
  83. return provided == calculated;
  84. }
  85. static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
  86. struct ext4_inode_info *ei)
  87. {
  88. __u32 csum;
  89. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  90. cpu_to_le32(EXT4_OS_LINUX) ||
  91. !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  92. EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  93. return;
  94. csum = ext4_inode_csum(inode, raw, ei);
  95. raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
  96. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  97. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  98. raw->i_checksum_hi = cpu_to_le16(csum >> 16);
  99. }
  100. static inline int ext4_begin_ordered_truncate(struct inode *inode,
  101. loff_t new_size)
  102. {
  103. trace_ext4_begin_ordered_truncate(inode, new_size);
  104. /*
  105. * If jinode is zero, then we never opened the file for
  106. * writing, so there's no need to call
  107. * jbd2_journal_begin_ordered_truncate() since there's no
  108. * outstanding writes we need to flush.
  109. */
  110. if (!EXT4_I(inode)->jinode)
  111. return 0;
  112. return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
  113. EXT4_I(inode)->jinode,
  114. new_size);
  115. }
  116. static void ext4_invalidatepage(struct page *page, unsigned long offset);
  117. static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  118. struct buffer_head *bh_result, int create);
  119. static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
  120. static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
  121. static int __ext4_journalled_writepage(struct page *page, unsigned int len);
  122. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
  123. static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
  124. struct inode *inode, struct page *page, loff_t from,
  125. loff_t length, int flags);
  126. /*
  127. * Test whether an inode is a fast symlink.
  128. */
  129. static int ext4_inode_is_fast_symlink(struct inode *inode)
  130. {
  131. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  132. (inode->i_sb->s_blocksize >> 9) : 0;
  133. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  134. }
  135. /*
  136. * Restart the transaction associated with *handle. This does a commit,
  137. * so before we call here everything must be consistently dirtied against
  138. * this transaction.
  139. */
  140. int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
  141. int nblocks)
  142. {
  143. int ret;
  144. /*
  145. * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
  146. * moment, get_block can be called only for blocks inside i_size since
  147. * page cache has been already dropped and writes are blocked by
  148. * i_mutex. So we can safely drop the i_data_sem here.
  149. */
  150. BUG_ON(EXT4_JOURNAL(inode) == NULL);
  151. jbd_debug(2, "restarting handle %p\n", handle);
  152. up_write(&EXT4_I(inode)->i_data_sem);
  153. ret = ext4_journal_restart(handle, nblocks);
  154. down_write(&EXT4_I(inode)->i_data_sem);
  155. ext4_discard_preallocations(inode);
  156. return ret;
  157. }
  158. /*
  159. * Called at the last iput() if i_nlink is zero.
  160. */
  161. void ext4_evict_inode(struct inode *inode)
  162. {
  163. handle_t *handle;
  164. int err;
  165. trace_ext4_evict_inode(inode);
  166. ext4_ioend_wait(inode);
  167. if (inode->i_nlink) {
  168. /*
  169. * When journalling data dirty buffers are tracked only in the
  170. * journal. So although mm thinks everything is clean and
  171. * ready for reaping the inode might still have some pages to
  172. * write in the running transaction or waiting to be
  173. * checkpointed. Thus calling jbd2_journal_invalidatepage()
  174. * (via truncate_inode_pages()) to discard these buffers can
  175. * cause data loss. Also even if we did not discard these
  176. * buffers, we would have no way to find them after the inode
  177. * is reaped and thus user could see stale data if he tries to
  178. * read them before the transaction is checkpointed. So be
  179. * careful and force everything to disk here... We use
  180. * ei->i_datasync_tid to store the newest transaction
  181. * containing inode's data.
  182. *
  183. * Note that directories do not have this problem because they
  184. * don't use page cache.
  185. */
  186. if (ext4_should_journal_data(inode) &&
  187. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
  188. journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
  189. tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
  190. jbd2_log_start_commit(journal, commit_tid);
  191. jbd2_log_wait_commit(journal, commit_tid);
  192. filemap_write_and_wait(&inode->i_data);
  193. }
  194. truncate_inode_pages(&inode->i_data, 0);
  195. goto no_delete;
  196. }
  197. if (!is_bad_inode(inode))
  198. dquot_initialize(inode);
  199. if (ext4_should_order_data(inode))
  200. ext4_begin_ordered_truncate(inode, 0);
  201. truncate_inode_pages(&inode->i_data, 0);
  202. if (is_bad_inode(inode))
  203. goto no_delete;
  204. /*
  205. * Protect us against freezing - iput() caller didn't have to have any
  206. * protection against it
  207. */
  208. sb_start_intwrite(inode->i_sb);
  209. handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
  210. if (IS_ERR(handle)) {
  211. ext4_std_error(inode->i_sb, PTR_ERR(handle));
  212. /*
  213. * If we're going to skip the normal cleanup, we still need to
  214. * make sure that the in-core orphan linked list is properly
  215. * cleaned up.
  216. */
  217. ext4_orphan_del(NULL, inode);
  218. sb_end_intwrite(inode->i_sb);
  219. goto no_delete;
  220. }
  221. if (IS_SYNC(inode))
  222. ext4_handle_sync(handle);
  223. inode->i_size = 0;
  224. err = ext4_mark_inode_dirty(handle, inode);
  225. if (err) {
  226. ext4_warning(inode->i_sb,
  227. "couldn't mark inode dirty (err %d)", err);
  228. goto stop_handle;
  229. }
  230. if (inode->i_blocks)
  231. ext4_truncate(inode);
  232. /*
  233. * ext4_ext_truncate() doesn't reserve any slop when it
  234. * restarts journal transactions; therefore there may not be
  235. * enough credits left in the handle to remove the inode from
  236. * the orphan list and set the dtime field.
  237. */
  238. if (!ext4_handle_has_enough_credits(handle, 3)) {
  239. err = ext4_journal_extend(handle, 3);
  240. if (err > 0)
  241. err = ext4_journal_restart(handle, 3);
  242. if (err != 0) {
  243. ext4_warning(inode->i_sb,
  244. "couldn't extend journal (err %d)", err);
  245. stop_handle:
  246. ext4_journal_stop(handle);
  247. ext4_orphan_del(NULL, inode);
  248. sb_end_intwrite(inode->i_sb);
  249. goto no_delete;
  250. }
  251. }
  252. /*
  253. * Kill off the orphan record which ext4_truncate created.
  254. * AKPM: I think this can be inside the above `if'.
  255. * Note that ext4_orphan_del() has to be able to cope with the
  256. * deletion of a non-existent orphan - this is because we don't
  257. * know if ext4_truncate() actually created an orphan record.
  258. * (Well, we could do this if we need to, but heck - it works)
  259. */
  260. ext4_orphan_del(handle, inode);
  261. EXT4_I(inode)->i_dtime = get_seconds();
  262. /*
  263. * One subtle ordering requirement: if anything has gone wrong
  264. * (transaction abort, IO errors, whatever), then we can still
  265. * do these next steps (the fs will already have been marked as
  266. * having errors), but we can't free the inode if the mark_dirty
  267. * fails.
  268. */
  269. if (ext4_mark_inode_dirty(handle, inode))
  270. /* If that failed, just do the required in-core inode clear. */
  271. ext4_clear_inode(inode);
  272. else
  273. ext4_free_inode(handle, inode);
  274. ext4_journal_stop(handle);
  275. sb_end_intwrite(inode->i_sb);
  276. return;
  277. no_delete:
  278. ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
  279. }
  280. #ifdef CONFIG_QUOTA
  281. qsize_t *ext4_get_reserved_space(struct inode *inode)
  282. {
  283. return &EXT4_I(inode)->i_reserved_quota;
  284. }
  285. #endif
  286. /*
  287. * Calculate the number of metadata blocks need to reserve
  288. * to allocate a block located at @lblock
  289. */
  290. static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
  291. {
  292. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  293. return ext4_ext_calc_metadata_amount(inode, lblock);
  294. return ext4_ind_calc_metadata_amount(inode, lblock);
  295. }
  296. /*
  297. * Called with i_data_sem down, which is important since we can call
  298. * ext4_discard_preallocations() from here.
  299. */
  300. void ext4_da_update_reserve_space(struct inode *inode,
  301. int used, int quota_claim)
  302. {
  303. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  304. struct ext4_inode_info *ei = EXT4_I(inode);
  305. spin_lock(&ei->i_block_reservation_lock);
  306. trace_ext4_da_update_reserve_space(inode, used, quota_claim);
  307. if (unlikely(used > ei->i_reserved_data_blocks)) {
  308. ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
  309. "with only %d reserved data blocks",
  310. __func__, inode->i_ino, used,
  311. ei->i_reserved_data_blocks);
  312. WARN_ON(1);
  313. used = ei->i_reserved_data_blocks;
  314. }
  315. if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
  316. ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
  317. "with only %d reserved metadata blocks\n", __func__,
  318. inode->i_ino, ei->i_allocated_meta_blocks,
  319. ei->i_reserved_meta_blocks);
  320. WARN_ON(1);
  321. ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
  322. }
  323. /* Update per-inode reservations */
  324. ei->i_reserved_data_blocks -= used;
  325. ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
  326. percpu_counter_sub(&sbi->s_dirtyclusters_counter,
  327. used + ei->i_allocated_meta_blocks);
  328. ei->i_allocated_meta_blocks = 0;
  329. if (ei->i_reserved_data_blocks == 0) {
  330. /*
  331. * We can release all of the reserved metadata blocks
  332. * only when we have written all of the delayed
  333. * allocation blocks.
  334. */
  335. percpu_counter_sub(&sbi->s_dirtyclusters_counter,
  336. ei->i_reserved_meta_blocks);
  337. ei->i_reserved_meta_blocks = 0;
  338. ei->i_da_metadata_calc_len = 0;
  339. }
  340. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  341. /* Update quota subsystem for data blocks */
  342. if (quota_claim)
  343. dquot_claim_block(inode, EXT4_C2B(sbi, used));
  344. else {
  345. /*
  346. * We did fallocate with an offset that is already delayed
  347. * allocated. So on delayed allocated writeback we should
  348. * not re-claim the quota for fallocated blocks.
  349. */
  350. dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
  351. }
  352. /*
  353. * If we have done all the pending block allocations and if
  354. * there aren't any writers on the inode, we can discard the
  355. * inode's preallocations.
  356. */
  357. if ((ei->i_reserved_data_blocks == 0) &&
  358. (atomic_read(&inode->i_writecount) == 0))
  359. ext4_discard_preallocations(inode);
  360. }
  361. static int __check_block_validity(struct inode *inode, const char *func,
  362. unsigned int line,
  363. struct ext4_map_blocks *map)
  364. {
  365. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
  366. map->m_len)) {
  367. ext4_error_inode(inode, func, line, map->m_pblk,
  368. "lblock %lu mapped to illegal pblock "
  369. "(length %d)", (unsigned long) map->m_lblk,
  370. map->m_len);
  371. return -EIO;
  372. }
  373. return 0;
  374. }
  375. #define check_block_validity(inode, map) \
  376. __check_block_validity((inode), __func__, __LINE__, (map))
  377. /*
  378. * Return the number of contiguous dirty pages in a given inode
  379. * starting at page frame idx.
  380. */
  381. static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
  382. unsigned int max_pages)
  383. {
  384. struct address_space *mapping = inode->i_mapping;
  385. pgoff_t index;
  386. struct pagevec pvec;
  387. pgoff_t num = 0;
  388. int i, nr_pages, done = 0;
  389. if (max_pages == 0)
  390. return 0;
  391. pagevec_init(&pvec, 0);
  392. while (!done) {
  393. index = idx;
  394. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  395. PAGECACHE_TAG_DIRTY,
  396. (pgoff_t)PAGEVEC_SIZE);
  397. if (nr_pages == 0)
  398. break;
  399. for (i = 0; i < nr_pages; i++) {
  400. struct page *page = pvec.pages[i];
  401. struct buffer_head *bh, *head;
  402. lock_page(page);
  403. if (unlikely(page->mapping != mapping) ||
  404. !PageDirty(page) ||
  405. PageWriteback(page) ||
  406. page->index != idx) {
  407. done = 1;
  408. unlock_page(page);
  409. break;
  410. }
  411. if (page_has_buffers(page)) {
  412. bh = head = page_buffers(page);
  413. do {
  414. if (!buffer_delay(bh) &&
  415. !buffer_unwritten(bh))
  416. done = 1;
  417. bh = bh->b_this_page;
  418. } while (!done && (bh != head));
  419. }
  420. unlock_page(page);
  421. if (done)
  422. break;
  423. idx++;
  424. num++;
  425. if (num >= max_pages) {
  426. done = 1;
  427. break;
  428. }
  429. }
  430. pagevec_release(&pvec);
  431. }
  432. return num;
  433. }
  434. /*
  435. * The ext4_map_blocks() function tries to look up the requested blocks,
  436. * and returns if the blocks are already mapped.
  437. *
  438. * Otherwise it takes the write lock of the i_data_sem and allocate blocks
  439. * and store the allocated blocks in the result buffer head and mark it
  440. * mapped.
  441. *
  442. * If file type is extents based, it will call ext4_ext_map_blocks(),
  443. * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
  444. * based files
  445. *
  446. * On success, it returns the number of blocks being mapped or allocate.
  447. * if create==0 and the blocks are pre-allocated and uninitialized block,
  448. * the result buffer head is unmapped. If the create ==1, it will make sure
  449. * the buffer head is mapped.
  450. *
  451. * It returns 0 if plain look up failed (blocks have not been allocated), in
  452. * that case, buffer head is unmapped
  453. *
  454. * It returns the error in case of allocation failure.
  455. */
  456. int ext4_map_blocks(handle_t *handle, struct inode *inode,
  457. struct ext4_map_blocks *map, int flags)
  458. {
  459. int retval;
  460. map->m_flags = 0;
  461. ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
  462. "logical block %lu\n", inode->i_ino, flags, map->m_len,
  463. (unsigned long) map->m_lblk);
  464. /*
  465. * Try to see if we can get the block without requesting a new
  466. * file system block.
  467. */
  468. if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
  469. down_read((&EXT4_I(inode)->i_data_sem));
  470. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  471. retval = ext4_ext_map_blocks(handle, inode, map, flags &
  472. EXT4_GET_BLOCKS_KEEP_SIZE);
  473. } else {
  474. retval = ext4_ind_map_blocks(handle, inode, map, flags &
  475. EXT4_GET_BLOCKS_KEEP_SIZE);
  476. }
  477. if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
  478. up_read((&EXT4_I(inode)->i_data_sem));
  479. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  480. int ret;
  481. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
  482. /* delayed alloc may be allocated by fallocate and
  483. * coverted to initialized by directIO.
  484. * we need to handle delayed extent here.
  485. */
  486. down_write((&EXT4_I(inode)->i_data_sem));
  487. goto delayed_mapped;
  488. }
  489. ret = check_block_validity(inode, map);
  490. if (ret != 0)
  491. return ret;
  492. }
  493. /* If it is only a block(s) look up */
  494. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
  495. return retval;
  496. /*
  497. * Returns if the blocks have already allocated
  498. *
  499. * Note that if blocks have been preallocated
  500. * ext4_ext_get_block() returns the create = 0
  501. * with buffer head unmapped.
  502. */
  503. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
  504. return retval;
  505. /*
  506. * When we call get_blocks without the create flag, the
  507. * BH_Unwritten flag could have gotten set if the blocks
  508. * requested were part of a uninitialized extent. We need to
  509. * clear this flag now that we are committed to convert all or
  510. * part of the uninitialized extent to be an initialized
  511. * extent. This is because we need to avoid the combination
  512. * of BH_Unwritten and BH_Mapped flags being simultaneously
  513. * set on the buffer_head.
  514. */
  515. map->m_flags &= ~EXT4_MAP_UNWRITTEN;
  516. /*
  517. * New blocks allocate and/or writing to uninitialized extent
  518. * will possibly result in updating i_data, so we take
  519. * the write lock of i_data_sem, and call get_blocks()
  520. * with create == 1 flag.
  521. */
  522. down_write((&EXT4_I(inode)->i_data_sem));
  523. /*
  524. * if the caller is from delayed allocation writeout path
  525. * we have already reserved fs blocks for allocation
  526. * let the underlying get_block() function know to
  527. * avoid double accounting
  528. */
  529. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  530. ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
  531. /*
  532. * We need to check for EXT4 here because migrate
  533. * could have changed the inode type in between
  534. */
  535. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  536. retval = ext4_ext_map_blocks(handle, inode, map, flags);
  537. } else {
  538. retval = ext4_ind_map_blocks(handle, inode, map, flags);
  539. if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
  540. /*
  541. * We allocated new blocks which will result in
  542. * i_data's format changing. Force the migrate
  543. * to fail by clearing migrate flags
  544. */
  545. ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
  546. }
  547. /*
  548. * Update reserved blocks/metadata blocks after successful
  549. * block allocation which had been deferred till now. We don't
  550. * support fallocate for non extent files. So we can update
  551. * reserve space here.
  552. */
  553. if ((retval > 0) &&
  554. (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
  555. ext4_da_update_reserve_space(inode, retval, 1);
  556. }
  557. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
  558. ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
  559. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  560. int ret;
  561. delayed_mapped:
  562. /* delayed allocation blocks has been allocated */
  563. ret = ext4_es_remove_extent(inode, map->m_lblk,
  564. map->m_len);
  565. if (ret < 0)
  566. retval = ret;
  567. }
  568. }
  569. up_write((&EXT4_I(inode)->i_data_sem));
  570. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  571. int ret = check_block_validity(inode, map);
  572. if (ret != 0)
  573. return ret;
  574. }
  575. return retval;
  576. }
  577. /* Maximum number of blocks we map for direct IO at once. */
  578. #define DIO_MAX_BLOCKS 4096
  579. static int _ext4_get_block(struct inode *inode, sector_t iblock,
  580. struct buffer_head *bh, int flags)
  581. {
  582. handle_t *handle = ext4_journal_current_handle();
  583. struct ext4_map_blocks map;
  584. int ret = 0, started = 0;
  585. int dio_credits;
  586. if (ext4_has_inline_data(inode))
  587. return -ERANGE;
  588. map.m_lblk = iblock;
  589. map.m_len = bh->b_size >> inode->i_blkbits;
  590. if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
  591. /* Direct IO write... */
  592. if (map.m_len > DIO_MAX_BLOCKS)
  593. map.m_len = DIO_MAX_BLOCKS;
  594. dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
  595. handle = ext4_journal_start(inode, dio_credits);
  596. if (IS_ERR(handle)) {
  597. ret = PTR_ERR(handle);
  598. return ret;
  599. }
  600. started = 1;
  601. }
  602. ret = ext4_map_blocks(handle, inode, &map, flags);
  603. if (ret > 0) {
  604. map_bh(bh, inode->i_sb, map.m_pblk);
  605. bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
  606. bh->b_size = inode->i_sb->s_blocksize * map.m_len;
  607. ret = 0;
  608. }
  609. if (started)
  610. ext4_journal_stop(handle);
  611. return ret;
  612. }
  613. int ext4_get_block(struct inode *inode, sector_t iblock,
  614. struct buffer_head *bh, int create)
  615. {
  616. return _ext4_get_block(inode, iblock, bh,
  617. create ? EXT4_GET_BLOCKS_CREATE : 0);
  618. }
  619. /*
  620. * `handle' can be NULL if create is zero
  621. */
  622. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  623. ext4_lblk_t block, int create, int *errp)
  624. {
  625. struct ext4_map_blocks map;
  626. struct buffer_head *bh;
  627. int fatal = 0, err;
  628. J_ASSERT(handle != NULL || create == 0);
  629. map.m_lblk = block;
  630. map.m_len = 1;
  631. err = ext4_map_blocks(handle, inode, &map,
  632. create ? EXT4_GET_BLOCKS_CREATE : 0);
  633. /* ensure we send some value back into *errp */
  634. *errp = 0;
  635. if (err < 0)
  636. *errp = err;
  637. if (err <= 0)
  638. return NULL;
  639. bh = sb_getblk(inode->i_sb, map.m_pblk);
  640. if (!bh) {
  641. *errp = -EIO;
  642. return NULL;
  643. }
  644. if (map.m_flags & EXT4_MAP_NEW) {
  645. J_ASSERT(create != 0);
  646. J_ASSERT(handle != NULL);
  647. /*
  648. * Now that we do not always journal data, we should
  649. * keep in mind whether this should always journal the
  650. * new buffer as metadata. For now, regular file
  651. * writes use ext4_get_block instead, so it's not a
  652. * problem.
  653. */
  654. lock_buffer(bh);
  655. BUFFER_TRACE(bh, "call get_create_access");
  656. fatal = ext4_journal_get_create_access(handle, bh);
  657. if (!fatal && !buffer_uptodate(bh)) {
  658. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  659. set_buffer_uptodate(bh);
  660. }
  661. unlock_buffer(bh);
  662. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  663. err = ext4_handle_dirty_metadata(handle, inode, bh);
  664. if (!fatal)
  665. fatal = err;
  666. } else {
  667. BUFFER_TRACE(bh, "not a new buffer");
  668. }
  669. if (fatal) {
  670. *errp = fatal;
  671. brelse(bh);
  672. bh = NULL;
  673. }
  674. return bh;
  675. }
  676. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  677. ext4_lblk_t block, int create, int *err)
  678. {
  679. struct buffer_head *bh;
  680. bh = ext4_getblk(handle, inode, block, create, err);
  681. if (!bh)
  682. return bh;
  683. if (buffer_uptodate(bh))
  684. return bh;
  685. ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
  686. wait_on_buffer(bh);
  687. if (buffer_uptodate(bh))
  688. return bh;
  689. put_bh(bh);
  690. *err = -EIO;
  691. return NULL;
  692. }
  693. int ext4_walk_page_buffers(handle_t *handle,
  694. struct buffer_head *head,
  695. unsigned from,
  696. unsigned to,
  697. int *partial,
  698. int (*fn)(handle_t *handle,
  699. struct buffer_head *bh))
  700. {
  701. struct buffer_head *bh;
  702. unsigned block_start, block_end;
  703. unsigned blocksize = head->b_size;
  704. int err, ret = 0;
  705. struct buffer_head *next;
  706. for (bh = head, block_start = 0;
  707. ret == 0 && (bh != head || !block_start);
  708. block_start = block_end, bh = next) {
  709. next = bh->b_this_page;
  710. block_end = block_start + blocksize;
  711. if (block_end <= from || block_start >= to) {
  712. if (partial && !buffer_uptodate(bh))
  713. *partial = 1;
  714. continue;
  715. }
  716. err = (*fn)(handle, bh);
  717. if (!ret)
  718. ret = err;
  719. }
  720. return ret;
  721. }
  722. /*
  723. * To preserve ordering, it is essential that the hole instantiation and
  724. * the data write be encapsulated in a single transaction. We cannot
  725. * close off a transaction and start a new one between the ext4_get_block()
  726. * and the commit_write(). So doing the jbd2_journal_start at the start of
  727. * prepare_write() is the right place.
  728. *
  729. * Also, this function can nest inside ext4_writepage() ->
  730. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  731. * has generated enough buffer credits to do the whole page. So we won't
  732. * block on the journal in that case, which is good, because the caller may
  733. * be PF_MEMALLOC.
  734. *
  735. * By accident, ext4 can be reentered when a transaction is open via
  736. * quota file writes. If we were to commit the transaction while thus
  737. * reentered, there can be a deadlock - we would be holding a quota
  738. * lock, and the commit would never complete if another thread had a
  739. * transaction open and was blocking on the quota lock - a ranking
  740. * violation.
  741. *
  742. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  743. * will _not_ run commit under these circumstances because handle->h_ref
  744. * is elevated. We'll still have enough credits for the tiny quotafile
  745. * write.
  746. */
  747. int do_journal_get_write_access(handle_t *handle,
  748. struct buffer_head *bh)
  749. {
  750. int dirty = buffer_dirty(bh);
  751. int ret;
  752. if (!buffer_mapped(bh) || buffer_freed(bh))
  753. return 0;
  754. /*
  755. * __block_write_begin() could have dirtied some buffers. Clean
  756. * the dirty bit as jbd2_journal_get_write_access() could complain
  757. * otherwise about fs integrity issues. Setting of the dirty bit
  758. * by __block_write_begin() isn't a real problem here as we clear
  759. * the bit before releasing a page lock and thus writeback cannot
  760. * ever write the buffer.
  761. */
  762. if (dirty)
  763. clear_buffer_dirty(bh);
  764. ret = ext4_journal_get_write_access(handle, bh);
  765. if (!ret && dirty)
  766. ret = ext4_handle_dirty_metadata(handle, NULL, bh);
  767. return ret;
  768. }
  769. static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
  770. struct buffer_head *bh_result, int create);
  771. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  772. loff_t pos, unsigned len, unsigned flags,
  773. struct page **pagep, void **fsdata)
  774. {
  775. struct inode *inode = mapping->host;
  776. int ret, needed_blocks;
  777. handle_t *handle;
  778. int retries = 0;
  779. struct page *page;
  780. pgoff_t index;
  781. unsigned from, to;
  782. trace_ext4_write_begin(inode, pos, len, flags);
  783. /*
  784. * Reserve one block more for addition to orphan list in case
  785. * we allocate blocks but write fails for some reason
  786. */
  787. needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
  788. index = pos >> PAGE_CACHE_SHIFT;
  789. from = pos & (PAGE_CACHE_SIZE - 1);
  790. to = from + len;
  791. if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
  792. ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
  793. flags, pagep);
  794. if (ret < 0)
  795. goto out;
  796. if (ret == 1) {
  797. ret = 0;
  798. goto out;
  799. }
  800. }
  801. retry:
  802. handle = ext4_journal_start(inode, needed_blocks);
  803. if (IS_ERR(handle)) {
  804. ret = PTR_ERR(handle);
  805. goto out;
  806. }
  807. /* We cannot recurse into the filesystem as the transaction is already
  808. * started */
  809. flags |= AOP_FLAG_NOFS;
  810. page = grab_cache_page_write_begin(mapping, index, flags);
  811. if (!page) {
  812. ext4_journal_stop(handle);
  813. ret = -ENOMEM;
  814. goto out;
  815. }
  816. *pagep = page;
  817. if (ext4_should_dioread_nolock(inode))
  818. ret = __block_write_begin(page, pos, len, ext4_get_block_write);
  819. else
  820. ret = __block_write_begin(page, pos, len, ext4_get_block);
  821. if (!ret && ext4_should_journal_data(inode)) {
  822. ret = ext4_walk_page_buffers(handle, page_buffers(page),
  823. from, to, NULL,
  824. do_journal_get_write_access);
  825. }
  826. if (ret) {
  827. unlock_page(page);
  828. page_cache_release(page);
  829. /*
  830. * __block_write_begin may have instantiated a few blocks
  831. * outside i_size. Trim these off again. Don't need
  832. * i_size_read because we hold i_mutex.
  833. *
  834. * Add inode to orphan list in case we crash before
  835. * truncate finishes
  836. */
  837. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  838. ext4_orphan_add(handle, inode);
  839. ext4_journal_stop(handle);
  840. if (pos + len > inode->i_size) {
  841. ext4_truncate_failed_write(inode);
  842. /*
  843. * If truncate failed early the inode might
  844. * still be on the orphan list; we need to
  845. * make sure the inode is removed from the
  846. * orphan list in that case.
  847. */
  848. if (inode->i_nlink)
  849. ext4_orphan_del(NULL, inode);
  850. }
  851. }
  852. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  853. goto retry;
  854. out:
  855. return ret;
  856. }
  857. /* For write_end() in data=journal mode */
  858. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  859. {
  860. if (!buffer_mapped(bh) || buffer_freed(bh))
  861. return 0;
  862. set_buffer_uptodate(bh);
  863. return ext4_handle_dirty_metadata(handle, NULL, bh);
  864. }
  865. static int ext4_generic_write_end(struct file *file,
  866. struct address_space *mapping,
  867. loff_t pos, unsigned len, unsigned copied,
  868. struct page *page, void *fsdata)
  869. {
  870. int i_size_changed = 0;
  871. struct inode *inode = mapping->host;
  872. handle_t *handle = ext4_journal_current_handle();
  873. if (ext4_has_inline_data(inode))
  874. copied = ext4_write_inline_data_end(inode, pos, len,
  875. copied, page);
  876. else
  877. copied = block_write_end(file, mapping, pos,
  878. len, copied, page, fsdata);
  879. /*
  880. * No need to use i_size_read() here, the i_size
  881. * cannot change under us because we hold i_mutex.
  882. *
  883. * But it's important to update i_size while still holding page lock:
  884. * page writeout could otherwise come in and zero beyond i_size.
  885. */
  886. if (pos + copied > inode->i_size) {
  887. i_size_write(inode, pos + copied);
  888. i_size_changed = 1;
  889. }
  890. if (pos + copied > EXT4_I(inode)->i_disksize) {
  891. /* We need to mark inode dirty even if
  892. * new_i_size is less that inode->i_size
  893. * bu greater than i_disksize.(hint delalloc)
  894. */
  895. ext4_update_i_disksize(inode, (pos + copied));
  896. i_size_changed = 1;
  897. }
  898. unlock_page(page);
  899. page_cache_release(page);
  900. /*
  901. * Don't mark the inode dirty under page lock. First, it unnecessarily
  902. * makes the holding time of page lock longer. Second, it forces lock
  903. * ordering of page lock and transaction start for journaling
  904. * filesystems.
  905. */
  906. if (i_size_changed)
  907. ext4_mark_inode_dirty(handle, inode);
  908. return copied;
  909. }
  910. /*
  911. * We need to pick up the new inode size which generic_commit_write gave us
  912. * `file' can be NULL - eg, when called from page_symlink().
  913. *
  914. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  915. * buffers are managed internally.
  916. */
  917. static int ext4_ordered_write_end(struct file *file,
  918. struct address_space *mapping,
  919. loff_t pos, unsigned len, unsigned copied,
  920. struct page *page, void *fsdata)
  921. {
  922. handle_t *handle = ext4_journal_current_handle();
  923. struct inode *inode = mapping->host;
  924. int ret = 0, ret2;
  925. trace_ext4_ordered_write_end(inode, pos, len, copied);
  926. ret = ext4_jbd2_file_inode(handle, inode);
  927. if (ret == 0) {
  928. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  929. page, fsdata);
  930. copied = ret2;
  931. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  932. /* if we have allocated more blocks and copied
  933. * less. We will have blocks allocated outside
  934. * inode->i_size. So truncate them
  935. */
  936. ext4_orphan_add(handle, inode);
  937. if (ret2 < 0)
  938. ret = ret2;
  939. } else {
  940. unlock_page(page);
  941. page_cache_release(page);
  942. }
  943. ret2 = ext4_journal_stop(handle);
  944. if (!ret)
  945. ret = ret2;
  946. if (pos + len > inode->i_size) {
  947. ext4_truncate_failed_write(inode);
  948. /*
  949. * If truncate failed early the inode might still be
  950. * on the orphan list; we need to make sure the inode
  951. * is removed from the orphan list in that case.
  952. */
  953. if (inode->i_nlink)
  954. ext4_orphan_del(NULL, inode);
  955. }
  956. return ret ? ret : copied;
  957. }
  958. static int ext4_writeback_write_end(struct file *file,
  959. struct address_space *mapping,
  960. loff_t pos, unsigned len, unsigned copied,
  961. struct page *page, void *fsdata)
  962. {
  963. handle_t *handle = ext4_journal_current_handle();
  964. struct inode *inode = mapping->host;
  965. int ret = 0, ret2;
  966. trace_ext4_writeback_write_end(inode, pos, len, copied);
  967. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  968. page, fsdata);
  969. copied = ret2;
  970. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  971. /* if we have allocated more blocks and copied
  972. * less. We will have blocks allocated outside
  973. * inode->i_size. So truncate them
  974. */
  975. ext4_orphan_add(handle, inode);
  976. if (ret2 < 0)
  977. ret = ret2;
  978. ret2 = ext4_journal_stop(handle);
  979. if (!ret)
  980. ret = ret2;
  981. if (pos + len > inode->i_size) {
  982. ext4_truncate_failed_write(inode);
  983. /*
  984. * If truncate failed early the inode might still be
  985. * on the orphan list; we need to make sure the inode
  986. * is removed from the orphan list in that case.
  987. */
  988. if (inode->i_nlink)
  989. ext4_orphan_del(NULL, inode);
  990. }
  991. return ret ? ret : copied;
  992. }
  993. static int ext4_journalled_write_end(struct file *file,
  994. struct address_space *mapping,
  995. loff_t pos, unsigned len, unsigned copied,
  996. struct page *page, void *fsdata)
  997. {
  998. handle_t *handle = ext4_journal_current_handle();
  999. struct inode *inode = mapping->host;
  1000. int ret = 0, ret2;
  1001. int partial = 0;
  1002. unsigned from, to;
  1003. loff_t new_i_size;
  1004. trace_ext4_journalled_write_end(inode, pos, len, copied);
  1005. from = pos & (PAGE_CACHE_SIZE - 1);
  1006. to = from + len;
  1007. BUG_ON(!ext4_handle_valid(handle));
  1008. if (ext4_has_inline_data(inode))
  1009. copied = ext4_write_inline_data_end(inode, pos, len,
  1010. copied, page);
  1011. else {
  1012. if (copied < len) {
  1013. if (!PageUptodate(page))
  1014. copied = 0;
  1015. page_zero_new_buffers(page, from+copied, to);
  1016. }
  1017. ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
  1018. to, &partial, write_end_fn);
  1019. if (!partial)
  1020. SetPageUptodate(page);
  1021. }
  1022. new_i_size = pos + copied;
  1023. if (new_i_size > inode->i_size)
  1024. i_size_write(inode, pos+copied);
  1025. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  1026. EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
  1027. if (new_i_size > EXT4_I(inode)->i_disksize) {
  1028. ext4_update_i_disksize(inode, new_i_size);
  1029. ret2 = ext4_mark_inode_dirty(handle, inode);
  1030. if (!ret)
  1031. ret = ret2;
  1032. }
  1033. unlock_page(page);
  1034. page_cache_release(page);
  1035. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1036. /* if we have allocated more blocks and copied
  1037. * less. We will have blocks allocated outside
  1038. * inode->i_size. So truncate them
  1039. */
  1040. ext4_orphan_add(handle, inode);
  1041. ret2 = ext4_journal_stop(handle);
  1042. if (!ret)
  1043. ret = ret2;
  1044. if (pos + len > inode->i_size) {
  1045. ext4_truncate_failed_write(inode);
  1046. /*
  1047. * If truncate failed early the inode might still be
  1048. * on the orphan list; we need to make sure the inode
  1049. * is removed from the orphan list in that case.
  1050. */
  1051. if (inode->i_nlink)
  1052. ext4_orphan_del(NULL, inode);
  1053. }
  1054. return ret ? ret : copied;
  1055. }
  1056. /*
  1057. * Reserve a single cluster located at lblock
  1058. */
  1059. static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
  1060. {
  1061. int retries = 0;
  1062. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1063. struct ext4_inode_info *ei = EXT4_I(inode);
  1064. unsigned int md_needed;
  1065. int ret;
  1066. ext4_lblk_t save_last_lblock;
  1067. int save_len;
  1068. /*
  1069. * We will charge metadata quota at writeout time; this saves
  1070. * us from metadata over-estimation, though we may go over by
  1071. * a small amount in the end. Here we just reserve for data.
  1072. */
  1073. ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
  1074. if (ret)
  1075. return ret;
  1076. /*
  1077. * recalculate the amount of metadata blocks to reserve
  1078. * in order to allocate nrblocks
  1079. * worse case is one extent per block
  1080. */
  1081. repeat:
  1082. spin_lock(&ei->i_block_reservation_lock);
  1083. /*
  1084. * ext4_calc_metadata_amount() has side effects, which we have
  1085. * to be prepared undo if we fail to claim space.
  1086. */
  1087. save_len = ei->i_da_metadata_calc_len;
  1088. save_last_lblock = ei->i_da_metadata_calc_last_lblock;
  1089. md_needed = EXT4_NUM_B2C(sbi,
  1090. ext4_calc_metadata_amount(inode, lblock));
  1091. trace_ext4_da_reserve_space(inode, md_needed);
  1092. /*
  1093. * We do still charge estimated metadata to the sb though;
  1094. * we cannot afford to run out of free blocks.
  1095. */
  1096. if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
  1097. ei->i_da_metadata_calc_len = save_len;
  1098. ei->i_da_metadata_calc_last_lblock = save_last_lblock;
  1099. spin_unlock(&ei->i_block_reservation_lock);
  1100. if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
  1101. yield();
  1102. goto repeat;
  1103. }
  1104. dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
  1105. return -ENOSPC;
  1106. }
  1107. ei->i_reserved_data_blocks++;
  1108. ei->i_reserved_meta_blocks += md_needed;
  1109. spin_unlock(&ei->i_block_reservation_lock);
  1110. return 0; /* success */
  1111. }
  1112. static void ext4_da_release_space(struct inode *inode, int to_free)
  1113. {
  1114. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1115. struct ext4_inode_info *ei = EXT4_I(inode);
  1116. if (!to_free)
  1117. return; /* Nothing to release, exit */
  1118. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1119. trace_ext4_da_release_space(inode, to_free);
  1120. if (unlikely(to_free > ei->i_reserved_data_blocks)) {
  1121. /*
  1122. * if there aren't enough reserved blocks, then the
  1123. * counter is messed up somewhere. Since this
  1124. * function is called from invalidate page, it's
  1125. * harmless to return without any action.
  1126. */
  1127. ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
  1128. "ino %lu, to_free %d with only %d reserved "
  1129. "data blocks", inode->i_ino, to_free,
  1130. ei->i_reserved_data_blocks);
  1131. WARN_ON(1);
  1132. to_free = ei->i_reserved_data_blocks;
  1133. }
  1134. ei->i_reserved_data_blocks -= to_free;
  1135. if (ei->i_reserved_data_blocks == 0) {
  1136. /*
  1137. * We can release all of the reserved metadata blocks
  1138. * only when we have written all of the delayed
  1139. * allocation blocks.
  1140. * Note that in case of bigalloc, i_reserved_meta_blocks,
  1141. * i_reserved_data_blocks, etc. refer to number of clusters.
  1142. */
  1143. percpu_counter_sub(&sbi->s_dirtyclusters_counter,
  1144. ei->i_reserved_meta_blocks);
  1145. ei->i_reserved_meta_blocks = 0;
  1146. ei->i_da_metadata_calc_len = 0;
  1147. }
  1148. /* update fs dirty data blocks counter */
  1149. percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
  1150. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1151. dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
  1152. }
  1153. static void ext4_da_page_release_reservation(struct page *page,
  1154. unsigned long offset)
  1155. {
  1156. int to_release = 0;
  1157. struct buffer_head *head, *bh;
  1158. unsigned int curr_off = 0;
  1159. struct inode *inode = page->mapping->host;
  1160. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1161. int num_clusters;
  1162. ext4_fsblk_t lblk;
  1163. head = page_buffers(page);
  1164. bh = head;
  1165. do {
  1166. unsigned int next_off = curr_off + bh->b_size;
  1167. if ((offset <= curr_off) && (buffer_delay(bh))) {
  1168. to_release++;
  1169. clear_buffer_delay(bh);
  1170. }
  1171. curr_off = next_off;
  1172. } while ((bh = bh->b_this_page) != head);
  1173. if (to_release) {
  1174. lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1175. ext4_es_remove_extent(inode, lblk, to_release);
  1176. }
  1177. /* If we have released all the blocks belonging to a cluster, then we
  1178. * need to release the reserved space for that cluster. */
  1179. num_clusters = EXT4_NUM_B2C(sbi, to_release);
  1180. while (num_clusters > 0) {
  1181. lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
  1182. ((num_clusters - 1) << sbi->s_cluster_bits);
  1183. if (sbi->s_cluster_ratio == 1 ||
  1184. !ext4_find_delalloc_cluster(inode, lblk))
  1185. ext4_da_release_space(inode, 1);
  1186. num_clusters--;
  1187. }
  1188. }
  1189. /*
  1190. * Delayed allocation stuff
  1191. */
  1192. /*
  1193. * mpage_da_submit_io - walks through extent of pages and try to write
  1194. * them with writepage() call back
  1195. *
  1196. * @mpd->inode: inode
  1197. * @mpd->first_page: first page of the extent
  1198. * @mpd->next_page: page after the last page of the extent
  1199. *
  1200. * By the time mpage_da_submit_io() is called we expect all blocks
  1201. * to be allocated. this may be wrong if allocation failed.
  1202. *
  1203. * As pages are already locked by write_cache_pages(), we can't use it
  1204. */
  1205. static int mpage_da_submit_io(struct mpage_da_data *mpd,
  1206. struct ext4_map_blocks *map)
  1207. {
  1208. struct pagevec pvec;
  1209. unsigned long index, end;
  1210. int ret = 0, err, nr_pages, i;
  1211. struct inode *inode = mpd->inode;
  1212. struct address_space *mapping = inode->i_mapping;
  1213. loff_t size = i_size_read(inode);
  1214. unsigned int len, block_start;
  1215. struct buffer_head *bh, *page_bufs = NULL;
  1216. int journal_data = ext4_should_journal_data(inode);
  1217. sector_t pblock = 0, cur_logical = 0;
  1218. struct ext4_io_submit io_submit;
  1219. BUG_ON(mpd->next_page <= mpd->first_page);
  1220. memset(&io_submit, 0, sizeof(io_submit));
  1221. /*
  1222. * We need to start from the first_page to the next_page - 1
  1223. * to make sure we also write the mapped dirty buffer_heads.
  1224. * If we look at mpd->b_blocknr we would only be looking
  1225. * at the currently mapped buffer_heads.
  1226. */
  1227. index = mpd->first_page;
  1228. end = mpd->next_page - 1;
  1229. pagevec_init(&pvec, 0);
  1230. while (index <= end) {
  1231. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1232. if (nr_pages == 0)
  1233. break;
  1234. for (i = 0; i < nr_pages; i++) {
  1235. int commit_write = 0, skip_page = 0;
  1236. struct page *page = pvec.pages[i];
  1237. index = page->index;
  1238. if (index > end)
  1239. break;
  1240. if (index == size >> PAGE_CACHE_SHIFT)
  1241. len = size & ~PAGE_CACHE_MASK;
  1242. else
  1243. len = PAGE_CACHE_SIZE;
  1244. if (map) {
  1245. cur_logical = index << (PAGE_CACHE_SHIFT -
  1246. inode->i_blkbits);
  1247. pblock = map->m_pblk + (cur_logical -
  1248. map->m_lblk);
  1249. }
  1250. index++;
  1251. BUG_ON(!PageLocked(page));
  1252. BUG_ON(PageWriteback(page));
  1253. /*
  1254. * If the page does not have buffers (for
  1255. * whatever reason), try to create them using
  1256. * __block_write_begin. If this fails,
  1257. * skip the page and move on.
  1258. */
  1259. if (!page_has_buffers(page)) {
  1260. if (__block_write_begin(page, 0, len,
  1261. noalloc_get_block_write)) {
  1262. skip_page:
  1263. unlock_page(page);
  1264. continue;
  1265. }
  1266. commit_write = 1;
  1267. }
  1268. bh = page_bufs = page_buffers(page);
  1269. block_start = 0;
  1270. do {
  1271. if (!bh)
  1272. goto skip_page;
  1273. if (map && (cur_logical >= map->m_lblk) &&
  1274. (cur_logical <= (map->m_lblk +
  1275. (map->m_len - 1)))) {
  1276. if (buffer_delay(bh)) {
  1277. clear_buffer_delay(bh);
  1278. bh->b_blocknr = pblock;
  1279. }
  1280. if (buffer_unwritten(bh) ||
  1281. buffer_mapped(bh))
  1282. BUG_ON(bh->b_blocknr != pblock);
  1283. if (map->m_flags & EXT4_MAP_UNINIT)
  1284. set_buffer_uninit(bh);
  1285. clear_buffer_unwritten(bh);
  1286. }
  1287. /*
  1288. * skip page if block allocation undone and
  1289. * block is dirty
  1290. */
  1291. if (ext4_bh_delay_or_unwritten(NULL, bh))
  1292. skip_page = 1;
  1293. bh = bh->b_this_page;
  1294. block_start += bh->b_size;
  1295. cur_logical++;
  1296. pblock++;
  1297. } while (bh != page_bufs);
  1298. if (skip_page)
  1299. goto skip_page;
  1300. if (commit_write)
  1301. /* mark the buffer_heads as dirty & uptodate */
  1302. block_commit_write(page, 0, len);
  1303. clear_page_dirty_for_io(page);
  1304. /*
  1305. * Delalloc doesn't support data journalling,
  1306. * but eventually maybe we'll lift this
  1307. * restriction.
  1308. */
  1309. if (unlikely(journal_data && PageChecked(page)))
  1310. err = __ext4_journalled_writepage(page, len);
  1311. else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
  1312. err = ext4_bio_write_page(&io_submit, page,
  1313. len, mpd->wbc);
  1314. else if (buffer_uninit(page_bufs)) {
  1315. ext4_set_bh_endio(page_bufs, inode);
  1316. err = block_write_full_page_endio(page,
  1317. noalloc_get_block_write,
  1318. mpd->wbc, ext4_end_io_buffer_write);
  1319. } else
  1320. err = block_write_full_page(page,
  1321. noalloc_get_block_write, mpd->wbc);
  1322. if (!err)
  1323. mpd->pages_written++;
  1324. /*
  1325. * In error case, we have to continue because
  1326. * remaining pages are still locked
  1327. */
  1328. if (ret == 0)
  1329. ret = err;
  1330. }
  1331. pagevec_release(&pvec);
  1332. }
  1333. ext4_io_submit(&io_submit);
  1334. return ret;
  1335. }
  1336. static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
  1337. {
  1338. int nr_pages, i;
  1339. pgoff_t index, end;
  1340. struct pagevec pvec;
  1341. struct inode *inode = mpd->inode;
  1342. struct address_space *mapping = inode->i_mapping;
  1343. ext4_lblk_t start, last;
  1344. index = mpd->first_page;
  1345. end = mpd->next_page - 1;
  1346. start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1347. last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1348. ext4_es_remove_extent(inode, start, last - start + 1);
  1349. pagevec_init(&pvec, 0);
  1350. while (index <= end) {
  1351. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1352. if (nr_pages == 0)
  1353. break;
  1354. for (i = 0; i < nr_pages; i++) {
  1355. struct page *page = pvec.pages[i];
  1356. if (page->index > end)
  1357. break;
  1358. BUG_ON(!PageLocked(page));
  1359. BUG_ON(PageWriteback(page));
  1360. block_invalidatepage(page, 0);
  1361. ClearPageUptodate(page);
  1362. unlock_page(page);
  1363. }
  1364. index = pvec.pages[nr_pages - 1]->index + 1;
  1365. pagevec_release(&pvec);
  1366. }
  1367. return;
  1368. }
  1369. static void ext4_print_free_blocks(struct inode *inode)
  1370. {
  1371. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1372. struct super_block *sb = inode->i_sb;
  1373. ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
  1374. EXT4_C2B(EXT4_SB(inode->i_sb),
  1375. ext4_count_free_clusters(inode->i_sb)));
  1376. ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
  1377. ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
  1378. (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
  1379. percpu_counter_sum(&sbi->s_freeclusters_counter)));
  1380. ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
  1381. (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
  1382. percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
  1383. ext4_msg(sb, KERN_CRIT, "Block reservation details");
  1384. ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
  1385. EXT4_I(inode)->i_reserved_data_blocks);
  1386. ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
  1387. EXT4_I(inode)->i_reserved_meta_blocks);
  1388. return;
  1389. }
  1390. /*
  1391. * mpage_da_map_and_submit - go through given space, map them
  1392. * if necessary, and then submit them for I/O
  1393. *
  1394. * @mpd - bh describing space
  1395. *
  1396. * The function skips space we know is already mapped to disk blocks.
  1397. *
  1398. */
  1399. static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
  1400. {
  1401. int err, blks, get_blocks_flags;
  1402. struct ext4_map_blocks map, *mapp = NULL;
  1403. sector_t next = mpd->b_blocknr;
  1404. unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
  1405. loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
  1406. handle_t *handle = NULL;
  1407. /*
  1408. * If the blocks are mapped already, or we couldn't accumulate
  1409. * any blocks, then proceed immediately to the submission stage.
  1410. */
  1411. if ((mpd->b_size == 0) ||
  1412. ((mpd->b_state & (1 << BH_Mapped)) &&
  1413. !(mpd->b_state & (1 << BH_Delay)) &&
  1414. !(mpd->b_state & (1 << BH_Unwritten))))
  1415. goto submit_io;
  1416. handle = ext4_journal_current_handle();
  1417. BUG_ON(!handle);
  1418. /*
  1419. * Call ext4_map_blocks() to allocate any delayed allocation
  1420. * blocks, or to convert an uninitialized extent to be
  1421. * initialized (in the case where we have written into
  1422. * one or more preallocated blocks).
  1423. *
  1424. * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
  1425. * indicate that we are on the delayed allocation path. This
  1426. * affects functions in many different parts of the allocation
  1427. * call path. This flag exists primarily because we don't
  1428. * want to change *many* call functions, so ext4_map_blocks()
  1429. * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
  1430. * inode's allocation semaphore is taken.
  1431. *
  1432. * If the blocks in questions were delalloc blocks, set
  1433. * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
  1434. * variables are updated after the blocks have been allocated.
  1435. */
  1436. map.m_lblk = next;
  1437. map.m_len = max_blocks;
  1438. get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
  1439. if (ext4_should_dioread_nolock(mpd->inode))
  1440. get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
  1441. if (mpd->b_state & (1 << BH_Delay))
  1442. get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
  1443. blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
  1444. if (blks < 0) {
  1445. struct super_block *sb = mpd->inode->i_sb;
  1446. err = blks;
  1447. /*
  1448. * If get block returns EAGAIN or ENOSPC and there
  1449. * appears to be free blocks we will just let
  1450. * mpage_da_submit_io() unlock all of the pages.
  1451. */
  1452. if (err == -EAGAIN)
  1453. goto submit_io;
  1454. if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
  1455. mpd->retval = err;
  1456. goto submit_io;
  1457. }
  1458. /*
  1459. * get block failure will cause us to loop in
  1460. * writepages, because a_ops->writepage won't be able
  1461. * to make progress. The page will be redirtied by
  1462. * writepage and writepages will again try to write
  1463. * the same.
  1464. */
  1465. if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
  1466. ext4_msg(sb, KERN_CRIT,
  1467. "delayed block allocation failed for inode %lu "
  1468. "at logical offset %llu with max blocks %zd "
  1469. "with error %d", mpd->inode->i_ino,
  1470. (unsigned long long) next,
  1471. mpd->b_size >> mpd->inode->i_blkbits, err);
  1472. ext4_msg(sb, KERN_CRIT,
  1473. "This should not happen!! Data will be lost\n");
  1474. if (err == -ENOSPC)
  1475. ext4_print_free_blocks(mpd->inode);
  1476. }
  1477. /* invalidate all the pages */
  1478. ext4_da_block_invalidatepages(mpd);
  1479. /* Mark this page range as having been completed */
  1480. mpd->io_done = 1;
  1481. return;
  1482. }
  1483. BUG_ON(blks == 0);
  1484. mapp = &map;
  1485. if (map.m_flags & EXT4_MAP_NEW) {
  1486. struct block_device *bdev = mpd->inode->i_sb->s_bdev;
  1487. int i;
  1488. for (i = 0; i < map.m_len; i++)
  1489. unmap_underlying_metadata(bdev, map.m_pblk + i);
  1490. }
  1491. /*
  1492. * Update on-disk size along with block allocation.
  1493. */
  1494. disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
  1495. if (disksize > i_size_read(mpd->inode))
  1496. disksize = i_size_read(mpd->inode);
  1497. if (disksize > EXT4_I(mpd->inode)->i_disksize) {
  1498. ext4_update_i_disksize(mpd->inode, disksize);
  1499. err = ext4_mark_inode_dirty(handle, mpd->inode);
  1500. if (err)
  1501. ext4_error(mpd->inode->i_sb,
  1502. "Failed to mark inode %lu dirty",
  1503. mpd->inode->i_ino);
  1504. }
  1505. submit_io:
  1506. mpage_da_submit_io(mpd, mapp);
  1507. mpd->io_done = 1;
  1508. }
  1509. #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
  1510. (1 << BH_Delay) | (1 << BH_Unwritten))
  1511. /*
  1512. * mpage_add_bh_to_extent - try to add one more block to extent of blocks
  1513. *
  1514. * @mpd->lbh - extent of blocks
  1515. * @logical - logical number of the block in the file
  1516. * @bh - bh of the block (used to access block's state)
  1517. *
  1518. * the function is used to collect contig. blocks in same state
  1519. */
  1520. static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
  1521. sector_t logical, size_t b_size,
  1522. unsigned long b_state)
  1523. {
  1524. sector_t next;
  1525. int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
  1526. /*
  1527. * XXX Don't go larger than mballoc is willing to allocate
  1528. * This is a stopgap solution. We eventually need to fold
  1529. * mpage_da_submit_io() into this function and then call
  1530. * ext4_map_blocks() multiple times in a loop
  1531. */
  1532. if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
  1533. goto flush_it;
  1534. /* check if thereserved journal credits might overflow */
  1535. if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
  1536. if (nrblocks >= EXT4_MAX_TRANS_DATA) {
  1537. /*
  1538. * With non-extent format we are limited by the journal
  1539. * credit available. Total credit needed to insert
  1540. * nrblocks contiguous blocks is dependent on the
  1541. * nrblocks. So limit nrblocks.
  1542. */
  1543. goto flush_it;
  1544. } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
  1545. EXT4_MAX_TRANS_DATA) {
  1546. /*
  1547. * Adding the new buffer_head would make it cross the
  1548. * allowed limit for which we have journal credit
  1549. * reserved. So limit the new bh->b_size
  1550. */
  1551. b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
  1552. mpd->inode->i_blkbits;
  1553. /* we will do mpage_da_submit_io in the next loop */
  1554. }
  1555. }
  1556. /*
  1557. * First block in the extent
  1558. */
  1559. if (mpd->b_size == 0) {
  1560. mpd->b_blocknr = logical;
  1561. mpd->b_size = b_size;
  1562. mpd->b_state = b_state & BH_FLAGS;
  1563. return;
  1564. }
  1565. next = mpd->b_blocknr + nrblocks;
  1566. /*
  1567. * Can we merge the block to our big extent?
  1568. */
  1569. if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
  1570. mpd->b_size += b_size;
  1571. return;
  1572. }
  1573. flush_it:
  1574. /*
  1575. * We couldn't merge the block to our extent, so we
  1576. * need to flush current extent and start new one
  1577. */
  1578. mpage_da_map_and_submit(mpd);
  1579. return;
  1580. }
  1581. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
  1582. {
  1583. return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
  1584. }
  1585. /*
  1586. * This function is grabs code from the very beginning of
  1587. * ext4_map_blocks, but assumes that the caller is from delayed write
  1588. * time. This function looks up the requested blocks and sets the
  1589. * buffer delay bit under the protection of i_data_sem.
  1590. */
  1591. static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
  1592. struct ext4_map_blocks *map,
  1593. struct buffer_head *bh)
  1594. {
  1595. int retval;
  1596. sector_t invalid_block = ~((sector_t) 0xffff);
  1597. if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
  1598. invalid_block = ~0;
  1599. map->m_flags = 0;
  1600. ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
  1601. "logical block %lu\n", inode->i_ino, map->m_len,
  1602. (unsigned long) map->m_lblk);
  1603. /*
  1604. * Try to see if we can get the block without requesting a new
  1605. * file system block.
  1606. */
  1607. down_read((&EXT4_I(inode)->i_data_sem));
  1608. if (ext4_has_inline_data(inode)) {
  1609. /*
  1610. * We will soon create blocks for this page, and let
  1611. * us pretend as if the blocks aren't allocated yet.
  1612. * In case of clusters, we have to handle the work
  1613. * of mapping from cluster so that the reserved space
  1614. * is calculated properly.
  1615. */
  1616. if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
  1617. ext4_find_delalloc_cluster(inode, map->m_lblk))
  1618. map->m_flags |= EXT4_MAP_FROM_CLUSTER;
  1619. retval = 0;
  1620. } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  1621. retval = ext4_ext_map_blocks(NULL, inode, map, 0);
  1622. else
  1623. retval = ext4_ind_map_blocks(NULL, inode, map, 0);
  1624. if (retval == 0) {
  1625. /*
  1626. * XXX: __block_prepare_write() unmaps passed block,
  1627. * is it OK?
  1628. */
  1629. /* If the block was allocated from previously allocated cluster,
  1630. * then we dont need to reserve it again. */
  1631. if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
  1632. retval = ext4_da_reserve_space(inode, iblock);
  1633. if (retval)
  1634. /* not enough space to reserve */
  1635. goto out_unlock;
  1636. }
  1637. retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
  1638. if (retval)
  1639. goto out_unlock;
  1640. /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
  1641. * and it should not appear on the bh->b_state.
  1642. */
  1643. map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
  1644. map_bh(bh, inode->i_sb, invalid_block);
  1645. set_buffer_new(bh);
  1646. set_buffer_delay(bh);
  1647. }
  1648. out_unlock:
  1649. up_read((&EXT4_I(inode)->i_data_sem));
  1650. return retval;
  1651. }
  1652. /*
  1653. * This is a special get_blocks_t callback which is used by
  1654. * ext4_da_write_begin(). It will either return mapped block or
  1655. * reserve space for a single block.
  1656. *
  1657. * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
  1658. * We also have b_blocknr = -1 and b_bdev initialized properly
  1659. *
  1660. * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
  1661. * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
  1662. * initialized properly.
  1663. */
  1664. int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
  1665. struct buffer_head *bh, int create)
  1666. {
  1667. struct ext4_map_blocks map;
  1668. int ret = 0;
  1669. BUG_ON(create == 0);
  1670. BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
  1671. map.m_lblk = iblock;
  1672. map.m_len = 1;
  1673. /*
  1674. * first, we need to know whether the block is allocated already
  1675. * preallocated blocks are unmapped but should treated
  1676. * the same as allocated blocks.
  1677. */
  1678. ret = ext4_da_map_blocks(inode, iblock, &map, bh);
  1679. if (ret <= 0)
  1680. return ret;
  1681. map_bh(bh, inode->i_sb, map.m_pblk);
  1682. bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
  1683. if (buffer_unwritten(bh)) {
  1684. /* A delayed write to unwritten bh should be marked
  1685. * new and mapped. Mapped ensures that we don't do
  1686. * get_block multiple times when we write to the same
  1687. * offset and new ensures that we do proper zero out
  1688. * for partial write.
  1689. */
  1690. set_buffer_new(bh);
  1691. set_buffer_mapped(bh);
  1692. }
  1693. return 0;
  1694. }
  1695. /*
  1696. * This function is used as a standard get_block_t calback function
  1697. * when there is no desire to allocate any blocks. It is used as a
  1698. * callback function for block_write_begin() and block_write_full_page().
  1699. * These functions should only try to map a single block at a time.
  1700. *
  1701. * Since this function doesn't do block allocations even if the caller
  1702. * requests it by passing in create=1, it is critically important that
  1703. * any caller checks to make sure that any buffer heads are returned
  1704. * by this function are either all already mapped or marked for
  1705. * delayed allocation before calling block_write_full_page(). Otherwise,
  1706. * b_blocknr could be left unitialized, and the page write functions will
  1707. * be taken by surprise.
  1708. */
  1709. static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  1710. struct buffer_head *bh_result, int create)
  1711. {
  1712. BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
  1713. return _ext4_get_block(inode, iblock, bh_result, 0);
  1714. }
  1715. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1716. {
  1717. get_bh(bh);
  1718. return 0;
  1719. }
  1720. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1721. {
  1722. put_bh(bh);
  1723. return 0;
  1724. }
  1725. static int __ext4_journalled_writepage(struct page *page,
  1726. unsigned int len)
  1727. {
  1728. struct address_space *mapping = page->mapping;
  1729. struct inode *inode = mapping->host;
  1730. struct buffer_head *page_bufs = NULL;
  1731. handle_t *handle = NULL;
  1732. int ret = 0, err = 0;
  1733. int inline_data = ext4_has_inline_data(inode);
  1734. struct buffer_head *inode_bh = NULL;
  1735. ClearPageChecked(page);
  1736. if (inline_data) {
  1737. BUG_ON(page->index != 0);
  1738. BUG_ON(len > ext4_get_max_inline_size(inode));
  1739. inode_bh = ext4_journalled_write_inline_data(inode, len, page);
  1740. if (inode_bh == NULL)
  1741. goto out;
  1742. } else {
  1743. page_bufs = page_buffers(page);
  1744. if (!page_bufs) {
  1745. BUG();
  1746. goto out;
  1747. }
  1748. ext4_walk_page_buffers(handle, page_bufs, 0, len,
  1749. NULL, bget_one);
  1750. }
  1751. /* As soon as we unlock the page, it can go away, but we have
  1752. * references to buffers so we are safe */
  1753. unlock_page(page);
  1754. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1755. if (IS_ERR(handle)) {
  1756. ret = PTR_ERR(handle);
  1757. goto out;
  1758. }
  1759. BUG_ON(!ext4_handle_valid(handle));
  1760. if (inline_data) {
  1761. ret = ext4_journal_get_write_access(handle, inode_bh);
  1762. err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
  1763. } else {
  1764. ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
  1765. do_journal_get_write_access);
  1766. err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
  1767. write_end_fn);
  1768. }
  1769. if (ret == 0)
  1770. ret = err;
  1771. EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
  1772. err = ext4_journal_stop(handle);
  1773. if (!ret)
  1774. ret = err;
  1775. if (!ext4_has_inline_data(inode))
  1776. ext4_walk_page_buffers(handle, page_bufs, 0, len,
  1777. NULL, bput_one);
  1778. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  1779. out:
  1780. brelse(inode_bh);
  1781. return ret;
  1782. }
  1783. /*
  1784. * Note that we don't need to start a transaction unless we're journaling data
  1785. * because we should have holes filled from ext4_page_mkwrite(). We even don't
  1786. * need to file the inode to the transaction's list in ordered mode because if
  1787. * we are writing back data added by write(), the inode is already there and if
  1788. * we are writing back data modified via mmap(), no one guarantees in which
  1789. * transaction the data will hit the disk. In case we are journaling data, we
  1790. * cannot start transaction directly because transaction start ranks above page
  1791. * lock so we have to do some magic.
  1792. *
  1793. * This function can get called via...
  1794. * - ext4_da_writepages after taking page lock (have journal handle)
  1795. * - journal_submit_inode_data_buffers (no journal handle)
  1796. * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
  1797. * - grab_page_cache when doing write_begin (have journal handle)
  1798. *
  1799. * We don't do any block allocation in this function. If we have page with
  1800. * multiple blocks we need to write those buffer_heads that are mapped. This
  1801. * is important for mmaped based write. So if we do with blocksize 1K
  1802. * truncate(f, 1024);
  1803. * a = mmap(f, 0, 4096);
  1804. * a[0] = 'a';
  1805. * truncate(f, 4096);
  1806. * we have in the page first buffer_head mapped via page_mkwrite call back
  1807. * but other buffer_heads would be unmapped but dirty (dirty done via the
  1808. * do_wp_page). So writepage should write the first block. If we modify
  1809. * the mmap area beyond 1024 we will again get a page_fault and the
  1810. * page_mkwrite callback will do the block allocation and mark the
  1811. * buffer_heads mapped.
  1812. *
  1813. * We redirty the page if we have any buffer_heads that is either delay or
  1814. * unwritten in the page.
  1815. *
  1816. * We can get recursively called as show below.
  1817. *
  1818. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1819. * ext4_writepage()
  1820. *
  1821. * But since we don't do any block allocation we should not deadlock.
  1822. * Page also have the dirty flag cleared so we don't get recurive page_lock.
  1823. */
  1824. static int ext4_writepage(struct page *page,
  1825. struct writeback_control *wbc)
  1826. {
  1827. int ret = 0, commit_write = 0;
  1828. loff_t size;
  1829. unsigned int len;
  1830. struct buffer_head *page_bufs = NULL;
  1831. struct inode *inode = page->mapping->host;
  1832. trace_ext4_writepage(page);
  1833. size = i_size_read(inode);
  1834. if (page->index == size >> PAGE_CACHE_SHIFT)
  1835. len = size & ~PAGE_CACHE_MASK;
  1836. else
  1837. len = PAGE_CACHE_SIZE;
  1838. /*
  1839. * If the page does not have buffers (for whatever reason),
  1840. * try to create them using __block_write_begin. If this
  1841. * fails, redirty the page and move on.
  1842. */
  1843. if (!page_has_buffers(page)) {
  1844. if (__block_write_begin(page, 0, len,
  1845. noalloc_get_block_write)) {
  1846. redirty_page:
  1847. redirty_page_for_writepage(wbc, page);
  1848. unlock_page(page);
  1849. return 0;
  1850. }
  1851. commit_write = 1;
  1852. }
  1853. page_bufs = page_buffers(page);
  1854. if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  1855. ext4_bh_delay_or_unwritten)) {
  1856. /*
  1857. * We don't want to do block allocation, so redirty
  1858. * the page and return. We may reach here when we do
  1859. * a journal commit via journal_submit_inode_data_buffers.
  1860. * We can also reach here via shrink_page_list but it
  1861. * should never be for direct reclaim so warn if that
  1862. * happens
  1863. */
  1864. WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
  1865. PF_MEMALLOC);
  1866. goto redirty_page;
  1867. }
  1868. if (commit_write)
  1869. /* now mark the buffer_heads as dirty and uptodate */
  1870. block_commit_write(page, 0, len);
  1871. if (PageChecked(page) && ext4_should_journal_data(inode))
  1872. /*
  1873. * It's mmapped pagecache. Add buffers and journal it. There
  1874. * doesn't seem much point in redirtying the page here.
  1875. */
  1876. return __ext4_journalled_writepage(page, len);
  1877. if (buffer_uninit(page_bufs)) {
  1878. ext4_set_bh_endio(page_bufs, inode);
  1879. ret = block_write_full_page_endio(page, noalloc_get_block_write,
  1880. wbc, ext4_end_io_buffer_write);
  1881. } else
  1882. ret = block_write_full_page(page, noalloc_get_block_write,
  1883. wbc);
  1884. return ret;
  1885. }
  1886. /*
  1887. * This is called via ext4_da_writepages() to
  1888. * calculate the total number of credits to reserve to fit
  1889. * a single extent allocation into a single transaction,
  1890. * ext4_da_writpeages() will loop calling this before
  1891. * the block allocation.
  1892. */
  1893. static int ext4_da_writepages_trans_blocks(struct inode *inode)
  1894. {
  1895. int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  1896. /*
  1897. * With non-extent format the journal credit needed to
  1898. * insert nrblocks contiguous block is dependent on
  1899. * number of contiguous block. So we will limit
  1900. * number of contiguous block to a sane value
  1901. */
  1902. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
  1903. (max_blocks > EXT4_MAX_TRANS_DATA))
  1904. max_blocks = EXT4_MAX_TRANS_DATA;
  1905. return ext4_chunk_trans_blocks(inode, max_blocks);
  1906. }
  1907. /*
  1908. * write_cache_pages_da - walk the list of dirty pages of the given
  1909. * address space and accumulate pages that need writing, and call
  1910. * mpage_da_map_and_submit to map a single contiguous memory region
  1911. * and then write them.
  1912. */
  1913. static int write_cache_pages_da(handle_t *handle,
  1914. struct address_space *mapping,
  1915. struct writeback_control *wbc,
  1916. struct mpage_da_data *mpd,
  1917. pgoff_t *done_index)
  1918. {
  1919. struct buffer_head *bh, *head;
  1920. struct inode *inode = mapping->host;
  1921. struct pagevec pvec;
  1922. unsigned int nr_pages;
  1923. sector_t logical;
  1924. pgoff_t index, end;
  1925. long nr_to_write = wbc->nr_to_write;
  1926. int i, tag, ret = 0;
  1927. memset(mpd, 0, sizeof(struct mpage_da_data));
  1928. mpd->wbc = wbc;
  1929. mpd->inode = inode;
  1930. pagevec_init(&pvec, 0);
  1931. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1932. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1933. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1934. tag = PAGECACHE_TAG_TOWRITE;
  1935. else
  1936. tag = PAGECACHE_TAG_DIRTY;
  1937. *done_index = index;
  1938. while (index <= end) {
  1939. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1940. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1941. if (nr_pages == 0)
  1942. return 0;
  1943. for (i = 0; i < nr_pages; i++) {
  1944. struct page *page = pvec.pages[i];
  1945. /*
  1946. * At this point, the page may be truncated or
  1947. * invalidated (changing page->mapping to NULL), or
  1948. * even swizzled back from swapper_space to tmpfs file
  1949. * mapping. However, page->index will not change
  1950. * because we have a reference on the page.
  1951. */
  1952. if (page->index > end)
  1953. goto out;
  1954. *done_index = page->index + 1;
  1955. /*
  1956. * If we can't merge this page, and we have
  1957. * accumulated an contiguous region, write it
  1958. */
  1959. if ((mpd->next_page != page->index) &&
  1960. (mpd->next_page != mpd->first_page)) {
  1961. mpage_da_map_and_submit(mpd);
  1962. goto ret_extent_tail;
  1963. }
  1964. lock_page(page);
  1965. /*
  1966. * If the page is no longer dirty, or its
  1967. * mapping no longer corresponds to inode we
  1968. * are writing (which means it has been
  1969. * truncated or invalidated), or the page is
  1970. * already under writeback and we are not
  1971. * doing a data integrity writeback, skip the page
  1972. */
  1973. if (!PageDirty(page) ||
  1974. (PageWriteback(page) &&
  1975. (wbc->sync_mode == WB_SYNC_NONE)) ||
  1976. unlikely(page->mapping != mapping)) {
  1977. unlock_page(page);
  1978. continue;
  1979. }
  1980. wait_on_page_writeback(page);
  1981. BUG_ON(PageWriteback(page));
  1982. /*
  1983. * If we have inline data and arrive here, it means that
  1984. * we will soon create the block for the 1st page, so
  1985. * we'd better clear the inline data here.
  1986. */
  1987. if (ext4_has_inline_data(inode)) {
  1988. BUG_ON(ext4_test_inode_state(inode,
  1989. EXT4_STATE_MAY_INLINE_DATA));
  1990. ext4_destroy_inline_data(handle, inode);
  1991. }
  1992. if (mpd->next_page != page->index)
  1993. mpd->first_page = page->index;
  1994. mpd->next_page = page->index + 1;
  1995. logical = (sector_t) page->index <<
  1996. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1997. if (!page_has_buffers(page)) {
  1998. mpage_add_bh_to_extent(mpd, logical,
  1999. PAGE_CACHE_SIZE,
  2000. (1 << BH_Dirty) | (1 << BH_Uptodate));
  2001. if (mpd->io_done)
  2002. goto ret_extent_tail;
  2003. } else {
  2004. /*
  2005. * Page with regular buffer heads,
  2006. * just add all dirty ones
  2007. */
  2008. head = page_buffers(page);
  2009. bh = head;
  2010. do {
  2011. BUG_ON(buffer_locked(bh));
  2012. /*
  2013. * We need to try to allocate
  2014. * unmapped blocks in the same page.
  2015. * Otherwise we won't make progress
  2016. * with the page in ext4_writepage
  2017. */
  2018. if (ext4_bh_delay_or_unwritten(NULL, bh)) {
  2019. mpage_add_bh_to_extent(mpd, logical,
  2020. bh->b_size,
  2021. bh->b_state);
  2022. if (mpd->io_done)
  2023. goto ret_extent_tail;
  2024. } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
  2025. /*
  2026. * mapped dirty buffer. We need
  2027. * to update the b_state
  2028. * because we look at b_state
  2029. * in mpage_da_map_blocks. We
  2030. * don't update b_size because
  2031. * if we find an unmapped
  2032. * buffer_head later we need to
  2033. * use the b_state flag of that
  2034. * buffer_head.
  2035. */
  2036. if (mpd->b_size == 0)
  2037. mpd->b_state = bh->b_state & BH_FLAGS;
  2038. }
  2039. logical++;
  2040. } while ((bh = bh->b_this_page) != head);
  2041. }
  2042. if (nr_to_write > 0) {
  2043. nr_to_write--;
  2044. if (nr_to_write == 0 &&
  2045. wbc->sync_mode == WB_SYNC_NONE)
  2046. /*
  2047. * We stop writing back only if we are
  2048. * not doing integrity sync. In case of
  2049. * integrity sync we have to keep going
  2050. * because someone may be concurrently
  2051. * dirtying pages, and we might have
  2052. * synced a lot of newly appeared dirty
  2053. * pages, but have not synced all of the
  2054. * old dirty pages.
  2055. */
  2056. goto out;
  2057. }
  2058. }
  2059. pagevec_release(&pvec);
  2060. cond_resched();
  2061. }
  2062. return 0;
  2063. ret_extent_tail:
  2064. ret = MPAGE_DA_EXTENT_TAIL;
  2065. out:
  2066. pagevec_release(&pvec);
  2067. cond_resched();
  2068. return ret;
  2069. }
  2070. static int ext4_da_writepages(struct address_space *mapping,
  2071. struct writeback_control *wbc)
  2072. {
  2073. pgoff_t index;
  2074. int range_whole = 0;
  2075. handle_t *handle = NULL;
  2076. struct mpage_da_data mpd;
  2077. struct inode *inode = mapping->host;
  2078. int pages_written = 0;
  2079. unsigned int max_pages;
  2080. int range_cyclic, cycled = 1, io_done = 0;
  2081. int needed_blocks, ret = 0;
  2082. long desired_nr_to_write, nr_to_writebump = 0;
  2083. loff_t range_start = wbc->range_start;
  2084. struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
  2085. pgoff_t done_index = 0;
  2086. pgoff_t end;
  2087. struct blk_plug plug;
  2088. trace_ext4_da_writepages(inode, wbc);
  2089. /*
  2090. * No pages to write? This is mainly a kludge to avoid starting
  2091. * a transaction for special inodes like journal inode on last iput()
  2092. * because that could violate lock ordering on umount
  2093. */
  2094. if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  2095. return 0;
  2096. /*
  2097. * If the filesystem has aborted, it is read-only, so return
  2098. * right away instead of dumping stack traces later on that
  2099. * will obscure the real source of the problem. We test
  2100. * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
  2101. * the latter could be true if the filesystem is mounted
  2102. * read-only, and in that case, ext4_da_writepages should
  2103. * *never* be called, so if that ever happens, we would want
  2104. * the stack trace.
  2105. */
  2106. if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
  2107. return -EROFS;
  2108. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  2109. range_whole = 1;
  2110. range_cyclic = wbc->range_cyclic;
  2111. if (wbc->range_cyclic) {
  2112. index = mapping->writeback_index;
  2113. if (index)
  2114. cycled = 0;
  2115. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2116. wbc->range_end = LLONG_MAX;
  2117. wbc->range_cyclic = 0;
  2118. end = -1;
  2119. } else {
  2120. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2121. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  2122. }
  2123. /*
  2124. * This works around two forms of stupidity. The first is in
  2125. * the writeback code, which caps the maximum number of pages
  2126. * written to be 1024 pages. This is wrong on multiple
  2127. * levels; different architectues have a different page size,
  2128. * which changes the maximum amount of data which gets
  2129. * written. Secondly, 4 megabytes is way too small. XFS
  2130. * forces this value to be 16 megabytes by multiplying
  2131. * nr_to_write parameter by four, and then relies on its
  2132. * allocator to allocate larger extents to make them
  2133. * contiguous. Unfortunately this brings us to the second
  2134. * stupidity, which is that ext4's mballoc code only allocates
  2135. * at most 2048 blocks. So we force contiguous writes up to
  2136. * the number of dirty blocks in the inode, or
  2137. * sbi->max_writeback_mb_bump whichever is smaller.
  2138. */
  2139. max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
  2140. if (!range_cyclic && range_whole) {
  2141. if (wbc->nr_to_write == LONG_MAX)
  2142. desired_nr_to_write = wbc->nr_to_write;
  2143. else
  2144. desired_nr_to_write = wbc->nr_to_write * 8;
  2145. } else
  2146. desired_nr_to_write = ext4_num_dirty_pages(inode, index,
  2147. max_pages);
  2148. if (desired_nr_to_write > max_pages)
  2149. desired_nr_to_write = max_pages;
  2150. if (wbc->nr_to_write < desired_nr_to_write) {
  2151. nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
  2152. wbc->nr_to_write = desired_nr_to_write;
  2153. }
  2154. retry:
  2155. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  2156. tag_pages_for_writeback(mapping, index, end);
  2157. blk_start_plug(&plug);
  2158. while (!ret && wbc->nr_to_write > 0) {
  2159. /*
  2160. * we insert one extent at a time. So we need
  2161. * credit needed for single extent allocation.
  2162. * journalled mode is currently not supported
  2163. * by delalloc
  2164. */
  2165. BUG_ON(ext4_should_journal_data(inode));
  2166. needed_blocks = ext4_da_writepages_trans_blocks(inode);
  2167. /* start a new transaction*/
  2168. handle = ext4_journal_start(inode, needed_blocks);
  2169. if (IS_ERR(handle)) {
  2170. ret = PTR_ERR(handle);
  2171. ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
  2172. "%ld pages, ino %lu; err %d", __func__,
  2173. wbc->nr_to_write, inode->i_ino, ret);
  2174. blk_finish_plug(&plug);
  2175. goto out_writepages;
  2176. }
  2177. /*
  2178. * Now call write_cache_pages_da() to find the next
  2179. * contiguous region of logical blocks that need
  2180. * blocks to be allocated by ext4 and submit them.
  2181. */
  2182. ret = write_cache_pages_da(handle, mapping,
  2183. wbc, &mpd, &done_index);
  2184. /*
  2185. * If we have a contiguous extent of pages and we
  2186. * haven't done the I/O yet, map the blocks and submit
  2187. * them for I/O.
  2188. */
  2189. if (!mpd.io_done && mpd.next_page != mpd.first_page) {
  2190. mpage_da_map_and_submit(&mpd);
  2191. ret = MPAGE_DA_EXTENT_TAIL;
  2192. }
  2193. trace_ext4_da_write_pages(inode, &mpd);
  2194. wbc->nr_to_write -= mpd.pages_written;
  2195. ext4_journal_stop(handle);
  2196. if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
  2197. /* commit the transaction which would
  2198. * free blocks released in the transaction
  2199. * and try again
  2200. */
  2201. jbd2_journal_force_commit_nested(sbi->s_journal);
  2202. ret = 0;
  2203. } else if (ret == MPAGE_DA_EXTENT_TAIL) {
  2204. /*
  2205. * Got one extent now try with rest of the pages.
  2206. * If mpd.retval is set -EIO, journal is aborted.
  2207. * So we don't need to write any more.
  2208. */
  2209. pages_written += mpd.pages_written;
  2210. ret = mpd.retval;
  2211. io_done = 1;
  2212. } else if (wbc->nr_to_write)
  2213. /*
  2214. * There is no more writeout needed
  2215. * or we requested for a noblocking writeout
  2216. * and we found the device congested
  2217. */
  2218. break;
  2219. }
  2220. blk_finish_plug(&plug);
  2221. if (!io_done && !cycled) {
  2222. cycled = 1;
  2223. index = 0;
  2224. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2225. wbc->range_end = mapping->writeback_index - 1;
  2226. goto retry;
  2227. }
  2228. /* Update index */
  2229. wbc->range_cyclic = range_cyclic;
  2230. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  2231. /*
  2232. * set the writeback_index so that range_cyclic
  2233. * mode will write it back later
  2234. */
  2235. mapping->writeback_index = done_index;
  2236. out_writepages:
  2237. wbc->nr_to_write -= nr_to_writebump;
  2238. wbc->range_start = range_start;
  2239. trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
  2240. return ret;
  2241. }
  2242. static int ext4_nonda_switch(struct super_block *sb)
  2243. {
  2244. s64 free_blocks, dirty_blocks;
  2245. struct ext4_sb_info *sbi = EXT4_SB(sb);
  2246. /*
  2247. * switch to non delalloc mode if we are running low
  2248. * on free block. The free block accounting via percpu
  2249. * counters can get slightly wrong with percpu_counter_batch getting
  2250. * accumulated on each CPU without updating global counters
  2251. * Delalloc need an accurate free block accounting. So switch
  2252. * to non delalloc when we are near to error range.
  2253. */
  2254. free_blocks = EXT4_C2B(sbi,
  2255. percpu_counter_read_positive(&sbi->s_freeclusters_counter));
  2256. dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
  2257. /*
  2258. * Start pushing delalloc when 1/2 of free blocks are dirty.
  2259. */
  2260. if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
  2261. !writeback_in_progress(sb->s_bdi) &&
  2262. down_read_trylock(&sb->s_umount)) {
  2263. writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
  2264. up_read(&sb->s_umount);
  2265. }
  2266. if (2 * free_blocks < 3 * dirty_blocks ||
  2267. free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
  2268. /*
  2269. * free block count is less than 150% of dirty blocks
  2270. * or free blocks is less than watermark
  2271. */
  2272. return 1;
  2273. }
  2274. return 0;
  2275. }
  2276. static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
  2277. loff_t pos, unsigned len, unsigned flags,
  2278. struct page **pagep, void **fsdata)
  2279. {
  2280. int ret, retries = 0;
  2281. struct page *page;
  2282. pgoff_t index;
  2283. struct inode *inode = mapping->host;
  2284. handle_t *handle;
  2285. index = pos >> PAGE_CACHE_SHIFT;
  2286. if (ext4_nonda_switch(inode->i_sb)) {
  2287. *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
  2288. return ext4_write_begin(file, mapping, pos,
  2289. len, flags, pagep, fsdata);
  2290. }
  2291. *fsdata = (void *)0;
  2292. trace_ext4_da_write_begin(inode, pos, len, flags);
  2293. if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
  2294. ret = ext4_da_write_inline_data_begin(mapping, inode,
  2295. pos, len, flags,
  2296. pagep, fsdata);
  2297. if (ret < 0)
  2298. goto out;
  2299. if (ret == 1) {
  2300. ret = 0;
  2301. goto out;
  2302. }
  2303. }
  2304. retry:
  2305. /*
  2306. * With delayed allocation, we don't log the i_disksize update
  2307. * if there is delayed block allocation. But we still need
  2308. * to journalling the i_disksize update if writes to the end
  2309. * of file which has an already mapped buffer.
  2310. */
  2311. handle = ext4_journal_start(inode, 1);
  2312. if (IS_ERR(handle)) {
  2313. ret = PTR_ERR(handle);
  2314. goto out;
  2315. }
  2316. /* We cannot recurse into the filesystem as the transaction is already
  2317. * started */
  2318. flags |= AOP_FLAG_NOFS;
  2319. page = grab_cache_page_write_begin(mapping, index, flags);
  2320. if (!page) {
  2321. ext4_journal_stop(handle);
  2322. ret = -ENOMEM;
  2323. goto out;
  2324. }
  2325. *pagep = page;
  2326. ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
  2327. if (ret < 0) {
  2328. unlock_page(page);
  2329. ext4_journal_stop(handle);
  2330. page_cache_release(page);
  2331. /*
  2332. * block_write_begin may have instantiated a few blocks
  2333. * outside i_size. Trim these off again. Don't need
  2334. * i_size_read because we hold i_mutex.
  2335. */
  2336. if (pos + len > inode->i_size)
  2337. ext4_truncate_failed_write(inode);
  2338. }
  2339. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  2340. goto retry;
  2341. out:
  2342. return ret;
  2343. }
  2344. /*
  2345. * Check if we should update i_disksize
  2346. * when write to the end of file but not require block allocation
  2347. */
  2348. static int ext4_da_should_update_i_disksize(struct page *page,
  2349. unsigned long offset)
  2350. {
  2351. struct buffer_head *bh;
  2352. struct inode *inode = page->mapping->host;
  2353. unsigned int idx;
  2354. int i;
  2355. bh = page_buffers(page);
  2356. idx = offset >> inode->i_blkbits;
  2357. for (i = 0; i < idx; i++)
  2358. bh = bh->b_this_page;
  2359. if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
  2360. return 0;
  2361. return 1;
  2362. }
  2363. static int ext4_da_write_end(struct file *file,
  2364. struct address_space *mapping,
  2365. loff_t pos, unsigned len, unsigned copied,
  2366. struct page *page, void *fsdata)
  2367. {
  2368. struct inode *inode = mapping->host;
  2369. int ret = 0, ret2;
  2370. handle_t *handle = ext4_journal_current_handle();
  2371. loff_t new_i_size;
  2372. unsigned long start, end;
  2373. int write_mode = (int)(unsigned long)fsdata;
  2374. if (write_mode == FALL_BACK_TO_NONDELALLOC) {
  2375. switch (ext4_inode_journal_mode(inode)) {
  2376. case EXT4_INODE_ORDERED_DATA_MODE:
  2377. return ext4_ordered_write_end(file, mapping, pos,
  2378. len, copied, page, fsdata);
  2379. case EXT4_INODE_WRITEBACK_DATA_MODE:
  2380. return ext4_writeback_write_end(file, mapping, pos,
  2381. len, copied, page, fsdata);
  2382. default:
  2383. BUG();
  2384. }
  2385. }
  2386. trace_ext4_da_write_end(inode, pos, len, copied);
  2387. start = pos & (PAGE_CACHE_SIZE - 1);
  2388. end = start + copied - 1;
  2389. /*
  2390. * generic_write_end() will run mark_inode_dirty() if i_size
  2391. * changes. So let's piggyback the i_disksize mark_inode_dirty
  2392. * into that.
  2393. */
  2394. new_i_size = pos + copied;
  2395. if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
  2396. if (ext4_has_inline_data(inode) ||
  2397. ext4_da_should_update_i_disksize(page, end)) {
  2398. down_write(&EXT4_I(inode)->i_data_sem);
  2399. if (new_i_size > EXT4_I(inode)->i_disksize)
  2400. EXT4_I(inode)->i_disksize = new_i_size;
  2401. up_write(&EXT4_I(inode)->i_data_sem);
  2402. /* We need to mark inode dirty even if
  2403. * new_i_size is less that inode->i_size
  2404. * bu greater than i_disksize.(hint delalloc)
  2405. */
  2406. ext4_mark_inode_dirty(handle, inode);
  2407. }
  2408. }
  2409. if (write_mode != CONVERT_INLINE_DATA &&
  2410. ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
  2411. ext4_has_inline_data(inode))
  2412. ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
  2413. page);
  2414. else
  2415. ret2 = generic_write_end(file, mapping, pos, len, copied,
  2416. page, fsdata);
  2417. copied = ret2;
  2418. if (ret2 < 0)
  2419. ret = ret2;
  2420. ret2 = ext4_journal_stop(handle);
  2421. if (!ret)
  2422. ret = ret2;
  2423. return ret ? ret : copied;
  2424. }
  2425. static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
  2426. {
  2427. /*
  2428. * Drop reserved blocks
  2429. */
  2430. BUG_ON(!PageLocked(page));
  2431. if (!page_has_buffers(page))
  2432. goto out;
  2433. ext4_da_page_release_reservation(page, offset);
  2434. out:
  2435. ext4_invalidatepage(page, offset);
  2436. return;
  2437. }
  2438. /*
  2439. * Force all delayed allocation blocks to be allocated for a given inode.
  2440. */
  2441. int ext4_alloc_da_blocks(struct inode *inode)
  2442. {
  2443. trace_ext4_alloc_da_blocks(inode);
  2444. if (!EXT4_I(inode)->i_reserved_data_blocks &&
  2445. !EXT4_I(inode)->i_reserved_meta_blocks)
  2446. return 0;
  2447. /*
  2448. * We do something simple for now. The filemap_flush() will
  2449. * also start triggering a write of the data blocks, which is
  2450. * not strictly speaking necessary (and for users of
  2451. * laptop_mode, not even desirable). However, to do otherwise
  2452. * would require replicating code paths in:
  2453. *
  2454. * ext4_da_writepages() ->
  2455. * write_cache_pages() ---> (via passed in callback function)
  2456. * __mpage_da_writepage() -->
  2457. * mpage_add_bh_to_extent()
  2458. * mpage_da_map_blocks()
  2459. *
  2460. * The problem is that write_cache_pages(), located in
  2461. * mm/page-writeback.c, marks pages clean in preparation for
  2462. * doing I/O, which is not desirable if we're not planning on
  2463. * doing I/O at all.
  2464. *
  2465. * We could call write_cache_pages(), and then redirty all of
  2466. * the pages by calling redirty_page_for_writepage() but that
  2467. * would be ugly in the extreme. So instead we would need to
  2468. * replicate parts of the code in the above functions,
  2469. * simplifying them because we wouldn't actually intend to
  2470. * write out the pages, but rather only collect contiguous
  2471. * logical block extents, call the multi-block allocator, and
  2472. * then update the buffer heads with the block allocations.
  2473. *
  2474. * For now, though, we'll cheat by calling filemap_flush(),
  2475. * which will map the blocks, and start the I/O, but not
  2476. * actually wait for the I/O to complete.
  2477. */
  2478. return filemap_flush(inode->i_mapping);
  2479. }
  2480. /*
  2481. * bmap() is special. It gets used by applications such as lilo and by
  2482. * the swapper to find the on-disk block of a specific piece of data.
  2483. *
  2484. * Naturally, this is dangerous if the block concerned is still in the
  2485. * journal. If somebody makes a swapfile on an ext4 data-journaling
  2486. * filesystem and enables swap, then they may get a nasty shock when the
  2487. * data getting swapped to that swapfile suddenly gets overwritten by
  2488. * the original zero's written out previously to the journal and
  2489. * awaiting writeback in the kernel's buffer cache.
  2490. *
  2491. * So, if we see any bmap calls here on a modified, data-journaled file,
  2492. * take extra steps to flush any blocks which might be in the cache.
  2493. */
  2494. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  2495. {
  2496. struct inode *inode = mapping->host;
  2497. journal_t *journal;
  2498. int err;
  2499. /*
  2500. * We can get here for an inline file via the FIBMAP ioctl
  2501. */
  2502. if (ext4_has_inline_data(inode))
  2503. return 0;
  2504. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
  2505. test_opt(inode->i_sb, DELALLOC)) {
  2506. /*
  2507. * With delalloc we want to sync the file
  2508. * so that we can make sure we allocate
  2509. * blocks for file
  2510. */
  2511. filemap_write_and_wait(mapping);
  2512. }
  2513. if (EXT4_JOURNAL(inode) &&
  2514. ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
  2515. /*
  2516. * This is a REALLY heavyweight approach, but the use of
  2517. * bmap on dirty files is expected to be extremely rare:
  2518. * only if we run lilo or swapon on a freshly made file
  2519. * do we expect this to happen.
  2520. *
  2521. * (bmap requires CAP_SYS_RAWIO so this does not
  2522. * represent an unprivileged user DOS attack --- we'd be
  2523. * in trouble if mortal users could trigger this path at
  2524. * will.)
  2525. *
  2526. * NB. EXT4_STATE_JDATA is not set on files other than
  2527. * regular files. If somebody wants to bmap a directory
  2528. * or symlink and gets confused because the buffer
  2529. * hasn't yet been flushed to disk, they deserve
  2530. * everything they get.
  2531. */
  2532. ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
  2533. journal = EXT4_JOURNAL(inode);
  2534. jbd2_journal_lock_updates(journal);
  2535. err = jbd2_journal_flush(journal);
  2536. jbd2_journal_unlock_updates(journal);
  2537. if (err)
  2538. return 0;
  2539. }
  2540. return generic_block_bmap(mapping, block, ext4_get_block);
  2541. }
  2542. static int ext4_readpage(struct file *file, struct page *page)
  2543. {
  2544. int ret = -EAGAIN;
  2545. struct inode *inode = page->mapping->host;
  2546. trace_ext4_readpage(page);
  2547. if (ext4_has_inline_data(inode))
  2548. ret = ext4_readpage_inline(inode, page);
  2549. if (ret == -EAGAIN)
  2550. return mpage_readpage(page, ext4_get_block);
  2551. return ret;
  2552. }
  2553. static int
  2554. ext4_readpages(struct file *file, struct address_space *mapping,
  2555. struct list_head *pages, unsigned nr_pages)
  2556. {
  2557. struct inode *inode = mapping->host;
  2558. /* If the file has inline data, no need to do readpages. */
  2559. if (ext4_has_inline_data(inode))
  2560. return 0;
  2561. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  2562. }
  2563. static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
  2564. {
  2565. struct buffer_head *head, *bh;
  2566. unsigned int curr_off = 0;
  2567. if (!page_has_buffers(page))
  2568. return;
  2569. head = bh = page_buffers(page);
  2570. do {
  2571. if (offset <= curr_off && test_clear_buffer_uninit(bh)
  2572. && bh->b_private) {
  2573. ext4_free_io_end(bh->b_private);
  2574. bh->b_private = NULL;
  2575. bh->b_end_io = NULL;
  2576. }
  2577. curr_off = curr_off + bh->b_size;
  2578. bh = bh->b_this_page;
  2579. } while (bh != head);
  2580. }
  2581. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  2582. {
  2583. trace_ext4_invalidatepage(page, offset);
  2584. /*
  2585. * free any io_end structure allocated for buffers to be discarded
  2586. */
  2587. if (ext4_should_dioread_nolock(page->mapping->host))
  2588. ext4_invalidatepage_free_endio(page, offset);
  2589. /* No journalling happens on data buffers when this function is used */
  2590. WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
  2591. block_invalidatepage(page, offset);
  2592. }
  2593. static int __ext4_journalled_invalidatepage(struct page *page,
  2594. unsigned long offset)
  2595. {
  2596. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2597. trace_ext4_journalled_invalidatepage(page, offset);
  2598. /*
  2599. * If it's a full truncate we just forget about the pending dirtying
  2600. */
  2601. if (offset == 0)
  2602. ClearPageChecked(page);
  2603. return jbd2_journal_invalidatepage(journal, page, offset);
  2604. }
  2605. /* Wrapper for aops... */
  2606. static void ext4_journalled_invalidatepage(struct page *page,
  2607. unsigned long offset)
  2608. {
  2609. WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
  2610. }
  2611. static int ext4_releasepage(struct page *page, gfp_t wait)
  2612. {
  2613. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2614. trace_ext4_releasepage(page);
  2615. WARN_ON(PageChecked(page));
  2616. if (!page_has_buffers(page))
  2617. return 0;
  2618. if (journal)
  2619. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  2620. else
  2621. return try_to_free_buffers(page);
  2622. }
  2623. /*
  2624. * ext4_get_block used when preparing for a DIO write or buffer write.
  2625. * We allocate an uinitialized extent if blocks haven't been allocated.
  2626. * The extent will be converted to initialized after the IO is complete.
  2627. */
  2628. int ext4_get_block_write(struct inode *inode, sector_t iblock,
  2629. struct buffer_head *bh_result, int create)
  2630. {
  2631. ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
  2632. inode->i_ino, create);
  2633. return _ext4_get_block(inode, iblock, bh_result,
  2634. EXT4_GET_BLOCKS_IO_CREATE_EXT);
  2635. }
  2636. static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
  2637. struct buffer_head *bh_result, int create)
  2638. {
  2639. ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
  2640. inode->i_ino, create);
  2641. return _ext4_get_block(inode, iblock, bh_result,
  2642. EXT4_GET_BLOCKS_NO_LOCK);
  2643. }
  2644. static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
  2645. ssize_t size, void *private, int ret,
  2646. bool is_async)
  2647. {
  2648. struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
  2649. ext4_io_end_t *io_end = iocb->private;
  2650. /* if not async direct IO or dio with 0 bytes write, just return */
  2651. if (!io_end || !size)
  2652. goto out;
  2653. ext_debug("ext4_end_io_dio(): io_end 0x%p "
  2654. "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
  2655. iocb->private, io_end->inode->i_ino, iocb, offset,
  2656. size);
  2657. iocb->private = NULL;
  2658. /* if not aio dio with unwritten extents, just free io and return */
  2659. if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
  2660. ext4_free_io_end(io_end);
  2661. out:
  2662. if (is_async)
  2663. aio_complete(iocb, ret, 0);
  2664. inode_dio_done(inode);
  2665. return;
  2666. }
  2667. io_end->offset = offset;
  2668. io_end->size = size;
  2669. if (is_async) {
  2670. io_end->iocb = iocb;
  2671. io_end->result = ret;
  2672. }
  2673. ext4_add_complete_io(io_end);
  2674. }
  2675. static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
  2676. {
  2677. ext4_io_end_t *io_end = bh->b_private;
  2678. struct inode *inode;
  2679. if (!test_clear_buffer_uninit(bh) || !io_end)
  2680. goto out;
  2681. if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
  2682. ext4_msg(io_end->inode->i_sb, KERN_INFO,
  2683. "sb umounted, discard end_io request for inode %lu",
  2684. io_end->inode->i_ino);
  2685. ext4_free_io_end(io_end);
  2686. goto out;
  2687. }
  2688. /*
  2689. * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
  2690. * but being more careful is always safe for the future change.
  2691. */
  2692. inode = io_end->inode;
  2693. ext4_set_io_unwritten_flag(inode, io_end);
  2694. ext4_add_complete_io(io_end);
  2695. out:
  2696. bh->b_private = NULL;
  2697. bh->b_end_io = NULL;
  2698. clear_buffer_uninit(bh);
  2699. end_buffer_async_write(bh, uptodate);
  2700. }
  2701. static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
  2702. {
  2703. ext4_io_end_t *io_end;
  2704. struct page *page = bh->b_page;
  2705. loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
  2706. size_t size = bh->b_size;
  2707. retry:
  2708. io_end = ext4_init_io_end(inode, GFP_ATOMIC);
  2709. if (!io_end) {
  2710. pr_warn_ratelimited("%s: allocation fail\n", __func__);
  2711. schedule();
  2712. goto retry;
  2713. }
  2714. io_end->offset = offset;
  2715. io_end->size = size;
  2716. /*
  2717. * We need to hold a reference to the page to make sure it
  2718. * doesn't get evicted before ext4_end_io_work() has a chance
  2719. * to convert the extent from written to unwritten.
  2720. */
  2721. io_end->page = page;
  2722. get_page(io_end->page);
  2723. bh->b_private = io_end;
  2724. bh->b_end_io = ext4_end_io_buffer_write;
  2725. return 0;
  2726. }
  2727. /*
  2728. * For ext4 extent files, ext4 will do direct-io write to holes,
  2729. * preallocated extents, and those write extend the file, no need to
  2730. * fall back to buffered IO.
  2731. *
  2732. * For holes, we fallocate those blocks, mark them as uninitialized
  2733. * If those blocks were preallocated, we mark sure they are split, but
  2734. * still keep the range to write as uninitialized.
  2735. *
  2736. * The unwritten extents will be converted to written when DIO is completed.
  2737. * For async direct IO, since the IO may still pending when return, we
  2738. * set up an end_io call back function, which will do the conversion
  2739. * when async direct IO completed.
  2740. *
  2741. * If the O_DIRECT write will extend the file then add this inode to the
  2742. * orphan list. So recovery will truncate it back to the original size
  2743. * if the machine crashes during the write.
  2744. *
  2745. */
  2746. static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
  2747. const struct iovec *iov, loff_t offset,
  2748. unsigned long nr_segs)
  2749. {
  2750. struct file *file = iocb->ki_filp;
  2751. struct inode *inode = file->f_mapping->host;
  2752. ssize_t ret;
  2753. size_t count = iov_length(iov, nr_segs);
  2754. int overwrite = 0;
  2755. get_block_t *get_block_func = NULL;
  2756. int dio_flags = 0;
  2757. loff_t final_size = offset + count;
  2758. /* Use the old path for reads and writes beyond i_size. */
  2759. if (rw != WRITE || final_size > inode->i_size)
  2760. return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  2761. BUG_ON(iocb->private == NULL);
  2762. /* If we do a overwrite dio, i_mutex locking can be released */
  2763. overwrite = *((int *)iocb->private);
  2764. if (overwrite) {
  2765. atomic_inc(&inode->i_dio_count);
  2766. down_read(&EXT4_I(inode)->i_data_sem);
  2767. mutex_unlock(&inode->i_mutex);
  2768. }
  2769. /*
  2770. * We could direct write to holes and fallocate.
  2771. *
  2772. * Allocated blocks to fill the hole are marked as
  2773. * uninitialized to prevent parallel buffered read to expose
  2774. * the stale data before DIO complete the data IO.
  2775. *
  2776. * As to previously fallocated extents, ext4 get_block will
  2777. * just simply mark the buffer mapped but still keep the
  2778. * extents uninitialized.
  2779. *
  2780. * For non AIO case, we will convert those unwritten extents
  2781. * to written after return back from blockdev_direct_IO.
  2782. *
  2783. * For async DIO, the conversion needs to be deferred when the
  2784. * IO is completed. The ext4 end_io callback function will be
  2785. * called to take care of the conversion work. Here for async
  2786. * case, we allocate an io_end structure to hook to the iocb.
  2787. */
  2788. iocb->private = NULL;
  2789. ext4_inode_aio_set(inode, NULL);
  2790. if (!is_sync_kiocb(iocb)) {
  2791. ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
  2792. if (!io_end) {
  2793. ret = -ENOMEM;
  2794. goto retake_lock;
  2795. }
  2796. io_end->flag |= EXT4_IO_END_DIRECT;
  2797. iocb->private = io_end;
  2798. /*
  2799. * we save the io structure for current async direct
  2800. * IO, so that later ext4_map_blocks() could flag the
  2801. * io structure whether there is a unwritten extents
  2802. * needs to be converted when IO is completed.
  2803. */
  2804. ext4_inode_aio_set(inode, io_end);
  2805. }
  2806. if (overwrite) {
  2807. get_block_func = ext4_get_block_write_nolock;
  2808. } else {
  2809. get_block_func = ext4_get_block_write;
  2810. dio_flags = DIO_LOCKING;
  2811. }
  2812. ret = __blockdev_direct_IO(rw, iocb, inode,
  2813. inode->i_sb->s_bdev, iov,
  2814. offset, nr_segs,
  2815. get_block_func,
  2816. ext4_end_io_dio,
  2817. NULL,
  2818. dio_flags);
  2819. if (iocb->private)
  2820. ext4_inode_aio_set(inode, NULL);
  2821. /*
  2822. * The io_end structure takes a reference to the inode, that
  2823. * structure needs to be destroyed and the reference to the
  2824. * inode need to be dropped, when IO is complete, even with 0
  2825. * byte write, or failed.
  2826. *
  2827. * In the successful AIO DIO case, the io_end structure will
  2828. * be destroyed and the reference to the inode will be dropped
  2829. * after the end_io call back function is called.
  2830. *
  2831. * In the case there is 0 byte write, or error case, since VFS
  2832. * direct IO won't invoke the end_io call back function, we
  2833. * need to free the end_io structure here.
  2834. */
  2835. if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
  2836. ext4_free_io_end(iocb->private);
  2837. iocb->private = NULL;
  2838. } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
  2839. EXT4_STATE_DIO_UNWRITTEN)) {
  2840. int err;
  2841. /*
  2842. * for non AIO case, since the IO is already
  2843. * completed, we could do the conversion right here
  2844. */
  2845. err = ext4_convert_unwritten_extents(inode,
  2846. offset, ret);
  2847. if (err < 0)
  2848. ret = err;
  2849. ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
  2850. }
  2851. retake_lock:
  2852. /* take i_mutex locking again if we do a ovewrite dio */
  2853. if (overwrite) {
  2854. inode_dio_done(inode);
  2855. up_read(&EXT4_I(inode)->i_data_sem);
  2856. mutex_lock(&inode->i_mutex);
  2857. }
  2858. return ret;
  2859. }
  2860. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  2861. const struct iovec *iov, loff_t offset,
  2862. unsigned long nr_segs)
  2863. {
  2864. struct file *file = iocb->ki_filp;
  2865. struct inode *inode = file->f_mapping->host;
  2866. ssize_t ret;
  2867. /*
  2868. * If we are doing data journalling we don't support O_DIRECT
  2869. */
  2870. if (ext4_should_journal_data(inode))
  2871. return 0;
  2872. /* Let buffer I/O handle the inline data case. */
  2873. if (ext4_has_inline_data(inode))
  2874. return 0;
  2875. trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  2876. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  2877. ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
  2878. else
  2879. ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  2880. trace_ext4_direct_IO_exit(inode, offset,
  2881. iov_length(iov, nr_segs), rw, ret);
  2882. return ret;
  2883. }
  2884. /*
  2885. * Pages can be marked dirty completely asynchronously from ext4's journalling
  2886. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  2887. * much here because ->set_page_dirty is called under VFS locks. The page is
  2888. * not necessarily locked.
  2889. *
  2890. * We cannot just dirty the page and leave attached buffers clean, because the
  2891. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  2892. * or jbddirty because all the journalling code will explode.
  2893. *
  2894. * So what we do is to mark the page "pending dirty" and next time writepage
  2895. * is called, propagate that into the buffers appropriately.
  2896. */
  2897. static int ext4_journalled_set_page_dirty(struct page *page)
  2898. {
  2899. SetPageChecked(page);
  2900. return __set_page_dirty_nobuffers(page);
  2901. }
  2902. static const struct address_space_operations ext4_ordered_aops = {
  2903. .readpage = ext4_readpage,
  2904. .readpages = ext4_readpages,
  2905. .writepage = ext4_writepage,
  2906. .write_begin = ext4_write_begin,
  2907. .write_end = ext4_ordered_write_end,
  2908. .bmap = ext4_bmap,
  2909. .invalidatepage = ext4_invalidatepage,
  2910. .releasepage = ext4_releasepage,
  2911. .direct_IO = ext4_direct_IO,
  2912. .migratepage = buffer_migrate_page,
  2913. .is_partially_uptodate = block_is_partially_uptodate,
  2914. .error_remove_page = generic_error_remove_page,
  2915. };
  2916. static const struct address_space_operations ext4_writeback_aops = {
  2917. .readpage = ext4_readpage,
  2918. .readpages = ext4_readpages,
  2919. .writepage = ext4_writepage,
  2920. .write_begin = ext4_write_begin,
  2921. .write_end = ext4_writeback_write_end,
  2922. .bmap = ext4_bmap,
  2923. .invalidatepage = ext4_invalidatepage,
  2924. .releasepage = ext4_releasepage,
  2925. .direct_IO = ext4_direct_IO,
  2926. .migratepage = buffer_migrate_page,
  2927. .is_partially_uptodate = block_is_partially_uptodate,
  2928. .error_remove_page = generic_error_remove_page,
  2929. };
  2930. static const struct address_space_operations ext4_journalled_aops = {
  2931. .readpage = ext4_readpage,
  2932. .readpages = ext4_readpages,
  2933. .writepage = ext4_writepage,
  2934. .write_begin = ext4_write_begin,
  2935. .write_end = ext4_journalled_write_end,
  2936. .set_page_dirty = ext4_journalled_set_page_dirty,
  2937. .bmap = ext4_bmap,
  2938. .invalidatepage = ext4_journalled_invalidatepage,
  2939. .releasepage = ext4_releasepage,
  2940. .direct_IO = ext4_direct_IO,
  2941. .is_partially_uptodate = block_is_partially_uptodate,
  2942. .error_remove_page = generic_error_remove_page,
  2943. };
  2944. static const struct address_space_operations ext4_da_aops = {
  2945. .readpage = ext4_readpage,
  2946. .readpages = ext4_readpages,
  2947. .writepage = ext4_writepage,
  2948. .writepages = ext4_da_writepages,
  2949. .write_begin = ext4_da_write_begin,
  2950. .write_end = ext4_da_write_end,
  2951. .bmap = ext4_bmap,
  2952. .invalidatepage = ext4_da_invalidatepage,
  2953. .releasepage = ext4_releasepage,
  2954. .direct_IO = ext4_direct_IO,
  2955. .migratepage = buffer_migrate_page,
  2956. .is_partially_uptodate = block_is_partially_uptodate,
  2957. .error_remove_page = generic_error_remove_page,
  2958. };
  2959. void ext4_set_aops(struct inode *inode)
  2960. {
  2961. switch (ext4_inode_journal_mode(inode)) {
  2962. case EXT4_INODE_ORDERED_DATA_MODE:
  2963. if (test_opt(inode->i_sb, DELALLOC))
  2964. inode->i_mapping->a_ops = &ext4_da_aops;
  2965. else
  2966. inode->i_mapping->a_ops = &ext4_ordered_aops;
  2967. break;
  2968. case EXT4_INODE_WRITEBACK_DATA_MODE:
  2969. if (test_opt(inode->i_sb, DELALLOC))
  2970. inode->i_mapping->a_ops = &ext4_da_aops;
  2971. else
  2972. inode->i_mapping->a_ops = &ext4_writeback_aops;
  2973. break;
  2974. case EXT4_INODE_JOURNAL_DATA_MODE:
  2975. inode->i_mapping->a_ops = &ext4_journalled_aops;
  2976. break;
  2977. default:
  2978. BUG();
  2979. }
  2980. }
  2981. /*
  2982. * ext4_discard_partial_page_buffers()
  2983. * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
  2984. * This function finds and locks the page containing the offset
  2985. * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
  2986. * Calling functions that already have the page locked should call
  2987. * ext4_discard_partial_page_buffers_no_lock directly.
  2988. */
  2989. int ext4_discard_partial_page_buffers(handle_t *handle,
  2990. struct address_space *mapping, loff_t from,
  2991. loff_t length, int flags)
  2992. {
  2993. struct inode *inode = mapping->host;
  2994. struct page *page;
  2995. int err = 0;
  2996. page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
  2997. mapping_gfp_mask(mapping) & ~__GFP_FS);
  2998. if (!page)
  2999. return -ENOMEM;
  3000. err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
  3001. from, length, flags);
  3002. unlock_page(page);
  3003. page_cache_release(page);
  3004. return err;
  3005. }
  3006. /*
  3007. * ext4_discard_partial_page_buffers_no_lock()
  3008. * Zeros a page range of length 'length' starting from offset 'from'.
  3009. * Buffer heads that correspond to the block aligned regions of the
  3010. * zeroed range will be unmapped. Unblock aligned regions
  3011. * will have the corresponding buffer head mapped if needed so that
  3012. * that region of the page can be updated with the partial zero out.
  3013. *
  3014. * This function assumes that the page has already been locked. The
  3015. * The range to be discarded must be contained with in the given page.
  3016. * If the specified range exceeds the end of the page it will be shortened
  3017. * to the end of the page that corresponds to 'from'. This function is
  3018. * appropriate for updating a page and it buffer heads to be unmapped and
  3019. * zeroed for blocks that have been either released, or are going to be
  3020. * released.
  3021. *
  3022. * handle: The journal handle
  3023. * inode: The files inode
  3024. * page: A locked page that contains the offset "from"
  3025. * from: The starting byte offset (from the beginning of the file)
  3026. * to begin discarding
  3027. * len: The length of bytes to discard
  3028. * flags: Optional flags that may be used:
  3029. *
  3030. * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
  3031. * Only zero the regions of the page whose buffer heads
  3032. * have already been unmapped. This flag is appropriate
  3033. * for updating the contents of a page whose blocks may
  3034. * have already been released, and we only want to zero
  3035. * out the regions that correspond to those released blocks.
  3036. *
  3037. * Returns zero on success or negative on failure.
  3038. */
  3039. static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
  3040. struct inode *inode, struct page *page, loff_t from,
  3041. loff_t length, int flags)
  3042. {
  3043. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  3044. unsigned int offset = from & (PAGE_CACHE_SIZE-1);
  3045. unsigned int blocksize, max, pos;
  3046. ext4_lblk_t iblock;
  3047. struct buffer_head *bh;
  3048. int err = 0;
  3049. blocksize = inode->i_sb->s_blocksize;
  3050. max = PAGE_CACHE_SIZE - offset;
  3051. if (index != page->index)
  3052. return -EINVAL;
  3053. /*
  3054. * correct length if it does not fall between
  3055. * 'from' and the end of the page
  3056. */
  3057. if (length > max || length < 0)
  3058. length = max;
  3059. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  3060. if (!page_has_buffers(page))
  3061. create_empty_buffers(page, blocksize, 0);
  3062. /* Find the buffer that contains "offset" */
  3063. bh = page_buffers(page);
  3064. pos = blocksize;
  3065. while (offset >= pos) {
  3066. bh = bh->b_this_page;
  3067. iblock++;
  3068. pos += blocksize;
  3069. }
  3070. pos = offset;
  3071. while (pos < offset + length) {
  3072. unsigned int end_of_block, range_to_discard;
  3073. err = 0;
  3074. /* The length of space left to zero and unmap */
  3075. range_to_discard = offset + length - pos;
  3076. /* The length of space until the end of the block */
  3077. end_of_block = blocksize - (pos & (blocksize-1));
  3078. /*
  3079. * Do not unmap or zero past end of block
  3080. * for this buffer head
  3081. */
  3082. if (range_to_discard > end_of_block)
  3083. range_to_discard = end_of_block;
  3084. /*
  3085. * Skip this buffer head if we are only zeroing unampped
  3086. * regions of the page
  3087. */
  3088. if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
  3089. buffer_mapped(bh))
  3090. goto next;
  3091. /* If the range is block aligned, unmap */
  3092. if (range_to_discard == blocksize) {
  3093. clear_buffer_dirty(bh);
  3094. bh->b_bdev = NULL;
  3095. clear_buffer_mapped(bh);
  3096. clear_buffer_req(bh);
  3097. clear_buffer_new(bh);
  3098. clear_buffer_delay(bh);
  3099. clear_buffer_unwritten(bh);
  3100. clear_buffer_uptodate(bh);
  3101. zero_user(page, pos, range_to_discard);
  3102. BUFFER_TRACE(bh, "Buffer discarded");
  3103. goto next;
  3104. }
  3105. /*
  3106. * If this block is not completely contained in the range
  3107. * to be discarded, then it is not going to be released. Because
  3108. * we need to keep this block, we need to make sure this part
  3109. * of the page is uptodate before we modify it by writeing
  3110. * partial zeros on it.
  3111. */
  3112. if (!buffer_mapped(bh)) {
  3113. /*
  3114. * Buffer head must be mapped before we can read
  3115. * from the block
  3116. */
  3117. BUFFER_TRACE(bh, "unmapped");
  3118. ext4_get_block(inode, iblock, bh, 0);
  3119. /* unmapped? It's a hole - nothing to do */
  3120. if (!buffer_mapped(bh)) {
  3121. BUFFER_TRACE(bh, "still unmapped");
  3122. goto next;
  3123. }
  3124. }
  3125. /* Ok, it's mapped. Make sure it's up-to-date */
  3126. if (PageUptodate(page))
  3127. set_buffer_uptodate(bh);
  3128. if (!buffer_uptodate(bh)) {
  3129. err = -EIO;
  3130. ll_rw_block(READ, 1, &bh);
  3131. wait_on_buffer(bh);
  3132. /* Uhhuh. Read error. Complain and punt.*/
  3133. if (!buffer_uptodate(bh))
  3134. goto next;
  3135. }
  3136. if (ext4_should_journal_data(inode)) {
  3137. BUFFER_TRACE(bh, "get write access");
  3138. err = ext4_journal_get_write_access(handle, bh);
  3139. if (err)
  3140. goto next;
  3141. }
  3142. zero_user(page, pos, range_to_discard);
  3143. err = 0;
  3144. if (ext4_should_journal_data(inode)) {
  3145. err = ext4_handle_dirty_metadata(handle, inode, bh);
  3146. } else
  3147. mark_buffer_dirty(bh);
  3148. BUFFER_TRACE(bh, "Partial buffer zeroed");
  3149. next:
  3150. bh = bh->b_this_page;
  3151. iblock++;
  3152. pos += range_to_discard;
  3153. }
  3154. return err;
  3155. }
  3156. int ext4_can_truncate(struct inode *inode)
  3157. {
  3158. if (S_ISREG(inode->i_mode))
  3159. return 1;
  3160. if (S_ISDIR(inode->i_mode))
  3161. return 1;
  3162. if (S_ISLNK(inode->i_mode))
  3163. return !ext4_inode_is_fast_symlink(inode);
  3164. return 0;
  3165. }
  3166. /*
  3167. * ext4_punch_hole: punches a hole in a file by releaseing the blocks
  3168. * associated with the given offset and length
  3169. *
  3170. * @inode: File inode
  3171. * @offset: The offset where the hole will begin
  3172. * @len: The length of the hole
  3173. *
  3174. * Returns: 0 on success or negative on failure
  3175. */
  3176. int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
  3177. {
  3178. struct inode *inode = file->f_path.dentry->d_inode;
  3179. if (!S_ISREG(inode->i_mode))
  3180. return -EOPNOTSUPP;
  3181. if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  3182. /* TODO: Add support for non extent hole punching */
  3183. return -EOPNOTSUPP;
  3184. }
  3185. if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
  3186. /* TODO: Add support for bigalloc file systems */
  3187. return -EOPNOTSUPP;
  3188. }
  3189. return ext4_ext_punch_hole(file, offset, length);
  3190. }
  3191. /*
  3192. * ext4_truncate()
  3193. *
  3194. * We block out ext4_get_block() block instantiations across the entire
  3195. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  3196. * simultaneously on behalf of the same inode.
  3197. *
  3198. * As we work through the truncate and commit bits of it to the journal there
  3199. * is one core, guiding principle: the file's tree must always be consistent on
  3200. * disk. We must be able to restart the truncate after a crash.
  3201. *
  3202. * The file's tree may be transiently inconsistent in memory (although it
  3203. * probably isn't), but whenever we close off and commit a journal transaction,
  3204. * the contents of (the filesystem + the journal) must be consistent and
  3205. * restartable. It's pretty simple, really: bottom up, right to left (although
  3206. * left-to-right works OK too).
  3207. *
  3208. * Note that at recovery time, journal replay occurs *before* the restart of
  3209. * truncate against the orphan inode list.
  3210. *
  3211. * The committed inode has the new, desired i_size (which is the same as
  3212. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  3213. * that this inode's truncate did not complete and it will again call
  3214. * ext4_truncate() to have another go. So there will be instantiated blocks
  3215. * to the right of the truncation point in a crashed ext4 filesystem. But
  3216. * that's fine - as long as they are linked from the inode, the post-crash
  3217. * ext4_truncate() run will find them and release them.
  3218. */
  3219. void ext4_truncate(struct inode *inode)
  3220. {
  3221. trace_ext4_truncate_enter(inode);
  3222. if (!ext4_can_truncate(inode))
  3223. return;
  3224. ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
  3225. if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
  3226. ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
  3227. if (ext4_has_inline_data(inode)) {
  3228. int has_inline = 1;
  3229. ext4_inline_data_truncate(inode, &has_inline);
  3230. if (has_inline)
  3231. return;
  3232. }
  3233. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  3234. ext4_ext_truncate(inode);
  3235. else
  3236. ext4_ind_truncate(inode);
  3237. trace_ext4_truncate_exit(inode);
  3238. }
  3239. /*
  3240. * ext4_get_inode_loc returns with an extra refcount against the inode's
  3241. * underlying buffer_head on success. If 'in_mem' is true, we have all
  3242. * data in memory that is needed to recreate the on-disk version of this
  3243. * inode.
  3244. */
  3245. static int __ext4_get_inode_loc(struct inode *inode,
  3246. struct ext4_iloc *iloc, int in_mem)
  3247. {
  3248. struct ext4_group_desc *gdp;
  3249. struct buffer_head *bh;
  3250. struct super_block *sb = inode->i_sb;
  3251. ext4_fsblk_t block;
  3252. int inodes_per_block, inode_offset;
  3253. iloc->bh = NULL;
  3254. if (!ext4_valid_inum(sb, inode->i_ino))
  3255. return -EIO;
  3256. iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
  3257. gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
  3258. if (!gdp)
  3259. return -EIO;
  3260. /*
  3261. * Figure out the offset within the block group inode table
  3262. */
  3263. inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
  3264. inode_offset = ((inode->i_ino - 1) %
  3265. EXT4_INODES_PER_GROUP(sb));
  3266. block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
  3267. iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
  3268. bh = sb_getblk(sb, block);
  3269. if (!bh) {
  3270. EXT4_ERROR_INODE_BLOCK(inode, block,
  3271. "unable to read itable block");
  3272. return -EIO;
  3273. }
  3274. if (!buffer_uptodate(bh)) {
  3275. lock_buffer(bh);
  3276. /*
  3277. * If the buffer has the write error flag, we have failed
  3278. * to write out another inode in the same block. In this
  3279. * case, we don't have to read the block because we may
  3280. * read the old inode data successfully.
  3281. */
  3282. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  3283. set_buffer_uptodate(bh);
  3284. if (buffer_uptodate(bh)) {
  3285. /* someone brought it uptodate while we waited */
  3286. unlock_buffer(bh);
  3287. goto has_buffer;
  3288. }
  3289. /*
  3290. * If we have all information of the inode in memory and this
  3291. * is the only valid inode in the block, we need not read the
  3292. * block.
  3293. */
  3294. if (in_mem) {
  3295. struct buffer_head *bitmap_bh;
  3296. int i, start;
  3297. start = inode_offset & ~(inodes_per_block - 1);
  3298. /* Is the inode bitmap in cache? */
  3299. bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
  3300. if (!bitmap_bh)
  3301. goto make_io;
  3302. /*
  3303. * If the inode bitmap isn't in cache then the
  3304. * optimisation may end up performing two reads instead
  3305. * of one, so skip it.
  3306. */
  3307. if (!buffer_uptodate(bitmap_bh)) {
  3308. brelse(bitmap_bh);
  3309. goto make_io;
  3310. }
  3311. for (i = start; i < start + inodes_per_block; i++) {
  3312. if (i == inode_offset)
  3313. continue;
  3314. if (ext4_test_bit(i, bitmap_bh->b_data))
  3315. break;
  3316. }
  3317. brelse(bitmap_bh);
  3318. if (i == start + inodes_per_block) {
  3319. /* all other inodes are free, so skip I/O */
  3320. memset(bh->b_data, 0, bh->b_size);
  3321. set_buffer_uptodate(bh);
  3322. unlock_buffer(bh);
  3323. goto has_buffer;
  3324. }
  3325. }
  3326. make_io:
  3327. /*
  3328. * If we need to do any I/O, try to pre-readahead extra
  3329. * blocks from the inode table.
  3330. */
  3331. if (EXT4_SB(sb)->s_inode_readahead_blks) {
  3332. ext4_fsblk_t b, end, table;
  3333. unsigned num;
  3334. table = ext4_inode_table(sb, gdp);
  3335. /* s_inode_readahead_blks is always a power of 2 */
  3336. b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
  3337. if (table > b)
  3338. b = table;
  3339. end = b + EXT4_SB(sb)->s_inode_readahead_blks;
  3340. num = EXT4_INODES_PER_GROUP(sb);
  3341. if (ext4_has_group_desc_csum(sb))
  3342. num -= ext4_itable_unused_count(sb, gdp);
  3343. table += num / inodes_per_block;
  3344. if (end > table)
  3345. end = table;
  3346. while (b <= end)
  3347. sb_breadahead(sb, b++);
  3348. }
  3349. /*
  3350. * There are other valid inodes in the buffer, this inode
  3351. * has in-inode xattrs, or we don't have this inode in memory.
  3352. * Read the block from disk.
  3353. */
  3354. trace_ext4_load_inode(inode);
  3355. get_bh(bh);
  3356. bh->b_end_io = end_buffer_read_sync;
  3357. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  3358. wait_on_buffer(bh);
  3359. if (!buffer_uptodate(bh)) {
  3360. EXT4_ERROR_INODE_BLOCK(inode, block,
  3361. "unable to read itable block");
  3362. brelse(bh);
  3363. return -EIO;
  3364. }
  3365. }
  3366. has_buffer:
  3367. iloc->bh = bh;
  3368. return 0;
  3369. }
  3370. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  3371. {
  3372. /* We have all inode data except xattrs in memory here. */
  3373. return __ext4_get_inode_loc(inode, iloc,
  3374. !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
  3375. }
  3376. void ext4_set_inode_flags(struct inode *inode)
  3377. {
  3378. unsigned int flags = EXT4_I(inode)->i_flags;
  3379. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  3380. if (flags & EXT4_SYNC_FL)
  3381. inode->i_flags |= S_SYNC;
  3382. if (flags & EXT4_APPEND_FL)
  3383. inode->i_flags |= S_APPEND;
  3384. if (flags & EXT4_IMMUTABLE_FL)
  3385. inode->i_flags |= S_IMMUTABLE;
  3386. if (flags & EXT4_NOATIME_FL)
  3387. inode->i_flags |= S_NOATIME;
  3388. if (flags & EXT4_DIRSYNC_FL)
  3389. inode->i_flags |= S_DIRSYNC;
  3390. }
  3391. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  3392. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  3393. {
  3394. unsigned int vfs_fl;
  3395. unsigned long old_fl, new_fl;
  3396. do {
  3397. vfs_fl = ei->vfs_inode.i_flags;
  3398. old_fl = ei->i_flags;
  3399. new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  3400. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
  3401. EXT4_DIRSYNC_FL);
  3402. if (vfs_fl & S_SYNC)
  3403. new_fl |= EXT4_SYNC_FL;
  3404. if (vfs_fl & S_APPEND)
  3405. new_fl |= EXT4_APPEND_FL;
  3406. if (vfs_fl & S_IMMUTABLE)
  3407. new_fl |= EXT4_IMMUTABLE_FL;
  3408. if (vfs_fl & S_NOATIME)
  3409. new_fl |= EXT4_NOATIME_FL;
  3410. if (vfs_fl & S_DIRSYNC)
  3411. new_fl |= EXT4_DIRSYNC_FL;
  3412. } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
  3413. }
  3414. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  3415. struct ext4_inode_info *ei)
  3416. {
  3417. blkcnt_t i_blocks ;
  3418. struct inode *inode = &(ei->vfs_inode);
  3419. struct super_block *sb = inode->i_sb;
  3420. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3421. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  3422. /* we are using combined 48 bit field */
  3423. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  3424. le32_to_cpu(raw_inode->i_blocks_lo);
  3425. if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
  3426. /* i_blocks represent file system block size */
  3427. return i_blocks << (inode->i_blkbits - 9);
  3428. } else {
  3429. return i_blocks;
  3430. }
  3431. } else {
  3432. return le32_to_cpu(raw_inode->i_blocks_lo);
  3433. }
  3434. }
  3435. static inline void ext4_iget_extra_inode(struct inode *inode,
  3436. struct ext4_inode *raw_inode,
  3437. struct ext4_inode_info *ei)
  3438. {
  3439. __le32 *magic = (void *)raw_inode +
  3440. EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
  3441. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
  3442. ext4_set_inode_state(inode, EXT4_STATE_XATTR);
  3443. ext4_find_inline_data_nolock(inode);
  3444. } else
  3445. EXT4_I(inode)->i_inline_off = 0;
  3446. }
  3447. struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
  3448. {
  3449. struct ext4_iloc iloc;
  3450. struct ext4_inode *raw_inode;
  3451. struct ext4_inode_info *ei;
  3452. struct inode *inode;
  3453. journal_t *journal = EXT4_SB(sb)->s_journal;
  3454. long ret;
  3455. int block;
  3456. uid_t i_uid;
  3457. gid_t i_gid;
  3458. inode = iget_locked(sb, ino);
  3459. if (!inode)
  3460. return ERR_PTR(-ENOMEM);
  3461. if (!(inode->i_state & I_NEW))
  3462. return inode;
  3463. ei = EXT4_I(inode);
  3464. iloc.bh = NULL;
  3465. ret = __ext4_get_inode_loc(inode, &iloc, 0);
  3466. if (ret < 0)
  3467. goto bad_inode;
  3468. raw_inode = ext4_raw_inode(&iloc);
  3469. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  3470. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  3471. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  3472. EXT4_INODE_SIZE(inode->i_sb)) {
  3473. EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
  3474. EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
  3475. EXT4_INODE_SIZE(inode->i_sb));
  3476. ret = -EIO;
  3477. goto bad_inode;
  3478. }
  3479. } else
  3480. ei->i_extra_isize = 0;
  3481. /* Precompute checksum seed for inode metadata */
  3482. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3483. EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
  3484. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  3485. __u32 csum;
  3486. __le32 inum = cpu_to_le32(inode->i_ino);
  3487. __le32 gen = raw_inode->i_generation;
  3488. csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
  3489. sizeof(inum));
  3490. ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
  3491. sizeof(gen));
  3492. }
  3493. if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
  3494. EXT4_ERROR_INODE(inode, "checksum invalid");
  3495. ret = -EIO;
  3496. goto bad_inode;
  3497. }
  3498. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  3499. i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  3500. i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  3501. if (!(test_opt(inode->i_sb, NO_UID32))) {
  3502. i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  3503. i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  3504. }
  3505. i_uid_write(inode, i_uid);
  3506. i_gid_write(inode, i_gid);
  3507. set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  3508. ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
  3509. ei->i_inline_off = 0;
  3510. ei->i_dir_start_lookup = 0;
  3511. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  3512. /* We now have enough fields to check if the inode was active or not.
  3513. * This is needed because nfsd might try to access dead inodes
  3514. * the test is that same one that e2fsck uses
  3515. * NeilBrown 1999oct15
  3516. */
  3517. if (inode->i_nlink == 0) {
  3518. if (inode->i_mode == 0 ||
  3519. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  3520. /* this inode is deleted */
  3521. ret = -ESTALE;
  3522. goto bad_inode;
  3523. }
  3524. /* The only unlinked inodes we let through here have
  3525. * valid i_mode and are being read by the orphan
  3526. * recovery code: that's fine, we're about to complete
  3527. * the process of deleting those. */
  3528. }
  3529. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  3530. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  3531. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  3532. if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
  3533. ei->i_file_acl |=
  3534. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  3535. inode->i_size = ext4_isize(raw_inode);
  3536. ei->i_disksize = inode->i_size;
  3537. #ifdef CONFIG_QUOTA
  3538. ei->i_reserved_quota = 0;
  3539. #endif
  3540. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  3541. ei->i_block_group = iloc.block_group;
  3542. ei->i_last_alloc_group = ~0;
  3543. /*
  3544. * NOTE! The in-memory inode i_data array is in little-endian order
  3545. * even on big-endian machines: we do NOT byteswap the block numbers!
  3546. */
  3547. for (block = 0; block < EXT4_N_BLOCKS; block++)
  3548. ei->i_data[block] = raw_inode->i_block[block];
  3549. INIT_LIST_HEAD(&ei->i_orphan);
  3550. /*
  3551. * Set transaction id's of transactions that have to be committed
  3552. * to finish f[data]sync. We set them to currently running transaction
  3553. * as we cannot be sure that the inode or some of its metadata isn't
  3554. * part of the transaction - the inode could have been reclaimed and
  3555. * now it is reread from disk.
  3556. */
  3557. if (journal) {
  3558. transaction_t *transaction;
  3559. tid_t tid;
  3560. read_lock(&journal->j_state_lock);
  3561. if (journal->j_running_transaction)
  3562. transaction = journal->j_running_transaction;
  3563. else
  3564. transaction = journal->j_committing_transaction;
  3565. if (transaction)
  3566. tid = transaction->t_tid;
  3567. else
  3568. tid = journal->j_commit_sequence;
  3569. read_unlock(&journal->j_state_lock);
  3570. ei->i_sync_tid = tid;
  3571. ei->i_datasync_tid = tid;
  3572. }
  3573. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  3574. if (ei->i_extra_isize == 0) {
  3575. /* The extra space is currently unused. Use it. */
  3576. ei->i_extra_isize = sizeof(struct ext4_inode) -
  3577. EXT4_GOOD_OLD_INODE_SIZE;
  3578. } else {
  3579. ext4_iget_extra_inode(inode, raw_inode, ei);
  3580. }
  3581. }
  3582. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  3583. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  3584. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  3585. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  3586. inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
  3587. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  3588. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  3589. inode->i_version |=
  3590. (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
  3591. }
  3592. ret = 0;
  3593. if (ei->i_file_acl &&
  3594. !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
  3595. EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
  3596. ei->i_file_acl);
  3597. ret = -EIO;
  3598. goto bad_inode;
  3599. } else if (!ext4_has_inline_data(inode)) {
  3600. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  3601. if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  3602. (S_ISLNK(inode->i_mode) &&
  3603. !ext4_inode_is_fast_symlink(inode))))
  3604. /* Validate extent which is part of inode */
  3605. ret = ext4_ext_check_inode(inode);
  3606. } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  3607. (S_ISLNK(inode->i_mode) &&
  3608. !ext4_inode_is_fast_symlink(inode))) {
  3609. /* Validate block references which are part of inode */
  3610. ret = ext4_ind_check_inode(inode);
  3611. }
  3612. }
  3613. if (ret)
  3614. goto bad_inode;
  3615. if (S_ISREG(inode->i_mode)) {
  3616. inode->i_op = &ext4_file_inode_operations;
  3617. inode->i_fop = &ext4_file_operations;
  3618. ext4_set_aops(inode);
  3619. } else if (S_ISDIR(inode->i_mode)) {
  3620. inode->i_op = &ext4_dir_inode_operations;
  3621. inode->i_fop = &ext4_dir_operations;
  3622. } else if (S_ISLNK(inode->i_mode)) {
  3623. if (ext4_inode_is_fast_symlink(inode)) {
  3624. inode->i_op = &ext4_fast_symlink_inode_operations;
  3625. nd_terminate_link(ei->i_data, inode->i_size,
  3626. sizeof(ei->i_data) - 1);
  3627. } else {
  3628. inode->i_op = &ext4_symlink_inode_operations;
  3629. ext4_set_aops(inode);
  3630. }
  3631. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  3632. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  3633. inode->i_op = &ext4_special_inode_operations;
  3634. if (raw_inode->i_block[0])
  3635. init_special_inode(inode, inode->i_mode,
  3636. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  3637. else
  3638. init_special_inode(inode, inode->i_mode,
  3639. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  3640. } else {
  3641. ret = -EIO;
  3642. EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
  3643. goto bad_inode;
  3644. }
  3645. brelse(iloc.bh);
  3646. ext4_set_inode_flags(inode);
  3647. unlock_new_inode(inode);
  3648. return inode;
  3649. bad_inode:
  3650. brelse(iloc.bh);
  3651. iget_failed(inode);
  3652. return ERR_PTR(ret);
  3653. }
  3654. static int ext4_inode_blocks_set(handle_t *handle,
  3655. struct ext4_inode *raw_inode,
  3656. struct ext4_inode_info *ei)
  3657. {
  3658. struct inode *inode = &(ei->vfs_inode);
  3659. u64 i_blocks = inode->i_blocks;
  3660. struct super_block *sb = inode->i_sb;
  3661. if (i_blocks <= ~0U) {
  3662. /*
  3663. * i_blocks can be represented in a 32 bit variable
  3664. * as multiple of 512 bytes
  3665. */
  3666. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3667. raw_inode->i_blocks_high = 0;
  3668. ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3669. return 0;
  3670. }
  3671. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
  3672. return -EFBIG;
  3673. if (i_blocks <= 0xffffffffffffULL) {
  3674. /*
  3675. * i_blocks can be represented in a 48 bit variable
  3676. * as multiple of 512 bytes
  3677. */
  3678. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3679. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  3680. ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3681. } else {
  3682. ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3683. /* i_block is stored in file system block size */
  3684. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  3685. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3686. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  3687. }
  3688. return 0;
  3689. }
  3690. /*
  3691. * Post the struct inode info into an on-disk inode location in the
  3692. * buffer-cache. This gobbles the caller's reference to the
  3693. * buffer_head in the inode location struct.
  3694. *
  3695. * The caller must have write access to iloc->bh.
  3696. */
  3697. static int ext4_do_update_inode(handle_t *handle,
  3698. struct inode *inode,
  3699. struct ext4_iloc *iloc)
  3700. {
  3701. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  3702. struct ext4_inode_info *ei = EXT4_I(inode);
  3703. struct buffer_head *bh = iloc->bh;
  3704. int err = 0, rc, block;
  3705. int need_datasync = 0;
  3706. uid_t i_uid;
  3707. gid_t i_gid;
  3708. /* For fields not not tracking in the in-memory inode,
  3709. * initialise them to zero for new inodes. */
  3710. if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
  3711. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  3712. ext4_get_inode_flags(ei);
  3713. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  3714. i_uid = i_uid_read(inode);
  3715. i_gid = i_gid_read(inode);
  3716. if (!(test_opt(inode->i_sb, NO_UID32))) {
  3717. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
  3718. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
  3719. /*
  3720. * Fix up interoperability with old kernels. Otherwise, old inodes get
  3721. * re-used with the upper 16 bits of the uid/gid intact
  3722. */
  3723. if (!ei->i_dtime) {
  3724. raw_inode->i_uid_high =
  3725. cpu_to_le16(high_16_bits(i_uid));
  3726. raw_inode->i_gid_high =
  3727. cpu_to_le16(high_16_bits(i_gid));
  3728. } else {
  3729. raw_inode->i_uid_high = 0;
  3730. raw_inode->i_gid_high = 0;
  3731. }
  3732. } else {
  3733. raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
  3734. raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
  3735. raw_inode->i_uid_high = 0;
  3736. raw_inode->i_gid_high = 0;
  3737. }
  3738. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  3739. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  3740. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  3741. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  3742. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  3743. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  3744. goto out_brelse;
  3745. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  3746. raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
  3747. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  3748. cpu_to_le32(EXT4_OS_HURD))
  3749. raw_inode->i_file_acl_high =
  3750. cpu_to_le16(ei->i_file_acl >> 32);
  3751. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  3752. if (ei->i_disksize != ext4_isize(raw_inode)) {
  3753. ext4_isize_set(raw_inode, ei->i_disksize);
  3754. need_datasync = 1;
  3755. }
  3756. if (ei->i_disksize > 0x7fffffffULL) {
  3757. struct super_block *sb = inode->i_sb;
  3758. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3759. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  3760. EXT4_SB(sb)->s_es->s_rev_level ==
  3761. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  3762. /* If this is the first large file
  3763. * created, add a flag to the superblock.
  3764. */
  3765. err = ext4_journal_get_write_access(handle,
  3766. EXT4_SB(sb)->s_sbh);
  3767. if (err)
  3768. goto out_brelse;
  3769. ext4_update_dynamic_rev(sb);
  3770. EXT4_SET_RO_COMPAT_FEATURE(sb,
  3771. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  3772. ext4_handle_sync(handle);
  3773. err = ext4_handle_dirty_super(handle, sb);
  3774. }
  3775. }
  3776. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  3777. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  3778. if (old_valid_dev(inode->i_rdev)) {
  3779. raw_inode->i_block[0] =
  3780. cpu_to_le32(old_encode_dev(inode->i_rdev));
  3781. raw_inode->i_block[1] = 0;
  3782. } else {
  3783. raw_inode->i_block[0] = 0;
  3784. raw_inode->i_block[1] =
  3785. cpu_to_le32(new_encode_dev(inode->i_rdev));
  3786. raw_inode->i_block[2] = 0;
  3787. }
  3788. } else if (!ext4_has_inline_data(inode)) {
  3789. for (block = 0; block < EXT4_N_BLOCKS; block++)
  3790. raw_inode->i_block[block] = ei->i_data[block];
  3791. }
  3792. raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
  3793. if (ei->i_extra_isize) {
  3794. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  3795. raw_inode->i_version_hi =
  3796. cpu_to_le32(inode->i_version >> 32);
  3797. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  3798. }
  3799. ext4_inode_csum_set(inode, raw_inode, ei);
  3800. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  3801. rc = ext4_handle_dirty_metadata(handle, NULL, bh);
  3802. if (!err)
  3803. err = rc;
  3804. ext4_clear_inode_state(inode, EXT4_STATE_NEW);
  3805. ext4_update_inode_fsync_trans(handle, inode, need_datasync);
  3806. out_brelse:
  3807. brelse(bh);
  3808. ext4_std_error(inode->i_sb, err);
  3809. return err;
  3810. }
  3811. /*
  3812. * ext4_write_inode()
  3813. *
  3814. * We are called from a few places:
  3815. *
  3816. * - Within generic_file_write() for O_SYNC files.
  3817. * Here, there will be no transaction running. We wait for any running
  3818. * transaction to commit.
  3819. *
  3820. * - Within sys_sync(), kupdate and such.
  3821. * We wait on commit, if tol to.
  3822. *
  3823. * - Within prune_icache() (PF_MEMALLOC == true)
  3824. * Here we simply return. We can't afford to block kswapd on the
  3825. * journal commit.
  3826. *
  3827. * In all cases it is actually safe for us to return without doing anything,
  3828. * because the inode has been copied into a raw inode buffer in
  3829. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  3830. * knfsd.
  3831. *
  3832. * Note that we are absolutely dependent upon all inode dirtiers doing the
  3833. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  3834. * which we are interested.
  3835. *
  3836. * It would be a bug for them to not do this. The code:
  3837. *
  3838. * mark_inode_dirty(inode)
  3839. * stuff();
  3840. * inode->i_size = expr;
  3841. *
  3842. * is in error because a kswapd-driven write_inode() could occur while
  3843. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  3844. * will no longer be on the superblock's dirty inode list.
  3845. */
  3846. int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
  3847. {
  3848. int err;
  3849. if (current->flags & PF_MEMALLOC)
  3850. return 0;
  3851. if (EXT4_SB(inode->i_sb)->s_journal) {
  3852. if (ext4_journal_current_handle()) {
  3853. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  3854. dump_stack();
  3855. return -EIO;
  3856. }
  3857. if (wbc->sync_mode != WB_SYNC_ALL)
  3858. return 0;
  3859. err = ext4_force_commit(inode->i_sb);
  3860. } else {
  3861. struct ext4_iloc iloc;
  3862. err = __ext4_get_inode_loc(inode, &iloc, 0);
  3863. if (err)
  3864. return err;
  3865. if (wbc->sync_mode == WB_SYNC_ALL)
  3866. sync_dirty_buffer(iloc.bh);
  3867. if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
  3868. EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
  3869. "IO error syncing inode");
  3870. err = -EIO;
  3871. }
  3872. brelse(iloc.bh);
  3873. }
  3874. return err;
  3875. }
  3876. /*
  3877. * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
  3878. * buffers that are attached to a page stradding i_size and are undergoing
  3879. * commit. In that case we have to wait for commit to finish and try again.
  3880. */
  3881. static void ext4_wait_for_tail_page_commit(struct inode *inode)
  3882. {
  3883. struct page *page;
  3884. unsigned offset;
  3885. journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
  3886. tid_t commit_tid = 0;
  3887. int ret;
  3888. offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
  3889. /*
  3890. * All buffers in the last page remain valid? Then there's nothing to
  3891. * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
  3892. * blocksize case
  3893. */
  3894. if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
  3895. return;
  3896. while (1) {
  3897. page = find_lock_page(inode->i_mapping,
  3898. inode->i_size >> PAGE_CACHE_SHIFT);
  3899. if (!page)
  3900. return;
  3901. ret = __ext4_journalled_invalidatepage(page, offset);
  3902. unlock_page(page);
  3903. page_cache_release(page);
  3904. if (ret != -EBUSY)
  3905. return;
  3906. commit_tid = 0;
  3907. read_lock(&journal->j_state_lock);
  3908. if (journal->j_committing_transaction)
  3909. commit_tid = journal->j_committing_transaction->t_tid;
  3910. read_unlock(&journal->j_state_lock);
  3911. if (commit_tid)
  3912. jbd2_log_wait_commit(journal, commit_tid);
  3913. }
  3914. }
  3915. /*
  3916. * ext4_setattr()
  3917. *
  3918. * Called from notify_change.
  3919. *
  3920. * We want to trap VFS attempts to truncate the file as soon as
  3921. * possible. In particular, we want to make sure that when the VFS
  3922. * shrinks i_size, we put the inode on the orphan list and modify
  3923. * i_disksize immediately, so that during the subsequent flushing of
  3924. * dirty pages and freeing of disk blocks, we can guarantee that any
  3925. * commit will leave the blocks being flushed in an unused state on
  3926. * disk. (On recovery, the inode will get truncated and the blocks will
  3927. * be freed, so we have a strong guarantee that no future commit will
  3928. * leave these blocks visible to the user.)
  3929. *
  3930. * Another thing we have to assure is that if we are in ordered mode
  3931. * and inode is still attached to the committing transaction, we must
  3932. * we start writeout of all the dirty pages which are being truncated.
  3933. * This way we are sure that all the data written in the previous
  3934. * transaction are already on disk (truncate waits for pages under
  3935. * writeback).
  3936. *
  3937. * Called with inode->i_mutex down.
  3938. */
  3939. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  3940. {
  3941. struct inode *inode = dentry->d_inode;
  3942. int error, rc = 0;
  3943. int orphan = 0;
  3944. const unsigned int ia_valid = attr->ia_valid;
  3945. error = inode_change_ok(inode, attr);
  3946. if (error)
  3947. return error;
  3948. if (is_quota_modification(inode, attr))
  3949. dquot_initialize(inode);
  3950. if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
  3951. (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
  3952. handle_t *handle;
  3953. /* (user+group)*(old+new) structure, inode write (sb,
  3954. * inode block, ? - but truncate inode update has it) */
  3955. handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  3956. EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
  3957. if (IS_ERR(handle)) {
  3958. error = PTR_ERR(handle);
  3959. goto err_out;
  3960. }
  3961. error = dquot_transfer(inode, attr);
  3962. if (error) {
  3963. ext4_journal_stop(handle);
  3964. return error;
  3965. }
  3966. /* Update corresponding info in inode so that everything is in
  3967. * one transaction */
  3968. if (attr->ia_valid & ATTR_UID)
  3969. inode->i_uid = attr->ia_uid;
  3970. if (attr->ia_valid & ATTR_GID)
  3971. inode->i_gid = attr->ia_gid;
  3972. error = ext4_mark_inode_dirty(handle, inode);
  3973. ext4_journal_stop(handle);
  3974. }
  3975. if (attr->ia_valid & ATTR_SIZE) {
  3976. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
  3977. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  3978. if (attr->ia_size > sbi->s_bitmap_maxbytes)
  3979. return -EFBIG;
  3980. }
  3981. }
  3982. if (S_ISREG(inode->i_mode) &&
  3983. attr->ia_valid & ATTR_SIZE &&
  3984. (attr->ia_size < inode->i_size)) {
  3985. handle_t *handle;
  3986. handle = ext4_journal_start(inode, 3);
  3987. if (IS_ERR(handle)) {
  3988. error = PTR_ERR(handle);
  3989. goto err_out;
  3990. }
  3991. if (ext4_handle_valid(handle)) {
  3992. error = ext4_orphan_add(handle, inode);
  3993. orphan = 1;
  3994. }
  3995. EXT4_I(inode)->i_disksize = attr->ia_size;
  3996. rc = ext4_mark_inode_dirty(handle, inode);
  3997. if (!error)
  3998. error = rc;
  3999. ext4_journal_stop(handle);
  4000. if (ext4_should_order_data(inode)) {
  4001. error = ext4_begin_ordered_truncate(inode,
  4002. attr->ia_size);
  4003. if (error) {
  4004. /* Do as much error cleanup as possible */
  4005. handle = ext4_journal_start(inode, 3);
  4006. if (IS_ERR(handle)) {
  4007. ext4_orphan_del(NULL, inode);
  4008. goto err_out;
  4009. }
  4010. ext4_orphan_del(handle, inode);
  4011. orphan = 0;
  4012. ext4_journal_stop(handle);
  4013. goto err_out;
  4014. }
  4015. }
  4016. }
  4017. if (attr->ia_valid & ATTR_SIZE) {
  4018. if (attr->ia_size != inode->i_size) {
  4019. loff_t oldsize = inode->i_size;
  4020. i_size_write(inode, attr->ia_size);
  4021. /*
  4022. * Blocks are going to be removed from the inode. Wait
  4023. * for dio in flight. Temporarily disable
  4024. * dioread_nolock to prevent livelock.
  4025. */
  4026. if (orphan) {
  4027. if (!ext4_should_journal_data(inode)) {
  4028. ext4_inode_block_unlocked_dio(inode);
  4029. inode_dio_wait(inode);
  4030. ext4_inode_resume_unlocked_dio(inode);
  4031. } else
  4032. ext4_wait_for_tail_page_commit(inode);
  4033. }
  4034. /*
  4035. * Truncate pagecache after we've waited for commit
  4036. * in data=journal mode to make pages freeable.
  4037. */
  4038. truncate_pagecache(inode, oldsize, inode->i_size);
  4039. }
  4040. ext4_truncate(inode);
  4041. }
  4042. if (!rc) {
  4043. setattr_copy(inode, attr);
  4044. mark_inode_dirty(inode);
  4045. }
  4046. /*
  4047. * If the call to ext4_truncate failed to get a transaction handle at
  4048. * all, we need to clean up the in-core orphan list manually.
  4049. */
  4050. if (orphan && inode->i_nlink)
  4051. ext4_orphan_del(NULL, inode);
  4052. if (!rc && (ia_valid & ATTR_MODE))
  4053. rc = ext4_acl_chmod(inode);
  4054. err_out:
  4055. ext4_std_error(inode->i_sb, error);
  4056. if (!error)
  4057. error = rc;
  4058. return error;
  4059. }
  4060. int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
  4061. struct kstat *stat)
  4062. {
  4063. struct inode *inode;
  4064. unsigned long delalloc_blocks;
  4065. inode = dentry->d_inode;
  4066. generic_fillattr(inode, stat);
  4067. /*
  4068. * We can't update i_blocks if the block allocation is delayed
  4069. * otherwise in the case of system crash before the real block
  4070. * allocation is done, we will have i_blocks inconsistent with
  4071. * on-disk file blocks.
  4072. * We always keep i_blocks updated together with real
  4073. * allocation. But to not confuse with user, stat
  4074. * will return the blocks that include the delayed allocation
  4075. * blocks for this file.
  4076. */
  4077. delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
  4078. EXT4_I(inode)->i_reserved_data_blocks);
  4079. stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
  4080. return 0;
  4081. }
  4082. static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4083. {
  4084. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
  4085. return ext4_ind_trans_blocks(inode, nrblocks, chunk);
  4086. return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
  4087. }
  4088. /*
  4089. * Account for index blocks, block groups bitmaps and block group
  4090. * descriptor blocks if modify datablocks and index blocks
  4091. * worse case, the indexs blocks spread over different block groups
  4092. *
  4093. * If datablocks are discontiguous, they are possible to spread over
  4094. * different block groups too. If they are contiguous, with flexbg,
  4095. * they could still across block group boundary.
  4096. *
  4097. * Also account for superblock, inode, quota and xattr blocks
  4098. */
  4099. static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4100. {
  4101. ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
  4102. int gdpblocks;
  4103. int idxblocks;
  4104. int ret = 0;
  4105. /*
  4106. * How many index blocks need to touch to modify nrblocks?
  4107. * The "Chunk" flag indicating whether the nrblocks is
  4108. * physically contiguous on disk
  4109. *
  4110. * For Direct IO and fallocate, they calls get_block to allocate
  4111. * one single extent at a time, so they could set the "Chunk" flag
  4112. */
  4113. idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
  4114. ret = idxblocks;
  4115. /*
  4116. * Now let's see how many group bitmaps and group descriptors need
  4117. * to account
  4118. */
  4119. groups = idxblocks;
  4120. if (chunk)
  4121. groups += 1;
  4122. else
  4123. groups += nrblocks;
  4124. gdpblocks = groups;
  4125. if (groups > ngroups)
  4126. groups = ngroups;
  4127. if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
  4128. gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
  4129. /* bitmaps and block group descriptor blocks */
  4130. ret += groups + gdpblocks;
  4131. /* Blocks for super block, inode, quota and xattr blocks */
  4132. ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
  4133. return ret;
  4134. }
  4135. /*
  4136. * Calculate the total number of credits to reserve to fit
  4137. * the modification of a single pages into a single transaction,
  4138. * which may include multiple chunks of block allocations.
  4139. *
  4140. * This could be called via ext4_write_begin()
  4141. *
  4142. * We need to consider the worse case, when
  4143. * one new block per extent.
  4144. */
  4145. int ext4_writepage_trans_blocks(struct inode *inode)
  4146. {
  4147. int bpp = ext4_journal_blocks_per_page(inode);
  4148. int ret;
  4149. ret = ext4_meta_trans_blocks(inode, bpp, 0);
  4150. /* Account for data blocks for journalled mode */
  4151. if (ext4_should_journal_data(inode))
  4152. ret += bpp;
  4153. return ret;
  4154. }
  4155. /*
  4156. * Calculate the journal credits for a chunk of data modification.
  4157. *
  4158. * This is called from DIO, fallocate or whoever calling
  4159. * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
  4160. *
  4161. * journal buffers for data blocks are not included here, as DIO
  4162. * and fallocate do no need to journal data buffers.
  4163. */
  4164. int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
  4165. {
  4166. return ext4_meta_trans_blocks(inode, nrblocks, 1);
  4167. }
  4168. /*
  4169. * The caller must have previously called ext4_reserve_inode_write().
  4170. * Give this, we know that the caller already has write access to iloc->bh.
  4171. */
  4172. int ext4_mark_iloc_dirty(handle_t *handle,
  4173. struct inode *inode, struct ext4_iloc *iloc)
  4174. {
  4175. int err = 0;
  4176. if (IS_I_VERSION(inode))
  4177. inode_inc_iversion(inode);
  4178. /* the do_update_inode consumes one bh->b_count */
  4179. get_bh(iloc->bh);
  4180. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  4181. err = ext4_do_update_inode(handle, inode, iloc);
  4182. put_bh(iloc->bh);
  4183. return err;
  4184. }
  4185. /*
  4186. * On success, We end up with an outstanding reference count against
  4187. * iloc->bh. This _must_ be cleaned up later.
  4188. */
  4189. int
  4190. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  4191. struct ext4_iloc *iloc)
  4192. {
  4193. int err;
  4194. err = ext4_get_inode_loc(inode, iloc);
  4195. if (!err) {
  4196. BUFFER_TRACE(iloc->bh, "get_write_access");
  4197. err = ext4_journal_get_write_access(handle, iloc->bh);
  4198. if (err) {
  4199. brelse(iloc->bh);
  4200. iloc->bh = NULL;
  4201. }
  4202. }
  4203. ext4_std_error(inode->i_sb, err);
  4204. return err;
  4205. }
  4206. /*
  4207. * Expand an inode by new_extra_isize bytes.
  4208. * Returns 0 on success or negative error number on failure.
  4209. */
  4210. static int ext4_expand_extra_isize(struct inode *inode,
  4211. unsigned int new_extra_isize,
  4212. struct ext4_iloc iloc,
  4213. handle_t *handle)
  4214. {
  4215. struct ext4_inode *raw_inode;
  4216. struct ext4_xattr_ibody_header *header;
  4217. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  4218. return 0;
  4219. raw_inode = ext4_raw_inode(&iloc);
  4220. header = IHDR(inode, raw_inode);
  4221. /* No extended attributes present */
  4222. if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
  4223. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  4224. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  4225. new_extra_isize);
  4226. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  4227. return 0;
  4228. }
  4229. /* try to expand with EAs present */
  4230. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  4231. raw_inode, handle);
  4232. }
  4233. /*
  4234. * What we do here is to mark the in-core inode as clean with respect to inode
  4235. * dirtiness (it may still be data-dirty).
  4236. * This means that the in-core inode may be reaped by prune_icache
  4237. * without having to perform any I/O. This is a very good thing,
  4238. * because *any* task may call prune_icache - even ones which
  4239. * have a transaction open against a different journal.
  4240. *
  4241. * Is this cheating? Not really. Sure, we haven't written the
  4242. * inode out, but prune_icache isn't a user-visible syncing function.
  4243. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  4244. * we start and wait on commits.
  4245. */
  4246. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  4247. {
  4248. struct ext4_iloc iloc;
  4249. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4250. static unsigned int mnt_count;
  4251. int err, ret;
  4252. might_sleep();
  4253. trace_ext4_mark_inode_dirty(inode, _RET_IP_);
  4254. err = ext4_reserve_inode_write(handle, inode, &iloc);
  4255. if (ext4_handle_valid(handle) &&
  4256. EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  4257. !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
  4258. /*
  4259. * We need extra buffer credits since we may write into EA block
  4260. * with this same handle. If journal_extend fails, then it will
  4261. * only result in a minor loss of functionality for that inode.
  4262. * If this is felt to be critical, then e2fsck should be run to
  4263. * force a large enough s_min_extra_isize.
  4264. */
  4265. if ((jbd2_journal_extend(handle,
  4266. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  4267. ret = ext4_expand_extra_isize(inode,
  4268. sbi->s_want_extra_isize,
  4269. iloc, handle);
  4270. if (ret) {
  4271. ext4_set_inode_state(inode,
  4272. EXT4_STATE_NO_EXPAND);
  4273. if (mnt_count !=
  4274. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  4275. ext4_warning(inode->i_sb,
  4276. "Unable to expand inode %lu. Delete"
  4277. " some EAs or run e2fsck.",
  4278. inode->i_ino);
  4279. mnt_count =
  4280. le16_to_cpu(sbi->s_es->s_mnt_count);
  4281. }
  4282. }
  4283. }
  4284. }
  4285. if (!err)
  4286. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  4287. return err;
  4288. }
  4289. /*
  4290. * ext4_dirty_inode() is called from __mark_inode_dirty()
  4291. *
  4292. * We're really interested in the case where a file is being extended.
  4293. * i_size has been changed by generic_commit_write() and we thus need
  4294. * to include the updated inode in the current transaction.
  4295. *
  4296. * Also, dquot_alloc_block() will always dirty the inode when blocks
  4297. * are allocated to the file.
  4298. *
  4299. * If the inode is marked synchronous, we don't honour that here - doing
  4300. * so would cause a commit on atime updates, which we don't bother doing.
  4301. * We handle synchronous inodes at the highest possible level.
  4302. */
  4303. void ext4_dirty_inode(struct inode *inode, int flags)
  4304. {
  4305. handle_t *handle;
  4306. handle = ext4_journal_start(inode, 2);
  4307. if (IS_ERR(handle))
  4308. goto out;
  4309. ext4_mark_inode_dirty(handle, inode);
  4310. ext4_journal_stop(handle);
  4311. out:
  4312. return;
  4313. }
  4314. #if 0
  4315. /*
  4316. * Bind an inode's backing buffer_head into this transaction, to prevent
  4317. * it from being flushed to disk early. Unlike
  4318. * ext4_reserve_inode_write, this leaves behind no bh reference and
  4319. * returns no iloc structure, so the caller needs to repeat the iloc
  4320. * lookup to mark the inode dirty later.
  4321. */
  4322. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  4323. {
  4324. struct ext4_iloc iloc;
  4325. int err = 0;
  4326. if (handle) {
  4327. err = ext4_get_inode_loc(inode, &iloc);
  4328. if (!err) {
  4329. BUFFER_TRACE(iloc.bh, "get_write_access");
  4330. err = jbd2_journal_get_write_access(handle, iloc.bh);
  4331. if (!err)
  4332. err = ext4_handle_dirty_metadata(handle,
  4333. NULL,
  4334. iloc.bh);
  4335. brelse(iloc.bh);
  4336. }
  4337. }
  4338. ext4_std_error(inode->i_sb, err);
  4339. return err;
  4340. }
  4341. #endif
  4342. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  4343. {
  4344. journal_t *journal;
  4345. handle_t *handle;
  4346. int err;
  4347. /*
  4348. * We have to be very careful here: changing a data block's
  4349. * journaling status dynamically is dangerous. If we write a
  4350. * data block to the journal, change the status and then delete
  4351. * that block, we risk forgetting to revoke the old log record
  4352. * from the journal and so a subsequent replay can corrupt data.
  4353. * So, first we make sure that the journal is empty and that
  4354. * nobody is changing anything.
  4355. */
  4356. journal = EXT4_JOURNAL(inode);
  4357. if (!journal)
  4358. return 0;
  4359. if (is_journal_aborted(journal))
  4360. return -EROFS;
  4361. /* We have to allocate physical blocks for delalloc blocks
  4362. * before flushing journal. otherwise delalloc blocks can not
  4363. * be allocated any more. even more truncate on delalloc blocks
  4364. * could trigger BUG by flushing delalloc blocks in journal.
  4365. * There is no delalloc block in non-journal data mode.
  4366. */
  4367. if (val && test_opt(inode->i_sb, DELALLOC)) {
  4368. err = ext4_alloc_da_blocks(inode);
  4369. if (err < 0)
  4370. return err;
  4371. }
  4372. /* Wait for all existing dio workers */
  4373. ext4_inode_block_unlocked_dio(inode);
  4374. inode_dio_wait(inode);
  4375. jbd2_journal_lock_updates(journal);
  4376. /*
  4377. * OK, there are no updates running now, and all cached data is
  4378. * synced to disk. We are now in a completely consistent state
  4379. * which doesn't have anything in the journal, and we know that
  4380. * no filesystem updates are running, so it is safe to modify
  4381. * the inode's in-core data-journaling state flag now.
  4382. */
  4383. if (val)
  4384. ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
  4385. else {
  4386. jbd2_journal_flush(journal);
  4387. ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
  4388. }
  4389. ext4_set_aops(inode);
  4390. jbd2_journal_unlock_updates(journal);
  4391. ext4_inode_resume_unlocked_dio(inode);
  4392. /* Finally we can mark the inode as dirty. */
  4393. handle = ext4_journal_start(inode, 1);
  4394. if (IS_ERR(handle))
  4395. return PTR_ERR(handle);
  4396. err = ext4_mark_inode_dirty(handle, inode);
  4397. ext4_handle_sync(handle);
  4398. ext4_journal_stop(handle);
  4399. ext4_std_error(inode->i_sb, err);
  4400. return err;
  4401. }
  4402. static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
  4403. {
  4404. return !buffer_mapped(bh);
  4405. }
  4406. int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  4407. {
  4408. struct page *page = vmf->page;
  4409. loff_t size;
  4410. unsigned long len;
  4411. int ret;
  4412. struct file *file = vma->vm_file;
  4413. struct inode *inode = file->f_path.dentry->d_inode;
  4414. struct address_space *mapping = inode->i_mapping;
  4415. handle_t *handle;
  4416. get_block_t *get_block;
  4417. int retries = 0;
  4418. sb_start_pagefault(inode->i_sb);
  4419. file_update_time(vma->vm_file);
  4420. /* Delalloc case is easy... */
  4421. if (test_opt(inode->i_sb, DELALLOC) &&
  4422. !ext4_should_journal_data(inode) &&
  4423. !ext4_nonda_switch(inode->i_sb)) {
  4424. do {
  4425. ret = __block_page_mkwrite(vma, vmf,
  4426. ext4_da_get_block_prep);
  4427. } while (ret == -ENOSPC &&
  4428. ext4_should_retry_alloc(inode->i_sb, &retries));
  4429. goto out_ret;
  4430. }
  4431. lock_page(page);
  4432. size = i_size_read(inode);
  4433. /* Page got truncated from under us? */
  4434. if (page->mapping != mapping || page_offset(page) > size) {
  4435. unlock_page(page);
  4436. ret = VM_FAULT_NOPAGE;
  4437. goto out;
  4438. }
  4439. if (page->index == size >> PAGE_CACHE_SHIFT)
  4440. len = size & ~PAGE_CACHE_MASK;
  4441. else
  4442. len = PAGE_CACHE_SIZE;
  4443. /*
  4444. * Return if we have all the buffers mapped. This avoids the need to do
  4445. * journal_start/journal_stop which can block and take a long time
  4446. */
  4447. if (page_has_buffers(page)) {
  4448. if (!ext4_walk_page_buffers(NULL, page_buffers(page),
  4449. 0, len, NULL,
  4450. ext4_bh_unmapped)) {
  4451. /* Wait so that we don't change page under IO */
  4452. wait_on_page_writeback(page);
  4453. ret = VM_FAULT_LOCKED;
  4454. goto out;
  4455. }
  4456. }
  4457. unlock_page(page);
  4458. /* OK, we need to fill the hole... */
  4459. if (ext4_should_dioread_nolock(inode))
  4460. get_block = ext4_get_block_write;
  4461. else
  4462. get_block = ext4_get_block;
  4463. retry_alloc:
  4464. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  4465. if (IS_ERR(handle)) {
  4466. ret = VM_FAULT_SIGBUS;
  4467. goto out;
  4468. }
  4469. ret = __block_page_mkwrite(vma, vmf, get_block);
  4470. if (!ret && ext4_should_journal_data(inode)) {
  4471. if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
  4472. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
  4473. unlock_page(page);
  4474. ret = VM_FAULT_SIGBUS;
  4475. ext4_journal_stop(handle);
  4476. goto out;
  4477. }
  4478. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  4479. }
  4480. ext4_journal_stop(handle);
  4481. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  4482. goto retry_alloc;
  4483. out_ret:
  4484. ret = block_page_mkwrite_return(ret);
  4485. out:
  4486. sb_end_pagefault(inode->i_sb);
  4487. return ret;
  4488. }