extents_status.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. /*
  2. * fs/ext4/extents_status.c
  3. *
  4. * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
  5. * Modified by
  6. * Allison Henderson <achender@linux.vnet.ibm.com>
  7. * Hugh Dickins <hughd@google.com>
  8. * Zheng Liu <wenqing.lz@taobao.com>
  9. *
  10. * Ext4 extents status tree core functions.
  11. */
  12. #include <linux/rbtree.h>
  13. #include "ext4.h"
  14. #include "extents_status.h"
  15. #include "ext4_extents.h"
  16. #include <trace/events/ext4.h>
  17. /*
  18. * According to previous discussion in Ext4 Developer Workshop, we
  19. * will introduce a new structure called io tree to track all extent
  20. * status in order to solve some problems that we have met
  21. * (e.g. Reservation space warning), and provide extent-level locking.
  22. * Delay extent tree is the first step to achieve this goal. It is
  23. * original built by Yongqiang Yang. At that time it is called delay
  24. * extent tree, whose goal is only track delay extent in memory to
  25. * simplify the implementation of fiemap and bigalloc, and introduce
  26. * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
  27. * delay extent tree at the following comment. But for better
  28. * understand what it does, it has been rename to extent status tree.
  29. *
  30. * Currently the first step has been done. All delay extents are
  31. * tracked in the tree. It maintains the delay extent when a delay
  32. * allocation is issued, and the delay extent is written out or
  33. * invalidated. Therefore the implementation of fiemap and bigalloc
  34. * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  35. *
  36. * The following comment describes the implemenmtation of extent
  37. * status tree and future works.
  38. */
  39. /*
  40. * extents status tree implementation for ext4.
  41. *
  42. *
  43. * ==========================================================================
  44. * Extents status encompass delayed extents and extent locks
  45. *
  46. * 1. Why delayed extent implementation ?
  47. *
  48. * Without delayed extent, ext4 identifies a delayed extent by looking
  49. * up page cache, this has several deficiencies - complicated, buggy,
  50. * and inefficient code.
  51. *
  52. * FIEMAP, SEEK_HOLE/DATA, bigalloc, punch hole and writeout all need
  53. * to know if a block or a range of blocks are belonged to a delayed
  54. * extent.
  55. *
  56. * Let us have a look at how they do without delayed extents implementation.
  57. * -- FIEMAP
  58. * FIEMAP looks up page cache to identify delayed allocations from holes.
  59. *
  60. * -- SEEK_HOLE/DATA
  61. * SEEK_HOLE/DATA has the same problem as FIEMAP.
  62. *
  63. * -- bigalloc
  64. * bigalloc looks up page cache to figure out if a block is
  65. * already under delayed allocation or not to determine whether
  66. * quota reserving is needed for the cluster.
  67. *
  68. * -- punch hole
  69. * punch hole looks up page cache to identify a delayed extent.
  70. *
  71. * -- writeout
  72. * Writeout looks up whole page cache to see if a buffer is
  73. * mapped, If there are not very many delayed buffers, then it is
  74. * time comsuming.
  75. *
  76. * With delayed extents implementation, FIEMAP, SEEK_HOLE/DATA,
  77. * bigalloc and writeout can figure out if a block or a range of
  78. * blocks is under delayed allocation(belonged to a delayed extent) or
  79. * not by searching the delayed extent tree.
  80. *
  81. *
  82. * ==========================================================================
  83. * 2. ext4 delayed extents impelmentation
  84. *
  85. * -- delayed extent
  86. * A delayed extent is a range of blocks which are contiguous
  87. * logically and under delayed allocation. Unlike extent in
  88. * ext4, delayed extent in ext4 is a in-memory struct, there is
  89. * no corresponding on-disk data. There is no limit on length of
  90. * delayed extent, so a delayed extent can contain as many blocks
  91. * as they are contiguous logically.
  92. *
  93. * -- delayed extent tree
  94. * Every inode has a delayed extent tree and all under delayed
  95. * allocation blocks are added to the tree as delayed extents.
  96. * Delayed extents in the tree are ordered by logical block no.
  97. *
  98. * -- operations on a delayed extent tree
  99. * There are three operations on a delayed extent tree: find next
  100. * delayed extent, adding a space(a range of blocks) and removing
  101. * a space.
  102. *
  103. * -- race on a delayed extent tree
  104. * Delayed extent tree is protected inode->i_es_lock.
  105. *
  106. *
  107. * ==========================================================================
  108. * 3. performance analysis
  109. * -- overhead
  110. * 1. There is a cache extent for write access, so if writes are
  111. * not very random, adding space operaions are in O(1) time.
  112. *
  113. * -- gain
  114. * 2. Code is much simpler, more readable, more maintainable and
  115. * more efficient.
  116. *
  117. *
  118. * ==========================================================================
  119. * 4. TODO list
  120. * -- Track all extent status
  121. *
  122. * -- Improve get block process
  123. *
  124. * -- Extent-level locking
  125. */
  126. static struct kmem_cache *ext4_es_cachep;
  127. int __init ext4_init_es(void)
  128. {
  129. ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
  130. if (ext4_es_cachep == NULL)
  131. return -ENOMEM;
  132. return 0;
  133. }
  134. void ext4_exit_es(void)
  135. {
  136. if (ext4_es_cachep)
  137. kmem_cache_destroy(ext4_es_cachep);
  138. }
  139. void ext4_es_init_tree(struct ext4_es_tree *tree)
  140. {
  141. tree->root = RB_ROOT;
  142. tree->cache_es = NULL;
  143. }
  144. #ifdef ES_DEBUG__
  145. static void ext4_es_print_tree(struct inode *inode)
  146. {
  147. struct ext4_es_tree *tree;
  148. struct rb_node *node;
  149. printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
  150. tree = &EXT4_I(inode)->i_es_tree;
  151. node = rb_first(&tree->root);
  152. while (node) {
  153. struct extent_status *es;
  154. es = rb_entry(node, struct extent_status, rb_node);
  155. printk(KERN_DEBUG " [%u/%u)", es->start, es->len);
  156. node = rb_next(node);
  157. }
  158. printk(KERN_DEBUG "\n");
  159. }
  160. #else
  161. #define ext4_es_print_tree(inode)
  162. #endif
  163. static inline ext4_lblk_t extent_status_end(struct extent_status *es)
  164. {
  165. BUG_ON(es->start + es->len < es->start);
  166. return es->start + es->len - 1;
  167. }
  168. /*
  169. * search through the tree for an delayed extent with a given offset. If
  170. * it can't be found, try to find next extent.
  171. */
  172. static struct extent_status *__es_tree_search(struct rb_root *root,
  173. ext4_lblk_t offset)
  174. {
  175. struct rb_node *node = root->rb_node;
  176. struct extent_status *es = NULL;
  177. while (node) {
  178. es = rb_entry(node, struct extent_status, rb_node);
  179. if (offset < es->start)
  180. node = node->rb_left;
  181. else if (offset > extent_status_end(es))
  182. node = node->rb_right;
  183. else
  184. return es;
  185. }
  186. if (es && offset < es->start)
  187. return es;
  188. if (es && offset > extent_status_end(es)) {
  189. node = rb_next(&es->rb_node);
  190. return node ? rb_entry(node, struct extent_status, rb_node) :
  191. NULL;
  192. }
  193. return NULL;
  194. }
  195. /*
  196. * ext4_es_find_extent: find the 1st delayed extent covering @es->start
  197. * if it exists, otherwise, the next extent after @es->start.
  198. *
  199. * @inode: the inode which owns delayed extents
  200. * @es: delayed extent that we found
  201. *
  202. * Returns the first block of the next extent after es, otherwise
  203. * EXT_MAX_BLOCKS if no delay extent is found.
  204. * Delayed extent is returned via @es.
  205. */
  206. ext4_lblk_t ext4_es_find_extent(struct inode *inode, struct extent_status *es)
  207. {
  208. struct ext4_es_tree *tree = NULL;
  209. struct extent_status *es1 = NULL;
  210. struct rb_node *node;
  211. ext4_lblk_t ret = EXT_MAX_BLOCKS;
  212. trace_ext4_es_find_extent_enter(inode, es->start);
  213. read_lock(&EXT4_I(inode)->i_es_lock);
  214. tree = &EXT4_I(inode)->i_es_tree;
  215. /* find delay extent in cache firstly */
  216. if (tree->cache_es) {
  217. es1 = tree->cache_es;
  218. if (in_range(es->start, es1->start, es1->len)) {
  219. es_debug("%u cached by [%u/%u)\n",
  220. es->start, es1->start, es1->len);
  221. goto out;
  222. }
  223. }
  224. es->len = 0;
  225. es1 = __es_tree_search(&tree->root, es->start);
  226. out:
  227. if (es1) {
  228. tree->cache_es = es1;
  229. es->start = es1->start;
  230. es->len = es1->len;
  231. node = rb_next(&es1->rb_node);
  232. if (node) {
  233. es1 = rb_entry(node, struct extent_status, rb_node);
  234. ret = es1->start;
  235. }
  236. }
  237. read_unlock(&EXT4_I(inode)->i_es_lock);
  238. trace_ext4_es_find_extent_exit(inode, es, ret);
  239. return ret;
  240. }
  241. static struct extent_status *
  242. ext4_es_alloc_extent(ext4_lblk_t start, ext4_lblk_t len)
  243. {
  244. struct extent_status *es;
  245. es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
  246. if (es == NULL)
  247. return NULL;
  248. es->start = start;
  249. es->len = len;
  250. return es;
  251. }
  252. static void ext4_es_free_extent(struct extent_status *es)
  253. {
  254. kmem_cache_free(ext4_es_cachep, es);
  255. }
  256. static struct extent_status *
  257. ext4_es_try_to_merge_left(struct ext4_es_tree *tree, struct extent_status *es)
  258. {
  259. struct extent_status *es1;
  260. struct rb_node *node;
  261. node = rb_prev(&es->rb_node);
  262. if (!node)
  263. return es;
  264. es1 = rb_entry(node, struct extent_status, rb_node);
  265. if (es->start == extent_status_end(es1) + 1) {
  266. es1->len += es->len;
  267. rb_erase(&es->rb_node, &tree->root);
  268. ext4_es_free_extent(es);
  269. es = es1;
  270. }
  271. return es;
  272. }
  273. static struct extent_status *
  274. ext4_es_try_to_merge_right(struct ext4_es_tree *tree, struct extent_status *es)
  275. {
  276. struct extent_status *es1;
  277. struct rb_node *node;
  278. node = rb_next(&es->rb_node);
  279. if (!node)
  280. return es;
  281. es1 = rb_entry(node, struct extent_status, rb_node);
  282. if (es1->start == extent_status_end(es) + 1) {
  283. es->len += es1->len;
  284. rb_erase(node, &tree->root);
  285. ext4_es_free_extent(es1);
  286. }
  287. return es;
  288. }
  289. static int __es_insert_extent(struct ext4_es_tree *tree, ext4_lblk_t offset,
  290. ext4_lblk_t len)
  291. {
  292. struct rb_node **p = &tree->root.rb_node;
  293. struct rb_node *parent = NULL;
  294. struct extent_status *es;
  295. ext4_lblk_t end = offset + len - 1;
  296. BUG_ON(end < offset);
  297. es = tree->cache_es;
  298. if (es && offset == (extent_status_end(es) + 1)) {
  299. es_debug("cached by [%u/%u)\n", es->start, es->len);
  300. es->len += len;
  301. es = ext4_es_try_to_merge_right(tree, es);
  302. goto out;
  303. } else if (es && es->start == end + 1) {
  304. es_debug("cached by [%u/%u)\n", es->start, es->len);
  305. es->start = offset;
  306. es->len += len;
  307. es = ext4_es_try_to_merge_left(tree, es);
  308. goto out;
  309. } else if (es && es->start <= offset &&
  310. end <= extent_status_end(es)) {
  311. es_debug("cached by [%u/%u)\n", es->start, es->len);
  312. goto out;
  313. }
  314. while (*p) {
  315. parent = *p;
  316. es = rb_entry(parent, struct extent_status, rb_node);
  317. if (offset < es->start) {
  318. if (es->start == end + 1) {
  319. es->start = offset;
  320. es->len += len;
  321. es = ext4_es_try_to_merge_left(tree, es);
  322. goto out;
  323. }
  324. p = &(*p)->rb_left;
  325. } else if (offset > extent_status_end(es)) {
  326. if (offset == extent_status_end(es) + 1) {
  327. es->len += len;
  328. es = ext4_es_try_to_merge_right(tree, es);
  329. goto out;
  330. }
  331. p = &(*p)->rb_right;
  332. } else {
  333. if (extent_status_end(es) <= end)
  334. es->len = offset - es->start + len;
  335. goto out;
  336. }
  337. }
  338. es = ext4_es_alloc_extent(offset, len);
  339. if (!es)
  340. return -ENOMEM;
  341. rb_link_node(&es->rb_node, parent, p);
  342. rb_insert_color(&es->rb_node, &tree->root);
  343. out:
  344. tree->cache_es = es;
  345. return 0;
  346. }
  347. /*
  348. * ext4_es_insert_extent() adds a space to a delayed extent tree.
  349. * Caller holds inode->i_es_lock.
  350. *
  351. * ext4_es_insert_extent is called by ext4_da_write_begin and
  352. * ext4_es_remove_extent.
  353. *
  354. * Return 0 on success, error code on failure.
  355. */
  356. int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t offset,
  357. ext4_lblk_t len)
  358. {
  359. struct ext4_es_tree *tree;
  360. int err = 0;
  361. trace_ext4_es_insert_extent(inode, offset, len);
  362. es_debug("add [%u/%u) to extent status tree of inode %lu\n",
  363. offset, len, inode->i_ino);
  364. write_lock(&EXT4_I(inode)->i_es_lock);
  365. tree = &EXT4_I(inode)->i_es_tree;
  366. err = __es_insert_extent(tree, offset, len);
  367. write_unlock(&EXT4_I(inode)->i_es_lock);
  368. ext4_es_print_tree(inode);
  369. return err;
  370. }
  371. /*
  372. * ext4_es_remove_extent() removes a space from a delayed extent tree.
  373. * Caller holds inode->i_es_lock.
  374. *
  375. * Return 0 on success, error code on failure.
  376. */
  377. int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t offset,
  378. ext4_lblk_t len)
  379. {
  380. struct rb_node *node;
  381. struct ext4_es_tree *tree;
  382. struct extent_status *es;
  383. struct extent_status orig_es;
  384. ext4_lblk_t len1, len2, end;
  385. int err = 0;
  386. trace_ext4_es_remove_extent(inode, offset, len);
  387. es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
  388. offset, len, inode->i_ino);
  389. end = offset + len - 1;
  390. BUG_ON(end < offset);
  391. write_lock(&EXT4_I(inode)->i_es_lock);
  392. tree = &EXT4_I(inode)->i_es_tree;
  393. es = __es_tree_search(&tree->root, offset);
  394. if (!es)
  395. goto out;
  396. if (es->start > end)
  397. goto out;
  398. /* Simply invalidate cache_es. */
  399. tree->cache_es = NULL;
  400. orig_es.start = es->start;
  401. orig_es.len = es->len;
  402. len1 = offset > es->start ? offset - es->start : 0;
  403. len2 = extent_status_end(es) > end ?
  404. extent_status_end(es) - end : 0;
  405. if (len1 > 0)
  406. es->len = len1;
  407. if (len2 > 0) {
  408. if (len1 > 0) {
  409. err = __es_insert_extent(tree, end + 1, len2);
  410. if (err) {
  411. es->start = orig_es.start;
  412. es->len = orig_es.len;
  413. goto out;
  414. }
  415. } else {
  416. es->start = end + 1;
  417. es->len = len2;
  418. }
  419. goto out;
  420. }
  421. if (len1 > 0) {
  422. node = rb_next(&es->rb_node);
  423. if (node)
  424. es = rb_entry(node, struct extent_status, rb_node);
  425. else
  426. es = NULL;
  427. }
  428. while (es && extent_status_end(es) <= end) {
  429. node = rb_next(&es->rb_node);
  430. rb_erase(&es->rb_node, &tree->root);
  431. ext4_es_free_extent(es);
  432. if (!node) {
  433. es = NULL;
  434. break;
  435. }
  436. es = rb_entry(node, struct extent_status, rb_node);
  437. }
  438. if (es && es->start < end + 1) {
  439. len1 = extent_status_end(es) - end;
  440. es->start = end + 1;
  441. es->len = len1;
  442. }
  443. out:
  444. write_unlock(&EXT4_I(inode)->i_es_lock);
  445. ext4_es_print_tree(inode);
  446. return err;
  447. }