super.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550
  1. /* AFS superblock handling
  2. *
  3. * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
  4. *
  5. * This software may be freely redistributed under the terms of the
  6. * GNU General Public License.
  7. *
  8. * You should have received a copy of the GNU General Public License
  9. * along with this program; if not, write to the Free Software
  10. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  11. *
  12. * Authors: David Howells <dhowells@redhat.com>
  13. * David Woodhouse <dwmw2@infradead.org>
  14. *
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/mount.h>
  19. #include <linux/init.h>
  20. #include <linux/slab.h>
  21. #include <linux/fs.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/parser.h>
  24. #include <linux/statfs.h>
  25. #include <linux/sched.h>
  26. #include "internal.h"
  27. #define AFS_FS_MAGIC 0x6B414653 /* 'kAFS' */
  28. static void afs_i_init_once(void *foo);
  29. static struct dentry *afs_mount(struct file_system_type *fs_type,
  30. int flags, const char *dev_name, void *data);
  31. static void afs_kill_super(struct super_block *sb);
  32. static struct inode *afs_alloc_inode(struct super_block *sb);
  33. static void afs_destroy_inode(struct inode *inode);
  34. static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
  35. struct file_system_type afs_fs_type = {
  36. .owner = THIS_MODULE,
  37. .name = "afs",
  38. .mount = afs_mount,
  39. .kill_sb = afs_kill_super,
  40. .fs_flags = 0,
  41. };
  42. static const struct super_operations afs_super_ops = {
  43. .statfs = afs_statfs,
  44. .alloc_inode = afs_alloc_inode,
  45. .drop_inode = afs_drop_inode,
  46. .destroy_inode = afs_destroy_inode,
  47. .evict_inode = afs_evict_inode,
  48. .show_options = generic_show_options,
  49. };
  50. static struct kmem_cache *afs_inode_cachep;
  51. static atomic_t afs_count_active_inodes;
  52. enum {
  53. afs_no_opt,
  54. afs_opt_cell,
  55. afs_opt_rwpath,
  56. afs_opt_vol,
  57. afs_opt_autocell,
  58. };
  59. static const match_table_t afs_options_list = {
  60. { afs_opt_cell, "cell=%s" },
  61. { afs_opt_rwpath, "rwpath" },
  62. { afs_opt_vol, "vol=%s" },
  63. { afs_opt_autocell, "autocell" },
  64. { afs_no_opt, NULL },
  65. };
  66. /*
  67. * initialise the filesystem
  68. */
  69. int __init afs_fs_init(void)
  70. {
  71. int ret;
  72. _enter("");
  73. /* create ourselves an inode cache */
  74. atomic_set(&afs_count_active_inodes, 0);
  75. ret = -ENOMEM;
  76. afs_inode_cachep = kmem_cache_create("afs_inode_cache",
  77. sizeof(struct afs_vnode),
  78. 0,
  79. SLAB_HWCACHE_ALIGN,
  80. afs_i_init_once);
  81. if (!afs_inode_cachep) {
  82. printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
  83. return ret;
  84. }
  85. /* now export our filesystem to lesser mortals */
  86. ret = register_filesystem(&afs_fs_type);
  87. if (ret < 0) {
  88. kmem_cache_destroy(afs_inode_cachep);
  89. _leave(" = %d", ret);
  90. return ret;
  91. }
  92. _leave(" = 0");
  93. return 0;
  94. }
  95. /*
  96. * clean up the filesystem
  97. */
  98. void __exit afs_fs_exit(void)
  99. {
  100. _enter("");
  101. afs_mntpt_kill_timer();
  102. unregister_filesystem(&afs_fs_type);
  103. if (atomic_read(&afs_count_active_inodes) != 0) {
  104. printk("kAFS: %d active inode objects still present\n",
  105. atomic_read(&afs_count_active_inodes));
  106. BUG();
  107. }
  108. /*
  109. * Make sure all delayed rcu free inodes are flushed before we
  110. * destroy cache.
  111. */
  112. rcu_barrier();
  113. kmem_cache_destroy(afs_inode_cachep);
  114. _leave("");
  115. }
  116. /*
  117. * parse the mount options
  118. * - this function has been shamelessly adapted from the ext3 fs which
  119. * shamelessly adapted it from the msdos fs
  120. */
  121. static int afs_parse_options(struct afs_mount_params *params,
  122. char *options, const char **devname)
  123. {
  124. struct afs_cell *cell;
  125. substring_t args[MAX_OPT_ARGS];
  126. char *p;
  127. int token;
  128. _enter("%s", options);
  129. options[PAGE_SIZE - 1] = 0;
  130. while ((p = strsep(&options, ","))) {
  131. if (!*p)
  132. continue;
  133. token = match_token(p, afs_options_list, args);
  134. switch (token) {
  135. case afs_opt_cell:
  136. cell = afs_cell_lookup(args[0].from,
  137. args[0].to - args[0].from,
  138. false);
  139. if (IS_ERR(cell))
  140. return PTR_ERR(cell);
  141. afs_put_cell(params->cell);
  142. params->cell = cell;
  143. break;
  144. case afs_opt_rwpath:
  145. params->rwpath = 1;
  146. break;
  147. case afs_opt_vol:
  148. *devname = args[0].from;
  149. break;
  150. case afs_opt_autocell:
  151. params->autocell = 1;
  152. break;
  153. default:
  154. printk(KERN_ERR "kAFS:"
  155. " Unknown or invalid mount option: '%s'\n", p);
  156. return -EINVAL;
  157. }
  158. }
  159. _leave(" = 0");
  160. return 0;
  161. }
  162. /*
  163. * parse a device name to get cell name, volume name, volume type and R/W
  164. * selector
  165. * - this can be one of the following:
  166. * "%[cell:]volume[.]" R/W volume
  167. * "#[cell:]volume[.]" R/O or R/W volume (rwpath=0),
  168. * or R/W (rwpath=1) volume
  169. * "%[cell:]volume.readonly" R/O volume
  170. * "#[cell:]volume.readonly" R/O volume
  171. * "%[cell:]volume.backup" Backup volume
  172. * "#[cell:]volume.backup" Backup volume
  173. */
  174. static int afs_parse_device_name(struct afs_mount_params *params,
  175. const char *name)
  176. {
  177. struct afs_cell *cell;
  178. const char *cellname, *suffix;
  179. int cellnamesz;
  180. _enter(",%s", name);
  181. if (!name) {
  182. printk(KERN_ERR "kAFS: no volume name specified\n");
  183. return -EINVAL;
  184. }
  185. if ((name[0] != '%' && name[0] != '#') || !name[1]) {
  186. printk(KERN_ERR "kAFS: unparsable volume name\n");
  187. return -EINVAL;
  188. }
  189. /* determine the type of volume we're looking for */
  190. params->type = AFSVL_ROVOL;
  191. params->force = false;
  192. if (params->rwpath || name[0] == '%') {
  193. params->type = AFSVL_RWVOL;
  194. params->force = true;
  195. }
  196. name++;
  197. /* split the cell name out if there is one */
  198. params->volname = strchr(name, ':');
  199. if (params->volname) {
  200. cellname = name;
  201. cellnamesz = params->volname - name;
  202. params->volname++;
  203. } else {
  204. params->volname = name;
  205. cellname = NULL;
  206. cellnamesz = 0;
  207. }
  208. /* the volume type is further affected by a possible suffix */
  209. suffix = strrchr(params->volname, '.');
  210. if (suffix) {
  211. if (strcmp(suffix, ".readonly") == 0) {
  212. params->type = AFSVL_ROVOL;
  213. params->force = true;
  214. } else if (strcmp(suffix, ".backup") == 0) {
  215. params->type = AFSVL_BACKVOL;
  216. params->force = true;
  217. } else if (suffix[1] == 0) {
  218. } else {
  219. suffix = NULL;
  220. }
  221. }
  222. params->volnamesz = suffix ?
  223. suffix - params->volname : strlen(params->volname);
  224. _debug("cell %*.*s [%p]",
  225. cellnamesz, cellnamesz, cellname ?: "", params->cell);
  226. /* lookup the cell record */
  227. if (cellname || !params->cell) {
  228. cell = afs_cell_lookup(cellname, cellnamesz, true);
  229. if (IS_ERR(cell)) {
  230. printk(KERN_ERR "kAFS: unable to lookup cell '%*.*s'\n",
  231. cellnamesz, cellnamesz, cellname ?: "");
  232. return PTR_ERR(cell);
  233. }
  234. afs_put_cell(params->cell);
  235. params->cell = cell;
  236. }
  237. _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
  238. params->cell->name, params->cell,
  239. params->volnamesz, params->volnamesz, params->volname,
  240. suffix ?: "-", params->type, params->force ? " FORCE" : "");
  241. return 0;
  242. }
  243. /*
  244. * check a superblock to see if it's the one we're looking for
  245. */
  246. static int afs_test_super(struct super_block *sb, void *data)
  247. {
  248. struct afs_super_info *as1 = data;
  249. struct afs_super_info *as = sb->s_fs_info;
  250. return as->volume == as1->volume;
  251. }
  252. static int afs_set_super(struct super_block *sb, void *data)
  253. {
  254. sb->s_fs_info = data;
  255. return set_anon_super(sb, NULL);
  256. }
  257. /*
  258. * fill in the superblock
  259. */
  260. static int afs_fill_super(struct super_block *sb,
  261. struct afs_mount_params *params)
  262. {
  263. struct afs_super_info *as = sb->s_fs_info;
  264. struct afs_fid fid;
  265. struct inode *inode = NULL;
  266. int ret;
  267. _enter("");
  268. /* fill in the superblock */
  269. sb->s_blocksize = PAGE_CACHE_SIZE;
  270. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  271. sb->s_magic = AFS_FS_MAGIC;
  272. sb->s_op = &afs_super_ops;
  273. sb->s_bdi = &as->volume->bdi;
  274. strlcpy(sb->s_id, as->volume->vlocation->vldb.name, sizeof(sb->s_id));
  275. /* allocate the root inode and dentry */
  276. fid.vid = as->volume->vid;
  277. fid.vnode = 1;
  278. fid.unique = 1;
  279. inode = afs_iget(sb, params->key, &fid, NULL, NULL);
  280. if (IS_ERR(inode))
  281. return PTR_ERR(inode);
  282. if (params->autocell)
  283. set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
  284. ret = -ENOMEM;
  285. sb->s_root = d_make_root(inode);
  286. if (!sb->s_root)
  287. goto error;
  288. sb->s_d_op = &afs_fs_dentry_operations;
  289. _leave(" = 0");
  290. return 0;
  291. error:
  292. _leave(" = %d", ret);
  293. return ret;
  294. }
  295. /*
  296. * get an AFS superblock
  297. */
  298. static struct dentry *afs_mount(struct file_system_type *fs_type,
  299. int flags, const char *dev_name, void *options)
  300. {
  301. struct afs_mount_params params;
  302. struct super_block *sb;
  303. struct afs_volume *vol;
  304. struct key *key;
  305. char *new_opts = kstrdup(options, GFP_KERNEL);
  306. struct afs_super_info *as;
  307. int ret;
  308. _enter(",,%s,%p", dev_name, options);
  309. memset(&params, 0, sizeof(params));
  310. /* parse the options and device name */
  311. if (options) {
  312. ret = afs_parse_options(&params, options, &dev_name);
  313. if (ret < 0)
  314. goto error;
  315. }
  316. ret = afs_parse_device_name(&params, dev_name);
  317. if (ret < 0)
  318. goto error;
  319. /* try and do the mount securely */
  320. key = afs_request_key(params.cell);
  321. if (IS_ERR(key)) {
  322. _leave(" = %ld [key]", PTR_ERR(key));
  323. ret = PTR_ERR(key);
  324. goto error;
  325. }
  326. params.key = key;
  327. /* parse the device name */
  328. vol = afs_volume_lookup(&params);
  329. if (IS_ERR(vol)) {
  330. ret = PTR_ERR(vol);
  331. goto error;
  332. }
  333. /* allocate a superblock info record */
  334. as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
  335. if (!as) {
  336. ret = -ENOMEM;
  337. afs_put_volume(vol);
  338. goto error;
  339. }
  340. as->volume = vol;
  341. /* allocate a deviceless superblock */
  342. sb = sget(fs_type, afs_test_super, afs_set_super, flags, as);
  343. if (IS_ERR(sb)) {
  344. ret = PTR_ERR(sb);
  345. afs_put_volume(vol);
  346. kfree(as);
  347. goto error;
  348. }
  349. if (!sb->s_root) {
  350. /* initial superblock/root creation */
  351. _debug("create");
  352. ret = afs_fill_super(sb, &params);
  353. if (ret < 0) {
  354. deactivate_locked_super(sb);
  355. goto error;
  356. }
  357. save_mount_options(sb, new_opts);
  358. sb->s_flags |= MS_ACTIVE;
  359. } else {
  360. _debug("reuse");
  361. ASSERTCMP(sb->s_flags, &, MS_ACTIVE);
  362. afs_put_volume(vol);
  363. kfree(as);
  364. }
  365. afs_put_cell(params.cell);
  366. kfree(new_opts);
  367. _leave(" = 0 [%p]", sb);
  368. return dget(sb->s_root);
  369. error:
  370. afs_put_cell(params.cell);
  371. key_put(params.key);
  372. kfree(new_opts);
  373. _leave(" = %d", ret);
  374. return ERR_PTR(ret);
  375. }
  376. static void afs_kill_super(struct super_block *sb)
  377. {
  378. struct afs_super_info *as = sb->s_fs_info;
  379. kill_anon_super(sb);
  380. afs_put_volume(as->volume);
  381. kfree(as);
  382. }
  383. /*
  384. * initialise an inode cache slab element prior to any use
  385. */
  386. static void afs_i_init_once(void *_vnode)
  387. {
  388. struct afs_vnode *vnode = _vnode;
  389. memset(vnode, 0, sizeof(*vnode));
  390. inode_init_once(&vnode->vfs_inode);
  391. init_waitqueue_head(&vnode->update_waitq);
  392. mutex_init(&vnode->permits_lock);
  393. mutex_init(&vnode->validate_lock);
  394. spin_lock_init(&vnode->writeback_lock);
  395. spin_lock_init(&vnode->lock);
  396. INIT_LIST_HEAD(&vnode->writebacks);
  397. INIT_LIST_HEAD(&vnode->pending_locks);
  398. INIT_LIST_HEAD(&vnode->granted_locks);
  399. INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
  400. INIT_WORK(&vnode->cb_broken_work, afs_broken_callback_work);
  401. }
  402. /*
  403. * allocate an AFS inode struct from our slab cache
  404. */
  405. static struct inode *afs_alloc_inode(struct super_block *sb)
  406. {
  407. struct afs_vnode *vnode;
  408. vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
  409. if (!vnode)
  410. return NULL;
  411. atomic_inc(&afs_count_active_inodes);
  412. memset(&vnode->fid, 0, sizeof(vnode->fid));
  413. memset(&vnode->status, 0, sizeof(vnode->status));
  414. vnode->volume = NULL;
  415. vnode->update_cnt = 0;
  416. vnode->flags = 1 << AFS_VNODE_UNSET;
  417. vnode->cb_promised = false;
  418. _leave(" = %p", &vnode->vfs_inode);
  419. return &vnode->vfs_inode;
  420. }
  421. static void afs_i_callback(struct rcu_head *head)
  422. {
  423. struct inode *inode = container_of(head, struct inode, i_rcu);
  424. struct afs_vnode *vnode = AFS_FS_I(inode);
  425. kmem_cache_free(afs_inode_cachep, vnode);
  426. }
  427. /*
  428. * destroy an AFS inode struct
  429. */
  430. static void afs_destroy_inode(struct inode *inode)
  431. {
  432. struct afs_vnode *vnode = AFS_FS_I(inode);
  433. _enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode);
  434. _debug("DESTROY INODE %p", inode);
  435. ASSERTCMP(vnode->server, ==, NULL);
  436. call_rcu(&inode->i_rcu, afs_i_callback);
  437. atomic_dec(&afs_count_active_inodes);
  438. }
  439. /*
  440. * return information about an AFS volume
  441. */
  442. static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
  443. {
  444. struct afs_volume_status vs;
  445. struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
  446. struct key *key;
  447. int ret;
  448. key = afs_request_key(vnode->volume->cell);
  449. if (IS_ERR(key))
  450. return PTR_ERR(key);
  451. ret = afs_vnode_get_volume_status(vnode, key, &vs);
  452. key_put(key);
  453. if (ret < 0) {
  454. _leave(" = %d", ret);
  455. return ret;
  456. }
  457. buf->f_type = dentry->d_sb->s_magic;
  458. buf->f_bsize = AFS_BLOCK_SIZE;
  459. buf->f_namelen = AFSNAMEMAX - 1;
  460. if (vs.max_quota == 0)
  461. buf->f_blocks = vs.part_max_blocks;
  462. else
  463. buf->f_blocks = vs.max_quota;
  464. buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
  465. return 0;
  466. }