vfio_pci_config.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
  1. /*
  2. * VFIO PCI config space virtualization
  3. *
  4. * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
  5. * Author: Alex Williamson <alex.williamson@redhat.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * Derived from original vfio:
  12. * Copyright 2010 Cisco Systems, Inc. All rights reserved.
  13. * Author: Tom Lyon, pugs@cisco.com
  14. */
  15. /*
  16. * This code handles reading and writing of PCI configuration registers.
  17. * This is hairy because we want to allow a lot of flexibility to the
  18. * user driver, but cannot trust it with all of the config fields.
  19. * Tables determine which fields can be read and written, as well as
  20. * which fields are 'virtualized' - special actions and translations to
  21. * make it appear to the user that he has control, when in fact things
  22. * must be negotiated with the underlying OS.
  23. */
  24. #include <linux/fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/uaccess.h>
  27. #include <linux/vfio.h>
  28. #include "vfio_pci_private.h"
  29. #define PCI_CFG_SPACE_SIZE 256
  30. /* Useful "pseudo" capabilities */
  31. #define PCI_CAP_ID_BASIC 0
  32. #define PCI_CAP_ID_INVALID 0xFF
  33. #define is_bar(offset) \
  34. ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
  35. (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
  36. /*
  37. * Lengths of PCI Config Capabilities
  38. * 0: Removed from the user visible capability list
  39. * FF: Variable length
  40. */
  41. static u8 pci_cap_length[] = {
  42. [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
  43. [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
  44. [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
  45. [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
  46. [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
  47. [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
  48. [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
  49. [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
  50. [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
  51. [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
  52. [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
  53. [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
  54. [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
  55. [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
  56. [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
  57. [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
  58. [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
  59. [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
  60. [PCI_CAP_ID_SATA] = 0xFF,
  61. [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
  62. };
  63. /*
  64. * Lengths of PCIe/PCI-X Extended Config Capabilities
  65. * 0: Removed or masked from the user visible capabilty list
  66. * FF: Variable length
  67. */
  68. static u16 pci_ext_cap_length[] = {
  69. [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
  70. [PCI_EXT_CAP_ID_VC] = 0xFF,
  71. [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
  72. [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
  73. [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
  74. [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
  75. [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
  76. [PCI_EXT_CAP_ID_MFVC] = 0xFF,
  77. [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
  78. [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
  79. [PCI_EXT_CAP_ID_VNDR] = 0xFF,
  80. [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
  81. [PCI_EXT_CAP_ID_ACS] = 0xFF,
  82. [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
  83. [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
  84. [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
  85. [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
  86. [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
  87. [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
  88. [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
  89. [PCI_EXT_CAP_ID_REBAR] = 0xFF,
  90. [PCI_EXT_CAP_ID_DPA] = 0xFF,
  91. [PCI_EXT_CAP_ID_TPH] = 0xFF,
  92. [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
  93. [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
  94. [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
  95. [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
  96. };
  97. /*
  98. * Read/Write Permission Bits - one bit for each bit in capability
  99. * Any field can be read if it exists, but what is read depends on
  100. * whether the field is 'virtualized', or just pass thru to the
  101. * hardware. Any virtualized field is also virtualized for writes.
  102. * Writes are only permitted if they have a 1 bit here.
  103. */
  104. struct perm_bits {
  105. u8 *virt; /* read/write virtual data, not hw */
  106. u8 *write; /* writeable bits */
  107. int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
  108. struct perm_bits *perm, int offset, __le32 *val);
  109. int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
  110. struct perm_bits *perm, int offset, __le32 val);
  111. };
  112. #define NO_VIRT 0
  113. #define ALL_VIRT 0xFFFFFFFFU
  114. #define NO_WRITE 0
  115. #define ALL_WRITE 0xFFFFFFFFU
  116. static int vfio_user_config_read(struct pci_dev *pdev, int offset,
  117. __le32 *val, int count)
  118. {
  119. int ret = -EINVAL;
  120. u32 tmp_val = 0;
  121. switch (count) {
  122. case 1:
  123. {
  124. u8 tmp;
  125. ret = pci_user_read_config_byte(pdev, offset, &tmp);
  126. tmp_val = tmp;
  127. break;
  128. }
  129. case 2:
  130. {
  131. u16 tmp;
  132. ret = pci_user_read_config_word(pdev, offset, &tmp);
  133. tmp_val = tmp;
  134. break;
  135. }
  136. case 4:
  137. ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
  138. break;
  139. }
  140. *val = cpu_to_le32(tmp_val);
  141. return pcibios_err_to_errno(ret);
  142. }
  143. static int vfio_user_config_write(struct pci_dev *pdev, int offset,
  144. __le32 val, int count)
  145. {
  146. int ret = -EINVAL;
  147. u32 tmp_val = le32_to_cpu(val);
  148. switch (count) {
  149. case 1:
  150. ret = pci_user_write_config_byte(pdev, offset, tmp_val);
  151. break;
  152. case 2:
  153. ret = pci_user_write_config_word(pdev, offset, tmp_val);
  154. break;
  155. case 4:
  156. ret = pci_user_write_config_dword(pdev, offset, tmp_val);
  157. break;
  158. }
  159. return pcibios_err_to_errno(ret);
  160. }
  161. static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
  162. int count, struct perm_bits *perm,
  163. int offset, __le32 *val)
  164. {
  165. __le32 virt = 0;
  166. memcpy(val, vdev->vconfig + pos, count);
  167. memcpy(&virt, perm->virt + offset, count);
  168. /* Any non-virtualized bits? */
  169. if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
  170. struct pci_dev *pdev = vdev->pdev;
  171. __le32 phys_val = 0;
  172. int ret;
  173. ret = vfio_user_config_read(pdev, pos, &phys_val, count);
  174. if (ret)
  175. return ret;
  176. *val = (phys_val & ~virt) | (*val & virt);
  177. }
  178. return count;
  179. }
  180. static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
  181. int count, struct perm_bits *perm,
  182. int offset, __le32 val)
  183. {
  184. __le32 virt = 0, write = 0;
  185. memcpy(&write, perm->write + offset, count);
  186. if (!write)
  187. return count; /* drop, no writable bits */
  188. memcpy(&virt, perm->virt + offset, count);
  189. /* Virtualized and writable bits go to vconfig */
  190. if (write & virt) {
  191. __le32 virt_val = 0;
  192. memcpy(&virt_val, vdev->vconfig + pos, count);
  193. virt_val &= ~(write & virt);
  194. virt_val |= (val & (write & virt));
  195. memcpy(vdev->vconfig + pos, &virt_val, count);
  196. }
  197. /* Non-virtualzed and writable bits go to hardware */
  198. if (write & ~virt) {
  199. struct pci_dev *pdev = vdev->pdev;
  200. __le32 phys_val = 0;
  201. int ret;
  202. ret = vfio_user_config_read(pdev, pos, &phys_val, count);
  203. if (ret)
  204. return ret;
  205. phys_val &= ~(write & ~virt);
  206. phys_val |= (val & (write & ~virt));
  207. ret = vfio_user_config_write(pdev, pos, phys_val, count);
  208. if (ret)
  209. return ret;
  210. }
  211. return count;
  212. }
  213. /* Allow direct read from hardware, except for capability next pointer */
  214. static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
  215. int count, struct perm_bits *perm,
  216. int offset, __le32 *val)
  217. {
  218. int ret;
  219. ret = vfio_user_config_read(vdev->pdev, pos, val, count);
  220. if (ret)
  221. return pcibios_err_to_errno(ret);
  222. if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
  223. if (offset < 4)
  224. memcpy(val, vdev->vconfig + pos, count);
  225. } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
  226. if (offset == PCI_CAP_LIST_ID && count > 1)
  227. memcpy(val, vdev->vconfig + pos,
  228. min(PCI_CAP_FLAGS, count));
  229. else if (offset == PCI_CAP_LIST_NEXT)
  230. memcpy(val, vdev->vconfig + pos, 1);
  231. }
  232. return count;
  233. }
  234. static int vfio_direct_config_write(struct vfio_pci_device *vdev, int pos,
  235. int count, struct perm_bits *perm,
  236. int offset, __le32 val)
  237. {
  238. int ret;
  239. ret = vfio_user_config_write(vdev->pdev, pos, val, count);
  240. if (ret)
  241. return ret;
  242. return count;
  243. }
  244. /* Default all regions to read-only, no-virtualization */
  245. static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
  246. [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
  247. };
  248. static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
  249. [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
  250. };
  251. static void free_perm_bits(struct perm_bits *perm)
  252. {
  253. kfree(perm->virt);
  254. kfree(perm->write);
  255. perm->virt = NULL;
  256. perm->write = NULL;
  257. }
  258. static int alloc_perm_bits(struct perm_bits *perm, int size)
  259. {
  260. /*
  261. * Round up all permission bits to the next dword, this lets us
  262. * ignore whether a read/write exceeds the defined capability
  263. * structure. We can do this because:
  264. * - Standard config space is already dword aligned
  265. * - Capabilities are all dword alinged (bits 0:1 of next reserved)
  266. * - Express capabilities defined as dword aligned
  267. */
  268. size = round_up(size, 4);
  269. /*
  270. * Zero state is
  271. * - All Readable, None Writeable, None Virtualized
  272. */
  273. perm->virt = kzalloc(size, GFP_KERNEL);
  274. perm->write = kzalloc(size, GFP_KERNEL);
  275. if (!perm->virt || !perm->write) {
  276. free_perm_bits(perm);
  277. return -ENOMEM;
  278. }
  279. perm->readfn = vfio_default_config_read;
  280. perm->writefn = vfio_default_config_write;
  281. return 0;
  282. }
  283. /*
  284. * Helper functions for filling in permission tables
  285. */
  286. static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
  287. {
  288. p->virt[off] = virt;
  289. p->write[off] = write;
  290. }
  291. /* Handle endian-ness - pci and tables are little-endian */
  292. static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
  293. {
  294. *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
  295. *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
  296. }
  297. /* Handle endian-ness - pci and tables are little-endian */
  298. static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
  299. {
  300. *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
  301. *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
  302. }
  303. /*
  304. * Restore the *real* BARs after we detect a FLR or backdoor reset.
  305. * (backdoor = some device specific technique that we didn't catch)
  306. */
  307. static void vfio_bar_restore(struct vfio_pci_device *vdev)
  308. {
  309. struct pci_dev *pdev = vdev->pdev;
  310. u32 *rbar = vdev->rbar;
  311. int i;
  312. if (pdev->is_virtfn)
  313. return;
  314. pr_info("%s: %s reset recovery - restoring bars\n",
  315. __func__, dev_name(&pdev->dev));
  316. for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
  317. pci_user_write_config_dword(pdev, i, *rbar);
  318. pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
  319. }
  320. static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
  321. {
  322. unsigned long flags = pci_resource_flags(pdev, bar);
  323. u32 val;
  324. if (flags & IORESOURCE_IO)
  325. return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
  326. val = PCI_BASE_ADDRESS_SPACE_MEMORY;
  327. if (flags & IORESOURCE_PREFETCH)
  328. val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
  329. if (flags & IORESOURCE_MEM_64)
  330. val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
  331. return cpu_to_le32(val);
  332. }
  333. /*
  334. * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
  335. * to reflect the hardware capabilities. This implements BAR sizing.
  336. */
  337. static void vfio_bar_fixup(struct vfio_pci_device *vdev)
  338. {
  339. struct pci_dev *pdev = vdev->pdev;
  340. int i;
  341. __le32 *bar;
  342. u64 mask;
  343. bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
  344. for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
  345. if (!pci_resource_start(pdev, i)) {
  346. *bar = 0; /* Unmapped by host = unimplemented to user */
  347. continue;
  348. }
  349. mask = ~(pci_resource_len(pdev, i) - 1);
  350. *bar &= cpu_to_le32((u32)mask);
  351. *bar |= vfio_generate_bar_flags(pdev, i);
  352. if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
  353. bar++;
  354. *bar &= cpu_to_le32((u32)(mask >> 32));
  355. i++;
  356. }
  357. }
  358. bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
  359. /*
  360. * NB. we expose the actual BAR size here, regardless of whether
  361. * we can read it. When we report the REGION_INFO for the ROM
  362. * we report what PCI tells us is the actual ROM size.
  363. */
  364. if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
  365. mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
  366. mask |= PCI_ROM_ADDRESS_ENABLE;
  367. *bar &= cpu_to_le32((u32)mask);
  368. } else
  369. *bar = 0;
  370. vdev->bardirty = false;
  371. }
  372. static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
  373. int count, struct perm_bits *perm,
  374. int offset, __le32 *val)
  375. {
  376. if (is_bar(offset)) /* pos == offset for basic config */
  377. vfio_bar_fixup(vdev);
  378. count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
  379. /* Mask in virtual memory enable for SR-IOV devices */
  380. if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
  381. u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
  382. u32 tmp_val = le32_to_cpu(*val);
  383. tmp_val |= cmd & PCI_COMMAND_MEMORY;
  384. *val = cpu_to_le32(tmp_val);
  385. }
  386. return count;
  387. }
  388. static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
  389. int count, struct perm_bits *perm,
  390. int offset, __le32 val)
  391. {
  392. struct pci_dev *pdev = vdev->pdev;
  393. __le16 *virt_cmd;
  394. u16 new_cmd = 0;
  395. int ret;
  396. virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
  397. if (offset == PCI_COMMAND) {
  398. bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
  399. u16 phys_cmd;
  400. ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
  401. if (ret)
  402. return ret;
  403. new_cmd = le32_to_cpu(val);
  404. phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
  405. virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
  406. new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
  407. phys_io = !!(phys_cmd & PCI_COMMAND_IO);
  408. virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
  409. new_io = !!(new_cmd & PCI_COMMAND_IO);
  410. /*
  411. * If the user is writing mem/io enable (new_mem/io) and we
  412. * think it's already enabled (virt_mem/io), but the hardware
  413. * shows it disabled (phys_mem/io, then the device has
  414. * undergone some kind of backdoor reset and needs to be
  415. * restored before we allow it to enable the bars.
  416. * SR-IOV devices will trigger this, but we catch them later
  417. */
  418. if ((new_mem && virt_mem && !phys_mem) ||
  419. (new_io && virt_io && !phys_io))
  420. vfio_bar_restore(vdev);
  421. }
  422. count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
  423. if (count < 0)
  424. return count;
  425. /*
  426. * Save current memory/io enable bits in vconfig to allow for
  427. * the test above next time.
  428. */
  429. if (offset == PCI_COMMAND) {
  430. u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
  431. *virt_cmd &= cpu_to_le16(~mask);
  432. *virt_cmd |= cpu_to_le16(new_cmd & mask);
  433. }
  434. /* Emulate INTx disable */
  435. if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
  436. bool virt_intx_disable;
  437. virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
  438. PCI_COMMAND_INTX_DISABLE);
  439. if (virt_intx_disable && !vdev->virq_disabled) {
  440. vdev->virq_disabled = true;
  441. vfio_pci_intx_mask(vdev);
  442. } else if (!virt_intx_disable && vdev->virq_disabled) {
  443. vdev->virq_disabled = false;
  444. vfio_pci_intx_unmask(vdev);
  445. }
  446. }
  447. if (is_bar(offset))
  448. vdev->bardirty = true;
  449. return count;
  450. }
  451. /* Permissions for the Basic PCI Header */
  452. static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
  453. {
  454. if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
  455. return -ENOMEM;
  456. perm->readfn = vfio_basic_config_read;
  457. perm->writefn = vfio_basic_config_write;
  458. /* Virtualized for SR-IOV functions, which just have FFFF */
  459. p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
  460. p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
  461. /*
  462. * Virtualize INTx disable, we use it internally for interrupt
  463. * control and can emulate it for non-PCI 2.3 devices.
  464. */
  465. p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
  466. /* Virtualize capability list, we might want to skip/disable */
  467. p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
  468. /* No harm to write */
  469. p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
  470. p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
  471. p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
  472. /* Virtualize all bars, can't touch the real ones */
  473. p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
  474. p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
  475. p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
  476. p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
  477. p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
  478. p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
  479. p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
  480. /* Allow us to adjust capability chain */
  481. p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
  482. /* Sometimes used by sw, just virtualize */
  483. p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
  484. return 0;
  485. }
  486. /* Permissions for the Power Management capability */
  487. static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
  488. {
  489. if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
  490. return -ENOMEM;
  491. /*
  492. * We always virtualize the next field so we can remove
  493. * capabilities from the chain if we want to.
  494. */
  495. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  496. /*
  497. * Power management is defined *per function*,
  498. * so we let the user write this
  499. */
  500. p_setd(perm, PCI_PM_CTRL, NO_VIRT, ALL_WRITE);
  501. return 0;
  502. }
  503. /* Permissions for PCI-X capability */
  504. static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
  505. {
  506. /* Alloc 24, but only 8 are used in v0 */
  507. if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
  508. return -ENOMEM;
  509. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  510. p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
  511. p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
  512. return 0;
  513. }
  514. /* Permissions for PCI Express capability */
  515. static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
  516. {
  517. /* Alloc larger of two possible sizes */
  518. if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
  519. return -ENOMEM;
  520. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  521. /*
  522. * Allow writes to device control fields (includes FLR!)
  523. * but not to devctl_phantom which could confuse IOMMU
  524. * or to the ARI bit in devctl2 which is set at probe time
  525. */
  526. p_setw(perm, PCI_EXP_DEVCTL, NO_VIRT, ~PCI_EXP_DEVCTL_PHANTOM);
  527. p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
  528. return 0;
  529. }
  530. /* Permissions for Advanced Function capability */
  531. static int __init init_pci_cap_af_perm(struct perm_bits *perm)
  532. {
  533. if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
  534. return -ENOMEM;
  535. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  536. p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
  537. return 0;
  538. }
  539. /* Permissions for Advanced Error Reporting extended capability */
  540. static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
  541. {
  542. u32 mask;
  543. if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
  544. return -ENOMEM;
  545. /*
  546. * Virtualize the first dword of all express capabilities
  547. * because it includes the next pointer. This lets us later
  548. * remove capabilities from the chain if we need to.
  549. */
  550. p_setd(perm, 0, ALL_VIRT, NO_WRITE);
  551. /* Writable bits mask */
  552. mask = PCI_ERR_UNC_TRAIN | /* Training */
  553. PCI_ERR_UNC_DLP | /* Data Link Protocol */
  554. PCI_ERR_UNC_SURPDN | /* Surprise Down */
  555. PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
  556. PCI_ERR_UNC_FCP | /* Flow Control Protocol */
  557. PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
  558. PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
  559. PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
  560. PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
  561. PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
  562. PCI_ERR_UNC_ECRC | /* ECRC Error Status */
  563. PCI_ERR_UNC_UNSUP | /* Unsupported Request */
  564. PCI_ERR_UNC_ACSV | /* ACS Violation */
  565. PCI_ERR_UNC_INTN | /* internal error */
  566. PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
  567. PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
  568. PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
  569. p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
  570. p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
  571. p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
  572. mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
  573. PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
  574. PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
  575. PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
  576. PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
  577. PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
  578. PCI_ERR_COR_INTERNAL | /* Corrected Internal */
  579. PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
  580. p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
  581. p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
  582. mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
  583. PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
  584. p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
  585. return 0;
  586. }
  587. /* Permissions for Power Budgeting extended capability */
  588. static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
  589. {
  590. if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
  591. return -ENOMEM;
  592. p_setd(perm, 0, ALL_VIRT, NO_WRITE);
  593. /* Writing the data selector is OK, the info is still read-only */
  594. p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
  595. return 0;
  596. }
  597. /*
  598. * Initialize the shared permission tables
  599. */
  600. void vfio_pci_uninit_perm_bits(void)
  601. {
  602. free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
  603. free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
  604. free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
  605. free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
  606. free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
  607. free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
  608. free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
  609. }
  610. int __init vfio_pci_init_perm_bits(void)
  611. {
  612. int ret;
  613. /* Basic config space */
  614. ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
  615. /* Capabilities */
  616. ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
  617. cap_perms[PCI_CAP_ID_VPD].writefn = vfio_direct_config_write;
  618. ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
  619. cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_direct_config_write;
  620. ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
  621. ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
  622. /* Extended capabilities */
  623. ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
  624. ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
  625. ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_direct_config_write;
  626. if (ret)
  627. vfio_pci_uninit_perm_bits();
  628. return ret;
  629. }
  630. static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
  631. {
  632. u8 cap;
  633. int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
  634. PCI_STD_HEADER_SIZEOF;
  635. base /= 4;
  636. pos /= 4;
  637. cap = vdev->pci_config_map[pos];
  638. if (cap == PCI_CAP_ID_BASIC)
  639. return 0;
  640. /* XXX Can we have to abutting capabilities of the same type? */
  641. while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
  642. pos--;
  643. return pos * 4;
  644. }
  645. static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
  646. int count, struct perm_bits *perm,
  647. int offset, __le32 *val)
  648. {
  649. /* Update max available queue size from msi_qmax */
  650. if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
  651. __le16 *flags;
  652. int start;
  653. start = vfio_find_cap_start(vdev, pos);
  654. flags = (__le16 *)&vdev->vconfig[start];
  655. *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
  656. *flags |= cpu_to_le16(vdev->msi_qmax << 1);
  657. }
  658. return vfio_default_config_read(vdev, pos, count, perm, offset, val);
  659. }
  660. static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
  661. int count, struct perm_bits *perm,
  662. int offset, __le32 val)
  663. {
  664. count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
  665. if (count < 0)
  666. return count;
  667. /* Fixup and write configured queue size and enable to hardware */
  668. if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
  669. __le16 *pflags;
  670. u16 flags;
  671. int start, ret;
  672. start = vfio_find_cap_start(vdev, pos);
  673. pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
  674. flags = le16_to_cpu(*pflags);
  675. /* MSI is enabled via ioctl */
  676. if (!is_msi(vdev))
  677. flags &= ~PCI_MSI_FLAGS_ENABLE;
  678. /* Check queue size */
  679. if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
  680. flags &= ~PCI_MSI_FLAGS_QSIZE;
  681. flags |= vdev->msi_qmax << 4;
  682. }
  683. /* Write back to virt and to hardware */
  684. *pflags = cpu_to_le16(flags);
  685. ret = pci_user_write_config_word(vdev->pdev,
  686. start + PCI_MSI_FLAGS,
  687. flags);
  688. if (ret)
  689. return pcibios_err_to_errno(ret);
  690. }
  691. return count;
  692. }
  693. /*
  694. * MSI determination is per-device, so this routine gets used beyond
  695. * initialization time. Don't add __init
  696. */
  697. static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
  698. {
  699. if (alloc_perm_bits(perm, len))
  700. return -ENOMEM;
  701. perm->readfn = vfio_msi_config_read;
  702. perm->writefn = vfio_msi_config_write;
  703. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  704. /*
  705. * The upper byte of the control register is reserved,
  706. * just setup the lower byte.
  707. */
  708. p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
  709. p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
  710. if (flags & PCI_MSI_FLAGS_64BIT) {
  711. p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
  712. p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
  713. if (flags & PCI_MSI_FLAGS_MASKBIT) {
  714. p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
  715. p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
  716. }
  717. } else {
  718. p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
  719. if (flags & PCI_MSI_FLAGS_MASKBIT) {
  720. p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
  721. p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
  722. }
  723. }
  724. return 0;
  725. }
  726. /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
  727. static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
  728. {
  729. struct pci_dev *pdev = vdev->pdev;
  730. int len, ret;
  731. u16 flags;
  732. ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
  733. if (ret)
  734. return pcibios_err_to_errno(ret);
  735. len = 10; /* Minimum size */
  736. if (flags & PCI_MSI_FLAGS_64BIT)
  737. len += 4;
  738. if (flags & PCI_MSI_FLAGS_MASKBIT)
  739. len += 10;
  740. if (vdev->msi_perm)
  741. return len;
  742. vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
  743. if (!vdev->msi_perm)
  744. return -ENOMEM;
  745. ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
  746. if (ret)
  747. return ret;
  748. return len;
  749. }
  750. /* Determine extended capability length for VC (2 & 9) and MFVC */
  751. static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
  752. {
  753. struct pci_dev *pdev = vdev->pdev;
  754. u32 tmp;
  755. int ret, evcc, phases, vc_arb;
  756. int len = PCI_CAP_VC_BASE_SIZEOF;
  757. ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG1, &tmp);
  758. if (ret)
  759. return pcibios_err_to_errno(ret);
  760. evcc = tmp & PCI_VC_REG1_EVCC; /* extended vc count */
  761. ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG2, &tmp);
  762. if (ret)
  763. return pcibios_err_to_errno(ret);
  764. if (tmp & PCI_VC_REG2_128_PHASE)
  765. phases = 128;
  766. else if (tmp & PCI_VC_REG2_64_PHASE)
  767. phases = 64;
  768. else if (tmp & PCI_VC_REG2_32_PHASE)
  769. phases = 32;
  770. else
  771. phases = 0;
  772. vc_arb = phases * 4;
  773. /*
  774. * Port arbitration tables are root & switch only;
  775. * function arbitration tables are function 0 only.
  776. * In either case, we'll never let user write them so
  777. * we don't care how big they are
  778. */
  779. len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
  780. if (vc_arb) {
  781. len = round_up(len, 16);
  782. len += vc_arb / 8;
  783. }
  784. return len;
  785. }
  786. static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
  787. {
  788. struct pci_dev *pdev = vdev->pdev;
  789. u16 word;
  790. u8 byte;
  791. int ret;
  792. switch (cap) {
  793. case PCI_CAP_ID_MSI:
  794. return vfio_msi_cap_len(vdev, pos);
  795. case PCI_CAP_ID_PCIX:
  796. ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
  797. if (ret)
  798. return pcibios_err_to_errno(ret);
  799. if (PCI_X_CMD_VERSION(word)) {
  800. vdev->extended_caps = true;
  801. return PCI_CAP_PCIX_SIZEOF_V2;
  802. } else
  803. return PCI_CAP_PCIX_SIZEOF_V0;
  804. case PCI_CAP_ID_VNDR:
  805. /* length follows next field */
  806. ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
  807. if (ret)
  808. return pcibios_err_to_errno(ret);
  809. return byte;
  810. case PCI_CAP_ID_EXP:
  811. /* length based on version */
  812. ret = pci_read_config_word(pdev, pos + PCI_EXP_FLAGS, &word);
  813. if (ret)
  814. return pcibios_err_to_errno(ret);
  815. if ((word & PCI_EXP_FLAGS_VERS) == 1)
  816. return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
  817. else {
  818. vdev->extended_caps = true;
  819. return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
  820. }
  821. case PCI_CAP_ID_HT:
  822. ret = pci_read_config_byte(pdev, pos + 3, &byte);
  823. if (ret)
  824. return pcibios_err_to_errno(ret);
  825. return (byte & HT_3BIT_CAP_MASK) ?
  826. HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
  827. case PCI_CAP_ID_SATA:
  828. ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
  829. if (ret)
  830. return pcibios_err_to_errno(ret);
  831. byte &= PCI_SATA_REGS_MASK;
  832. if (byte == PCI_SATA_REGS_INLINE)
  833. return PCI_SATA_SIZEOF_LONG;
  834. else
  835. return PCI_SATA_SIZEOF_SHORT;
  836. default:
  837. pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
  838. dev_name(&pdev->dev), __func__, cap, pos);
  839. }
  840. return 0;
  841. }
  842. static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
  843. {
  844. struct pci_dev *pdev = vdev->pdev;
  845. u8 byte;
  846. u32 dword;
  847. int ret;
  848. switch (ecap) {
  849. case PCI_EXT_CAP_ID_VNDR:
  850. ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
  851. if (ret)
  852. return pcibios_err_to_errno(ret);
  853. return dword >> PCI_VSEC_HDR_LEN_SHIFT;
  854. case PCI_EXT_CAP_ID_VC:
  855. case PCI_EXT_CAP_ID_VC9:
  856. case PCI_EXT_CAP_ID_MFVC:
  857. return vfio_vc_cap_len(vdev, epos);
  858. case PCI_EXT_CAP_ID_ACS:
  859. ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
  860. if (ret)
  861. return pcibios_err_to_errno(ret);
  862. if (byte & PCI_ACS_EC) {
  863. int bits;
  864. ret = pci_read_config_byte(pdev,
  865. epos + PCI_ACS_EGRESS_BITS,
  866. &byte);
  867. if (ret)
  868. return pcibios_err_to_errno(ret);
  869. bits = byte ? round_up(byte, 32) : 256;
  870. return 8 + (bits / 8);
  871. }
  872. return 8;
  873. case PCI_EXT_CAP_ID_REBAR:
  874. ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
  875. if (ret)
  876. return pcibios_err_to_errno(ret);
  877. byte &= PCI_REBAR_CTRL_NBAR_MASK;
  878. byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
  879. return 4 + (byte * 8);
  880. case PCI_EXT_CAP_ID_DPA:
  881. ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
  882. if (ret)
  883. return pcibios_err_to_errno(ret);
  884. byte &= PCI_DPA_CAP_SUBSTATE_MASK;
  885. byte = round_up(byte + 1, 4);
  886. return PCI_DPA_BASE_SIZEOF + byte;
  887. case PCI_EXT_CAP_ID_TPH:
  888. ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
  889. if (ret)
  890. return pcibios_err_to_errno(ret);
  891. if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
  892. int sts;
  893. sts = byte & PCI_TPH_CAP_ST_MASK;
  894. sts >>= PCI_TPH_CAP_ST_SHIFT;
  895. return PCI_TPH_BASE_SIZEOF + round_up(sts * 2, 4);
  896. }
  897. return PCI_TPH_BASE_SIZEOF;
  898. default:
  899. pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
  900. dev_name(&pdev->dev), __func__, ecap, epos);
  901. }
  902. return 0;
  903. }
  904. static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
  905. int offset, int size)
  906. {
  907. struct pci_dev *pdev = vdev->pdev;
  908. int ret = 0;
  909. /*
  910. * We try to read physical config space in the largest chunks
  911. * we can, assuming that all of the fields support dword access.
  912. * pci_save_state() makes this same assumption and seems to do ok.
  913. */
  914. while (size) {
  915. int filled;
  916. if (size >= 4 && !(offset % 4)) {
  917. __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
  918. u32 dword;
  919. ret = pci_read_config_dword(pdev, offset, &dword);
  920. if (ret)
  921. return ret;
  922. *dwordp = cpu_to_le32(dword);
  923. filled = 4;
  924. } else if (size >= 2 && !(offset % 2)) {
  925. __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
  926. u16 word;
  927. ret = pci_read_config_word(pdev, offset, &word);
  928. if (ret)
  929. return ret;
  930. *wordp = cpu_to_le16(word);
  931. filled = 2;
  932. } else {
  933. u8 *byte = &vdev->vconfig[offset];
  934. ret = pci_read_config_byte(pdev, offset, byte);
  935. if (ret)
  936. return ret;
  937. filled = 1;
  938. }
  939. offset += filled;
  940. size -= filled;
  941. }
  942. return ret;
  943. }
  944. static int vfio_cap_init(struct vfio_pci_device *vdev)
  945. {
  946. struct pci_dev *pdev = vdev->pdev;
  947. u8 *map = vdev->pci_config_map;
  948. u16 status;
  949. u8 pos, *prev, cap;
  950. int loops, ret, caps = 0;
  951. /* Any capabilities? */
  952. ret = pci_read_config_word(pdev, PCI_STATUS, &status);
  953. if (ret)
  954. return ret;
  955. if (!(status & PCI_STATUS_CAP_LIST))
  956. return 0; /* Done */
  957. ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
  958. if (ret)
  959. return ret;
  960. /* Mark the previous position in case we want to skip a capability */
  961. prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
  962. /* We can bound our loop, capabilities are dword aligned */
  963. loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
  964. while (pos && loops--) {
  965. u8 next;
  966. int i, len = 0;
  967. ret = pci_read_config_byte(pdev, pos, &cap);
  968. if (ret)
  969. return ret;
  970. ret = pci_read_config_byte(pdev,
  971. pos + PCI_CAP_LIST_NEXT, &next);
  972. if (ret)
  973. return ret;
  974. if (cap <= PCI_CAP_ID_MAX) {
  975. len = pci_cap_length[cap];
  976. if (len == 0xFF) { /* Variable length */
  977. len = vfio_cap_len(vdev, cap, pos);
  978. if (len < 0)
  979. return len;
  980. }
  981. }
  982. if (!len) {
  983. pr_info("%s: %s hiding cap 0x%x\n",
  984. __func__, dev_name(&pdev->dev), cap);
  985. *prev = next;
  986. pos = next;
  987. continue;
  988. }
  989. /* Sanity check, do we overlap other capabilities? */
  990. for (i = 0; i < len; i += 4) {
  991. if (likely(map[(pos + i) / 4] == PCI_CAP_ID_INVALID))
  992. continue;
  993. pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
  994. __func__, dev_name(&pdev->dev),
  995. pos + i, map[pos + i], cap);
  996. }
  997. memset(map + (pos / 4), cap, len / 4);
  998. ret = vfio_fill_vconfig_bytes(vdev, pos, len);
  999. if (ret)
  1000. return ret;
  1001. prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
  1002. pos = next;
  1003. caps++;
  1004. }
  1005. /* If we didn't fill any capabilities, clear the status flag */
  1006. if (!caps) {
  1007. __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
  1008. *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
  1009. }
  1010. return 0;
  1011. }
  1012. static int vfio_ecap_init(struct vfio_pci_device *vdev)
  1013. {
  1014. struct pci_dev *pdev = vdev->pdev;
  1015. u8 *map = vdev->pci_config_map;
  1016. u16 epos;
  1017. __le32 *prev = NULL;
  1018. int loops, ret, ecaps = 0;
  1019. if (!vdev->extended_caps)
  1020. return 0;
  1021. epos = PCI_CFG_SPACE_SIZE;
  1022. loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
  1023. while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
  1024. u32 header;
  1025. u16 ecap;
  1026. int i, len = 0;
  1027. bool hidden = false;
  1028. ret = pci_read_config_dword(pdev, epos, &header);
  1029. if (ret)
  1030. return ret;
  1031. ecap = PCI_EXT_CAP_ID(header);
  1032. if (ecap <= PCI_EXT_CAP_ID_MAX) {
  1033. len = pci_ext_cap_length[ecap];
  1034. if (len == 0xFF) {
  1035. len = vfio_ext_cap_len(vdev, ecap, epos);
  1036. if (len < 0)
  1037. return ret;
  1038. }
  1039. }
  1040. if (!len) {
  1041. pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
  1042. __func__, dev_name(&pdev->dev), ecap, epos);
  1043. /* If not the first in the chain, we can skip over it */
  1044. if (prev) {
  1045. u32 val = epos = PCI_EXT_CAP_NEXT(header);
  1046. *prev &= cpu_to_le32(~(0xffcU << 20));
  1047. *prev |= cpu_to_le32(val << 20);
  1048. continue;
  1049. }
  1050. /*
  1051. * Otherwise, fill in a placeholder, the direct
  1052. * readfn will virtualize this automatically
  1053. */
  1054. len = PCI_CAP_SIZEOF;
  1055. hidden = true;
  1056. }
  1057. for (i = 0; i < len; i += 4) {
  1058. if (likely(map[(epos + i) / 4] == PCI_CAP_ID_INVALID))
  1059. continue;
  1060. pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
  1061. __func__, dev_name(&pdev->dev),
  1062. epos + i, map[epos + i], ecap);
  1063. }
  1064. /*
  1065. * Even though ecap is 2 bytes, we're currently a long way
  1066. * from exceeding 1 byte capabilities. If we ever make it
  1067. * up to 0xFF we'll need to up this to a two-byte, byte map.
  1068. */
  1069. BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID);
  1070. memset(map + (epos / 4), ecap, len / 4);
  1071. ret = vfio_fill_vconfig_bytes(vdev, epos, len);
  1072. if (ret)
  1073. return ret;
  1074. /*
  1075. * If we're just using this capability to anchor the list,
  1076. * hide the real ID. Only count real ecaps. XXX PCI spec
  1077. * indicates to use cap id = 0, version = 0, next = 0 if
  1078. * ecaps are absent, hope users check all the way to next.
  1079. */
  1080. if (hidden)
  1081. *(__le32 *)&vdev->vconfig[epos] &=
  1082. cpu_to_le32((0xffcU << 20));
  1083. else
  1084. ecaps++;
  1085. prev = (__le32 *)&vdev->vconfig[epos];
  1086. epos = PCI_EXT_CAP_NEXT(header);
  1087. }
  1088. if (!ecaps)
  1089. *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
  1090. return 0;
  1091. }
  1092. /*
  1093. * For each device we allocate a pci_config_map that indicates the
  1094. * capability occupying each dword and thus the struct perm_bits we
  1095. * use for read and write. We also allocate a virtualized config
  1096. * space which tracks reads and writes to bits that we emulate for
  1097. * the user. Initial values filled from device.
  1098. *
  1099. * Using shared stuct perm_bits between all vfio-pci devices saves
  1100. * us from allocating cfg_size buffers for virt and write for every
  1101. * device. We could remove vconfig and allocate individual buffers
  1102. * for each area requring emulated bits, but the array of pointers
  1103. * would be comparable in size (at least for standard config space).
  1104. */
  1105. int vfio_config_init(struct vfio_pci_device *vdev)
  1106. {
  1107. struct pci_dev *pdev = vdev->pdev;
  1108. u8 *map, *vconfig;
  1109. int ret;
  1110. /*
  1111. * Config space, caps and ecaps are all dword aligned, so we can
  1112. * use one byte per dword to record the type.
  1113. */
  1114. map = kmalloc(pdev->cfg_size / 4, GFP_KERNEL);
  1115. if (!map)
  1116. return -ENOMEM;
  1117. vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
  1118. if (!vconfig) {
  1119. kfree(map);
  1120. return -ENOMEM;
  1121. }
  1122. vdev->pci_config_map = map;
  1123. vdev->vconfig = vconfig;
  1124. memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF / 4);
  1125. memset(map + (PCI_STD_HEADER_SIZEOF / 4), PCI_CAP_ID_INVALID,
  1126. (pdev->cfg_size - PCI_STD_HEADER_SIZEOF) / 4);
  1127. ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
  1128. if (ret)
  1129. goto out;
  1130. vdev->bardirty = true;
  1131. /*
  1132. * XXX can we just pci_load_saved_state/pci_restore_state?
  1133. * may need to rebuild vconfig after that
  1134. */
  1135. /* For restore after reset */
  1136. vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
  1137. vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
  1138. vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
  1139. vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
  1140. vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
  1141. vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
  1142. vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
  1143. if (pdev->is_virtfn) {
  1144. *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
  1145. *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
  1146. }
  1147. ret = vfio_cap_init(vdev);
  1148. if (ret)
  1149. goto out;
  1150. ret = vfio_ecap_init(vdev);
  1151. if (ret)
  1152. goto out;
  1153. return 0;
  1154. out:
  1155. kfree(map);
  1156. vdev->pci_config_map = NULL;
  1157. kfree(vconfig);
  1158. vdev->vconfig = NULL;
  1159. return pcibios_err_to_errno(ret);
  1160. }
  1161. void vfio_config_free(struct vfio_pci_device *vdev)
  1162. {
  1163. kfree(vdev->vconfig);
  1164. vdev->vconfig = NULL;
  1165. kfree(vdev->pci_config_map);
  1166. vdev->pci_config_map = NULL;
  1167. kfree(vdev->msi_perm);
  1168. vdev->msi_perm = NULL;
  1169. }
  1170. static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
  1171. size_t count, loff_t *ppos, bool iswrite)
  1172. {
  1173. struct pci_dev *pdev = vdev->pdev;
  1174. struct perm_bits *perm;
  1175. __le32 val = 0;
  1176. int cap_start = 0, offset;
  1177. u8 cap_id;
  1178. ssize_t ret = count;
  1179. if (*ppos < 0 || *ppos + count > pdev->cfg_size)
  1180. return -EFAULT;
  1181. /*
  1182. * gcc can't seem to figure out we're a static function, only called
  1183. * with count of 1/2/4 and hits copy_from_user_overflow without this.
  1184. */
  1185. if (count > sizeof(val))
  1186. return -EINVAL;
  1187. cap_id = vdev->pci_config_map[*ppos / 4];
  1188. if (cap_id == PCI_CAP_ID_INVALID) {
  1189. if (iswrite)
  1190. return ret; /* drop */
  1191. /*
  1192. * Per PCI spec 3.0, section 6.1, reads from reserved and
  1193. * unimplemented registers return 0
  1194. */
  1195. if (copy_to_user(buf, &val, count))
  1196. return -EFAULT;
  1197. return ret;
  1198. }
  1199. /*
  1200. * All capabilities are minimum 4 bytes and aligned on dword
  1201. * boundaries. Since we don't support unaligned accesses, we're
  1202. * only ever accessing a single capability.
  1203. */
  1204. if (*ppos >= PCI_CFG_SPACE_SIZE) {
  1205. WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
  1206. perm = &ecap_perms[cap_id];
  1207. cap_start = vfio_find_cap_start(vdev, *ppos);
  1208. } else {
  1209. WARN_ON(cap_id > PCI_CAP_ID_MAX);
  1210. perm = &cap_perms[cap_id];
  1211. if (cap_id == PCI_CAP_ID_MSI)
  1212. perm = vdev->msi_perm;
  1213. if (cap_id > PCI_CAP_ID_BASIC)
  1214. cap_start = vfio_find_cap_start(vdev, *ppos);
  1215. }
  1216. WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
  1217. WARN_ON(cap_start > *ppos);
  1218. offset = *ppos - cap_start;
  1219. if (iswrite) {
  1220. if (!perm->writefn)
  1221. return ret;
  1222. if (copy_from_user(&val, buf, count))
  1223. return -EFAULT;
  1224. ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
  1225. } else {
  1226. if (perm->readfn) {
  1227. ret = perm->readfn(vdev, *ppos, count,
  1228. perm, offset, &val);
  1229. if (ret < 0)
  1230. return ret;
  1231. }
  1232. if (copy_to_user(buf, &val, count))
  1233. return -EFAULT;
  1234. }
  1235. return ret;
  1236. }
  1237. ssize_t vfio_pci_config_readwrite(struct vfio_pci_device *vdev,
  1238. char __user *buf, size_t count,
  1239. loff_t *ppos, bool iswrite)
  1240. {
  1241. size_t done = 0;
  1242. int ret = 0;
  1243. loff_t pos = *ppos;
  1244. pos &= VFIO_PCI_OFFSET_MASK;
  1245. /*
  1246. * We want to both keep the access size the caller users as well as
  1247. * support reading large chunks of config space in a single call.
  1248. * PCI doesn't support unaligned accesses, so we can safely break
  1249. * those apart.
  1250. */
  1251. while (count) {
  1252. if (count >= 4 && !(pos % 4))
  1253. ret = vfio_config_do_rw(vdev, buf, 4, &pos, iswrite);
  1254. else if (count >= 2 && !(pos % 2))
  1255. ret = vfio_config_do_rw(vdev, buf, 2, &pos, iswrite);
  1256. else
  1257. ret = vfio_config_do_rw(vdev, buf, 1, &pos, iswrite);
  1258. if (ret < 0)
  1259. return ret;
  1260. count -= ret;
  1261. done += ret;
  1262. buf += ret;
  1263. pos += ret;
  1264. }
  1265. *ppos += done;
  1266. return done;
  1267. }