xhci.c 141 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/pci.h>
  23. #include <linux/irq.h>
  24. #include <linux/log2.h>
  25. #include <linux/module.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/slab.h>
  28. #include <linux/dmi.h>
  29. #include "xhci.h"
  30. #define DRIVER_AUTHOR "Sarah Sharp"
  31. #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  32. /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33. static int link_quirk;
  34. module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35. MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36. /* TODO: copied from ehci-hcd.c - can this be refactored? */
  37. /*
  38. * xhci_handshake - spin reading hc until handshake completes or fails
  39. * @ptr: address of hc register to be read
  40. * @mask: bits to look at in result of read
  41. * @done: value of those bits when handshake succeeds
  42. * @usec: timeout in microseconds
  43. *
  44. * Returns negative errno, or zero on success
  45. *
  46. * Success happens when the "mask" bits have the specified value (hardware
  47. * handshake done). There are two failure modes: "usec" have passed (major
  48. * hardware flakeout), or the register reads as all-ones (hardware removed).
  49. */
  50. int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  51. u32 mask, u32 done, int usec)
  52. {
  53. u32 result;
  54. do {
  55. result = xhci_readl(xhci, ptr);
  56. if (result == ~(u32)0) /* card removed */
  57. return -ENODEV;
  58. result &= mask;
  59. if (result == done)
  60. return 0;
  61. udelay(1);
  62. usec--;
  63. } while (usec > 0);
  64. return -ETIMEDOUT;
  65. }
  66. /*
  67. * Disable interrupts and begin the xHCI halting process.
  68. */
  69. void xhci_quiesce(struct xhci_hcd *xhci)
  70. {
  71. u32 halted;
  72. u32 cmd;
  73. u32 mask;
  74. mask = ~(XHCI_IRQS);
  75. halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  76. if (!halted)
  77. mask &= ~CMD_RUN;
  78. cmd = xhci_readl(xhci, &xhci->op_regs->command);
  79. cmd &= mask;
  80. xhci_writel(xhci, cmd, &xhci->op_regs->command);
  81. }
  82. /*
  83. * Force HC into halt state.
  84. *
  85. * Disable any IRQs and clear the run/stop bit.
  86. * HC will complete any current and actively pipelined transactions, and
  87. * should halt within 16 ms of the run/stop bit being cleared.
  88. * Read HC Halted bit in the status register to see when the HC is finished.
  89. */
  90. int xhci_halt(struct xhci_hcd *xhci)
  91. {
  92. int ret;
  93. xhci_dbg(xhci, "// Halt the HC\n");
  94. xhci_quiesce(xhci);
  95. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  96. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
  97. if (!ret) {
  98. xhci->xhc_state |= XHCI_STATE_HALTED;
  99. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  100. } else
  101. xhci_warn(xhci, "Host not halted after %u microseconds.\n",
  102. XHCI_MAX_HALT_USEC);
  103. return ret;
  104. }
  105. /*
  106. * Set the run bit and wait for the host to be running.
  107. */
  108. static int xhci_start(struct xhci_hcd *xhci)
  109. {
  110. u32 temp;
  111. int ret;
  112. temp = xhci_readl(xhci, &xhci->op_regs->command);
  113. temp |= (CMD_RUN);
  114. xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
  115. temp);
  116. xhci_writel(xhci, temp, &xhci->op_regs->command);
  117. /*
  118. * Wait for the HCHalted Status bit to be 0 to indicate the host is
  119. * running.
  120. */
  121. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  122. STS_HALT, 0, XHCI_MAX_HALT_USEC);
  123. if (ret == -ETIMEDOUT)
  124. xhci_err(xhci, "Host took too long to start, "
  125. "waited %u microseconds.\n",
  126. XHCI_MAX_HALT_USEC);
  127. if (!ret)
  128. xhci->xhc_state &= ~XHCI_STATE_HALTED;
  129. return ret;
  130. }
  131. /*
  132. * Reset a halted HC.
  133. *
  134. * This resets pipelines, timers, counters, state machines, etc.
  135. * Transactions will be terminated immediately, and operational registers
  136. * will be set to their defaults.
  137. */
  138. int xhci_reset(struct xhci_hcd *xhci)
  139. {
  140. u32 command;
  141. u32 state;
  142. int ret, i;
  143. state = xhci_readl(xhci, &xhci->op_regs->status);
  144. if ((state & STS_HALT) == 0) {
  145. xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
  146. return 0;
  147. }
  148. xhci_dbg(xhci, "// Reset the HC\n");
  149. command = xhci_readl(xhci, &xhci->op_regs->command);
  150. command |= CMD_RESET;
  151. xhci_writel(xhci, command, &xhci->op_regs->command);
  152. ret = xhci_handshake(xhci, &xhci->op_regs->command,
  153. CMD_RESET, 0, 10 * 1000 * 1000);
  154. if (ret)
  155. return ret;
  156. xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
  157. /*
  158. * xHCI cannot write to any doorbells or operational registers other
  159. * than status until the "Controller Not Ready" flag is cleared.
  160. */
  161. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  162. STS_CNR, 0, 10 * 1000 * 1000);
  163. for (i = 0; i < 2; ++i) {
  164. xhci->bus_state[i].port_c_suspend = 0;
  165. xhci->bus_state[i].suspended_ports = 0;
  166. xhci->bus_state[i].resuming_ports = 0;
  167. }
  168. return ret;
  169. }
  170. #ifdef CONFIG_PCI
  171. static int xhci_free_msi(struct xhci_hcd *xhci)
  172. {
  173. int i;
  174. if (!xhci->msix_entries)
  175. return -EINVAL;
  176. for (i = 0; i < xhci->msix_count; i++)
  177. if (xhci->msix_entries[i].vector)
  178. free_irq(xhci->msix_entries[i].vector,
  179. xhci_to_hcd(xhci));
  180. return 0;
  181. }
  182. /*
  183. * Set up MSI
  184. */
  185. static int xhci_setup_msi(struct xhci_hcd *xhci)
  186. {
  187. int ret;
  188. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  189. ret = pci_enable_msi(pdev);
  190. if (ret) {
  191. xhci_dbg(xhci, "failed to allocate MSI entry\n");
  192. return ret;
  193. }
  194. ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
  195. 0, "xhci_hcd", xhci_to_hcd(xhci));
  196. if (ret) {
  197. xhci_dbg(xhci, "disable MSI interrupt\n");
  198. pci_disable_msi(pdev);
  199. }
  200. return ret;
  201. }
  202. /*
  203. * Free IRQs
  204. * free all IRQs request
  205. */
  206. static void xhci_free_irq(struct xhci_hcd *xhci)
  207. {
  208. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  209. int ret;
  210. /* return if using legacy interrupt */
  211. if (xhci_to_hcd(xhci)->irq > 0)
  212. return;
  213. ret = xhci_free_msi(xhci);
  214. if (!ret)
  215. return;
  216. if (pdev->irq > 0)
  217. free_irq(pdev->irq, xhci_to_hcd(xhci));
  218. return;
  219. }
  220. /*
  221. * Set up MSI-X
  222. */
  223. static int xhci_setup_msix(struct xhci_hcd *xhci)
  224. {
  225. int i, ret = 0;
  226. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  227. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  228. /*
  229. * calculate number of msi-x vectors supported.
  230. * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
  231. * with max number of interrupters based on the xhci HCSPARAMS1.
  232. * - num_online_cpus: maximum msi-x vectors per CPUs core.
  233. * Add additional 1 vector to ensure always available interrupt.
  234. */
  235. xhci->msix_count = min(num_online_cpus() + 1,
  236. HCS_MAX_INTRS(xhci->hcs_params1));
  237. xhci->msix_entries =
  238. kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
  239. GFP_KERNEL);
  240. if (!xhci->msix_entries) {
  241. xhci_err(xhci, "Failed to allocate MSI-X entries\n");
  242. return -ENOMEM;
  243. }
  244. for (i = 0; i < xhci->msix_count; i++) {
  245. xhci->msix_entries[i].entry = i;
  246. xhci->msix_entries[i].vector = 0;
  247. }
  248. ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
  249. if (ret) {
  250. xhci_dbg(xhci, "Failed to enable MSI-X\n");
  251. goto free_entries;
  252. }
  253. for (i = 0; i < xhci->msix_count; i++) {
  254. ret = request_irq(xhci->msix_entries[i].vector,
  255. (irq_handler_t)xhci_msi_irq,
  256. 0, "xhci_hcd", xhci_to_hcd(xhci));
  257. if (ret)
  258. goto disable_msix;
  259. }
  260. hcd->msix_enabled = 1;
  261. return ret;
  262. disable_msix:
  263. xhci_dbg(xhci, "disable MSI-X interrupt\n");
  264. xhci_free_irq(xhci);
  265. pci_disable_msix(pdev);
  266. free_entries:
  267. kfree(xhci->msix_entries);
  268. xhci->msix_entries = NULL;
  269. return ret;
  270. }
  271. /* Free any IRQs and disable MSI-X */
  272. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  273. {
  274. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  275. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  276. xhci_free_irq(xhci);
  277. if (xhci->msix_entries) {
  278. pci_disable_msix(pdev);
  279. kfree(xhci->msix_entries);
  280. xhci->msix_entries = NULL;
  281. } else {
  282. pci_disable_msi(pdev);
  283. }
  284. hcd->msix_enabled = 0;
  285. return;
  286. }
  287. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  288. {
  289. int i;
  290. if (xhci->msix_entries) {
  291. for (i = 0; i < xhci->msix_count; i++)
  292. synchronize_irq(xhci->msix_entries[i].vector);
  293. }
  294. }
  295. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  296. {
  297. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  298. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  299. int ret;
  300. /*
  301. * Some Fresco Logic host controllers advertise MSI, but fail to
  302. * generate interrupts. Don't even try to enable MSI.
  303. */
  304. if (xhci->quirks & XHCI_BROKEN_MSI)
  305. return 0;
  306. /* unregister the legacy interrupt */
  307. if (hcd->irq)
  308. free_irq(hcd->irq, hcd);
  309. hcd->irq = 0;
  310. ret = xhci_setup_msix(xhci);
  311. if (ret)
  312. /* fall back to msi*/
  313. ret = xhci_setup_msi(xhci);
  314. if (!ret)
  315. /* hcd->irq is 0, we have MSI */
  316. return 0;
  317. if (!pdev->irq) {
  318. xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
  319. return -EINVAL;
  320. }
  321. /* fall back to legacy interrupt*/
  322. ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
  323. hcd->irq_descr, hcd);
  324. if (ret) {
  325. xhci_err(xhci, "request interrupt %d failed\n",
  326. pdev->irq);
  327. return ret;
  328. }
  329. hcd->irq = pdev->irq;
  330. return 0;
  331. }
  332. #else
  333. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  334. {
  335. return 0;
  336. }
  337. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  338. {
  339. }
  340. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  341. {
  342. }
  343. #endif
  344. static void compliance_mode_recovery(unsigned long arg)
  345. {
  346. struct xhci_hcd *xhci;
  347. struct usb_hcd *hcd;
  348. u32 temp;
  349. int i;
  350. xhci = (struct xhci_hcd *)arg;
  351. for (i = 0; i < xhci->num_usb3_ports; i++) {
  352. temp = xhci_readl(xhci, xhci->usb3_ports[i]);
  353. if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
  354. /*
  355. * Compliance Mode Detected. Letting USB Core
  356. * handle the Warm Reset
  357. */
  358. xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
  359. i + 1);
  360. xhci_dbg(xhci, "Attempting Recovery routine!\n");
  361. hcd = xhci->shared_hcd;
  362. if (hcd->state == HC_STATE_SUSPENDED)
  363. usb_hcd_resume_root_hub(hcd);
  364. usb_hcd_poll_rh_status(hcd);
  365. }
  366. }
  367. if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
  368. mod_timer(&xhci->comp_mode_recovery_timer,
  369. jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  370. }
  371. /*
  372. * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
  373. * that causes ports behind that hardware to enter compliance mode sometimes.
  374. * The quirk creates a timer that polls every 2 seconds the link state of
  375. * each host controller's port and recovers it by issuing a Warm reset
  376. * if Compliance mode is detected, otherwise the port will become "dead" (no
  377. * device connections or disconnections will be detected anymore). Becasue no
  378. * status event is generated when entering compliance mode (per xhci spec),
  379. * this quirk is needed on systems that have the failing hardware installed.
  380. */
  381. static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
  382. {
  383. xhci->port_status_u0 = 0;
  384. init_timer(&xhci->comp_mode_recovery_timer);
  385. xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
  386. xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
  387. xhci->comp_mode_recovery_timer.expires = jiffies +
  388. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
  389. set_timer_slack(&xhci->comp_mode_recovery_timer,
  390. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  391. add_timer(&xhci->comp_mode_recovery_timer);
  392. xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
  393. }
  394. /*
  395. * This function identifies the systems that have installed the SN65LVPE502CP
  396. * USB3.0 re-driver and that need the Compliance Mode Quirk.
  397. * Systems:
  398. * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
  399. */
  400. static bool compliance_mode_recovery_timer_quirk_check(void)
  401. {
  402. const char *dmi_product_name, *dmi_sys_vendor;
  403. dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
  404. dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  405. if (!dmi_product_name || !dmi_sys_vendor)
  406. return false;
  407. if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
  408. return false;
  409. if (strstr(dmi_product_name, "Z420") ||
  410. strstr(dmi_product_name, "Z620") ||
  411. strstr(dmi_product_name, "Z820") ||
  412. strstr(dmi_product_name, "Z1 Workstation"))
  413. return true;
  414. return false;
  415. }
  416. static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
  417. {
  418. return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
  419. }
  420. /*
  421. * Initialize memory for HCD and xHC (one-time init).
  422. *
  423. * Program the PAGESIZE register, initialize the device context array, create
  424. * device contexts (?), set up a command ring segment (or two?), create event
  425. * ring (one for now).
  426. */
  427. int xhci_init(struct usb_hcd *hcd)
  428. {
  429. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  430. int retval = 0;
  431. xhci_dbg(xhci, "xhci_init\n");
  432. spin_lock_init(&xhci->lock);
  433. if (xhci->hci_version == 0x95 && link_quirk) {
  434. xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
  435. xhci->quirks |= XHCI_LINK_TRB_QUIRK;
  436. } else {
  437. xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
  438. }
  439. retval = xhci_mem_init(xhci, GFP_KERNEL);
  440. xhci_dbg(xhci, "Finished xhci_init\n");
  441. /* Initializing Compliance Mode Recovery Data If Needed */
  442. if (compliance_mode_recovery_timer_quirk_check()) {
  443. xhci->quirks |= XHCI_COMP_MODE_QUIRK;
  444. compliance_mode_recovery_timer_init(xhci);
  445. }
  446. return retval;
  447. }
  448. /*-------------------------------------------------------------------------*/
  449. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  450. static void xhci_event_ring_work(unsigned long arg)
  451. {
  452. unsigned long flags;
  453. int temp;
  454. u64 temp_64;
  455. struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
  456. int i, j;
  457. xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
  458. spin_lock_irqsave(&xhci->lock, flags);
  459. temp = xhci_readl(xhci, &xhci->op_regs->status);
  460. xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
  461. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  462. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  463. xhci_dbg(xhci, "HW died, polling stopped.\n");
  464. spin_unlock_irqrestore(&xhci->lock, flags);
  465. return;
  466. }
  467. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  468. xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
  469. xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
  470. xhci->error_bitmask = 0;
  471. xhci_dbg(xhci, "Event ring:\n");
  472. xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
  473. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  474. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  475. temp_64 &= ~ERST_PTR_MASK;
  476. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  477. xhci_dbg(xhci, "Command ring:\n");
  478. xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
  479. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  480. xhci_dbg_cmd_ptrs(xhci);
  481. for (i = 0; i < MAX_HC_SLOTS; ++i) {
  482. if (!xhci->devs[i])
  483. continue;
  484. for (j = 0; j < 31; ++j) {
  485. xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
  486. }
  487. }
  488. spin_unlock_irqrestore(&xhci->lock, flags);
  489. if (!xhci->zombie)
  490. mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
  491. else
  492. xhci_dbg(xhci, "Quit polling the event ring.\n");
  493. }
  494. #endif
  495. static int xhci_run_finished(struct xhci_hcd *xhci)
  496. {
  497. if (xhci_start(xhci)) {
  498. xhci_halt(xhci);
  499. return -ENODEV;
  500. }
  501. xhci->shared_hcd->state = HC_STATE_RUNNING;
  502. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  503. if (xhci->quirks & XHCI_NEC_HOST)
  504. xhci_ring_cmd_db(xhci);
  505. xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
  506. return 0;
  507. }
  508. /*
  509. * Start the HC after it was halted.
  510. *
  511. * This function is called by the USB core when the HC driver is added.
  512. * Its opposite is xhci_stop().
  513. *
  514. * xhci_init() must be called once before this function can be called.
  515. * Reset the HC, enable device slot contexts, program DCBAAP, and
  516. * set command ring pointer and event ring pointer.
  517. *
  518. * Setup MSI-X vectors and enable interrupts.
  519. */
  520. int xhci_run(struct usb_hcd *hcd)
  521. {
  522. u32 temp;
  523. u64 temp_64;
  524. int ret;
  525. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  526. /* Start the xHCI host controller running only after the USB 2.0 roothub
  527. * is setup.
  528. */
  529. hcd->uses_new_polling = 1;
  530. if (!usb_hcd_is_primary_hcd(hcd))
  531. return xhci_run_finished(xhci);
  532. xhci_dbg(xhci, "xhci_run\n");
  533. ret = xhci_try_enable_msi(hcd);
  534. if (ret)
  535. return ret;
  536. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  537. init_timer(&xhci->event_ring_timer);
  538. xhci->event_ring_timer.data = (unsigned long) xhci;
  539. xhci->event_ring_timer.function = xhci_event_ring_work;
  540. /* Poll the event ring */
  541. xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
  542. xhci->zombie = 0;
  543. xhci_dbg(xhci, "Setting event ring polling timer\n");
  544. add_timer(&xhci->event_ring_timer);
  545. #endif
  546. xhci_dbg(xhci, "Command ring memory map follows:\n");
  547. xhci_debug_ring(xhci, xhci->cmd_ring);
  548. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  549. xhci_dbg_cmd_ptrs(xhci);
  550. xhci_dbg(xhci, "ERST memory map follows:\n");
  551. xhci_dbg_erst(xhci, &xhci->erst);
  552. xhci_dbg(xhci, "Event ring:\n");
  553. xhci_debug_ring(xhci, xhci->event_ring);
  554. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  555. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  556. temp_64 &= ~ERST_PTR_MASK;
  557. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  558. xhci_dbg(xhci, "// Set the interrupt modulation register\n");
  559. temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
  560. temp &= ~ER_IRQ_INTERVAL_MASK;
  561. temp |= (u32) 160;
  562. xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
  563. /* Set the HCD state before we enable the irqs */
  564. temp = xhci_readl(xhci, &xhci->op_regs->command);
  565. temp |= (CMD_EIE);
  566. xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
  567. temp);
  568. xhci_writel(xhci, temp, &xhci->op_regs->command);
  569. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  570. xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
  571. xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
  572. xhci_writel(xhci, ER_IRQ_ENABLE(temp),
  573. &xhci->ir_set->irq_pending);
  574. xhci_print_ir_set(xhci, 0);
  575. if (xhci->quirks & XHCI_NEC_HOST)
  576. xhci_queue_vendor_command(xhci, 0, 0, 0,
  577. TRB_TYPE(TRB_NEC_GET_FW));
  578. xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
  579. return 0;
  580. }
  581. static void xhci_only_stop_hcd(struct usb_hcd *hcd)
  582. {
  583. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  584. spin_lock_irq(&xhci->lock);
  585. xhci_halt(xhci);
  586. /* The shared_hcd is going to be deallocated shortly (the USB core only
  587. * calls this function when allocation fails in usb_add_hcd(), or
  588. * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
  589. */
  590. xhci->shared_hcd = NULL;
  591. spin_unlock_irq(&xhci->lock);
  592. }
  593. /*
  594. * Stop xHCI driver.
  595. *
  596. * This function is called by the USB core when the HC driver is removed.
  597. * Its opposite is xhci_run().
  598. *
  599. * Disable device contexts, disable IRQs, and quiesce the HC.
  600. * Reset the HC, finish any completed transactions, and cleanup memory.
  601. */
  602. void xhci_stop(struct usb_hcd *hcd)
  603. {
  604. u32 temp;
  605. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  606. if (!usb_hcd_is_primary_hcd(hcd)) {
  607. xhci_only_stop_hcd(xhci->shared_hcd);
  608. return;
  609. }
  610. spin_lock_irq(&xhci->lock);
  611. /* Make sure the xHC is halted for a USB3 roothub
  612. * (xhci_stop() could be called as part of failed init).
  613. */
  614. xhci_halt(xhci);
  615. xhci_reset(xhci);
  616. spin_unlock_irq(&xhci->lock);
  617. xhci_cleanup_msix(xhci);
  618. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  619. /* Tell the event ring poll function not to reschedule */
  620. xhci->zombie = 1;
  621. del_timer_sync(&xhci->event_ring_timer);
  622. #endif
  623. /* Deleting Compliance Mode Recovery Timer */
  624. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  625. (!(xhci_all_ports_seen_u0(xhci))))
  626. del_timer_sync(&xhci->comp_mode_recovery_timer);
  627. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  628. usb_amd_dev_put();
  629. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  630. temp = xhci_readl(xhci, &xhci->op_regs->status);
  631. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  632. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  633. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  634. &xhci->ir_set->irq_pending);
  635. xhci_print_ir_set(xhci, 0);
  636. xhci_dbg(xhci, "cleaning up memory\n");
  637. xhci_mem_cleanup(xhci);
  638. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  639. xhci_readl(xhci, &xhci->op_regs->status));
  640. }
  641. /*
  642. * Shutdown HC (not bus-specific)
  643. *
  644. * This is called when the machine is rebooting or halting. We assume that the
  645. * machine will be powered off, and the HC's internal state will be reset.
  646. * Don't bother to free memory.
  647. *
  648. * This will only ever be called with the main usb_hcd (the USB3 roothub).
  649. */
  650. void xhci_shutdown(struct usb_hcd *hcd)
  651. {
  652. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  653. if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
  654. usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
  655. spin_lock_irq(&xhci->lock);
  656. xhci_halt(xhci);
  657. spin_unlock_irq(&xhci->lock);
  658. xhci_cleanup_msix(xhci);
  659. xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
  660. xhci_readl(xhci, &xhci->op_regs->status));
  661. }
  662. #ifdef CONFIG_PM
  663. static void xhci_save_registers(struct xhci_hcd *xhci)
  664. {
  665. xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
  666. xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
  667. xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  668. xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
  669. xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
  670. xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  671. xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  672. xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  673. xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
  674. }
  675. static void xhci_restore_registers(struct xhci_hcd *xhci)
  676. {
  677. xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
  678. xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
  679. xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
  680. xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
  681. xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
  682. xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
  683. xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
  684. xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
  685. xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
  686. }
  687. static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
  688. {
  689. u64 val_64;
  690. /* step 2: initialize command ring buffer */
  691. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  692. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  693. (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  694. xhci->cmd_ring->dequeue) &
  695. (u64) ~CMD_RING_RSVD_BITS) |
  696. xhci->cmd_ring->cycle_state;
  697. xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
  698. (long unsigned long) val_64);
  699. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  700. }
  701. /*
  702. * The whole command ring must be cleared to zero when we suspend the host.
  703. *
  704. * The host doesn't save the command ring pointer in the suspend well, so we
  705. * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
  706. * aligned, because of the reserved bits in the command ring dequeue pointer
  707. * register. Therefore, we can't just set the dequeue pointer back in the
  708. * middle of the ring (TRBs are 16-byte aligned).
  709. */
  710. static void xhci_clear_command_ring(struct xhci_hcd *xhci)
  711. {
  712. struct xhci_ring *ring;
  713. struct xhci_segment *seg;
  714. ring = xhci->cmd_ring;
  715. seg = ring->deq_seg;
  716. do {
  717. memset(seg->trbs, 0,
  718. sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
  719. seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
  720. cpu_to_le32(~TRB_CYCLE);
  721. seg = seg->next;
  722. } while (seg != ring->deq_seg);
  723. /* Reset the software enqueue and dequeue pointers */
  724. ring->deq_seg = ring->first_seg;
  725. ring->dequeue = ring->first_seg->trbs;
  726. ring->enq_seg = ring->deq_seg;
  727. ring->enqueue = ring->dequeue;
  728. ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
  729. /*
  730. * Ring is now zeroed, so the HW should look for change of ownership
  731. * when the cycle bit is set to 1.
  732. */
  733. ring->cycle_state = 1;
  734. /*
  735. * Reset the hardware dequeue pointer.
  736. * Yes, this will need to be re-written after resume, but we're paranoid
  737. * and want to make sure the hardware doesn't access bogus memory
  738. * because, say, the BIOS or an SMI started the host without changing
  739. * the command ring pointers.
  740. */
  741. xhci_set_cmd_ring_deq(xhci);
  742. }
  743. /*
  744. * Stop HC (not bus-specific)
  745. *
  746. * This is called when the machine transition into S3/S4 mode.
  747. *
  748. */
  749. int xhci_suspend(struct xhci_hcd *xhci)
  750. {
  751. int rc = 0;
  752. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  753. u32 command;
  754. if (hcd->state != HC_STATE_SUSPENDED ||
  755. xhci->shared_hcd->state != HC_STATE_SUSPENDED)
  756. return -EINVAL;
  757. spin_lock_irq(&xhci->lock);
  758. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  759. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  760. /* step 1: stop endpoint */
  761. /* skipped assuming that port suspend has done */
  762. /* step 2: clear Run/Stop bit */
  763. command = xhci_readl(xhci, &xhci->op_regs->command);
  764. command &= ~CMD_RUN;
  765. xhci_writel(xhci, command, &xhci->op_regs->command);
  766. if (xhci_handshake(xhci, &xhci->op_regs->status,
  767. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
  768. xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
  769. spin_unlock_irq(&xhci->lock);
  770. return -ETIMEDOUT;
  771. }
  772. xhci_clear_command_ring(xhci);
  773. /* step 3: save registers */
  774. xhci_save_registers(xhci);
  775. /* step 4: set CSS flag */
  776. command = xhci_readl(xhci, &xhci->op_regs->command);
  777. command |= CMD_CSS;
  778. xhci_writel(xhci, command, &xhci->op_regs->command);
  779. if (xhci_handshake(xhci, &xhci->op_regs->status,
  780. STS_SAVE, 0, 10 * 1000)) {
  781. xhci_warn(xhci, "WARN: xHC save state timeout\n");
  782. spin_unlock_irq(&xhci->lock);
  783. return -ETIMEDOUT;
  784. }
  785. spin_unlock_irq(&xhci->lock);
  786. /*
  787. * Deleting Compliance Mode Recovery Timer because the xHCI Host
  788. * is about to be suspended.
  789. */
  790. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  791. (!(xhci_all_ports_seen_u0(xhci)))) {
  792. del_timer_sync(&xhci->comp_mode_recovery_timer);
  793. xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
  794. }
  795. /* step 5: remove core well power */
  796. /* synchronize irq when using MSI-X */
  797. xhci_msix_sync_irqs(xhci);
  798. return rc;
  799. }
  800. /*
  801. * start xHC (not bus-specific)
  802. *
  803. * This is called when the machine transition from S3/S4 mode.
  804. *
  805. */
  806. int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
  807. {
  808. u32 command, temp = 0;
  809. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  810. struct usb_hcd *secondary_hcd;
  811. int retval = 0;
  812. /* Wait a bit if either of the roothubs need to settle from the
  813. * transition into bus suspend.
  814. */
  815. if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
  816. time_before(jiffies,
  817. xhci->bus_state[1].next_statechange))
  818. msleep(100);
  819. set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  820. set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  821. spin_lock_irq(&xhci->lock);
  822. if (xhci->quirks & XHCI_RESET_ON_RESUME)
  823. hibernated = true;
  824. if (!hibernated) {
  825. /* step 1: restore register */
  826. xhci_restore_registers(xhci);
  827. /* step 2: initialize command ring buffer */
  828. xhci_set_cmd_ring_deq(xhci);
  829. /* step 3: restore state and start state*/
  830. /* step 3: set CRS flag */
  831. command = xhci_readl(xhci, &xhci->op_regs->command);
  832. command |= CMD_CRS;
  833. xhci_writel(xhci, command, &xhci->op_regs->command);
  834. if (xhci_handshake(xhci, &xhci->op_regs->status,
  835. STS_RESTORE, 0, 10 * 1000)) {
  836. xhci_warn(xhci, "WARN: xHC restore state timeout\n");
  837. spin_unlock_irq(&xhci->lock);
  838. return -ETIMEDOUT;
  839. }
  840. temp = xhci_readl(xhci, &xhci->op_regs->status);
  841. }
  842. /* If restore operation fails, re-initialize the HC during resume */
  843. if ((temp & STS_SRE) || hibernated) {
  844. /* Let the USB core know _both_ roothubs lost power. */
  845. usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
  846. usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
  847. xhci_dbg(xhci, "Stop HCD\n");
  848. xhci_halt(xhci);
  849. xhci_reset(xhci);
  850. spin_unlock_irq(&xhci->lock);
  851. xhci_cleanup_msix(xhci);
  852. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  853. /* Tell the event ring poll function not to reschedule */
  854. xhci->zombie = 1;
  855. del_timer_sync(&xhci->event_ring_timer);
  856. #endif
  857. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  858. temp = xhci_readl(xhci, &xhci->op_regs->status);
  859. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  860. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  861. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  862. &xhci->ir_set->irq_pending);
  863. xhci_print_ir_set(xhci, 0);
  864. xhci_dbg(xhci, "cleaning up memory\n");
  865. xhci_mem_cleanup(xhci);
  866. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  867. xhci_readl(xhci, &xhci->op_regs->status));
  868. /* USB core calls the PCI reinit and start functions twice:
  869. * first with the primary HCD, and then with the secondary HCD.
  870. * If we don't do the same, the host will never be started.
  871. */
  872. if (!usb_hcd_is_primary_hcd(hcd))
  873. secondary_hcd = hcd;
  874. else
  875. secondary_hcd = xhci->shared_hcd;
  876. xhci_dbg(xhci, "Initialize the xhci_hcd\n");
  877. retval = xhci_init(hcd->primary_hcd);
  878. if (retval)
  879. return retval;
  880. xhci_dbg(xhci, "Start the primary HCD\n");
  881. retval = xhci_run(hcd->primary_hcd);
  882. if (!retval) {
  883. xhci_dbg(xhci, "Start the secondary HCD\n");
  884. retval = xhci_run(secondary_hcd);
  885. }
  886. hcd->state = HC_STATE_SUSPENDED;
  887. xhci->shared_hcd->state = HC_STATE_SUSPENDED;
  888. goto done;
  889. }
  890. /* step 4: set Run/Stop bit */
  891. command = xhci_readl(xhci, &xhci->op_regs->command);
  892. command |= CMD_RUN;
  893. xhci_writel(xhci, command, &xhci->op_regs->command);
  894. xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
  895. 0, 250 * 1000);
  896. /* step 5: walk topology and initialize portsc,
  897. * portpmsc and portli
  898. */
  899. /* this is done in bus_resume */
  900. /* step 6: restart each of the previously
  901. * Running endpoints by ringing their doorbells
  902. */
  903. spin_unlock_irq(&xhci->lock);
  904. done:
  905. if (retval == 0) {
  906. usb_hcd_resume_root_hub(hcd);
  907. usb_hcd_resume_root_hub(xhci->shared_hcd);
  908. }
  909. /*
  910. * If system is subject to the Quirk, Compliance Mode Timer needs to
  911. * be re-initialized Always after a system resume. Ports are subject
  912. * to suffer the Compliance Mode issue again. It doesn't matter if
  913. * ports have entered previously to U0 before system's suspension.
  914. */
  915. if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
  916. compliance_mode_recovery_timer_init(xhci);
  917. return retval;
  918. }
  919. #endif /* CONFIG_PM */
  920. /*-------------------------------------------------------------------------*/
  921. /**
  922. * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
  923. * HCDs. Find the index for an endpoint given its descriptor. Use the return
  924. * value to right shift 1 for the bitmask.
  925. *
  926. * Index = (epnum * 2) + direction - 1,
  927. * where direction = 0 for OUT, 1 for IN.
  928. * For control endpoints, the IN index is used (OUT index is unused), so
  929. * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
  930. */
  931. unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
  932. {
  933. unsigned int index;
  934. if (usb_endpoint_xfer_control(desc))
  935. index = (unsigned int) (usb_endpoint_num(desc)*2);
  936. else
  937. index = (unsigned int) (usb_endpoint_num(desc)*2) +
  938. (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
  939. return index;
  940. }
  941. /* Find the flag for this endpoint (for use in the control context). Use the
  942. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  943. * bit 1, etc.
  944. */
  945. unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
  946. {
  947. return 1 << (xhci_get_endpoint_index(desc) + 1);
  948. }
  949. /* Find the flag for this endpoint (for use in the control context). Use the
  950. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  951. * bit 1, etc.
  952. */
  953. unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
  954. {
  955. return 1 << (ep_index + 1);
  956. }
  957. /* Compute the last valid endpoint context index. Basically, this is the
  958. * endpoint index plus one. For slot contexts with more than valid endpoint,
  959. * we find the most significant bit set in the added contexts flags.
  960. * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
  961. * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
  962. */
  963. unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
  964. {
  965. return fls(added_ctxs) - 1;
  966. }
  967. /* Returns 1 if the arguments are OK;
  968. * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
  969. */
  970. static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
  971. struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
  972. const char *func) {
  973. struct xhci_hcd *xhci;
  974. struct xhci_virt_device *virt_dev;
  975. if (!hcd || (check_ep && !ep) || !udev) {
  976. printk(KERN_DEBUG "xHCI %s called with invalid args\n",
  977. func);
  978. return -EINVAL;
  979. }
  980. if (!udev->parent) {
  981. printk(KERN_DEBUG "xHCI %s called for root hub\n",
  982. func);
  983. return 0;
  984. }
  985. xhci = hcd_to_xhci(hcd);
  986. if (xhci->xhc_state & XHCI_STATE_HALTED)
  987. return -ENODEV;
  988. if (check_virt_dev) {
  989. if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
  990. printk(KERN_DEBUG "xHCI %s called with unaddressed "
  991. "device\n", func);
  992. return -EINVAL;
  993. }
  994. virt_dev = xhci->devs[udev->slot_id];
  995. if (virt_dev->udev != udev) {
  996. printk(KERN_DEBUG "xHCI %s called with udev and "
  997. "virt_dev does not match\n", func);
  998. return -EINVAL;
  999. }
  1000. }
  1001. return 1;
  1002. }
  1003. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  1004. struct usb_device *udev, struct xhci_command *command,
  1005. bool ctx_change, bool must_succeed);
  1006. /*
  1007. * Full speed devices may have a max packet size greater than 8 bytes, but the
  1008. * USB core doesn't know that until it reads the first 8 bytes of the
  1009. * descriptor. If the usb_device's max packet size changes after that point,
  1010. * we need to issue an evaluate context command and wait on it.
  1011. */
  1012. static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
  1013. unsigned int ep_index, struct urb *urb)
  1014. {
  1015. struct xhci_container_ctx *in_ctx;
  1016. struct xhci_container_ctx *out_ctx;
  1017. struct xhci_input_control_ctx *ctrl_ctx;
  1018. struct xhci_ep_ctx *ep_ctx;
  1019. int max_packet_size;
  1020. int hw_max_packet_size;
  1021. int ret = 0;
  1022. out_ctx = xhci->devs[slot_id]->out_ctx;
  1023. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1024. hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
  1025. max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
  1026. if (hw_max_packet_size != max_packet_size) {
  1027. xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
  1028. xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
  1029. max_packet_size);
  1030. xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
  1031. hw_max_packet_size);
  1032. xhci_dbg(xhci, "Issuing evaluate context command.\n");
  1033. /* Set up the modified control endpoint 0 */
  1034. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  1035. xhci->devs[slot_id]->out_ctx, ep_index);
  1036. in_ctx = xhci->devs[slot_id]->in_ctx;
  1037. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1038. ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
  1039. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
  1040. /* Set up the input context flags for the command */
  1041. /* FIXME: This won't work if a non-default control endpoint
  1042. * changes max packet sizes.
  1043. */
  1044. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1045. ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
  1046. ctrl_ctx->drop_flags = 0;
  1047. xhci_dbg(xhci, "Slot %d input context\n", slot_id);
  1048. xhci_dbg_ctx(xhci, in_ctx, ep_index);
  1049. xhci_dbg(xhci, "Slot %d output context\n", slot_id);
  1050. xhci_dbg_ctx(xhci, out_ctx, ep_index);
  1051. ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
  1052. true, false);
  1053. /* Clean up the input context for later use by bandwidth
  1054. * functions.
  1055. */
  1056. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
  1057. }
  1058. return ret;
  1059. }
  1060. /*
  1061. * non-error returns are a promise to giveback() the urb later
  1062. * we drop ownership so next owner (or urb unlink) can get it
  1063. */
  1064. int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
  1065. {
  1066. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  1067. struct xhci_td *buffer;
  1068. unsigned long flags;
  1069. int ret = 0;
  1070. unsigned int slot_id, ep_index;
  1071. struct urb_priv *urb_priv;
  1072. int size, i;
  1073. if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
  1074. true, true, __func__) <= 0)
  1075. return -EINVAL;
  1076. slot_id = urb->dev->slot_id;
  1077. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1078. if (!HCD_HW_ACCESSIBLE(hcd)) {
  1079. if (!in_interrupt())
  1080. xhci_dbg(xhci, "urb submitted during PCI suspend\n");
  1081. ret = -ESHUTDOWN;
  1082. goto exit;
  1083. }
  1084. if (usb_endpoint_xfer_isoc(&urb->ep->desc))
  1085. size = urb->number_of_packets;
  1086. else
  1087. size = 1;
  1088. urb_priv = kzalloc(sizeof(struct urb_priv) +
  1089. size * sizeof(struct xhci_td *), mem_flags);
  1090. if (!urb_priv)
  1091. return -ENOMEM;
  1092. buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
  1093. if (!buffer) {
  1094. kfree(urb_priv);
  1095. return -ENOMEM;
  1096. }
  1097. for (i = 0; i < size; i++) {
  1098. urb_priv->td[i] = buffer;
  1099. buffer++;
  1100. }
  1101. urb_priv->length = size;
  1102. urb_priv->td_cnt = 0;
  1103. urb->hcpriv = urb_priv;
  1104. if (usb_endpoint_xfer_control(&urb->ep->desc)) {
  1105. /* Check to see if the max packet size for the default control
  1106. * endpoint changed during FS device enumeration
  1107. */
  1108. if (urb->dev->speed == USB_SPEED_FULL) {
  1109. ret = xhci_check_maxpacket(xhci, slot_id,
  1110. ep_index, urb);
  1111. if (ret < 0) {
  1112. xhci_urb_free_priv(xhci, urb_priv);
  1113. urb->hcpriv = NULL;
  1114. return ret;
  1115. }
  1116. }
  1117. /* We have a spinlock and interrupts disabled, so we must pass
  1118. * atomic context to this function, which may allocate memory.
  1119. */
  1120. spin_lock_irqsave(&xhci->lock, flags);
  1121. if (xhci->xhc_state & XHCI_STATE_DYING)
  1122. goto dying;
  1123. ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
  1124. slot_id, ep_index);
  1125. if (ret)
  1126. goto free_priv;
  1127. spin_unlock_irqrestore(&xhci->lock, flags);
  1128. } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
  1129. spin_lock_irqsave(&xhci->lock, flags);
  1130. if (xhci->xhc_state & XHCI_STATE_DYING)
  1131. goto dying;
  1132. if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1133. EP_GETTING_STREAMS) {
  1134. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1135. "is transitioning to using streams.\n");
  1136. ret = -EINVAL;
  1137. } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1138. EP_GETTING_NO_STREAMS) {
  1139. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1140. "is transitioning to "
  1141. "not having streams.\n");
  1142. ret = -EINVAL;
  1143. } else {
  1144. ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
  1145. slot_id, ep_index);
  1146. }
  1147. if (ret)
  1148. goto free_priv;
  1149. spin_unlock_irqrestore(&xhci->lock, flags);
  1150. } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
  1151. spin_lock_irqsave(&xhci->lock, flags);
  1152. if (xhci->xhc_state & XHCI_STATE_DYING)
  1153. goto dying;
  1154. ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
  1155. slot_id, ep_index);
  1156. if (ret)
  1157. goto free_priv;
  1158. spin_unlock_irqrestore(&xhci->lock, flags);
  1159. } else {
  1160. spin_lock_irqsave(&xhci->lock, flags);
  1161. if (xhci->xhc_state & XHCI_STATE_DYING)
  1162. goto dying;
  1163. ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
  1164. slot_id, ep_index);
  1165. if (ret)
  1166. goto free_priv;
  1167. spin_unlock_irqrestore(&xhci->lock, flags);
  1168. }
  1169. exit:
  1170. return ret;
  1171. dying:
  1172. xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
  1173. "non-responsive xHCI host.\n",
  1174. urb->ep->desc.bEndpointAddress, urb);
  1175. ret = -ESHUTDOWN;
  1176. free_priv:
  1177. xhci_urb_free_priv(xhci, urb_priv);
  1178. urb->hcpriv = NULL;
  1179. spin_unlock_irqrestore(&xhci->lock, flags);
  1180. return ret;
  1181. }
  1182. /* Get the right ring for the given URB.
  1183. * If the endpoint supports streams, boundary check the URB's stream ID.
  1184. * If the endpoint doesn't support streams, return the singular endpoint ring.
  1185. */
  1186. static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
  1187. struct urb *urb)
  1188. {
  1189. unsigned int slot_id;
  1190. unsigned int ep_index;
  1191. unsigned int stream_id;
  1192. struct xhci_virt_ep *ep;
  1193. slot_id = urb->dev->slot_id;
  1194. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1195. stream_id = urb->stream_id;
  1196. ep = &xhci->devs[slot_id]->eps[ep_index];
  1197. /* Common case: no streams */
  1198. if (!(ep->ep_state & EP_HAS_STREAMS))
  1199. return ep->ring;
  1200. if (stream_id == 0) {
  1201. xhci_warn(xhci,
  1202. "WARN: Slot ID %u, ep index %u has streams, "
  1203. "but URB has no stream ID.\n",
  1204. slot_id, ep_index);
  1205. return NULL;
  1206. }
  1207. if (stream_id < ep->stream_info->num_streams)
  1208. return ep->stream_info->stream_rings[stream_id];
  1209. xhci_warn(xhci,
  1210. "WARN: Slot ID %u, ep index %u has "
  1211. "stream IDs 1 to %u allocated, "
  1212. "but stream ID %u is requested.\n",
  1213. slot_id, ep_index,
  1214. ep->stream_info->num_streams - 1,
  1215. stream_id);
  1216. return NULL;
  1217. }
  1218. /*
  1219. * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
  1220. * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
  1221. * should pick up where it left off in the TD, unless a Set Transfer Ring
  1222. * Dequeue Pointer is issued.
  1223. *
  1224. * The TRBs that make up the buffers for the canceled URB will be "removed" from
  1225. * the ring. Since the ring is a contiguous structure, they can't be physically
  1226. * removed. Instead, there are two options:
  1227. *
  1228. * 1) If the HC is in the middle of processing the URB to be canceled, we
  1229. * simply move the ring's dequeue pointer past those TRBs using the Set
  1230. * Transfer Ring Dequeue Pointer command. This will be the common case,
  1231. * when drivers timeout on the last submitted URB and attempt to cancel.
  1232. *
  1233. * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
  1234. * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
  1235. * HC will need to invalidate the any TRBs it has cached after the stop
  1236. * endpoint command, as noted in the xHCI 0.95 errata.
  1237. *
  1238. * 3) The TD may have completed by the time the Stop Endpoint Command
  1239. * completes, so software needs to handle that case too.
  1240. *
  1241. * This function should protect against the TD enqueueing code ringing the
  1242. * doorbell while this code is waiting for a Stop Endpoint command to complete.
  1243. * It also needs to account for multiple cancellations on happening at the same
  1244. * time for the same endpoint.
  1245. *
  1246. * Note that this function can be called in any context, or so says
  1247. * usb_hcd_unlink_urb()
  1248. */
  1249. int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
  1250. {
  1251. unsigned long flags;
  1252. int ret, i;
  1253. u32 temp;
  1254. struct xhci_hcd *xhci;
  1255. struct urb_priv *urb_priv;
  1256. struct xhci_td *td;
  1257. unsigned int ep_index;
  1258. struct xhci_ring *ep_ring;
  1259. struct xhci_virt_ep *ep;
  1260. xhci = hcd_to_xhci(hcd);
  1261. spin_lock_irqsave(&xhci->lock, flags);
  1262. /* Make sure the URB hasn't completed or been unlinked already */
  1263. ret = usb_hcd_check_unlink_urb(hcd, urb, status);
  1264. if (ret || !urb->hcpriv)
  1265. goto done;
  1266. temp = xhci_readl(xhci, &xhci->op_regs->status);
  1267. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1268. xhci_dbg(xhci, "HW died, freeing TD.\n");
  1269. urb_priv = urb->hcpriv;
  1270. for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
  1271. td = urb_priv->td[i];
  1272. if (!list_empty(&td->td_list))
  1273. list_del_init(&td->td_list);
  1274. if (!list_empty(&td->cancelled_td_list))
  1275. list_del_init(&td->cancelled_td_list);
  1276. }
  1277. usb_hcd_unlink_urb_from_ep(hcd, urb);
  1278. spin_unlock_irqrestore(&xhci->lock, flags);
  1279. usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
  1280. xhci_urb_free_priv(xhci, urb_priv);
  1281. return ret;
  1282. }
  1283. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  1284. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1285. xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
  1286. "non-responsive xHCI host.\n",
  1287. urb->ep->desc.bEndpointAddress, urb);
  1288. /* Let the stop endpoint command watchdog timer (which set this
  1289. * state) finish cleaning up the endpoint TD lists. We must
  1290. * have caught it in the middle of dropping a lock and giving
  1291. * back an URB.
  1292. */
  1293. goto done;
  1294. }
  1295. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1296. ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
  1297. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  1298. if (!ep_ring) {
  1299. ret = -EINVAL;
  1300. goto done;
  1301. }
  1302. urb_priv = urb->hcpriv;
  1303. i = urb_priv->td_cnt;
  1304. if (i < urb_priv->length)
  1305. xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
  1306. "starting at offset 0x%llx\n",
  1307. urb, urb->dev->devpath,
  1308. urb->ep->desc.bEndpointAddress,
  1309. (unsigned long long) xhci_trb_virt_to_dma(
  1310. urb_priv->td[i]->start_seg,
  1311. urb_priv->td[i]->first_trb));
  1312. for (; i < urb_priv->length; i++) {
  1313. td = urb_priv->td[i];
  1314. list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
  1315. }
  1316. /* Queue a stop endpoint command, but only if this is
  1317. * the first cancellation to be handled.
  1318. */
  1319. if (!(ep->ep_state & EP_HALT_PENDING)) {
  1320. ep->ep_state |= EP_HALT_PENDING;
  1321. ep->stop_cmds_pending++;
  1322. ep->stop_cmd_timer.expires = jiffies +
  1323. XHCI_STOP_EP_CMD_TIMEOUT * HZ;
  1324. add_timer(&ep->stop_cmd_timer);
  1325. xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
  1326. xhci_ring_cmd_db(xhci);
  1327. }
  1328. done:
  1329. spin_unlock_irqrestore(&xhci->lock, flags);
  1330. return ret;
  1331. }
  1332. /* Drop an endpoint from a new bandwidth configuration for this device.
  1333. * Only one call to this function is allowed per endpoint before
  1334. * check_bandwidth() or reset_bandwidth() must be called.
  1335. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1336. * add the endpoint to the schedule with possibly new parameters denoted by a
  1337. * different endpoint descriptor in usb_host_endpoint.
  1338. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1339. * not allowed.
  1340. *
  1341. * The USB core will not allow URBs to be queued to an endpoint that is being
  1342. * disabled, so there's no need for mutual exclusion to protect
  1343. * the xhci->devs[slot_id] structure.
  1344. */
  1345. int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1346. struct usb_host_endpoint *ep)
  1347. {
  1348. struct xhci_hcd *xhci;
  1349. struct xhci_container_ctx *in_ctx, *out_ctx;
  1350. struct xhci_input_control_ctx *ctrl_ctx;
  1351. struct xhci_slot_ctx *slot_ctx;
  1352. unsigned int last_ctx;
  1353. unsigned int ep_index;
  1354. struct xhci_ep_ctx *ep_ctx;
  1355. u32 drop_flag;
  1356. u32 new_add_flags, new_drop_flags, new_slot_info;
  1357. int ret;
  1358. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1359. if (ret <= 0)
  1360. return ret;
  1361. xhci = hcd_to_xhci(hcd);
  1362. if (xhci->xhc_state & XHCI_STATE_DYING)
  1363. return -ENODEV;
  1364. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  1365. drop_flag = xhci_get_endpoint_flag(&ep->desc);
  1366. if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
  1367. xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
  1368. __func__, drop_flag);
  1369. return 0;
  1370. }
  1371. in_ctx = xhci->devs[udev->slot_id]->in_ctx;
  1372. out_ctx = xhci->devs[udev->slot_id]->out_ctx;
  1373. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1374. ep_index = xhci_get_endpoint_index(&ep->desc);
  1375. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1376. /* If the HC already knows the endpoint is disabled,
  1377. * or the HCD has noted it is disabled, ignore this request
  1378. */
  1379. if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
  1380. cpu_to_le32(EP_STATE_DISABLED)) ||
  1381. le32_to_cpu(ctrl_ctx->drop_flags) &
  1382. xhci_get_endpoint_flag(&ep->desc)) {
  1383. xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
  1384. __func__, ep);
  1385. return 0;
  1386. }
  1387. ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
  1388. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1389. ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
  1390. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1391. last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
  1392. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1393. /* Update the last valid endpoint context, if we deleted the last one */
  1394. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
  1395. LAST_CTX(last_ctx)) {
  1396. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1397. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1398. }
  1399. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1400. xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
  1401. xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1402. (unsigned int) ep->desc.bEndpointAddress,
  1403. udev->slot_id,
  1404. (unsigned int) new_drop_flags,
  1405. (unsigned int) new_add_flags,
  1406. (unsigned int) new_slot_info);
  1407. return 0;
  1408. }
  1409. /* Add an endpoint to a new possible bandwidth configuration for this device.
  1410. * Only one call to this function is allowed per endpoint before
  1411. * check_bandwidth() or reset_bandwidth() must be called.
  1412. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1413. * add the endpoint to the schedule with possibly new parameters denoted by a
  1414. * different endpoint descriptor in usb_host_endpoint.
  1415. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1416. * not allowed.
  1417. *
  1418. * The USB core will not allow URBs to be queued to an endpoint until the
  1419. * configuration or alt setting is installed in the device, so there's no need
  1420. * for mutual exclusion to protect the xhci->devs[slot_id] structure.
  1421. */
  1422. int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1423. struct usb_host_endpoint *ep)
  1424. {
  1425. struct xhci_hcd *xhci;
  1426. struct xhci_container_ctx *in_ctx, *out_ctx;
  1427. unsigned int ep_index;
  1428. struct xhci_slot_ctx *slot_ctx;
  1429. struct xhci_input_control_ctx *ctrl_ctx;
  1430. u32 added_ctxs;
  1431. unsigned int last_ctx;
  1432. u32 new_add_flags, new_drop_flags, new_slot_info;
  1433. struct xhci_virt_device *virt_dev;
  1434. int ret = 0;
  1435. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1436. if (ret <= 0) {
  1437. /* So we won't queue a reset ep command for a root hub */
  1438. ep->hcpriv = NULL;
  1439. return ret;
  1440. }
  1441. xhci = hcd_to_xhci(hcd);
  1442. if (xhci->xhc_state & XHCI_STATE_DYING)
  1443. return -ENODEV;
  1444. added_ctxs = xhci_get_endpoint_flag(&ep->desc);
  1445. last_ctx = xhci_last_valid_endpoint(added_ctxs);
  1446. if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
  1447. /* FIXME when we have to issue an evaluate endpoint command to
  1448. * deal with ep0 max packet size changing once we get the
  1449. * descriptors
  1450. */
  1451. xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
  1452. __func__, added_ctxs);
  1453. return 0;
  1454. }
  1455. virt_dev = xhci->devs[udev->slot_id];
  1456. in_ctx = virt_dev->in_ctx;
  1457. out_ctx = virt_dev->out_ctx;
  1458. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1459. ep_index = xhci_get_endpoint_index(&ep->desc);
  1460. /* If this endpoint is already in use, and the upper layers are trying
  1461. * to add it again without dropping it, reject the addition.
  1462. */
  1463. if (virt_dev->eps[ep_index].ring &&
  1464. !(le32_to_cpu(ctrl_ctx->drop_flags) &
  1465. xhci_get_endpoint_flag(&ep->desc))) {
  1466. xhci_warn(xhci, "Trying to add endpoint 0x%x "
  1467. "without dropping it.\n",
  1468. (unsigned int) ep->desc.bEndpointAddress);
  1469. return -EINVAL;
  1470. }
  1471. /* If the HCD has already noted the endpoint is enabled,
  1472. * ignore this request.
  1473. */
  1474. if (le32_to_cpu(ctrl_ctx->add_flags) &
  1475. xhci_get_endpoint_flag(&ep->desc)) {
  1476. xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
  1477. __func__, ep);
  1478. return 0;
  1479. }
  1480. /*
  1481. * Configuration and alternate setting changes must be done in
  1482. * process context, not interrupt context (or so documenation
  1483. * for usb_set_interface() and usb_set_configuration() claim).
  1484. */
  1485. if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
  1486. dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
  1487. __func__, ep->desc.bEndpointAddress);
  1488. return -ENOMEM;
  1489. }
  1490. ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
  1491. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1492. /* If xhci_endpoint_disable() was called for this endpoint, but the
  1493. * xHC hasn't been notified yet through the check_bandwidth() call,
  1494. * this re-adds a new state for the endpoint from the new endpoint
  1495. * descriptors. We must drop and re-add this endpoint, so we leave the
  1496. * drop flags alone.
  1497. */
  1498. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1499. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1500. /* Update the last valid endpoint context, if we just added one past */
  1501. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
  1502. LAST_CTX(last_ctx)) {
  1503. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1504. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1505. }
  1506. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1507. /* Store the usb_device pointer for later use */
  1508. ep->hcpriv = udev;
  1509. xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1510. (unsigned int) ep->desc.bEndpointAddress,
  1511. udev->slot_id,
  1512. (unsigned int) new_drop_flags,
  1513. (unsigned int) new_add_flags,
  1514. (unsigned int) new_slot_info);
  1515. return 0;
  1516. }
  1517. static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
  1518. {
  1519. struct xhci_input_control_ctx *ctrl_ctx;
  1520. struct xhci_ep_ctx *ep_ctx;
  1521. struct xhci_slot_ctx *slot_ctx;
  1522. int i;
  1523. /* When a device's add flag and drop flag are zero, any subsequent
  1524. * configure endpoint command will leave that endpoint's state
  1525. * untouched. Make sure we don't leave any old state in the input
  1526. * endpoint contexts.
  1527. */
  1528. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  1529. ctrl_ctx->drop_flags = 0;
  1530. ctrl_ctx->add_flags = 0;
  1531. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  1532. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1533. /* Endpoint 0 is always valid */
  1534. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
  1535. for (i = 1; i < 31; ++i) {
  1536. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
  1537. ep_ctx->ep_info = 0;
  1538. ep_ctx->ep_info2 = 0;
  1539. ep_ctx->deq = 0;
  1540. ep_ctx->tx_info = 0;
  1541. }
  1542. }
  1543. static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
  1544. struct usb_device *udev, u32 *cmd_status)
  1545. {
  1546. int ret;
  1547. switch (*cmd_status) {
  1548. case COMP_ENOMEM:
  1549. dev_warn(&udev->dev, "Not enough host controller resources "
  1550. "for new device state.\n");
  1551. ret = -ENOMEM;
  1552. /* FIXME: can we allocate more resources for the HC? */
  1553. break;
  1554. case COMP_BW_ERR:
  1555. case COMP_2ND_BW_ERR:
  1556. dev_warn(&udev->dev, "Not enough bandwidth "
  1557. "for new device state.\n");
  1558. ret = -ENOSPC;
  1559. /* FIXME: can we go back to the old state? */
  1560. break;
  1561. case COMP_TRB_ERR:
  1562. /* the HCD set up something wrong */
  1563. dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
  1564. "add flag = 1, "
  1565. "and endpoint is not disabled.\n");
  1566. ret = -EINVAL;
  1567. break;
  1568. case COMP_DEV_ERR:
  1569. dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
  1570. "configure command.\n");
  1571. ret = -ENODEV;
  1572. break;
  1573. case COMP_SUCCESS:
  1574. dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
  1575. ret = 0;
  1576. break;
  1577. default:
  1578. xhci_err(xhci, "ERROR: unexpected command completion "
  1579. "code 0x%x.\n", *cmd_status);
  1580. ret = -EINVAL;
  1581. break;
  1582. }
  1583. return ret;
  1584. }
  1585. static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
  1586. struct usb_device *udev, u32 *cmd_status)
  1587. {
  1588. int ret;
  1589. struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
  1590. switch (*cmd_status) {
  1591. case COMP_EINVAL:
  1592. dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
  1593. "context command.\n");
  1594. ret = -EINVAL;
  1595. break;
  1596. case COMP_EBADSLT:
  1597. dev_warn(&udev->dev, "WARN: slot not enabled for"
  1598. "evaluate context command.\n");
  1599. ret = -EINVAL;
  1600. break;
  1601. case COMP_CTX_STATE:
  1602. dev_warn(&udev->dev, "WARN: invalid context state for "
  1603. "evaluate context command.\n");
  1604. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
  1605. ret = -EINVAL;
  1606. break;
  1607. case COMP_DEV_ERR:
  1608. dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
  1609. "context command.\n");
  1610. ret = -ENODEV;
  1611. break;
  1612. case COMP_MEL_ERR:
  1613. /* Max Exit Latency too large error */
  1614. dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
  1615. ret = -EINVAL;
  1616. break;
  1617. case COMP_SUCCESS:
  1618. dev_dbg(&udev->dev, "Successful evaluate context command\n");
  1619. ret = 0;
  1620. break;
  1621. default:
  1622. xhci_err(xhci, "ERROR: unexpected command completion "
  1623. "code 0x%x.\n", *cmd_status);
  1624. ret = -EINVAL;
  1625. break;
  1626. }
  1627. return ret;
  1628. }
  1629. static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
  1630. struct xhci_container_ctx *in_ctx)
  1631. {
  1632. struct xhci_input_control_ctx *ctrl_ctx;
  1633. u32 valid_add_flags;
  1634. u32 valid_drop_flags;
  1635. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1636. /* Ignore the slot flag (bit 0), and the default control endpoint flag
  1637. * (bit 1). The default control endpoint is added during the Address
  1638. * Device command and is never removed until the slot is disabled.
  1639. */
  1640. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1641. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1642. /* Use hweight32 to count the number of ones in the add flags, or
  1643. * number of endpoints added. Don't count endpoints that are changed
  1644. * (both added and dropped).
  1645. */
  1646. return hweight32(valid_add_flags) -
  1647. hweight32(valid_add_flags & valid_drop_flags);
  1648. }
  1649. static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
  1650. struct xhci_container_ctx *in_ctx)
  1651. {
  1652. struct xhci_input_control_ctx *ctrl_ctx;
  1653. u32 valid_add_flags;
  1654. u32 valid_drop_flags;
  1655. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1656. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1657. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1658. return hweight32(valid_drop_flags) -
  1659. hweight32(valid_add_flags & valid_drop_flags);
  1660. }
  1661. /*
  1662. * We need to reserve the new number of endpoints before the configure endpoint
  1663. * command completes. We can't subtract the dropped endpoints from the number
  1664. * of active endpoints until the command completes because we can oversubscribe
  1665. * the host in this case:
  1666. *
  1667. * - the first configure endpoint command drops more endpoints than it adds
  1668. * - a second configure endpoint command that adds more endpoints is queued
  1669. * - the first configure endpoint command fails, so the config is unchanged
  1670. * - the second command may succeed, even though there isn't enough resources
  1671. *
  1672. * Must be called with xhci->lock held.
  1673. */
  1674. static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
  1675. struct xhci_container_ctx *in_ctx)
  1676. {
  1677. u32 added_eps;
  1678. added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1679. if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
  1680. xhci_dbg(xhci, "Not enough ep ctxs: "
  1681. "%u active, need to add %u, limit is %u.\n",
  1682. xhci->num_active_eps, added_eps,
  1683. xhci->limit_active_eps);
  1684. return -ENOMEM;
  1685. }
  1686. xhci->num_active_eps += added_eps;
  1687. xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
  1688. xhci->num_active_eps);
  1689. return 0;
  1690. }
  1691. /*
  1692. * The configure endpoint was failed by the xHC for some other reason, so we
  1693. * need to revert the resources that failed configuration would have used.
  1694. *
  1695. * Must be called with xhci->lock held.
  1696. */
  1697. static void xhci_free_host_resources(struct xhci_hcd *xhci,
  1698. struct xhci_container_ctx *in_ctx)
  1699. {
  1700. u32 num_failed_eps;
  1701. num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1702. xhci->num_active_eps -= num_failed_eps;
  1703. xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
  1704. num_failed_eps,
  1705. xhci->num_active_eps);
  1706. }
  1707. /*
  1708. * Now that the command has completed, clean up the active endpoint count by
  1709. * subtracting out the endpoints that were dropped (but not changed).
  1710. *
  1711. * Must be called with xhci->lock held.
  1712. */
  1713. static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
  1714. struct xhci_container_ctx *in_ctx)
  1715. {
  1716. u32 num_dropped_eps;
  1717. num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
  1718. xhci->num_active_eps -= num_dropped_eps;
  1719. if (num_dropped_eps)
  1720. xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
  1721. num_dropped_eps,
  1722. xhci->num_active_eps);
  1723. }
  1724. static unsigned int xhci_get_block_size(struct usb_device *udev)
  1725. {
  1726. switch (udev->speed) {
  1727. case USB_SPEED_LOW:
  1728. case USB_SPEED_FULL:
  1729. return FS_BLOCK;
  1730. case USB_SPEED_HIGH:
  1731. return HS_BLOCK;
  1732. case USB_SPEED_SUPER:
  1733. return SS_BLOCK;
  1734. case USB_SPEED_UNKNOWN:
  1735. case USB_SPEED_WIRELESS:
  1736. default:
  1737. /* Should never happen */
  1738. return 1;
  1739. }
  1740. }
  1741. static unsigned int
  1742. xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
  1743. {
  1744. if (interval_bw->overhead[LS_OVERHEAD_TYPE])
  1745. return LS_OVERHEAD;
  1746. if (interval_bw->overhead[FS_OVERHEAD_TYPE])
  1747. return FS_OVERHEAD;
  1748. return HS_OVERHEAD;
  1749. }
  1750. /* If we are changing a LS/FS device under a HS hub,
  1751. * make sure (if we are activating a new TT) that the HS bus has enough
  1752. * bandwidth for this new TT.
  1753. */
  1754. static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
  1755. struct xhci_virt_device *virt_dev,
  1756. int old_active_eps)
  1757. {
  1758. struct xhci_interval_bw_table *bw_table;
  1759. struct xhci_tt_bw_info *tt_info;
  1760. /* Find the bandwidth table for the root port this TT is attached to. */
  1761. bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
  1762. tt_info = virt_dev->tt_info;
  1763. /* If this TT already had active endpoints, the bandwidth for this TT
  1764. * has already been added. Removing all periodic endpoints (and thus
  1765. * making the TT enactive) will only decrease the bandwidth used.
  1766. */
  1767. if (old_active_eps)
  1768. return 0;
  1769. if (old_active_eps == 0 && tt_info->active_eps != 0) {
  1770. if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
  1771. return -ENOMEM;
  1772. return 0;
  1773. }
  1774. /* Not sure why we would have no new active endpoints...
  1775. *
  1776. * Maybe because of an Evaluate Context change for a hub update or a
  1777. * control endpoint 0 max packet size change?
  1778. * FIXME: skip the bandwidth calculation in that case.
  1779. */
  1780. return 0;
  1781. }
  1782. static int xhci_check_ss_bw(struct xhci_hcd *xhci,
  1783. struct xhci_virt_device *virt_dev)
  1784. {
  1785. unsigned int bw_reserved;
  1786. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
  1787. if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
  1788. return -ENOMEM;
  1789. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
  1790. if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
  1791. return -ENOMEM;
  1792. return 0;
  1793. }
  1794. /*
  1795. * This algorithm is a very conservative estimate of the worst-case scheduling
  1796. * scenario for any one interval. The hardware dynamically schedules the
  1797. * packets, so we can't tell which microframe could be the limiting factor in
  1798. * the bandwidth scheduling. This only takes into account periodic endpoints.
  1799. *
  1800. * Obviously, we can't solve an NP complete problem to find the minimum worst
  1801. * case scenario. Instead, we come up with an estimate that is no less than
  1802. * the worst case bandwidth used for any one microframe, but may be an
  1803. * over-estimate.
  1804. *
  1805. * We walk the requirements for each endpoint by interval, starting with the
  1806. * smallest interval, and place packets in the schedule where there is only one
  1807. * possible way to schedule packets for that interval. In order to simplify
  1808. * this algorithm, we record the largest max packet size for each interval, and
  1809. * assume all packets will be that size.
  1810. *
  1811. * For interval 0, we obviously must schedule all packets for each interval.
  1812. * The bandwidth for interval 0 is just the amount of data to be transmitted
  1813. * (the sum of all max ESIT payload sizes, plus any overhead per packet times
  1814. * the number of packets).
  1815. *
  1816. * For interval 1, we have two possible microframes to schedule those packets
  1817. * in. For this algorithm, if we can schedule the same number of packets for
  1818. * each possible scheduling opportunity (each microframe), we will do so. The
  1819. * remaining number of packets will be saved to be transmitted in the gaps in
  1820. * the next interval's scheduling sequence.
  1821. *
  1822. * As we move those remaining packets to be scheduled with interval 2 packets,
  1823. * we have to double the number of remaining packets to transmit. This is
  1824. * because the intervals are actually powers of 2, and we would be transmitting
  1825. * the previous interval's packets twice in this interval. We also have to be
  1826. * sure that when we look at the largest max packet size for this interval, we
  1827. * also look at the largest max packet size for the remaining packets and take
  1828. * the greater of the two.
  1829. *
  1830. * The algorithm continues to evenly distribute packets in each scheduling
  1831. * opportunity, and push the remaining packets out, until we get to the last
  1832. * interval. Then those packets and their associated overhead are just added
  1833. * to the bandwidth used.
  1834. */
  1835. static int xhci_check_bw_table(struct xhci_hcd *xhci,
  1836. struct xhci_virt_device *virt_dev,
  1837. int old_active_eps)
  1838. {
  1839. unsigned int bw_reserved;
  1840. unsigned int max_bandwidth;
  1841. unsigned int bw_used;
  1842. unsigned int block_size;
  1843. struct xhci_interval_bw_table *bw_table;
  1844. unsigned int packet_size = 0;
  1845. unsigned int overhead = 0;
  1846. unsigned int packets_transmitted = 0;
  1847. unsigned int packets_remaining = 0;
  1848. unsigned int i;
  1849. if (virt_dev->udev->speed == USB_SPEED_SUPER)
  1850. return xhci_check_ss_bw(xhci, virt_dev);
  1851. if (virt_dev->udev->speed == USB_SPEED_HIGH) {
  1852. max_bandwidth = HS_BW_LIMIT;
  1853. /* Convert percent of bus BW reserved to blocks reserved */
  1854. bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
  1855. } else {
  1856. max_bandwidth = FS_BW_LIMIT;
  1857. bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
  1858. }
  1859. bw_table = virt_dev->bw_table;
  1860. /* We need to translate the max packet size and max ESIT payloads into
  1861. * the units the hardware uses.
  1862. */
  1863. block_size = xhci_get_block_size(virt_dev->udev);
  1864. /* If we are manipulating a LS/FS device under a HS hub, double check
  1865. * that the HS bus has enough bandwidth if we are activing a new TT.
  1866. */
  1867. if (virt_dev->tt_info) {
  1868. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1869. virt_dev->real_port);
  1870. if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
  1871. xhci_warn(xhci, "Not enough bandwidth on HS bus for "
  1872. "newly activated TT.\n");
  1873. return -ENOMEM;
  1874. }
  1875. xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
  1876. virt_dev->tt_info->slot_id,
  1877. virt_dev->tt_info->ttport);
  1878. } else {
  1879. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1880. virt_dev->real_port);
  1881. }
  1882. /* Add in how much bandwidth will be used for interval zero, or the
  1883. * rounded max ESIT payload + number of packets * largest overhead.
  1884. */
  1885. bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
  1886. bw_table->interval_bw[0].num_packets *
  1887. xhci_get_largest_overhead(&bw_table->interval_bw[0]);
  1888. for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
  1889. unsigned int bw_added;
  1890. unsigned int largest_mps;
  1891. unsigned int interval_overhead;
  1892. /*
  1893. * How many packets could we transmit in this interval?
  1894. * If packets didn't fit in the previous interval, we will need
  1895. * to transmit that many packets twice within this interval.
  1896. */
  1897. packets_remaining = 2 * packets_remaining +
  1898. bw_table->interval_bw[i].num_packets;
  1899. /* Find the largest max packet size of this or the previous
  1900. * interval.
  1901. */
  1902. if (list_empty(&bw_table->interval_bw[i].endpoints))
  1903. largest_mps = 0;
  1904. else {
  1905. struct xhci_virt_ep *virt_ep;
  1906. struct list_head *ep_entry;
  1907. ep_entry = bw_table->interval_bw[i].endpoints.next;
  1908. virt_ep = list_entry(ep_entry,
  1909. struct xhci_virt_ep, bw_endpoint_list);
  1910. /* Convert to blocks, rounding up */
  1911. largest_mps = DIV_ROUND_UP(
  1912. virt_ep->bw_info.max_packet_size,
  1913. block_size);
  1914. }
  1915. if (largest_mps > packet_size)
  1916. packet_size = largest_mps;
  1917. /* Use the larger overhead of this or the previous interval. */
  1918. interval_overhead = xhci_get_largest_overhead(
  1919. &bw_table->interval_bw[i]);
  1920. if (interval_overhead > overhead)
  1921. overhead = interval_overhead;
  1922. /* How many packets can we evenly distribute across
  1923. * (1 << (i + 1)) possible scheduling opportunities?
  1924. */
  1925. packets_transmitted = packets_remaining >> (i + 1);
  1926. /* Add in the bandwidth used for those scheduled packets */
  1927. bw_added = packets_transmitted * (overhead + packet_size);
  1928. /* How many packets do we have remaining to transmit? */
  1929. packets_remaining = packets_remaining % (1 << (i + 1));
  1930. /* What largest max packet size should those packets have? */
  1931. /* If we've transmitted all packets, don't carry over the
  1932. * largest packet size.
  1933. */
  1934. if (packets_remaining == 0) {
  1935. packet_size = 0;
  1936. overhead = 0;
  1937. } else if (packets_transmitted > 0) {
  1938. /* Otherwise if we do have remaining packets, and we've
  1939. * scheduled some packets in this interval, take the
  1940. * largest max packet size from endpoints with this
  1941. * interval.
  1942. */
  1943. packet_size = largest_mps;
  1944. overhead = interval_overhead;
  1945. }
  1946. /* Otherwise carry over packet_size and overhead from the last
  1947. * time we had a remainder.
  1948. */
  1949. bw_used += bw_added;
  1950. if (bw_used > max_bandwidth) {
  1951. xhci_warn(xhci, "Not enough bandwidth. "
  1952. "Proposed: %u, Max: %u\n",
  1953. bw_used, max_bandwidth);
  1954. return -ENOMEM;
  1955. }
  1956. }
  1957. /*
  1958. * Ok, we know we have some packets left over after even-handedly
  1959. * scheduling interval 15. We don't know which microframes they will
  1960. * fit into, so we over-schedule and say they will be scheduled every
  1961. * microframe.
  1962. */
  1963. if (packets_remaining > 0)
  1964. bw_used += overhead + packet_size;
  1965. if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
  1966. unsigned int port_index = virt_dev->real_port - 1;
  1967. /* OK, we're manipulating a HS device attached to a
  1968. * root port bandwidth domain. Include the number of active TTs
  1969. * in the bandwidth used.
  1970. */
  1971. bw_used += TT_HS_OVERHEAD *
  1972. xhci->rh_bw[port_index].num_active_tts;
  1973. }
  1974. xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
  1975. "Available: %u " "percent\n",
  1976. bw_used, max_bandwidth, bw_reserved,
  1977. (max_bandwidth - bw_used - bw_reserved) * 100 /
  1978. max_bandwidth);
  1979. bw_used += bw_reserved;
  1980. if (bw_used > max_bandwidth) {
  1981. xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
  1982. bw_used, max_bandwidth);
  1983. return -ENOMEM;
  1984. }
  1985. bw_table->bw_used = bw_used;
  1986. return 0;
  1987. }
  1988. static bool xhci_is_async_ep(unsigned int ep_type)
  1989. {
  1990. return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  1991. ep_type != ISOC_IN_EP &&
  1992. ep_type != INT_IN_EP);
  1993. }
  1994. static bool xhci_is_sync_in_ep(unsigned int ep_type)
  1995. {
  1996. return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
  1997. }
  1998. static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
  1999. {
  2000. unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
  2001. if (ep_bw->ep_interval == 0)
  2002. return SS_OVERHEAD_BURST +
  2003. (ep_bw->mult * ep_bw->num_packets *
  2004. (SS_OVERHEAD + mps));
  2005. return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
  2006. (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
  2007. 1 << ep_bw->ep_interval);
  2008. }
  2009. void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
  2010. struct xhci_bw_info *ep_bw,
  2011. struct xhci_interval_bw_table *bw_table,
  2012. struct usb_device *udev,
  2013. struct xhci_virt_ep *virt_ep,
  2014. struct xhci_tt_bw_info *tt_info)
  2015. {
  2016. struct xhci_interval_bw *interval_bw;
  2017. int normalized_interval;
  2018. if (xhci_is_async_ep(ep_bw->type))
  2019. return;
  2020. if (udev->speed == USB_SPEED_SUPER) {
  2021. if (xhci_is_sync_in_ep(ep_bw->type))
  2022. xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
  2023. xhci_get_ss_bw_consumed(ep_bw);
  2024. else
  2025. xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
  2026. xhci_get_ss_bw_consumed(ep_bw);
  2027. return;
  2028. }
  2029. /* SuperSpeed endpoints never get added to intervals in the table, so
  2030. * this check is only valid for HS/FS/LS devices.
  2031. */
  2032. if (list_empty(&virt_ep->bw_endpoint_list))
  2033. return;
  2034. /* For LS/FS devices, we need to translate the interval expressed in
  2035. * microframes to frames.
  2036. */
  2037. if (udev->speed == USB_SPEED_HIGH)
  2038. normalized_interval = ep_bw->ep_interval;
  2039. else
  2040. normalized_interval = ep_bw->ep_interval - 3;
  2041. if (normalized_interval == 0)
  2042. bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
  2043. interval_bw = &bw_table->interval_bw[normalized_interval];
  2044. interval_bw->num_packets -= ep_bw->num_packets;
  2045. switch (udev->speed) {
  2046. case USB_SPEED_LOW:
  2047. interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
  2048. break;
  2049. case USB_SPEED_FULL:
  2050. interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
  2051. break;
  2052. case USB_SPEED_HIGH:
  2053. interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
  2054. break;
  2055. case USB_SPEED_SUPER:
  2056. case USB_SPEED_UNKNOWN:
  2057. case USB_SPEED_WIRELESS:
  2058. /* Should never happen because only LS/FS/HS endpoints will get
  2059. * added to the endpoint list.
  2060. */
  2061. return;
  2062. }
  2063. if (tt_info)
  2064. tt_info->active_eps -= 1;
  2065. list_del_init(&virt_ep->bw_endpoint_list);
  2066. }
  2067. static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
  2068. struct xhci_bw_info *ep_bw,
  2069. struct xhci_interval_bw_table *bw_table,
  2070. struct usb_device *udev,
  2071. struct xhci_virt_ep *virt_ep,
  2072. struct xhci_tt_bw_info *tt_info)
  2073. {
  2074. struct xhci_interval_bw *interval_bw;
  2075. struct xhci_virt_ep *smaller_ep;
  2076. int normalized_interval;
  2077. if (xhci_is_async_ep(ep_bw->type))
  2078. return;
  2079. if (udev->speed == USB_SPEED_SUPER) {
  2080. if (xhci_is_sync_in_ep(ep_bw->type))
  2081. xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
  2082. xhci_get_ss_bw_consumed(ep_bw);
  2083. else
  2084. xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
  2085. xhci_get_ss_bw_consumed(ep_bw);
  2086. return;
  2087. }
  2088. /* For LS/FS devices, we need to translate the interval expressed in
  2089. * microframes to frames.
  2090. */
  2091. if (udev->speed == USB_SPEED_HIGH)
  2092. normalized_interval = ep_bw->ep_interval;
  2093. else
  2094. normalized_interval = ep_bw->ep_interval - 3;
  2095. if (normalized_interval == 0)
  2096. bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
  2097. interval_bw = &bw_table->interval_bw[normalized_interval];
  2098. interval_bw->num_packets += ep_bw->num_packets;
  2099. switch (udev->speed) {
  2100. case USB_SPEED_LOW:
  2101. interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
  2102. break;
  2103. case USB_SPEED_FULL:
  2104. interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
  2105. break;
  2106. case USB_SPEED_HIGH:
  2107. interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
  2108. break;
  2109. case USB_SPEED_SUPER:
  2110. case USB_SPEED_UNKNOWN:
  2111. case USB_SPEED_WIRELESS:
  2112. /* Should never happen because only LS/FS/HS endpoints will get
  2113. * added to the endpoint list.
  2114. */
  2115. return;
  2116. }
  2117. if (tt_info)
  2118. tt_info->active_eps += 1;
  2119. /* Insert the endpoint into the list, largest max packet size first. */
  2120. list_for_each_entry(smaller_ep, &interval_bw->endpoints,
  2121. bw_endpoint_list) {
  2122. if (ep_bw->max_packet_size >=
  2123. smaller_ep->bw_info.max_packet_size) {
  2124. /* Add the new ep before the smaller endpoint */
  2125. list_add_tail(&virt_ep->bw_endpoint_list,
  2126. &smaller_ep->bw_endpoint_list);
  2127. return;
  2128. }
  2129. }
  2130. /* Add the new endpoint at the end of the list. */
  2131. list_add_tail(&virt_ep->bw_endpoint_list,
  2132. &interval_bw->endpoints);
  2133. }
  2134. void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
  2135. struct xhci_virt_device *virt_dev,
  2136. int old_active_eps)
  2137. {
  2138. struct xhci_root_port_bw_info *rh_bw_info;
  2139. if (!virt_dev->tt_info)
  2140. return;
  2141. rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
  2142. if (old_active_eps == 0 &&
  2143. virt_dev->tt_info->active_eps != 0) {
  2144. rh_bw_info->num_active_tts += 1;
  2145. rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
  2146. } else if (old_active_eps != 0 &&
  2147. virt_dev->tt_info->active_eps == 0) {
  2148. rh_bw_info->num_active_tts -= 1;
  2149. rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
  2150. }
  2151. }
  2152. static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
  2153. struct xhci_virt_device *virt_dev,
  2154. struct xhci_container_ctx *in_ctx)
  2155. {
  2156. struct xhci_bw_info ep_bw_info[31];
  2157. int i;
  2158. struct xhci_input_control_ctx *ctrl_ctx;
  2159. int old_active_eps = 0;
  2160. if (virt_dev->tt_info)
  2161. old_active_eps = virt_dev->tt_info->active_eps;
  2162. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2163. for (i = 0; i < 31; i++) {
  2164. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2165. continue;
  2166. /* Make a copy of the BW info in case we need to revert this */
  2167. memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
  2168. sizeof(ep_bw_info[i]));
  2169. /* Drop the endpoint from the interval table if the endpoint is
  2170. * being dropped or changed.
  2171. */
  2172. if (EP_IS_DROPPED(ctrl_ctx, i))
  2173. xhci_drop_ep_from_interval_table(xhci,
  2174. &virt_dev->eps[i].bw_info,
  2175. virt_dev->bw_table,
  2176. virt_dev->udev,
  2177. &virt_dev->eps[i],
  2178. virt_dev->tt_info);
  2179. }
  2180. /* Overwrite the information stored in the endpoints' bw_info */
  2181. xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
  2182. for (i = 0; i < 31; i++) {
  2183. /* Add any changed or added endpoints to the interval table */
  2184. if (EP_IS_ADDED(ctrl_ctx, i))
  2185. xhci_add_ep_to_interval_table(xhci,
  2186. &virt_dev->eps[i].bw_info,
  2187. virt_dev->bw_table,
  2188. virt_dev->udev,
  2189. &virt_dev->eps[i],
  2190. virt_dev->tt_info);
  2191. }
  2192. if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
  2193. /* Ok, this fits in the bandwidth we have.
  2194. * Update the number of active TTs.
  2195. */
  2196. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  2197. return 0;
  2198. }
  2199. /* We don't have enough bandwidth for this, revert the stored info. */
  2200. for (i = 0; i < 31; i++) {
  2201. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2202. continue;
  2203. /* Drop the new copies of any added or changed endpoints from
  2204. * the interval table.
  2205. */
  2206. if (EP_IS_ADDED(ctrl_ctx, i)) {
  2207. xhci_drop_ep_from_interval_table(xhci,
  2208. &virt_dev->eps[i].bw_info,
  2209. virt_dev->bw_table,
  2210. virt_dev->udev,
  2211. &virt_dev->eps[i],
  2212. virt_dev->tt_info);
  2213. }
  2214. /* Revert the endpoint back to its old information */
  2215. memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
  2216. sizeof(ep_bw_info[i]));
  2217. /* Add any changed or dropped endpoints back into the table */
  2218. if (EP_IS_DROPPED(ctrl_ctx, i))
  2219. xhci_add_ep_to_interval_table(xhci,
  2220. &virt_dev->eps[i].bw_info,
  2221. virt_dev->bw_table,
  2222. virt_dev->udev,
  2223. &virt_dev->eps[i],
  2224. virt_dev->tt_info);
  2225. }
  2226. return -ENOMEM;
  2227. }
  2228. /* Issue a configure endpoint command or evaluate context command
  2229. * and wait for it to finish.
  2230. */
  2231. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  2232. struct usb_device *udev,
  2233. struct xhci_command *command,
  2234. bool ctx_change, bool must_succeed)
  2235. {
  2236. int ret;
  2237. int timeleft;
  2238. unsigned long flags;
  2239. struct xhci_container_ctx *in_ctx;
  2240. struct completion *cmd_completion;
  2241. u32 *cmd_status;
  2242. struct xhci_virt_device *virt_dev;
  2243. union xhci_trb *cmd_trb;
  2244. spin_lock_irqsave(&xhci->lock, flags);
  2245. virt_dev = xhci->devs[udev->slot_id];
  2246. if (command)
  2247. in_ctx = command->in_ctx;
  2248. else
  2249. in_ctx = virt_dev->in_ctx;
  2250. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
  2251. xhci_reserve_host_resources(xhci, in_ctx)) {
  2252. spin_unlock_irqrestore(&xhci->lock, flags);
  2253. xhci_warn(xhci, "Not enough host resources, "
  2254. "active endpoint contexts = %u\n",
  2255. xhci->num_active_eps);
  2256. return -ENOMEM;
  2257. }
  2258. if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
  2259. xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
  2260. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2261. xhci_free_host_resources(xhci, in_ctx);
  2262. spin_unlock_irqrestore(&xhci->lock, flags);
  2263. xhci_warn(xhci, "Not enough bandwidth\n");
  2264. return -ENOMEM;
  2265. }
  2266. if (command) {
  2267. cmd_completion = command->completion;
  2268. cmd_status = &command->status;
  2269. command->command_trb = xhci->cmd_ring->enqueue;
  2270. /* Enqueue pointer can be left pointing to the link TRB,
  2271. * we must handle that
  2272. */
  2273. if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
  2274. command->command_trb =
  2275. xhci->cmd_ring->enq_seg->next->trbs;
  2276. list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
  2277. } else {
  2278. cmd_completion = &virt_dev->cmd_completion;
  2279. cmd_status = &virt_dev->cmd_status;
  2280. }
  2281. init_completion(cmd_completion);
  2282. cmd_trb = xhci->cmd_ring->dequeue;
  2283. if (!ctx_change)
  2284. ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
  2285. udev->slot_id, must_succeed);
  2286. else
  2287. ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
  2288. udev->slot_id, must_succeed);
  2289. if (ret < 0) {
  2290. if (command)
  2291. list_del(&command->cmd_list);
  2292. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2293. xhci_free_host_resources(xhci, in_ctx);
  2294. spin_unlock_irqrestore(&xhci->lock, flags);
  2295. xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
  2296. return -ENOMEM;
  2297. }
  2298. xhci_ring_cmd_db(xhci);
  2299. spin_unlock_irqrestore(&xhci->lock, flags);
  2300. /* Wait for the configure endpoint command to complete */
  2301. timeleft = wait_for_completion_interruptible_timeout(
  2302. cmd_completion,
  2303. XHCI_CMD_DEFAULT_TIMEOUT);
  2304. if (timeleft <= 0) {
  2305. xhci_warn(xhci, "%s while waiting for %s command\n",
  2306. timeleft == 0 ? "Timeout" : "Signal",
  2307. ctx_change == 0 ?
  2308. "configure endpoint" :
  2309. "evaluate context");
  2310. /* cancel the configure endpoint command */
  2311. ret = xhci_cancel_cmd(xhci, command, cmd_trb);
  2312. if (ret < 0)
  2313. return ret;
  2314. return -ETIME;
  2315. }
  2316. if (!ctx_change)
  2317. ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
  2318. else
  2319. ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
  2320. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  2321. spin_lock_irqsave(&xhci->lock, flags);
  2322. /* If the command failed, remove the reserved resources.
  2323. * Otherwise, clean up the estimate to include dropped eps.
  2324. */
  2325. if (ret)
  2326. xhci_free_host_resources(xhci, in_ctx);
  2327. else
  2328. xhci_finish_resource_reservation(xhci, in_ctx);
  2329. spin_unlock_irqrestore(&xhci->lock, flags);
  2330. }
  2331. return ret;
  2332. }
  2333. /* Called after one or more calls to xhci_add_endpoint() or
  2334. * xhci_drop_endpoint(). If this call fails, the USB core is expected
  2335. * to call xhci_reset_bandwidth().
  2336. *
  2337. * Since we are in the middle of changing either configuration or
  2338. * installing a new alt setting, the USB core won't allow URBs to be
  2339. * enqueued for any endpoint on the old config or interface. Nothing
  2340. * else should be touching the xhci->devs[slot_id] structure, so we
  2341. * don't need to take the xhci->lock for manipulating that.
  2342. */
  2343. int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2344. {
  2345. int i;
  2346. int ret = 0;
  2347. struct xhci_hcd *xhci;
  2348. struct xhci_virt_device *virt_dev;
  2349. struct xhci_input_control_ctx *ctrl_ctx;
  2350. struct xhci_slot_ctx *slot_ctx;
  2351. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2352. if (ret <= 0)
  2353. return ret;
  2354. xhci = hcd_to_xhci(hcd);
  2355. if (xhci->xhc_state & XHCI_STATE_DYING)
  2356. return -ENODEV;
  2357. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2358. virt_dev = xhci->devs[udev->slot_id];
  2359. /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
  2360. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  2361. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2362. ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
  2363. ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
  2364. /* Don't issue the command if there's no endpoints to update. */
  2365. if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
  2366. ctrl_ctx->drop_flags == 0)
  2367. return 0;
  2368. xhci_dbg(xhci, "New Input Control Context:\n");
  2369. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  2370. xhci_dbg_ctx(xhci, virt_dev->in_ctx,
  2371. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2372. ret = xhci_configure_endpoint(xhci, udev, NULL,
  2373. false, false);
  2374. if (ret) {
  2375. /* Callee should call reset_bandwidth() */
  2376. return ret;
  2377. }
  2378. xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
  2379. xhci_dbg_ctx(xhci, virt_dev->out_ctx,
  2380. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2381. /* Free any rings that were dropped, but not changed. */
  2382. for (i = 1; i < 31; ++i) {
  2383. if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
  2384. !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
  2385. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2386. }
  2387. xhci_zero_in_ctx(xhci, virt_dev);
  2388. /*
  2389. * Install any rings for completely new endpoints or changed endpoints,
  2390. * and free or cache any old rings from changed endpoints.
  2391. */
  2392. for (i = 1; i < 31; ++i) {
  2393. if (!virt_dev->eps[i].new_ring)
  2394. continue;
  2395. /* Only cache or free the old ring if it exists.
  2396. * It may not if this is the first add of an endpoint.
  2397. */
  2398. if (virt_dev->eps[i].ring) {
  2399. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2400. }
  2401. virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
  2402. virt_dev->eps[i].new_ring = NULL;
  2403. }
  2404. return ret;
  2405. }
  2406. void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2407. {
  2408. struct xhci_hcd *xhci;
  2409. struct xhci_virt_device *virt_dev;
  2410. int i, ret;
  2411. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2412. if (ret <= 0)
  2413. return;
  2414. xhci = hcd_to_xhci(hcd);
  2415. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2416. virt_dev = xhci->devs[udev->slot_id];
  2417. /* Free any rings allocated for added endpoints */
  2418. for (i = 0; i < 31; ++i) {
  2419. if (virt_dev->eps[i].new_ring) {
  2420. xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
  2421. virt_dev->eps[i].new_ring = NULL;
  2422. }
  2423. }
  2424. xhci_zero_in_ctx(xhci, virt_dev);
  2425. }
  2426. static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
  2427. struct xhci_container_ctx *in_ctx,
  2428. struct xhci_container_ctx *out_ctx,
  2429. u32 add_flags, u32 drop_flags)
  2430. {
  2431. struct xhci_input_control_ctx *ctrl_ctx;
  2432. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2433. ctrl_ctx->add_flags = cpu_to_le32(add_flags);
  2434. ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
  2435. xhci_slot_copy(xhci, in_ctx, out_ctx);
  2436. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2437. xhci_dbg(xhci, "Input Context:\n");
  2438. xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
  2439. }
  2440. static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
  2441. unsigned int slot_id, unsigned int ep_index,
  2442. struct xhci_dequeue_state *deq_state)
  2443. {
  2444. struct xhci_container_ctx *in_ctx;
  2445. struct xhci_ep_ctx *ep_ctx;
  2446. u32 added_ctxs;
  2447. dma_addr_t addr;
  2448. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  2449. xhci->devs[slot_id]->out_ctx, ep_index);
  2450. in_ctx = xhci->devs[slot_id]->in_ctx;
  2451. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  2452. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  2453. deq_state->new_deq_ptr);
  2454. if (addr == 0) {
  2455. xhci_warn(xhci, "WARN Cannot submit config ep after "
  2456. "reset ep command\n");
  2457. xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
  2458. deq_state->new_deq_seg,
  2459. deq_state->new_deq_ptr);
  2460. return;
  2461. }
  2462. ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
  2463. added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
  2464. xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
  2465. xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
  2466. }
  2467. void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
  2468. struct usb_device *udev, unsigned int ep_index)
  2469. {
  2470. struct xhci_dequeue_state deq_state;
  2471. struct xhci_virt_ep *ep;
  2472. xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
  2473. ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2474. /* We need to move the HW's dequeue pointer past this TD,
  2475. * or it will attempt to resend it on the next doorbell ring.
  2476. */
  2477. xhci_find_new_dequeue_state(xhci, udev->slot_id,
  2478. ep_index, ep->stopped_stream, ep->stopped_td,
  2479. &deq_state);
  2480. /* HW with the reset endpoint quirk will use the saved dequeue state to
  2481. * issue a configure endpoint command later.
  2482. */
  2483. if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
  2484. xhci_dbg(xhci, "Queueing new dequeue state\n");
  2485. xhci_queue_new_dequeue_state(xhci, udev->slot_id,
  2486. ep_index, ep->stopped_stream, &deq_state);
  2487. } else {
  2488. /* Better hope no one uses the input context between now and the
  2489. * reset endpoint completion!
  2490. * XXX: No idea how this hardware will react when stream rings
  2491. * are enabled.
  2492. */
  2493. xhci_dbg(xhci, "Setting up input context for "
  2494. "configure endpoint command\n");
  2495. xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
  2496. ep_index, &deq_state);
  2497. }
  2498. }
  2499. /* Deal with stalled endpoints. The core should have sent the control message
  2500. * to clear the halt condition. However, we need to make the xHCI hardware
  2501. * reset its sequence number, since a device will expect a sequence number of
  2502. * zero after the halt condition is cleared.
  2503. * Context: in_interrupt
  2504. */
  2505. void xhci_endpoint_reset(struct usb_hcd *hcd,
  2506. struct usb_host_endpoint *ep)
  2507. {
  2508. struct xhci_hcd *xhci;
  2509. struct usb_device *udev;
  2510. unsigned int ep_index;
  2511. unsigned long flags;
  2512. int ret;
  2513. struct xhci_virt_ep *virt_ep;
  2514. xhci = hcd_to_xhci(hcd);
  2515. udev = (struct usb_device *) ep->hcpriv;
  2516. /* Called with a root hub endpoint (or an endpoint that wasn't added
  2517. * with xhci_add_endpoint()
  2518. */
  2519. if (!ep->hcpriv)
  2520. return;
  2521. ep_index = xhci_get_endpoint_index(&ep->desc);
  2522. virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2523. if (!virt_ep->stopped_td) {
  2524. xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
  2525. ep->desc.bEndpointAddress);
  2526. return;
  2527. }
  2528. if (usb_endpoint_xfer_control(&ep->desc)) {
  2529. xhci_dbg(xhci, "Control endpoint stall already handled.\n");
  2530. return;
  2531. }
  2532. xhci_dbg(xhci, "Queueing reset endpoint command\n");
  2533. spin_lock_irqsave(&xhci->lock, flags);
  2534. ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
  2535. /*
  2536. * Can't change the ring dequeue pointer until it's transitioned to the
  2537. * stopped state, which is only upon a successful reset endpoint
  2538. * command. Better hope that last command worked!
  2539. */
  2540. if (!ret) {
  2541. xhci_cleanup_stalled_ring(xhci, udev, ep_index);
  2542. kfree(virt_ep->stopped_td);
  2543. xhci_ring_cmd_db(xhci);
  2544. }
  2545. virt_ep->stopped_td = NULL;
  2546. virt_ep->stopped_trb = NULL;
  2547. virt_ep->stopped_stream = 0;
  2548. spin_unlock_irqrestore(&xhci->lock, flags);
  2549. if (ret)
  2550. xhci_warn(xhci, "FIXME allocate a new ring segment\n");
  2551. }
  2552. static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
  2553. struct usb_device *udev, struct usb_host_endpoint *ep,
  2554. unsigned int slot_id)
  2555. {
  2556. int ret;
  2557. unsigned int ep_index;
  2558. unsigned int ep_state;
  2559. if (!ep)
  2560. return -EINVAL;
  2561. ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
  2562. if (ret <= 0)
  2563. return -EINVAL;
  2564. if (ep->ss_ep_comp.bmAttributes == 0) {
  2565. xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
  2566. " descriptor for ep 0x%x does not support streams\n",
  2567. ep->desc.bEndpointAddress);
  2568. return -EINVAL;
  2569. }
  2570. ep_index = xhci_get_endpoint_index(&ep->desc);
  2571. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2572. if (ep_state & EP_HAS_STREAMS ||
  2573. ep_state & EP_GETTING_STREAMS) {
  2574. xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
  2575. "already has streams set up.\n",
  2576. ep->desc.bEndpointAddress);
  2577. xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
  2578. "dynamic stream context array reallocation.\n");
  2579. return -EINVAL;
  2580. }
  2581. if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
  2582. xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
  2583. "endpoint 0x%x; URBs are pending.\n",
  2584. ep->desc.bEndpointAddress);
  2585. return -EINVAL;
  2586. }
  2587. return 0;
  2588. }
  2589. static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
  2590. unsigned int *num_streams, unsigned int *num_stream_ctxs)
  2591. {
  2592. unsigned int max_streams;
  2593. /* The stream context array size must be a power of two */
  2594. *num_stream_ctxs = roundup_pow_of_two(*num_streams);
  2595. /*
  2596. * Find out how many primary stream array entries the host controller
  2597. * supports. Later we may use secondary stream arrays (similar to 2nd
  2598. * level page entries), but that's an optional feature for xHCI host
  2599. * controllers. xHCs must support at least 4 stream IDs.
  2600. */
  2601. max_streams = HCC_MAX_PSA(xhci->hcc_params);
  2602. if (*num_stream_ctxs > max_streams) {
  2603. xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
  2604. max_streams);
  2605. *num_stream_ctxs = max_streams;
  2606. *num_streams = max_streams;
  2607. }
  2608. }
  2609. /* Returns an error code if one of the endpoint already has streams.
  2610. * This does not change any data structures, it only checks and gathers
  2611. * information.
  2612. */
  2613. static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
  2614. struct usb_device *udev,
  2615. struct usb_host_endpoint **eps, unsigned int num_eps,
  2616. unsigned int *num_streams, u32 *changed_ep_bitmask)
  2617. {
  2618. unsigned int max_streams;
  2619. unsigned int endpoint_flag;
  2620. int i;
  2621. int ret;
  2622. for (i = 0; i < num_eps; i++) {
  2623. ret = xhci_check_streams_endpoint(xhci, udev,
  2624. eps[i], udev->slot_id);
  2625. if (ret < 0)
  2626. return ret;
  2627. max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
  2628. if (max_streams < (*num_streams - 1)) {
  2629. xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
  2630. eps[i]->desc.bEndpointAddress,
  2631. max_streams);
  2632. *num_streams = max_streams+1;
  2633. }
  2634. endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
  2635. if (*changed_ep_bitmask & endpoint_flag)
  2636. return -EINVAL;
  2637. *changed_ep_bitmask |= endpoint_flag;
  2638. }
  2639. return 0;
  2640. }
  2641. static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
  2642. struct usb_device *udev,
  2643. struct usb_host_endpoint **eps, unsigned int num_eps)
  2644. {
  2645. u32 changed_ep_bitmask = 0;
  2646. unsigned int slot_id;
  2647. unsigned int ep_index;
  2648. unsigned int ep_state;
  2649. int i;
  2650. slot_id = udev->slot_id;
  2651. if (!xhci->devs[slot_id])
  2652. return 0;
  2653. for (i = 0; i < num_eps; i++) {
  2654. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2655. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2656. /* Are streams already being freed for the endpoint? */
  2657. if (ep_state & EP_GETTING_NO_STREAMS) {
  2658. xhci_warn(xhci, "WARN Can't disable streams for "
  2659. "endpoint 0x%x\n, "
  2660. "streams are being disabled already.",
  2661. eps[i]->desc.bEndpointAddress);
  2662. return 0;
  2663. }
  2664. /* Are there actually any streams to free? */
  2665. if (!(ep_state & EP_HAS_STREAMS) &&
  2666. !(ep_state & EP_GETTING_STREAMS)) {
  2667. xhci_warn(xhci, "WARN Can't disable streams for "
  2668. "endpoint 0x%x\n, "
  2669. "streams are already disabled!",
  2670. eps[i]->desc.bEndpointAddress);
  2671. xhci_warn(xhci, "WARN xhci_free_streams() called "
  2672. "with non-streams endpoint\n");
  2673. return 0;
  2674. }
  2675. changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
  2676. }
  2677. return changed_ep_bitmask;
  2678. }
  2679. /*
  2680. * The USB device drivers use this function (though the HCD interface in USB
  2681. * core) to prepare a set of bulk endpoints to use streams. Streams are used to
  2682. * coordinate mass storage command queueing across multiple endpoints (basically
  2683. * a stream ID == a task ID).
  2684. *
  2685. * Setting up streams involves allocating the same size stream context array
  2686. * for each endpoint and issuing a configure endpoint command for all endpoints.
  2687. *
  2688. * Don't allow the call to succeed if one endpoint only supports one stream
  2689. * (which means it doesn't support streams at all).
  2690. *
  2691. * Drivers may get less stream IDs than they asked for, if the host controller
  2692. * hardware or endpoints claim they can't support the number of requested
  2693. * stream IDs.
  2694. */
  2695. int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2696. struct usb_host_endpoint **eps, unsigned int num_eps,
  2697. unsigned int num_streams, gfp_t mem_flags)
  2698. {
  2699. int i, ret;
  2700. struct xhci_hcd *xhci;
  2701. struct xhci_virt_device *vdev;
  2702. struct xhci_command *config_cmd;
  2703. unsigned int ep_index;
  2704. unsigned int num_stream_ctxs;
  2705. unsigned long flags;
  2706. u32 changed_ep_bitmask = 0;
  2707. if (!eps)
  2708. return -EINVAL;
  2709. /* Add one to the number of streams requested to account for
  2710. * stream 0 that is reserved for xHCI usage.
  2711. */
  2712. num_streams += 1;
  2713. xhci = hcd_to_xhci(hcd);
  2714. xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
  2715. num_streams);
  2716. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  2717. if (!config_cmd) {
  2718. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  2719. return -ENOMEM;
  2720. }
  2721. /* Check to make sure all endpoints are not already configured for
  2722. * streams. While we're at it, find the maximum number of streams that
  2723. * all the endpoints will support and check for duplicate endpoints.
  2724. */
  2725. spin_lock_irqsave(&xhci->lock, flags);
  2726. ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
  2727. num_eps, &num_streams, &changed_ep_bitmask);
  2728. if (ret < 0) {
  2729. xhci_free_command(xhci, config_cmd);
  2730. spin_unlock_irqrestore(&xhci->lock, flags);
  2731. return ret;
  2732. }
  2733. if (num_streams <= 1) {
  2734. xhci_warn(xhci, "WARN: endpoints can't handle "
  2735. "more than one stream.\n");
  2736. xhci_free_command(xhci, config_cmd);
  2737. spin_unlock_irqrestore(&xhci->lock, flags);
  2738. return -EINVAL;
  2739. }
  2740. vdev = xhci->devs[udev->slot_id];
  2741. /* Mark each endpoint as being in transition, so
  2742. * xhci_urb_enqueue() will reject all URBs.
  2743. */
  2744. for (i = 0; i < num_eps; i++) {
  2745. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2746. vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
  2747. }
  2748. spin_unlock_irqrestore(&xhci->lock, flags);
  2749. /* Setup internal data structures and allocate HW data structures for
  2750. * streams (but don't install the HW structures in the input context
  2751. * until we're sure all memory allocation succeeded).
  2752. */
  2753. xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
  2754. xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
  2755. num_stream_ctxs, num_streams);
  2756. for (i = 0; i < num_eps; i++) {
  2757. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2758. vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
  2759. num_stream_ctxs,
  2760. num_streams, mem_flags);
  2761. if (!vdev->eps[ep_index].stream_info)
  2762. goto cleanup;
  2763. /* Set maxPstreams in endpoint context and update deq ptr to
  2764. * point to stream context array. FIXME
  2765. */
  2766. }
  2767. /* Set up the input context for a configure endpoint command. */
  2768. for (i = 0; i < num_eps; i++) {
  2769. struct xhci_ep_ctx *ep_ctx;
  2770. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2771. ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
  2772. xhci_endpoint_copy(xhci, config_cmd->in_ctx,
  2773. vdev->out_ctx, ep_index);
  2774. xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
  2775. vdev->eps[ep_index].stream_info);
  2776. }
  2777. /* Tell the HW to drop its old copy of the endpoint context info
  2778. * and add the updated copy from the input context.
  2779. */
  2780. xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
  2781. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2782. /* Issue and wait for the configure endpoint command */
  2783. ret = xhci_configure_endpoint(xhci, udev, config_cmd,
  2784. false, false);
  2785. /* xHC rejected the configure endpoint command for some reason, so we
  2786. * leave the old ring intact and free our internal streams data
  2787. * structure.
  2788. */
  2789. if (ret < 0)
  2790. goto cleanup;
  2791. spin_lock_irqsave(&xhci->lock, flags);
  2792. for (i = 0; i < num_eps; i++) {
  2793. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2794. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2795. xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
  2796. udev->slot_id, ep_index);
  2797. vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
  2798. }
  2799. xhci_free_command(xhci, config_cmd);
  2800. spin_unlock_irqrestore(&xhci->lock, flags);
  2801. /* Subtract 1 for stream 0, which drivers can't use */
  2802. return num_streams - 1;
  2803. cleanup:
  2804. /* If it didn't work, free the streams! */
  2805. for (i = 0; i < num_eps; i++) {
  2806. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2807. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2808. vdev->eps[ep_index].stream_info = NULL;
  2809. /* FIXME Unset maxPstreams in endpoint context and
  2810. * update deq ptr to point to normal string ring.
  2811. */
  2812. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2813. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2814. xhci_endpoint_zero(xhci, vdev, eps[i]);
  2815. }
  2816. xhci_free_command(xhci, config_cmd);
  2817. return -ENOMEM;
  2818. }
  2819. /* Transition the endpoint from using streams to being a "normal" endpoint
  2820. * without streams.
  2821. *
  2822. * Modify the endpoint context state, submit a configure endpoint command,
  2823. * and free all endpoint rings for streams if that completes successfully.
  2824. */
  2825. int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2826. struct usb_host_endpoint **eps, unsigned int num_eps,
  2827. gfp_t mem_flags)
  2828. {
  2829. int i, ret;
  2830. struct xhci_hcd *xhci;
  2831. struct xhci_virt_device *vdev;
  2832. struct xhci_command *command;
  2833. unsigned int ep_index;
  2834. unsigned long flags;
  2835. u32 changed_ep_bitmask;
  2836. xhci = hcd_to_xhci(hcd);
  2837. vdev = xhci->devs[udev->slot_id];
  2838. /* Set up a configure endpoint command to remove the streams rings */
  2839. spin_lock_irqsave(&xhci->lock, flags);
  2840. changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
  2841. udev, eps, num_eps);
  2842. if (changed_ep_bitmask == 0) {
  2843. spin_unlock_irqrestore(&xhci->lock, flags);
  2844. return -EINVAL;
  2845. }
  2846. /* Use the xhci_command structure from the first endpoint. We may have
  2847. * allocated too many, but the driver may call xhci_free_streams() for
  2848. * each endpoint it grouped into one call to xhci_alloc_streams().
  2849. */
  2850. ep_index = xhci_get_endpoint_index(&eps[0]->desc);
  2851. command = vdev->eps[ep_index].stream_info->free_streams_command;
  2852. for (i = 0; i < num_eps; i++) {
  2853. struct xhci_ep_ctx *ep_ctx;
  2854. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2855. ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
  2856. xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
  2857. EP_GETTING_NO_STREAMS;
  2858. xhci_endpoint_copy(xhci, command->in_ctx,
  2859. vdev->out_ctx, ep_index);
  2860. xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
  2861. &vdev->eps[ep_index]);
  2862. }
  2863. xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
  2864. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2865. spin_unlock_irqrestore(&xhci->lock, flags);
  2866. /* Issue and wait for the configure endpoint command,
  2867. * which must succeed.
  2868. */
  2869. ret = xhci_configure_endpoint(xhci, udev, command,
  2870. false, true);
  2871. /* xHC rejected the configure endpoint command for some reason, so we
  2872. * leave the streams rings intact.
  2873. */
  2874. if (ret < 0)
  2875. return ret;
  2876. spin_lock_irqsave(&xhci->lock, flags);
  2877. for (i = 0; i < num_eps; i++) {
  2878. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2879. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2880. vdev->eps[ep_index].stream_info = NULL;
  2881. /* FIXME Unset maxPstreams in endpoint context and
  2882. * update deq ptr to point to normal string ring.
  2883. */
  2884. vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
  2885. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2886. }
  2887. spin_unlock_irqrestore(&xhci->lock, flags);
  2888. return 0;
  2889. }
  2890. /*
  2891. * Deletes endpoint resources for endpoints that were active before a Reset
  2892. * Device command, or a Disable Slot command. The Reset Device command leaves
  2893. * the control endpoint intact, whereas the Disable Slot command deletes it.
  2894. *
  2895. * Must be called with xhci->lock held.
  2896. */
  2897. void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
  2898. struct xhci_virt_device *virt_dev, bool drop_control_ep)
  2899. {
  2900. int i;
  2901. unsigned int num_dropped_eps = 0;
  2902. unsigned int drop_flags = 0;
  2903. for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
  2904. if (virt_dev->eps[i].ring) {
  2905. drop_flags |= 1 << i;
  2906. num_dropped_eps++;
  2907. }
  2908. }
  2909. xhci->num_active_eps -= num_dropped_eps;
  2910. if (num_dropped_eps)
  2911. xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
  2912. "%u now active.\n",
  2913. num_dropped_eps, drop_flags,
  2914. xhci->num_active_eps);
  2915. }
  2916. /*
  2917. * This submits a Reset Device Command, which will set the device state to 0,
  2918. * set the device address to 0, and disable all the endpoints except the default
  2919. * control endpoint. The USB core should come back and call
  2920. * xhci_address_device(), and then re-set up the configuration. If this is
  2921. * called because of a usb_reset_and_verify_device(), then the old alternate
  2922. * settings will be re-installed through the normal bandwidth allocation
  2923. * functions.
  2924. *
  2925. * Wait for the Reset Device command to finish. Remove all structures
  2926. * associated with the endpoints that were disabled. Clear the input device
  2927. * structure? Cache the rings? Reset the control endpoint 0 max packet size?
  2928. *
  2929. * If the virt_dev to be reset does not exist or does not match the udev,
  2930. * it means the device is lost, possibly due to the xHC restore error and
  2931. * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
  2932. * re-allocate the device.
  2933. */
  2934. int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
  2935. {
  2936. int ret, i;
  2937. unsigned long flags;
  2938. struct xhci_hcd *xhci;
  2939. unsigned int slot_id;
  2940. struct xhci_virt_device *virt_dev;
  2941. struct xhci_command *reset_device_cmd;
  2942. int timeleft;
  2943. int last_freed_endpoint;
  2944. struct xhci_slot_ctx *slot_ctx;
  2945. int old_active_eps = 0;
  2946. ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
  2947. if (ret <= 0)
  2948. return ret;
  2949. xhci = hcd_to_xhci(hcd);
  2950. slot_id = udev->slot_id;
  2951. virt_dev = xhci->devs[slot_id];
  2952. if (!virt_dev) {
  2953. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2954. "not exist. Re-allocate the device\n", slot_id);
  2955. ret = xhci_alloc_dev(hcd, udev);
  2956. if (ret == 1)
  2957. return 0;
  2958. else
  2959. return -EINVAL;
  2960. }
  2961. if (virt_dev->udev != udev) {
  2962. /* If the virt_dev and the udev does not match, this virt_dev
  2963. * may belong to another udev.
  2964. * Re-allocate the device.
  2965. */
  2966. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2967. "not match the udev. Re-allocate the device\n",
  2968. slot_id);
  2969. ret = xhci_alloc_dev(hcd, udev);
  2970. if (ret == 1)
  2971. return 0;
  2972. else
  2973. return -EINVAL;
  2974. }
  2975. /* If device is not setup, there is no point in resetting it */
  2976. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  2977. if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
  2978. SLOT_STATE_DISABLED)
  2979. return 0;
  2980. xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
  2981. /* Allocate the command structure that holds the struct completion.
  2982. * Assume we're in process context, since the normal device reset
  2983. * process has to wait for the device anyway. Storage devices are
  2984. * reset as part of error handling, so use GFP_NOIO instead of
  2985. * GFP_KERNEL.
  2986. */
  2987. reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
  2988. if (!reset_device_cmd) {
  2989. xhci_dbg(xhci, "Couldn't allocate command structure.\n");
  2990. return -ENOMEM;
  2991. }
  2992. /* Attempt to submit the Reset Device command to the command ring */
  2993. spin_lock_irqsave(&xhci->lock, flags);
  2994. reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
  2995. /* Enqueue pointer can be left pointing to the link TRB,
  2996. * we must handle that
  2997. */
  2998. if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
  2999. reset_device_cmd->command_trb =
  3000. xhci->cmd_ring->enq_seg->next->trbs;
  3001. list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
  3002. ret = xhci_queue_reset_device(xhci, slot_id);
  3003. if (ret) {
  3004. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3005. list_del(&reset_device_cmd->cmd_list);
  3006. spin_unlock_irqrestore(&xhci->lock, flags);
  3007. goto command_cleanup;
  3008. }
  3009. xhci_ring_cmd_db(xhci);
  3010. spin_unlock_irqrestore(&xhci->lock, flags);
  3011. /* Wait for the Reset Device command to finish */
  3012. timeleft = wait_for_completion_interruptible_timeout(
  3013. reset_device_cmd->completion,
  3014. USB_CTRL_SET_TIMEOUT);
  3015. if (timeleft <= 0) {
  3016. xhci_warn(xhci, "%s while waiting for reset device command\n",
  3017. timeleft == 0 ? "Timeout" : "Signal");
  3018. spin_lock_irqsave(&xhci->lock, flags);
  3019. /* The timeout might have raced with the event ring handler, so
  3020. * only delete from the list if the item isn't poisoned.
  3021. */
  3022. if (reset_device_cmd->cmd_list.next != LIST_POISON1)
  3023. list_del(&reset_device_cmd->cmd_list);
  3024. spin_unlock_irqrestore(&xhci->lock, flags);
  3025. ret = -ETIME;
  3026. goto command_cleanup;
  3027. }
  3028. /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
  3029. * unless we tried to reset a slot ID that wasn't enabled,
  3030. * or the device wasn't in the addressed or configured state.
  3031. */
  3032. ret = reset_device_cmd->status;
  3033. switch (ret) {
  3034. case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
  3035. case COMP_CTX_STATE: /* 0.96 completion code for same thing */
  3036. xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
  3037. slot_id,
  3038. xhci_get_slot_state(xhci, virt_dev->out_ctx));
  3039. xhci_info(xhci, "Not freeing device rings.\n");
  3040. /* Don't treat this as an error. May change my mind later. */
  3041. ret = 0;
  3042. goto command_cleanup;
  3043. case COMP_SUCCESS:
  3044. xhci_dbg(xhci, "Successful reset device command.\n");
  3045. break;
  3046. default:
  3047. if (xhci_is_vendor_info_code(xhci, ret))
  3048. break;
  3049. xhci_warn(xhci, "Unknown completion code %u for "
  3050. "reset device command.\n", ret);
  3051. ret = -EINVAL;
  3052. goto command_cleanup;
  3053. }
  3054. /* Free up host controller endpoint resources */
  3055. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3056. spin_lock_irqsave(&xhci->lock, flags);
  3057. /* Don't delete the default control endpoint resources */
  3058. xhci_free_device_endpoint_resources(xhci, virt_dev, false);
  3059. spin_unlock_irqrestore(&xhci->lock, flags);
  3060. }
  3061. /* Everything but endpoint 0 is disabled, so free or cache the rings. */
  3062. last_freed_endpoint = 1;
  3063. for (i = 1; i < 31; ++i) {
  3064. struct xhci_virt_ep *ep = &virt_dev->eps[i];
  3065. if (ep->ep_state & EP_HAS_STREAMS) {
  3066. xhci_free_stream_info(xhci, ep->stream_info);
  3067. ep->stream_info = NULL;
  3068. ep->ep_state &= ~EP_HAS_STREAMS;
  3069. }
  3070. if (ep->ring) {
  3071. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  3072. last_freed_endpoint = i;
  3073. }
  3074. if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
  3075. xhci_drop_ep_from_interval_table(xhci,
  3076. &virt_dev->eps[i].bw_info,
  3077. virt_dev->bw_table,
  3078. udev,
  3079. &virt_dev->eps[i],
  3080. virt_dev->tt_info);
  3081. xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
  3082. }
  3083. /* If necessary, update the number of active TTs on this root port */
  3084. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  3085. xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
  3086. xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
  3087. ret = 0;
  3088. command_cleanup:
  3089. xhci_free_command(xhci, reset_device_cmd);
  3090. return ret;
  3091. }
  3092. /*
  3093. * At this point, the struct usb_device is about to go away, the device has
  3094. * disconnected, and all traffic has been stopped and the endpoints have been
  3095. * disabled. Free any HC data structures associated with that device.
  3096. */
  3097. void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3098. {
  3099. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3100. struct xhci_virt_device *virt_dev;
  3101. unsigned long flags;
  3102. u32 state;
  3103. int i, ret;
  3104. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  3105. /* If the host is halted due to driver unload, we still need to free the
  3106. * device.
  3107. */
  3108. if (ret <= 0 && ret != -ENODEV)
  3109. return;
  3110. virt_dev = xhci->devs[udev->slot_id];
  3111. /* Stop any wayward timer functions (which may grab the lock) */
  3112. for (i = 0; i < 31; ++i) {
  3113. virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
  3114. del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
  3115. }
  3116. if (udev->usb2_hw_lpm_enabled) {
  3117. xhci_set_usb2_hardware_lpm(hcd, udev, 0);
  3118. udev->usb2_hw_lpm_enabled = 0;
  3119. }
  3120. spin_lock_irqsave(&xhci->lock, flags);
  3121. /* Don't disable the slot if the host controller is dead. */
  3122. state = xhci_readl(xhci, &xhci->op_regs->status);
  3123. if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  3124. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3125. xhci_free_virt_device(xhci, udev->slot_id);
  3126. spin_unlock_irqrestore(&xhci->lock, flags);
  3127. return;
  3128. }
  3129. if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
  3130. spin_unlock_irqrestore(&xhci->lock, flags);
  3131. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3132. return;
  3133. }
  3134. xhci_ring_cmd_db(xhci);
  3135. spin_unlock_irqrestore(&xhci->lock, flags);
  3136. /*
  3137. * Event command completion handler will free any data structures
  3138. * associated with the slot. XXX Can free sleep?
  3139. */
  3140. }
  3141. /*
  3142. * Checks if we have enough host controller resources for the default control
  3143. * endpoint.
  3144. *
  3145. * Must be called with xhci->lock held.
  3146. */
  3147. static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
  3148. {
  3149. if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
  3150. xhci_dbg(xhci, "Not enough ep ctxs: "
  3151. "%u active, need to add 1, limit is %u.\n",
  3152. xhci->num_active_eps, xhci->limit_active_eps);
  3153. return -ENOMEM;
  3154. }
  3155. xhci->num_active_eps += 1;
  3156. xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
  3157. xhci->num_active_eps);
  3158. return 0;
  3159. }
  3160. /*
  3161. * Returns 0 if the xHC ran out of device slots, the Enable Slot command
  3162. * timed out, or allocating memory failed. Returns 1 on success.
  3163. */
  3164. int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3165. {
  3166. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3167. unsigned long flags;
  3168. int timeleft;
  3169. int ret;
  3170. union xhci_trb *cmd_trb;
  3171. spin_lock_irqsave(&xhci->lock, flags);
  3172. cmd_trb = xhci->cmd_ring->dequeue;
  3173. ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
  3174. if (ret) {
  3175. spin_unlock_irqrestore(&xhci->lock, flags);
  3176. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3177. return 0;
  3178. }
  3179. xhci_ring_cmd_db(xhci);
  3180. spin_unlock_irqrestore(&xhci->lock, flags);
  3181. /* XXX: how much time for xHC slot assignment? */
  3182. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3183. XHCI_CMD_DEFAULT_TIMEOUT);
  3184. if (timeleft <= 0) {
  3185. xhci_warn(xhci, "%s while waiting for a slot\n",
  3186. timeleft == 0 ? "Timeout" : "Signal");
  3187. /* cancel the enable slot request */
  3188. return xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3189. }
  3190. if (!xhci->slot_id) {
  3191. xhci_err(xhci, "Error while assigning device slot ID\n");
  3192. return 0;
  3193. }
  3194. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3195. spin_lock_irqsave(&xhci->lock, flags);
  3196. ret = xhci_reserve_host_control_ep_resources(xhci);
  3197. if (ret) {
  3198. spin_unlock_irqrestore(&xhci->lock, flags);
  3199. xhci_warn(xhci, "Not enough host resources, "
  3200. "active endpoint contexts = %u\n",
  3201. xhci->num_active_eps);
  3202. goto disable_slot;
  3203. }
  3204. spin_unlock_irqrestore(&xhci->lock, flags);
  3205. }
  3206. /* Use GFP_NOIO, since this function can be called from
  3207. * xhci_discover_or_reset_device(), which may be called as part of
  3208. * mass storage driver error handling.
  3209. */
  3210. if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
  3211. xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
  3212. goto disable_slot;
  3213. }
  3214. udev->slot_id = xhci->slot_id;
  3215. /* Is this a LS or FS device under a HS hub? */
  3216. /* Hub or peripherial? */
  3217. return 1;
  3218. disable_slot:
  3219. /* Disable slot, if we can do it without mem alloc */
  3220. spin_lock_irqsave(&xhci->lock, flags);
  3221. if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
  3222. xhci_ring_cmd_db(xhci);
  3223. spin_unlock_irqrestore(&xhci->lock, flags);
  3224. return 0;
  3225. }
  3226. /*
  3227. * Issue an Address Device command (which will issue a SetAddress request to
  3228. * the device).
  3229. * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
  3230. * we should only issue and wait on one address command at the same time.
  3231. *
  3232. * We add one to the device address issued by the hardware because the USB core
  3233. * uses address 1 for the root hubs (even though they're not really devices).
  3234. */
  3235. int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
  3236. {
  3237. unsigned long flags;
  3238. int timeleft;
  3239. struct xhci_virt_device *virt_dev;
  3240. int ret = 0;
  3241. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3242. struct xhci_slot_ctx *slot_ctx;
  3243. struct xhci_input_control_ctx *ctrl_ctx;
  3244. u64 temp_64;
  3245. union xhci_trb *cmd_trb;
  3246. if (!udev->slot_id) {
  3247. xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
  3248. return -EINVAL;
  3249. }
  3250. virt_dev = xhci->devs[udev->slot_id];
  3251. if (WARN_ON(!virt_dev)) {
  3252. /*
  3253. * In plug/unplug torture test with an NEC controller,
  3254. * a zero-dereference was observed once due to virt_dev = 0.
  3255. * Print useful debug rather than crash if it is observed again!
  3256. */
  3257. xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
  3258. udev->slot_id);
  3259. return -EINVAL;
  3260. }
  3261. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  3262. /*
  3263. * If this is the first Set Address since device plug-in or
  3264. * virt_device realloaction after a resume with an xHCI power loss,
  3265. * then set up the slot context.
  3266. */
  3267. if (!slot_ctx->dev_info)
  3268. xhci_setup_addressable_virt_dev(xhci, udev);
  3269. /* Otherwise, update the control endpoint ring enqueue pointer. */
  3270. else
  3271. xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
  3272. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  3273. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
  3274. ctrl_ctx->drop_flags = 0;
  3275. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3276. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3277. spin_lock_irqsave(&xhci->lock, flags);
  3278. cmd_trb = xhci->cmd_ring->dequeue;
  3279. ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
  3280. udev->slot_id);
  3281. if (ret) {
  3282. spin_unlock_irqrestore(&xhci->lock, flags);
  3283. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3284. return ret;
  3285. }
  3286. xhci_ring_cmd_db(xhci);
  3287. spin_unlock_irqrestore(&xhci->lock, flags);
  3288. /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
  3289. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3290. XHCI_CMD_DEFAULT_TIMEOUT);
  3291. /* FIXME: From section 4.3.4: "Software shall be responsible for timing
  3292. * the SetAddress() "recovery interval" required by USB and aborting the
  3293. * command on a timeout.
  3294. */
  3295. if (timeleft <= 0) {
  3296. xhci_warn(xhci, "%s while waiting for address device command\n",
  3297. timeleft == 0 ? "Timeout" : "Signal");
  3298. /* cancel the address device command */
  3299. ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3300. if (ret < 0)
  3301. return ret;
  3302. return -ETIME;
  3303. }
  3304. switch (virt_dev->cmd_status) {
  3305. case COMP_CTX_STATE:
  3306. case COMP_EBADSLT:
  3307. xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
  3308. udev->slot_id);
  3309. ret = -EINVAL;
  3310. break;
  3311. case COMP_TX_ERR:
  3312. dev_warn(&udev->dev, "Device not responding to set address.\n");
  3313. ret = -EPROTO;
  3314. break;
  3315. case COMP_DEV_ERR:
  3316. dev_warn(&udev->dev, "ERROR: Incompatible device for address "
  3317. "device command.\n");
  3318. ret = -ENODEV;
  3319. break;
  3320. case COMP_SUCCESS:
  3321. xhci_dbg(xhci, "Successful Address Device command\n");
  3322. break;
  3323. default:
  3324. xhci_err(xhci, "ERROR: unexpected command completion "
  3325. "code 0x%x.\n", virt_dev->cmd_status);
  3326. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3327. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3328. ret = -EINVAL;
  3329. break;
  3330. }
  3331. if (ret) {
  3332. return ret;
  3333. }
  3334. temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  3335. xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
  3336. xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
  3337. udev->slot_id,
  3338. &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
  3339. (unsigned long long)
  3340. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
  3341. xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
  3342. (unsigned long long)virt_dev->out_ctx->dma);
  3343. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3344. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3345. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3346. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3347. /*
  3348. * USB core uses address 1 for the roothubs, so we add one to the
  3349. * address given back to us by the HC.
  3350. */
  3351. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  3352. /* Use kernel assigned address for devices; store xHC assigned
  3353. * address locally. */
  3354. virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
  3355. + 1;
  3356. /* Zero the input context control for later use */
  3357. ctrl_ctx->add_flags = 0;
  3358. ctrl_ctx->drop_flags = 0;
  3359. xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
  3360. return 0;
  3361. }
  3362. #ifdef CONFIG_USB_SUSPEND
  3363. /* BESL to HIRD Encoding array for USB2 LPM */
  3364. static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
  3365. 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
  3366. /* Calculate HIRD/BESL for USB2 PORTPMSC*/
  3367. static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
  3368. struct usb_device *udev)
  3369. {
  3370. int u2del, besl, besl_host;
  3371. int besl_device = 0;
  3372. u32 field;
  3373. u2del = HCS_U2_LATENCY(xhci->hcs_params3);
  3374. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3375. if (field & USB_BESL_SUPPORT) {
  3376. for (besl_host = 0; besl_host < 16; besl_host++) {
  3377. if (xhci_besl_encoding[besl_host] >= u2del)
  3378. break;
  3379. }
  3380. /* Use baseline BESL value as default */
  3381. if (field & USB_BESL_BASELINE_VALID)
  3382. besl_device = USB_GET_BESL_BASELINE(field);
  3383. else if (field & USB_BESL_DEEP_VALID)
  3384. besl_device = USB_GET_BESL_DEEP(field);
  3385. } else {
  3386. if (u2del <= 50)
  3387. besl_host = 0;
  3388. else
  3389. besl_host = (u2del - 51) / 75 + 1;
  3390. }
  3391. besl = besl_host + besl_device;
  3392. if (besl > 15)
  3393. besl = 15;
  3394. return besl;
  3395. }
  3396. static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
  3397. struct usb_device *udev)
  3398. {
  3399. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3400. struct dev_info *dev_info;
  3401. __le32 __iomem **port_array;
  3402. __le32 __iomem *addr, *pm_addr;
  3403. u32 temp, dev_id;
  3404. unsigned int port_num;
  3405. unsigned long flags;
  3406. int hird;
  3407. int ret;
  3408. if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
  3409. !udev->lpm_capable)
  3410. return -EINVAL;
  3411. /* we only support lpm for non-hub device connected to root hub yet */
  3412. if (!udev->parent || udev->parent->parent ||
  3413. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3414. return -EINVAL;
  3415. spin_lock_irqsave(&xhci->lock, flags);
  3416. /* Look for devices in lpm_failed_devs list */
  3417. dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
  3418. le16_to_cpu(udev->descriptor.idProduct);
  3419. list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
  3420. if (dev_info->dev_id == dev_id) {
  3421. ret = -EINVAL;
  3422. goto finish;
  3423. }
  3424. }
  3425. port_array = xhci->usb2_ports;
  3426. port_num = udev->portnum - 1;
  3427. if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
  3428. xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
  3429. ret = -EINVAL;
  3430. goto finish;
  3431. }
  3432. /*
  3433. * Test USB 2.0 software LPM.
  3434. * FIXME: some xHCI 1.0 hosts may implement a new register to set up
  3435. * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
  3436. * in the June 2011 errata release.
  3437. */
  3438. xhci_dbg(xhci, "test port %d software LPM\n", port_num);
  3439. /*
  3440. * Set L1 Device Slot and HIRD/BESL.
  3441. * Check device's USB 2.0 extension descriptor to determine whether
  3442. * HIRD or BESL shoule be used. See USB2.0 LPM errata.
  3443. */
  3444. pm_addr = port_array[port_num] + 1;
  3445. hird = xhci_calculate_hird_besl(xhci, udev);
  3446. temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
  3447. xhci_writel(xhci, temp, pm_addr);
  3448. /* Set port link state to U2(L1) */
  3449. addr = port_array[port_num];
  3450. xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
  3451. /* wait for ACK */
  3452. spin_unlock_irqrestore(&xhci->lock, flags);
  3453. msleep(10);
  3454. spin_lock_irqsave(&xhci->lock, flags);
  3455. /* Check L1 Status */
  3456. ret = xhci_handshake(xhci, pm_addr,
  3457. PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
  3458. if (ret != -ETIMEDOUT) {
  3459. /* enter L1 successfully */
  3460. temp = xhci_readl(xhci, addr);
  3461. xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
  3462. port_num, temp);
  3463. ret = 0;
  3464. } else {
  3465. temp = xhci_readl(xhci, pm_addr);
  3466. xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
  3467. port_num, temp & PORT_L1S_MASK);
  3468. ret = -EINVAL;
  3469. }
  3470. /* Resume the port */
  3471. xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
  3472. spin_unlock_irqrestore(&xhci->lock, flags);
  3473. msleep(10);
  3474. spin_lock_irqsave(&xhci->lock, flags);
  3475. /* Clear PLC */
  3476. xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
  3477. /* Check PORTSC to make sure the device is in the right state */
  3478. if (!ret) {
  3479. temp = xhci_readl(xhci, addr);
  3480. xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
  3481. if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
  3482. (temp & PORT_PLS_MASK) != XDEV_U0) {
  3483. xhci_dbg(xhci, "port L1 resume fail\n");
  3484. ret = -EINVAL;
  3485. }
  3486. }
  3487. if (ret) {
  3488. /* Insert dev to lpm_failed_devs list */
  3489. xhci_warn(xhci, "device LPM test failed, may disconnect and "
  3490. "re-enumerate\n");
  3491. dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
  3492. if (!dev_info) {
  3493. ret = -ENOMEM;
  3494. goto finish;
  3495. }
  3496. dev_info->dev_id = dev_id;
  3497. INIT_LIST_HEAD(&dev_info->list);
  3498. list_add(&dev_info->list, &xhci->lpm_failed_devs);
  3499. } else {
  3500. xhci_ring_device(xhci, udev->slot_id);
  3501. }
  3502. finish:
  3503. spin_unlock_irqrestore(&xhci->lock, flags);
  3504. return ret;
  3505. }
  3506. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3507. struct usb_device *udev, int enable)
  3508. {
  3509. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3510. __le32 __iomem **port_array;
  3511. __le32 __iomem *pm_addr;
  3512. u32 temp;
  3513. unsigned int port_num;
  3514. unsigned long flags;
  3515. int hird;
  3516. if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
  3517. !udev->lpm_capable)
  3518. return -EPERM;
  3519. if (!udev->parent || udev->parent->parent ||
  3520. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3521. return -EPERM;
  3522. if (udev->usb2_hw_lpm_capable != 1)
  3523. return -EPERM;
  3524. spin_lock_irqsave(&xhci->lock, flags);
  3525. port_array = xhci->usb2_ports;
  3526. port_num = udev->portnum - 1;
  3527. pm_addr = port_array[port_num] + 1;
  3528. temp = xhci_readl(xhci, pm_addr);
  3529. xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
  3530. enable ? "enable" : "disable", port_num);
  3531. hird = xhci_calculate_hird_besl(xhci, udev);
  3532. if (enable) {
  3533. temp &= ~PORT_HIRD_MASK;
  3534. temp |= PORT_HIRD(hird) | PORT_RWE;
  3535. xhci_writel(xhci, temp, pm_addr);
  3536. temp = xhci_readl(xhci, pm_addr);
  3537. temp |= PORT_HLE;
  3538. xhci_writel(xhci, temp, pm_addr);
  3539. } else {
  3540. temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
  3541. xhci_writel(xhci, temp, pm_addr);
  3542. }
  3543. spin_unlock_irqrestore(&xhci->lock, flags);
  3544. return 0;
  3545. }
  3546. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3547. {
  3548. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3549. int ret;
  3550. ret = xhci_usb2_software_lpm_test(hcd, udev);
  3551. if (!ret) {
  3552. xhci_dbg(xhci, "software LPM test succeed\n");
  3553. if (xhci->hw_lpm_support == 1) {
  3554. udev->usb2_hw_lpm_capable = 1;
  3555. ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
  3556. if (!ret)
  3557. udev->usb2_hw_lpm_enabled = 1;
  3558. }
  3559. }
  3560. return 0;
  3561. }
  3562. #else
  3563. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3564. struct usb_device *udev, int enable)
  3565. {
  3566. return 0;
  3567. }
  3568. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3569. {
  3570. return 0;
  3571. }
  3572. #endif /* CONFIG_USB_SUSPEND */
  3573. /*---------------------- USB 3.0 Link PM functions ------------------------*/
  3574. #ifdef CONFIG_PM
  3575. /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
  3576. static unsigned long long xhci_service_interval_to_ns(
  3577. struct usb_endpoint_descriptor *desc)
  3578. {
  3579. return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
  3580. }
  3581. static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
  3582. enum usb3_link_state state)
  3583. {
  3584. unsigned long long sel;
  3585. unsigned long long pel;
  3586. unsigned int max_sel_pel;
  3587. char *state_name;
  3588. switch (state) {
  3589. case USB3_LPM_U1:
  3590. /* Convert SEL and PEL stored in nanoseconds to microseconds */
  3591. sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
  3592. pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
  3593. max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
  3594. state_name = "U1";
  3595. break;
  3596. case USB3_LPM_U2:
  3597. sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
  3598. pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
  3599. max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
  3600. state_name = "U2";
  3601. break;
  3602. default:
  3603. dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
  3604. __func__);
  3605. return USB3_LPM_DISABLED;
  3606. }
  3607. if (sel <= max_sel_pel && pel <= max_sel_pel)
  3608. return USB3_LPM_DEVICE_INITIATED;
  3609. if (sel > max_sel_pel)
  3610. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3611. "due to long SEL %llu ms\n",
  3612. state_name, sel);
  3613. else
  3614. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3615. "due to long PEL %llu\n ms",
  3616. state_name, pel);
  3617. return USB3_LPM_DISABLED;
  3618. }
  3619. /* Returns the hub-encoded U1 timeout value.
  3620. * The U1 timeout should be the maximum of the following values:
  3621. * - For control endpoints, U1 system exit latency (SEL) * 3
  3622. * - For bulk endpoints, U1 SEL * 5
  3623. * - For interrupt endpoints:
  3624. * - Notification EPs, U1 SEL * 3
  3625. * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
  3626. * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
  3627. */
  3628. static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
  3629. struct usb_endpoint_descriptor *desc)
  3630. {
  3631. unsigned long long timeout_ns;
  3632. int ep_type;
  3633. int intr_type;
  3634. ep_type = usb_endpoint_type(desc);
  3635. switch (ep_type) {
  3636. case USB_ENDPOINT_XFER_CONTROL:
  3637. timeout_ns = udev->u1_params.sel * 3;
  3638. break;
  3639. case USB_ENDPOINT_XFER_BULK:
  3640. timeout_ns = udev->u1_params.sel * 5;
  3641. break;
  3642. case USB_ENDPOINT_XFER_INT:
  3643. intr_type = usb_endpoint_interrupt_type(desc);
  3644. if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
  3645. timeout_ns = udev->u1_params.sel * 3;
  3646. break;
  3647. }
  3648. /* Otherwise the calculation is the same as isoc eps */
  3649. case USB_ENDPOINT_XFER_ISOC:
  3650. timeout_ns = xhci_service_interval_to_ns(desc);
  3651. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
  3652. if (timeout_ns < udev->u1_params.sel * 2)
  3653. timeout_ns = udev->u1_params.sel * 2;
  3654. break;
  3655. default:
  3656. return 0;
  3657. }
  3658. /* The U1 timeout is encoded in 1us intervals. */
  3659. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
  3660. /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
  3661. if (timeout_ns == USB3_LPM_DISABLED)
  3662. timeout_ns++;
  3663. /* If the necessary timeout value is bigger than what we can set in the
  3664. * USB 3.0 hub, we have to disable hub-initiated U1.
  3665. */
  3666. if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
  3667. return timeout_ns;
  3668. dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
  3669. "due to long timeout %llu ms\n", timeout_ns);
  3670. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
  3671. }
  3672. /* Returns the hub-encoded U2 timeout value.
  3673. * The U2 timeout should be the maximum of:
  3674. * - 10 ms (to avoid the bandwidth impact on the scheduler)
  3675. * - largest bInterval of any active periodic endpoint (to avoid going
  3676. * into lower power link states between intervals).
  3677. * - the U2 Exit Latency of the device
  3678. */
  3679. static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
  3680. struct usb_endpoint_descriptor *desc)
  3681. {
  3682. unsigned long long timeout_ns;
  3683. unsigned long long u2_del_ns;
  3684. timeout_ns = 10 * 1000 * 1000;
  3685. if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
  3686. (xhci_service_interval_to_ns(desc) > timeout_ns))
  3687. timeout_ns = xhci_service_interval_to_ns(desc);
  3688. u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
  3689. if (u2_del_ns > timeout_ns)
  3690. timeout_ns = u2_del_ns;
  3691. /* The U2 timeout is encoded in 256us intervals */
  3692. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
  3693. /* If the necessary timeout value is bigger than what we can set in the
  3694. * USB 3.0 hub, we have to disable hub-initiated U2.
  3695. */
  3696. if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
  3697. return timeout_ns;
  3698. dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
  3699. "due to long timeout %llu ms\n", timeout_ns);
  3700. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
  3701. }
  3702. static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3703. struct usb_device *udev,
  3704. struct usb_endpoint_descriptor *desc,
  3705. enum usb3_link_state state,
  3706. u16 *timeout)
  3707. {
  3708. if (state == USB3_LPM_U1) {
  3709. if (xhci->quirks & XHCI_INTEL_HOST)
  3710. return xhci_calculate_intel_u1_timeout(udev, desc);
  3711. } else {
  3712. if (xhci->quirks & XHCI_INTEL_HOST)
  3713. return xhci_calculate_intel_u2_timeout(udev, desc);
  3714. }
  3715. return USB3_LPM_DISABLED;
  3716. }
  3717. static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3718. struct usb_device *udev,
  3719. struct usb_endpoint_descriptor *desc,
  3720. enum usb3_link_state state,
  3721. u16 *timeout)
  3722. {
  3723. u16 alt_timeout;
  3724. alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
  3725. desc, state, timeout);
  3726. /* If we found we can't enable hub-initiated LPM, or
  3727. * the U1 or U2 exit latency was too high to allow
  3728. * device-initiated LPM as well, just stop searching.
  3729. */
  3730. if (alt_timeout == USB3_LPM_DISABLED ||
  3731. alt_timeout == USB3_LPM_DEVICE_INITIATED) {
  3732. *timeout = alt_timeout;
  3733. return -E2BIG;
  3734. }
  3735. if (alt_timeout > *timeout)
  3736. *timeout = alt_timeout;
  3737. return 0;
  3738. }
  3739. static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
  3740. struct usb_device *udev,
  3741. struct usb_host_interface *alt,
  3742. enum usb3_link_state state,
  3743. u16 *timeout)
  3744. {
  3745. int j;
  3746. for (j = 0; j < alt->desc.bNumEndpoints; j++) {
  3747. if (xhci_update_timeout_for_endpoint(xhci, udev,
  3748. &alt->endpoint[j].desc, state, timeout))
  3749. return -E2BIG;
  3750. continue;
  3751. }
  3752. return 0;
  3753. }
  3754. static int xhci_check_intel_tier_policy(struct usb_device *udev,
  3755. enum usb3_link_state state)
  3756. {
  3757. struct usb_device *parent;
  3758. unsigned int num_hubs;
  3759. if (state == USB3_LPM_U2)
  3760. return 0;
  3761. /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
  3762. for (parent = udev->parent, num_hubs = 0; parent->parent;
  3763. parent = parent->parent)
  3764. num_hubs++;
  3765. if (num_hubs < 2)
  3766. return 0;
  3767. dev_dbg(&udev->dev, "Disabling U1 link state for device"
  3768. " below second-tier hub.\n");
  3769. dev_dbg(&udev->dev, "Plug device into first-tier hub "
  3770. "to decrease power consumption.\n");
  3771. return -E2BIG;
  3772. }
  3773. static int xhci_check_tier_policy(struct xhci_hcd *xhci,
  3774. struct usb_device *udev,
  3775. enum usb3_link_state state)
  3776. {
  3777. if (xhci->quirks & XHCI_INTEL_HOST)
  3778. return xhci_check_intel_tier_policy(udev, state);
  3779. return -EINVAL;
  3780. }
  3781. /* Returns the U1 or U2 timeout that should be enabled.
  3782. * If the tier check or timeout setting functions return with a non-zero exit
  3783. * code, that means the timeout value has been finalized and we shouldn't look
  3784. * at any more endpoints.
  3785. */
  3786. static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
  3787. struct usb_device *udev, enum usb3_link_state state)
  3788. {
  3789. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3790. struct usb_host_config *config;
  3791. char *state_name;
  3792. int i;
  3793. u16 timeout = USB3_LPM_DISABLED;
  3794. if (state == USB3_LPM_U1)
  3795. state_name = "U1";
  3796. else if (state == USB3_LPM_U2)
  3797. state_name = "U2";
  3798. else {
  3799. dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
  3800. state);
  3801. return timeout;
  3802. }
  3803. if (xhci_check_tier_policy(xhci, udev, state) < 0)
  3804. return timeout;
  3805. /* Gather some information about the currently installed configuration
  3806. * and alternate interface settings.
  3807. */
  3808. if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
  3809. state, &timeout))
  3810. return timeout;
  3811. config = udev->actconfig;
  3812. if (!config)
  3813. return timeout;
  3814. for (i = 0; i < USB_MAXINTERFACES; i++) {
  3815. struct usb_driver *driver;
  3816. struct usb_interface *intf = config->interface[i];
  3817. if (!intf)
  3818. continue;
  3819. /* Check if any currently bound drivers want hub-initiated LPM
  3820. * disabled.
  3821. */
  3822. if (intf->dev.driver) {
  3823. driver = to_usb_driver(intf->dev.driver);
  3824. if (driver && driver->disable_hub_initiated_lpm) {
  3825. dev_dbg(&udev->dev, "Hub-initiated %s disabled "
  3826. "at request of driver %s\n",
  3827. state_name, driver->name);
  3828. return xhci_get_timeout_no_hub_lpm(udev, state);
  3829. }
  3830. }
  3831. /* Not sure how this could happen... */
  3832. if (!intf->cur_altsetting)
  3833. continue;
  3834. if (xhci_update_timeout_for_interface(xhci, udev,
  3835. intf->cur_altsetting,
  3836. state, &timeout))
  3837. return timeout;
  3838. }
  3839. return timeout;
  3840. }
  3841. /*
  3842. * Issue an Evaluate Context command to change the Maximum Exit Latency in the
  3843. * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
  3844. */
  3845. static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
  3846. struct usb_device *udev, u16 max_exit_latency)
  3847. {
  3848. struct xhci_virt_device *virt_dev;
  3849. struct xhci_command *command;
  3850. struct xhci_input_control_ctx *ctrl_ctx;
  3851. struct xhci_slot_ctx *slot_ctx;
  3852. unsigned long flags;
  3853. int ret;
  3854. spin_lock_irqsave(&xhci->lock, flags);
  3855. if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
  3856. spin_unlock_irqrestore(&xhci->lock, flags);
  3857. return 0;
  3858. }
  3859. /* Attempt to issue an Evaluate Context command to change the MEL. */
  3860. virt_dev = xhci->devs[udev->slot_id];
  3861. command = xhci->lpm_command;
  3862. xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
  3863. spin_unlock_irqrestore(&xhci->lock, flags);
  3864. ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
  3865. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  3866. slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
  3867. slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
  3868. slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
  3869. xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
  3870. xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
  3871. xhci_dbg_ctx(xhci, command->in_ctx, 0);
  3872. /* Issue and wait for the evaluate context command. */
  3873. ret = xhci_configure_endpoint(xhci, udev, command,
  3874. true, true);
  3875. xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
  3876. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
  3877. if (!ret) {
  3878. spin_lock_irqsave(&xhci->lock, flags);
  3879. virt_dev->current_mel = max_exit_latency;
  3880. spin_unlock_irqrestore(&xhci->lock, flags);
  3881. }
  3882. return ret;
  3883. }
  3884. static int calculate_max_exit_latency(struct usb_device *udev,
  3885. enum usb3_link_state state_changed,
  3886. u16 hub_encoded_timeout)
  3887. {
  3888. unsigned long long u1_mel_us = 0;
  3889. unsigned long long u2_mel_us = 0;
  3890. unsigned long long mel_us = 0;
  3891. bool disabling_u1;
  3892. bool disabling_u2;
  3893. bool enabling_u1;
  3894. bool enabling_u2;
  3895. disabling_u1 = (state_changed == USB3_LPM_U1 &&
  3896. hub_encoded_timeout == USB3_LPM_DISABLED);
  3897. disabling_u2 = (state_changed == USB3_LPM_U2 &&
  3898. hub_encoded_timeout == USB3_LPM_DISABLED);
  3899. enabling_u1 = (state_changed == USB3_LPM_U1 &&
  3900. hub_encoded_timeout != USB3_LPM_DISABLED);
  3901. enabling_u2 = (state_changed == USB3_LPM_U2 &&
  3902. hub_encoded_timeout != USB3_LPM_DISABLED);
  3903. /* If U1 was already enabled and we're not disabling it,
  3904. * or we're going to enable U1, account for the U1 max exit latency.
  3905. */
  3906. if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
  3907. enabling_u1)
  3908. u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
  3909. if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
  3910. enabling_u2)
  3911. u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
  3912. if (u1_mel_us > u2_mel_us)
  3913. mel_us = u1_mel_us;
  3914. else
  3915. mel_us = u2_mel_us;
  3916. /* xHCI host controller max exit latency field is only 16 bits wide. */
  3917. if (mel_us > MAX_EXIT) {
  3918. dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
  3919. "is too big.\n", mel_us);
  3920. return -E2BIG;
  3921. }
  3922. return mel_us;
  3923. }
  3924. /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
  3925. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3926. struct usb_device *udev, enum usb3_link_state state)
  3927. {
  3928. struct xhci_hcd *xhci;
  3929. u16 hub_encoded_timeout;
  3930. int mel;
  3931. int ret;
  3932. xhci = hcd_to_xhci(hcd);
  3933. /* The LPM timeout values are pretty host-controller specific, so don't
  3934. * enable hub-initiated timeouts unless the vendor has provided
  3935. * information about their timeout algorithm.
  3936. */
  3937. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  3938. !xhci->devs[udev->slot_id])
  3939. return USB3_LPM_DISABLED;
  3940. hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
  3941. mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
  3942. if (mel < 0) {
  3943. /* Max Exit Latency is too big, disable LPM. */
  3944. hub_encoded_timeout = USB3_LPM_DISABLED;
  3945. mel = 0;
  3946. }
  3947. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  3948. if (ret)
  3949. return ret;
  3950. return hub_encoded_timeout;
  3951. }
  3952. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3953. struct usb_device *udev, enum usb3_link_state state)
  3954. {
  3955. struct xhci_hcd *xhci;
  3956. u16 mel;
  3957. int ret;
  3958. xhci = hcd_to_xhci(hcd);
  3959. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  3960. !xhci->devs[udev->slot_id])
  3961. return 0;
  3962. mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
  3963. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  3964. if (ret)
  3965. return ret;
  3966. return 0;
  3967. }
  3968. #else /* CONFIG_PM */
  3969. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3970. struct usb_device *udev, enum usb3_link_state state)
  3971. {
  3972. return USB3_LPM_DISABLED;
  3973. }
  3974. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3975. struct usb_device *udev, enum usb3_link_state state)
  3976. {
  3977. return 0;
  3978. }
  3979. #endif /* CONFIG_PM */
  3980. /*-------------------------------------------------------------------------*/
  3981. /* Once a hub descriptor is fetched for a device, we need to update the xHC's
  3982. * internal data structures for the device.
  3983. */
  3984. int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
  3985. struct usb_tt *tt, gfp_t mem_flags)
  3986. {
  3987. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3988. struct xhci_virt_device *vdev;
  3989. struct xhci_command *config_cmd;
  3990. struct xhci_input_control_ctx *ctrl_ctx;
  3991. struct xhci_slot_ctx *slot_ctx;
  3992. unsigned long flags;
  3993. unsigned think_time;
  3994. int ret;
  3995. /* Ignore root hubs */
  3996. if (!hdev->parent)
  3997. return 0;
  3998. vdev = xhci->devs[hdev->slot_id];
  3999. if (!vdev) {
  4000. xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
  4001. return -EINVAL;
  4002. }
  4003. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  4004. if (!config_cmd) {
  4005. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  4006. return -ENOMEM;
  4007. }
  4008. spin_lock_irqsave(&xhci->lock, flags);
  4009. if (hdev->speed == USB_SPEED_HIGH &&
  4010. xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
  4011. xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
  4012. xhci_free_command(xhci, config_cmd);
  4013. spin_unlock_irqrestore(&xhci->lock, flags);
  4014. return -ENOMEM;
  4015. }
  4016. xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
  4017. ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
  4018. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  4019. slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
  4020. slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
  4021. if (tt->multi)
  4022. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  4023. if (xhci->hci_version > 0x95) {
  4024. xhci_dbg(xhci, "xHCI version %x needs hub "
  4025. "TT think time and number of ports\n",
  4026. (unsigned int) xhci->hci_version);
  4027. slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
  4028. /* Set TT think time - convert from ns to FS bit times.
  4029. * 0 = 8 FS bit times, 1 = 16 FS bit times,
  4030. * 2 = 24 FS bit times, 3 = 32 FS bit times.
  4031. *
  4032. * xHCI 1.0: this field shall be 0 if the device is not a
  4033. * High-spped hub.
  4034. */
  4035. think_time = tt->think_time;
  4036. if (think_time != 0)
  4037. think_time = (think_time / 666) - 1;
  4038. if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
  4039. slot_ctx->tt_info |=
  4040. cpu_to_le32(TT_THINK_TIME(think_time));
  4041. } else {
  4042. xhci_dbg(xhci, "xHCI version %x doesn't need hub "
  4043. "TT think time or number of ports\n",
  4044. (unsigned int) xhci->hci_version);
  4045. }
  4046. slot_ctx->dev_state = 0;
  4047. spin_unlock_irqrestore(&xhci->lock, flags);
  4048. xhci_dbg(xhci, "Set up %s for hub device.\n",
  4049. (xhci->hci_version > 0x95) ?
  4050. "configure endpoint" : "evaluate context");
  4051. xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
  4052. xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
  4053. /* Issue and wait for the configure endpoint or
  4054. * evaluate context command.
  4055. */
  4056. if (xhci->hci_version > 0x95)
  4057. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4058. false, false);
  4059. else
  4060. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4061. true, false);
  4062. xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
  4063. xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
  4064. xhci_free_command(xhci, config_cmd);
  4065. return ret;
  4066. }
  4067. int xhci_get_frame(struct usb_hcd *hcd)
  4068. {
  4069. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4070. /* EHCI mods by the periodic size. Why? */
  4071. return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
  4072. }
  4073. int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
  4074. {
  4075. struct xhci_hcd *xhci;
  4076. struct device *dev = hcd->self.controller;
  4077. int retval;
  4078. u32 temp;
  4079. /* Accept arbitrarily long scatter-gather lists */
  4080. hcd->self.sg_tablesize = ~0;
  4081. /* XHCI controllers don't stop the ep queue on short packets :| */
  4082. hcd->self.no_stop_on_short = 1;
  4083. if (usb_hcd_is_primary_hcd(hcd)) {
  4084. xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
  4085. if (!xhci)
  4086. return -ENOMEM;
  4087. *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
  4088. xhci->main_hcd = hcd;
  4089. /* Mark the first roothub as being USB 2.0.
  4090. * The xHCI driver will register the USB 3.0 roothub.
  4091. */
  4092. hcd->speed = HCD_USB2;
  4093. hcd->self.root_hub->speed = USB_SPEED_HIGH;
  4094. /*
  4095. * USB 2.0 roothub under xHCI has an integrated TT,
  4096. * (rate matching hub) as opposed to having an OHCI/UHCI
  4097. * companion controller.
  4098. */
  4099. hcd->has_tt = 1;
  4100. } else {
  4101. /* xHCI private pointer was set in xhci_pci_probe for the second
  4102. * registered roothub.
  4103. */
  4104. xhci = hcd_to_xhci(hcd);
  4105. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4106. if (HCC_64BIT_ADDR(temp)) {
  4107. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4108. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4109. } else {
  4110. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4111. }
  4112. return 0;
  4113. }
  4114. xhci->cap_regs = hcd->regs;
  4115. xhci->op_regs = hcd->regs +
  4116. HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
  4117. xhci->run_regs = hcd->regs +
  4118. (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
  4119. /* Cache read-only capability registers */
  4120. xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
  4121. xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
  4122. xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
  4123. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
  4124. xhci->hci_version = HC_VERSION(xhci->hcc_params);
  4125. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4126. xhci_print_registers(xhci);
  4127. get_quirks(dev, xhci);
  4128. /* Make sure the HC is halted. */
  4129. retval = xhci_halt(xhci);
  4130. if (retval)
  4131. goto error;
  4132. xhci_dbg(xhci, "Resetting HCD\n");
  4133. /* Reset the internal HC memory state and registers. */
  4134. retval = xhci_reset(xhci);
  4135. if (retval)
  4136. goto error;
  4137. xhci_dbg(xhci, "Reset complete\n");
  4138. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4139. if (HCC_64BIT_ADDR(temp)) {
  4140. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4141. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4142. } else {
  4143. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4144. }
  4145. xhci_dbg(xhci, "Calling HCD init\n");
  4146. /* Initialize HCD and host controller data structures. */
  4147. retval = xhci_init(hcd);
  4148. if (retval)
  4149. goto error;
  4150. xhci_dbg(xhci, "Called HCD init\n");
  4151. return 0;
  4152. error:
  4153. kfree(xhci);
  4154. return retval;
  4155. }
  4156. MODULE_DESCRIPTION(DRIVER_DESC);
  4157. MODULE_AUTHOR(DRIVER_AUTHOR);
  4158. MODULE_LICENSE("GPL");
  4159. static int __init xhci_hcd_init(void)
  4160. {
  4161. int retval;
  4162. retval = xhci_register_pci();
  4163. if (retval < 0) {
  4164. printk(KERN_DEBUG "Problem registering PCI driver.");
  4165. return retval;
  4166. }
  4167. retval = xhci_register_plat();
  4168. if (retval < 0) {
  4169. printk(KERN_DEBUG "Problem registering platform driver.");
  4170. goto unreg_pci;
  4171. }
  4172. /*
  4173. * Check the compiler generated sizes of structures that must be laid
  4174. * out in specific ways for hardware access.
  4175. */
  4176. BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
  4177. BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
  4178. BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
  4179. /* xhci_device_control has eight fields, and also
  4180. * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
  4181. */
  4182. BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
  4183. BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
  4184. BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
  4185. BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
  4186. BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
  4187. /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
  4188. BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
  4189. return 0;
  4190. unreg_pci:
  4191. xhci_unregister_pci();
  4192. return retval;
  4193. }
  4194. module_init(xhci_hcd_init);
  4195. static void __exit xhci_hcd_cleanup(void)
  4196. {
  4197. xhci_unregister_pci();
  4198. xhci_unregister_plat();
  4199. }
  4200. module_exit(xhci_hcd_cleanup);