mv_udc_core.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533
  1. /*
  2. * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
  3. * Author: Chao Xie <chao.xie@marvell.com>
  4. * Neil Zhang <zhangwm@marvell.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or (at your
  9. * option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/dmapool.h>
  15. #include <linux/kernel.h>
  16. #include <linux/delay.h>
  17. #include <linux/ioport.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/errno.h>
  21. #include <linux/err.h>
  22. #include <linux/init.h>
  23. #include <linux/timer.h>
  24. #include <linux/list.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/device.h>
  28. #include <linux/usb/ch9.h>
  29. #include <linux/usb/gadget.h>
  30. #include <linux/usb/otg.h>
  31. #include <linux/pm.h>
  32. #include <linux/io.h>
  33. #include <linux/irq.h>
  34. #include <linux/platform_device.h>
  35. #include <linux/clk.h>
  36. #include <linux/platform_data/mv_usb.h>
  37. #include <asm/unaligned.h>
  38. #include "mv_udc.h"
  39. #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
  40. #define DRIVER_VERSION "8 Nov 2010"
  41. #define ep_dir(ep) (((ep)->ep_num == 0) ? \
  42. ((ep)->udc->ep0_dir) : ((ep)->direction))
  43. /* timeout value -- usec */
  44. #define RESET_TIMEOUT 10000
  45. #define FLUSH_TIMEOUT 10000
  46. #define EPSTATUS_TIMEOUT 10000
  47. #define PRIME_TIMEOUT 10000
  48. #define READSAFE_TIMEOUT 1000
  49. #define LOOPS_USEC_SHIFT 1
  50. #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
  51. #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
  52. static DECLARE_COMPLETION(release_done);
  53. static const char driver_name[] = "mv_udc";
  54. static const char driver_desc[] = DRIVER_DESC;
  55. /* controller device global variable */
  56. static struct mv_udc *the_controller;
  57. static void nuke(struct mv_ep *ep, int status);
  58. static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
  59. /* for endpoint 0 operations */
  60. static const struct usb_endpoint_descriptor mv_ep0_desc = {
  61. .bLength = USB_DT_ENDPOINT_SIZE,
  62. .bDescriptorType = USB_DT_ENDPOINT,
  63. .bEndpointAddress = 0,
  64. .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
  65. .wMaxPacketSize = EP0_MAX_PKT_SIZE,
  66. };
  67. static void ep0_reset(struct mv_udc *udc)
  68. {
  69. struct mv_ep *ep;
  70. u32 epctrlx;
  71. int i = 0;
  72. /* ep0 in and out */
  73. for (i = 0; i < 2; i++) {
  74. ep = &udc->eps[i];
  75. ep->udc = udc;
  76. /* ep0 dQH */
  77. ep->dqh = &udc->ep_dqh[i];
  78. /* configure ep0 endpoint capabilities in dQH */
  79. ep->dqh->max_packet_length =
  80. (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
  81. | EP_QUEUE_HEAD_IOS;
  82. ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
  83. epctrlx = readl(&udc->op_regs->epctrlx[0]);
  84. if (i) { /* TX */
  85. epctrlx |= EPCTRL_TX_ENABLE
  86. | (USB_ENDPOINT_XFER_CONTROL
  87. << EPCTRL_TX_EP_TYPE_SHIFT);
  88. } else { /* RX */
  89. epctrlx |= EPCTRL_RX_ENABLE
  90. | (USB_ENDPOINT_XFER_CONTROL
  91. << EPCTRL_RX_EP_TYPE_SHIFT);
  92. }
  93. writel(epctrlx, &udc->op_regs->epctrlx[0]);
  94. }
  95. }
  96. /* protocol ep0 stall, will automatically be cleared on new transaction */
  97. static void ep0_stall(struct mv_udc *udc)
  98. {
  99. u32 epctrlx;
  100. /* set TX and RX to stall */
  101. epctrlx = readl(&udc->op_regs->epctrlx[0]);
  102. epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
  103. writel(epctrlx, &udc->op_regs->epctrlx[0]);
  104. /* update ep0 state */
  105. udc->ep0_state = WAIT_FOR_SETUP;
  106. udc->ep0_dir = EP_DIR_OUT;
  107. }
  108. static int process_ep_req(struct mv_udc *udc, int index,
  109. struct mv_req *curr_req)
  110. {
  111. struct mv_dtd *curr_dtd;
  112. struct mv_dqh *curr_dqh;
  113. int td_complete, actual, remaining_length;
  114. int i, direction;
  115. int retval = 0;
  116. u32 errors;
  117. u32 bit_pos;
  118. curr_dqh = &udc->ep_dqh[index];
  119. direction = index % 2;
  120. curr_dtd = curr_req->head;
  121. td_complete = 0;
  122. actual = curr_req->req.length;
  123. for (i = 0; i < curr_req->dtd_count; i++) {
  124. if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
  125. dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
  126. udc->eps[index].name);
  127. return 1;
  128. }
  129. errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
  130. if (!errors) {
  131. remaining_length =
  132. (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
  133. >> DTD_LENGTH_BIT_POS;
  134. actual -= remaining_length;
  135. if (remaining_length) {
  136. if (direction) {
  137. dev_dbg(&udc->dev->dev,
  138. "TX dTD remains data\n");
  139. retval = -EPROTO;
  140. break;
  141. } else
  142. break;
  143. }
  144. } else {
  145. dev_info(&udc->dev->dev,
  146. "complete_tr error: ep=%d %s: error = 0x%x\n",
  147. index >> 1, direction ? "SEND" : "RECV",
  148. errors);
  149. if (errors & DTD_STATUS_HALTED) {
  150. /* Clear the errors and Halt condition */
  151. curr_dqh->size_ioc_int_sts &= ~errors;
  152. retval = -EPIPE;
  153. } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
  154. retval = -EPROTO;
  155. } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
  156. retval = -EILSEQ;
  157. }
  158. }
  159. if (i != curr_req->dtd_count - 1)
  160. curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
  161. }
  162. if (retval)
  163. return retval;
  164. if (direction == EP_DIR_OUT)
  165. bit_pos = 1 << curr_req->ep->ep_num;
  166. else
  167. bit_pos = 1 << (16 + curr_req->ep->ep_num);
  168. while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
  169. if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
  170. while (readl(&udc->op_regs->epstatus) & bit_pos)
  171. udelay(1);
  172. break;
  173. }
  174. udelay(1);
  175. }
  176. curr_req->req.actual = actual;
  177. return 0;
  178. }
  179. /*
  180. * done() - retire a request; caller blocked irqs
  181. * @status : request status to be set, only works when
  182. * request is still in progress.
  183. */
  184. static void done(struct mv_ep *ep, struct mv_req *req, int status)
  185. {
  186. struct mv_udc *udc = NULL;
  187. unsigned char stopped = ep->stopped;
  188. struct mv_dtd *curr_td, *next_td;
  189. int j;
  190. udc = (struct mv_udc *)ep->udc;
  191. /* Removed the req from fsl_ep->queue */
  192. list_del_init(&req->queue);
  193. /* req.status should be set as -EINPROGRESS in ep_queue() */
  194. if (req->req.status == -EINPROGRESS)
  195. req->req.status = status;
  196. else
  197. status = req->req.status;
  198. /* Free dtd for the request */
  199. next_td = req->head;
  200. for (j = 0; j < req->dtd_count; j++) {
  201. curr_td = next_td;
  202. if (j != req->dtd_count - 1)
  203. next_td = curr_td->next_dtd_virt;
  204. dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
  205. }
  206. if (req->mapped) {
  207. dma_unmap_single(ep->udc->gadget.dev.parent,
  208. req->req.dma, req->req.length,
  209. ((ep_dir(ep) == EP_DIR_IN) ?
  210. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  211. req->req.dma = DMA_ADDR_INVALID;
  212. req->mapped = 0;
  213. } else
  214. dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
  215. req->req.dma, req->req.length,
  216. ((ep_dir(ep) == EP_DIR_IN) ?
  217. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  218. if (status && (status != -ESHUTDOWN))
  219. dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
  220. ep->ep.name, &req->req, status,
  221. req->req.actual, req->req.length);
  222. ep->stopped = 1;
  223. spin_unlock(&ep->udc->lock);
  224. /*
  225. * complete() is from gadget layer,
  226. * eg fsg->bulk_in_complete()
  227. */
  228. if (req->req.complete)
  229. req->req.complete(&ep->ep, &req->req);
  230. spin_lock(&ep->udc->lock);
  231. ep->stopped = stopped;
  232. }
  233. static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
  234. {
  235. struct mv_udc *udc;
  236. struct mv_dqh *dqh;
  237. u32 bit_pos, direction;
  238. u32 usbcmd, epstatus;
  239. unsigned int loops;
  240. int retval = 0;
  241. udc = ep->udc;
  242. direction = ep_dir(ep);
  243. dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
  244. bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
  245. /* check if the pipe is empty */
  246. if (!(list_empty(&ep->queue))) {
  247. struct mv_req *lastreq;
  248. lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
  249. lastreq->tail->dtd_next =
  250. req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
  251. wmb();
  252. if (readl(&udc->op_regs->epprime) & bit_pos)
  253. goto done;
  254. loops = LOOPS(READSAFE_TIMEOUT);
  255. while (1) {
  256. /* start with setting the semaphores */
  257. usbcmd = readl(&udc->op_regs->usbcmd);
  258. usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
  259. writel(usbcmd, &udc->op_regs->usbcmd);
  260. /* read the endpoint status */
  261. epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
  262. /*
  263. * Reread the ATDTW semaphore bit to check if it is
  264. * cleared. When hardware see a hazard, it will clear
  265. * the bit or else we remain set to 1 and we can
  266. * proceed with priming of endpoint if not already
  267. * primed.
  268. */
  269. if (readl(&udc->op_regs->usbcmd)
  270. & USBCMD_ATDTW_TRIPWIRE_SET)
  271. break;
  272. loops--;
  273. if (loops == 0) {
  274. dev_err(&udc->dev->dev,
  275. "Timeout for ATDTW_TRIPWIRE...\n");
  276. retval = -ETIME;
  277. goto done;
  278. }
  279. udelay(LOOPS_USEC);
  280. }
  281. /* Clear the semaphore */
  282. usbcmd = readl(&udc->op_regs->usbcmd);
  283. usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
  284. writel(usbcmd, &udc->op_regs->usbcmd);
  285. if (epstatus)
  286. goto done;
  287. }
  288. /* Write dQH next pointer and terminate bit to 0 */
  289. dqh->next_dtd_ptr = req->head->td_dma
  290. & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
  291. /* clear active and halt bit, in case set from a previous error */
  292. dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
  293. /* Ensure that updates to the QH will occure before priming. */
  294. wmb();
  295. /* Prime the Endpoint */
  296. writel(bit_pos, &udc->op_regs->epprime);
  297. done:
  298. return retval;
  299. }
  300. static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
  301. dma_addr_t *dma, int *is_last)
  302. {
  303. struct mv_dtd *dtd;
  304. struct mv_udc *udc;
  305. struct mv_dqh *dqh;
  306. u32 temp, mult = 0;
  307. /* how big will this transfer be? */
  308. if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
  309. dqh = req->ep->dqh;
  310. mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
  311. & 0x3;
  312. *length = min(req->req.length - req->req.actual,
  313. (unsigned)(mult * req->ep->ep.maxpacket));
  314. } else
  315. *length = min(req->req.length - req->req.actual,
  316. (unsigned)EP_MAX_LENGTH_TRANSFER);
  317. udc = req->ep->udc;
  318. /*
  319. * Be careful that no _GFP_HIGHMEM is set,
  320. * or we can not use dma_to_virt
  321. */
  322. dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
  323. if (dtd == NULL)
  324. return dtd;
  325. dtd->td_dma = *dma;
  326. /* initialize buffer page pointers */
  327. temp = (u32)(req->req.dma + req->req.actual);
  328. dtd->buff_ptr0 = cpu_to_le32(temp);
  329. temp &= ~0xFFF;
  330. dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
  331. dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
  332. dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
  333. dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
  334. req->req.actual += *length;
  335. /* zlp is needed if req->req.zero is set */
  336. if (req->req.zero) {
  337. if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
  338. *is_last = 1;
  339. else
  340. *is_last = 0;
  341. } else if (req->req.length == req->req.actual)
  342. *is_last = 1;
  343. else
  344. *is_last = 0;
  345. /* Fill in the transfer size; set active bit */
  346. temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
  347. /* Enable interrupt for the last dtd of a request */
  348. if (*is_last && !req->req.no_interrupt)
  349. temp |= DTD_IOC;
  350. temp |= mult << 10;
  351. dtd->size_ioc_sts = temp;
  352. mb();
  353. return dtd;
  354. }
  355. /* generate dTD linked list for a request */
  356. static int req_to_dtd(struct mv_req *req)
  357. {
  358. unsigned count;
  359. int is_last, is_first = 1;
  360. struct mv_dtd *dtd, *last_dtd = NULL;
  361. struct mv_udc *udc;
  362. dma_addr_t dma;
  363. udc = req->ep->udc;
  364. do {
  365. dtd = build_dtd(req, &count, &dma, &is_last);
  366. if (dtd == NULL)
  367. return -ENOMEM;
  368. if (is_first) {
  369. is_first = 0;
  370. req->head = dtd;
  371. } else {
  372. last_dtd->dtd_next = dma;
  373. last_dtd->next_dtd_virt = dtd;
  374. }
  375. last_dtd = dtd;
  376. req->dtd_count++;
  377. } while (!is_last);
  378. /* set terminate bit to 1 for the last dTD */
  379. dtd->dtd_next = DTD_NEXT_TERMINATE;
  380. req->tail = dtd;
  381. return 0;
  382. }
  383. static int mv_ep_enable(struct usb_ep *_ep,
  384. const struct usb_endpoint_descriptor *desc)
  385. {
  386. struct mv_udc *udc;
  387. struct mv_ep *ep;
  388. struct mv_dqh *dqh;
  389. u16 max = 0;
  390. u32 bit_pos, epctrlx, direction;
  391. unsigned char zlt = 0, ios = 0, mult = 0;
  392. unsigned long flags;
  393. ep = container_of(_ep, struct mv_ep, ep);
  394. udc = ep->udc;
  395. if (!_ep || !desc
  396. || desc->bDescriptorType != USB_DT_ENDPOINT)
  397. return -EINVAL;
  398. if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
  399. return -ESHUTDOWN;
  400. direction = ep_dir(ep);
  401. max = usb_endpoint_maxp(desc);
  402. /*
  403. * disable HW zero length termination select
  404. * driver handles zero length packet through req->req.zero
  405. */
  406. zlt = 1;
  407. bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
  408. /* Check if the Endpoint is Primed */
  409. if ((readl(&udc->op_regs->epprime) & bit_pos)
  410. || (readl(&udc->op_regs->epstatus) & bit_pos)) {
  411. dev_info(&udc->dev->dev,
  412. "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
  413. " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
  414. (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
  415. (unsigned)readl(&udc->op_regs->epprime),
  416. (unsigned)readl(&udc->op_regs->epstatus),
  417. (unsigned)bit_pos);
  418. goto en_done;
  419. }
  420. /* Set the max packet length, interrupt on Setup and Mult fields */
  421. switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
  422. case USB_ENDPOINT_XFER_BULK:
  423. zlt = 1;
  424. mult = 0;
  425. break;
  426. case USB_ENDPOINT_XFER_CONTROL:
  427. ios = 1;
  428. case USB_ENDPOINT_XFER_INT:
  429. mult = 0;
  430. break;
  431. case USB_ENDPOINT_XFER_ISOC:
  432. /* Calculate transactions needed for high bandwidth iso */
  433. mult = (unsigned char)(1 + ((max >> 11) & 0x03));
  434. max = max & 0x7ff; /* bit 0~10 */
  435. /* 3 transactions at most */
  436. if (mult > 3)
  437. goto en_done;
  438. break;
  439. default:
  440. goto en_done;
  441. }
  442. spin_lock_irqsave(&udc->lock, flags);
  443. /* Get the endpoint queue head address */
  444. dqh = ep->dqh;
  445. dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
  446. | (mult << EP_QUEUE_HEAD_MULT_POS)
  447. | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
  448. | (ios ? EP_QUEUE_HEAD_IOS : 0);
  449. dqh->next_dtd_ptr = 1;
  450. dqh->size_ioc_int_sts = 0;
  451. ep->ep.maxpacket = max;
  452. ep->ep.desc = desc;
  453. ep->stopped = 0;
  454. /* Enable the endpoint for Rx or Tx and set the endpoint type */
  455. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  456. if (direction == EP_DIR_IN) {
  457. epctrlx &= ~EPCTRL_TX_ALL_MASK;
  458. epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
  459. | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
  460. << EPCTRL_TX_EP_TYPE_SHIFT);
  461. } else {
  462. epctrlx &= ~EPCTRL_RX_ALL_MASK;
  463. epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
  464. | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
  465. << EPCTRL_RX_EP_TYPE_SHIFT);
  466. }
  467. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  468. /*
  469. * Implement Guideline (GL# USB-7) The unused endpoint type must
  470. * be programmed to bulk.
  471. */
  472. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  473. if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
  474. epctrlx |= (USB_ENDPOINT_XFER_BULK
  475. << EPCTRL_RX_EP_TYPE_SHIFT);
  476. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  477. }
  478. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  479. if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
  480. epctrlx |= (USB_ENDPOINT_XFER_BULK
  481. << EPCTRL_TX_EP_TYPE_SHIFT);
  482. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  483. }
  484. spin_unlock_irqrestore(&udc->lock, flags);
  485. return 0;
  486. en_done:
  487. return -EINVAL;
  488. }
  489. static int mv_ep_disable(struct usb_ep *_ep)
  490. {
  491. struct mv_udc *udc;
  492. struct mv_ep *ep;
  493. struct mv_dqh *dqh;
  494. u32 bit_pos, epctrlx, direction;
  495. unsigned long flags;
  496. ep = container_of(_ep, struct mv_ep, ep);
  497. if ((_ep == NULL) || !ep->ep.desc)
  498. return -EINVAL;
  499. udc = ep->udc;
  500. /* Get the endpoint queue head address */
  501. dqh = ep->dqh;
  502. spin_lock_irqsave(&udc->lock, flags);
  503. direction = ep_dir(ep);
  504. bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
  505. /* Reset the max packet length and the interrupt on Setup */
  506. dqh->max_packet_length = 0;
  507. /* Disable the endpoint for Rx or Tx and reset the endpoint type */
  508. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  509. epctrlx &= ~((direction == EP_DIR_IN)
  510. ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
  511. : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
  512. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  513. /* nuke all pending requests (does flush) */
  514. nuke(ep, -ESHUTDOWN);
  515. ep->ep.desc = NULL;
  516. ep->stopped = 1;
  517. spin_unlock_irqrestore(&udc->lock, flags);
  518. return 0;
  519. }
  520. static struct usb_request *
  521. mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
  522. {
  523. struct mv_req *req = NULL;
  524. req = kzalloc(sizeof *req, gfp_flags);
  525. if (!req)
  526. return NULL;
  527. req->req.dma = DMA_ADDR_INVALID;
  528. INIT_LIST_HEAD(&req->queue);
  529. return &req->req;
  530. }
  531. static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
  532. {
  533. struct mv_req *req = NULL;
  534. req = container_of(_req, struct mv_req, req);
  535. if (_req)
  536. kfree(req);
  537. }
  538. static void mv_ep_fifo_flush(struct usb_ep *_ep)
  539. {
  540. struct mv_udc *udc;
  541. u32 bit_pos, direction;
  542. struct mv_ep *ep;
  543. unsigned int loops;
  544. if (!_ep)
  545. return;
  546. ep = container_of(_ep, struct mv_ep, ep);
  547. if (!ep->ep.desc)
  548. return;
  549. udc = ep->udc;
  550. direction = ep_dir(ep);
  551. if (ep->ep_num == 0)
  552. bit_pos = (1 << 16) | 1;
  553. else if (direction == EP_DIR_OUT)
  554. bit_pos = 1 << ep->ep_num;
  555. else
  556. bit_pos = 1 << (16 + ep->ep_num);
  557. loops = LOOPS(EPSTATUS_TIMEOUT);
  558. do {
  559. unsigned int inter_loops;
  560. if (loops == 0) {
  561. dev_err(&udc->dev->dev,
  562. "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
  563. (unsigned)readl(&udc->op_regs->epstatus),
  564. (unsigned)bit_pos);
  565. return;
  566. }
  567. /* Write 1 to the Flush register */
  568. writel(bit_pos, &udc->op_regs->epflush);
  569. /* Wait until flushing completed */
  570. inter_loops = LOOPS(FLUSH_TIMEOUT);
  571. while (readl(&udc->op_regs->epflush)) {
  572. /*
  573. * ENDPTFLUSH bit should be cleared to indicate this
  574. * operation is complete
  575. */
  576. if (inter_loops == 0) {
  577. dev_err(&udc->dev->dev,
  578. "TIMEOUT for ENDPTFLUSH=0x%x,"
  579. "bit_pos=0x%x\n",
  580. (unsigned)readl(&udc->op_regs->epflush),
  581. (unsigned)bit_pos);
  582. return;
  583. }
  584. inter_loops--;
  585. udelay(LOOPS_USEC);
  586. }
  587. loops--;
  588. } while (readl(&udc->op_regs->epstatus) & bit_pos);
  589. }
  590. /* queues (submits) an I/O request to an endpoint */
  591. static int
  592. mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
  593. {
  594. struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
  595. struct mv_req *req = container_of(_req, struct mv_req, req);
  596. struct mv_udc *udc = ep->udc;
  597. unsigned long flags;
  598. int retval;
  599. /* catch various bogus parameters */
  600. if (!_req || !req->req.complete || !req->req.buf
  601. || !list_empty(&req->queue)) {
  602. dev_err(&udc->dev->dev, "%s, bad params", __func__);
  603. return -EINVAL;
  604. }
  605. if (unlikely(!_ep || !ep->ep.desc)) {
  606. dev_err(&udc->dev->dev, "%s, bad ep", __func__);
  607. return -EINVAL;
  608. }
  609. udc = ep->udc;
  610. if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
  611. return -ESHUTDOWN;
  612. req->ep = ep;
  613. /* map virtual address to hardware */
  614. if (req->req.dma == DMA_ADDR_INVALID) {
  615. req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
  616. req->req.buf,
  617. req->req.length, ep_dir(ep)
  618. ? DMA_TO_DEVICE
  619. : DMA_FROM_DEVICE);
  620. req->mapped = 1;
  621. } else {
  622. dma_sync_single_for_device(ep->udc->gadget.dev.parent,
  623. req->req.dma, req->req.length,
  624. ep_dir(ep)
  625. ? DMA_TO_DEVICE
  626. : DMA_FROM_DEVICE);
  627. req->mapped = 0;
  628. }
  629. req->req.status = -EINPROGRESS;
  630. req->req.actual = 0;
  631. req->dtd_count = 0;
  632. spin_lock_irqsave(&udc->lock, flags);
  633. /* build dtds and push them to device queue */
  634. if (!req_to_dtd(req)) {
  635. retval = queue_dtd(ep, req);
  636. if (retval) {
  637. spin_unlock_irqrestore(&udc->lock, flags);
  638. dev_err(&udc->dev->dev, "Failed to queue dtd\n");
  639. goto err_unmap_dma;
  640. }
  641. } else {
  642. spin_unlock_irqrestore(&udc->lock, flags);
  643. dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
  644. retval = -ENOMEM;
  645. goto err_unmap_dma;
  646. }
  647. /* Update ep0 state */
  648. if (ep->ep_num == 0)
  649. udc->ep0_state = DATA_STATE_XMIT;
  650. /* irq handler advances the queue */
  651. list_add_tail(&req->queue, &ep->queue);
  652. spin_unlock_irqrestore(&udc->lock, flags);
  653. return 0;
  654. err_unmap_dma:
  655. if (req->mapped) {
  656. dma_unmap_single(ep->udc->gadget.dev.parent,
  657. req->req.dma, req->req.length,
  658. ((ep_dir(ep) == EP_DIR_IN) ?
  659. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  660. req->req.dma = DMA_ADDR_INVALID;
  661. req->mapped = 0;
  662. } else
  663. dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
  664. req->req.dma, req->req.length,
  665. ((ep_dir(ep) == EP_DIR_IN) ?
  666. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  667. return retval;
  668. }
  669. static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
  670. {
  671. struct mv_dqh *dqh = ep->dqh;
  672. u32 bit_pos;
  673. /* Write dQH next pointer and terminate bit to 0 */
  674. dqh->next_dtd_ptr = req->head->td_dma
  675. & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
  676. /* clear active and halt bit, in case set from a previous error */
  677. dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
  678. /* Ensure that updates to the QH will occure before priming. */
  679. wmb();
  680. bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
  681. /* Prime the Endpoint */
  682. writel(bit_pos, &ep->udc->op_regs->epprime);
  683. }
  684. /* dequeues (cancels, unlinks) an I/O request from an endpoint */
  685. static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
  686. {
  687. struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
  688. struct mv_req *req;
  689. struct mv_udc *udc = ep->udc;
  690. unsigned long flags;
  691. int stopped, ret = 0;
  692. u32 epctrlx;
  693. if (!_ep || !_req)
  694. return -EINVAL;
  695. spin_lock_irqsave(&ep->udc->lock, flags);
  696. stopped = ep->stopped;
  697. /* Stop the ep before we deal with the queue */
  698. ep->stopped = 1;
  699. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  700. if (ep_dir(ep) == EP_DIR_IN)
  701. epctrlx &= ~EPCTRL_TX_ENABLE;
  702. else
  703. epctrlx &= ~EPCTRL_RX_ENABLE;
  704. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  705. /* make sure it's actually queued on this endpoint */
  706. list_for_each_entry(req, &ep->queue, queue) {
  707. if (&req->req == _req)
  708. break;
  709. }
  710. if (&req->req != _req) {
  711. ret = -EINVAL;
  712. goto out;
  713. }
  714. /* The request is in progress, or completed but not dequeued */
  715. if (ep->queue.next == &req->queue) {
  716. _req->status = -ECONNRESET;
  717. mv_ep_fifo_flush(_ep); /* flush current transfer */
  718. /* The request isn't the last request in this ep queue */
  719. if (req->queue.next != &ep->queue) {
  720. struct mv_req *next_req;
  721. next_req = list_entry(req->queue.next,
  722. struct mv_req, queue);
  723. /* Point the QH to the first TD of next request */
  724. mv_prime_ep(ep, next_req);
  725. } else {
  726. struct mv_dqh *qh;
  727. qh = ep->dqh;
  728. qh->next_dtd_ptr = 1;
  729. qh->size_ioc_int_sts = 0;
  730. }
  731. /* The request hasn't been processed, patch up the TD chain */
  732. } else {
  733. struct mv_req *prev_req;
  734. prev_req = list_entry(req->queue.prev, struct mv_req, queue);
  735. writel(readl(&req->tail->dtd_next),
  736. &prev_req->tail->dtd_next);
  737. }
  738. done(ep, req, -ECONNRESET);
  739. /* Enable EP */
  740. out:
  741. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  742. if (ep_dir(ep) == EP_DIR_IN)
  743. epctrlx |= EPCTRL_TX_ENABLE;
  744. else
  745. epctrlx |= EPCTRL_RX_ENABLE;
  746. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  747. ep->stopped = stopped;
  748. spin_unlock_irqrestore(&ep->udc->lock, flags);
  749. return ret;
  750. }
  751. static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
  752. {
  753. u32 epctrlx;
  754. epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
  755. if (stall) {
  756. if (direction == EP_DIR_IN)
  757. epctrlx |= EPCTRL_TX_EP_STALL;
  758. else
  759. epctrlx |= EPCTRL_RX_EP_STALL;
  760. } else {
  761. if (direction == EP_DIR_IN) {
  762. epctrlx &= ~EPCTRL_TX_EP_STALL;
  763. epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
  764. } else {
  765. epctrlx &= ~EPCTRL_RX_EP_STALL;
  766. epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
  767. }
  768. }
  769. writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
  770. }
  771. static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
  772. {
  773. u32 epctrlx;
  774. epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
  775. if (direction == EP_DIR_OUT)
  776. return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
  777. else
  778. return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
  779. }
  780. static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
  781. {
  782. struct mv_ep *ep;
  783. unsigned long flags = 0;
  784. int status = 0;
  785. struct mv_udc *udc;
  786. ep = container_of(_ep, struct mv_ep, ep);
  787. udc = ep->udc;
  788. if (!_ep || !ep->ep.desc) {
  789. status = -EINVAL;
  790. goto out;
  791. }
  792. if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
  793. status = -EOPNOTSUPP;
  794. goto out;
  795. }
  796. /*
  797. * Attempt to halt IN ep will fail if any transfer requests
  798. * are still queue
  799. */
  800. if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
  801. status = -EAGAIN;
  802. goto out;
  803. }
  804. spin_lock_irqsave(&ep->udc->lock, flags);
  805. ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
  806. if (halt && wedge)
  807. ep->wedge = 1;
  808. else if (!halt)
  809. ep->wedge = 0;
  810. spin_unlock_irqrestore(&ep->udc->lock, flags);
  811. if (ep->ep_num == 0) {
  812. udc->ep0_state = WAIT_FOR_SETUP;
  813. udc->ep0_dir = EP_DIR_OUT;
  814. }
  815. out:
  816. return status;
  817. }
  818. static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
  819. {
  820. return mv_ep_set_halt_wedge(_ep, halt, 0);
  821. }
  822. static int mv_ep_set_wedge(struct usb_ep *_ep)
  823. {
  824. return mv_ep_set_halt_wedge(_ep, 1, 1);
  825. }
  826. static struct usb_ep_ops mv_ep_ops = {
  827. .enable = mv_ep_enable,
  828. .disable = mv_ep_disable,
  829. .alloc_request = mv_alloc_request,
  830. .free_request = mv_free_request,
  831. .queue = mv_ep_queue,
  832. .dequeue = mv_ep_dequeue,
  833. .set_wedge = mv_ep_set_wedge,
  834. .set_halt = mv_ep_set_halt,
  835. .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
  836. };
  837. static void udc_clock_enable(struct mv_udc *udc)
  838. {
  839. unsigned int i;
  840. for (i = 0; i < udc->clknum; i++)
  841. clk_enable(udc->clk[i]);
  842. }
  843. static void udc_clock_disable(struct mv_udc *udc)
  844. {
  845. unsigned int i;
  846. for (i = 0; i < udc->clknum; i++)
  847. clk_disable(udc->clk[i]);
  848. }
  849. static void udc_stop(struct mv_udc *udc)
  850. {
  851. u32 tmp;
  852. /* Disable interrupts */
  853. tmp = readl(&udc->op_regs->usbintr);
  854. tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
  855. USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
  856. writel(tmp, &udc->op_regs->usbintr);
  857. udc->stopped = 1;
  858. /* Reset the Run the bit in the command register to stop VUSB */
  859. tmp = readl(&udc->op_regs->usbcmd);
  860. tmp &= ~USBCMD_RUN_STOP;
  861. writel(tmp, &udc->op_regs->usbcmd);
  862. }
  863. static void udc_start(struct mv_udc *udc)
  864. {
  865. u32 usbintr;
  866. usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
  867. | USBINTR_PORT_CHANGE_DETECT_EN
  868. | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
  869. /* Enable interrupts */
  870. writel(usbintr, &udc->op_regs->usbintr);
  871. udc->stopped = 0;
  872. /* Set the Run bit in the command register */
  873. writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
  874. }
  875. static int udc_reset(struct mv_udc *udc)
  876. {
  877. unsigned int loops;
  878. u32 tmp, portsc;
  879. /* Stop the controller */
  880. tmp = readl(&udc->op_regs->usbcmd);
  881. tmp &= ~USBCMD_RUN_STOP;
  882. writel(tmp, &udc->op_regs->usbcmd);
  883. /* Reset the controller to get default values */
  884. writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
  885. /* wait for reset to complete */
  886. loops = LOOPS(RESET_TIMEOUT);
  887. while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
  888. if (loops == 0) {
  889. dev_err(&udc->dev->dev,
  890. "Wait for RESET completed TIMEOUT\n");
  891. return -ETIMEDOUT;
  892. }
  893. loops--;
  894. udelay(LOOPS_USEC);
  895. }
  896. /* set controller to device mode */
  897. tmp = readl(&udc->op_regs->usbmode);
  898. tmp |= USBMODE_CTRL_MODE_DEVICE;
  899. /* turn setup lockout off, require setup tripwire in usbcmd */
  900. tmp |= USBMODE_SETUP_LOCK_OFF;
  901. writel(tmp, &udc->op_regs->usbmode);
  902. writel(0x0, &udc->op_regs->epsetupstat);
  903. /* Configure the Endpoint List Address */
  904. writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
  905. &udc->op_regs->eplistaddr);
  906. portsc = readl(&udc->op_regs->portsc[0]);
  907. if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
  908. portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
  909. if (udc->force_fs)
  910. portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
  911. else
  912. portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
  913. writel(portsc, &udc->op_regs->portsc[0]);
  914. tmp = readl(&udc->op_regs->epctrlx[0]);
  915. tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
  916. writel(tmp, &udc->op_regs->epctrlx[0]);
  917. return 0;
  918. }
  919. static int mv_udc_enable_internal(struct mv_udc *udc)
  920. {
  921. int retval;
  922. if (udc->active)
  923. return 0;
  924. dev_dbg(&udc->dev->dev, "enable udc\n");
  925. udc_clock_enable(udc);
  926. if (udc->pdata->phy_init) {
  927. retval = udc->pdata->phy_init(udc->phy_regs);
  928. if (retval) {
  929. dev_err(&udc->dev->dev,
  930. "init phy error %d\n", retval);
  931. udc_clock_disable(udc);
  932. return retval;
  933. }
  934. }
  935. udc->active = 1;
  936. return 0;
  937. }
  938. static int mv_udc_enable(struct mv_udc *udc)
  939. {
  940. if (udc->clock_gating)
  941. return mv_udc_enable_internal(udc);
  942. return 0;
  943. }
  944. static void mv_udc_disable_internal(struct mv_udc *udc)
  945. {
  946. if (udc->active) {
  947. dev_dbg(&udc->dev->dev, "disable udc\n");
  948. if (udc->pdata->phy_deinit)
  949. udc->pdata->phy_deinit(udc->phy_regs);
  950. udc_clock_disable(udc);
  951. udc->active = 0;
  952. }
  953. }
  954. static void mv_udc_disable(struct mv_udc *udc)
  955. {
  956. if (udc->clock_gating)
  957. mv_udc_disable_internal(udc);
  958. }
  959. static int mv_udc_get_frame(struct usb_gadget *gadget)
  960. {
  961. struct mv_udc *udc;
  962. u16 retval;
  963. if (!gadget)
  964. return -ENODEV;
  965. udc = container_of(gadget, struct mv_udc, gadget);
  966. retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
  967. return retval;
  968. }
  969. /* Tries to wake up the host connected to this gadget */
  970. static int mv_udc_wakeup(struct usb_gadget *gadget)
  971. {
  972. struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
  973. u32 portsc;
  974. /* Remote wakeup feature not enabled by host */
  975. if (!udc->remote_wakeup)
  976. return -ENOTSUPP;
  977. portsc = readl(&udc->op_regs->portsc);
  978. /* not suspended? */
  979. if (!(portsc & PORTSCX_PORT_SUSPEND))
  980. return 0;
  981. /* trigger force resume */
  982. portsc |= PORTSCX_PORT_FORCE_RESUME;
  983. writel(portsc, &udc->op_regs->portsc[0]);
  984. return 0;
  985. }
  986. static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
  987. {
  988. struct mv_udc *udc;
  989. unsigned long flags;
  990. int retval = 0;
  991. udc = container_of(gadget, struct mv_udc, gadget);
  992. spin_lock_irqsave(&udc->lock, flags);
  993. udc->vbus_active = (is_active != 0);
  994. dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
  995. __func__, udc->softconnect, udc->vbus_active);
  996. if (udc->driver && udc->softconnect && udc->vbus_active) {
  997. retval = mv_udc_enable(udc);
  998. if (retval == 0) {
  999. /* Clock is disabled, need re-init registers */
  1000. udc_reset(udc);
  1001. ep0_reset(udc);
  1002. udc_start(udc);
  1003. }
  1004. } else if (udc->driver && udc->softconnect) {
  1005. if (!udc->active)
  1006. goto out;
  1007. /* stop all the transfer in queue*/
  1008. stop_activity(udc, udc->driver);
  1009. udc_stop(udc);
  1010. mv_udc_disable(udc);
  1011. }
  1012. out:
  1013. spin_unlock_irqrestore(&udc->lock, flags);
  1014. return retval;
  1015. }
  1016. static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
  1017. {
  1018. struct mv_udc *udc;
  1019. unsigned long flags;
  1020. int retval = 0;
  1021. udc = container_of(gadget, struct mv_udc, gadget);
  1022. spin_lock_irqsave(&udc->lock, flags);
  1023. udc->softconnect = (is_on != 0);
  1024. dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
  1025. __func__, udc->softconnect, udc->vbus_active);
  1026. if (udc->driver && udc->softconnect && udc->vbus_active) {
  1027. retval = mv_udc_enable(udc);
  1028. if (retval == 0) {
  1029. /* Clock is disabled, need re-init registers */
  1030. udc_reset(udc);
  1031. ep0_reset(udc);
  1032. udc_start(udc);
  1033. }
  1034. } else if (udc->driver && udc->vbus_active) {
  1035. /* stop all the transfer in queue*/
  1036. stop_activity(udc, udc->driver);
  1037. udc_stop(udc);
  1038. mv_udc_disable(udc);
  1039. }
  1040. spin_unlock_irqrestore(&udc->lock, flags);
  1041. return retval;
  1042. }
  1043. static int mv_udc_start(struct usb_gadget_driver *driver,
  1044. int (*bind)(struct usb_gadget *, struct usb_gadget_driver *));
  1045. static int mv_udc_stop(struct usb_gadget_driver *driver);
  1046. /* device controller usb_gadget_ops structure */
  1047. static const struct usb_gadget_ops mv_ops = {
  1048. /* returns the current frame number */
  1049. .get_frame = mv_udc_get_frame,
  1050. /* tries to wake up the host connected to this gadget */
  1051. .wakeup = mv_udc_wakeup,
  1052. /* notify controller that VBUS is powered or not */
  1053. .vbus_session = mv_udc_vbus_session,
  1054. /* D+ pullup, software-controlled connect/disconnect to USB host */
  1055. .pullup = mv_udc_pullup,
  1056. .start = mv_udc_start,
  1057. .stop = mv_udc_stop,
  1058. };
  1059. static int eps_init(struct mv_udc *udc)
  1060. {
  1061. struct mv_ep *ep;
  1062. char name[14];
  1063. int i;
  1064. /* initialize ep0 */
  1065. ep = &udc->eps[0];
  1066. ep->udc = udc;
  1067. strncpy(ep->name, "ep0", sizeof(ep->name));
  1068. ep->ep.name = ep->name;
  1069. ep->ep.ops = &mv_ep_ops;
  1070. ep->wedge = 0;
  1071. ep->stopped = 0;
  1072. ep->ep.maxpacket = EP0_MAX_PKT_SIZE;
  1073. ep->ep_num = 0;
  1074. ep->ep.desc = &mv_ep0_desc;
  1075. INIT_LIST_HEAD(&ep->queue);
  1076. ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
  1077. /* initialize other endpoints */
  1078. for (i = 2; i < udc->max_eps * 2; i++) {
  1079. ep = &udc->eps[i];
  1080. if (i % 2) {
  1081. snprintf(name, sizeof(name), "ep%din", i / 2);
  1082. ep->direction = EP_DIR_IN;
  1083. } else {
  1084. snprintf(name, sizeof(name), "ep%dout", i / 2);
  1085. ep->direction = EP_DIR_OUT;
  1086. }
  1087. ep->udc = udc;
  1088. strncpy(ep->name, name, sizeof(ep->name));
  1089. ep->ep.name = ep->name;
  1090. ep->ep.ops = &mv_ep_ops;
  1091. ep->stopped = 0;
  1092. ep->ep.maxpacket = (unsigned short) ~0;
  1093. ep->ep_num = i / 2;
  1094. INIT_LIST_HEAD(&ep->queue);
  1095. list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
  1096. ep->dqh = &udc->ep_dqh[i];
  1097. }
  1098. return 0;
  1099. }
  1100. /* delete all endpoint requests, called with spinlock held */
  1101. static void nuke(struct mv_ep *ep, int status)
  1102. {
  1103. /* called with spinlock held */
  1104. ep->stopped = 1;
  1105. /* endpoint fifo flush */
  1106. mv_ep_fifo_flush(&ep->ep);
  1107. while (!list_empty(&ep->queue)) {
  1108. struct mv_req *req = NULL;
  1109. req = list_entry(ep->queue.next, struct mv_req, queue);
  1110. done(ep, req, status);
  1111. }
  1112. }
  1113. /* stop all USB activities */
  1114. static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
  1115. {
  1116. struct mv_ep *ep;
  1117. nuke(&udc->eps[0], -ESHUTDOWN);
  1118. list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
  1119. nuke(ep, -ESHUTDOWN);
  1120. }
  1121. /* report disconnect; the driver is already quiesced */
  1122. if (driver) {
  1123. spin_unlock(&udc->lock);
  1124. driver->disconnect(&udc->gadget);
  1125. spin_lock(&udc->lock);
  1126. }
  1127. }
  1128. static int mv_udc_start(struct usb_gadget_driver *driver,
  1129. int (*bind)(struct usb_gadget *, struct usb_gadget_driver *))
  1130. {
  1131. struct mv_udc *udc = the_controller;
  1132. int retval = 0;
  1133. unsigned long flags;
  1134. if (!udc)
  1135. return -ENODEV;
  1136. if (udc->driver)
  1137. return -EBUSY;
  1138. spin_lock_irqsave(&udc->lock, flags);
  1139. /* hook up the driver ... */
  1140. driver->driver.bus = NULL;
  1141. udc->driver = driver;
  1142. udc->gadget.dev.driver = &driver->driver;
  1143. udc->usb_state = USB_STATE_ATTACHED;
  1144. udc->ep0_state = WAIT_FOR_SETUP;
  1145. udc->ep0_dir = EP_DIR_OUT;
  1146. spin_unlock_irqrestore(&udc->lock, flags);
  1147. retval = bind(&udc->gadget, driver);
  1148. if (retval) {
  1149. dev_err(&udc->dev->dev, "bind to driver %s --> %d\n",
  1150. driver->driver.name, retval);
  1151. udc->driver = NULL;
  1152. udc->gadget.dev.driver = NULL;
  1153. return retval;
  1154. }
  1155. if (!IS_ERR_OR_NULL(udc->transceiver)) {
  1156. retval = otg_set_peripheral(udc->transceiver->otg,
  1157. &udc->gadget);
  1158. if (retval) {
  1159. dev_err(&udc->dev->dev,
  1160. "unable to register peripheral to otg\n");
  1161. if (driver->unbind) {
  1162. driver->unbind(&udc->gadget);
  1163. udc->gadget.dev.driver = NULL;
  1164. udc->driver = NULL;
  1165. }
  1166. return retval;
  1167. }
  1168. }
  1169. /* pullup is always on */
  1170. mv_udc_pullup(&udc->gadget, 1);
  1171. /* When boot with cable attached, there will be no vbus irq occurred */
  1172. if (udc->qwork)
  1173. queue_work(udc->qwork, &udc->vbus_work);
  1174. return 0;
  1175. }
  1176. static int mv_udc_stop(struct usb_gadget_driver *driver)
  1177. {
  1178. struct mv_udc *udc = the_controller;
  1179. unsigned long flags;
  1180. if (!udc)
  1181. return -ENODEV;
  1182. spin_lock_irqsave(&udc->lock, flags);
  1183. mv_udc_enable(udc);
  1184. udc_stop(udc);
  1185. /* stop all usb activities */
  1186. udc->gadget.speed = USB_SPEED_UNKNOWN;
  1187. stop_activity(udc, driver);
  1188. mv_udc_disable(udc);
  1189. spin_unlock_irqrestore(&udc->lock, flags);
  1190. /* unbind gadget driver */
  1191. driver->unbind(&udc->gadget);
  1192. udc->gadget.dev.driver = NULL;
  1193. udc->driver = NULL;
  1194. return 0;
  1195. }
  1196. static void mv_set_ptc(struct mv_udc *udc, u32 mode)
  1197. {
  1198. u32 portsc;
  1199. portsc = readl(&udc->op_regs->portsc[0]);
  1200. portsc |= mode << 16;
  1201. writel(portsc, &udc->op_regs->portsc[0]);
  1202. }
  1203. static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
  1204. {
  1205. struct mv_udc *udc = the_controller;
  1206. struct mv_req *req = container_of(_req, struct mv_req, req);
  1207. unsigned long flags;
  1208. dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
  1209. spin_lock_irqsave(&udc->lock, flags);
  1210. if (req->test_mode) {
  1211. mv_set_ptc(udc, req->test_mode);
  1212. req->test_mode = 0;
  1213. }
  1214. spin_unlock_irqrestore(&udc->lock, flags);
  1215. }
  1216. static int
  1217. udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
  1218. {
  1219. int retval = 0;
  1220. struct mv_req *req;
  1221. struct mv_ep *ep;
  1222. ep = &udc->eps[0];
  1223. udc->ep0_dir = direction;
  1224. udc->ep0_state = WAIT_FOR_OUT_STATUS;
  1225. req = udc->status_req;
  1226. /* fill in the reqest structure */
  1227. if (empty == false) {
  1228. *((u16 *) req->req.buf) = cpu_to_le16(status);
  1229. req->req.length = 2;
  1230. } else
  1231. req->req.length = 0;
  1232. req->ep = ep;
  1233. req->req.status = -EINPROGRESS;
  1234. req->req.actual = 0;
  1235. if (udc->test_mode) {
  1236. req->req.complete = prime_status_complete;
  1237. req->test_mode = udc->test_mode;
  1238. udc->test_mode = 0;
  1239. } else
  1240. req->req.complete = NULL;
  1241. req->dtd_count = 0;
  1242. if (req->req.dma == DMA_ADDR_INVALID) {
  1243. req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
  1244. req->req.buf, req->req.length,
  1245. ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1246. req->mapped = 1;
  1247. }
  1248. /* prime the data phase */
  1249. if (!req_to_dtd(req)) {
  1250. retval = queue_dtd(ep, req);
  1251. if (retval) {
  1252. dev_err(&udc->dev->dev,
  1253. "Failed to queue dtd when prime status\n");
  1254. goto out;
  1255. }
  1256. } else{ /* no mem */
  1257. retval = -ENOMEM;
  1258. dev_err(&udc->dev->dev,
  1259. "Failed to dma_pool_alloc when prime status\n");
  1260. goto out;
  1261. }
  1262. list_add_tail(&req->queue, &ep->queue);
  1263. return 0;
  1264. out:
  1265. if (req->mapped) {
  1266. dma_unmap_single(ep->udc->gadget.dev.parent,
  1267. req->req.dma, req->req.length,
  1268. ((ep_dir(ep) == EP_DIR_IN) ?
  1269. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  1270. req->req.dma = DMA_ADDR_INVALID;
  1271. req->mapped = 0;
  1272. }
  1273. return retval;
  1274. }
  1275. static void mv_udc_testmode(struct mv_udc *udc, u16 index)
  1276. {
  1277. if (index <= TEST_FORCE_EN) {
  1278. udc->test_mode = index;
  1279. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1280. ep0_stall(udc);
  1281. } else
  1282. dev_err(&udc->dev->dev,
  1283. "This test mode(%d) is not supported\n", index);
  1284. }
  1285. static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1286. {
  1287. udc->dev_addr = (u8)setup->wValue;
  1288. /* update usb state */
  1289. udc->usb_state = USB_STATE_ADDRESS;
  1290. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1291. ep0_stall(udc);
  1292. }
  1293. static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
  1294. struct usb_ctrlrequest *setup)
  1295. {
  1296. u16 status = 0;
  1297. int retval;
  1298. if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
  1299. != (USB_DIR_IN | USB_TYPE_STANDARD))
  1300. return;
  1301. if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
  1302. status = 1 << USB_DEVICE_SELF_POWERED;
  1303. status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
  1304. } else if ((setup->bRequestType & USB_RECIP_MASK)
  1305. == USB_RECIP_INTERFACE) {
  1306. /* get interface status */
  1307. status = 0;
  1308. } else if ((setup->bRequestType & USB_RECIP_MASK)
  1309. == USB_RECIP_ENDPOINT) {
  1310. u8 ep_num, direction;
  1311. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1312. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1313. ? EP_DIR_IN : EP_DIR_OUT;
  1314. status = ep_is_stall(udc, ep_num, direction)
  1315. << USB_ENDPOINT_HALT;
  1316. }
  1317. retval = udc_prime_status(udc, EP_DIR_IN, status, false);
  1318. if (retval)
  1319. ep0_stall(udc);
  1320. else
  1321. udc->ep0_state = DATA_STATE_XMIT;
  1322. }
  1323. static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1324. {
  1325. u8 ep_num;
  1326. u8 direction;
  1327. struct mv_ep *ep;
  1328. if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1329. == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
  1330. switch (setup->wValue) {
  1331. case USB_DEVICE_REMOTE_WAKEUP:
  1332. udc->remote_wakeup = 0;
  1333. break;
  1334. default:
  1335. goto out;
  1336. }
  1337. } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1338. == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
  1339. switch (setup->wValue) {
  1340. case USB_ENDPOINT_HALT:
  1341. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1342. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1343. ? EP_DIR_IN : EP_DIR_OUT;
  1344. if (setup->wValue != 0 || setup->wLength != 0
  1345. || ep_num > udc->max_eps)
  1346. goto out;
  1347. ep = &udc->eps[ep_num * 2 + direction];
  1348. if (ep->wedge == 1)
  1349. break;
  1350. spin_unlock(&udc->lock);
  1351. ep_set_stall(udc, ep_num, direction, 0);
  1352. spin_lock(&udc->lock);
  1353. break;
  1354. default:
  1355. goto out;
  1356. }
  1357. } else
  1358. goto out;
  1359. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1360. ep0_stall(udc);
  1361. out:
  1362. return;
  1363. }
  1364. static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1365. {
  1366. u8 ep_num;
  1367. u8 direction;
  1368. if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1369. == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
  1370. switch (setup->wValue) {
  1371. case USB_DEVICE_REMOTE_WAKEUP:
  1372. udc->remote_wakeup = 1;
  1373. break;
  1374. case USB_DEVICE_TEST_MODE:
  1375. if (setup->wIndex & 0xFF
  1376. || udc->gadget.speed != USB_SPEED_HIGH)
  1377. ep0_stall(udc);
  1378. if (udc->usb_state != USB_STATE_CONFIGURED
  1379. && udc->usb_state != USB_STATE_ADDRESS
  1380. && udc->usb_state != USB_STATE_DEFAULT)
  1381. ep0_stall(udc);
  1382. mv_udc_testmode(udc, (setup->wIndex >> 8));
  1383. goto out;
  1384. default:
  1385. goto out;
  1386. }
  1387. } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1388. == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
  1389. switch (setup->wValue) {
  1390. case USB_ENDPOINT_HALT:
  1391. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1392. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1393. ? EP_DIR_IN : EP_DIR_OUT;
  1394. if (setup->wValue != 0 || setup->wLength != 0
  1395. || ep_num > udc->max_eps)
  1396. goto out;
  1397. spin_unlock(&udc->lock);
  1398. ep_set_stall(udc, ep_num, direction, 1);
  1399. spin_lock(&udc->lock);
  1400. break;
  1401. default:
  1402. goto out;
  1403. }
  1404. } else
  1405. goto out;
  1406. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1407. ep0_stall(udc);
  1408. out:
  1409. return;
  1410. }
  1411. static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
  1412. struct usb_ctrlrequest *setup)
  1413. {
  1414. bool delegate = false;
  1415. nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
  1416. dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
  1417. setup->bRequestType, setup->bRequest,
  1418. setup->wValue, setup->wIndex, setup->wLength);
  1419. /* We process some stardard setup requests here */
  1420. if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
  1421. switch (setup->bRequest) {
  1422. case USB_REQ_GET_STATUS:
  1423. ch9getstatus(udc, ep_num, setup);
  1424. break;
  1425. case USB_REQ_SET_ADDRESS:
  1426. ch9setaddress(udc, setup);
  1427. break;
  1428. case USB_REQ_CLEAR_FEATURE:
  1429. ch9clearfeature(udc, setup);
  1430. break;
  1431. case USB_REQ_SET_FEATURE:
  1432. ch9setfeature(udc, setup);
  1433. break;
  1434. default:
  1435. delegate = true;
  1436. }
  1437. } else
  1438. delegate = true;
  1439. /* delegate USB standard requests to the gadget driver */
  1440. if (delegate == true) {
  1441. /* USB requests handled by gadget */
  1442. if (setup->wLength) {
  1443. /* DATA phase from gadget, STATUS phase from udc */
  1444. udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
  1445. ? EP_DIR_IN : EP_DIR_OUT;
  1446. spin_unlock(&udc->lock);
  1447. if (udc->driver->setup(&udc->gadget,
  1448. &udc->local_setup_buff) < 0)
  1449. ep0_stall(udc);
  1450. spin_lock(&udc->lock);
  1451. udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
  1452. ? DATA_STATE_XMIT : DATA_STATE_RECV;
  1453. } else {
  1454. /* no DATA phase, IN STATUS phase from gadget */
  1455. udc->ep0_dir = EP_DIR_IN;
  1456. spin_unlock(&udc->lock);
  1457. if (udc->driver->setup(&udc->gadget,
  1458. &udc->local_setup_buff) < 0)
  1459. ep0_stall(udc);
  1460. spin_lock(&udc->lock);
  1461. udc->ep0_state = WAIT_FOR_OUT_STATUS;
  1462. }
  1463. }
  1464. }
  1465. /* complete DATA or STATUS phase of ep0 prime status phase if needed */
  1466. static void ep0_req_complete(struct mv_udc *udc,
  1467. struct mv_ep *ep0, struct mv_req *req)
  1468. {
  1469. u32 new_addr;
  1470. if (udc->usb_state == USB_STATE_ADDRESS) {
  1471. /* set the new address */
  1472. new_addr = (u32)udc->dev_addr;
  1473. writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
  1474. &udc->op_regs->deviceaddr);
  1475. }
  1476. done(ep0, req, 0);
  1477. switch (udc->ep0_state) {
  1478. case DATA_STATE_XMIT:
  1479. /* receive status phase */
  1480. if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
  1481. ep0_stall(udc);
  1482. break;
  1483. case DATA_STATE_RECV:
  1484. /* send status phase */
  1485. if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
  1486. ep0_stall(udc);
  1487. break;
  1488. case WAIT_FOR_OUT_STATUS:
  1489. udc->ep0_state = WAIT_FOR_SETUP;
  1490. break;
  1491. case WAIT_FOR_SETUP:
  1492. dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
  1493. break;
  1494. default:
  1495. ep0_stall(udc);
  1496. break;
  1497. }
  1498. }
  1499. static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
  1500. {
  1501. u32 temp;
  1502. struct mv_dqh *dqh;
  1503. dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
  1504. /* Clear bit in ENDPTSETUPSTAT */
  1505. writel((1 << ep_num), &udc->op_regs->epsetupstat);
  1506. /* while a hazard exists when setup package arrives */
  1507. do {
  1508. /* Set Setup Tripwire */
  1509. temp = readl(&udc->op_regs->usbcmd);
  1510. writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
  1511. /* Copy the setup packet to local buffer */
  1512. memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
  1513. } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
  1514. /* Clear Setup Tripwire */
  1515. temp = readl(&udc->op_regs->usbcmd);
  1516. writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
  1517. }
  1518. static void irq_process_tr_complete(struct mv_udc *udc)
  1519. {
  1520. u32 tmp, bit_pos;
  1521. int i, ep_num = 0, direction = 0;
  1522. struct mv_ep *curr_ep;
  1523. struct mv_req *curr_req, *temp_req;
  1524. int status;
  1525. /*
  1526. * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
  1527. * because the setup packets are to be read ASAP
  1528. */
  1529. /* Process all Setup packet received interrupts */
  1530. tmp = readl(&udc->op_regs->epsetupstat);
  1531. if (tmp) {
  1532. for (i = 0; i < udc->max_eps; i++) {
  1533. if (tmp & (1 << i)) {
  1534. get_setup_data(udc, i,
  1535. (u8 *)(&udc->local_setup_buff));
  1536. handle_setup_packet(udc, i,
  1537. &udc->local_setup_buff);
  1538. }
  1539. }
  1540. }
  1541. /* Don't clear the endpoint setup status register here.
  1542. * It is cleared as a setup packet is read out of the buffer
  1543. */
  1544. /* Process non-setup transaction complete interrupts */
  1545. tmp = readl(&udc->op_regs->epcomplete);
  1546. if (!tmp)
  1547. return;
  1548. writel(tmp, &udc->op_regs->epcomplete);
  1549. for (i = 0; i < udc->max_eps * 2; i++) {
  1550. ep_num = i >> 1;
  1551. direction = i % 2;
  1552. bit_pos = 1 << (ep_num + 16 * direction);
  1553. if (!(bit_pos & tmp))
  1554. continue;
  1555. if (i == 1)
  1556. curr_ep = &udc->eps[0];
  1557. else
  1558. curr_ep = &udc->eps[i];
  1559. /* process the req queue until an uncomplete request */
  1560. list_for_each_entry_safe(curr_req, temp_req,
  1561. &curr_ep->queue, queue) {
  1562. status = process_ep_req(udc, i, curr_req);
  1563. if (status)
  1564. break;
  1565. /* write back status to req */
  1566. curr_req->req.status = status;
  1567. /* ep0 request completion */
  1568. if (ep_num == 0) {
  1569. ep0_req_complete(udc, curr_ep, curr_req);
  1570. break;
  1571. } else {
  1572. done(curr_ep, curr_req, status);
  1573. }
  1574. }
  1575. }
  1576. }
  1577. void irq_process_reset(struct mv_udc *udc)
  1578. {
  1579. u32 tmp;
  1580. unsigned int loops;
  1581. udc->ep0_dir = EP_DIR_OUT;
  1582. udc->ep0_state = WAIT_FOR_SETUP;
  1583. udc->remote_wakeup = 0; /* default to 0 on reset */
  1584. /* The address bits are past bit 25-31. Set the address */
  1585. tmp = readl(&udc->op_regs->deviceaddr);
  1586. tmp &= ~(USB_DEVICE_ADDRESS_MASK);
  1587. writel(tmp, &udc->op_regs->deviceaddr);
  1588. /* Clear all the setup token semaphores */
  1589. tmp = readl(&udc->op_regs->epsetupstat);
  1590. writel(tmp, &udc->op_regs->epsetupstat);
  1591. /* Clear all the endpoint complete status bits */
  1592. tmp = readl(&udc->op_regs->epcomplete);
  1593. writel(tmp, &udc->op_regs->epcomplete);
  1594. /* wait until all endptprime bits cleared */
  1595. loops = LOOPS(PRIME_TIMEOUT);
  1596. while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
  1597. if (loops == 0) {
  1598. dev_err(&udc->dev->dev,
  1599. "Timeout for ENDPTPRIME = 0x%x\n",
  1600. readl(&udc->op_regs->epprime));
  1601. break;
  1602. }
  1603. loops--;
  1604. udelay(LOOPS_USEC);
  1605. }
  1606. /* Write 1s to the Flush register */
  1607. writel((u32)~0, &udc->op_regs->epflush);
  1608. if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
  1609. dev_info(&udc->dev->dev, "usb bus reset\n");
  1610. udc->usb_state = USB_STATE_DEFAULT;
  1611. /* reset all the queues, stop all USB activities */
  1612. stop_activity(udc, udc->driver);
  1613. } else {
  1614. dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
  1615. readl(&udc->op_regs->portsc));
  1616. /*
  1617. * re-initialize
  1618. * controller reset
  1619. */
  1620. udc_reset(udc);
  1621. /* reset all the queues, stop all USB activities */
  1622. stop_activity(udc, udc->driver);
  1623. /* reset ep0 dQH and endptctrl */
  1624. ep0_reset(udc);
  1625. /* enable interrupt and set controller to run state */
  1626. udc_start(udc);
  1627. udc->usb_state = USB_STATE_ATTACHED;
  1628. }
  1629. }
  1630. static void handle_bus_resume(struct mv_udc *udc)
  1631. {
  1632. udc->usb_state = udc->resume_state;
  1633. udc->resume_state = 0;
  1634. /* report resume to the driver */
  1635. if (udc->driver) {
  1636. if (udc->driver->resume) {
  1637. spin_unlock(&udc->lock);
  1638. udc->driver->resume(&udc->gadget);
  1639. spin_lock(&udc->lock);
  1640. }
  1641. }
  1642. }
  1643. static void irq_process_suspend(struct mv_udc *udc)
  1644. {
  1645. udc->resume_state = udc->usb_state;
  1646. udc->usb_state = USB_STATE_SUSPENDED;
  1647. if (udc->driver->suspend) {
  1648. spin_unlock(&udc->lock);
  1649. udc->driver->suspend(&udc->gadget);
  1650. spin_lock(&udc->lock);
  1651. }
  1652. }
  1653. static void irq_process_port_change(struct mv_udc *udc)
  1654. {
  1655. u32 portsc;
  1656. portsc = readl(&udc->op_regs->portsc[0]);
  1657. if (!(portsc & PORTSCX_PORT_RESET)) {
  1658. /* Get the speed */
  1659. u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
  1660. switch (speed) {
  1661. case PORTSCX_PORT_SPEED_HIGH:
  1662. udc->gadget.speed = USB_SPEED_HIGH;
  1663. break;
  1664. case PORTSCX_PORT_SPEED_FULL:
  1665. udc->gadget.speed = USB_SPEED_FULL;
  1666. break;
  1667. case PORTSCX_PORT_SPEED_LOW:
  1668. udc->gadget.speed = USB_SPEED_LOW;
  1669. break;
  1670. default:
  1671. udc->gadget.speed = USB_SPEED_UNKNOWN;
  1672. break;
  1673. }
  1674. }
  1675. if (portsc & PORTSCX_PORT_SUSPEND) {
  1676. udc->resume_state = udc->usb_state;
  1677. udc->usb_state = USB_STATE_SUSPENDED;
  1678. if (udc->driver->suspend) {
  1679. spin_unlock(&udc->lock);
  1680. udc->driver->suspend(&udc->gadget);
  1681. spin_lock(&udc->lock);
  1682. }
  1683. }
  1684. if (!(portsc & PORTSCX_PORT_SUSPEND)
  1685. && udc->usb_state == USB_STATE_SUSPENDED) {
  1686. handle_bus_resume(udc);
  1687. }
  1688. if (!udc->resume_state)
  1689. udc->usb_state = USB_STATE_DEFAULT;
  1690. }
  1691. static void irq_process_error(struct mv_udc *udc)
  1692. {
  1693. /* Increment the error count */
  1694. udc->errors++;
  1695. }
  1696. static irqreturn_t mv_udc_irq(int irq, void *dev)
  1697. {
  1698. struct mv_udc *udc = (struct mv_udc *)dev;
  1699. u32 status, intr;
  1700. /* Disable ISR when stopped bit is set */
  1701. if (udc->stopped)
  1702. return IRQ_NONE;
  1703. spin_lock(&udc->lock);
  1704. status = readl(&udc->op_regs->usbsts);
  1705. intr = readl(&udc->op_regs->usbintr);
  1706. status &= intr;
  1707. if (status == 0) {
  1708. spin_unlock(&udc->lock);
  1709. return IRQ_NONE;
  1710. }
  1711. /* Clear all the interrupts occurred */
  1712. writel(status, &udc->op_regs->usbsts);
  1713. if (status & USBSTS_ERR)
  1714. irq_process_error(udc);
  1715. if (status & USBSTS_RESET)
  1716. irq_process_reset(udc);
  1717. if (status & USBSTS_PORT_CHANGE)
  1718. irq_process_port_change(udc);
  1719. if (status & USBSTS_INT)
  1720. irq_process_tr_complete(udc);
  1721. if (status & USBSTS_SUSPEND)
  1722. irq_process_suspend(udc);
  1723. spin_unlock(&udc->lock);
  1724. return IRQ_HANDLED;
  1725. }
  1726. static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
  1727. {
  1728. struct mv_udc *udc = (struct mv_udc *)dev;
  1729. /* polling VBUS and init phy may cause too much time*/
  1730. if (udc->qwork)
  1731. queue_work(udc->qwork, &udc->vbus_work);
  1732. return IRQ_HANDLED;
  1733. }
  1734. static void mv_udc_vbus_work(struct work_struct *work)
  1735. {
  1736. struct mv_udc *udc;
  1737. unsigned int vbus;
  1738. udc = container_of(work, struct mv_udc, vbus_work);
  1739. if (!udc->pdata->vbus)
  1740. return;
  1741. vbus = udc->pdata->vbus->poll();
  1742. dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
  1743. if (vbus == VBUS_HIGH)
  1744. mv_udc_vbus_session(&udc->gadget, 1);
  1745. else if (vbus == VBUS_LOW)
  1746. mv_udc_vbus_session(&udc->gadget, 0);
  1747. }
  1748. /* release device structure */
  1749. static void gadget_release(struct device *_dev)
  1750. {
  1751. struct mv_udc *udc = the_controller;
  1752. complete(udc->done);
  1753. }
  1754. static int mv_udc_remove(struct platform_device *dev)
  1755. {
  1756. struct mv_udc *udc = the_controller;
  1757. int clk_i;
  1758. usb_del_gadget_udc(&udc->gadget);
  1759. if (udc->qwork) {
  1760. flush_workqueue(udc->qwork);
  1761. destroy_workqueue(udc->qwork);
  1762. }
  1763. /*
  1764. * If we have transceiver inited,
  1765. * then vbus irq will not be requested in udc driver.
  1766. */
  1767. if (udc->pdata && udc->pdata->vbus
  1768. && udc->clock_gating && IS_ERR_OR_NULL(udc->transceiver))
  1769. free_irq(udc->pdata->vbus->irq, &dev->dev);
  1770. /* free memory allocated in probe */
  1771. if (udc->dtd_pool)
  1772. dma_pool_destroy(udc->dtd_pool);
  1773. if (udc->ep_dqh)
  1774. dma_free_coherent(&dev->dev, udc->ep_dqh_size,
  1775. udc->ep_dqh, udc->ep_dqh_dma);
  1776. kfree(udc->eps);
  1777. if (udc->irq)
  1778. free_irq(udc->irq, &dev->dev);
  1779. mv_udc_disable(udc);
  1780. if (udc->cap_regs)
  1781. iounmap(udc->cap_regs);
  1782. if (udc->phy_regs)
  1783. iounmap(udc->phy_regs);
  1784. if (udc->status_req) {
  1785. kfree(udc->status_req->req.buf);
  1786. kfree(udc->status_req);
  1787. }
  1788. for (clk_i = 0; clk_i <= udc->clknum; clk_i++)
  1789. clk_put(udc->clk[clk_i]);
  1790. device_unregister(&udc->gadget.dev);
  1791. /* free dev, wait for the release() finished */
  1792. wait_for_completion(udc->done);
  1793. kfree(udc);
  1794. the_controller = NULL;
  1795. return 0;
  1796. }
  1797. static int mv_udc_probe(struct platform_device *dev)
  1798. {
  1799. struct mv_usb_platform_data *pdata = dev->dev.platform_data;
  1800. struct mv_udc *udc;
  1801. int retval = 0;
  1802. int clk_i = 0;
  1803. struct resource *r;
  1804. size_t size;
  1805. if (pdata == NULL) {
  1806. dev_err(&dev->dev, "missing platform_data\n");
  1807. return -ENODEV;
  1808. }
  1809. size = sizeof(*udc) + sizeof(struct clk *) * pdata->clknum;
  1810. udc = kzalloc(size, GFP_KERNEL);
  1811. if (udc == NULL) {
  1812. dev_err(&dev->dev, "failed to allocate memory for udc\n");
  1813. return -ENOMEM;
  1814. }
  1815. the_controller = udc;
  1816. udc->done = &release_done;
  1817. udc->pdata = dev->dev.platform_data;
  1818. spin_lock_init(&udc->lock);
  1819. udc->dev = dev;
  1820. #ifdef CONFIG_USB_OTG_UTILS
  1821. if (pdata->mode == MV_USB_MODE_OTG)
  1822. udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
  1823. #endif
  1824. udc->clknum = pdata->clknum;
  1825. for (clk_i = 0; clk_i < udc->clknum; clk_i++) {
  1826. udc->clk[clk_i] = clk_get(&dev->dev, pdata->clkname[clk_i]);
  1827. if (IS_ERR(udc->clk[clk_i])) {
  1828. retval = PTR_ERR(udc->clk[clk_i]);
  1829. goto err_put_clk;
  1830. }
  1831. }
  1832. r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
  1833. if (r == NULL) {
  1834. dev_err(&dev->dev, "no I/O memory resource defined\n");
  1835. retval = -ENODEV;
  1836. goto err_put_clk;
  1837. }
  1838. udc->cap_regs = (struct mv_cap_regs __iomem *)
  1839. ioremap(r->start, resource_size(r));
  1840. if (udc->cap_regs == NULL) {
  1841. dev_err(&dev->dev, "failed to map I/O memory\n");
  1842. retval = -EBUSY;
  1843. goto err_put_clk;
  1844. }
  1845. r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
  1846. if (r == NULL) {
  1847. dev_err(&dev->dev, "no phy I/O memory resource defined\n");
  1848. retval = -ENODEV;
  1849. goto err_iounmap_capreg;
  1850. }
  1851. udc->phy_regs = ioremap(r->start, resource_size(r));
  1852. if (udc->phy_regs == NULL) {
  1853. dev_err(&dev->dev, "failed to map phy I/O memory\n");
  1854. retval = -EBUSY;
  1855. goto err_iounmap_capreg;
  1856. }
  1857. /* we will acces controller register, so enable the clk */
  1858. retval = mv_udc_enable_internal(udc);
  1859. if (retval)
  1860. goto err_iounmap_phyreg;
  1861. udc->op_regs =
  1862. (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
  1863. + (readl(&udc->cap_regs->caplength_hciversion)
  1864. & CAPLENGTH_MASK));
  1865. udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
  1866. /*
  1867. * some platform will use usb to download image, it may not disconnect
  1868. * usb gadget before loading kernel. So first stop udc here.
  1869. */
  1870. udc_stop(udc);
  1871. writel(0xFFFFFFFF, &udc->op_regs->usbsts);
  1872. size = udc->max_eps * sizeof(struct mv_dqh) *2;
  1873. size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
  1874. udc->ep_dqh = dma_alloc_coherent(&dev->dev, size,
  1875. &udc->ep_dqh_dma, GFP_KERNEL);
  1876. if (udc->ep_dqh == NULL) {
  1877. dev_err(&dev->dev, "allocate dQH memory failed\n");
  1878. retval = -ENOMEM;
  1879. goto err_disable_clock;
  1880. }
  1881. udc->ep_dqh_size = size;
  1882. /* create dTD dma_pool resource */
  1883. udc->dtd_pool = dma_pool_create("mv_dtd",
  1884. &dev->dev,
  1885. sizeof(struct mv_dtd),
  1886. DTD_ALIGNMENT,
  1887. DMA_BOUNDARY);
  1888. if (!udc->dtd_pool) {
  1889. retval = -ENOMEM;
  1890. goto err_free_dma;
  1891. }
  1892. size = udc->max_eps * sizeof(struct mv_ep) *2;
  1893. udc->eps = kzalloc(size, GFP_KERNEL);
  1894. if (udc->eps == NULL) {
  1895. dev_err(&dev->dev, "allocate ep memory failed\n");
  1896. retval = -ENOMEM;
  1897. goto err_destroy_dma;
  1898. }
  1899. /* initialize ep0 status request structure */
  1900. udc->status_req = kzalloc(sizeof(struct mv_req), GFP_KERNEL);
  1901. if (!udc->status_req) {
  1902. dev_err(&dev->dev, "allocate status_req memory failed\n");
  1903. retval = -ENOMEM;
  1904. goto err_free_eps;
  1905. }
  1906. INIT_LIST_HEAD(&udc->status_req->queue);
  1907. /* allocate a small amount of memory to get valid address */
  1908. udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
  1909. udc->status_req->req.dma = DMA_ADDR_INVALID;
  1910. udc->resume_state = USB_STATE_NOTATTACHED;
  1911. udc->usb_state = USB_STATE_POWERED;
  1912. udc->ep0_dir = EP_DIR_OUT;
  1913. udc->remote_wakeup = 0;
  1914. r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
  1915. if (r == NULL) {
  1916. dev_err(&dev->dev, "no IRQ resource defined\n");
  1917. retval = -ENODEV;
  1918. goto err_free_status_req;
  1919. }
  1920. udc->irq = r->start;
  1921. if (request_irq(udc->irq, mv_udc_irq,
  1922. IRQF_SHARED, driver_name, udc)) {
  1923. dev_err(&dev->dev, "Request irq %d for UDC failed\n",
  1924. udc->irq);
  1925. retval = -ENODEV;
  1926. goto err_free_status_req;
  1927. }
  1928. /* initialize gadget structure */
  1929. udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
  1930. udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
  1931. INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
  1932. udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
  1933. udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
  1934. /* the "gadget" abstracts/virtualizes the controller */
  1935. dev_set_name(&udc->gadget.dev, "gadget");
  1936. udc->gadget.dev.parent = &dev->dev;
  1937. udc->gadget.dev.dma_mask = dev->dev.dma_mask;
  1938. udc->gadget.dev.release = gadget_release;
  1939. udc->gadget.name = driver_name; /* gadget name */
  1940. retval = device_register(&udc->gadget.dev);
  1941. if (retval)
  1942. goto err_free_irq;
  1943. eps_init(udc);
  1944. /* VBUS detect: we can disable/enable clock on demand.*/
  1945. if (!IS_ERR_OR_NULL(udc->transceiver))
  1946. udc->clock_gating = 1;
  1947. else if (pdata->vbus) {
  1948. udc->clock_gating = 1;
  1949. retval = request_threaded_irq(pdata->vbus->irq, NULL,
  1950. mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
  1951. if (retval) {
  1952. dev_info(&dev->dev,
  1953. "Can not request irq for VBUS, "
  1954. "disable clock gating\n");
  1955. udc->clock_gating = 0;
  1956. }
  1957. udc->qwork = create_singlethread_workqueue("mv_udc_queue");
  1958. if (!udc->qwork) {
  1959. dev_err(&dev->dev, "cannot create workqueue\n");
  1960. retval = -ENOMEM;
  1961. goto err_unregister;
  1962. }
  1963. INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
  1964. }
  1965. /*
  1966. * When clock gating is supported, we can disable clk and phy.
  1967. * If not, it means that VBUS detection is not supported, we
  1968. * have to enable vbus active all the time to let controller work.
  1969. */
  1970. if (udc->clock_gating)
  1971. mv_udc_disable_internal(udc);
  1972. else
  1973. udc->vbus_active = 1;
  1974. retval = usb_add_gadget_udc(&dev->dev, &udc->gadget);
  1975. if (retval)
  1976. goto err_unregister;
  1977. dev_info(&dev->dev, "successful probe UDC device %s clock gating.\n",
  1978. udc->clock_gating ? "with" : "without");
  1979. return 0;
  1980. err_unregister:
  1981. if (udc->pdata && udc->pdata->vbus
  1982. && udc->clock_gating && IS_ERR_OR_NULL(udc->transceiver))
  1983. free_irq(pdata->vbus->irq, &dev->dev);
  1984. device_unregister(&udc->gadget.dev);
  1985. err_free_irq:
  1986. free_irq(udc->irq, &dev->dev);
  1987. err_free_status_req:
  1988. kfree(udc->status_req->req.buf);
  1989. kfree(udc->status_req);
  1990. err_free_eps:
  1991. kfree(udc->eps);
  1992. err_destroy_dma:
  1993. dma_pool_destroy(udc->dtd_pool);
  1994. err_free_dma:
  1995. dma_free_coherent(&dev->dev, udc->ep_dqh_size,
  1996. udc->ep_dqh, udc->ep_dqh_dma);
  1997. err_disable_clock:
  1998. mv_udc_disable_internal(udc);
  1999. err_iounmap_phyreg:
  2000. iounmap(udc->phy_regs);
  2001. err_iounmap_capreg:
  2002. iounmap(udc->cap_regs);
  2003. err_put_clk:
  2004. for (clk_i--; clk_i >= 0; clk_i--)
  2005. clk_put(udc->clk[clk_i]);
  2006. the_controller = NULL;
  2007. kfree(udc);
  2008. return retval;
  2009. }
  2010. #ifdef CONFIG_PM
  2011. static int mv_udc_suspend(struct device *_dev)
  2012. {
  2013. struct mv_udc *udc = the_controller;
  2014. /* if OTG is enabled, the following will be done in OTG driver*/
  2015. if (!IS_ERR_OR_NULL(udc->transceiver))
  2016. return 0;
  2017. if (udc->pdata->vbus && udc->pdata->vbus->poll)
  2018. if (udc->pdata->vbus->poll() == VBUS_HIGH) {
  2019. dev_info(&udc->dev->dev, "USB cable is connected!\n");
  2020. return -EAGAIN;
  2021. }
  2022. /*
  2023. * only cable is unplugged, udc can suspend.
  2024. * So do not care about clock_gating == 1.
  2025. */
  2026. if (!udc->clock_gating) {
  2027. udc_stop(udc);
  2028. spin_lock_irq(&udc->lock);
  2029. /* stop all usb activities */
  2030. stop_activity(udc, udc->driver);
  2031. spin_unlock_irq(&udc->lock);
  2032. mv_udc_disable_internal(udc);
  2033. }
  2034. return 0;
  2035. }
  2036. static int mv_udc_resume(struct device *_dev)
  2037. {
  2038. struct mv_udc *udc = the_controller;
  2039. int retval;
  2040. /* if OTG is enabled, the following will be done in OTG driver*/
  2041. if (!IS_ERR_OR_NULL(udc->transceiver))
  2042. return 0;
  2043. if (!udc->clock_gating) {
  2044. retval = mv_udc_enable_internal(udc);
  2045. if (retval)
  2046. return retval;
  2047. if (udc->driver && udc->softconnect) {
  2048. udc_reset(udc);
  2049. ep0_reset(udc);
  2050. udc_start(udc);
  2051. }
  2052. }
  2053. return 0;
  2054. }
  2055. static const struct dev_pm_ops mv_udc_pm_ops = {
  2056. .suspend = mv_udc_suspend,
  2057. .resume = mv_udc_resume,
  2058. };
  2059. #endif
  2060. static void mv_udc_shutdown(struct platform_device *dev)
  2061. {
  2062. struct mv_udc *udc = the_controller;
  2063. u32 mode;
  2064. /* reset controller mode to IDLE */
  2065. mv_udc_enable(udc);
  2066. mode = readl(&udc->op_regs->usbmode);
  2067. mode &= ~3;
  2068. writel(mode, &udc->op_regs->usbmode);
  2069. mv_udc_disable(udc);
  2070. }
  2071. static struct platform_driver udc_driver = {
  2072. .probe = mv_udc_probe,
  2073. .remove = __exit_p(mv_udc_remove),
  2074. .shutdown = mv_udc_shutdown,
  2075. .driver = {
  2076. .owner = THIS_MODULE,
  2077. .name = "mv-udc",
  2078. #ifdef CONFIG_PM
  2079. .pm = &mv_udc_pm_ops,
  2080. #endif
  2081. },
  2082. };
  2083. module_platform_driver(udc_driver);
  2084. MODULE_ALIAS("platform:mv-udc");
  2085. MODULE_DESCRIPTION(DRIVER_DESC);
  2086. MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
  2087. MODULE_VERSION(DRIVER_VERSION);
  2088. MODULE_LICENSE("GPL");