amd5536udc.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. /*
  13. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  14. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  15. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  16. *
  17. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  18. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  19. * by BIOS init).
  20. *
  21. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  22. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  23. * can be used with gadget ether.
  24. */
  25. /* debug control */
  26. /* #define UDC_VERBOSE */
  27. /* Driver strings */
  28. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  29. #define UDC_DRIVER_VERSION_STRING "01.00.0206"
  30. /* system */
  31. #include <linux/module.h>
  32. #include <linux/pci.h>
  33. #include <linux/kernel.h>
  34. #include <linux/delay.h>
  35. #include <linux/ioport.h>
  36. #include <linux/sched.h>
  37. #include <linux/slab.h>
  38. #include <linux/errno.h>
  39. #include <linux/init.h>
  40. #include <linux/timer.h>
  41. #include <linux/list.h>
  42. #include <linux/interrupt.h>
  43. #include <linux/ioctl.h>
  44. #include <linux/fs.h>
  45. #include <linux/dmapool.h>
  46. #include <linux/moduleparam.h>
  47. #include <linux/device.h>
  48. #include <linux/io.h>
  49. #include <linux/irq.h>
  50. #include <linux/prefetch.h>
  51. #include <asm/byteorder.h>
  52. #include <asm/unaligned.h>
  53. /* gadget stack */
  54. #include <linux/usb/ch9.h>
  55. #include <linux/usb/gadget.h>
  56. /* udc specific */
  57. #include "amd5536udc.h"
  58. static void udc_tasklet_disconnect(unsigned long);
  59. static void empty_req_queue(struct udc_ep *);
  60. static int udc_probe(struct udc *dev);
  61. static void udc_basic_init(struct udc *dev);
  62. static void udc_setup_endpoints(struct udc *dev);
  63. static void udc_soft_reset(struct udc *dev);
  64. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  65. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  66. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  67. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  68. unsigned long buf_len, gfp_t gfp_flags);
  69. static int udc_remote_wakeup(struct udc *dev);
  70. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  71. static void udc_pci_remove(struct pci_dev *pdev);
  72. /* description */
  73. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  74. static const char name[] = "amd5536udc";
  75. /* structure to hold endpoint function pointers */
  76. static const struct usb_ep_ops udc_ep_ops;
  77. /* received setup data */
  78. static union udc_setup_data setup_data;
  79. /* pointer to device object */
  80. static struct udc *udc;
  81. /* irq spin lock for soft reset */
  82. static DEFINE_SPINLOCK(udc_irq_spinlock);
  83. /* stall spin lock */
  84. static DEFINE_SPINLOCK(udc_stall_spinlock);
  85. /*
  86. * slave mode: pending bytes in rx fifo after nyet,
  87. * used if EPIN irq came but no req was available
  88. */
  89. static unsigned int udc_rxfifo_pending;
  90. /* count soft resets after suspend to avoid loop */
  91. static int soft_reset_occured;
  92. static int soft_reset_after_usbreset_occured;
  93. /* timer */
  94. static struct timer_list udc_timer;
  95. static int stop_timer;
  96. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  97. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  98. * all OUT endpoints. So we have to handle race conditions like
  99. * when OUT data reaches the fifo but no request was queued yet.
  100. * This cannot be solved by letting the RX DMA disabled until a
  101. * request gets queued because there may be other OUT packets
  102. * in the FIFO (important for not blocking control traffic).
  103. * The value of set_rde controls the correspondig timer.
  104. *
  105. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  106. * set_rde 0 == do not touch RDE, do no start the RDE timer
  107. * set_rde 1 == timer function will look whether FIFO has data
  108. * set_rde 2 == set by timer function to enable RX DMA on next call
  109. */
  110. static int set_rde = -1;
  111. static DECLARE_COMPLETION(on_exit);
  112. static struct timer_list udc_pollstall_timer;
  113. static int stop_pollstall_timer;
  114. static DECLARE_COMPLETION(on_pollstall_exit);
  115. /* tasklet for usb disconnect */
  116. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  117. (unsigned long) &udc);
  118. /* endpoint names used for print */
  119. static const char ep0_string[] = "ep0in";
  120. static const char *const ep_string[] = {
  121. ep0_string,
  122. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  123. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  124. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  125. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  126. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  127. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  128. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  129. };
  130. /* DMA usage flag */
  131. static bool use_dma = 1;
  132. /* packet per buffer dma */
  133. static bool use_dma_ppb = 1;
  134. /* with per descr. update */
  135. static bool use_dma_ppb_du;
  136. /* buffer fill mode */
  137. static int use_dma_bufferfill_mode;
  138. /* full speed only mode */
  139. static bool use_fullspeed;
  140. /* tx buffer size for high speed */
  141. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  142. /* module parameters */
  143. module_param(use_dma, bool, S_IRUGO);
  144. MODULE_PARM_DESC(use_dma, "true for DMA");
  145. module_param(use_dma_ppb, bool, S_IRUGO);
  146. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  147. module_param(use_dma_ppb_du, bool, S_IRUGO);
  148. MODULE_PARM_DESC(use_dma_ppb_du,
  149. "true for DMA in packet per buffer mode with descriptor update");
  150. module_param(use_fullspeed, bool, S_IRUGO);
  151. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  152. /*---------------------------------------------------------------------------*/
  153. /* Prints UDC device registers and endpoint irq registers */
  154. static void print_regs(struct udc *dev)
  155. {
  156. DBG(dev, "------- Device registers -------\n");
  157. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  158. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  159. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  160. DBG(dev, "\n");
  161. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  162. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  163. DBG(dev, "\n");
  164. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  165. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  166. DBG(dev, "\n");
  167. DBG(dev, "USE DMA = %d\n", use_dma);
  168. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  169. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  170. "WITHOUT desc. update)\n");
  171. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  172. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  173. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  174. "WITH desc. update)\n");
  175. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  176. }
  177. if (use_dma && use_dma_bufferfill_mode) {
  178. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  179. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  180. }
  181. if (!use_dma)
  182. dev_info(&dev->pdev->dev, "FIFO mode\n");
  183. DBG(dev, "-------------------------------------------------------\n");
  184. }
  185. /* Masks unused interrupts */
  186. static int udc_mask_unused_interrupts(struct udc *dev)
  187. {
  188. u32 tmp;
  189. /* mask all dev interrupts */
  190. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  191. AMD_BIT(UDC_DEVINT_ENUM) |
  192. AMD_BIT(UDC_DEVINT_US) |
  193. AMD_BIT(UDC_DEVINT_UR) |
  194. AMD_BIT(UDC_DEVINT_ES) |
  195. AMD_BIT(UDC_DEVINT_SI) |
  196. AMD_BIT(UDC_DEVINT_SOF)|
  197. AMD_BIT(UDC_DEVINT_SC);
  198. writel(tmp, &dev->regs->irqmsk);
  199. /* mask all ep interrupts */
  200. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  201. return 0;
  202. }
  203. /* Enables endpoint 0 interrupts */
  204. static int udc_enable_ep0_interrupts(struct udc *dev)
  205. {
  206. u32 tmp;
  207. DBG(dev, "udc_enable_ep0_interrupts()\n");
  208. /* read irq mask */
  209. tmp = readl(&dev->regs->ep_irqmsk);
  210. /* enable ep0 irq's */
  211. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  212. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  213. writel(tmp, &dev->regs->ep_irqmsk);
  214. return 0;
  215. }
  216. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  217. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  218. {
  219. u32 tmp;
  220. DBG(dev, "enable device interrupts for setup data\n");
  221. /* read irq mask */
  222. tmp = readl(&dev->regs->irqmsk);
  223. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  224. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  225. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  226. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  227. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  228. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  229. writel(tmp, &dev->regs->irqmsk);
  230. return 0;
  231. }
  232. /* Calculates fifo start of endpoint based on preceding endpoints */
  233. static int udc_set_txfifo_addr(struct udc_ep *ep)
  234. {
  235. struct udc *dev;
  236. u32 tmp;
  237. int i;
  238. if (!ep || !(ep->in))
  239. return -EINVAL;
  240. dev = ep->dev;
  241. ep->txfifo = dev->txfifo;
  242. /* traverse ep's */
  243. for (i = 0; i < ep->num; i++) {
  244. if (dev->ep[i].regs) {
  245. /* read fifo size */
  246. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  247. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  248. ep->txfifo += tmp;
  249. }
  250. }
  251. return 0;
  252. }
  253. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  254. static u32 cnak_pending;
  255. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  256. {
  257. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  258. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  259. cnak_pending |= 1 << (num);
  260. ep->naking = 1;
  261. } else
  262. cnak_pending = cnak_pending & (~(1 << (num)));
  263. }
  264. /* Enables endpoint, is called by gadget driver */
  265. static int
  266. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  267. {
  268. struct udc_ep *ep;
  269. struct udc *dev;
  270. u32 tmp;
  271. unsigned long iflags;
  272. u8 udc_csr_epix;
  273. unsigned maxpacket;
  274. if (!usbep
  275. || usbep->name == ep0_string
  276. || !desc
  277. || desc->bDescriptorType != USB_DT_ENDPOINT)
  278. return -EINVAL;
  279. ep = container_of(usbep, struct udc_ep, ep);
  280. dev = ep->dev;
  281. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  282. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  283. return -ESHUTDOWN;
  284. spin_lock_irqsave(&dev->lock, iflags);
  285. ep->ep.desc = desc;
  286. ep->halted = 0;
  287. /* set traffic type */
  288. tmp = readl(&dev->ep[ep->num].regs->ctl);
  289. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  290. writel(tmp, &dev->ep[ep->num].regs->ctl);
  291. /* set max packet size */
  292. maxpacket = usb_endpoint_maxp(desc);
  293. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  294. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  295. ep->ep.maxpacket = maxpacket;
  296. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  297. /* IN ep */
  298. if (ep->in) {
  299. /* ep ix in UDC CSR register space */
  300. udc_csr_epix = ep->num;
  301. /* set buffer size (tx fifo entries) */
  302. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  303. /* double buffering: fifo size = 2 x max packet size */
  304. tmp = AMD_ADDBITS(
  305. tmp,
  306. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  307. / UDC_DWORD_BYTES,
  308. UDC_EPIN_BUFF_SIZE);
  309. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  310. /* calc. tx fifo base addr */
  311. udc_set_txfifo_addr(ep);
  312. /* flush fifo */
  313. tmp = readl(&ep->regs->ctl);
  314. tmp |= AMD_BIT(UDC_EPCTL_F);
  315. writel(tmp, &ep->regs->ctl);
  316. /* OUT ep */
  317. } else {
  318. /* ep ix in UDC CSR register space */
  319. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  320. /* set max packet size UDC CSR */
  321. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  322. tmp = AMD_ADDBITS(tmp, maxpacket,
  323. UDC_CSR_NE_MAX_PKT);
  324. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  325. if (use_dma && !ep->in) {
  326. /* alloc and init BNA dummy request */
  327. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  328. ep->bna_occurred = 0;
  329. }
  330. if (ep->num != UDC_EP0OUT_IX)
  331. dev->data_ep_enabled = 1;
  332. }
  333. /* set ep values */
  334. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  335. /* max packet */
  336. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  337. /* ep number */
  338. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  339. /* ep direction */
  340. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  341. /* ep type */
  342. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  343. /* ep config */
  344. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  345. /* ep interface */
  346. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  347. /* ep alt */
  348. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  349. /* write reg */
  350. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  351. /* enable ep irq */
  352. tmp = readl(&dev->regs->ep_irqmsk);
  353. tmp &= AMD_UNMASK_BIT(ep->num);
  354. writel(tmp, &dev->regs->ep_irqmsk);
  355. /*
  356. * clear NAK by writing CNAK
  357. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  358. */
  359. if (!use_dma || ep->in) {
  360. tmp = readl(&ep->regs->ctl);
  361. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  362. writel(tmp, &ep->regs->ctl);
  363. ep->naking = 0;
  364. UDC_QUEUE_CNAK(ep, ep->num);
  365. }
  366. tmp = desc->bEndpointAddress;
  367. DBG(dev, "%s enabled\n", usbep->name);
  368. spin_unlock_irqrestore(&dev->lock, iflags);
  369. return 0;
  370. }
  371. /* Resets endpoint */
  372. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  373. {
  374. u32 tmp;
  375. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  376. ep->ep.desc = NULL;
  377. ep->ep.ops = &udc_ep_ops;
  378. INIT_LIST_HEAD(&ep->queue);
  379. ep->ep.maxpacket = (u16) ~0;
  380. /* set NAK */
  381. tmp = readl(&ep->regs->ctl);
  382. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  383. writel(tmp, &ep->regs->ctl);
  384. ep->naking = 1;
  385. /* disable interrupt */
  386. tmp = readl(&regs->ep_irqmsk);
  387. tmp |= AMD_BIT(ep->num);
  388. writel(tmp, &regs->ep_irqmsk);
  389. if (ep->in) {
  390. /* unset P and IN bit of potential former DMA */
  391. tmp = readl(&ep->regs->ctl);
  392. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  393. writel(tmp, &ep->regs->ctl);
  394. tmp = readl(&ep->regs->sts);
  395. tmp |= AMD_BIT(UDC_EPSTS_IN);
  396. writel(tmp, &ep->regs->sts);
  397. /* flush the fifo */
  398. tmp = readl(&ep->regs->ctl);
  399. tmp |= AMD_BIT(UDC_EPCTL_F);
  400. writel(tmp, &ep->regs->ctl);
  401. }
  402. /* reset desc pointer */
  403. writel(0, &ep->regs->desptr);
  404. }
  405. /* Disables endpoint, is called by gadget driver */
  406. static int udc_ep_disable(struct usb_ep *usbep)
  407. {
  408. struct udc_ep *ep = NULL;
  409. unsigned long iflags;
  410. if (!usbep)
  411. return -EINVAL;
  412. ep = container_of(usbep, struct udc_ep, ep);
  413. if (usbep->name == ep0_string || !ep->ep.desc)
  414. return -EINVAL;
  415. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  416. spin_lock_irqsave(&ep->dev->lock, iflags);
  417. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  418. empty_req_queue(ep);
  419. ep_init(ep->dev->regs, ep);
  420. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  421. return 0;
  422. }
  423. /* Allocates request packet, called by gadget driver */
  424. static struct usb_request *
  425. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  426. {
  427. struct udc_request *req;
  428. struct udc_data_dma *dma_desc;
  429. struct udc_ep *ep;
  430. if (!usbep)
  431. return NULL;
  432. ep = container_of(usbep, struct udc_ep, ep);
  433. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  434. req = kzalloc(sizeof(struct udc_request), gfp);
  435. if (!req)
  436. return NULL;
  437. req->req.dma = DMA_DONT_USE;
  438. INIT_LIST_HEAD(&req->queue);
  439. if (ep->dma) {
  440. /* ep0 in requests are allocated from data pool here */
  441. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  442. &req->td_phys);
  443. if (!dma_desc) {
  444. kfree(req);
  445. return NULL;
  446. }
  447. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  448. "td_phys = %lx\n",
  449. req, dma_desc,
  450. (unsigned long)req->td_phys);
  451. /* prevent from using desc. - set HOST BUSY */
  452. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  453. UDC_DMA_STP_STS_BS_HOST_BUSY,
  454. UDC_DMA_STP_STS_BS);
  455. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  456. req->td_data = dma_desc;
  457. req->td_data_last = NULL;
  458. req->chain_len = 1;
  459. }
  460. return &req->req;
  461. }
  462. /* Frees request packet, called by gadget driver */
  463. static void
  464. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  465. {
  466. struct udc_ep *ep;
  467. struct udc_request *req;
  468. if (!usbep || !usbreq)
  469. return;
  470. ep = container_of(usbep, struct udc_ep, ep);
  471. req = container_of(usbreq, struct udc_request, req);
  472. VDBG(ep->dev, "free_req req=%p\n", req);
  473. BUG_ON(!list_empty(&req->queue));
  474. if (req->td_data) {
  475. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  476. /* free dma chain if created */
  477. if (req->chain_len > 1)
  478. udc_free_dma_chain(ep->dev, req);
  479. pci_pool_free(ep->dev->data_requests, req->td_data,
  480. req->td_phys);
  481. }
  482. kfree(req);
  483. }
  484. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  485. static void udc_init_bna_dummy(struct udc_request *req)
  486. {
  487. if (req) {
  488. /* set last bit */
  489. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  490. /* set next pointer to itself */
  491. req->td_data->next = req->td_phys;
  492. /* set HOST BUSY */
  493. req->td_data->status
  494. = AMD_ADDBITS(req->td_data->status,
  495. UDC_DMA_STP_STS_BS_DMA_DONE,
  496. UDC_DMA_STP_STS_BS);
  497. #ifdef UDC_VERBOSE
  498. pr_debug("bna desc = %p, sts = %08x\n",
  499. req->td_data, req->td_data->status);
  500. #endif
  501. }
  502. }
  503. /* Allocate BNA dummy descriptor */
  504. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  505. {
  506. struct udc_request *req = NULL;
  507. struct usb_request *_req = NULL;
  508. /* alloc the dummy request */
  509. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  510. if (_req) {
  511. req = container_of(_req, struct udc_request, req);
  512. ep->bna_dummy_req = req;
  513. udc_init_bna_dummy(req);
  514. }
  515. return req;
  516. }
  517. /* Write data to TX fifo for IN packets */
  518. static void
  519. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  520. {
  521. u8 *req_buf;
  522. u32 *buf;
  523. int i, j;
  524. unsigned bytes = 0;
  525. unsigned remaining = 0;
  526. if (!req || !ep)
  527. return;
  528. req_buf = req->buf + req->actual;
  529. prefetch(req_buf);
  530. remaining = req->length - req->actual;
  531. buf = (u32 *) req_buf;
  532. bytes = ep->ep.maxpacket;
  533. if (bytes > remaining)
  534. bytes = remaining;
  535. /* dwords first */
  536. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  537. writel(*(buf + i), ep->txfifo);
  538. /* remaining bytes must be written by byte access */
  539. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  540. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  541. ep->txfifo);
  542. }
  543. /* dummy write confirm */
  544. writel(0, &ep->regs->confirm);
  545. }
  546. /* Read dwords from RX fifo for OUT transfers */
  547. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  548. {
  549. int i;
  550. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  551. for (i = 0; i < dwords; i++)
  552. *(buf + i) = readl(dev->rxfifo);
  553. return 0;
  554. }
  555. /* Read bytes from RX fifo for OUT transfers */
  556. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  557. {
  558. int i, j;
  559. u32 tmp;
  560. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  561. /* dwords first */
  562. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  563. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  564. /* remaining bytes must be read by byte access */
  565. if (bytes % UDC_DWORD_BYTES) {
  566. tmp = readl(dev->rxfifo);
  567. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  568. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  569. tmp = tmp >> UDC_BITS_PER_BYTE;
  570. }
  571. }
  572. return 0;
  573. }
  574. /* Read data from RX fifo for OUT transfers */
  575. static int
  576. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  577. {
  578. u8 *buf;
  579. unsigned buf_space;
  580. unsigned bytes = 0;
  581. unsigned finished = 0;
  582. /* received number bytes */
  583. bytes = readl(&ep->regs->sts);
  584. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  585. buf_space = req->req.length - req->req.actual;
  586. buf = req->req.buf + req->req.actual;
  587. if (bytes > buf_space) {
  588. if ((buf_space % ep->ep.maxpacket) != 0) {
  589. DBG(ep->dev,
  590. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  591. ep->ep.name, bytes, buf_space);
  592. req->req.status = -EOVERFLOW;
  593. }
  594. bytes = buf_space;
  595. }
  596. req->req.actual += bytes;
  597. /* last packet ? */
  598. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  599. || ((req->req.actual == req->req.length) && !req->req.zero))
  600. finished = 1;
  601. /* read rx fifo bytes */
  602. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  603. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  604. return finished;
  605. }
  606. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  607. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  608. {
  609. int retval = 0;
  610. u32 tmp;
  611. VDBG(ep->dev, "prep_dma\n");
  612. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  613. ep->num, req->td_data);
  614. /* set buffer pointer */
  615. req->td_data->bufptr = req->req.dma;
  616. /* set last bit */
  617. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  618. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  619. if (use_dma_ppb) {
  620. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  621. if (retval != 0) {
  622. if (retval == -ENOMEM)
  623. DBG(ep->dev, "Out of DMA memory\n");
  624. return retval;
  625. }
  626. if (ep->in) {
  627. if (req->req.length == ep->ep.maxpacket) {
  628. /* write tx bytes */
  629. req->td_data->status =
  630. AMD_ADDBITS(req->td_data->status,
  631. ep->ep.maxpacket,
  632. UDC_DMA_IN_STS_TXBYTES);
  633. }
  634. }
  635. }
  636. if (ep->in) {
  637. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  638. "maxpacket=%d ep%d\n",
  639. use_dma_ppb, req->req.length,
  640. ep->ep.maxpacket, ep->num);
  641. /*
  642. * if bytes < max packet then tx bytes must
  643. * be written in packet per buffer mode
  644. */
  645. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  646. || ep->num == UDC_EP0OUT_IX
  647. || ep->num == UDC_EP0IN_IX) {
  648. /* write tx bytes */
  649. req->td_data->status =
  650. AMD_ADDBITS(req->td_data->status,
  651. req->req.length,
  652. UDC_DMA_IN_STS_TXBYTES);
  653. /* reset frame num */
  654. req->td_data->status =
  655. AMD_ADDBITS(req->td_data->status,
  656. 0,
  657. UDC_DMA_IN_STS_FRAMENUM);
  658. }
  659. /* set HOST BUSY */
  660. req->td_data->status =
  661. AMD_ADDBITS(req->td_data->status,
  662. UDC_DMA_STP_STS_BS_HOST_BUSY,
  663. UDC_DMA_STP_STS_BS);
  664. } else {
  665. VDBG(ep->dev, "OUT set host ready\n");
  666. /* set HOST READY */
  667. req->td_data->status =
  668. AMD_ADDBITS(req->td_data->status,
  669. UDC_DMA_STP_STS_BS_HOST_READY,
  670. UDC_DMA_STP_STS_BS);
  671. /* clear NAK by writing CNAK */
  672. if (ep->naking) {
  673. tmp = readl(&ep->regs->ctl);
  674. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  675. writel(tmp, &ep->regs->ctl);
  676. ep->naking = 0;
  677. UDC_QUEUE_CNAK(ep, ep->num);
  678. }
  679. }
  680. return retval;
  681. }
  682. /* Completes request packet ... caller MUST hold lock */
  683. static void
  684. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  685. __releases(ep->dev->lock)
  686. __acquires(ep->dev->lock)
  687. {
  688. struct udc *dev;
  689. unsigned halted;
  690. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  691. dev = ep->dev;
  692. /* unmap DMA */
  693. if (ep->dma)
  694. usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
  695. halted = ep->halted;
  696. ep->halted = 1;
  697. /* set new status if pending */
  698. if (req->req.status == -EINPROGRESS)
  699. req->req.status = sts;
  700. /* remove from ep queue */
  701. list_del_init(&req->queue);
  702. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  703. &req->req, req->req.length, ep->ep.name, sts);
  704. spin_unlock(&dev->lock);
  705. req->req.complete(&ep->ep, &req->req);
  706. spin_lock(&dev->lock);
  707. ep->halted = halted;
  708. }
  709. /* frees pci pool descriptors of a DMA chain */
  710. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  711. {
  712. int ret_val = 0;
  713. struct udc_data_dma *td;
  714. struct udc_data_dma *td_last = NULL;
  715. unsigned int i;
  716. DBG(dev, "free chain req = %p\n", req);
  717. /* do not free first desc., will be done by free for request */
  718. td_last = req->td_data;
  719. td = phys_to_virt(td_last->next);
  720. for (i = 1; i < req->chain_len; i++) {
  721. pci_pool_free(dev->data_requests, td,
  722. (dma_addr_t) td_last->next);
  723. td_last = td;
  724. td = phys_to_virt(td_last->next);
  725. }
  726. return ret_val;
  727. }
  728. /* Iterates to the end of a DMA chain and returns last descriptor */
  729. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  730. {
  731. struct udc_data_dma *td;
  732. td = req->td_data;
  733. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
  734. td = phys_to_virt(td->next);
  735. return td;
  736. }
  737. /* Iterates to the end of a DMA chain and counts bytes received */
  738. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  739. {
  740. struct udc_data_dma *td;
  741. u32 count;
  742. td = req->td_data;
  743. /* received number bytes */
  744. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  745. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  746. td = phys_to_virt(td->next);
  747. /* received number bytes */
  748. if (td) {
  749. count += AMD_GETBITS(td->status,
  750. UDC_DMA_OUT_STS_RXBYTES);
  751. }
  752. }
  753. return count;
  754. }
  755. /* Creates or re-inits a DMA chain */
  756. static int udc_create_dma_chain(
  757. struct udc_ep *ep,
  758. struct udc_request *req,
  759. unsigned long buf_len, gfp_t gfp_flags
  760. )
  761. {
  762. unsigned long bytes = req->req.length;
  763. unsigned int i;
  764. dma_addr_t dma_addr;
  765. struct udc_data_dma *td = NULL;
  766. struct udc_data_dma *last = NULL;
  767. unsigned long txbytes;
  768. unsigned create_new_chain = 0;
  769. unsigned len;
  770. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  771. bytes, buf_len);
  772. dma_addr = DMA_DONT_USE;
  773. /* unset L bit in first desc for OUT */
  774. if (!ep->in)
  775. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  776. /* alloc only new desc's if not already available */
  777. len = req->req.length / ep->ep.maxpacket;
  778. if (req->req.length % ep->ep.maxpacket)
  779. len++;
  780. if (len > req->chain_len) {
  781. /* shorter chain already allocated before */
  782. if (req->chain_len > 1)
  783. udc_free_dma_chain(ep->dev, req);
  784. req->chain_len = len;
  785. create_new_chain = 1;
  786. }
  787. td = req->td_data;
  788. /* gen. required number of descriptors and buffers */
  789. for (i = buf_len; i < bytes; i += buf_len) {
  790. /* create or determine next desc. */
  791. if (create_new_chain) {
  792. td = pci_pool_alloc(ep->dev->data_requests,
  793. gfp_flags, &dma_addr);
  794. if (!td)
  795. return -ENOMEM;
  796. td->status = 0;
  797. } else if (i == buf_len) {
  798. /* first td */
  799. td = (struct udc_data_dma *) phys_to_virt(
  800. req->td_data->next);
  801. td->status = 0;
  802. } else {
  803. td = (struct udc_data_dma *) phys_to_virt(last->next);
  804. td->status = 0;
  805. }
  806. if (td)
  807. td->bufptr = req->req.dma + i; /* assign buffer */
  808. else
  809. break;
  810. /* short packet ? */
  811. if ((bytes - i) >= buf_len) {
  812. txbytes = buf_len;
  813. } else {
  814. /* short packet */
  815. txbytes = bytes - i;
  816. }
  817. /* link td and assign tx bytes */
  818. if (i == buf_len) {
  819. if (create_new_chain)
  820. req->td_data->next = dma_addr;
  821. /*
  822. else
  823. req->td_data->next = virt_to_phys(td);
  824. */
  825. /* write tx bytes */
  826. if (ep->in) {
  827. /* first desc */
  828. req->td_data->status =
  829. AMD_ADDBITS(req->td_data->status,
  830. ep->ep.maxpacket,
  831. UDC_DMA_IN_STS_TXBYTES);
  832. /* second desc */
  833. td->status = AMD_ADDBITS(td->status,
  834. txbytes,
  835. UDC_DMA_IN_STS_TXBYTES);
  836. }
  837. } else {
  838. if (create_new_chain)
  839. last->next = dma_addr;
  840. /*
  841. else
  842. last->next = virt_to_phys(td);
  843. */
  844. if (ep->in) {
  845. /* write tx bytes */
  846. td->status = AMD_ADDBITS(td->status,
  847. txbytes,
  848. UDC_DMA_IN_STS_TXBYTES);
  849. }
  850. }
  851. last = td;
  852. }
  853. /* set last bit */
  854. if (td) {
  855. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  856. /* last desc. points to itself */
  857. req->td_data_last = td;
  858. }
  859. return 0;
  860. }
  861. /* Enabling RX DMA */
  862. static void udc_set_rde(struct udc *dev)
  863. {
  864. u32 tmp;
  865. VDBG(dev, "udc_set_rde()\n");
  866. /* stop RDE timer */
  867. if (timer_pending(&udc_timer)) {
  868. set_rde = 0;
  869. mod_timer(&udc_timer, jiffies - 1);
  870. }
  871. /* set RDE */
  872. tmp = readl(&dev->regs->ctl);
  873. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  874. writel(tmp, &dev->regs->ctl);
  875. }
  876. /* Queues a request packet, called by gadget driver */
  877. static int
  878. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  879. {
  880. int retval = 0;
  881. u8 open_rxfifo = 0;
  882. unsigned long iflags;
  883. struct udc_ep *ep;
  884. struct udc_request *req;
  885. struct udc *dev;
  886. u32 tmp;
  887. /* check the inputs */
  888. req = container_of(usbreq, struct udc_request, req);
  889. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  890. || !list_empty(&req->queue))
  891. return -EINVAL;
  892. ep = container_of(usbep, struct udc_ep, ep);
  893. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  894. return -EINVAL;
  895. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  896. dev = ep->dev;
  897. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  898. return -ESHUTDOWN;
  899. /* map dma (usually done before) */
  900. if (ep->dma) {
  901. VDBG(dev, "DMA map req %p\n", req);
  902. retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
  903. if (retval)
  904. return retval;
  905. }
  906. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  907. usbep->name, usbreq, usbreq->length,
  908. req->td_data, usbreq->buf);
  909. spin_lock_irqsave(&dev->lock, iflags);
  910. usbreq->actual = 0;
  911. usbreq->status = -EINPROGRESS;
  912. req->dma_done = 0;
  913. /* on empty queue just do first transfer */
  914. if (list_empty(&ep->queue)) {
  915. /* zlp */
  916. if (usbreq->length == 0) {
  917. /* IN zlp's are handled by hardware */
  918. complete_req(ep, req, 0);
  919. VDBG(dev, "%s: zlp\n", ep->ep.name);
  920. /*
  921. * if set_config or set_intf is waiting for ack by zlp
  922. * then set CSR_DONE
  923. */
  924. if (dev->set_cfg_not_acked) {
  925. tmp = readl(&dev->regs->ctl);
  926. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  927. writel(tmp, &dev->regs->ctl);
  928. dev->set_cfg_not_acked = 0;
  929. }
  930. /* setup command is ACK'ed now by zlp */
  931. if (dev->waiting_zlp_ack_ep0in) {
  932. /* clear NAK by writing CNAK in EP0_IN */
  933. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  934. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  935. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  936. dev->ep[UDC_EP0IN_IX].naking = 0;
  937. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  938. UDC_EP0IN_IX);
  939. dev->waiting_zlp_ack_ep0in = 0;
  940. }
  941. goto finished;
  942. }
  943. if (ep->dma) {
  944. retval = prep_dma(ep, req, gfp);
  945. if (retval != 0)
  946. goto finished;
  947. /* write desc pointer to enable DMA */
  948. if (ep->in) {
  949. /* set HOST READY */
  950. req->td_data->status =
  951. AMD_ADDBITS(req->td_data->status,
  952. UDC_DMA_IN_STS_BS_HOST_READY,
  953. UDC_DMA_IN_STS_BS);
  954. }
  955. /* disabled rx dma while descriptor update */
  956. if (!ep->in) {
  957. /* stop RDE timer */
  958. if (timer_pending(&udc_timer)) {
  959. set_rde = 0;
  960. mod_timer(&udc_timer, jiffies - 1);
  961. }
  962. /* clear RDE */
  963. tmp = readl(&dev->regs->ctl);
  964. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  965. writel(tmp, &dev->regs->ctl);
  966. open_rxfifo = 1;
  967. /*
  968. * if BNA occurred then let BNA dummy desc.
  969. * point to current desc.
  970. */
  971. if (ep->bna_occurred) {
  972. VDBG(dev, "copy to BNA dummy desc.\n");
  973. memcpy(ep->bna_dummy_req->td_data,
  974. req->td_data,
  975. sizeof(struct udc_data_dma));
  976. }
  977. }
  978. /* write desc pointer */
  979. writel(req->td_phys, &ep->regs->desptr);
  980. /* clear NAK by writing CNAK */
  981. if (ep->naking) {
  982. tmp = readl(&ep->regs->ctl);
  983. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  984. writel(tmp, &ep->regs->ctl);
  985. ep->naking = 0;
  986. UDC_QUEUE_CNAK(ep, ep->num);
  987. }
  988. if (ep->in) {
  989. /* enable ep irq */
  990. tmp = readl(&dev->regs->ep_irqmsk);
  991. tmp &= AMD_UNMASK_BIT(ep->num);
  992. writel(tmp, &dev->regs->ep_irqmsk);
  993. }
  994. } else if (ep->in) {
  995. /* enable ep irq */
  996. tmp = readl(&dev->regs->ep_irqmsk);
  997. tmp &= AMD_UNMASK_BIT(ep->num);
  998. writel(tmp, &dev->regs->ep_irqmsk);
  999. }
  1000. } else if (ep->dma) {
  1001. /*
  1002. * prep_dma not used for OUT ep's, this is not possible
  1003. * for PPB modes, because of chain creation reasons
  1004. */
  1005. if (ep->in) {
  1006. retval = prep_dma(ep, req, gfp);
  1007. if (retval != 0)
  1008. goto finished;
  1009. }
  1010. }
  1011. VDBG(dev, "list_add\n");
  1012. /* add request to ep queue */
  1013. if (req) {
  1014. list_add_tail(&req->queue, &ep->queue);
  1015. /* open rxfifo if out data queued */
  1016. if (open_rxfifo) {
  1017. /* enable DMA */
  1018. req->dma_going = 1;
  1019. udc_set_rde(dev);
  1020. if (ep->num != UDC_EP0OUT_IX)
  1021. dev->data_ep_queued = 1;
  1022. }
  1023. /* stop OUT naking */
  1024. if (!ep->in) {
  1025. if (!use_dma && udc_rxfifo_pending) {
  1026. DBG(dev, "udc_queue(): pending bytes in "
  1027. "rxfifo after nyet\n");
  1028. /*
  1029. * read pending bytes afer nyet:
  1030. * referring to isr
  1031. */
  1032. if (udc_rxfifo_read(ep, req)) {
  1033. /* finish */
  1034. complete_req(ep, req, 0);
  1035. }
  1036. udc_rxfifo_pending = 0;
  1037. }
  1038. }
  1039. }
  1040. finished:
  1041. spin_unlock_irqrestore(&dev->lock, iflags);
  1042. return retval;
  1043. }
  1044. /* Empty request queue of an endpoint; caller holds spinlock */
  1045. static void empty_req_queue(struct udc_ep *ep)
  1046. {
  1047. struct udc_request *req;
  1048. ep->halted = 1;
  1049. while (!list_empty(&ep->queue)) {
  1050. req = list_entry(ep->queue.next,
  1051. struct udc_request,
  1052. queue);
  1053. complete_req(ep, req, -ESHUTDOWN);
  1054. }
  1055. }
  1056. /* Dequeues a request packet, called by gadget driver */
  1057. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1058. {
  1059. struct udc_ep *ep;
  1060. struct udc_request *req;
  1061. unsigned halted;
  1062. unsigned long iflags;
  1063. ep = container_of(usbep, struct udc_ep, ep);
  1064. if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
  1065. && ep->num != UDC_EP0OUT_IX)))
  1066. return -EINVAL;
  1067. req = container_of(usbreq, struct udc_request, req);
  1068. spin_lock_irqsave(&ep->dev->lock, iflags);
  1069. halted = ep->halted;
  1070. ep->halted = 1;
  1071. /* request in processing or next one */
  1072. if (ep->queue.next == &req->queue) {
  1073. if (ep->dma && req->dma_going) {
  1074. if (ep->in)
  1075. ep->cancel_transfer = 1;
  1076. else {
  1077. u32 tmp;
  1078. u32 dma_sts;
  1079. /* stop potential receive DMA */
  1080. tmp = readl(&udc->regs->ctl);
  1081. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1082. &udc->regs->ctl);
  1083. /*
  1084. * Cancel transfer later in ISR
  1085. * if descriptor was touched.
  1086. */
  1087. dma_sts = AMD_GETBITS(req->td_data->status,
  1088. UDC_DMA_OUT_STS_BS);
  1089. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1090. ep->cancel_transfer = 1;
  1091. else {
  1092. udc_init_bna_dummy(ep->req);
  1093. writel(ep->bna_dummy_req->td_phys,
  1094. &ep->regs->desptr);
  1095. }
  1096. writel(tmp, &udc->regs->ctl);
  1097. }
  1098. }
  1099. }
  1100. complete_req(ep, req, -ECONNRESET);
  1101. ep->halted = halted;
  1102. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1103. return 0;
  1104. }
  1105. /* Halt or clear halt of endpoint */
  1106. static int
  1107. udc_set_halt(struct usb_ep *usbep, int halt)
  1108. {
  1109. struct udc_ep *ep;
  1110. u32 tmp;
  1111. unsigned long iflags;
  1112. int retval = 0;
  1113. if (!usbep)
  1114. return -EINVAL;
  1115. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1116. ep = container_of(usbep, struct udc_ep, ep);
  1117. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1118. return -EINVAL;
  1119. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1120. return -ESHUTDOWN;
  1121. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1122. /* halt or clear halt */
  1123. if (halt) {
  1124. if (ep->num == 0)
  1125. ep->dev->stall_ep0in = 1;
  1126. else {
  1127. /*
  1128. * set STALL
  1129. * rxfifo empty not taken into acount
  1130. */
  1131. tmp = readl(&ep->regs->ctl);
  1132. tmp |= AMD_BIT(UDC_EPCTL_S);
  1133. writel(tmp, &ep->regs->ctl);
  1134. ep->halted = 1;
  1135. /* setup poll timer */
  1136. if (!timer_pending(&udc_pollstall_timer)) {
  1137. udc_pollstall_timer.expires = jiffies +
  1138. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1139. / (1000 * 1000);
  1140. if (!stop_pollstall_timer) {
  1141. DBG(ep->dev, "start polltimer\n");
  1142. add_timer(&udc_pollstall_timer);
  1143. }
  1144. }
  1145. }
  1146. } else {
  1147. /* ep is halted by set_halt() before */
  1148. if (ep->halted) {
  1149. tmp = readl(&ep->regs->ctl);
  1150. /* clear stall bit */
  1151. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1152. /* clear NAK by writing CNAK */
  1153. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1154. writel(tmp, &ep->regs->ctl);
  1155. ep->halted = 0;
  1156. UDC_QUEUE_CNAK(ep, ep->num);
  1157. }
  1158. }
  1159. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1160. return retval;
  1161. }
  1162. /* gadget interface */
  1163. static const struct usb_ep_ops udc_ep_ops = {
  1164. .enable = udc_ep_enable,
  1165. .disable = udc_ep_disable,
  1166. .alloc_request = udc_alloc_request,
  1167. .free_request = udc_free_request,
  1168. .queue = udc_queue,
  1169. .dequeue = udc_dequeue,
  1170. .set_halt = udc_set_halt,
  1171. /* fifo ops not implemented */
  1172. };
  1173. /*-------------------------------------------------------------------------*/
  1174. /* Get frame counter (not implemented) */
  1175. static int udc_get_frame(struct usb_gadget *gadget)
  1176. {
  1177. return -EOPNOTSUPP;
  1178. }
  1179. /* Remote wakeup gadget interface */
  1180. static int udc_wakeup(struct usb_gadget *gadget)
  1181. {
  1182. struct udc *dev;
  1183. if (!gadget)
  1184. return -EINVAL;
  1185. dev = container_of(gadget, struct udc, gadget);
  1186. udc_remote_wakeup(dev);
  1187. return 0;
  1188. }
  1189. static int amd5536_start(struct usb_gadget_driver *driver,
  1190. int (*bind)(struct usb_gadget *, struct usb_gadget_driver *));
  1191. static int amd5536_stop(struct usb_gadget_driver *driver);
  1192. /* gadget operations */
  1193. static const struct usb_gadget_ops udc_ops = {
  1194. .wakeup = udc_wakeup,
  1195. .get_frame = udc_get_frame,
  1196. .start = amd5536_start,
  1197. .stop = amd5536_stop,
  1198. };
  1199. /* Setups endpoint parameters, adds endpoints to linked list */
  1200. static void make_ep_lists(struct udc *dev)
  1201. {
  1202. /* make gadget ep lists */
  1203. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1204. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1205. &dev->gadget.ep_list);
  1206. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1207. &dev->gadget.ep_list);
  1208. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1209. &dev->gadget.ep_list);
  1210. /* fifo config */
  1211. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1212. if (dev->gadget.speed == USB_SPEED_FULL)
  1213. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1214. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1215. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1216. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1217. }
  1218. /* init registers at driver load time */
  1219. static int startup_registers(struct udc *dev)
  1220. {
  1221. u32 tmp;
  1222. /* init controller by soft reset */
  1223. udc_soft_reset(dev);
  1224. /* mask not needed interrupts */
  1225. udc_mask_unused_interrupts(dev);
  1226. /* put into initial config */
  1227. udc_basic_init(dev);
  1228. /* link up all endpoints */
  1229. udc_setup_endpoints(dev);
  1230. /* program speed */
  1231. tmp = readl(&dev->regs->cfg);
  1232. if (use_fullspeed)
  1233. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1234. else
  1235. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1236. writel(tmp, &dev->regs->cfg);
  1237. return 0;
  1238. }
  1239. /* Inits UDC context */
  1240. static void udc_basic_init(struct udc *dev)
  1241. {
  1242. u32 tmp;
  1243. DBG(dev, "udc_basic_init()\n");
  1244. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1245. /* stop RDE timer */
  1246. if (timer_pending(&udc_timer)) {
  1247. set_rde = 0;
  1248. mod_timer(&udc_timer, jiffies - 1);
  1249. }
  1250. /* stop poll stall timer */
  1251. if (timer_pending(&udc_pollstall_timer))
  1252. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1253. /* disable DMA */
  1254. tmp = readl(&dev->regs->ctl);
  1255. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1256. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1257. writel(tmp, &dev->regs->ctl);
  1258. /* enable dynamic CSR programming */
  1259. tmp = readl(&dev->regs->cfg);
  1260. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1261. /* set self powered */
  1262. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1263. /* set remote wakeupable */
  1264. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1265. writel(tmp, &dev->regs->cfg);
  1266. make_ep_lists(dev);
  1267. dev->data_ep_enabled = 0;
  1268. dev->data_ep_queued = 0;
  1269. }
  1270. /* Sets initial endpoint parameters */
  1271. static void udc_setup_endpoints(struct udc *dev)
  1272. {
  1273. struct udc_ep *ep;
  1274. u32 tmp;
  1275. u32 reg;
  1276. DBG(dev, "udc_setup_endpoints()\n");
  1277. /* read enum speed */
  1278. tmp = readl(&dev->regs->sts);
  1279. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1280. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
  1281. dev->gadget.speed = USB_SPEED_HIGH;
  1282. else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
  1283. dev->gadget.speed = USB_SPEED_FULL;
  1284. /* set basic ep parameters */
  1285. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1286. ep = &dev->ep[tmp];
  1287. ep->dev = dev;
  1288. ep->ep.name = ep_string[tmp];
  1289. ep->num = tmp;
  1290. /* txfifo size is calculated at enable time */
  1291. ep->txfifo = dev->txfifo;
  1292. /* fifo size */
  1293. if (tmp < UDC_EPIN_NUM) {
  1294. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1295. ep->in = 1;
  1296. } else {
  1297. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1298. ep->in = 0;
  1299. }
  1300. ep->regs = &dev->ep_regs[tmp];
  1301. /*
  1302. * ep will be reset only if ep was not enabled before to avoid
  1303. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1304. * not enabled by gadget driver
  1305. */
  1306. if (!ep->ep.desc)
  1307. ep_init(dev->regs, ep);
  1308. if (use_dma) {
  1309. /*
  1310. * ep->dma is not really used, just to indicate that
  1311. * DMA is active: remove this
  1312. * dma regs = dev control regs
  1313. */
  1314. ep->dma = &dev->regs->ctl;
  1315. /* nak OUT endpoints until enable - not for ep0 */
  1316. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1317. && tmp > UDC_EPIN_NUM) {
  1318. /* set NAK */
  1319. reg = readl(&dev->ep[tmp].regs->ctl);
  1320. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1321. writel(reg, &dev->ep[tmp].regs->ctl);
  1322. dev->ep[tmp].naking = 1;
  1323. }
  1324. }
  1325. }
  1326. /* EP0 max packet */
  1327. if (dev->gadget.speed == USB_SPEED_FULL) {
  1328. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
  1329. dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
  1330. UDC_FS_EP0OUT_MAX_PKT_SIZE;
  1331. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1332. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  1333. dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  1334. }
  1335. /*
  1336. * with suspend bug workaround, ep0 params for gadget driver
  1337. * are set at gadget driver bind() call
  1338. */
  1339. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1340. dev->ep[UDC_EP0IN_IX].halted = 0;
  1341. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1342. /* init cfg/alt/int */
  1343. dev->cur_config = 0;
  1344. dev->cur_intf = 0;
  1345. dev->cur_alt = 0;
  1346. }
  1347. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1348. static void usb_connect(struct udc *dev)
  1349. {
  1350. dev_info(&dev->pdev->dev, "USB Connect\n");
  1351. dev->connected = 1;
  1352. /* put into initial config */
  1353. udc_basic_init(dev);
  1354. /* enable device setup interrupts */
  1355. udc_enable_dev_setup_interrupts(dev);
  1356. }
  1357. /*
  1358. * Calls gadget with disconnect event and resets the UDC and makes
  1359. * initial bringup to be ready for ep0 events
  1360. */
  1361. static void usb_disconnect(struct udc *dev)
  1362. {
  1363. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1364. dev->connected = 0;
  1365. /* mask interrupts */
  1366. udc_mask_unused_interrupts(dev);
  1367. /* REVISIT there doesn't seem to be a point to having this
  1368. * talk to a tasklet ... do it directly, we already hold
  1369. * the spinlock needed to process the disconnect.
  1370. */
  1371. tasklet_schedule(&disconnect_tasklet);
  1372. }
  1373. /* Tasklet for disconnect to be outside of interrupt context */
  1374. static void udc_tasklet_disconnect(unsigned long par)
  1375. {
  1376. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1377. u32 tmp;
  1378. DBG(dev, "Tasklet disconnect\n");
  1379. spin_lock_irq(&dev->lock);
  1380. if (dev->driver) {
  1381. spin_unlock(&dev->lock);
  1382. dev->driver->disconnect(&dev->gadget);
  1383. spin_lock(&dev->lock);
  1384. /* empty queues */
  1385. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1386. empty_req_queue(&dev->ep[tmp]);
  1387. }
  1388. /* disable ep0 */
  1389. ep_init(dev->regs,
  1390. &dev->ep[UDC_EP0IN_IX]);
  1391. if (!soft_reset_occured) {
  1392. /* init controller by soft reset */
  1393. udc_soft_reset(dev);
  1394. soft_reset_occured++;
  1395. }
  1396. /* re-enable dev interrupts */
  1397. udc_enable_dev_setup_interrupts(dev);
  1398. /* back to full speed ? */
  1399. if (use_fullspeed) {
  1400. tmp = readl(&dev->regs->cfg);
  1401. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1402. writel(tmp, &dev->regs->cfg);
  1403. }
  1404. spin_unlock_irq(&dev->lock);
  1405. }
  1406. /* Reset the UDC core */
  1407. static void udc_soft_reset(struct udc *dev)
  1408. {
  1409. unsigned long flags;
  1410. DBG(dev, "Soft reset\n");
  1411. /*
  1412. * reset possible waiting interrupts, because int.
  1413. * status is lost after soft reset,
  1414. * ep int. status reset
  1415. */
  1416. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1417. /* device int. status reset */
  1418. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1419. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1420. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1421. readl(&dev->regs->cfg);
  1422. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1423. }
  1424. /* RDE timer callback to set RDE bit */
  1425. static void udc_timer_function(unsigned long v)
  1426. {
  1427. u32 tmp;
  1428. spin_lock_irq(&udc_irq_spinlock);
  1429. if (set_rde > 0) {
  1430. /*
  1431. * open the fifo if fifo was filled on last timer call
  1432. * conditionally
  1433. */
  1434. if (set_rde > 1) {
  1435. /* set RDE to receive setup data */
  1436. tmp = readl(&udc->regs->ctl);
  1437. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1438. writel(tmp, &udc->regs->ctl);
  1439. set_rde = -1;
  1440. } else if (readl(&udc->regs->sts)
  1441. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1442. /*
  1443. * if fifo empty setup polling, do not just
  1444. * open the fifo
  1445. */
  1446. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1447. if (!stop_timer)
  1448. add_timer(&udc_timer);
  1449. } else {
  1450. /*
  1451. * fifo contains data now, setup timer for opening
  1452. * the fifo when timer expires to be able to receive
  1453. * setup packets, when data packets gets queued by
  1454. * gadget layer then timer will forced to expire with
  1455. * set_rde=0 (RDE is set in udc_queue())
  1456. */
  1457. set_rde++;
  1458. /* debug: lhadmot_timer_start = 221070 */
  1459. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1460. if (!stop_timer)
  1461. add_timer(&udc_timer);
  1462. }
  1463. } else
  1464. set_rde = -1; /* RDE was set by udc_queue() */
  1465. spin_unlock_irq(&udc_irq_spinlock);
  1466. if (stop_timer)
  1467. complete(&on_exit);
  1468. }
  1469. /* Handle halt state, used in stall poll timer */
  1470. static void udc_handle_halt_state(struct udc_ep *ep)
  1471. {
  1472. u32 tmp;
  1473. /* set stall as long not halted */
  1474. if (ep->halted == 1) {
  1475. tmp = readl(&ep->regs->ctl);
  1476. /* STALL cleared ? */
  1477. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1478. /*
  1479. * FIXME: MSC spec requires that stall remains
  1480. * even on receivng of CLEAR_FEATURE HALT. So
  1481. * we would set STALL again here to be compliant.
  1482. * But with current mass storage drivers this does
  1483. * not work (would produce endless host retries).
  1484. * So we clear halt on CLEAR_FEATURE.
  1485. *
  1486. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1487. tmp |= AMD_BIT(UDC_EPCTL_S);
  1488. writel(tmp, &ep->regs->ctl);*/
  1489. /* clear NAK by writing CNAK */
  1490. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1491. writel(tmp, &ep->regs->ctl);
  1492. ep->halted = 0;
  1493. UDC_QUEUE_CNAK(ep, ep->num);
  1494. }
  1495. }
  1496. }
  1497. /* Stall timer callback to poll S bit and set it again after */
  1498. static void udc_pollstall_timer_function(unsigned long v)
  1499. {
  1500. struct udc_ep *ep;
  1501. int halted = 0;
  1502. spin_lock_irq(&udc_stall_spinlock);
  1503. /*
  1504. * only one IN and OUT endpoints are handled
  1505. * IN poll stall
  1506. */
  1507. ep = &udc->ep[UDC_EPIN_IX];
  1508. udc_handle_halt_state(ep);
  1509. if (ep->halted)
  1510. halted = 1;
  1511. /* OUT poll stall */
  1512. ep = &udc->ep[UDC_EPOUT_IX];
  1513. udc_handle_halt_state(ep);
  1514. if (ep->halted)
  1515. halted = 1;
  1516. /* setup timer again when still halted */
  1517. if (!stop_pollstall_timer && halted) {
  1518. udc_pollstall_timer.expires = jiffies +
  1519. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1520. / (1000 * 1000);
  1521. add_timer(&udc_pollstall_timer);
  1522. }
  1523. spin_unlock_irq(&udc_stall_spinlock);
  1524. if (stop_pollstall_timer)
  1525. complete(&on_pollstall_exit);
  1526. }
  1527. /* Inits endpoint 0 so that SETUP packets are processed */
  1528. static void activate_control_endpoints(struct udc *dev)
  1529. {
  1530. u32 tmp;
  1531. DBG(dev, "activate_control_endpoints\n");
  1532. /* flush fifo */
  1533. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1534. tmp |= AMD_BIT(UDC_EPCTL_F);
  1535. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1536. /* set ep0 directions */
  1537. dev->ep[UDC_EP0IN_IX].in = 1;
  1538. dev->ep[UDC_EP0OUT_IX].in = 0;
  1539. /* set buffer size (tx fifo entries) of EP0_IN */
  1540. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1541. if (dev->gadget.speed == USB_SPEED_FULL)
  1542. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1543. UDC_EPIN_BUFF_SIZE);
  1544. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1545. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1546. UDC_EPIN_BUFF_SIZE);
  1547. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1548. /* set max packet size of EP0_IN */
  1549. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1550. if (dev->gadget.speed == USB_SPEED_FULL)
  1551. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1552. UDC_EP_MAX_PKT_SIZE);
  1553. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1554. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1555. UDC_EP_MAX_PKT_SIZE);
  1556. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1557. /* set max packet size of EP0_OUT */
  1558. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1559. if (dev->gadget.speed == USB_SPEED_FULL)
  1560. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1561. UDC_EP_MAX_PKT_SIZE);
  1562. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1563. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1564. UDC_EP_MAX_PKT_SIZE);
  1565. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1566. /* set max packet size of EP0 in UDC CSR */
  1567. tmp = readl(&dev->csr->ne[0]);
  1568. if (dev->gadget.speed == USB_SPEED_FULL)
  1569. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1570. UDC_CSR_NE_MAX_PKT);
  1571. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1572. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1573. UDC_CSR_NE_MAX_PKT);
  1574. writel(tmp, &dev->csr->ne[0]);
  1575. if (use_dma) {
  1576. dev->ep[UDC_EP0OUT_IX].td->status |=
  1577. AMD_BIT(UDC_DMA_OUT_STS_L);
  1578. /* write dma desc address */
  1579. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1580. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1581. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1582. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1583. /* stop RDE timer */
  1584. if (timer_pending(&udc_timer)) {
  1585. set_rde = 0;
  1586. mod_timer(&udc_timer, jiffies - 1);
  1587. }
  1588. /* stop pollstall timer */
  1589. if (timer_pending(&udc_pollstall_timer))
  1590. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1591. /* enable DMA */
  1592. tmp = readl(&dev->regs->ctl);
  1593. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1594. | AMD_BIT(UDC_DEVCTL_RDE)
  1595. | AMD_BIT(UDC_DEVCTL_TDE);
  1596. if (use_dma_bufferfill_mode)
  1597. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1598. else if (use_dma_ppb_du)
  1599. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1600. writel(tmp, &dev->regs->ctl);
  1601. }
  1602. /* clear NAK by writing CNAK for EP0IN */
  1603. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1604. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1605. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1606. dev->ep[UDC_EP0IN_IX].naking = 0;
  1607. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1608. /* clear NAK by writing CNAK for EP0OUT */
  1609. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1610. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1611. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1612. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1613. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1614. }
  1615. /* Make endpoint 0 ready for control traffic */
  1616. static int setup_ep0(struct udc *dev)
  1617. {
  1618. activate_control_endpoints(dev);
  1619. /* enable ep0 interrupts */
  1620. udc_enable_ep0_interrupts(dev);
  1621. /* enable device setup interrupts */
  1622. udc_enable_dev_setup_interrupts(dev);
  1623. return 0;
  1624. }
  1625. /* Called by gadget driver to register itself */
  1626. static int amd5536_start(struct usb_gadget_driver *driver,
  1627. int (*bind)(struct usb_gadget *, struct usb_gadget_driver *))
  1628. {
  1629. struct udc *dev = udc;
  1630. int retval;
  1631. u32 tmp;
  1632. if (!driver || !bind || !driver->setup
  1633. || driver->max_speed < USB_SPEED_HIGH)
  1634. return -EINVAL;
  1635. if (!dev)
  1636. return -ENODEV;
  1637. if (dev->driver)
  1638. return -EBUSY;
  1639. driver->driver.bus = NULL;
  1640. dev->driver = driver;
  1641. dev->gadget.dev.driver = &driver->driver;
  1642. retval = bind(&dev->gadget, driver);
  1643. /* Some gadget drivers use both ep0 directions.
  1644. * NOTE: to gadget driver, ep0 is just one endpoint...
  1645. */
  1646. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1647. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1648. if (retval) {
  1649. DBG(dev, "binding to %s returning %d\n",
  1650. driver->driver.name, retval);
  1651. dev->driver = NULL;
  1652. dev->gadget.dev.driver = NULL;
  1653. return retval;
  1654. }
  1655. /* get ready for ep0 traffic */
  1656. setup_ep0(dev);
  1657. /* clear SD */
  1658. tmp = readl(&dev->regs->ctl);
  1659. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1660. writel(tmp, &dev->regs->ctl);
  1661. usb_connect(dev);
  1662. return 0;
  1663. }
  1664. /* shutdown requests and disconnect from gadget */
  1665. static void
  1666. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1667. __releases(dev->lock)
  1668. __acquires(dev->lock)
  1669. {
  1670. int tmp;
  1671. if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
  1672. spin_unlock(&dev->lock);
  1673. driver->disconnect(&dev->gadget);
  1674. spin_lock(&dev->lock);
  1675. }
  1676. /* empty queues and init hardware */
  1677. udc_basic_init(dev);
  1678. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1679. empty_req_queue(&dev->ep[tmp]);
  1680. udc_setup_endpoints(dev);
  1681. }
  1682. /* Called by gadget driver to unregister itself */
  1683. static int amd5536_stop(struct usb_gadget_driver *driver)
  1684. {
  1685. struct udc *dev = udc;
  1686. unsigned long flags;
  1687. u32 tmp;
  1688. if (!dev)
  1689. return -ENODEV;
  1690. if (!driver || driver != dev->driver || !driver->unbind)
  1691. return -EINVAL;
  1692. spin_lock_irqsave(&dev->lock, flags);
  1693. udc_mask_unused_interrupts(dev);
  1694. shutdown(dev, driver);
  1695. spin_unlock_irqrestore(&dev->lock, flags);
  1696. driver->unbind(&dev->gadget);
  1697. dev->gadget.dev.driver = NULL;
  1698. dev->driver = NULL;
  1699. /* set SD */
  1700. tmp = readl(&dev->regs->ctl);
  1701. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1702. writel(tmp, &dev->regs->ctl);
  1703. DBG(dev, "%s: unregistered\n", driver->driver.name);
  1704. return 0;
  1705. }
  1706. /* Clear pending NAK bits */
  1707. static void udc_process_cnak_queue(struct udc *dev)
  1708. {
  1709. u32 tmp;
  1710. u32 reg;
  1711. /* check epin's */
  1712. DBG(dev, "CNAK pending queue processing\n");
  1713. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1714. if (cnak_pending & (1 << tmp)) {
  1715. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1716. /* clear NAK by writing CNAK */
  1717. reg = readl(&dev->ep[tmp].regs->ctl);
  1718. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1719. writel(reg, &dev->ep[tmp].regs->ctl);
  1720. dev->ep[tmp].naking = 0;
  1721. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1722. }
  1723. }
  1724. /* ... and ep0out */
  1725. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1726. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1727. /* clear NAK by writing CNAK */
  1728. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1729. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1730. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1731. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1732. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1733. dev->ep[UDC_EP0OUT_IX].num);
  1734. }
  1735. }
  1736. /* Enabling RX DMA after setup packet */
  1737. static void udc_ep0_set_rde(struct udc *dev)
  1738. {
  1739. if (use_dma) {
  1740. /*
  1741. * only enable RXDMA when no data endpoint enabled
  1742. * or data is queued
  1743. */
  1744. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1745. udc_set_rde(dev);
  1746. } else {
  1747. /*
  1748. * setup timer for enabling RDE (to not enable
  1749. * RXFIFO DMA for data endpoints to early)
  1750. */
  1751. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1752. udc_timer.expires =
  1753. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1754. set_rde = 1;
  1755. if (!stop_timer)
  1756. add_timer(&udc_timer);
  1757. }
  1758. }
  1759. }
  1760. }
  1761. /* Interrupt handler for data OUT traffic */
  1762. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1763. {
  1764. irqreturn_t ret_val = IRQ_NONE;
  1765. u32 tmp;
  1766. struct udc_ep *ep;
  1767. struct udc_request *req;
  1768. unsigned int count;
  1769. struct udc_data_dma *td = NULL;
  1770. unsigned dma_done;
  1771. VDBG(dev, "ep%d irq\n", ep_ix);
  1772. ep = &dev->ep[ep_ix];
  1773. tmp = readl(&ep->regs->sts);
  1774. if (use_dma) {
  1775. /* BNA event ? */
  1776. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1777. DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
  1778. ep->num, readl(&ep->regs->desptr));
  1779. /* clear BNA */
  1780. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1781. if (!ep->cancel_transfer)
  1782. ep->bna_occurred = 1;
  1783. else
  1784. ep->cancel_transfer = 0;
  1785. ret_val = IRQ_HANDLED;
  1786. goto finished;
  1787. }
  1788. }
  1789. /* HE event ? */
  1790. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1791. dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
  1792. /* clear HE */
  1793. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1794. ret_val = IRQ_HANDLED;
  1795. goto finished;
  1796. }
  1797. if (!list_empty(&ep->queue)) {
  1798. /* next request */
  1799. req = list_entry(ep->queue.next,
  1800. struct udc_request, queue);
  1801. } else {
  1802. req = NULL;
  1803. udc_rxfifo_pending = 1;
  1804. }
  1805. VDBG(dev, "req = %p\n", req);
  1806. /* fifo mode */
  1807. if (!use_dma) {
  1808. /* read fifo */
  1809. if (req && udc_rxfifo_read(ep, req)) {
  1810. ret_val = IRQ_HANDLED;
  1811. /* finish */
  1812. complete_req(ep, req, 0);
  1813. /* next request */
  1814. if (!list_empty(&ep->queue) && !ep->halted) {
  1815. req = list_entry(ep->queue.next,
  1816. struct udc_request, queue);
  1817. } else
  1818. req = NULL;
  1819. }
  1820. /* DMA */
  1821. } else if (!ep->cancel_transfer && req != NULL) {
  1822. ret_val = IRQ_HANDLED;
  1823. /* check for DMA done */
  1824. if (!use_dma_ppb) {
  1825. dma_done = AMD_GETBITS(req->td_data->status,
  1826. UDC_DMA_OUT_STS_BS);
  1827. /* packet per buffer mode - rx bytes */
  1828. } else {
  1829. /*
  1830. * if BNA occurred then recover desc. from
  1831. * BNA dummy desc.
  1832. */
  1833. if (ep->bna_occurred) {
  1834. VDBG(dev, "Recover desc. from BNA dummy\n");
  1835. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1836. sizeof(struct udc_data_dma));
  1837. ep->bna_occurred = 0;
  1838. udc_init_bna_dummy(ep->req);
  1839. }
  1840. td = udc_get_last_dma_desc(req);
  1841. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1842. }
  1843. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1844. /* buffer fill mode - rx bytes */
  1845. if (!use_dma_ppb) {
  1846. /* received number bytes */
  1847. count = AMD_GETBITS(req->td_data->status,
  1848. UDC_DMA_OUT_STS_RXBYTES);
  1849. VDBG(dev, "rx bytes=%u\n", count);
  1850. /* packet per buffer mode - rx bytes */
  1851. } else {
  1852. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1853. VDBG(dev, "last desc = %p\n", td);
  1854. /* received number bytes */
  1855. if (use_dma_ppb_du) {
  1856. /* every desc. counts bytes */
  1857. count = udc_get_ppbdu_rxbytes(req);
  1858. } else {
  1859. /* last desc. counts bytes */
  1860. count = AMD_GETBITS(td->status,
  1861. UDC_DMA_OUT_STS_RXBYTES);
  1862. if (!count && req->req.length
  1863. == UDC_DMA_MAXPACKET) {
  1864. /*
  1865. * on 64k packets the RXBYTES
  1866. * field is zero
  1867. */
  1868. count = UDC_DMA_MAXPACKET;
  1869. }
  1870. }
  1871. VDBG(dev, "last desc rx bytes=%u\n", count);
  1872. }
  1873. tmp = req->req.length - req->req.actual;
  1874. if (count > tmp) {
  1875. if ((tmp % ep->ep.maxpacket) != 0) {
  1876. DBG(dev, "%s: rx %db, space=%db\n",
  1877. ep->ep.name, count, tmp);
  1878. req->req.status = -EOVERFLOW;
  1879. }
  1880. count = tmp;
  1881. }
  1882. req->req.actual += count;
  1883. req->dma_going = 0;
  1884. /* complete request */
  1885. complete_req(ep, req, 0);
  1886. /* next request */
  1887. if (!list_empty(&ep->queue) && !ep->halted) {
  1888. req = list_entry(ep->queue.next,
  1889. struct udc_request,
  1890. queue);
  1891. /*
  1892. * DMA may be already started by udc_queue()
  1893. * called by gadget drivers completion
  1894. * routine. This happens when queue
  1895. * holds one request only.
  1896. */
  1897. if (req->dma_going == 0) {
  1898. /* next dma */
  1899. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1900. goto finished;
  1901. /* write desc pointer */
  1902. writel(req->td_phys,
  1903. &ep->regs->desptr);
  1904. req->dma_going = 1;
  1905. /* enable DMA */
  1906. udc_set_rde(dev);
  1907. }
  1908. } else {
  1909. /*
  1910. * implant BNA dummy descriptor to allow
  1911. * RXFIFO opening by RDE
  1912. */
  1913. if (ep->bna_dummy_req) {
  1914. /* write desc pointer */
  1915. writel(ep->bna_dummy_req->td_phys,
  1916. &ep->regs->desptr);
  1917. ep->bna_occurred = 0;
  1918. }
  1919. /*
  1920. * schedule timer for setting RDE if queue
  1921. * remains empty to allow ep0 packets pass
  1922. * through
  1923. */
  1924. if (set_rde != 0
  1925. && !timer_pending(&udc_timer)) {
  1926. udc_timer.expires =
  1927. jiffies
  1928. + HZ*UDC_RDE_TIMER_SECONDS;
  1929. set_rde = 1;
  1930. if (!stop_timer)
  1931. add_timer(&udc_timer);
  1932. }
  1933. if (ep->num != UDC_EP0OUT_IX)
  1934. dev->data_ep_queued = 0;
  1935. }
  1936. } else {
  1937. /*
  1938. * RX DMA must be reenabled for each desc in PPBDU mode
  1939. * and must be enabled for PPBNDU mode in case of BNA
  1940. */
  1941. udc_set_rde(dev);
  1942. }
  1943. } else if (ep->cancel_transfer) {
  1944. ret_val = IRQ_HANDLED;
  1945. ep->cancel_transfer = 0;
  1946. }
  1947. /* check pending CNAKS */
  1948. if (cnak_pending) {
  1949. /* CNAk processing when rxfifo empty only */
  1950. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  1951. udc_process_cnak_queue(dev);
  1952. }
  1953. /* clear OUT bits in ep status */
  1954. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1955. finished:
  1956. return ret_val;
  1957. }
  1958. /* Interrupt handler for data IN traffic */
  1959. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  1960. {
  1961. irqreturn_t ret_val = IRQ_NONE;
  1962. u32 tmp;
  1963. u32 epsts;
  1964. struct udc_ep *ep;
  1965. struct udc_request *req;
  1966. struct udc_data_dma *td;
  1967. unsigned dma_done;
  1968. unsigned len;
  1969. ep = &dev->ep[ep_ix];
  1970. epsts = readl(&ep->regs->sts);
  1971. if (use_dma) {
  1972. /* BNA ? */
  1973. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  1974. dev_err(&dev->pdev->dev,
  1975. "BNA ep%din occurred - DESPTR = %08lx\n",
  1976. ep->num,
  1977. (unsigned long) readl(&ep->regs->desptr));
  1978. /* clear BNA */
  1979. writel(epsts, &ep->regs->sts);
  1980. ret_val = IRQ_HANDLED;
  1981. goto finished;
  1982. }
  1983. }
  1984. /* HE event ? */
  1985. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  1986. dev_err(&dev->pdev->dev,
  1987. "HE ep%dn occurred - DESPTR = %08lx\n",
  1988. ep->num, (unsigned long) readl(&ep->regs->desptr));
  1989. /* clear HE */
  1990. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1991. ret_val = IRQ_HANDLED;
  1992. goto finished;
  1993. }
  1994. /* DMA completion */
  1995. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  1996. VDBG(dev, "TDC set- completion\n");
  1997. ret_val = IRQ_HANDLED;
  1998. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  1999. req = list_entry(ep->queue.next,
  2000. struct udc_request, queue);
  2001. /*
  2002. * length bytes transferred
  2003. * check dma done of last desc. in PPBDU mode
  2004. */
  2005. if (use_dma_ppb_du) {
  2006. td = udc_get_last_dma_desc(req);
  2007. if (td) {
  2008. dma_done =
  2009. AMD_GETBITS(td->status,
  2010. UDC_DMA_IN_STS_BS);
  2011. /* don't care DMA done */
  2012. req->req.actual = req->req.length;
  2013. }
  2014. } else {
  2015. /* assume all bytes transferred */
  2016. req->req.actual = req->req.length;
  2017. }
  2018. if (req->req.actual == req->req.length) {
  2019. /* complete req */
  2020. complete_req(ep, req, 0);
  2021. req->dma_going = 0;
  2022. /* further request available ? */
  2023. if (list_empty(&ep->queue)) {
  2024. /* disable interrupt */
  2025. tmp = readl(&dev->regs->ep_irqmsk);
  2026. tmp |= AMD_BIT(ep->num);
  2027. writel(tmp, &dev->regs->ep_irqmsk);
  2028. }
  2029. }
  2030. }
  2031. ep->cancel_transfer = 0;
  2032. }
  2033. /*
  2034. * status reg has IN bit set and TDC not set (if TDC was handled,
  2035. * IN must not be handled (UDC defect) ?
  2036. */
  2037. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2038. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2039. ret_val = IRQ_HANDLED;
  2040. if (!list_empty(&ep->queue)) {
  2041. /* next request */
  2042. req = list_entry(ep->queue.next,
  2043. struct udc_request, queue);
  2044. /* FIFO mode */
  2045. if (!use_dma) {
  2046. /* write fifo */
  2047. udc_txfifo_write(ep, &req->req);
  2048. len = req->req.length - req->req.actual;
  2049. if (len > ep->ep.maxpacket)
  2050. len = ep->ep.maxpacket;
  2051. req->req.actual += len;
  2052. if (req->req.actual == req->req.length
  2053. || (len != ep->ep.maxpacket)) {
  2054. /* complete req */
  2055. complete_req(ep, req, 0);
  2056. }
  2057. /* DMA */
  2058. } else if (req && !req->dma_going) {
  2059. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2060. req, req->td_data);
  2061. if (req->td_data) {
  2062. req->dma_going = 1;
  2063. /*
  2064. * unset L bit of first desc.
  2065. * for chain
  2066. */
  2067. if (use_dma_ppb && req->req.length >
  2068. ep->ep.maxpacket) {
  2069. req->td_data->status &=
  2070. AMD_CLEAR_BIT(
  2071. UDC_DMA_IN_STS_L);
  2072. }
  2073. /* write desc pointer */
  2074. writel(req->td_phys, &ep->regs->desptr);
  2075. /* set HOST READY */
  2076. req->td_data->status =
  2077. AMD_ADDBITS(
  2078. req->td_data->status,
  2079. UDC_DMA_IN_STS_BS_HOST_READY,
  2080. UDC_DMA_IN_STS_BS);
  2081. /* set poll demand bit */
  2082. tmp = readl(&ep->regs->ctl);
  2083. tmp |= AMD_BIT(UDC_EPCTL_P);
  2084. writel(tmp, &ep->regs->ctl);
  2085. }
  2086. }
  2087. } else if (!use_dma && ep->in) {
  2088. /* disable interrupt */
  2089. tmp = readl(
  2090. &dev->regs->ep_irqmsk);
  2091. tmp |= AMD_BIT(ep->num);
  2092. writel(tmp,
  2093. &dev->regs->ep_irqmsk);
  2094. }
  2095. }
  2096. /* clear status bits */
  2097. writel(epsts, &ep->regs->sts);
  2098. finished:
  2099. return ret_val;
  2100. }
  2101. /* Interrupt handler for Control OUT traffic */
  2102. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2103. __releases(dev->lock)
  2104. __acquires(dev->lock)
  2105. {
  2106. irqreturn_t ret_val = IRQ_NONE;
  2107. u32 tmp;
  2108. int setup_supported;
  2109. u32 count;
  2110. int set = 0;
  2111. struct udc_ep *ep;
  2112. struct udc_ep *ep_tmp;
  2113. ep = &dev->ep[UDC_EP0OUT_IX];
  2114. /* clear irq */
  2115. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2116. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2117. /* check BNA and clear if set */
  2118. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2119. VDBG(dev, "ep0: BNA set\n");
  2120. writel(AMD_BIT(UDC_EPSTS_BNA),
  2121. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2122. ep->bna_occurred = 1;
  2123. ret_val = IRQ_HANDLED;
  2124. goto finished;
  2125. }
  2126. /* type of data: SETUP or DATA 0 bytes */
  2127. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2128. VDBG(dev, "data_typ = %x\n", tmp);
  2129. /* setup data */
  2130. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2131. ret_val = IRQ_HANDLED;
  2132. ep->dev->stall_ep0in = 0;
  2133. dev->waiting_zlp_ack_ep0in = 0;
  2134. /* set NAK for EP0_IN */
  2135. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2136. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2137. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2138. dev->ep[UDC_EP0IN_IX].naking = 1;
  2139. /* get setup data */
  2140. if (use_dma) {
  2141. /* clear OUT bits in ep status */
  2142. writel(UDC_EPSTS_OUT_CLEAR,
  2143. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2144. setup_data.data[0] =
  2145. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2146. setup_data.data[1] =
  2147. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2148. /* set HOST READY */
  2149. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2150. UDC_DMA_STP_STS_BS_HOST_READY;
  2151. } else {
  2152. /* read fifo */
  2153. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2154. }
  2155. /* determine direction of control data */
  2156. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2157. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2158. /* enable RDE */
  2159. udc_ep0_set_rde(dev);
  2160. set = 0;
  2161. } else {
  2162. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2163. /*
  2164. * implant BNA dummy descriptor to allow RXFIFO opening
  2165. * by RDE
  2166. */
  2167. if (ep->bna_dummy_req) {
  2168. /* write desc pointer */
  2169. writel(ep->bna_dummy_req->td_phys,
  2170. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2171. ep->bna_occurred = 0;
  2172. }
  2173. set = 1;
  2174. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2175. /*
  2176. * setup timer for enabling RDE (to not enable
  2177. * RXFIFO DMA for data to early)
  2178. */
  2179. set_rde = 1;
  2180. if (!timer_pending(&udc_timer)) {
  2181. udc_timer.expires = jiffies +
  2182. HZ/UDC_RDE_TIMER_DIV;
  2183. if (!stop_timer)
  2184. add_timer(&udc_timer);
  2185. }
  2186. }
  2187. /*
  2188. * mass storage reset must be processed here because
  2189. * next packet may be a CLEAR_FEATURE HALT which would not
  2190. * clear the stall bit when no STALL handshake was received
  2191. * before (autostall can cause this)
  2192. */
  2193. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2194. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2195. DBG(dev, "MSC Reset\n");
  2196. /*
  2197. * clear stall bits
  2198. * only one IN and OUT endpoints are handled
  2199. */
  2200. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2201. udc_set_halt(&ep_tmp->ep, 0);
  2202. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2203. udc_set_halt(&ep_tmp->ep, 0);
  2204. }
  2205. /* call gadget with setup data received */
  2206. spin_unlock(&dev->lock);
  2207. setup_supported = dev->driver->setup(&dev->gadget,
  2208. &setup_data.request);
  2209. spin_lock(&dev->lock);
  2210. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2211. /* ep0 in returns data (not zlp) on IN phase */
  2212. if (setup_supported >= 0 && setup_supported <
  2213. UDC_EP0IN_MAXPACKET) {
  2214. /* clear NAK by writing CNAK in EP0_IN */
  2215. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2216. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2217. dev->ep[UDC_EP0IN_IX].naking = 0;
  2218. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2219. /* if unsupported request then stall */
  2220. } else if (setup_supported < 0) {
  2221. tmp |= AMD_BIT(UDC_EPCTL_S);
  2222. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2223. } else
  2224. dev->waiting_zlp_ack_ep0in = 1;
  2225. /* clear NAK by writing CNAK in EP0_OUT */
  2226. if (!set) {
  2227. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2228. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2229. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2230. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2231. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2232. }
  2233. if (!use_dma) {
  2234. /* clear OUT bits in ep status */
  2235. writel(UDC_EPSTS_OUT_CLEAR,
  2236. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2237. }
  2238. /* data packet 0 bytes */
  2239. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2240. /* clear OUT bits in ep status */
  2241. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2242. /* get setup data: only 0 packet */
  2243. if (use_dma) {
  2244. /* no req if 0 packet, just reactivate */
  2245. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2246. VDBG(dev, "ZLP\n");
  2247. /* set HOST READY */
  2248. dev->ep[UDC_EP0OUT_IX].td->status =
  2249. AMD_ADDBITS(
  2250. dev->ep[UDC_EP0OUT_IX].td->status,
  2251. UDC_DMA_OUT_STS_BS_HOST_READY,
  2252. UDC_DMA_OUT_STS_BS);
  2253. /* enable RDE */
  2254. udc_ep0_set_rde(dev);
  2255. ret_val = IRQ_HANDLED;
  2256. } else {
  2257. /* control write */
  2258. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2259. /* re-program desc. pointer for possible ZLPs */
  2260. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2261. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2262. /* enable RDE */
  2263. udc_ep0_set_rde(dev);
  2264. }
  2265. } else {
  2266. /* received number bytes */
  2267. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2268. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2269. /* out data for fifo mode not working */
  2270. count = 0;
  2271. /* 0 packet or real data ? */
  2272. if (count != 0) {
  2273. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2274. } else {
  2275. /* dummy read confirm */
  2276. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2277. ret_val = IRQ_HANDLED;
  2278. }
  2279. }
  2280. }
  2281. /* check pending CNAKS */
  2282. if (cnak_pending) {
  2283. /* CNAk processing when rxfifo empty only */
  2284. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2285. udc_process_cnak_queue(dev);
  2286. }
  2287. finished:
  2288. return ret_val;
  2289. }
  2290. /* Interrupt handler for Control IN traffic */
  2291. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2292. {
  2293. irqreturn_t ret_val = IRQ_NONE;
  2294. u32 tmp;
  2295. struct udc_ep *ep;
  2296. struct udc_request *req;
  2297. unsigned len;
  2298. ep = &dev->ep[UDC_EP0IN_IX];
  2299. /* clear irq */
  2300. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2301. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2302. /* DMA completion */
  2303. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2304. VDBG(dev, "isr: TDC clear\n");
  2305. ret_val = IRQ_HANDLED;
  2306. /* clear TDC bit */
  2307. writel(AMD_BIT(UDC_EPSTS_TDC),
  2308. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2309. /* status reg has IN bit set ? */
  2310. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2311. ret_val = IRQ_HANDLED;
  2312. if (ep->dma) {
  2313. /* clear IN bit */
  2314. writel(AMD_BIT(UDC_EPSTS_IN),
  2315. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2316. }
  2317. if (dev->stall_ep0in) {
  2318. DBG(dev, "stall ep0in\n");
  2319. /* halt ep0in */
  2320. tmp = readl(&ep->regs->ctl);
  2321. tmp |= AMD_BIT(UDC_EPCTL_S);
  2322. writel(tmp, &ep->regs->ctl);
  2323. } else {
  2324. if (!list_empty(&ep->queue)) {
  2325. /* next request */
  2326. req = list_entry(ep->queue.next,
  2327. struct udc_request, queue);
  2328. if (ep->dma) {
  2329. /* write desc pointer */
  2330. writel(req->td_phys, &ep->regs->desptr);
  2331. /* set HOST READY */
  2332. req->td_data->status =
  2333. AMD_ADDBITS(
  2334. req->td_data->status,
  2335. UDC_DMA_STP_STS_BS_HOST_READY,
  2336. UDC_DMA_STP_STS_BS);
  2337. /* set poll demand bit */
  2338. tmp =
  2339. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2340. tmp |= AMD_BIT(UDC_EPCTL_P);
  2341. writel(tmp,
  2342. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2343. /* all bytes will be transferred */
  2344. req->req.actual = req->req.length;
  2345. /* complete req */
  2346. complete_req(ep, req, 0);
  2347. } else {
  2348. /* write fifo */
  2349. udc_txfifo_write(ep, &req->req);
  2350. /* lengh bytes transferred */
  2351. len = req->req.length - req->req.actual;
  2352. if (len > ep->ep.maxpacket)
  2353. len = ep->ep.maxpacket;
  2354. req->req.actual += len;
  2355. if (req->req.actual == req->req.length
  2356. || (len != ep->ep.maxpacket)) {
  2357. /* complete req */
  2358. complete_req(ep, req, 0);
  2359. }
  2360. }
  2361. }
  2362. }
  2363. ep->halted = 0;
  2364. dev->stall_ep0in = 0;
  2365. if (!ep->dma) {
  2366. /* clear IN bit */
  2367. writel(AMD_BIT(UDC_EPSTS_IN),
  2368. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2369. }
  2370. }
  2371. return ret_val;
  2372. }
  2373. /* Interrupt handler for global device events */
  2374. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2375. __releases(dev->lock)
  2376. __acquires(dev->lock)
  2377. {
  2378. irqreturn_t ret_val = IRQ_NONE;
  2379. u32 tmp;
  2380. u32 cfg;
  2381. struct udc_ep *ep;
  2382. u16 i;
  2383. u8 udc_csr_epix;
  2384. /* SET_CONFIG irq ? */
  2385. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2386. ret_val = IRQ_HANDLED;
  2387. /* read config value */
  2388. tmp = readl(&dev->regs->sts);
  2389. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2390. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2391. dev->cur_config = cfg;
  2392. dev->set_cfg_not_acked = 1;
  2393. /* make usb request for gadget driver */
  2394. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2395. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2396. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2397. /* programm the NE registers */
  2398. for (i = 0; i < UDC_EP_NUM; i++) {
  2399. ep = &dev->ep[i];
  2400. if (ep->in) {
  2401. /* ep ix in UDC CSR register space */
  2402. udc_csr_epix = ep->num;
  2403. /* OUT ep */
  2404. } else {
  2405. /* ep ix in UDC CSR register space */
  2406. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2407. }
  2408. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2409. /* ep cfg */
  2410. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2411. UDC_CSR_NE_CFG);
  2412. /* write reg */
  2413. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2414. /* clear stall bits */
  2415. ep->halted = 0;
  2416. tmp = readl(&ep->regs->ctl);
  2417. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2418. writel(tmp, &ep->regs->ctl);
  2419. }
  2420. /* call gadget zero with setup data received */
  2421. spin_unlock(&dev->lock);
  2422. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2423. spin_lock(&dev->lock);
  2424. } /* SET_INTERFACE ? */
  2425. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2426. ret_val = IRQ_HANDLED;
  2427. dev->set_cfg_not_acked = 1;
  2428. /* read interface and alt setting values */
  2429. tmp = readl(&dev->regs->sts);
  2430. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2431. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2432. /* make usb request for gadget driver */
  2433. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2434. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2435. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2436. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2437. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2438. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2439. dev->cur_alt, dev->cur_intf);
  2440. /* programm the NE registers */
  2441. for (i = 0; i < UDC_EP_NUM; i++) {
  2442. ep = &dev->ep[i];
  2443. if (ep->in) {
  2444. /* ep ix in UDC CSR register space */
  2445. udc_csr_epix = ep->num;
  2446. /* OUT ep */
  2447. } else {
  2448. /* ep ix in UDC CSR register space */
  2449. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2450. }
  2451. /* UDC CSR reg */
  2452. /* set ep values */
  2453. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2454. /* ep interface */
  2455. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2456. UDC_CSR_NE_INTF);
  2457. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2458. /* ep alt */
  2459. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2460. UDC_CSR_NE_ALT);
  2461. /* write reg */
  2462. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2463. /* clear stall bits */
  2464. ep->halted = 0;
  2465. tmp = readl(&ep->regs->ctl);
  2466. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2467. writel(tmp, &ep->regs->ctl);
  2468. }
  2469. /* call gadget zero with setup data received */
  2470. spin_unlock(&dev->lock);
  2471. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2472. spin_lock(&dev->lock);
  2473. } /* USB reset */
  2474. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2475. DBG(dev, "USB Reset interrupt\n");
  2476. ret_val = IRQ_HANDLED;
  2477. /* allow soft reset when suspend occurs */
  2478. soft_reset_occured = 0;
  2479. dev->waiting_zlp_ack_ep0in = 0;
  2480. dev->set_cfg_not_acked = 0;
  2481. /* mask not needed interrupts */
  2482. udc_mask_unused_interrupts(dev);
  2483. /* call gadget to resume and reset configs etc. */
  2484. spin_unlock(&dev->lock);
  2485. if (dev->sys_suspended && dev->driver->resume) {
  2486. dev->driver->resume(&dev->gadget);
  2487. dev->sys_suspended = 0;
  2488. }
  2489. dev->driver->disconnect(&dev->gadget);
  2490. spin_lock(&dev->lock);
  2491. /* disable ep0 to empty req queue */
  2492. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2493. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2494. /* soft reset when rxfifo not empty */
  2495. tmp = readl(&dev->regs->sts);
  2496. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2497. && !soft_reset_after_usbreset_occured) {
  2498. udc_soft_reset(dev);
  2499. soft_reset_after_usbreset_occured++;
  2500. }
  2501. /*
  2502. * DMA reset to kill potential old DMA hw hang,
  2503. * POLL bit is already reset by ep_init() through
  2504. * disconnect()
  2505. */
  2506. DBG(dev, "DMA machine reset\n");
  2507. tmp = readl(&dev->regs->cfg);
  2508. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2509. writel(tmp, &dev->regs->cfg);
  2510. /* put into initial config */
  2511. udc_basic_init(dev);
  2512. /* enable device setup interrupts */
  2513. udc_enable_dev_setup_interrupts(dev);
  2514. /* enable suspend interrupt */
  2515. tmp = readl(&dev->regs->irqmsk);
  2516. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2517. writel(tmp, &dev->regs->irqmsk);
  2518. } /* USB suspend */
  2519. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2520. DBG(dev, "USB Suspend interrupt\n");
  2521. ret_val = IRQ_HANDLED;
  2522. if (dev->driver->suspend) {
  2523. spin_unlock(&dev->lock);
  2524. dev->sys_suspended = 1;
  2525. dev->driver->suspend(&dev->gadget);
  2526. spin_lock(&dev->lock);
  2527. }
  2528. } /* new speed ? */
  2529. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2530. DBG(dev, "ENUM interrupt\n");
  2531. ret_val = IRQ_HANDLED;
  2532. soft_reset_after_usbreset_occured = 0;
  2533. /* disable ep0 to empty req queue */
  2534. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2535. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2536. /* link up all endpoints */
  2537. udc_setup_endpoints(dev);
  2538. dev_info(&dev->pdev->dev, "Connect: %s\n",
  2539. usb_speed_string(dev->gadget.speed));
  2540. /* init ep 0 */
  2541. activate_control_endpoints(dev);
  2542. /* enable ep0 interrupts */
  2543. udc_enable_ep0_interrupts(dev);
  2544. }
  2545. /* session valid change interrupt */
  2546. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2547. DBG(dev, "USB SVC interrupt\n");
  2548. ret_val = IRQ_HANDLED;
  2549. /* check that session is not valid to detect disconnect */
  2550. tmp = readl(&dev->regs->sts);
  2551. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2552. /* disable suspend interrupt */
  2553. tmp = readl(&dev->regs->irqmsk);
  2554. tmp |= AMD_BIT(UDC_DEVINT_US);
  2555. writel(tmp, &dev->regs->irqmsk);
  2556. DBG(dev, "USB Disconnect (session valid low)\n");
  2557. /* cleanup on disconnect */
  2558. usb_disconnect(udc);
  2559. }
  2560. }
  2561. return ret_val;
  2562. }
  2563. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2564. static irqreturn_t udc_irq(int irq, void *pdev)
  2565. {
  2566. struct udc *dev = pdev;
  2567. u32 reg;
  2568. u16 i;
  2569. u32 ep_irq;
  2570. irqreturn_t ret_val = IRQ_NONE;
  2571. spin_lock(&dev->lock);
  2572. /* check for ep irq */
  2573. reg = readl(&dev->regs->ep_irqsts);
  2574. if (reg) {
  2575. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2576. ret_val |= udc_control_out_isr(dev);
  2577. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2578. ret_val |= udc_control_in_isr(dev);
  2579. /*
  2580. * data endpoint
  2581. * iterate ep's
  2582. */
  2583. for (i = 1; i < UDC_EP_NUM; i++) {
  2584. ep_irq = 1 << i;
  2585. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2586. continue;
  2587. /* clear irq status */
  2588. writel(ep_irq, &dev->regs->ep_irqsts);
  2589. /* irq for out ep ? */
  2590. if (i > UDC_EPIN_NUM)
  2591. ret_val |= udc_data_out_isr(dev, i);
  2592. else
  2593. ret_val |= udc_data_in_isr(dev, i);
  2594. }
  2595. }
  2596. /* check for dev irq */
  2597. reg = readl(&dev->regs->irqsts);
  2598. if (reg) {
  2599. /* clear irq */
  2600. writel(reg, &dev->regs->irqsts);
  2601. ret_val |= udc_dev_isr(dev, reg);
  2602. }
  2603. spin_unlock(&dev->lock);
  2604. return ret_val;
  2605. }
  2606. /* Tears down device */
  2607. static void gadget_release(struct device *pdev)
  2608. {
  2609. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2610. kfree(dev);
  2611. }
  2612. /* Cleanup on device remove */
  2613. static void udc_remove(struct udc *dev)
  2614. {
  2615. /* remove timer */
  2616. stop_timer++;
  2617. if (timer_pending(&udc_timer))
  2618. wait_for_completion(&on_exit);
  2619. if (udc_timer.data)
  2620. del_timer_sync(&udc_timer);
  2621. /* remove pollstall timer */
  2622. stop_pollstall_timer++;
  2623. if (timer_pending(&udc_pollstall_timer))
  2624. wait_for_completion(&on_pollstall_exit);
  2625. if (udc_pollstall_timer.data)
  2626. del_timer_sync(&udc_pollstall_timer);
  2627. udc = NULL;
  2628. }
  2629. /* Reset all pci context */
  2630. static void udc_pci_remove(struct pci_dev *pdev)
  2631. {
  2632. struct udc *dev;
  2633. dev = pci_get_drvdata(pdev);
  2634. usb_del_gadget_udc(&udc->gadget);
  2635. /* gadget driver must not be registered */
  2636. BUG_ON(dev->driver != NULL);
  2637. /* dma pool cleanup */
  2638. if (dev->data_requests)
  2639. pci_pool_destroy(dev->data_requests);
  2640. if (dev->stp_requests) {
  2641. /* cleanup DMA desc's for ep0in */
  2642. pci_pool_free(dev->stp_requests,
  2643. dev->ep[UDC_EP0OUT_IX].td_stp,
  2644. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2645. pci_pool_free(dev->stp_requests,
  2646. dev->ep[UDC_EP0OUT_IX].td,
  2647. dev->ep[UDC_EP0OUT_IX].td_phys);
  2648. pci_pool_destroy(dev->stp_requests);
  2649. }
  2650. /* reset controller */
  2651. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2652. if (dev->irq_registered)
  2653. free_irq(pdev->irq, dev);
  2654. if (dev->regs)
  2655. iounmap(dev->regs);
  2656. if (dev->mem_region)
  2657. release_mem_region(pci_resource_start(pdev, 0),
  2658. pci_resource_len(pdev, 0));
  2659. if (dev->active)
  2660. pci_disable_device(pdev);
  2661. device_unregister(&dev->gadget.dev);
  2662. pci_set_drvdata(pdev, NULL);
  2663. udc_remove(dev);
  2664. }
  2665. /* create dma pools on init */
  2666. static int init_dma_pools(struct udc *dev)
  2667. {
  2668. struct udc_stp_dma *td_stp;
  2669. struct udc_data_dma *td_data;
  2670. int retval;
  2671. /* consistent DMA mode setting ? */
  2672. if (use_dma_ppb) {
  2673. use_dma_bufferfill_mode = 0;
  2674. } else {
  2675. use_dma_ppb_du = 0;
  2676. use_dma_bufferfill_mode = 1;
  2677. }
  2678. /* DMA setup */
  2679. dev->data_requests = dma_pool_create("data_requests", NULL,
  2680. sizeof(struct udc_data_dma), 0, 0);
  2681. if (!dev->data_requests) {
  2682. DBG(dev, "can't get request data pool\n");
  2683. retval = -ENOMEM;
  2684. goto finished;
  2685. }
  2686. /* EP0 in dma regs = dev control regs */
  2687. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2688. /* dma desc for setup data */
  2689. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2690. sizeof(struct udc_stp_dma), 0, 0);
  2691. if (!dev->stp_requests) {
  2692. DBG(dev, "can't get stp request pool\n");
  2693. retval = -ENOMEM;
  2694. goto finished;
  2695. }
  2696. /* setup */
  2697. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2698. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2699. if (td_stp == NULL) {
  2700. retval = -ENOMEM;
  2701. goto finished;
  2702. }
  2703. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2704. /* data: 0 packets !? */
  2705. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2706. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2707. if (td_data == NULL) {
  2708. retval = -ENOMEM;
  2709. goto finished;
  2710. }
  2711. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2712. return 0;
  2713. finished:
  2714. return retval;
  2715. }
  2716. /* Called by pci bus driver to init pci context */
  2717. static int udc_pci_probe(
  2718. struct pci_dev *pdev,
  2719. const struct pci_device_id *id
  2720. )
  2721. {
  2722. struct udc *dev;
  2723. unsigned long resource;
  2724. unsigned long len;
  2725. int retval = 0;
  2726. /* one udc only */
  2727. if (udc) {
  2728. dev_dbg(&pdev->dev, "already probed\n");
  2729. return -EBUSY;
  2730. }
  2731. /* init */
  2732. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2733. if (!dev) {
  2734. retval = -ENOMEM;
  2735. goto finished;
  2736. }
  2737. /* pci setup */
  2738. if (pci_enable_device(pdev) < 0) {
  2739. kfree(dev);
  2740. dev = NULL;
  2741. retval = -ENODEV;
  2742. goto finished;
  2743. }
  2744. dev->active = 1;
  2745. /* PCI resource allocation */
  2746. resource = pci_resource_start(pdev, 0);
  2747. len = pci_resource_len(pdev, 0);
  2748. if (!request_mem_region(resource, len, name)) {
  2749. dev_dbg(&pdev->dev, "pci device used already\n");
  2750. kfree(dev);
  2751. dev = NULL;
  2752. retval = -EBUSY;
  2753. goto finished;
  2754. }
  2755. dev->mem_region = 1;
  2756. dev->virt_addr = ioremap_nocache(resource, len);
  2757. if (dev->virt_addr == NULL) {
  2758. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2759. kfree(dev);
  2760. dev = NULL;
  2761. retval = -EFAULT;
  2762. goto finished;
  2763. }
  2764. if (!pdev->irq) {
  2765. dev_err(&dev->pdev->dev, "irq not set\n");
  2766. kfree(dev);
  2767. dev = NULL;
  2768. retval = -ENODEV;
  2769. goto finished;
  2770. }
  2771. spin_lock_init(&dev->lock);
  2772. /* udc csr registers base */
  2773. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2774. /* dev registers base */
  2775. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2776. /* ep registers base */
  2777. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2778. /* fifo's base */
  2779. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2780. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2781. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2782. dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2783. kfree(dev);
  2784. dev = NULL;
  2785. retval = -EBUSY;
  2786. goto finished;
  2787. }
  2788. dev->irq_registered = 1;
  2789. pci_set_drvdata(pdev, dev);
  2790. /* chip revision for Hs AMD5536 */
  2791. dev->chiprev = pdev->revision;
  2792. pci_set_master(pdev);
  2793. pci_try_set_mwi(pdev);
  2794. /* init dma pools */
  2795. if (use_dma) {
  2796. retval = init_dma_pools(dev);
  2797. if (retval != 0)
  2798. goto finished;
  2799. }
  2800. dev->phys_addr = resource;
  2801. dev->irq = pdev->irq;
  2802. dev->pdev = pdev;
  2803. dev->gadget.dev.parent = &pdev->dev;
  2804. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2805. /* general probing */
  2806. if (udc_probe(dev) == 0)
  2807. return 0;
  2808. finished:
  2809. if (dev)
  2810. udc_pci_remove(pdev);
  2811. return retval;
  2812. }
  2813. /* general probe */
  2814. static int udc_probe(struct udc *dev)
  2815. {
  2816. char tmp[128];
  2817. u32 reg;
  2818. int retval;
  2819. /* mark timer as not initialized */
  2820. udc_timer.data = 0;
  2821. udc_pollstall_timer.data = 0;
  2822. /* device struct setup */
  2823. dev->gadget.ops = &udc_ops;
  2824. dev_set_name(&dev->gadget.dev, "gadget");
  2825. dev->gadget.dev.release = gadget_release;
  2826. dev->gadget.name = name;
  2827. dev->gadget.max_speed = USB_SPEED_HIGH;
  2828. /* init registers, interrupts, ... */
  2829. startup_registers(dev);
  2830. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2831. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2832. dev_info(&dev->pdev->dev,
  2833. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2834. tmp, dev->phys_addr, dev->chiprev,
  2835. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2836. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2837. if (dev->chiprev == UDC_HSA0_REV) {
  2838. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2839. retval = -ENODEV;
  2840. goto finished;
  2841. }
  2842. dev_info(&dev->pdev->dev,
  2843. "driver version: %s(for Geode5536 B1)\n", tmp);
  2844. udc = dev;
  2845. retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget);
  2846. if (retval)
  2847. goto finished;
  2848. retval = device_register(&dev->gadget.dev);
  2849. if (retval) {
  2850. usb_del_gadget_udc(&dev->gadget);
  2851. put_device(&dev->gadget.dev);
  2852. goto finished;
  2853. }
  2854. /* timer init */
  2855. init_timer(&udc_timer);
  2856. udc_timer.function = udc_timer_function;
  2857. udc_timer.data = 1;
  2858. /* timer pollstall init */
  2859. init_timer(&udc_pollstall_timer);
  2860. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2861. udc_pollstall_timer.data = 1;
  2862. /* set SD */
  2863. reg = readl(&dev->regs->ctl);
  2864. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2865. writel(reg, &dev->regs->ctl);
  2866. /* print dev register info */
  2867. print_regs(dev);
  2868. return 0;
  2869. finished:
  2870. return retval;
  2871. }
  2872. /* Initiates a remote wakeup */
  2873. static int udc_remote_wakeup(struct udc *dev)
  2874. {
  2875. unsigned long flags;
  2876. u32 tmp;
  2877. DBG(dev, "UDC initiates remote wakeup\n");
  2878. spin_lock_irqsave(&dev->lock, flags);
  2879. tmp = readl(&dev->regs->ctl);
  2880. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2881. writel(tmp, &dev->regs->ctl);
  2882. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2883. writel(tmp, &dev->regs->ctl);
  2884. spin_unlock_irqrestore(&dev->lock, flags);
  2885. return 0;
  2886. }
  2887. /* PCI device parameters */
  2888. static DEFINE_PCI_DEVICE_TABLE(pci_id) = {
  2889. {
  2890. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2891. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2892. .class_mask = 0xffffffff,
  2893. },
  2894. {},
  2895. };
  2896. MODULE_DEVICE_TABLE(pci, pci_id);
  2897. /* PCI functions */
  2898. static struct pci_driver udc_pci_driver = {
  2899. .name = (char *) name,
  2900. .id_table = pci_id,
  2901. .probe = udc_pci_probe,
  2902. .remove = udc_pci_remove,
  2903. };
  2904. module_pci_driver(udc_pci_driver);
  2905. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2906. MODULE_AUTHOR("Thomas Dahlmann");
  2907. MODULE_LICENSE("GPL");