hw.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../efuse.h"
  31. #include "../base.h"
  32. #include "../regd.h"
  33. #include "../cam.h"
  34. #include "../ps.h"
  35. #include "../pci.h"
  36. #include "reg.h"
  37. #include "def.h"
  38. #include "phy.h"
  39. #include "dm.h"
  40. #include "fw.h"
  41. #include "led.h"
  42. #include "hw.h"
  43. void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  44. {
  45. struct rtl_priv *rtlpriv = rtl_priv(hw);
  46. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  47. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  48. switch (variable) {
  49. case HW_VAR_RCR: {
  50. *((u32 *) (val)) = rtlpci->receive_config;
  51. break;
  52. }
  53. case HW_VAR_RF_STATE: {
  54. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  55. break;
  56. }
  57. case HW_VAR_FW_PSMODE_STATUS: {
  58. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  59. break;
  60. }
  61. case HW_VAR_CORRECT_TSF: {
  62. u64 tsf;
  63. u32 *ptsf_low = (u32 *)&tsf;
  64. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  65. *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
  66. *ptsf_low = rtl_read_dword(rtlpriv, TSFR);
  67. *((u64 *) (val)) = tsf;
  68. break;
  69. }
  70. case HW_VAR_MRC: {
  71. *((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
  72. break;
  73. }
  74. default: {
  75. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  76. "switch case not processed\n");
  77. break;
  78. }
  79. }
  80. }
  81. void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  82. {
  83. struct rtl_priv *rtlpriv = rtl_priv(hw);
  84. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  85. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  86. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  87. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  88. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  89. switch (variable) {
  90. case HW_VAR_ETHER_ADDR:{
  91. rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
  92. rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
  93. break;
  94. }
  95. case HW_VAR_BASIC_RATE:{
  96. u16 rate_cfg = ((u16 *) val)[0];
  97. u8 rate_index = 0;
  98. if (rtlhal->version == VERSION_8192S_ACUT)
  99. rate_cfg = rate_cfg & 0x150;
  100. else
  101. rate_cfg = rate_cfg & 0x15f;
  102. rate_cfg |= 0x01;
  103. rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
  104. rtl_write_byte(rtlpriv, RRSR + 1,
  105. (rate_cfg >> 8) & 0xff);
  106. while (rate_cfg > 0x1) {
  107. rate_cfg = (rate_cfg >> 1);
  108. rate_index++;
  109. }
  110. rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
  111. break;
  112. }
  113. case HW_VAR_BSSID:{
  114. rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
  115. rtl_write_word(rtlpriv, BSSIDR + 4,
  116. ((u16 *)(val + 4))[0]);
  117. break;
  118. }
  119. case HW_VAR_SIFS:{
  120. rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
  121. rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
  122. break;
  123. }
  124. case HW_VAR_SLOT_TIME:{
  125. u8 e_aci;
  126. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  127. "HW_VAR_SLOT_TIME %x\n", val[0]);
  128. rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
  129. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  130. rtlpriv->cfg->ops->set_hw_reg(hw,
  131. HW_VAR_AC_PARAM,
  132. (&e_aci));
  133. }
  134. break;
  135. }
  136. case HW_VAR_ACK_PREAMBLE:{
  137. u8 reg_tmp;
  138. u8 short_preamble = (bool) (*val);
  139. reg_tmp = (mac->cur_40_prime_sc) << 5;
  140. if (short_preamble)
  141. reg_tmp |= 0x80;
  142. rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
  143. break;
  144. }
  145. case HW_VAR_AMPDU_MIN_SPACE:{
  146. u8 min_spacing_to_set;
  147. u8 sec_min_space;
  148. min_spacing_to_set = *val;
  149. if (min_spacing_to_set <= 7) {
  150. if (rtlpriv->sec.pairwise_enc_algorithm ==
  151. NO_ENCRYPTION)
  152. sec_min_space = 0;
  153. else
  154. sec_min_space = 1;
  155. if (min_spacing_to_set < sec_min_space)
  156. min_spacing_to_set = sec_min_space;
  157. if (min_spacing_to_set > 5)
  158. min_spacing_to_set = 5;
  159. mac->min_space_cfg =
  160. ((mac->min_space_cfg & 0xf8) |
  161. min_spacing_to_set);
  162. *val = min_spacing_to_set;
  163. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  164. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  165. mac->min_space_cfg);
  166. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
  167. mac->min_space_cfg);
  168. }
  169. break;
  170. }
  171. case HW_VAR_SHORTGI_DENSITY:{
  172. u8 density_to_set;
  173. density_to_set = *val;
  174. mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
  175. mac->min_space_cfg |= (density_to_set << 3);
  176. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  177. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  178. mac->min_space_cfg);
  179. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
  180. mac->min_space_cfg);
  181. break;
  182. }
  183. case HW_VAR_AMPDU_FACTOR:{
  184. u8 factor_toset;
  185. u8 regtoset;
  186. u8 factorlevel[18] = {
  187. 2, 4, 4, 7, 7, 13, 13,
  188. 13, 2, 7, 7, 13, 13,
  189. 15, 15, 15, 15, 0};
  190. u8 index = 0;
  191. factor_toset = *val;
  192. if (factor_toset <= 3) {
  193. factor_toset = (1 << (factor_toset + 2));
  194. if (factor_toset > 0xf)
  195. factor_toset = 0xf;
  196. for (index = 0; index < 17; index++) {
  197. if (factorlevel[index] > factor_toset)
  198. factorlevel[index] =
  199. factor_toset;
  200. }
  201. for (index = 0; index < 8; index++) {
  202. regtoset = ((factorlevel[index * 2]) |
  203. (factorlevel[index *
  204. 2 + 1] << 4));
  205. rtl_write_byte(rtlpriv,
  206. AGGLEN_LMT_L + index,
  207. regtoset);
  208. }
  209. regtoset = ((factorlevel[16]) |
  210. (factorlevel[17] << 4));
  211. rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
  212. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  213. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  214. factor_toset);
  215. }
  216. break;
  217. }
  218. case HW_VAR_AC_PARAM:{
  219. u8 e_aci = *val;
  220. rtl92s_dm_init_edca_turbo(hw);
  221. if (rtlpci->acm_method != eAcmWay2_SW)
  222. rtlpriv->cfg->ops->set_hw_reg(hw,
  223. HW_VAR_ACM_CTRL,
  224. &e_aci);
  225. break;
  226. }
  227. case HW_VAR_ACM_CTRL:{
  228. u8 e_aci = *val;
  229. union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
  230. mac->ac[0].aifs));
  231. u8 acm = p_aci_aifsn->f.acm;
  232. u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
  233. acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
  234. 0x0 : 0x1);
  235. if (acm) {
  236. switch (e_aci) {
  237. case AC0_BE:
  238. acm_ctrl |= AcmHw_BeqEn;
  239. break;
  240. case AC2_VI:
  241. acm_ctrl |= AcmHw_ViqEn;
  242. break;
  243. case AC3_VO:
  244. acm_ctrl |= AcmHw_VoqEn;
  245. break;
  246. default:
  247. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  248. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  249. acm);
  250. break;
  251. }
  252. } else {
  253. switch (e_aci) {
  254. case AC0_BE:
  255. acm_ctrl &= (~AcmHw_BeqEn);
  256. break;
  257. case AC2_VI:
  258. acm_ctrl &= (~AcmHw_ViqEn);
  259. break;
  260. case AC3_VO:
  261. acm_ctrl &= (~AcmHw_BeqEn);
  262. break;
  263. default:
  264. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  265. "switch case not processed\n");
  266. break;
  267. }
  268. }
  269. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  270. "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
  271. rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
  272. break;
  273. }
  274. case HW_VAR_RCR:{
  275. rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
  276. rtlpci->receive_config = ((u32 *) (val))[0];
  277. break;
  278. }
  279. case HW_VAR_RETRY_LIMIT:{
  280. u8 retry_limit = val[0];
  281. rtl_write_word(rtlpriv, RETRY_LIMIT,
  282. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  283. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  284. break;
  285. }
  286. case HW_VAR_DUAL_TSF_RST: {
  287. break;
  288. }
  289. case HW_VAR_EFUSE_BYTES: {
  290. rtlefuse->efuse_usedbytes = *((u16 *) val);
  291. break;
  292. }
  293. case HW_VAR_EFUSE_USAGE: {
  294. rtlefuse->efuse_usedpercentage = *val;
  295. break;
  296. }
  297. case HW_VAR_IO_CMD: {
  298. break;
  299. }
  300. case HW_VAR_WPA_CONFIG: {
  301. rtl_write_byte(rtlpriv, REG_SECR, *val);
  302. break;
  303. }
  304. case HW_VAR_SET_RPWM:{
  305. break;
  306. }
  307. case HW_VAR_H2C_FW_PWRMODE:{
  308. break;
  309. }
  310. case HW_VAR_FW_PSMODE_STATUS: {
  311. ppsc->fw_current_inpsmode = *((bool *) val);
  312. break;
  313. }
  314. case HW_VAR_H2C_FW_JOINBSSRPT:{
  315. break;
  316. }
  317. case HW_VAR_AID:{
  318. break;
  319. }
  320. case HW_VAR_CORRECT_TSF:{
  321. break;
  322. }
  323. case HW_VAR_MRC: {
  324. bool bmrc_toset = *((bool *)val);
  325. u8 u1bdata = 0;
  326. if (bmrc_toset) {
  327. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  328. MASKBYTE0, 0x33);
  329. u1bdata = (u8)rtl_get_bbreg(hw,
  330. ROFDM1_TRXPATHENABLE,
  331. MASKBYTE0);
  332. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
  333. MASKBYTE0,
  334. ((u1bdata & 0xf0) | 0x03));
  335. u1bdata = (u8)rtl_get_bbreg(hw,
  336. ROFDM0_TRXPATHENABLE,
  337. MASKBYTE1);
  338. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  339. MASKBYTE1,
  340. (u1bdata | 0x04));
  341. /* Update current settings. */
  342. rtlpriv->dm.current_mrc_switch = bmrc_toset;
  343. } else {
  344. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  345. MASKBYTE0, 0x13);
  346. u1bdata = (u8)rtl_get_bbreg(hw,
  347. ROFDM1_TRXPATHENABLE,
  348. MASKBYTE0);
  349. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
  350. MASKBYTE0,
  351. ((u1bdata & 0xf0) | 0x01));
  352. u1bdata = (u8)rtl_get_bbreg(hw,
  353. ROFDM0_TRXPATHENABLE,
  354. MASKBYTE1);
  355. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  356. MASKBYTE1, (u1bdata & 0xfb));
  357. /* Update current settings. */
  358. rtlpriv->dm.current_mrc_switch = bmrc_toset;
  359. }
  360. break;
  361. }
  362. default:
  363. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  364. "switch case not processed\n");
  365. break;
  366. }
  367. }
  368. void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
  369. {
  370. struct rtl_priv *rtlpriv = rtl_priv(hw);
  371. u8 sec_reg_value = 0x0;
  372. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  373. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  374. rtlpriv->sec.pairwise_enc_algorithm,
  375. rtlpriv->sec.group_enc_algorithm);
  376. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  377. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  378. "not open hw encryption\n");
  379. return;
  380. }
  381. sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
  382. if (rtlpriv->sec.use_defaultkey) {
  383. sec_reg_value |= SCR_TXUSEDK;
  384. sec_reg_value |= SCR_RXUSEDK;
  385. }
  386. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
  387. sec_reg_value);
  388. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  389. }
  390. static u8 _rtl92ce_halset_sysclk(struct ieee80211_hw *hw, u8 data)
  391. {
  392. struct rtl_priv *rtlpriv = rtl_priv(hw);
  393. u8 waitcount = 100;
  394. bool bresult = false;
  395. u8 tmpvalue;
  396. rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
  397. /* Wait the MAC synchronized. */
  398. udelay(400);
  399. /* Check if it is set ready. */
  400. tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  401. bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
  402. if ((data & (BIT(6) | BIT(7))) == false) {
  403. waitcount = 100;
  404. tmpvalue = 0;
  405. while (1) {
  406. waitcount--;
  407. tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  408. if ((tmpvalue & BIT(6)))
  409. break;
  410. pr_err("wait for BIT(6) return value %x\n", tmpvalue);
  411. if (waitcount == 0)
  412. break;
  413. udelay(10);
  414. }
  415. if (waitcount == 0)
  416. bresult = false;
  417. else
  418. bresult = true;
  419. }
  420. return bresult;
  421. }
  422. void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
  423. {
  424. struct rtl_priv *rtlpriv = rtl_priv(hw);
  425. u8 u1tmp;
  426. /* The following config GPIO function */
  427. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
  428. u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
  429. /* config GPIO3 to input */
  430. u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
  431. rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
  432. }
  433. static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
  434. {
  435. struct rtl_priv *rtlpriv = rtl_priv(hw);
  436. u8 u1tmp;
  437. u8 retval = ERFON;
  438. /* The following config GPIO function */
  439. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
  440. u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
  441. /* config GPIO3 to input */
  442. u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
  443. rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
  444. /* On some of the platform, driver cannot read correct
  445. * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
  446. mdelay(10);
  447. /* check GPIO3 */
  448. u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
  449. retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
  450. return retval;
  451. }
  452. static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
  453. {
  454. struct rtl_priv *rtlpriv = rtl_priv(hw);
  455. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  456. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  457. u8 i;
  458. u8 tmpu1b;
  459. u16 tmpu2b;
  460. u8 pollingcnt = 20;
  461. if (rtlpci->first_init) {
  462. /* Reset PCIE Digital */
  463. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  464. tmpu1b &= 0xFE;
  465. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
  466. udelay(1);
  467. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
  468. }
  469. /* Switch to SW IO control */
  470. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  471. if (tmpu1b & BIT(7)) {
  472. tmpu1b &= ~(BIT(6) | BIT(7));
  473. /* Set failed, return to prevent hang. */
  474. if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
  475. return;
  476. }
  477. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
  478. udelay(50);
  479. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  480. udelay(50);
  481. /* Clear FW RPWM for FW control LPS.*/
  482. rtl_write_byte(rtlpriv, RPWM, 0x0);
  483. /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
  484. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  485. tmpu1b &= 0x73;
  486. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
  487. /* wait for BIT 10/11/15 to pull high automatically!! */
  488. mdelay(1);
  489. rtl_write_byte(rtlpriv, CMDR, 0);
  490. rtl_write_byte(rtlpriv, TCR, 0);
  491. /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
  492. tmpu1b = rtl_read_byte(rtlpriv, 0x562);
  493. tmpu1b |= 0x08;
  494. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  495. tmpu1b &= ~(BIT(3));
  496. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  497. /* Enable AFE clock source */
  498. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
  499. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
  500. /* Delay 1.5ms */
  501. mdelay(2);
  502. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
  503. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
  504. /* Enable AFE Macro Block's Bandgap */
  505. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  506. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
  507. mdelay(1);
  508. /* Enable AFE Mbias */
  509. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  510. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
  511. mdelay(1);
  512. /* Enable LDOA15 block */
  513. tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
  514. rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
  515. /* Set Digital Vdd to Retention isolation Path. */
  516. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  517. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
  518. /* For warm reboot NIC disappera bug. */
  519. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  520. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
  521. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
  522. /* Enable AFE PLL Macro Block */
  523. /* We need to delay 100u before enabling PLL. */
  524. udelay(200);
  525. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
  526. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  527. /* for divider reset */
  528. udelay(100);
  529. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
  530. BIT(4) | BIT(6)));
  531. udelay(10);
  532. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  533. udelay(10);
  534. /* Enable MAC 80MHZ clock */
  535. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
  536. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
  537. mdelay(1);
  538. /* Release isolation AFE PLL & MD */
  539. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
  540. /* Enable MAC clock */
  541. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  542. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
  543. /* Enable Core digital and enable IOREG R/W */
  544. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  545. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
  546. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  547. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
  548. /* enable REG_EN */
  549. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
  550. /* Switch the control path. */
  551. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  552. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
  553. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  554. tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
  555. if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
  556. return; /* Set failed, return to prevent hang. */
  557. rtl_write_word(rtlpriv, CMDR, 0x07FC);
  558. /* MH We must enable the section of code to prevent load IMEM fail. */
  559. /* Load MAC register from WMAc temporarily We simulate macreg. */
  560. /* txt HW will provide MAC txt later */
  561. rtl_write_byte(rtlpriv, 0x6, 0x30);
  562. rtl_write_byte(rtlpriv, 0x49, 0xf0);
  563. rtl_write_byte(rtlpriv, 0x4b, 0x81);
  564. rtl_write_byte(rtlpriv, 0xb5, 0x21);
  565. rtl_write_byte(rtlpriv, 0xdc, 0xff);
  566. rtl_write_byte(rtlpriv, 0xdd, 0xff);
  567. rtl_write_byte(rtlpriv, 0xde, 0xff);
  568. rtl_write_byte(rtlpriv, 0xdf, 0xff);
  569. rtl_write_byte(rtlpriv, 0x11a, 0x00);
  570. rtl_write_byte(rtlpriv, 0x11b, 0x00);
  571. for (i = 0; i < 32; i++)
  572. rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
  573. rtl_write_byte(rtlpriv, 0x236, 0xff);
  574. rtl_write_byte(rtlpriv, 0x503, 0x22);
  575. if (ppsc->support_aspm && !ppsc->support_backdoor)
  576. rtl_write_byte(rtlpriv, 0x560, 0x40);
  577. else
  578. rtl_write_byte(rtlpriv, 0x560, 0x00);
  579. rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
  580. /* Set RX Desc Address */
  581. rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
  582. rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
  583. /* Set TX Desc Address */
  584. rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
  585. rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
  586. rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
  587. rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
  588. rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
  589. rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
  590. rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
  591. rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
  592. rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
  593. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  594. /* To make sure that TxDMA can ready to download FW. */
  595. /* We should reset TxDMA if IMEM RPT was not ready. */
  596. do {
  597. tmpu1b = rtl_read_byte(rtlpriv, TCR);
  598. if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
  599. break;
  600. udelay(5);
  601. } while (pollingcnt--);
  602. if (pollingcnt <= 0) {
  603. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  604. "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
  605. tmpu1b);
  606. tmpu1b = rtl_read_byte(rtlpriv, CMDR);
  607. rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
  608. udelay(2);
  609. /* Reset TxDMA */
  610. rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
  611. }
  612. /* After MACIO reset,we must refresh LED state. */
  613. if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
  614. (ppsc->rfoff_reason == 0)) {
  615. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  616. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  617. enum rf_pwrstate rfpwr_state_toset;
  618. rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
  619. if (rfpwr_state_toset == ERFON)
  620. rtl92se_sw_led_on(hw, pLed0);
  621. }
  622. }
  623. static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
  624. {
  625. struct rtl_priv *rtlpriv = rtl_priv(hw);
  626. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  627. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  628. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  629. u8 i;
  630. u16 tmpu2b;
  631. /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
  632. /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
  633. /* Turn on 0x40 Command register */
  634. rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
  635. SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
  636. RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
  637. /* Set TCR TX DMA pre 2 FULL enable bit */
  638. rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
  639. TXDMAPRE2FULL);
  640. /* Set RCR */
  641. rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
  642. /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
  643. /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
  644. /* Set CCK/OFDM SIFS */
  645. /* CCK SIFS shall always be 10us. */
  646. rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
  647. rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
  648. /* Set AckTimeout */
  649. rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
  650. /* Beacon related */
  651. rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
  652. rtl_write_word(rtlpriv, ATIMWND, 2);
  653. /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
  654. /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
  655. /* Firmware allocate now, associate with FW internal setting.!!! */
  656. /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
  657. /* 5.3 Set driver info, we only accept PHY status now. */
  658. /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
  659. rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
  660. /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
  661. /* Set RRSR to all legacy rate and HT rate
  662. * CCK rate is supported by default.
  663. * CCK rate will be filtered out only when associated
  664. * AP does not support it.
  665. * Only enable ACK rate to OFDM 24M
  666. * Disable RRSR for CCK rate in A-Cut */
  667. if (rtlhal->version == VERSION_8192S_ACUT)
  668. rtl_write_byte(rtlpriv, RRSR, 0xf0);
  669. else if (rtlhal->version == VERSION_8192S_BCUT)
  670. rtl_write_byte(rtlpriv, RRSR, 0xff);
  671. rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
  672. rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
  673. /* A-Cut IC do not support CCK rate. We forbid ARFR to */
  674. /* fallback to CCK rate */
  675. for (i = 0; i < 8; i++) {
  676. /*Disable RRSR for CCK rate in A-Cut */
  677. if (rtlhal->version == VERSION_8192S_ACUT)
  678. rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
  679. }
  680. /* Different rate use different AMPDU size */
  681. /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
  682. rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
  683. /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
  684. rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
  685. /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
  686. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
  687. /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
  688. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
  689. /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
  690. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
  691. /* Set Data / Response auto rate fallack retry count */
  692. rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
  693. rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
  694. rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
  695. rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
  696. /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
  697. /* Set all rate to support SG */
  698. rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
  699. /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
  700. /* Set NAV protection length */
  701. rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
  702. /* CF-END Threshold */
  703. rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
  704. /* Set AMPDU minimum space */
  705. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
  706. /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
  707. rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
  708. /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
  709. /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
  710. /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
  711. /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
  712. /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
  713. /* 14. Set driver info, we only accept PHY status now. */
  714. rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
  715. /* 15. For EEPROM R/W Workaround */
  716. /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
  717. tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
  718. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
  719. tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
  720. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
  721. /* 17. For EFUSE */
  722. /* We may R/W EFUSE in EEPROM mode */
  723. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  724. u8 tempval;
  725. tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
  726. tempval &= 0xFE;
  727. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
  728. /* Change Program timing */
  729. rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
  730. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
  731. }
  732. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
  733. }
  734. static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
  735. {
  736. struct rtl_priv *rtlpriv = rtl_priv(hw);
  737. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  738. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  739. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  740. u8 reg_bw_opmode = 0;
  741. u32 reg_rrsr = 0;
  742. u8 regtmp = 0;
  743. reg_bw_opmode = BW_OPMODE_20MHZ;
  744. reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  745. regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
  746. reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
  747. rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
  748. rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
  749. /* Set Retry Limit here */
  750. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
  751. (u8 *)(&rtlpci->shortretry_limit));
  752. rtl_write_byte(rtlpriv, MLT, 0x8f);
  753. /* For Min Spacing configuration. */
  754. switch (rtlphy->rf_type) {
  755. case RF_1T2R:
  756. case RF_1T1R:
  757. rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
  758. break;
  759. case RF_2T2R:
  760. case RF_2T2R_GREEN:
  761. rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
  762. break;
  763. }
  764. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
  765. }
  766. int rtl92se_hw_init(struct ieee80211_hw *hw)
  767. {
  768. struct rtl_priv *rtlpriv = rtl_priv(hw);
  769. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  770. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  771. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  772. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  773. u8 tmp_byte = 0;
  774. bool rtstatus = true;
  775. u8 tmp_u1b;
  776. int err = false;
  777. u8 i;
  778. int wdcapra_add[] = {
  779. EDCAPARA_BE, EDCAPARA_BK,
  780. EDCAPARA_VI, EDCAPARA_VO};
  781. u8 secr_value = 0x0;
  782. rtlpci->being_init_adapter = true;
  783. rtlpriv->intf_ops->disable_aspm(hw);
  784. /* 1. MAC Initialize */
  785. /* Before FW download, we have to set some MAC register */
  786. _rtl92se_macconfig_before_fwdownload(hw);
  787. rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
  788. PMC_FSM) >> 16) & 0xF);
  789. rtl8192se_gpiobit3_cfg_inputmode(hw);
  790. /* 2. download firmware */
  791. rtstatus = rtl92s_download_fw(hw);
  792. if (!rtstatus) {
  793. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  794. "Failed to download FW. Init HW without FW now... "
  795. "Please copy FW into /lib/firmware/rtlwifi\n");
  796. return 1;
  797. }
  798. /* After FW download, we have to reset MAC register */
  799. _rtl92se_macconfig_after_fwdownload(hw);
  800. /*Retrieve default FW Cmd IO map. */
  801. rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR);
  802. rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
  803. /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
  804. if (!rtl92s_phy_mac_config(hw)) {
  805. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
  806. return rtstatus;
  807. }
  808. /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
  809. /* We must set flag avoid BB/RF config period later!! */
  810. rtl_write_dword(rtlpriv, CMDR, 0x37FC);
  811. /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
  812. if (!rtl92s_phy_bb_config(hw)) {
  813. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
  814. return rtstatus;
  815. }
  816. /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
  817. /* Before initalizing RF. We can not use FW to do RF-R/W. */
  818. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  819. /* RF Power Save */
  820. #if 0
  821. /* H/W or S/W RF OFF before sleep. */
  822. if (rtlpriv->psc.rfoff_reason > RF_CHANGE_BY_PS) {
  823. u32 rfoffreason = rtlpriv->psc.rfoff_reason;
  824. rtlpriv->psc.rfoff_reason = RF_CHANGE_BY_INIT;
  825. rtlpriv->psc.rfpwr_state = ERFON;
  826. /* FIXME: check spinlocks if this block is uncommented */
  827. rtl_ps_set_rf_state(hw, ERFOFF, rfoffreason);
  828. } else {
  829. /* gpio radio on/off is out of adapter start */
  830. if (rtlpriv->psc.hwradiooff == false) {
  831. rtlpriv->psc.rfpwr_state = ERFON;
  832. rtlpriv->psc.rfoff_reason = 0;
  833. }
  834. }
  835. #endif
  836. /* Before RF-R/W we must execute the IO from Scott's suggestion. */
  837. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
  838. if (rtlhal->version == VERSION_8192S_ACUT)
  839. rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
  840. else
  841. rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
  842. if (!rtl92s_phy_rf_config(hw)) {
  843. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
  844. return rtstatus;
  845. }
  846. /* After read predefined TXT, we must set BB/MAC/RF
  847. * register as our requirement */
  848. rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
  849. (enum radio_path)0,
  850. RF_CHNLBW,
  851. RFREG_OFFSET_MASK);
  852. rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
  853. (enum radio_path)1,
  854. RF_CHNLBW,
  855. RFREG_OFFSET_MASK);
  856. /*---- Set CCK and OFDM Block "ON"----*/
  857. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  858. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  859. /*3 Set Hardware(Do nothing now) */
  860. _rtl92se_hw_configure(hw);
  861. /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
  862. /* TX power index for different rate set. */
  863. /* Get original hw reg values */
  864. rtl92s_phy_get_hw_reg_originalvalue(hw);
  865. /* Write correct tx power index */
  866. rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
  867. /* We must set MAC address after firmware download. */
  868. for (i = 0; i < 6; i++)
  869. rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
  870. /* EEPROM R/W workaround */
  871. tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
  872. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
  873. rtl_write_byte(rtlpriv, 0x4d, 0x0);
  874. if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
  875. tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
  876. tmp_byte = tmp_byte | BIT(5);
  877. rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
  878. rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
  879. }
  880. /* We enable high power and RA related mechanism after NIC
  881. * initialized. */
  882. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
  883. /* Add to prevent ASPM bug. */
  884. /* Always enable hst and NIC clock request. */
  885. rtl92s_phy_switch_ephy_parameter(hw);
  886. /* Security related
  887. * 1. Clear all H/W keys.
  888. * 2. Enable H/W encryption/decryption. */
  889. rtl_cam_reset_all_entry(hw);
  890. secr_value |= SCR_TXENCENABLE;
  891. secr_value |= SCR_RXENCENABLE;
  892. secr_value |= SCR_NOSKMC;
  893. rtl_write_byte(rtlpriv, REG_SECR, secr_value);
  894. for (i = 0; i < 4; i++)
  895. rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
  896. if (rtlphy->rf_type == RF_1T2R) {
  897. bool mrc2set = true;
  898. /* Turn on B-Path */
  899. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
  900. }
  901. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
  902. rtl92s_dm_init(hw);
  903. rtlpci->being_init_adapter = false;
  904. return err;
  905. }
  906. void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
  907. {
  908. /* This is a stub. */
  909. }
  910. void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  911. {
  912. struct rtl_priv *rtlpriv = rtl_priv(hw);
  913. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  914. u32 reg_rcr = rtlpci->receive_config;
  915. if (rtlpriv->psc.rfpwr_state != ERFON)
  916. return;
  917. if (check_bssid) {
  918. reg_rcr |= (RCR_CBSSID);
  919. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  920. } else if (!check_bssid) {
  921. reg_rcr &= (~RCR_CBSSID);
  922. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  923. }
  924. }
  925. static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
  926. enum nl80211_iftype type)
  927. {
  928. struct rtl_priv *rtlpriv = rtl_priv(hw);
  929. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  930. u32 temp;
  931. bt_msr &= ~MSR_LINK_MASK;
  932. switch (type) {
  933. case NL80211_IFTYPE_UNSPECIFIED:
  934. bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
  935. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  936. "Set Network type to NO LINK!\n");
  937. break;
  938. case NL80211_IFTYPE_ADHOC:
  939. bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
  940. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  941. "Set Network type to Ad Hoc!\n");
  942. break;
  943. case NL80211_IFTYPE_STATION:
  944. bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
  945. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  946. "Set Network type to STA!\n");
  947. break;
  948. case NL80211_IFTYPE_AP:
  949. bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
  950. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  951. "Set Network type to AP!\n");
  952. break;
  953. default:
  954. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  955. "Network type %d not supported!\n", type);
  956. return 1;
  957. break;
  958. }
  959. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  960. temp = rtl_read_dword(rtlpriv, TCR);
  961. rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
  962. rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
  963. return 0;
  964. }
  965. /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
  966. int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  967. {
  968. struct rtl_priv *rtlpriv = rtl_priv(hw);
  969. if (_rtl92se_set_media_status(hw, type))
  970. return -EOPNOTSUPP;
  971. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  972. if (type != NL80211_IFTYPE_AP)
  973. rtl92se_set_check_bssid(hw, true);
  974. } else {
  975. rtl92se_set_check_bssid(hw, false);
  976. }
  977. return 0;
  978. }
  979. /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
  980. void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
  981. {
  982. struct rtl_priv *rtlpriv = rtl_priv(hw);
  983. rtl92s_dm_init_edca_turbo(hw);
  984. switch (aci) {
  985. case AC1_BK:
  986. rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
  987. break;
  988. case AC0_BE:
  989. /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
  990. break;
  991. case AC2_VI:
  992. rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
  993. break;
  994. case AC3_VO:
  995. rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
  996. break;
  997. default:
  998. RT_ASSERT(false, "invalid aci: %d !\n", aci);
  999. break;
  1000. }
  1001. }
  1002. void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
  1003. {
  1004. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1005. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1006. rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
  1007. /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
  1008. rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
  1009. }
  1010. void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
  1011. {
  1012. struct rtl_priv *rtlpriv;
  1013. struct rtl_pci *rtlpci;
  1014. rtlpriv = rtl_priv(hw);
  1015. /* if firmware not available, no interrupts */
  1016. if (!rtlpriv || !rtlpriv->max_fw_size)
  1017. return;
  1018. rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1019. rtl_write_dword(rtlpriv, INTA_MASK, 0);
  1020. rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
  1021. synchronize_irq(rtlpci->pdev->irq);
  1022. }
  1023. static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
  1024. {
  1025. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1026. u8 waitcnt = 100;
  1027. bool result = false;
  1028. u8 tmp;
  1029. rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
  1030. /* Wait the MAC synchronized. */
  1031. udelay(400);
  1032. /* Check if it is set ready. */
  1033. tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  1034. result = ((tmp & BIT(7)) == (data & BIT(7)));
  1035. if ((data & (BIT(6) | BIT(7))) == false) {
  1036. waitcnt = 100;
  1037. tmp = 0;
  1038. while (1) {
  1039. waitcnt--;
  1040. tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  1041. if ((tmp & BIT(6)))
  1042. break;
  1043. pr_err("wait for BIT(6) return value %x\n", tmp);
  1044. if (waitcnt == 0)
  1045. break;
  1046. udelay(10);
  1047. }
  1048. if (waitcnt == 0)
  1049. result = false;
  1050. else
  1051. result = true;
  1052. }
  1053. return result;
  1054. }
  1055. static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
  1056. {
  1057. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1058. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1059. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1060. u8 u1btmp;
  1061. if (rtlhal->driver_going2unload)
  1062. rtl_write_byte(rtlpriv, 0x560, 0x0);
  1063. /* Power save for BB/RF */
  1064. u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
  1065. u1btmp |= BIT(0);
  1066. rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
  1067. rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
  1068. rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
  1069. rtl_write_word(rtlpriv, CMDR, 0x57FC);
  1070. udelay(100);
  1071. rtl_write_word(rtlpriv, CMDR, 0x77FC);
  1072. rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
  1073. udelay(10);
  1074. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  1075. udelay(10);
  1076. rtl_write_word(rtlpriv, CMDR, 0x77FC);
  1077. udelay(10);
  1078. rtl_write_word(rtlpriv, CMDR, 0x57FC);
  1079. rtl_write_word(rtlpriv, CMDR, 0x0000);
  1080. if (rtlhal->driver_going2unload) {
  1081. u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
  1082. u1btmp &= ~(BIT(0));
  1083. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
  1084. }
  1085. u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1086. /* Add description. After switch control path. register
  1087. * after page1 will be invisible. We can not do any IO
  1088. * for register>0x40. After resume&MACIO reset, we need
  1089. * to remember previous reg content. */
  1090. if (u1btmp & BIT(7)) {
  1091. u1btmp &= ~(BIT(6) | BIT(7));
  1092. if (!_rtl92s_set_sysclk(hw, u1btmp)) {
  1093. pr_err("Switch ctrl path fail\n");
  1094. return;
  1095. }
  1096. }
  1097. /* Power save for MAC */
  1098. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS &&
  1099. !rtlhal->driver_going2unload) {
  1100. /* enable LED function */
  1101. rtl_write_byte(rtlpriv, 0x03, 0xF9);
  1102. /* SW/HW radio off or halt adapter!! For example S3/S4 */
  1103. } else {
  1104. /* LED function disable. Power range is about 8mA now. */
  1105. /* if write 0xF1 disconnet_pci power
  1106. * ifconfig wlan0 down power are both high 35:70 */
  1107. /* if write oxF9 disconnet_pci power
  1108. * ifconfig wlan0 down power are both low 12:45*/
  1109. rtl_write_byte(rtlpriv, 0x03, 0xF9);
  1110. }
  1111. rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
  1112. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
  1113. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00);
  1114. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  1115. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
  1116. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1117. }
  1118. static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
  1119. {
  1120. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1121. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1122. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1123. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  1124. if (rtlpci->up_first_time == 1)
  1125. return;
  1126. if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
  1127. rtl92se_sw_led_on(hw, pLed0);
  1128. else
  1129. rtl92se_sw_led_off(hw, pLed0);
  1130. }
  1131. static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
  1132. {
  1133. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1134. u16 tmpu2b;
  1135. u8 tmpu1b;
  1136. rtlpriv->psc.pwrdomain_protect = true;
  1137. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1138. if (tmpu1b & BIT(7)) {
  1139. tmpu1b &= ~(BIT(6) | BIT(7));
  1140. if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
  1141. rtlpriv->psc.pwrdomain_protect = false;
  1142. return;
  1143. }
  1144. }
  1145. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
  1146. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  1147. /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
  1148. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  1149. /* If IPS we need to turn LED on. So we not
  1150. * not disable BIT 3/7 of reg3. */
  1151. if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
  1152. tmpu1b &= 0xFB;
  1153. else
  1154. tmpu1b &= 0x73;
  1155. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
  1156. /* wait for BIT 10/11/15 to pull high automatically!! */
  1157. mdelay(1);
  1158. rtl_write_byte(rtlpriv, CMDR, 0);
  1159. rtl_write_byte(rtlpriv, TCR, 0);
  1160. /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
  1161. tmpu1b = rtl_read_byte(rtlpriv, 0x562);
  1162. tmpu1b |= 0x08;
  1163. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  1164. tmpu1b &= ~(BIT(3));
  1165. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  1166. /* Enable AFE clock source */
  1167. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
  1168. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
  1169. /* Delay 1.5ms */
  1170. udelay(1500);
  1171. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
  1172. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
  1173. /* Enable AFE Macro Block's Bandgap */
  1174. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  1175. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
  1176. mdelay(1);
  1177. /* Enable AFE Mbias */
  1178. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  1179. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
  1180. mdelay(1);
  1181. /* Enable LDOA15 block */
  1182. tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
  1183. rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
  1184. /* Set Digital Vdd to Retention isolation Path. */
  1185. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  1186. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
  1187. /* For warm reboot NIC disappera bug. */
  1188. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1189. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
  1190. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
  1191. /* Enable AFE PLL Macro Block */
  1192. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
  1193. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  1194. /* Enable MAC 80MHZ clock */
  1195. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
  1196. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
  1197. mdelay(1);
  1198. /* Release isolation AFE PLL & MD */
  1199. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
  1200. /* Enable MAC clock */
  1201. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  1202. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
  1203. /* Enable Core digital and enable IOREG R/W */
  1204. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1205. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
  1206. /* enable REG_EN */
  1207. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
  1208. /* Switch the control path. */
  1209. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  1210. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
  1211. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1212. tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
  1213. if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
  1214. rtlpriv->psc.pwrdomain_protect = false;
  1215. return;
  1216. }
  1217. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  1218. /* After MACIO reset,we must refresh LED state. */
  1219. _rtl92se_gen_refreshledstate(hw);
  1220. rtlpriv->psc.pwrdomain_protect = false;
  1221. }
  1222. void rtl92se_card_disable(struct ieee80211_hw *hw)
  1223. {
  1224. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1225. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1226. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1227. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1228. enum nl80211_iftype opmode;
  1229. u8 wait = 30;
  1230. rtlpriv->intf_ops->enable_aspm(hw);
  1231. if (rtlpci->driver_is_goingto_unload ||
  1232. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1233. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1234. /* we should chnge GPIO to input mode
  1235. * this will drop away current about 25mA*/
  1236. rtl8192se_gpiobit3_cfg_inputmode(hw);
  1237. /* this is very important for ips power save */
  1238. while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
  1239. if (rtlpriv->psc.pwrdomain_protect)
  1240. mdelay(20);
  1241. else
  1242. break;
  1243. }
  1244. mac->link_state = MAC80211_NOLINK;
  1245. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1246. _rtl92se_set_media_status(hw, opmode);
  1247. _rtl92s_phy_set_rfhalt(hw);
  1248. udelay(100);
  1249. }
  1250. void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
  1251. u32 *p_intb)
  1252. {
  1253. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1254. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1255. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1256. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1257. *p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
  1258. rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
  1259. }
  1260. void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
  1261. {
  1262. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1263. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1264. u16 bcntime_cfg = 0;
  1265. u16 bcn_cw = 6, bcn_ifs = 0xf;
  1266. u16 atim_window = 2;
  1267. /* ATIM Window (in unit of TU). */
  1268. rtl_write_word(rtlpriv, ATIMWND, atim_window);
  1269. /* Beacon interval (in unit of TU). */
  1270. rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
  1271. /* DrvErlyInt (in unit of TU). (Time to send
  1272. * interrupt to notify driver to change
  1273. * beacon content) */
  1274. rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
  1275. /* BcnDMATIM(in unit of us). Indicates the
  1276. * time before TBTT to perform beacon queue DMA */
  1277. rtl_write_word(rtlpriv, BCN_DMATIME, 256);
  1278. /* Force beacon frame transmission even
  1279. * after receiving beacon frame from
  1280. * other ad hoc STA */
  1281. rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
  1282. /* Beacon Time Configuration */
  1283. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1284. bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
  1285. /* TODO: bcn_ifs may required to be changed on ASIC */
  1286. bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
  1287. /*for beacon changed */
  1288. rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
  1289. }
  1290. void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
  1291. {
  1292. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1293. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1294. u16 bcn_interval = mac->beacon_interval;
  1295. /* Beacon interval (in unit of TU). */
  1296. rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
  1297. /* 2008.10.24 added by tynli for beacon changed. */
  1298. rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
  1299. }
  1300. void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
  1301. u32 add_msr, u32 rm_msr)
  1302. {
  1303. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1304. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1305. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
  1306. add_msr, rm_msr);
  1307. if (add_msr)
  1308. rtlpci->irq_mask[0] |= add_msr;
  1309. if (rm_msr)
  1310. rtlpci->irq_mask[0] &= (~rm_msr);
  1311. rtl92se_disable_interrupt(hw);
  1312. rtl92se_enable_interrupt(hw);
  1313. }
  1314. static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
  1315. {
  1316. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1317. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1318. u8 efuse_id;
  1319. rtlhal->ic_class = IC_INFERIORITY_A;
  1320. /* Only retrieving while using EFUSE. */
  1321. if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
  1322. !rtlefuse->autoload_failflag) {
  1323. efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
  1324. if (efuse_id == 0xfe)
  1325. rtlhal->ic_class = IC_INFERIORITY_B;
  1326. }
  1327. }
  1328. static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
  1329. {
  1330. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1331. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1332. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1333. u16 i, usvalue;
  1334. u16 eeprom_id;
  1335. u8 tempval;
  1336. u8 hwinfo[HWSET_MAX_SIZE_92S];
  1337. u8 rf_path, index;
  1338. if (rtlefuse->epromtype == EEPROM_93C46) {
  1339. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1340. "RTL819X Not boot from eeprom, check it !!\n");
  1341. } else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1342. rtl_efuse_shadow_map_update(hw);
  1343. memcpy((void *)hwinfo, (void *)
  1344. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1345. HWSET_MAX_SIZE_92S);
  1346. }
  1347. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
  1348. hwinfo, HWSET_MAX_SIZE_92S);
  1349. eeprom_id = *((u16 *)&hwinfo[0]);
  1350. if (eeprom_id != RTL8190_EEPROM_ID) {
  1351. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1352. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1353. rtlefuse->autoload_failflag = true;
  1354. } else {
  1355. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1356. rtlefuse->autoload_failflag = false;
  1357. }
  1358. if (rtlefuse->autoload_failflag)
  1359. return;
  1360. _rtl8192se_get_IC_Inferiority(hw);
  1361. /* Read IC Version && Channel Plan */
  1362. /* VID, DID SE 0xA-D */
  1363. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1364. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1365. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1366. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1367. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1368. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1369. "EEPROMId = 0x%4x\n", eeprom_id);
  1370. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1371. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1372. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1373. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1374. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1375. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1376. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1377. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1378. for (i = 0; i < 6; i += 2) {
  1379. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1380. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  1381. }
  1382. for (i = 0; i < 6; i++)
  1383. rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
  1384. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
  1385. /* Get Tx Power Level by Channel */
  1386. /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
  1387. /* 92S suupport RF A & B */
  1388. for (rf_path = 0; rf_path < 2; rf_path++) {
  1389. for (i = 0; i < 3; i++) {
  1390. /* Read CCK RF A & B Tx power */
  1391. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1392. hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
  1393. /* Read OFDM RF A & B Tx power for 1T */
  1394. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1395. hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
  1396. /* Read OFDM RF A & B Tx power for 2T */
  1397. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
  1398. = hwinfo[EEPROM_TXPOWERBASE + 12 +
  1399. rf_path * 3 + i];
  1400. }
  1401. }
  1402. for (rf_path = 0; rf_path < 2; rf_path++)
  1403. for (i = 0; i < 3; i++)
  1404. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1405. "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
  1406. rf_path, i,
  1407. rtlefuse->eeprom_chnlarea_txpwr_cck
  1408. [rf_path][i]);
  1409. for (rf_path = 0; rf_path < 2; rf_path++)
  1410. for (i = 0; i < 3; i++)
  1411. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1412. "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  1413. rf_path, i,
  1414. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
  1415. [rf_path][i]);
  1416. for (rf_path = 0; rf_path < 2; rf_path++)
  1417. for (i = 0; i < 3; i++)
  1418. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1419. "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  1420. rf_path, i,
  1421. rtlefuse->eprom_chnl_txpwr_ht40_2sdf
  1422. [rf_path][i]);
  1423. for (rf_path = 0; rf_path < 2; rf_path++) {
  1424. /* Assign dedicated channel tx power */
  1425. for (i = 0; i < 14; i++) {
  1426. /* channel 1~3 use the same Tx Power Level. */
  1427. if (i < 3)
  1428. index = 0;
  1429. /* Channel 4-8 */
  1430. else if (i < 8)
  1431. index = 1;
  1432. /* Channel 9-14 */
  1433. else
  1434. index = 2;
  1435. /* Record A & B CCK /OFDM - 1T/2T Channel area
  1436. * tx power */
  1437. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1438. rtlefuse->eeprom_chnlarea_txpwr_cck
  1439. [rf_path][index];
  1440. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1441. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
  1442. [rf_path][index];
  1443. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  1444. rtlefuse->eprom_chnl_txpwr_ht40_2sdf
  1445. [rf_path][index];
  1446. }
  1447. for (i = 0; i < 14; i++) {
  1448. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1449. "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
  1450. rf_path, i,
  1451. rtlefuse->txpwrlevel_cck[rf_path][i],
  1452. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  1453. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
  1454. }
  1455. }
  1456. for (rf_path = 0; rf_path < 2; rf_path++) {
  1457. for (i = 0; i < 3; i++) {
  1458. /* Read Power diff limit. */
  1459. rtlefuse->eeprom_pwrgroup[rf_path][i] =
  1460. hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
  1461. }
  1462. }
  1463. for (rf_path = 0; rf_path < 2; rf_path++) {
  1464. /* Fill Pwr group */
  1465. for (i = 0; i < 14; i++) {
  1466. /* Chanel 1-3 */
  1467. if (i < 3)
  1468. index = 0;
  1469. /* Channel 4-8 */
  1470. else if (i < 8)
  1471. index = 1;
  1472. /* Channel 9-13 */
  1473. else
  1474. index = 2;
  1475. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1476. (rtlefuse->eeprom_pwrgroup[rf_path][index] &
  1477. 0xf);
  1478. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1479. ((rtlefuse->eeprom_pwrgroup[rf_path][index] &
  1480. 0xf0) >> 4);
  1481. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1482. "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  1483. rf_path, i,
  1484. rtlefuse->pwrgroup_ht20[rf_path][i]);
  1485. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1486. "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  1487. rf_path, i,
  1488. rtlefuse->pwrgroup_ht40[rf_path][i]);
  1489. }
  1490. }
  1491. for (i = 0; i < 14; i++) {
  1492. /* Read tx power difference between HT OFDM 20/40 MHZ */
  1493. /* channel 1-3 */
  1494. if (i < 3)
  1495. index = 0;
  1496. /* Channel 4-8 */
  1497. else if (i < 8)
  1498. index = 1;
  1499. /* Channel 9-14 */
  1500. else
  1501. index = 2;
  1502. tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
  1503. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  1504. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  1505. ((tempval >> 4) & 0xF);
  1506. /* Read OFDM<->HT tx power diff */
  1507. /* Channel 1-3 */
  1508. if (i < 3)
  1509. index = 0;
  1510. /* Channel 4-8 */
  1511. else if (i < 8)
  1512. index = 0x11;
  1513. /* Channel 9-14 */
  1514. else
  1515. index = 1;
  1516. tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
  1517. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
  1518. (tempval & 0xF);
  1519. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  1520. ((tempval >> 4) & 0xF);
  1521. tempval = hwinfo[TX_PWR_SAFETY_CHK];
  1522. rtlefuse->txpwr_safetyflag = (tempval & 0x01);
  1523. }
  1524. rtlefuse->eeprom_regulatory = 0;
  1525. if (rtlefuse->eeprom_version >= 2) {
  1526. /* BIT(0)~2 */
  1527. if (rtlefuse->eeprom_version >= 4)
  1528. rtlefuse->eeprom_regulatory =
  1529. (hwinfo[EEPROM_REGULATORY] & 0x7);
  1530. else /* BIT(0) */
  1531. rtlefuse->eeprom_regulatory =
  1532. (hwinfo[EEPROM_REGULATORY] & 0x1);
  1533. }
  1534. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1535. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1536. for (i = 0; i < 14; i++)
  1537. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1538. "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
  1539. i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
  1540. for (i = 0; i < 14; i++)
  1541. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1542. "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
  1543. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
  1544. for (i = 0; i < 14; i++)
  1545. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1546. "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
  1547. i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
  1548. for (i = 0; i < 14; i++)
  1549. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1550. "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
  1551. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
  1552. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1553. "TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
  1554. /* Read RF-indication and Tx Power gain
  1555. * index diff of legacy to HT OFDM rate. */
  1556. tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
  1557. rtlefuse->eeprom_txpowerdiff = tempval;
  1558. rtlefuse->legacy_httxpowerdiff =
  1559. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
  1560. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1561. "TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
  1562. /* Get TSSI value for each path. */
  1563. usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
  1564. rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
  1565. usvalue = hwinfo[EEPROM_TSSI_B];
  1566. rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
  1567. RTPRINT(rtlpriv, FINIT, INIT_TxPower, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  1568. rtlefuse->eeprom_tssi[RF90_PATH_A],
  1569. rtlefuse->eeprom_tssi[RF90_PATH_B]);
  1570. /* Read antenna tx power offset of B/C/D to A from EEPROM */
  1571. /* and read ThermalMeter from EEPROM */
  1572. tempval = hwinfo[EEPROM_THERMALMETER];
  1573. rtlefuse->eeprom_thermalmeter = tempval;
  1574. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1575. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1576. /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
  1577. rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
  1578. rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
  1579. /* Read CrystalCap from EEPROM */
  1580. tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
  1581. rtlefuse->eeprom_crystalcap = tempval;
  1582. /* CrystalCap, BIT(12)~15 */
  1583. rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
  1584. /* Read IC Version && Channel Plan */
  1585. /* Version ID, Channel plan */
  1586. rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
  1587. rtlefuse->txpwr_fromeprom = true;
  1588. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1589. "EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
  1590. /* Read Customer ID or Board Type!!! */
  1591. tempval = hwinfo[EEPROM_BOARDTYPE];
  1592. /* Change RF type definition */
  1593. if (tempval == 0)
  1594. rtlphy->rf_type = RF_2T2R;
  1595. else if (tempval == 1)
  1596. rtlphy->rf_type = RF_1T2R;
  1597. else if (tempval == 2)
  1598. rtlphy->rf_type = RF_1T2R;
  1599. else if (tempval == 3)
  1600. rtlphy->rf_type = RF_1T1R;
  1601. /* 1T2R but 1SS (1x1 receive combining) */
  1602. rtlefuse->b1x1_recvcombine = false;
  1603. if (rtlphy->rf_type == RF_1T2R) {
  1604. tempval = rtl_read_byte(rtlpriv, 0x07);
  1605. if (!(tempval & BIT(0))) {
  1606. rtlefuse->b1x1_recvcombine = true;
  1607. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1608. "RF_TYPE=1T2R but only 1SS\n");
  1609. }
  1610. }
  1611. rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
  1612. rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
  1613. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x",
  1614. rtlefuse->eeprom_oemid);
  1615. /* set channel paln to world wide 13 */
  1616. rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
  1617. }
  1618. void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
  1619. {
  1620. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1621. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1622. u8 tmp_u1b = 0;
  1623. tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
  1624. if (tmp_u1b & BIT(4)) {
  1625. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1626. rtlefuse->epromtype = EEPROM_93C46;
  1627. } else {
  1628. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1629. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1630. }
  1631. if (tmp_u1b & BIT(5)) {
  1632. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1633. rtlefuse->autoload_failflag = false;
  1634. _rtl92se_read_adapter_info(hw);
  1635. } else {
  1636. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1637. rtlefuse->autoload_failflag = true;
  1638. }
  1639. }
  1640. static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
  1641. struct ieee80211_sta *sta)
  1642. {
  1643. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1644. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1645. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1646. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1647. u32 ratr_value;
  1648. u8 ratr_index = 0;
  1649. u8 nmode = mac->ht_enable;
  1650. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1651. u16 shortgi_rate = 0;
  1652. u32 tmp_ratr_value = 0;
  1653. u8 curtxbw_40mhz = mac->bw_40;
  1654. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1655. 1 : 0;
  1656. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1657. 1 : 0;
  1658. enum wireless_mode wirelessmode = mac->mode;
  1659. if (rtlhal->current_bandtype == BAND_ON_5G)
  1660. ratr_value = sta->supp_rates[1] << 4;
  1661. else
  1662. ratr_value = sta->supp_rates[0];
  1663. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1664. sta->ht_cap.mcs.rx_mask[0] << 12);
  1665. switch (wirelessmode) {
  1666. case WIRELESS_MODE_B:
  1667. ratr_value &= 0x0000000D;
  1668. break;
  1669. case WIRELESS_MODE_G:
  1670. ratr_value &= 0x00000FF5;
  1671. break;
  1672. case WIRELESS_MODE_N_24G:
  1673. case WIRELESS_MODE_N_5G:
  1674. nmode = 1;
  1675. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1676. ratr_value &= 0x0007F005;
  1677. } else {
  1678. u32 ratr_mask;
  1679. if (get_rf_type(rtlphy) == RF_1T2R ||
  1680. get_rf_type(rtlphy) == RF_1T1R) {
  1681. if (curtxbw_40mhz)
  1682. ratr_mask = 0x000ff015;
  1683. else
  1684. ratr_mask = 0x000ff005;
  1685. } else {
  1686. if (curtxbw_40mhz)
  1687. ratr_mask = 0x0f0ff015;
  1688. else
  1689. ratr_mask = 0x0f0ff005;
  1690. }
  1691. ratr_value &= ratr_mask;
  1692. }
  1693. break;
  1694. default:
  1695. if (rtlphy->rf_type == RF_1T2R)
  1696. ratr_value &= 0x000ff0ff;
  1697. else
  1698. ratr_value &= 0x0f0ff0ff;
  1699. break;
  1700. }
  1701. if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
  1702. ratr_value &= 0x0FFFFFFF;
  1703. else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
  1704. ratr_value &= 0x0FFFFFF0;
  1705. if (nmode && ((curtxbw_40mhz &&
  1706. curshortgi_40mhz) || (!curtxbw_40mhz &&
  1707. curshortgi_20mhz))) {
  1708. ratr_value |= 0x10000000;
  1709. tmp_ratr_value = (ratr_value >> 12);
  1710. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1711. if ((1 << shortgi_rate) & tmp_ratr_value)
  1712. break;
  1713. }
  1714. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1715. (shortgi_rate << 4) | (shortgi_rate);
  1716. rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
  1717. }
  1718. rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
  1719. if (ratr_value & 0xfffff000)
  1720. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
  1721. else
  1722. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
  1723. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
  1724. rtl_read_dword(rtlpriv, ARFR0));
  1725. }
  1726. static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
  1727. struct ieee80211_sta *sta,
  1728. u8 rssi_level)
  1729. {
  1730. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1731. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1732. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1733. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1734. struct rtl_sta_info *sta_entry = NULL;
  1735. u32 ratr_bitmap;
  1736. u8 ratr_index = 0;
  1737. u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
  1738. ? 1 : 0;
  1739. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1740. 1 : 0;
  1741. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1742. 1 : 0;
  1743. enum wireless_mode wirelessmode = 0;
  1744. bool shortgi = false;
  1745. u32 ratr_value = 0;
  1746. u8 shortgi_rate = 0;
  1747. u32 mask = 0;
  1748. u32 band = 0;
  1749. bool bmulticast = false;
  1750. u8 macid = 0;
  1751. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1752. sta_entry = (struct rtl_sta_info *) sta->drv_priv;
  1753. wirelessmode = sta_entry->wireless_mode;
  1754. if (mac->opmode == NL80211_IFTYPE_STATION)
  1755. curtxbw_40mhz = mac->bw_40;
  1756. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1757. mac->opmode == NL80211_IFTYPE_ADHOC)
  1758. macid = sta->aid + 1;
  1759. if (rtlhal->current_bandtype == BAND_ON_5G)
  1760. ratr_bitmap = sta->supp_rates[1] << 4;
  1761. else
  1762. ratr_bitmap = sta->supp_rates[0];
  1763. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1764. sta->ht_cap.mcs.rx_mask[0] << 12);
  1765. switch (wirelessmode) {
  1766. case WIRELESS_MODE_B:
  1767. band |= WIRELESS_11B;
  1768. ratr_index = RATR_INX_WIRELESS_B;
  1769. if (ratr_bitmap & 0x0000000c)
  1770. ratr_bitmap &= 0x0000000d;
  1771. else
  1772. ratr_bitmap &= 0x0000000f;
  1773. break;
  1774. case WIRELESS_MODE_G:
  1775. band |= (WIRELESS_11G | WIRELESS_11B);
  1776. ratr_index = RATR_INX_WIRELESS_GB;
  1777. if (rssi_level == 1)
  1778. ratr_bitmap &= 0x00000f00;
  1779. else if (rssi_level == 2)
  1780. ratr_bitmap &= 0x00000ff0;
  1781. else
  1782. ratr_bitmap &= 0x00000ff5;
  1783. break;
  1784. case WIRELESS_MODE_A:
  1785. band |= WIRELESS_11A;
  1786. ratr_index = RATR_INX_WIRELESS_A;
  1787. ratr_bitmap &= 0x00000ff0;
  1788. break;
  1789. case WIRELESS_MODE_N_24G:
  1790. case WIRELESS_MODE_N_5G:
  1791. band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
  1792. ratr_index = RATR_INX_WIRELESS_NGB;
  1793. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1794. if (rssi_level == 1)
  1795. ratr_bitmap &= 0x00070000;
  1796. else if (rssi_level == 2)
  1797. ratr_bitmap &= 0x0007f000;
  1798. else
  1799. ratr_bitmap &= 0x0007f005;
  1800. } else {
  1801. if (rtlphy->rf_type == RF_1T2R ||
  1802. rtlphy->rf_type == RF_1T1R) {
  1803. if (rssi_level == 1) {
  1804. ratr_bitmap &= 0x000f0000;
  1805. } else if (rssi_level == 3) {
  1806. ratr_bitmap &= 0x000fc000;
  1807. } else if (rssi_level == 5) {
  1808. ratr_bitmap &= 0x000ff000;
  1809. } else {
  1810. if (curtxbw_40mhz)
  1811. ratr_bitmap &= 0x000ff015;
  1812. else
  1813. ratr_bitmap &= 0x000ff005;
  1814. }
  1815. } else {
  1816. if (rssi_level == 1) {
  1817. ratr_bitmap &= 0x0f8f0000;
  1818. } else if (rssi_level == 3) {
  1819. ratr_bitmap &= 0x0f8fc000;
  1820. } else if (rssi_level == 5) {
  1821. ratr_bitmap &= 0x0f8ff000;
  1822. } else {
  1823. if (curtxbw_40mhz)
  1824. ratr_bitmap &= 0x0f8ff015;
  1825. else
  1826. ratr_bitmap &= 0x0f8ff005;
  1827. }
  1828. }
  1829. }
  1830. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  1831. (!curtxbw_40mhz && curshortgi_20mhz)) {
  1832. if (macid == 0)
  1833. shortgi = true;
  1834. else if (macid == 1)
  1835. shortgi = false;
  1836. }
  1837. break;
  1838. default:
  1839. band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
  1840. ratr_index = RATR_INX_WIRELESS_NGB;
  1841. if (rtlphy->rf_type == RF_1T2R)
  1842. ratr_bitmap &= 0x000ff0ff;
  1843. else
  1844. ratr_bitmap &= 0x0f8ff0ff;
  1845. break;
  1846. }
  1847. if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
  1848. ratr_bitmap &= 0x0FFFFFFF;
  1849. else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
  1850. ratr_bitmap &= 0x0FFFFFF0;
  1851. if (shortgi) {
  1852. ratr_bitmap |= 0x10000000;
  1853. /* Get MAX MCS available. */
  1854. ratr_value = (ratr_bitmap >> 12);
  1855. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1856. if ((1 << shortgi_rate) & ratr_value)
  1857. break;
  1858. }
  1859. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1860. (shortgi_rate << 4) | (shortgi_rate);
  1861. rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
  1862. }
  1863. mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
  1864. RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
  1865. mask, ratr_bitmap);
  1866. rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
  1867. rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
  1868. if (macid != 0)
  1869. sta_entry->ratr_index = ratr_index;
  1870. }
  1871. void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1872. struct ieee80211_sta *sta, u8 rssi_level)
  1873. {
  1874. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1875. if (rtlpriv->dm.useramask)
  1876. rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
  1877. else
  1878. rtl92se_update_hal_rate_table(hw, sta);
  1879. }
  1880. void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
  1881. {
  1882. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1883. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1884. u16 sifs_timer;
  1885. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  1886. &mac->slot_time);
  1887. sifs_timer = 0x0e0e;
  1888. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  1889. }
  1890. /* this ifunction is for RFKILL, it's different with windows,
  1891. * because UI will disable wireless when GPIO Radio Off.
  1892. * And here we not check or Disable/Enable ASPM like windows*/
  1893. bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  1894. {
  1895. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1896. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1897. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1898. enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
  1899. unsigned long flag = 0;
  1900. bool actuallyset = false;
  1901. bool turnonbypowerdomain = false;
  1902. /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
  1903. if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
  1904. return false;
  1905. if (ppsc->swrf_processing)
  1906. return false;
  1907. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1908. if (ppsc->rfchange_inprogress) {
  1909. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1910. return false;
  1911. } else {
  1912. ppsc->rfchange_inprogress = true;
  1913. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1914. }
  1915. /* cur_rfstate = ppsc->rfpwr_state;*/
  1916. /* because after _rtl92s_phy_set_rfhalt, all power
  1917. * closed, so we must open some power for GPIO check,
  1918. * or we will always check GPIO RFOFF here,
  1919. * And we should close power after GPIO check */
  1920. if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
  1921. _rtl92se_power_domain_init(hw);
  1922. turnonbypowerdomain = true;
  1923. }
  1924. rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
  1925. if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
  1926. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1927. "RFKILL-HW Radio ON, RF ON\n");
  1928. rfpwr_toset = ERFON;
  1929. ppsc->hwradiooff = false;
  1930. actuallyset = true;
  1931. } else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
  1932. RT_TRACE(rtlpriv, COMP_RF,
  1933. DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
  1934. rfpwr_toset = ERFOFF;
  1935. ppsc->hwradiooff = true;
  1936. actuallyset = true;
  1937. }
  1938. if (actuallyset) {
  1939. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1940. ppsc->rfchange_inprogress = false;
  1941. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1942. /* this not include ifconfig wlan0 down case */
  1943. /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
  1944. } else {
  1945. /* because power_domain_init may be happen when
  1946. * _rtl92s_phy_set_rfhalt, this will open some powers
  1947. * and cause current increasing about 40 mA for ips,
  1948. * rfoff and ifconfig down, so we set
  1949. * _rtl92s_phy_set_rfhalt again here */
  1950. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
  1951. turnonbypowerdomain) {
  1952. _rtl92s_phy_set_rfhalt(hw);
  1953. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1954. }
  1955. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1956. ppsc->rfchange_inprogress = false;
  1957. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1958. }
  1959. *valid = 1;
  1960. return !ppsc->hwradiooff;
  1961. }
  1962. /* Is_wepkey just used for WEP used as group & pairwise key
  1963. * if pairwise is AES ang group is WEP Is_wepkey == false.*/
  1964. void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
  1965. bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
  1966. {
  1967. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1968. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1969. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1970. u8 *macaddr = p_macaddr;
  1971. u32 entry_id = 0;
  1972. bool is_pairwise = false;
  1973. static u8 cam_const_addr[4][6] = {
  1974. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  1975. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  1976. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  1977. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  1978. };
  1979. static u8 cam_const_broad[] = {
  1980. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  1981. };
  1982. if (clear_all) {
  1983. u8 idx = 0;
  1984. u8 cam_offset = 0;
  1985. u8 clear_number = 5;
  1986. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  1987. for (idx = 0; idx < clear_number; idx++) {
  1988. rtl_cam_mark_invalid(hw, cam_offset + idx);
  1989. rtl_cam_empty_entry(hw, cam_offset + idx);
  1990. if (idx < 5) {
  1991. memset(rtlpriv->sec.key_buf[idx], 0,
  1992. MAX_KEY_LEN);
  1993. rtlpriv->sec.key_len[idx] = 0;
  1994. }
  1995. }
  1996. } else {
  1997. switch (enc_algo) {
  1998. case WEP40_ENCRYPTION:
  1999. enc_algo = CAM_WEP40;
  2000. break;
  2001. case WEP104_ENCRYPTION:
  2002. enc_algo = CAM_WEP104;
  2003. break;
  2004. case TKIP_ENCRYPTION:
  2005. enc_algo = CAM_TKIP;
  2006. break;
  2007. case AESCCMP_ENCRYPTION:
  2008. enc_algo = CAM_AES;
  2009. break;
  2010. default:
  2011. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2012. "switch case not processed\n");
  2013. enc_algo = CAM_TKIP;
  2014. break;
  2015. }
  2016. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  2017. macaddr = cam_const_addr[key_index];
  2018. entry_id = key_index;
  2019. } else {
  2020. if (is_group) {
  2021. macaddr = cam_const_broad;
  2022. entry_id = key_index;
  2023. } else {
  2024. if (mac->opmode == NL80211_IFTYPE_AP) {
  2025. entry_id = rtl_cam_get_free_entry(hw,
  2026. p_macaddr);
  2027. if (entry_id >= TOTAL_CAM_ENTRY) {
  2028. RT_TRACE(rtlpriv,
  2029. COMP_SEC, DBG_EMERG,
  2030. "Can not find free hw security cam entry\n");
  2031. return;
  2032. }
  2033. } else {
  2034. entry_id = CAM_PAIRWISE_KEY_POSITION;
  2035. }
  2036. key_index = PAIRWISE_KEYIDX;
  2037. is_pairwise = true;
  2038. }
  2039. }
  2040. if (rtlpriv->sec.key_len[key_index] == 0) {
  2041. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2042. "delete one entry, entry_id is %d\n",
  2043. entry_id);
  2044. if (mac->opmode == NL80211_IFTYPE_AP)
  2045. rtl_cam_del_entry(hw, p_macaddr);
  2046. rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
  2047. } else {
  2048. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  2049. "The insert KEY length is %d\n",
  2050. rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
  2051. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  2052. "The insert KEY is %x %x\n",
  2053. rtlpriv->sec.key_buf[0][0],
  2054. rtlpriv->sec.key_buf[0][1]);
  2055. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2056. "add one entry\n");
  2057. if (is_pairwise) {
  2058. RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
  2059. "Pairwise Key content",
  2060. rtlpriv->sec.pairwise_key,
  2061. rtlpriv->sec.
  2062. key_len[PAIRWISE_KEYIDX]);
  2063. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2064. "set Pairwise key\n");
  2065. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2066. entry_id, enc_algo,
  2067. CAM_CONFIG_NO_USEDK,
  2068. rtlpriv->sec.key_buf[key_index]);
  2069. } else {
  2070. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2071. "set group key\n");
  2072. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  2073. rtl_cam_add_one_entry(hw,
  2074. rtlefuse->dev_addr,
  2075. PAIRWISE_KEYIDX,
  2076. CAM_PAIRWISE_KEY_POSITION,
  2077. enc_algo, CAM_CONFIG_NO_USEDK,
  2078. rtlpriv->sec.key_buf[entry_id]);
  2079. }
  2080. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2081. entry_id, enc_algo,
  2082. CAM_CONFIG_NO_USEDK,
  2083. rtlpriv->sec.key_buf[entry_id]);
  2084. }
  2085. }
  2086. }
  2087. }
  2088. void rtl92se_suspend(struct ieee80211_hw *hw)
  2089. {
  2090. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2091. rtlpci->up_first_time = true;
  2092. }
  2093. void rtl92se_resume(struct ieee80211_hw *hw)
  2094. {
  2095. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2096. u32 val;
  2097. pci_read_config_dword(rtlpci->pdev, 0x40, &val);
  2098. if ((val & 0x0000ff00) != 0)
  2099. pci_write_config_dword(rtlpci->pdev, 0x40,
  2100. val & 0xffff00ff);
  2101. }